SNARE proteins are highly enriched in lipid rafts in PC1 control of exocytosis

Proceedings of the National Academy of Sciences of the Unite 98, 5619-5624

DOI: 10.1073/pnas.091502398

Citation Report

#	Article	IF	Citations
1	ENERGY METABOLISM OF THE NORMAL AND CRYPTORCHID RAT TESTIS. Reproduction, 1971, 25, 29-39.	1.1	7
2	Lipid microdomains are involved in neurospecific binding and internalisation of clostridial neurotoxins. International Journal of Medical Microbiology, 2001, 291, 447-453.	1.5	22
3	Direct observation of membrane retrieval in chromaffin cells by capacitance measurements. FEBS Letters, 2001, 505, 414-418.	1.3	20
4	Molecular machinery involved in the insulin-regulated fusion of GLUT4-containing vesicles with the plasma membrane. Molecular Membrane Biology, 2001, 18, 237-245.	2.0	58
5	Prion protein fragment 106–126 potentiates catecholamine secretion from PC-12 cells. American Journal of Physiology - Cell Physiology, 2001, 281, C1850-C1857.	2.1	7
6	Roles of lipid rafts in membrane transport. Current Opinion in Cell Biology, 2001, 13, 470-477.	2.6	587
7	Lipid Rafts Act as Specialized Domains for Tetanus Toxin Binding and Internalization into Neurons. Molecular Biology of the Cell, 2001, 12, 2947-2960.	0.9	154
8	Cycling of Synaptic Vesicles: How Far? How Fast!. Science Signaling, 2001, 2001, re1-re1.	1.6	25
9	The Fusion Peptide of Semliki Forest Virus Associates with Sterol-Rich Membrane Domains. Journal of Virology, 2002, 76, 3267-3275.	1.5	118
10	Association of Helicobacter pylori Vacuolating Toxin (VacA) with Lipid Rafts. Journal of Biological Chemistry, 2002, 277, 34642-34650.	1.6	134
11	Rvs161p and Sphingolipids Are Required for Actin Repolarization following Salt Stress. Eukaryotic Cell, 2002, 1, 1021-1031.	3.4	49
12	The Vesicle- and Target-SNARE Proteins That Mediate Glut4 Vesicle Fusion Are Localized in Detergent-insoluble Lipid Rafts Present on Distinct Intracellular Membranes. Journal of Biological Chemistry, 2002, 277, 49750-49754.	1.6	118
13	Human Immunodeficiency Virus Type 1 Uses Lipid Raft-Colocalized CD4 and Chemokine Receptors for Productive Entry into CD4+ T Cells. Journal of Virology, 2002, 76, 4709-4722.	1.5	297
14	Identification and Characterization of the UL56 Gene Product of Herpes Simplex Virus Type 2. Journal of Virology, 2002, 76, 6718-6728.	1.5	72
15	Interaction of syncollin with GP-2, the major membrane protein of pancreatic zymogen granules, and association with lipid microdomains. Biochemical Journal, 2002, 362, 433.	1.7	24
16	Interaction of syncollin with GP-2, the major membrane protein of pancreatic zymogen granules, and association with lipid microdomains. Biochemical Journal, 2002, 362, 433-442.	1.7	35
17	Cholesterol is essential for macrophage inflammatory protein $1^{\hat{l}^2}$ binding and conformational integrity of CC chemokine receptor 5. Blood, 2002, 99, 4298-4306.	0.6	119
18	Mosaic Organization of the Endocytic Pathway. Experimental Cell Research, 2002, 272, 8-14.	1.2	158

#	Article	IF	CITATIONS
19	ATP Dependence of the SNARE/Caveolin 1 Interaction in the Hippocampus. Biochemical and Biophysical Research Communications, 2002, 291, 1232-1238.	1.0	11
20	SNARE Complex Assembly Is Required for Human Sperm Acrosome Reaction. Developmental Biology, 2002, 243, 326-338.	0.9	99
21	Structure, Composition, and Peptide Binding Properties of Detergent Soluble Bilayers and Detergent Resistant Rafts. Biophysical Journal, 2002, 82, 1469-1482.	0.2	200
22	Endocytosis of lipid rafts: an identity crisis. Seminars in Cell and Developmental Biology, 2002, 13, 205-214.	2.3	67
23	The Rab GTPase Ypt1p and Tethering Factors Couple Protein Sorting at the ER to Vesicle Targeting to the Golgi Apparatus. Developmental Cell, 2002, 2, 307-317.	3.1	99
24	Identification of SNARE and cell trafficking regulatory proteins in the salivary glands of the lone star tick, Amblyomma americanum (L.). Insect Biochemistry and Molecular Biology, 2002, 32, 1711-1721.	1.2	36
25	Lipid rafts at postsynaptic sites: distribution, function and linkage to postsynaptic density. Neuroscience Research, 2002, 44, 1-9.	1.0	83
26	Lipid rafts in neuronal signaling and function. Trends in Neurosciences, 2002, 25, 412-417.	4.2	354
27	Complex Gangliosides at the Neuromuscular Junction Are Membrane Receptors for Autoantibodies and Botulinum Neurotoxin But Redundant for Normal Synaptic Function. Journal of Neuroscience, 2002, 22, 6876-6884.	1.7	98
28	Clathrin-Dependent or Not: Is It Still the Question?. Traffic, 2002, 3, 443-451.	1.3	208
29	Syntaxin Is Efficiently Excluded from Sphingomyelin-enriched Domains in Supported Lipid Bilayers Containing Cholesterol. Journal of Membrane Biology, 2003, 194, 153-164.	1.0	25
30	Spatial control of exocytosis. Current Opinion in Cell Biology, 2003, 15, 430-437.	2.6	31
31	Mechanisms in histamine-mediated secretion from adrenal chromaffin cells. , 2003, 98, 1-34.		33
32	Structural insights into the SNARE mechanism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1641, 87-97.	1.9	96
33	Dense-core secretory vesicle docking and exocytotic membrane fusion in Paramecium cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1641, 183-193.	1.9	28
34	The roles of membrane microdomains (rafts) in T cell activation. Immunological Reviews, 2003, 191, 148-164.	2.8	130
35	Monocyte lipid rafts contain proteins implicated in vesicular trafficking and phagosome formation. Proteomics, 2003, 3, 536-548.	1.3	117
36	Cholesterol Depletion Inhibits Store-Operated Calcium Currents and Exocytotic Membrane Fusion in RBL-2H3 Cells. Biochemistry, 2003, 42, 11808-11814.	1.2	42

#	Article	IF	CITATIONS
37	Kinesin I and cytoplasmic dynein orchestrate glucose-stimulated insulin-containing vesicle movements in clonal MIN6 β-cells. Biochemical and Biophysical Research Communications, 2003, 311, 272-282.	1.0	79
38	Alternative Splicing as a Mechanism for Regulating 14-3-3 Binding: Interactions between hD53 (TPD52L1) and 14-3-3 Proteins. Journal of Molecular Biology, 2003, 332, 675-687.	2.0	35
39	Munc18-2/syntaxin3 complexes are spatially separated from syntaxin3-containing SNARE complexes. FEBS Letters, 2003, 550, 144-148.	1.3	42
40	Role of cholesterol in synapse formation and function. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1610, 271-280.	1.4	256
41	Sorting of Lipids and Transmembrane Peptides Between Detergent-Soluble Bilayers and Detergent-Resistant Rafts. Biophysical Journal, 2003, 85, 1656-1666.	0.2	107
42	Mechanical Coupling via the Membrane Fusion SNARE Protein Syntaxin 1A: A Molecular Dynamics Study. Biophysical Journal, 2003, 84, 1527-1547.	0.2	66
43	Yeast Vacuole Inheritance and Dynamics. Annual Review of Genetics, 2003, 37, 435-460.	3.2	121
44	Cholesterol homeostasis and function in neurons of the central nervous system. Cellular and Molecular Life Sciences, 2003, 60, 1158-1171.	2.4	351
45	Transcytosis: Crossing Cellular Barriers. Physiological Reviews, 2003, 83, 871-932.	13.1	566
46	Ectopic expression of syntaxin 1 in the ER redirects TI-VAMP- and cellubrevin-containing vesicles. Journal of Cell Science, 2003, 116, 2805-2816.	1.2	42
47	Membrane dynamics, cholesterol homeostasis, and Alzheimer's disease. Journal of Lipid Research, 2003, 44, 2019-2029.	2.0	69
48	Identification of the Carboxyl-Terminal Membrane-Anchoring Region of HPC-1/Syntaxin 1A with the Substituted-Cysteine-Accessibility Method and Monoclonal Antibodies. Journal of Biochemistry, 2003, 133, 325-334.	0.9	17
49	Transcytotic Efflux from Early Endosomes Is Dependent on Cholesterol and Glycosphingolipids in Polarized Hepatic Cells. Molecular Biology of the Cell, 2003, 14, 2689-2705.	0.9	64
50	Two Retroviral Entry Pathways Distinguished by Lipid Raft Association of the Viral Receptor and Differences in Viral Infectivity. Journal of Virology, 2003, 77, 1977-1983.	1.5	89
51	The ER v-SNAREs are required for GPI-anchored protein sorting from other secretory proteins upon exit from the ER. Journal of Cell Biology, 2003, 162, 403-412.	2.3	57
52	Intra-Golgi Protein Transport Depends on a Cholesterol Balance in the Lipid Membrane. Journal of Biological Chemistry, 2003, 278, 53112-53122.	1.6	43
53	Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. Journal of Cell Biology, 2003, 162, 305-315.	2.3	154
54	Visualization of Protein Compartmentation within the Plasma Membrane of Living Yeast Cells. Molecular Biology of the Cell, 2003, 14, 4427-4436.	0.9	264

#	Article	IF	CITATIONS
55	Molecular Aspects of Membrane Trafficking in Paramecium. International Review of Cytology, 2003, 232, 185-216.	6.2	29
56	Role of caveolin and caveolae in insulin signaling and diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E1151-E1160.	1.8	181
57	Sorting of carboxypeptidase E to the regulated secretory pathway requires interaction of its transmembrane domain with lipid rafts. Biochemical Journal, 2003, 369, 453-460.	1.7	53
58	Imaging SNAREs at work in â€~unroofed' cells – approaches that may be of general interest for functional studies on membrane proteins. Biochemical Society Transactions, 2003, 31, 861-864.	1.6	16
59	Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. American Journal of Physiology - Renal Physiology, 2004, 286, F233-F243.	1.3	128
60	Disruption of Pancreatic β-Cell Lipid Rafts Modifies Kv2.1 Channel Gating and Insulin Exocytosis. Journal of Biological Chemistry, 2004, 279, 24685-24691.	1.6	159
61	Genetic Evidence of a Role for Membrane Lipid Composition in the Regulation of Soluble NEM-Sensitive Factor Receptor Function in Saccharomyces cerevisiae. Genetics, 2004, 166, 89-97.	1.2	26
62	Interactions between Viral Nonstructural Proteins and Host Protein hVAP-33 Mediate the Formation of Hepatitis C Virus RNA Replication Complex on Lipid Raft. Journal of Virology, 2004, 78, 3480-3488.	1.5	286
63	Partitioning of the Serotonin Transporter into Lipid Microdomains Modulates Transport of Serotonin. Journal of Biological Chemistry, 2004, 279, 38770-38778.	1.6	133
64	Ceramidase Regulates Synaptic Vesicle Exocytosis and Trafficking. Journal of Neuroscience, 2004, 24, 7789-7803.	1.7	102
65	Rab27 Effector Granuphilin Promotes the Plasma Membrane Targeting of Insulin Granules via Interaction with Syntaxin 1a. Journal of Biological Chemistry, 2004, 279, 22532-22538.	1.6	87
66	Lipid Rafts Mediate the Synaptic Localization of Â-Synuclein. Journal of Neuroscience, 2004, 24, 6715-6723.	1.7	485
67	Drosophila Wnt-1 Undergoes a Hydrophobic Modification and Is Targeted to Lipid Rafts, a Process That Requires Porcupine. Journal of Biological Chemistry, 2004, 279, 33220-33227.	1.6	212
68	SNAREs Prefer Liquid-disordered over "Raft―(Liquid-ordered) Domains When Reconstituted into Giant Unilamellar Vesicles. Journal of Biological Chemistry, 2004, 279, 37951-37955.	1.6	145
69	Association of Excitatory Amino Acid Transporters, Especially EAAT2, with Cholesterol-rich Lipid Raft Microdomains. Journal of Biological Chemistry, 2004, 279, 34388-34396.	1.6	146
70	Sequential exocytosis of insulin granules is associated with redistribution of SNAP25. Journal of Cell Biology, 2004, 165, 255-262.	2.3	102
71	Role of Lipid Microdomains in P/Q-type Calcium Channel (Cav2.1) Clustering and Function in Presynaptic Membranes. Journal of Biological Chemistry, 2004, 279, 5127-5134.	1.6	124
72	Sensitization of Epidermal Growth Factor-induced Signaling by Bradykinin Is Mediated by c-Src. Journal of Biological Chemistry, 2004, 279, 5852-5860.	1.6	65

#	Article	IF	CITATIONS
73	CLIPR-59 Is a Lipid Raft-associated Protein Containing a Cytoskeleton-associated Protein Glycine-rich Domain (CAP-Gly) That Perturbs Microtubule Dynamics. Journal of Biological Chemistry, 2004, 279, 41168-41178.	1.6	38
74	Site of Docking and Fusion of Insulin Secretory Granules in Live MIN6 β Cells Analyzed by TAT-conjugated Anti-syntaxin 1 Antibody and Total Internal Reflection Fluorescence Microscopy. Journal of Biological Chemistry, 2004, 279, 8403-8408.	1.6	97
75	Lipid Rafts and the Regulation of Exocytosis. Traffic, 2004, 5, 255-264.	1.3	265
76	The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly. EMBO Journal, 2004, 23, 739-748.	3.5	163
77	Jumping to rafts: gatekeeper role of bilayer elasticity. Trends in Biochemical Sciences, 2004, 29, 325-330.	3.7	30
78	Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts. Virology, 2004, 324, 450-461.	1.1	247
79	Plasma membrane targeting of exocytic SNARE proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1693, 81-89.	1.9	61
80	Principles of Exocytosis and Membrane Fusion. Annals of the New York Academy of Sciences, 2004, 1014, 170-178.	1.8	84
81	Salmonella type III effectors PipB and PipB2 are targeted to detergent-resistant microdomains on internal host cell membranes. Molecular Microbiology, 2004, 49, 685-704.	1.2	145
82	P2X3receptor localizes into lipid rafts in neuronal cells. Journal of Neuroscience Research, 2004, 76, 653-661.	1.3	59
83	The 2004 Biophysical Society-Avanti Award in Lipids address: roles of bilayer structure and elastic properties in peptide localization in membranes. Chemistry and Physics of Lipids, 2004, 130, 83-98.	1.5	24
84	Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: Insights from vesicle recycling in nerve terminals. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8262-8269.	3.3	289
85	The tumor protein D52 family: many pieces, many puzzles. Biochemical and Biophysical Research Communications, 2004, 325, 1115-1121.	1.0	85
86	Before the loss: neuronal dysfunction in Niemann–Pick Type C disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1685, 63-76.	1.2	48
87	The cell biology of glycosphingolipids. Seminars in Cell and Developmental Biology, 2004, 15, 375-387.	2.3	187
88	Cycling of Synaptic Vesicles: How Far? How Fast!. Science Signaling, 2004, 2004, re19-re19.	1.6	32
89	Lipid raft-associated catechin suppresses the FcïµRI expression by inhibiting phosphorylation of the extracellular signal-regulated kinase1/2. FEBS Letters, 2004, 556, 204-210.	1.3	78
90	Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy. Biochemical Journal, 2004, 381, 911-917.	1.7	47

#	Article	IF	CITATIONS
91	A Correction to the Review titled "Cycling of Synaptic Vesicles: How Far? How Fast!" by Galli and Haucke. Science Signaling, 2005, 2005, er1-er1.	1.6	1
92	Acute and chronic changes in cholesterol modulate Na-Pi cotransport activity in OK cells. American Journal of Physiology - Renal Physiology, 2005, 289, F154-F165.	1.3	30
93	The Role of Lipid Rafts in Signal Transduction and Synaptic Plasticity of Neural Cells. , 2005, , 113-125.		0
94	Leishmania donovani lipophosphoglycan disrupts phagosome microdomains in J774 macrophages. Cellular Microbiology, 2005, 7, 1263-1270.	1.1	62
95	Reductions in cholesterol and synaptic markers in association cortex in mood disorders. Bipolar Disorders, 2005, 7, 449-455.	1.1	105
96	Lipid regulation of the synaptic vesicle cycle. Nature Reviews Neuroscience, 2005, 6, 139-150.	4.9	149
97	Lipid rafts in plants. Planta, 2005, 223, 5-19.	1.6	113
98	Post-translational processing of beta-secretase in Alzheimer's disease. Proteomics, 2005, 5, 1533-1543.	1.3	23
100	The Polybasic Juxtamembrane Region of Sso1p Is Required for SNARE Function In Vivo. Eukaryotic Cell, 2005, 4, 2017-2028.	3.4	29
101	Lipid Raft Association of SNARE Proteins Regulates Exocytosis in PC12 Cells. Journal of Biological Chemistry, 2005, 280, 19449-19453.	1.6	119
102	A Role for p38 Mitogen-Activated Protein Kinase in the Regulation of the Serotonin Transporter: Evidence for Distinct Cellular Mechanisms Involved in Transporter Surface Expression. Journal of Neuroscience, 2005, 25, 29-41.	1.7	197
103	The SNARE Proteins SNAP-25 and SNAP-23 Display Different Affinities for Lipid Rafts in PC12 Cells. Journal of Biological Chemistry, 2005, 280, 1236-1240.	1.6	90
104	GLUT4 Facilitative Glucose Transporter Specifically and Differentially Contributes to Agonist-Induced Vascular Reactivity in Mouse Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1596-1602.	1.1	38
105	Differential Effects of Modification of Membrane Cholesterol and Sphingolipids on the Conformation, Function, and Trafficking of the G Protein-coupled Cholecystokinin Receptor. Journal of Biological Chemistry, 2005, 280, 2176-2185.	1.6	70
106	Annexin 2 Promotes the Formation of Lipid Microdomains Required for Calcium-regulated Exocytosis of Dense-Core Vesicles. Molecular Biology of the Cell, 2005, 16, 1108-1119.	0.9	131
107	Alternative Splicing of SNAP-25 Regulates Secretion through Nonconservative Substitutions in the SNARE Domain. Molecular Biology of the Cell, 2005, 16, 5675-5685.	0.9	61
108	Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion. Journal of Cell Science, 2005, 118, 4833-4848.	1.2	171
109	Defending the Zygote: Search for the Ancestral Animal Block to Polyspermy. Current Topics in Developmental Biology, 2005, 72, 1-151.	1.0	120

#	Article	IF	CITATIONS
110	Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Molecular and Cellular Neurosciences, 2005, 29, 190-201.	1.0	263
111	Synaptic proteins and SNARE complexes are localized in lipid rafts from rat brain synaptosomes. Biochemical and Biophysical Research Communications, 2005, 329, 117-124.	1.0	76
112	Cholesterol content regulates acrosomal exocytosis by enhancing Rab3A plasma membrane association. Developmental Biology, 2005, 285, 393-408.	0.9	57
113	Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends in Neurosciences, 2005, 28, 464-471.	4.2	233
114	Comparative lipid analysis and structure of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes. Archives of Biochemistry and Biophysics, 2005, 434, 150-158.	1.4	81
115	Transbilayer Peptide Sorting between Raft and Nonraft Bilayers: Comparisons of Detergent Extraction and Confocal Microscopy. Biophysical Journal, 2005, 89, 1102-1108.	0.2	49
116	PRAF1: a Golgi complex transmembrane protein that interacts with virusesThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease Biochemistry and Cell Biology, 2006, 84, 940-948.	0.9	13
118	The SNARE Motif Is Essential for the Formation of Syntaxin Clusters in the Plasma Membrane. Biophysical Journal, 2006, 90, 2843-2851.	0.2	168
119	ROLES OF BILAYER MATERIAL PROPERTIES IN FUNCTION AND DISTRIBUTION OF MEMBRANE PROTEINS. Annual Review of Biophysics and Biomolecular Structure, 2006, 35, 177-198.	18.3	213
120	Recruitment of active glycogen synthase kinase-3 into neuronal lipid rafts. Biochemical and Biophysical Research Communications, 2006, 345, 1643-1648.	1.0	34
121	Synaptic proteins associate with a sub-set of lipid rafts when isolated from nerve endings at physiological temperature. Biochemical and Biophysical Research Communications, 2006, 348, 1334-1342.	1.0	42
122	Influence of cholesterol depletion in plasma membrane of rat brain synaptosomes on calcium-dependent and calcium-independent exocytosis. Neuroscience Letters, 2006, 405, 106-110.	1.0	16
123	Protein sorting in the synaptic vesicle life cycle. Progress in Neurobiology, 2006, 80, 177-217.	2.8	82
124	Disruption of lipid rafts enhances activity of botulinum neurotoxin serotype A. Toxicon, 2006, 48, 1035-1045.	0.8	25
125	Molecular Mechanisms of Intracellular Membrane Fusion. , 2006, , 245-277.		0
127	Cellular cholesterol controls TRPC3 function: evidence from a novel dominant-negative knockdown strategy. Biochemical Journal, 2006, 396, 147-155.	1.7	52
128	Proteomic analysis of detergent-resistant membranes from Candida albicans. Proteomics, 2006, 6, S74-S81.	1.3	39
129	Lipid Rafts Identified on Synaptic Vesicles from Rat Brain*. Tsinghua Science and Technology, 2006, 11, 452-458.	4.1	0

#	Article	IF	CITATIONS
130	Ternary SNARE Complexes Are Enriched in Lipid Rafts during Mast Cell Exocytosis. Traffic, 2006, 7, 1482-1494.	1.3	100
131	Regulation of caveolar endocytosis by syntaxin 6-dependent delivery of membrane components to the cell surface. Nature Cell Biology, 2006, 8, 317-328.	4.6	84
132	SNAREs — engines for membrane fusion. Nature Reviews Molecular Cell Biology, 2006, 7, 631-643.	16.1	2,220
133	Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions. Journal of Physiology, 2006, 571, 83-99.	1.3	78
134	Reorganization of mouse sperm lipid rafts by capacitation. Molecular Reproduction and Development, 2006, 73, 1541-1549.	1.0	37
135	Cholesterol is critical to the integrity of neuronal porosome/fusion pore. Ultramicroscopy, 2006, 106, 674-677.	0.8	22
136	Cholesterol-enriched diet affects spatial learning and synaptic function in hippocampal synapses. Brain Research, 2006, 1103, 88-98.	1.1	43
137	Effect of Cholesterol Depletion on Exocytosis of Alveolar Type II Cells. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 677-687.	1.4	56
138	Sphingomyelin-enriched microdomains define the efficiency of native Ca2+-triggered membrane fusion. Journal of Cell Science, 2006, 119, 2688-2694.	1.2	64
139	Selective Mobility and Sensitivity to SNAREs Is Exhibited by the Arabidopsis KAT1 K+ Channel at the Plasma Membrane. Plant Cell, 2006, 18, 935-954.	3.1	169
140	Caveolin-1 Functions as a Novel Cdc42 Guanine Nucleotide Dissociation Inhibitor in Pancreatic β-Cells. Journal of Biological Chemistry, 2006, 281, 18961-18972.	1.6	87
141	Cytokine Secretion via Cholesterol-rich Lipid Raft-associated SNAREs at the Phagocytic Cup. Journal of Biological Chemistry, 2006, 281, 11949-11954.	1.6	99
142	Quantitative Proteomics Analysis of Detergent-resistant Membranes from Chemical Synapses. Molecular and Cellular Proteomics, 2006, 5, 2060-2071.	2.5	65
143	Delivery of the Malaria Virulence Protein PfEMP1 to the Erythrocyte Surface Requires Cholesterol-Rich Domains. Eukaryotic Cell, 2006, 5, 849-860.	3.4	60
144	SNAP-25/Syntaxin 1A Complex Functionally Modulates Neurotransmitter Î ³ -Aminobutyric Acid Reuptake. Journal of Biological Chemistry, 2006, 281, 28174-28184.	1.6	25
145	Novel localization of Rab3D in rat intestinal goblet cells and Brunner's gland acinar cells suggests a role in early Golgi trafficking. American Journal of Physiology - Renal Physiology, 2007, 293, G165-G177.	1.6	23
146	Recent Advances in the Characterisation of the Platelet Membrane System by Proteomics. Current Pharmaceutical Design, 2007, 13, 2647-2655.	0.9	11
147	Lipid Modifications During Membrane Fusion in Regulated Exocytosis. Current Chemical Biology, 2007, 1, 161-166.	0.2	1

#	Article	IF	CITATIONS
148	The Surprising Catch of a Voltage-Gated Potassium Channel in a Neuronal SNARE. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe37.	4.1	5
149	Leucine-rich repeat kinase 2 associates with lipid rafts. Human Molecular Genetics, 2007, 16, 678-690.	1.4	168
150	Intracellular trafficking of raft/caveolae domains: Insights from integrin signaling. Seminars in Cell and Developmental Biology, 2007, 18, 627-637.	2.3	71
151	SNARE-Ware: The Role of SNARE-Domain Proteins in Plant Biology. Annual Review of Cell and Developmental Biology, 2007, 23, 147-174.	4.0	255
152	Calpain facilitates actin reorganization during glucose-stimulated insulin secretion. Biochemical and Biophysical Research Communications, 2007, 352, 650-655.	1.0	26
153	Syntaxin6 separates from GM1a-rich membrane microdomain during granule maturation. Biochemical and Biophysical Research Communications, 2007, 357, 1071-1077.	1.0	14
154	Syntaxin and VAMP association with lipid rafts depends on cholesterol depletion in capacitating sperm cells. Molecular Membrane Biology, 2007, 24, 313-324.	2.0	56
155	Lipid Rafts. Methods in Molecular Biology, 2007, , .	0.4	23
157	DHA involvement in neurotransmission process. Oleagineux Corps Gras Lipides, 2007, 14, 164-170.	0.2	2
158	R7-binding protein targets the G protein $\hat{l}^25/R7$ -regulator of G protein signaling complex to lipid rafts in neuronal cells and brain. BMC Biochemistry, 2007, 8, 18.	4.4	13
159	Comparative proteomic analysis of myotube <i>caveolae</i> after milli alpain deregulation. Proteomics, 2007, 7, 3289-3298.	1.3	15
160	Cholesterol-dependent balance between evoked and spontaneous synaptic vesicle recycling. Journal of Physiology, 2007, 579, 413-429.	1.3	134
161	SNARE proteins and â€~membrane rafts'. Journal of Physiology, 2007, 585, 693-698.	1.3	98
162	β-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nature Medicine, 2007, 13, 340-347.	15.2	366
163	Pitfalls in isolating lipid rafts. Nature Reviews Neuroscience, 2007, 8, 567-567.	4.9	6
164	Localization of synaptic proteins involved in neurosecretion in different membrane microdomains. Journal of Neurochemistry, 2007, 100, 664-677.	2.1	29
165	Emerging functions of the calpain superfamily of cysteine proteases in neuroendocrine secretory pathways. Journal of Neurochemistry, 2007, 103, 849-859.	2.1	31
166	Caveolins bind to (Na+, K+)/H+ exchanger NHE7 by a novel binding module. Cellular Signalling, 2007, 19, 978-988.	1.7	19

#	Article	IF	CITATIONS
167	Differential effects of ceramide species on exocytosis in rat PC12 cells. Experimental Brain Research, 2007, 183, 241-247.	0.7	25
168	Herpes simplex virus protein UL11 but not UL51 is associated with lipid rafts. Virus Genes, 2007, 35, 571-575.	0.7	28
169	Modulation of Ligand-gated Ion Channels by Antidepressants and Antipsychotics. Molecular Neurobiology, 2007, 35, 160-174.	1.9	25
170	C2 domain of synaptotagmin I associates with lipid rafts of plasma membrane. Science Bulletin, 2008, 53, 1373-1380.	4.3	0
171	The Multiâ€PDZ domain protein MUPP1 as a lipid raftâ€associated scaffolding protein controlling the acrosome reaction in mammalian spermatozoa. Journal of Cellular Physiology, 2008, 214, 757-768.	2.0	38
172	<i>Antiâ€ganglioside Antibodies and the Presynaptic Motor Nerve Terminal</i> . Annals of the New York Academy of Sciences, 2008, 1132, 114-123.	1.8	21
173	Lipid rafts association of synaptotagmin I on synaptic vesicles. Biochemistry (Moscow), 2008, 73, 283-288.	0.7	12
174	Directing traffic in neural cells: determinants of receptor tyrosine kinase localization and cellular responses. Journal of Neurochemistry, 2008, 105, 2055-2068.	2.1	20
175	Biochemical characterization of membraneâ€associated septin from rat brain. Journal of Neurochemistry, 2008, 106, 1175-1183.	2.1	6
176	Heterogeneity and lateral compartmentalization of plant plasma membranes. Current Opinion in Plant Biology, 2008, 11, 632-640.	3.5	44
177	Regulation of AMPA receptor localization in lipid rafts. Molecular and Cellular Neurosciences, 2008, 38, 213-223.	1.0	70
178	Neuromuscular synaptic function in mice lacking major subsets of gangliosides. Neuroscience, 2008, 156, 885-897.	1.1	24
179	Interplay between lipids and the proteinaceous membrane fusion machinery. Progress in Lipid Research, 2008, 47, 461-469.	5.3	26
180	Cholesterol depletion inhibits synaptic transmission and synaptic plasticity in rat hippocampus. Experimental Neurology, 2008, 212, 407-414.	2.0	104
181	Lack of cholesterol mobilization in islets of hormone-sensitive lipase deficient mice impairs insulin secretion. Biochemical and Biophysical Research Communications, 2008, 376, 558-562.	1.0	15
182	Phosphorylation of SNAP-23 by lκB Kinase 2 Regulates Mast Cell Degranulation. Cell, 2008, 134, 485-495.	13.5	135
183	Molecular Mechanisms of Neurotransmitter Release. , 2008, , .		4
184	Filamentous Actin Regulates Insulin Exocytosis through Direct Interaction with Syntaxin 4. Journal of Biological Chemistry, 2008, 283, 10716-10726.	1.6	97

#	Article	IF	CITATIONS
185	Depletion of Î ² -COP reveals a role for COP-I in compartmentalization of secretory compartments and in biosynthetic transport of caveolin-1. American Journal of Physiology - Cell Physiology, 2008, 294, C1485-C1498.	2.1	54
186	SNARE-catalyzed Fusion Events Are Regulated by Syntaxin1A–Lipid Interactions. Molecular Biology of the Cell, 2008, 19, 485-497.	0.9	134
187	Disruption of Lipid Rafts Induces Gonadotropin Release in Ovine Pituitary and LbetaT2 Gonadotroph Cells1. Biology of Reproduction, 2008, 79, 17-25.	1.2	4
188	Targeting of Pseudorabies Virus Structural Proteins to Axons Requires Association of the Viral Us9 Protein with Lipid Rafts. PLoS Pathogens, 2008, 4, e1000065.	2.1	58
189	µâ€Opioid receptor activation in live cells. FASEB Journal, 2008, 22, 3537-3548.	0.2	37
190	Inhibition of Cholesterol Biosynthesis Impairs Insulin Secretion and Voltage-Gated Calcium Channel Function in Pancreatic β-Cells. Endocrinology, 2008, 149, 5136-5145.	1.4	114
191	Prolactin Secretion Sites Contain Syntaxin-1 and Differ from Ganglioside Monosialic Acid Rafts in Rat Lactotrophs. Endocrinology, 2008, 149, 4948-4957.	1.4	21
192	Acid-sensing ion channel 3 (ASIC3) cell surface expression is modulated by PSD-95 within lipid rafts. American Journal of Physiology - Cell Physiology, 2008, 295, C732-C739.	2.1	24
193	Increased Membrane Cholesterol Might Render Mature Hippocampal Neurons More Susceptible to β-Amyloid-Induced Calpain Activation and Tau Toxicity. Journal of Neuroscience, 2009, 29, 4640-4651.	1.7	95
194	Insulin secretion is highly sensitive to desorption of plasma membrane cholesterol. FASEB Journal, 2009, 23, 58-67.	0.2	69
195	Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. Journal of Cell Science, 2009, 122, 289-299.	1.2	109
196	Subcellular localization of the antidepressant-sensitive norepinephrine transporter. BMC Neuroscience, 2009, 10, 65.	0.8	35
197	Cholesterolâ€promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus. Hippocampus, 2009, 19, 692-705.	0.9	100
198	Comprehensive analysis of expression, subcellular localization, and cognate pairing of SNARE proteins in oligodendrocytes. Journal of Neuroscience Research, 2009, 87, 1760-1772.	1.3	37
199	Estrus cyclicity of spinogenesis: underlying mechanisms. Journal of Neural Transmission, 2009, 116, 1417-1425.	1.4	28
200	Behavior of sulfatide/cholesterol mixed monolayers at the air/water interface. Colloids and Surfaces B: Biointerfaces, 2009, 69, 201-206.	2.5	14
201	Pathophysiological actions of neuropathyâ€related antiâ€ganglioside antibodies at the neuromuscular junction. Journal of Physiology, 2009, 587, 3979-3999.	1.3	77
202	A Novel Strategy for the Invasive Toxin: Hijacking Exosomeâ€Mediated Intercellular Trafficking. Traffic, 2009, 10, 411-424.	1.3	26

#	Article	IF	CITATIONS
203	Endosomal Fusion upon SNARE Knockdown is Maintained by Residual SNARE Activity and Enhanced Docking. Traffic, 2009, 10, 1543-1559.	1.3	37
204	Cholesterol-dependent attachment of human respiratory cells by <i>Bordetella pertussis</i> . FEMS Immunology and Medical Microbiology, 2009, 56, 143-150.	2.7	13
205	Dominant role of lipid rafts Lâ€type calcium channel in activityâ€dependent potentiation of large denseâ€core vesicle exocytosis. Journal of Neurochemistry, 2009, 110, 520-529.	2.1	11
206	A monolayer study on phase behavior and morphology of binary mixtures of sulfatides with DPPC and DPPE. Colloids and Surfaces B: Biointerfaces, 2009, 73, 161-167.	2.5	9
207	High extracellular glucose inhibits exocytosis through disruption of syntaxin 1A-containing lipid rafts. Biochemical and Biophysical Research Communications, 2009, 389, 241-246.	1.0	24
208	Leaky synapses: Regulation of spontaneous neurotransmission in central synapses. Neuroscience, 2009, 158, 177-188.	1.1	42
209	Fusion Step-Specific Influence of Cholesterol on SNARE-Mediated Membrane Fusion. Biophysical Journal, 2009, 96, 1839-1846.	0.2	34
210	Roles of Cholesterol in Vesicle Fusion and Motion. Biophysical Journal, 2009, 97, 1371-1380.	0.2	91
211	Ceramide and neurodegeneration: Susceptibility of neurons and oligodendrocytes to cell damage and death. Journal of the Neurological Sciences, 2009, 278, 5-15.	0.3	216
213	Cholesterol, regulated exocytosis and the physiological fusion machine. Biochemical Journal, 2009, 423, 1-14.	1.7	65
215	Regulation of SNAP-25 trafficking and function by palmitoylation. Biochemical Society Transactions, 2010, 38, 163-166.	1.6	16
216	Association of SNAREs and Calcium Channels with the Borders of Cytoskeletal Cages Organizes the Secretory Machinery in Chromaffin Cells. Cellular and Molecular Neurobiology, 2010, 30, 1315-1319.	1.7	15
217	Lipid Dynamics in Exocytosis. Cellular and Molecular Neurobiology, 2010, 30, 1335-1342.	1.7	56
218	Glycosphingolipid synthesis in cerebellar Purkinje neurons: Roles in myelin formation and axonal homeostasis. Clia, 2010, 58, 1197-1207.	2.5	38
219	The fusion of synaptic vesicle membranes studied by lipid mixing: the R18 fluorescence assay validity. Chemistry and Physics of Lipids, 2010, 163, 778-786.	1.5	16
220	The ceramide transporter and the Goodpasture antigen binding protein: one protein – one function?. Journal of Neurochemistry, 2010, 113, 1369-1386.	2.1	33
221	t‣NARE cluster organization and dynamics in chromaffin cells. Journal of Neurochemistry, 2010, 114, 1550-1556.	2.1	9
222	S100A10-Mediated Translocation of Annexin-A2 to SNARE Proteins in Adrenergic Chromaffin Cells Undergoing Exocytosis. Traffic, 2010, 11, 958-971.	1.3	64

#	Article	IF	CITATIONS
223	Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO Journal, 2010, 29, 3607-3620.	3.5	192
224	Prominin-1: A Distinct Cholesterol-Binding Membrane Protein and the Organisation of the Apical Plasma Membrane of Epithelial Cells. Sub-Cellular Biochemistry, 2010, 51, 399-423.	1.0	16
225	Regulation of Integrin β1 Recycling to Lipid Rafts by Rab1a to Promote Cell Migration. Journal of Biological Chemistry, 2010, 285, 29398-29405.	1.6	90
226	Rab11 Supports Amphetamine-Stimulated Norepinephrine Transporter Trafficking. Journal of Neuroscience, 2010, 30, 7863-7877.	1.7	27
227	Cholesterol reduction impairs exocytosis of synaptic vesicles. Journal of Cell Science, 2010, 123, 595-605.	1.2	167
228	Lipid–protein interactions in exocytotic release of hormones and neurotransmitters. Clinical Lipidology, 2010, 5, 747-761.	0.4	11
229	t-SNARE Protein Conformations Patterned by the Lipid Microenvironment. Journal of Biological Chemistry, 2010, 285, 13535-13541.	1.6	60
230	Strumpellin is a novel valosin-containing protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases. Brain, 2010, 133, 2920-2941.	3.7	62
231	Cholesterol and synaptic vesicle exocytosis. Communicative and Integrative Biology, 2010, 3, 352-353.	0.6	15
232	Effects of cholesterol oxidation products on exocytosis. Neuroscience Letters, 2010, 476, 36-41.	1.0	32
233	Diabetes and Insulin in Regulation of Brain Cholesterol Metabolism. Cell Metabolism, 2010, 12, 567-579.	7.2	145
234	Cholesterol Biosynthesis Pathway Intermediates and Inhibitors Regulate Glucose-Stimulated Insulin Secretion and Secretory Granule Formation in Pancreatic β-Cells. Endocrinology, 2010, 151, 4705-4716.	1.4	46
235	Diabetes, Insulin and Alzheimer's Disease. Research and Perspectives in Alzheimer's Disease, 2010, , .	0.1	7
236	Surface immobilized cholera toxin B subunit (CTB) facilitates vesicle docking, trafficking and exocytosis. Integrative Biology (United Kingdom), 2010, 2, 250.	0.6	12
237	The Mechanisms of Exocytosis in Mast Cells. Advances in Experimental Medicine and Biology, 2011, 716, 107-122.	0.8	52
238	Vesicle trafficking and membrane remodelling in cytokinesis. Biochemical Journal, 2011, 437, 13-24.	1.7	79
239	Partitioning of Synaptotagmin I C2 Domains between Liquid-Ordered and Liquid-Disordered Inner Leaflet Lipid Phases. Biochemistry, 2011, 50, 2478-2485.	1.2	14
240	Islet Cholesterol Accumulation Due to Loss of ABCA1 Leads to Impaired Exocytosis of Insulin Granules. Diabetes, 2011, 60, 3186-3196.	0.3	97

#	Article	IF	CITATIONS
241	Neuromuscular synaptic transmission in aged ganglioside-deficient mice. Neurobiology of Aging, 2011, 32, 157-167.	1.5	16
242	Cholesterol metabolism in Huntington disease. Nature Reviews Neurology, 2011, 7, 561-572.	4.9	122
243	Sphingolipid abnormalities in psychiatric disorders: a missing link in pathology?. Frontiers in Bioscience - Landmark, 2011, 16, 1797.	3.0	24
244	Iron-mediated lipid peroxidation and lipid raft disruption in low-dose silica-induced macrophage cytokine production. Free Radical Biology and Medicine, 2011, 51, 1184-1194.	1.3	31
245	Cholesterol effects on vesicle pools in chromaffin cells revealed by carbon-fiber microelectrode amperometry. Analytical and Bioanalytical Chemistry, 2011, 400, 2963-2971.	1.9	17
246	Differential expression of SNAPâ€25 family proteins in the mouse brain. Journal of Comparative Neurology, 2011, 519, 916-932.	0.9	41
247	Chemokine-Containing Exosomes Are Released from Heat-Stressed Tumor Cells via Lipid Raft-Dependent Pathway and Act as Efficient Tumor Vaccine. Journal of Immunology, 2011, 186, 2219-2228.	0.4	202
248	Mutations associated with Charcot–Marie–Tooth disease cause SIMPLE protein mislocalization and degradation by the proteasome and aggresome–autophagy pathways. Journal of Cell Science, 2011, 124, 3319-3331.	1.2	67
249	Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1343-1348.	3.3	220
250	Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Molecular Biology of the Cell, 2011, 22, 4108-4123.	0.9	59
251	Impaired neurotransmission in ether lipid-deficient nerve terminals. Human Molecular Genetics, 2012, 21, 2713-2724.	1.4	44
252	Characterization of Membrane-shed Microvesicles from Cytokine-stimulated β-Cells Using Proteomics Strategies. Molecular and Cellular Proteomics, 2012, 11, 230-243.	2.5	105
253	Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. International Review of Cell and Molecular Biology, 2012, 299, 27-115.	1.6	68
254	PIP2-dependent regulation of Munc13-4 endocytic recycling: impact on the cytolytic secretory pathway. Blood, 2012, 119, 2252-2262.	0.6	27
255	To forge a solid immune recognition. Protein and Cell, 2012, 3, 564-570.	4.8	17
256	Lipids of plant membrane rafts. Progress in Lipid Research, 2012, 51, 272-299.	5.3	112
257	Fusion pore regulation in peptidergic vesicles. Cell Calcium, 2012, 52, 270-276.	1.1	8
258	Lipid changes in the aged brain: Effect on synaptic function and neuronal survival. Progress in Lipid Research, 2012, 51, 23-35.	5.3	120

#	Article	IF	CITATIONS
259	Different subcellular populations of L-type Ca2+ channels exhibit unique regulation and functional roles in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 376-387.	0.9	76
260	Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiological Reviews, 2012, 92, 1317-1358.	13.1	101
261	Sphingosine kinase 1 knockdown reduces insulin synthesis and secretion in a rat insulinoma cell line. Archives of Biochemistry and Biophysics, 2012, 518, 23-30.	1.4	17
262	Involvement of ganglioside GT1b in glutamate release from neuroblastoma cells. Neuroscience Letters, 2012, 517, 140-143.	1.0	2
263	Transmembrane helices can induce domain formation in crowded model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 984-994.	1.4	113
264	Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiological Reviews, 2012, 92, 1915-1964.	13.1	137
265	Cholesterolâ€enriched membrane rafts and insulin secretion. Journal of Diabetes Investigation, 2012, 3, 339-346.	1.1	21
266	Cholesterol and regulated exocytosis: A requirement for unitary exocytotic events. Cell Calcium, 2012, 52, 250-258.	1.1	37
267	Detergent-resistant Plasma Membrane Proteome in Oat and Rye: Similarities and Dissimilarities between Two Monocotyledonous Plants. Journal of Proteome Research, 2012, 11, 1654-1665.	1.8	40
268	3D organization and function of the cell: Golgi budding and vesicle biogenesis to docking at the porosome complex. Histochemistry and Cell Biology, 2012, 137, 703-718.	0.8	23
269	Increased excitability and compromised long-term potentiation in the neocortex of NPC1â^'/â^' mice. Brain Research, 2012, 1444, 20-26.	1.1	4
270	Sphingolipids in Disease. Handbook of Experimental Pharmacology, 2013, , .	0.9	7
271	Microdomains of SNARE Proteins in the Plasma Membrane. Current Topics in Membranes, 2013, 72, 193-230.	0.5	34
272	Dietary β-carotene regulates interleukin-1β-induced expression of apolipoprotein E in astrocytes isolated from stroke-prone spontaneously hypertensive rats. Neurochemistry International, 2013, 62, 43-49.	1.9	13
273	Annexin A7 trafficking to alveolar type II cell surface: Possible roles for protein insertion into membranes and lamellar body secretion. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1244-1255.	1.9	17
274	Selective control of SNARE recycling by Golgi retention. FEBS Letters, 2013, 587, 2377-2384.	1.3	4
275	Ceramide in Plasma Membrane Repair. Handbook of Experimental Pharmacology, 2013, , 341-353.	0.9	33
276	Cholesterol-mediated membrane surface area dynamics in neuroendocrine cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Linids, 2013, 1831, 1228-1238	1.2	12

#	Article	IF	CITATIONS
277	New Advances in Urea Transporter UT-A1 Membrane Trafficking. International Journal of Molecular Sciences, 2013, 14, 10674-10682.	1.8	6
278	Lipids in Regulated Exocytosis: What are They Doing?. Frontiers in Endocrinology, 2013, 4, 125.	1.5	90
279	Antiâ€interleukinâ€5 and multiple autoantibodies are associated with human atherosclerotic diseases and serum interleukinâ€5 levels. FASEB Journal, 2013, 27, 3437-3445.	0.2	20
280	Differential Regulation of the Serotonin Transporter by Vesicle-Associated Membrane Protein 2 in Cells of Neuronal versus Non-Neuronal Origin. PLoS ONE, 2014, 9, e97540.	1.1	12
281	Statin treatment affects cytokine release and phagocytic activity in primary cultured microglia through two separable mechanisms. Molecular Brain, 2014, 7, 85.	1.3	45
282	Hydrophobic Compounds Reshape Membrane Domains. PLoS Computational Biology, 2014, 10, e1003873.	1.5	58
283	Therapeutic use of botulinum toxin in migraine: mechanisms of action. British Journal of Pharmacology, 2014, 171, 4177-4192.	2.7	78
284	The preâ€synaptic motor nerve terminal as a site for antibodyâ€mediated neurotoxicity in autoimmune neuropathies and synaptopathies. Journal of Anatomy, 2014, 224, 36-44.	0.9	16
285	Prostasomes: extracellular vesicles from the prostate. Reproduction, 2014, 147, R1-R14.	1.1	155
286	IL-4 receptor \hat{I}_{\pm} in non-lipid rafts is the target molecule of strictinin in inhibiting STAT6 activation. Biochemical and Biophysical Research Communications, 2014, 450, 824-830.	1.0	9
287	Interplay between Curvature and Lateral Organization of Lipids and Peptides/Proteins in Model Membranes. Langmuir, 2014, 30, 1116-1122.	1.6	23
288	Lysosomal exocytosis and lipid storage disorders. Journal of Lipid Research, 2014, 55, 995-1009.	2.0	141
289	Cholesterol in brain disease: sometimes determinant and frequently implicated. EMBO Reports, 2014, 15, 1036-1052.	2.0	224
290	Cavin-1: caveolae-dependent signalling and cardiovascular disease. Biochemical Society Transactions, 2014, 42, 284-288.	1.6	26
291	Organization and dynamics of SNARE proteins in the presynaptic membrane. Frontiers in Physiology, 2015, 6, 89.	1.3	32
292	Real-time intermembrane force measurements and imaging of lipid domain morphology during hemifusion. Nature Communications, 2015, 6, 7238.	5.8	24
293	Membrane adhesion and the formation of heterogeneities: biology, biophysics, and biotechnology. Physical Chemistry Chemical Physics, 2015, 17, 15522-15533.	1.3	19
294	Role of cholesterol in SNARE-mediated trafficking on intracellular membranes. Journal of Cell Science, 2015, 128, 1071-81.	1.2	53

#	Article	IF	CITATIONS
295	Presynaptic Terminals. , 2015, , .		2
296	Diabetes-Induced Impairments of the Exocytosis Process and the Effect of Gabapentin: The Link with Cholesterol Level in Neuronal Plasma Membranes. Neurochemical Research, 2015, 40, 723-732.	1.6	5
297	Diacylglycerol, phosphatidic acid, and their metabolic enzymes in synaptic vesicle recycling. Advances in Biological Regulation, 2015, 57, 147-152.	1.4	37
298	Endocytosis and exocytosis in hyphal growth. Fungal Biology Reviews, 2015, 29, 43-53.	1.9	36
299	High Cholesterol Obviates a Prolonged Hemifusion Intermediate in Fast SNARE-Mediated Membrane Fusion. Biophysical Journal, 2015, 109, 319-329.	0.2	50
300	HIV gp41–mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nature Chemical Biology, 2015, 11, 424-431.	3.9	175
301	b-series gangliosides crucially regulate leptin secretion in adipose tissues. Biochemical and Biophysical Research Communications, 2015, 459, 189-195.	1.0	14
302	Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains. Nature Communications, 2015, 6, 5984.	5.8	130
304	Understanding the role of cholesterol in cellular biomechanics and regulation of vesicular trafficking: The power of imaging. Biomedical Spectroscopy and Imaging, 2016, 5, S101-S117.	1.2	28
305	Where Biology Meets Physics—A Converging View on Membrane Microdomain Dynamics. Current Topics in Membranes, 2016, 77, 27-65.	0.5	23
306	Membrane lipid rafts and neurobiology: ageâ€related changes in membrane lipids and loss of neuronal function. Journal of Physiology, 2016, 594, 4565-4579.	1.3	127
307	The role of cholesterol in membrane fusion. Chemistry and Physics of Lipids, 2016, 199, 136-143.	1.5	279
308	Sperm Acrosome Biogenesis and Function During Fertilization. Advances in Anatomy, Embryology and Cell Biology, 2016, , .	1.0	8
309	The Molecules of Sperm Exocytosis. Advances in Anatomy, Embryology and Cell Biology, 2016, 220, 71-92.	1.0	21
310	Involvement of myristoylated alanine-rich C kinase substrate phosphorylation and translocation in cholecystokinin-induced amylase release in rat pancreatic acini. American Journal of Physiology - Renal Physiology, 2016, 310, G399-G409.	1.6	6
311	Annexin A2, an essential partner of the exocytotic process in chromaffin cells. Journal of Neurochemistry, 2016, 137, 890-896.	2.1	28
312	Elevated Basal Insulin Secretion in Type 2 Diabetes Caused by Reduced Plasma Membrane Cholesterol. Molecular Endocrinology, 2016, 30, 1059-1069.	3.7	17
313	Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion. Nature Communications, 2016, 7, 11401.	5.8	120

#	Article	IF	CITATIONS
314	The lipid habitats of neurotransmitter receptors in brain. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2662-2670.	1.4	54
315	Cholesterol Alters the Dynamics of Release in Protein Independent Cell Models for Exocytosis. Scientific Reports, 2016, 6, 33702.	1.6	42
316	Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts. EBioMedicine, 2016, 7, 191-204.	2.7	24
317	Chronic use of pravastatin reduces insulin exocytosis and increases β-cell death in hypercholesterolemic mice. Toxicology, 2016, 344-346, 42-52.	2.0	22
318	Localization of the placental BCRP/ ABCG2 transporter to lipid rafts: Role for cholesterol in mediating efflux activity. Placenta, 2017, 55, 29-36.	0.7	33
319	Impaired <scp>AMPA</scp> receptor trafficking by a double knockout of zebrafish <i>olfactomedin1a/b</i> . Journal of Neurochemistry, 2017, 143, 635-644.	2.1	8
320	Stressful learning paradigm precludes manifestation of cognitive ability in sphingomyelin synthase-2 knockout mice. Behavioural Brain Research, 2017, 319, 25-30.	1.2	8
321	Lipid raft–associated stomatin enhances cell fusion. FASEB Journal, 2017, 31, 47-59.	0.2	22
322	VAMP3/Syb and YKT6 are required for the fusion of constitutive secretory carriers with the plasma membrane. PLoS Genetics, 2017, 13, e1006698.	1.5	37
323	Neuromuscular Junction Physiology and Pathophysiology. , 2018, , 1-12.		3
324	Neuron-Targeted Caveolin-1 Promotes Ultrastructural and Functional Hippocampal Synaptic Plasticity. Cerebral Cortex, 2018, 28, 3255-3266.	1.6	30
325	S-acylation regulates the trafficking and stability of the unconventional Q-SNARE STX19. Journal of Cell Science, 2018, 131, .	1.2	8
326	Disruption of Phosphatidylserine Synthesis or Trafficking Reduces Infectivity of Ebola Virus. Journal of Infectious Diseases, 2018, 218, S475-S485.	1.9	9
327			
	Emerging evidence for the modulation of exocytosis by signalling lipids. FEBS Letters, 2018, 592, 3493-3503.	1.3	12
328	Emerging evidence for the modulation of exocytosis by signalling lipids. FEBS Letters, 2018, 592, 3493-3503. Sphingolipids regulate neuromuscular synapse structure and function in <i>Drosophila</i> . Journal of Comparative Neurology, 2018, 526, 1995-2009.	1.3 0.9	12
328 329	Emerging evidence for the modulation of exocytosis by signalling lipids. FEBS Letters, 2018, 592, 3493-3503. Sphingolipids regulate neuromuscular synapse structure and function in <i>Drosophila</i> . Journal of Comparative Neurology, 2018, 526, 1995-2009. Regulation of monoamine transporters and receptors by lipid microdomains: implications for depression. Neuropsychopharmacology, 2018, 43, 2165-2179.	1.3 0.9 2.8	12 17 29
328 329 330	Emerging evidence for the modulation of exocytosis by signalling lipids. FEBS Letters, 2018, 592, 3493-3503. Sphingolipids regulate neuromuscular synapse structure and function in <i>Drosophila</i> . Journal of Comparative Neurology, 2018, 526, 1995-2009. Regulation of monoamine transporters and receptors by lipid microdomains: implications for depression. Neuropsychopharmacology, 2018, 43, 2165-2179. Gangliosides interact with synaptotagmin to form the high-affinity receptor complex for botulinum neurotoxin B. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18098-18108.	1.3 0.9 2.8 3.3	12 17 29 38

#	Article	IF	CITATIONS
332	Biology of Lipid Rafts: Introduction to the Thematic Review Series. Journal of Lipid Research, 2020, 61, 598-600.	2.0	14
333	Axon growth and synaptic function: A balancing act for axonal regeneration and neuronal circuit formation in CNS trauma and disease. Developmental Neurobiology, 2020, 80, 277-301.	1.5	16
334	Different regions of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE assembly. Nature Communications, 2020, 11, 1531.	5.8	30
335	Munc13 binds and recruits SNAP25 to chaperone SNARE complex assembly. FEBS Letters, 2021, 595, 297-309.	1.3	33
336	Caveolin-1 deficiency impairs synaptic transmission in hippocampal neurons. Molecular Brain, 2021, 14, 53.	1.3	13
337	Cholesterol—A Janus-Faced Molecule in the Central Nervous System. , 2007, , 151-170.		2
338	Membrane Targeting in Secretion. Sub-Cellular Biochemistry, 2004, 37, 391-421.	1.0	12
339	Overview of Membrane Rafts. Methods in Molecular Biology, 2007, 398, 1-7.	0.4	9
340	Insulin Action in the Brain and the Pathogenesis of Alzheimer's Disease. Research and Perspectives in Alzheimer's Disease, 2010, , 1-20.	0.1	11
341	Fusion Machinery: SNARE Protein Complex. , 2015, , 87-127.		2
341 342	Fusion Machinery: SNARE Protein Complex. , 2015, , 87-127. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Molecular Biology of the Cell, 2011, 22, 4108-4123.	0.9	2 36
341 342 343	Fusion Machinery: SNARE Protein Complex. , 2015, , 87-127. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Molecular Biology of the Cell, 2011, 22, 4108-4123. Cycling of Synaptic Vesicles: How Far? How Fast!. Science Signaling, 2001, 2001, re1-re1.	0.9	2 36 2
341 342 343 344	Fusion Machinery: SNARE Protein Complex., 2015,, 87-127. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Molecular Biology of the Cell, 2011, 22, 4108-4123. Cycling of Synaptic Vesicles: How Far? How Fast!. Science Signaling, 2001, 2001, rel-rel. The neuropathic potential of anti-GM1 autoantibodies is regulated by the local glycolipid environment in mice. Journal of Clinical Investigation, 2009, 119, 595-610.	0.9 1.6 3.9	2 36 2 100
341 342 343 344	Fusion Machinery: SNARE Protein Complex., 2015, , 87-127. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Molecular Biology of the Cell, 2011, 22, 4108-4123. Cycling of Synaptic Vesicles: How Far? How Fast!. Science Signaling, 2001, 2001, re1-re1. The neuropathic potential of anti-GM1 autoantibodies is regulated by the local glycolipid environment in mice. Journal of Clinical Investigation, 2009, 119, 595-610. Munc18-Bound Syntaxin Readily Forms SNARE Complexes with Synaptobrevin in Native Plasma Membranes. PLoS Biology, 2006, 4, e330.	0.9 1.6 3.9 2.6	2 36 2 100 113
341 342 343 344 345	Fusion Machinery: SNARE Protein Complex., 2015,, 87-127. Cholesterol transport from late endosomes to the Colgi regulates t-SNARE trafficking, assembly, and function. Molecular Biology of the Cell, 2011, 22, 4108-4123. Cycling of Synaptic Vesicles: How Far? How Fast!. Science Signaling, 2001, 2001, re1-re1. The neuropathic potential of anti-GM1 autoantibodies is regulated by the local glycolipid environment in mice. Journal of Clinical Investigation, 2009, 119, 595-610. Munc18-Bound Syntaxin Readily Forms SNARE Complexes with Synaptobrevin in Native Plasma Membranes. PLoS Biology, 2006, 4, e330. Regulation of CÎ ³ -Clobin Gene by ATF2 and Its Associated Proteins through the cAMP-Response Element. PLoS ONE, 2013, 8, e78253.	0.9 1.6 3.9 2.6 1.1	2 36 2 100 113 31
341 342 343 344 345 346	Fusion Machinery: SNARE Protein Complex., 2015, , 87-127. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Molecular Biology of the Cell, 2011, 22, 4108-4123. Cycling of Synaptic Vesicles: How Far? How Fast!. Science Signaling, 2001, 2001, re1-re1. The neuropathic potential of anti-GM1 autoantibodies is regulated by the local glycolipid environment in mice. Journal of Clinical Investigation, 2009, 119, 595-610. Munc18-Bound Syntaxin Readily Forms SNARE Complexes with Synaptobrevin in Native Plasma Membranes. PLoS Biology, 2006, 4, e330. Regulation of CÎ ³ -Globin Gene by ATF2 and Its Associated Proteins through the cAMP-Response Element. PLoS ONE, 2013, 8, e78253. Possible Protective Effect of Membrane Lipid Rafts against Interleukin-1Î ² -Mediated Anti-Proliferative Effect in INS-1 Cells. PLoS ONE, 2014, 9, e102889.	0.9 1.6 3.9 2.6 1.1 1.1	2 36 2 100 113 31
 341 342 343 344 345 346 347 348 	Fusion Machinery: SNARE Protein Complex., 2015, , 87-127. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Molecular Biology of the Cell, 2011, 22, 4108-4123. Cycling of Synaptic Vesicles: How Far? How Fast!. Science Signaling, 2001, 2001, re1-re1. The neuropathic potential of anti-CM1 autoantibodies is regulated by the local glycolipid environment in mice. Journal of Clinical Investigation, 2009, 119, 595-610. Munc18-Bound Syntaxin Readily Forms SNARE Complexes with Synaptobrevin in Native Plasma Membranes. PLoS Biology, 2006, 4, e330. Regulation of GÎ3-Globin Gene by ATF2 and Its Associated Proteins through the cAMP-Response Element. PLoS ONE, 2013, 8, e78253. Possible Protective Effect of Membrane Lipid Rafts against Interleukin-1Î2-Mediated Anti-Proliferative Effect in INS-1 Cells. PLoS ONE, 2014, 9, e102889. High Levels of Anti-Ganglioside Antibodies in Patients with Parkinson?s Disease Associated with Cognitive Decline. International Journal of Neurorehabilitation, 2015, 02, .	0.9 1.6 3.9 2.6 1.1 1.1 0.1	2 36 2 100 113 31 2 2

#	Article	IF	Citations
350	The glycosphingolipid MacCer promotes synaptic bouton formation in Drosophila by interacting with Wnt. ELife, 2018, 7, .	2.8	20
351	Cholesterol-enriched membrane micro-domain deficiency induces doxorubicin resistance via promoting autophagy in breast cancer. Molecular Therapy - Oncolytics, 2021, 23, 311-329.	2.0	6
352	Lipids and Secretory Vesicle Exocytosis. , 2008, , 239-261.		1
353	ROS and Plant Membrane Rafts. Signaling and Communication in Plants, 2009, , 209-220.	0.5	0
354	Intracellular Membrane Fusion. , 2009, , 282-325.		2
355	Differential Regulation of P/Q and L-Type Voltage Gated Calcium Channels by Lipid Rafts in PC12 Cells. IFMBE Proceedings, 2010, , 1106-1109.	0.2	0
356	Manipulation of Lipid Rafts in Neuronal Cells. The Open Biology Journal, 2010, 3, 32-38.	0.5	2
357	Cell Compartmentalization and Endocytosis in Planctomycetes: Structure and Function in Complex Bacteria. , 2013, , 39-75.		0
358	Lipid Raft and Platelet SNARE Machinery. Journal of Glycomics & Lipidomics, 2014, 04, .	0.4	0
362	Lipid Rafts as Regulators of SNARE Activity and Exocytosis. , 2007, , 84-99.		0
363	Mast Cells as a Model of Nonneuroendocrine Exocytosis. , 2007, , 100-116.		0
365	Role of LipidÂRafts in Pathogen-Host Interaction -ÂA Mini Review. Frontiers in Immunology, 2021, 12, 815020.	2.2	20
368	Membrane Domain Localization and Interaction of the Prion-Family Proteins, Prion and Shadoo with Calnexin. Membranes, 2021, 11, 978.	1.4	1
371	OxLDL induces membrane structure rearrangement leading to biomechanics alteration and migration deficiency in macrophage. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183951.	1.4	6
372	Syntaxin-1A modulates vesicle fusion in mammalian neurons via juxtamembrane domain dependent palmitoylation of its transmembrane domain. ELife, 0, 11, .	2.8	10
373	Free Cholesterol Affects the Function and Localization of Human Na+/Taurocholate Cotransporting Polypeptide (NTCP) and Organic Cation Transporter 1 (OCT1). International Journal of Molecular Sciences, 2022, 23, 8457.	1.8	7
375	LRRK2 and Lipid Pathways: Implications for Parkinson's Disease. Biomolecules, 2022, 12, 1597.	1.8	5
376	Requirement of Cholesterol for Calciumâ€Dependent Vesicle Fusion by Strengthening Synaptotagminâ€Iâ€Induced Membrane Bending. Advanced Science, 2023, 10, .	5.6	4

	CITA	CITATION REPORT	
#	Article	IF	Citations
379	Lipids and Secretory Vesicle Exocytosis. Advances in Neurobiology, 2023, , 357-397.	1.3	1
380	Mechanisms of SNARE proteins in membrane fusion. Nature Reviews Molecular Cell Biology, 2024, 25, 101-118.	16.1	5