ICRA Noises: Artificial Noise Signals with Speech-like S Hearing Instrument Assessment: Ruidos ICRA: Señate similar al habla y propiedades temporales para pruebas

International Journal of Audiology 40, 148-157 DOI: 10.3109/00206090109073110

Citation Report

#	Article	IF	CITATIONS
1	Effects of high-frequency emphasis and compression time constants on speech intelligibility in noise: Efectos del A©nfasis en alta frecuencia y las constantes de compresión de tiempo en la inteligibilidad del lenguaje en ambiente ruidoso. International Journal of Audiology, 2002, 41, 379-394.	0.9	8
2	CaracterÃsticas acústicas y aplicaciones audiológicas del promedio del espectro del habla a largo plazo. Revista De Logopedia, Foniatria Y Audiologia, 2003, 23, 58-65.	0.4	5
3	Benefits from hearing aids in relation to the interaction between the user and the environment. International Journal of Audiology, 2003, 42, 77-85.	0.9	145
4	Evaluation of the noise reduction system in a commercial digital hearing aid: Evaluación del sistema de reducción de ruido en un auxiliar auditivo digital comercial. International Journal of Audiology, 2003, 42, 34-42.	0.9	91
5	Masking and scrambling in the auditory thalamus of awake rats by Gaussian and modulated noises. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14961-14965.	3.3	8
6	Development of a field-deployable voice-activated ultrasound scanner system. , 0, , .		1
7	Using digital hearing aids to visualize real-life effects of signal processing. Hearing Journal, 2004, 57, 40.	0.1	5
8	Speech perception with a cochlear implant sound processor incorporating loudness models. Acoustics Research Letters Online: ARLO, 2005, 6, 7-13.	0.7	5
9	Compression-Dependent Differences in Hearing Aid Gain Between Speech and Nonspeech Input Signals. Ear and Hearing, 2005, 26, 409-422.	1.0	15
10	Release from informational masking by time reversal of native and non-native interfering speech. Journal of the Acoustical Society of America, 2005, 118, 1274-1277.	0.5	102
11	Effectiveness of Directional Microphones and Noise Reduction Schemes in Hearing Aids: A Systematic Review of the Evidence. Journal of the American Academy of Audiology, 2005, 16, 473-484.	0.4	133
12	Sentence intelligibility in noise for listeners with normal hearing and hearing impairment: Influence of measurement procedure and masking parameters La inteligibilidad de frases en silencio para sujetos con audiciÃ ³ n normal y con hipoacusia: la influencia del procedimiento de mediciÃ ³ n y de los parÃ:metros de enmascaramiento. International Journal of Audiology, 2005, 44, 144-156.	0.9	135
13	Linear and nonlinear hearing aid fittings – 1. Patterns of benefit. International Journal of Audiology, 2006, 45, 130-152.	0.9	115
14	The role of silent intervals for sentence intelligibility in fluctuating noise in hearing-impaired listeners. International Journal of Audiology, 2006, 45, 26-33.	0.9	50
15	An Objective Procedure for Evaluation of Adaptive Antifeedback Algorithms in Hearing Aids. Ear and Hearing, 2006, 27, 382-398.	1.0	29
16	Dyslexia and the failure to form a perceptual anchor. Nature Neuroscience, 2006, 9, 1558-1564.	7.1	203
17	New Perspectives on Assessing Amplification Effects. Trends in Amplification, 2006, 10, 119-143.	2.4	32
18	Objectively measured and subjectively perceived distortion in nonlinear systems. Journal of the Acoustical Society of America, 2006, 120, 3759-3769.	0.5	11

#	Article	IF	CITATIONS
19	Digital Noise Reduction: An Overview. Trends in Amplification, 2006, 10, 67-82.	2.4	103
20	Interactions between Cognition, Compression, and Listening Conditions: Effects on Speech-in-Noise Performance in a Two-Channel Hearing Aid. Journal of the American Academy of Audiology, 2007, 18, 604-617.	0.4	201
21	Recognition of Speech in Noise with New Hearing Instrument Compression Release Settings Requires Explicit Cognitive Storage and Processing Capacity. Journal of the American Academy of Audiology, 2007, 18, 618-631.	0.4	131
22	Phonological Mismatch Makes Aided Speech Recognition in Noise Cognitively Taxing: Retracted Article. Ear and Hearing, 2007, 28, 879-892.	1.0	11
23	Temporal integration in the gerbil: The effects of age, hearing loss and temporally unmodulated and modulated speech-like masker noises. Hearing Research, 2007, 224, 101-114.	0.9	25
24	Comparative studies on hearing aid selection and fitting procedures: a review of the literature. European Archives of Oto-Rhino-Laryngology, 2007, 265, 21-29.	0.8	5
25	Are individual differences in speech reception related to individual differences in cognitive ability? A survey of twenty experimental studies with normal and hearing-impaired adults. International Journal of Audiology, 2008, 47, S53-S71.	0.9	534
26	Recording and Classification of the Acoustic Environment of Hearing Aid Users. Journal of the American Academy of Audiology, 2008, 19, 348-370.	0.4	35
27	The Choice of Compression Speed in Hearing Aids: Theoretical and Practical Considerations and the Role of Individual Differences. Trends in Amplification, 2008, 12, 103-112.	2.4	97
28	The Effects of Cueing Temporal and Spatial Attention on Word Recognition in a Complex Listening Task in Hearing-Impaired Listeners. Trends in Amplification, 2008, 12, 145-161.	2.4	21
29	Phonological mismatch and explicit cognitive processing in a sample of 102 hearing-aid users. International Journal of Audiology, 2008, 47, S91-S98.	0.9	59
30	Microscopic prediction of speech recognition for listeners with normal hearing in noise using an auditory model. Journal of the Acoustical Society of America, 2009, 126, 2635-2648.	0.5	63
31	Electrical stimulation rate effects on speech perception in cochlear implants. International Journal of Audiology, 2009, 48, 561-567.	0.9	31
32	Long-Term Signal-to-Noise Ratio at the Input and Output of Amplitude-Compression Systems. Journal of the American Academy of Audiology, 2009, 20, 161-171.	0.4	68
33	Classification of steady state gain reduction produced by amplitude modulation based noise reduction in digital hearing aids. International Journal of Audiology, 2009, 48, 444-455.	0.9	16
34	Interactions of cognitive and auditory abilities in congenitally blind individuals. Neuropsychologia, 2009, 47, 843-848.	0.7	82
35	Cognition and aided speech recognition in noise: Specific role for cognitive factors following nineâ€week experience with adjusted compression settings in hearing aids. Scandinavian Journal of Psychology, 2009, 50, 405-418.	0.8	90
36	Comparison of two frequency-to-electrode maps for acoustic-electric stimulation. International Journal of Audiology, 2009, 48, 63-73.	0.9	45

#	Article	IF	CITATIONS
37	Sentence recognition in noise: Variables in compilation and interpretation of tests. International Journal of Audiology, 2009, 48, 743-757.	0.9	63
38	Development and Efficacy of a Frequent-Word Auditory Training Protocol for Older Adults with Impaired Hearing. Ear and Hearing, 2009, 30, 613-627.	1.0	55
39	Spatial Benefit of Bilateral Hearing Aids. Ear and Hearing, 2009, 30, 203-218.	1.0	49
40	Differences Between Speech-Shaped Test Stimuli in Analyzing Systems and the Effect on Measured Hearing Aid Gain. Ear and Hearing, 2010, 31, 437-440.	1.0	4
41	Stimulus uncertainty and perceptual learning: Similar principles govern auditory and visual learning. Vision Research, 2010, 50, 391-401.	0.7	28
42	Development and analysis of an International Speech Test Signal (ISTS). International Journal of Audiology, 2010, 49, 891-903.	0.9	275
43	Semantic, Factual, and Social Language Comprehension in Adolescents with Autism: An FMRI Study. Cerebral Cortex, 2010, 20, 1937-1945.	1.6	100
44	Development of a new method for deriving initial fittings for hearing aids with multi-channel compression: CAMEQ2-HF. International Journal of Audiology, 2010, 49, 216-227.	0.9	98
45	Short and Long Compression Release Times: Speech Understanding, Real-World Preferences, and Association with Cognitive Ability. Journal of the American Academy of Audiology, 2010, 21, 121-138.	0.4	43
46	Human phoneme recognition depending on speech-intrinsic variability. Journal of the Acoustical Society of America, 2010, 128, 3126-3141.	0.5	31
47	Revision, extension, and evaluation of a binaural speech intelligibility model. Journal of the Acoustical Society of America, 2010, 127, 2479-2497.	0.5	122
48	Timing is everything: Neural response dynamics during syllable processing and its relation to higher-order cognition in schizophrenia and healthy comparison subjects. International Journal of Psychophysiology, 2010, 75, 183-193.	0.5	47
49	Successful and unsuccessful users of bilateral amplification: Differences and similarities in binaural performance. International Journal of Audiology, 2010, 49, 613-627.	0.9	23
50	Reduced sensitivity to slow-rate dynamic auditory information in children with dyslexia. Research in Developmental Disabilities, 2011, 32, 2810-2819.	1.2	62
51	Level Discrimination of Speech Sounds by Hearing-Impaired Individuals With and Without Hearing Amplification. Ear and Hearing, 2011, 32, 391-398.	1.0	12
53	Robustness of spectro-temporal features against intrinsic and extrinsic variations in automatic speech recognition. Speech Communication, 2011, 53, 753-767.	1.6	94
54	Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes. Journal of the Acoustical Society of America, 2011, 129, 388-403.	0.5	36
55	Use of intonation contours for speech recognition in noise by cochlear implant recipients. Journal of the Acoustical Society of America, 2011, 129, EL204-EL209.	0.5	8

#	Article	IF	CITATIONS
56	Comparison of fluctuating maskers for speech recognition tests. International Journal of Audiology, 2011, 50, 2-13.	0.9	59
57	Working Memory Supports Listening in Noise for Persons with Hearing Impairment. Journal of the American Academy of Audiology, 2011, 22, 156-167.	0.4	169
58	Comparison of three types of French speech-in-noise tests: A multi-center study. International Journal of Audiology, 2012, 51, 164-173.	0.9	104
59	Evaluation of model-based versus non-parametric monaural noise-reduction approaches for hearing aids. International Journal of Audiology, 2012, 51, 627-639.	0.9	3
60	Undirected head movements of listeners with asymmetrical hearing impairment during a speech-in-noise task. Hearing Research, 2012, 283, 162-168.	0.9	31
61	Indication Criteria for Cochlear Implants and Hearing Aids: Impact of Audiological and Non-Audiological Findings. Audiology Research, 2012, 2, e12.	0.8	29
62	Validation of a speech-in-noise test used for verification of hearing aid fitting. Hearing, Balance and Communication, 2013, 11, 64-71.	0.1	7
63	Evaluating the intelligibility benefit of speech modifications in known noise conditions. Speech Communication, 2013, 55, 572-585.	1.6	68
64	Pupil size varies with word listening and response selection difficulty in older adults with hearing loss. Psychophysiology, 2013, 50, 23-34.	1.2	146
65	On the perception of speech in primary school classrooms: Ranking of noise interference and of age influence. Journal of the Acoustical Society of America, 2013, 133, 255-268.	0.5	45
66	Examining Speech Perception in Noise and Cognitive Functions in the Elderly. American Journal of Audiology, 2013, 22, 310-312.	0.5	27
67	Development and evaluation of a linguistically and audiologically controlled sentence intelligibility test. Journal of the Acoustical Society of America, 2013, 134, 3039-3056.	0.5	52
68	Evaluation of the preliminary auditory profile test battery in an international multi-centre study. International Journal of Audiology, 2013, 52, 305-321.	0.9	34
69	On the laws of attraction at cocktail parties: Babble noise influences the production of number agreement. Language and Cognitive Processes, 2013, 28, 1114-1133.	2.3	1
70	A method for measuring the intelligibility of uninterrupted, continuous speech. Journal of the Acoustical Society of America, 2014, 135, 1027-1030.	0.5	8
71	Recording and Evaluation of an American Dialect Version of the Four Alternative Auditory Feature Test. Journal of the American Academy of Audiology, 2014, 25, 737-745.	0.4	6
72	Computational speech segregation based on an auditory-inspired modulation analysis. Journal of the Acoustical Society of America, 2014, 136, 3350-3359.	0.5	11
73	Requirements for the evaluation of computational speech segregation systems. Journal of the Acoustical Society of America, 2014, 136, EL398-EL404.	0.5	21

#	Article	IF	CITATIONS
74	Speechâ€perception training for older adults with hearing loss impacts word recognition and effort. Psychophysiology, 2014, 51, 1046-1057.	1.2	66
75	Generalization of supervised learning for binary mask estimation. , 2014, , .		6
76	The effects of dosage and duration of auditory training for older adults with hearing impairment. Journal of the Acoustical Society of America, 2014, 136, EL224-EL230.	0.5	27
77	Intelligibility enhancement of HMM-generated speech in additive noise by modifying Mel cepstral coefficients to increase the glimpse proportion. Computer Speech and Language, 2014, 28, 665-686.	2.9	16
78	Listening efficiency during lessons under various types of noise. Journal of the Acoustical Society of America, 2015, 138, 2438-2448.	0.5	18
79	Robust auditory localization using probabilistic inference and coherence-based weighting of interaural cues. Journal of the Acoustical Society of America, 2015, 138, 2635-2648.	0.5	8
80	Microscopic prediction of speech intelligibility in spatially distributed speech-shaped noise for normal-hearing listeners. Journal of the Acoustical Society of America, 2015, 138, 4004-4015.	0.5	9
81	How Hearing Impairment Affects Sentence Comprehension: Using Eye Fixations to Investigate the Duration of Speech Processing. Trends in Hearing, 2015, 19, 233121651558414.	0.7	25
82	Relations Between the Intelligibility of Speech in Noise and Psychophysical Measures of Hearing Measured in Four Languages Using the Auditory Profile Test Battery. Trends in Hearing, 2015, 19, 233121651561890.	0.7	10
83	Working Memory and Hearing Aid Processing: Literature Findings, Future Directions, and Clinical Applications. Frontiers in Psychology, 2015, 6, 1894.	1.1	54
84	Speech Intelligibility in Various Noise Conditions with the Nucleus® 5 Cp810 Sound Processor. Audiology Research, 2015, 5, 132.	0.8	16
85	Talker- and language-specific effects on speech intelligibility in noise assessed with bilingual talkers: Which language is more robust against noise and reverberation?. International Journal of Audiology, 2015, 54, 23-34.	0.9	18
86	Can older people remember medication reminders presented using synthetic speech?. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 35-42.	2.2	11
87	Matrix sentence intelligibility prediction using an automatic speech recognition system. International Journal of Audiology, 2015, 54, 100-107.	0.9	44
88	A Series of Case Studies of Tinnitus Suppression With Mixed Background Stimuli in a Cochlear Implant. American Journal of Audiology, 2015, 24, 398-410.	0.5	21
89	The multilingual matrix test: Principles, applications, and comparison across languages: A review. International Journal of Audiology, 2015, 54, 3-16.	0.9	202
90	The role of temporal speech cues in facilitating the fluency of adults who stutter. Journal of Fluency Disorders, 2015, 46, 41-55.	0.7	10
91	Sequential bilateral cochlear implantation improves working performance, quality of life, and quality of hearing. Acta Oto-Laryngologica, 2015, 135, 440-446.	0.3	27

#	Article	IF	CITATIONS
92	Need of speech-in-noise testing to assess listening difficulties in older adults. Hearing, Balance and Communication, 2015, 13, 65-76.	0.1	9
93	Influence of noise type on speech reception thresholds across four languages measured with matrix sentence tests. International Journal of Audiology, 2015, 54, 62-70.	0.9	28
94	Avaliação da percepção de fala em usuários de próteses auditivas após ajuste fino via mapeamento de fala com estÃmulo em Português. Audiology: Communication Research, 2016, 21, .	0.1	0
95	Preferred Compression Speed for Speech and Music and Its Relationship to Sensitivity to Temporal Fine Structure. Trends in Hearing, 2016, 20, 233121651664048.	0.7	23
96	Matching Automatic Gain Control Across Devices in Bimodal Cochlear Implant Users. Ear and Hearing, 2016, 37, 260-270.	1.0	44
97	On the relationship between auditory cognition and speech intelligibility in cochlear implant users: An ERP study. Neuropsychologia, 2016, 87, 169-181.	0.7	85
98	Selecting Appropriate Tests to Assess the Benefits of Bilateral Amplification With Hearing Aids. Trends in Hearing, 2016, 20, 233121651665823.	0.7	8
99	A simulation framework for auditory discrimination experiments: Revealing the importance of across-frequency processing in speech perception. Journal of the Acoustical Society of America, 2016, 139, 2708-2722.	0.5	30
100	Predicting binaural speech intelligibility using the signal-to-noise ratio in the envelope power spectrum domain. Journal of the Acoustical Society of America, 2016, 140, 192-205.	0.5	20
101	The effects of speech intelligibility and temporal–spectral variability on performance and annoyance ratings. Applied Acoustics, 2016, 110, 170-175.	1.7	31
102	Exploring the Relationship Between Working Memory, Compressor Speed, and Background Noise Characteristics. Ear and Hearing, 2016, 37, 137-143.	1.0	29
104	An Algorithm for Predicting the Intelligibility of Speech Masked by Modulated Noise Maskers. IEEE/ACM Transactions on Audio Speech and Language Processing, 2016, 24, 2009-2022.	4.0	308
105	Sentence Recognition Prediction for Hearing-impaired Listeners in Stationary and Fluctuation Noise With FADE. Trends in Hearing, 2016, 20, 233121651665579.	0.7	26
106	Task-Related Vigilance During Word Recognition in Noise for Older Adults with Hearing Loss. Experimental Aging Research, 2016, 42, 50-66.	0.6	34
107	ERP responses to processing prosodic phrasing of sentences in amplitude modulated noise. Neuropsychologia, 2016, 82, 91-103.	0.7	2
108	Adult hearing-aid users with cochlear dead regions restricted to high frequencies: Implications for amplification. International Journal of Audiology, 2016, 55, 20-29.	0.9	3
109	Influence of binary mask estimation errors on robust speaker identification. Speech Communication, 2017, 87, 40-48.	1.6	1
110	Measuring listening-related effort and fatigue in school-aged children using pupillometry. Journal of Experimental Child Psychology, 2017, 161, 95-112.	0.7	40

#	Article	IF	Citations
111	Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users. Hearing Research, 2017, 344, 183-194.	0.9	97
112	Intra-speaker and inter-speaker variability in speech sound pressure level across repeated readings. Journal of the Acoustical Society of America, 2017, 141, 2353-2363.	0.5	21
113	Auditory processing in noise is associated with complex patterns of disrupted functional connectivity in autism spectrum disorder. Autism Research, 2017, 10, 631-647.	2.1	41
114	Relation Between Listening Effort and Speech Intelligibility in Noise. American Journal of Audiology, 2017, 26, 378-392.	0.5	34
115	Do Older Listeners With Hearing Loss Benefit From Dynamic Pitch for Speech Recognition in Noise?. American Journal of Audiology, 2017, 26, 462-466.	0.5	11
116	Rethinking Hearing Aid Fitting by Learning From Behavioral Patterns. , 2017, , .		6
117	Effects of reverberation, background talker number, and compression release time on signal-to-noise ratio. Journal of the Acoustical Society of America, 2017, 142, EL130-EL135.	0.5	8
118	Hybrid cochlear implantation: quality of life, quality of hearing, and working performance compared to patients with conventional unilateral or bilateral cochlear implantation. European Archives of Oto-Rhino-Laryngology, 2017, 274, 3599-3604.	0.8	7
119	The Effect of Dynamic Pitch on Speech Recognition in Temporally Modulated Noise. Journal of Speech, Language, and Hearing Research, 2017, 60, 2725-2739.	0.7	17
120	Predicting error rates for unknown data in automatic speech recognition. , 2017, , .		3
122	Multi-channel signal enhancement with speech and noise covariance estimates computed by a probabilistic localization model. , 2017, , .		0
123	Contribution of formant frequency information to vowel perception in steady-state noise by cochlear implant users. Journal of the Acoustical Society of America, 2017, 141, 1027-1038.	0.5	3
124	Development of an adaptive scaling method for subjective listening effort. Journal of the Acoustical Society of America, 2017, 141, 4680-4693.	0.5	45
125	Pupillometry reveals changes in physiological arousal during a sustained listening task. Psychophysiology, 2017, 54, 193-203.	1.2	67
126	Online approximation of the multichannel Wiener filter with preservation of interaural level difference for binaural hearing-aids. Computers in Biology and Medicine, 2018, 95, 188-197.	3.9	3
127	Comparing human and automatic speech recognition in simple and complex acoustic scenes. Computer Speech and Language, 2018, 52, 123-140.	2.9	26
128	Comparison of Two Music Training Approaches on Music and Speech Perception in Cochlear Implant Users. Trends in Hearing, 2018, 22, 233121651876537.	0.7	36
129	Talkers produce more pronounced amplitude modulations when speaking in noise. Journal of the Acoustical Society of America, 2018, 143, EL121-EL126.	0.5	24

\sim	T A T I	ON	DEDO	DT
			REDU	
<u> </u>	/		ILLI U	- C - L

#	Article	IF	CITATIONS
130	The impact of exploiting spectro-temporal context in computational speech segregation. Journal of the Acoustical Society of America, 2018, 143, 248-259.	0.5	4
131	Single-ended prediction of listening effort using deep neural networks. Hearing Research, 2018, 359, 40-49.	0.9	16
132	Cortical Processing Related to Intensity of a Modulated Noise Stimulus—a Functional Near-Infrared Study. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 273-286.	0.9	25
133	Tutorial and Guidelines on Measurement of Sound Pressure Level in Voice and Speech. Journal of Speech, Language, and Hearing Research, 2018, 61, 441-461.	0.7	83
134	Long term average speech spectra of Turkish. Logopedics Phoniatrics Vocology, 2018, 43, 101-105.	0.5	9
135	Efficient characterization of individual differences in compression ratio preference. Journal of the Acoustical Society of America, 2018, 144, 2662-2673.	0.5	0
136	Developmental Links Between Speech Perception in Noise, Singing, and Cortical Processing of Music in Children with Cochlear Implants. Music Perception, 2018, 36, 156-174.	0.5	26
137	Effects of Fast-Acting Hearing-Aid Compression on Audibility, Forward Masking and Speech Perception. , 2018, , .		0
138	The benefit of combining a deep neural network architecture with ideal ratio mask estimation in computational speech segregation to improve speech intelligibility. PLoS ONE, 2018, 13, e0196924.	1.1	18
139	Auditory Modelling of the Perceptual Similarity Between Piano Sounds. Acta Acustica United With Acustica, 2018, 104, 930-934.	0.8	5
140	Effects of Slow- and Fast-Acting Compression on Hearing-Impaired Listeners' Consonant–Vowel Identification in Interrupted Noise. Trends in Hearing, 2018, 22, 233121651880087.	0.7	15
141	Verbal Response Times as a Potential Indicator of Cognitive Load During Conventional Speech Audiometry With Matrix Sentences. Trends in Hearing, 2018, 22, 233121651879325.	0.7	13
142	An Evaluation of Intrusive Instrumental Intelligibility Metrics. IEEE/ACM Transactions on Audio Speech and Language Processing, 2018, 26, 2153-2166.	4.0	38
143	Uncertainty of speech level parameters measured with a contact-sensor-based device and a headworn microphone. Journal of the Acoustical Society of America, 2018, 143, EL496-EL502.	0.5	7
144	Signal-to-Noise-Ratio-Aware Dynamic Range Compression in Hearing Aids. Trends in Hearing, 2018, 22, 233121651879090.	0.7	17
145	Effects of noise and reverberation on speech recognition with variants of a multichannel adaptive dynamic range compression scheme. International Journal of Audiology, 2019, 58, 661-669.	0.9	11
146	Speech intelligibility and listening effort in university classrooms for native and non-native Italian listeners. Building Acoustics, 2019, 26, 275-291.	1.1	17
147	Perceptual similarity between piano notes: Experimental method applicable to reverberant and non-reverberant sounds. Journal of the Acoustical Society of America, 2019, 146, 1024-1035.	0.5	1

#	Article	IF	CITATIONS
148	ForwardFocus with cochlear implant recipients in spatially separated and fluctuating competing signals – introduction of a reference metric. International Journal of Audiology, 2019, 58, 869-878.	0.9	15
149	The signal-to-noise ratio assessment in cochlear implanted patients through the Italian Matrix Sentence test (Oldenburg test). Hearing, Balance and Communication, 2019, 17, 145-148.	0.1	8
150	New insights on the optimality of parameterized Wiener filters for speech enhancement applications. Speech Communication, 2019, 109, 46-54.	1.6	12
151	Speech level parameters in very low and excessive reverberation measured with a contact-sensor-based device and a headworn microphone. Journal of the Acoustical Society of America, 2019, 145, 2540-2551.	0.5	7
152	An experimental study of a time-frame implementation of the Speech Transmission Index in fluctuating speech-like noise conditions. Applied Acoustics, 2019, 152, 63-72.	1.7	4
153	The Extended Speech Transmission Index: Predicting speech intelligibility in fluctuating noise and reverberant rooms. Journal of the Acoustical Society of America, 2019, 145, 1178-1194.	0.5	5
154	Assessing hearing by measuring heartbeat: The effect of sound level. PLoS ONE, 2019, 14, e0212940.	1.1	11
155	The ability to glimpse dynamic pitch in noise by younger and older listeners. Journal of the Acoustical Society of America, 2019, 146, EL232-EL237.	0.5	2
156	Noise, Age, and Gender Effects on Speech Intelligibility and Sentence Comprehension for 11- to 13-Year-Old Children in Real Classrooms. Frontiers in Psychology, 2019, 10, 2166.	1.1	35
157	Correspondence Between Cognitive and Audiological Evaluations Among the Elderly: A Preliminary Report of an Audiological Screening Model of Subjects at Risk of Cognitive Decline With Slight to Moderate Hearing Loss. Frontiers in Neuroscience, 2019, 13, 1279.	1.4	16
158	Does passive sound attenuation affect responses to pitch-shifted auditory feedback?. Journal of the Acoustical Society of America, 2019, 146, 4108-4121.	0.5	5
159	Clinical Effectiveness of an At-Home Auditory Training Program: A Randomized Controlled Trial. Ear and Hearing, 2019, 40, 1043-1060.	1.0	17
160	Effects of Reverberation on the Relation Between Compression Speed and Working Memory for Speech-in-Noise Perception. Ear and Hearing, 2019, 40, 1098-1105.	1.0	4
161	Electrophysiological and behavioral measures of some speech contrasts in varied attention and noise. Hearing Research, 2019, 373, 1-9.	0.9	0
162	Effects of Hearing Loss and Fast-Acting Compression on Amplitude Modulation Perception and Speech Intelligibility. Ear and Hearing, 2019, 40, 45-54.	1.0	10
164	Subclinical Auditory Neural Deficits in Patients With Type 1 Diabetes Mellitus. Ear and Hearing, 2020, 41, 561-575.	1.0	7
165	Minimal and Mild Hearing Loss in Children: Association with Auditory Perception, Cognition, and Communication Problems. Ear and Hearing, 2020, 41, 720-732.	1.0	59
166	Interaction Between Electric and Acoustic Stimulation Influences Speech Perception in Ipsilateral EAS Users. Ear and Hearing, 2020, 41, 868-882.	1.0	21

ARTICLE IF CITATIONS # Simulations with FADE of the effect of impaired hearing on speech recognition performance cast 167 0.9 8 doubt on the role of spectral resolution. Hearing Research, 2020, 395, 107995. Perceptual Evaluation of Signal-to-Noise-Ratio-Aware Dynamic Range Compression in Hearing Aids. Trends in Hearing, 2020, 24, 233121652093053. Conversational Interaction Is the Brain in Action: Implications for the Evaluation of Hearing and 169 1.0 15 Hearing Interventions. Ear and Hearing, 2020, 41, 56S-67S. The Temporal Fine Structure of Background Noise Determines the Benefit of Bimodal Hearing for Recognizing Speech. JARO - Journal of the Association for Research in Otolaryngology, 2020, 21, 170 0.9 527-544. Cortical fNIRS Responses Can Be Better Explained by Loudness Percept than Sound Intensity. Ear and 171 1.0 19 Hearing, 2020, 41, 1187-1195. Individual Aided Speech-Recognition Performance and Predictions of Benefit for Listeners With Impaired Hearing Employing FADE. Trends in Hearing, 2020, 24, 233121652093892. Worst-Case-Optimization Robust-MVDR Beamformer for Stereo Noise Reduction in Hearing Aids. 173 4.0 5 IEEE/ACM Transactions on Audio Speech and Language Processing, 2020, 28, 2224-2237. Modified ESTOI for improving speech intelligibility prediction., 2020,,. 174 GEDI: Gammachirp envelope distortion index for predicting intelligibility of enhanced speech. Speech 175 8 1.6 Communication, 2020, 123, 43-58. Development of the Everyday Conversational Sentences in Noise test. Journal of the Acoustical Society of America, 2020, 147, 1562-1576. From modulated noise to natural speech: The effect of stimulus parameters on the envelope 177 0.9 9 following response. Hearing Research, 2020, 393, 107993. Improving older adults' understanding of challenging speech: Auditory training, rapid adaptation and perceptual learning. Hearing Research, 2021, 402, 108054. Speech Intelligibility Prediction Using Spectro-Temporal Modulation Analysis. IEEE/ACM Transactions 179 4.0 11 on Audio Speech and Language Processing, 2021, 29, 210-225. Effects of Noise and Second Language on Conversational Dynamics in Task Dialogue. Trends in Hearing, 2021, 25, 233121652110244. Older Listeners' Perception of Speech With Strengthened and Weakened Dynamic Pitch Cues in 181 0.7 6 Background Noise. Journal of Speech, Language, and Hearing Research, 2021, 64, 348-358. Out of the noise: Effects of sound environment on maths performance in middle-school students. 23 Journal of Environmental Psychology, 2021, 73, 101552. Effects of task and language nativeness on the Lombard effect and on its onset and offset timing. 183 0.5 5 Journal of the Acoustical Society of America, 2021, 149, 1855-1865. Speech intelligibility in a realistic virtual sound environment. Journal of the Acoustical Society of America, 2021, 149, 2791-2801.

#	Article	IF	CITATIONS
186	Testing Speech Perception with Cochlear Implants Through Digital Audio Streaming in a Virtual Sound Booth: A Feasibility Study. Journal of the American Academy of Audiology, 2021, 32, 219-228.	0.4	2
187	Interactions between Cognition and Hearing Aid Compression Release Time: Effects of Linguistic Context of Speech Test Materials on Speech-in-Noise Performance. Audiology Research, 2021, 11, 129-149.	0.8	3
188	Thoughts on the potential to compensate a hearing loss in noise. F1000Research, 2021, 10, 311.	0.8	0
189	Power Allocation for Secrecy-Capacity-Optimization-Artificial-Noise Secure MIMO Precoding Systems under Perfect and Imperfect Channel State Information. Applied Sciences (Switzerland), 2021, 11, 4558.	1.3	2
190	Perceptual similarity between piano notes: Simulations with a template-based perception model. Journal of the Acoustical Society of America, 2021, 149, 3534-3552.	0.5	10
191	Effect of Auditory Distraction on Working Memory, Attention Switching, and Listening Comprehension. Audiology Research, 2021, 11, 227-243.	0.8	4
192	Exploiting Non-Negative Matrix Factorization for Binaural Sound Localization in the Presence of Directional Interference. , 2021, , .		0
193	Improved spatialization performance for joint speech dereverberation and noise reduction in binaural hearing aids. Biomedical Signal Processing and Control, 2021, 68, 102714.	3.5	2
194	How Reliable are 11- to 13-Year-Olds' Self-Ratings of Effort in Noisy Conditions?. Frontiers in Built Environment, 2021, 7, .	1.2	4
195	A Slight Increase in Reverberation Time in the Classroom Affects Performance and Behavioral Listening Effort. Ear and Hearing, 2022, 43, 460-476.	1.0	21
196	El promedio del espectro del habla. Fundamentos y aplicaciones clÃnicas. Auditio (santa Cruz De) Tj ETQq0 0 0 rg	BT /Overlo	c <u>န</u> 10 Tf 50
197	Cogmed Training Does Not Generalize to Real-World Benefits for Adult Hearing Aid Users: Results of a Blinded, Active-Controlled Randomized Trial. Ear and Hearing, 2022, 43, 741-763.	1.0	10
198	Using speech comprehension to qualify communication in classrooms: Influence of listening condition, task complexity and students' age and linguistic abilities. Applied Acoustics, 2021, 182, 108239.	1.7	12
199	Introduction to Hearing Aids. Springer Handbook of Auditory Research, 2016, , 1-19.	0.3	3
201	The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise. PLoS ONE, 2016, 11, e0145610.	1.1	4
202	Comparing Eye Tracking with Electrooculography for Measuring Individual Sentence Comprehension Duration. PLoS ONE, 2016, 11, e0164627.	1.1	15
203	The National Acoustic Laboratories' (NAL) CDs of Speech and Noise for Hearing Aid Evaluation: Normative Data and Potential Applications. Australian and New Zealand Journal of Audiology, 2002, 24, 16-35.	0.4	30
204	Microscopic Multilingual Matrix Test Predictions Using an ASR-Based Speech Recognition Model. , 0, , .		6

#	Article	IF	CITATIONS
205	Effects of Electrical Stimulation Rate on Speech Recognition in Cochlear Implant Users. Korean Journal of Audiology, 2012, 16, 6.	0.7	10
206	Extended High-frequency Hearing Impairment Despite a Normal Audiogram: Relation to Early Aging, Speech-in-noise Perception, Cochlear Function, and Routine Earphone Use. Ear and Hearing, 2022, 43, 822-835.	1.0	19
207	La obtención de medidas en oÃdo real mediante sonda microfónica. Consideraciones prácticas. Auditio (santa Cruz De Tenerife), 2006, 3, 36-42.	0.3	0
208	Modelling the human-machine gap in speech reception: microscopic speech intelligibility prediction for normal-hearing subjects with an auditory model. , 0, , .		3
209	Macroscopic and Microscopic Analysis of Speech Recognition in Noise: What Can Be Understood at Which Level?. , 2010, , 417-427.		0
210	The Noise Effect on Stuttering and Overall Speech Rate: Multi-talker Babble Noise. Phonetics and Speech Sciences, 2012, 4, 121-126.	0.0	1
211	Mel cepstral coefficient modification based on the glimpse proportion measure for improving the intelligibility of HMM-generated synthetic speech in noise. , 0, , .		8
213	Impact of Background Noise Fluctuation and Reverberation on Response Time in a Speech Reception Task. Journal of Speech, Language, and Hearing Research, 2019, 62, 4179-4195.	0.7	9
215	Scene-Aware Dynamic-Range Compression in Hearing Aids. Modern Acoustics and Signal Processing, 2020, , 763-799.	0.8	4
216	Psychophysiological responses to potentially annoying heating, ventilation, and air conditioning noise during mentally demanding work. Journal of the Acoustical Society of America, 2021, 150, 3149-3163.	0.5	9
217	Test-retest Reliability of the Korean Matrix Sentence-in-noise Recognition in Sound-field Testing Condition. Audiology and Speech Research, 2021, 17, 344-351.	0.1	1
219	Pupillary response to dynamic pitch alteration during speech perception in noise. JASA Express Letters, 2021, 1, 115202.	0.5	4
220	The effect of stimulus duration on preferences for gain adjustments when listening to speech. International Journal of Audiology, 2022, 61, 940-947.	0.9	0
222	Auditory Nerve Fiber Discrimination and Representation of Naturally-Spoken Vowels in Noise. ENeuro, 2022, 9, ENEURO.0474-21.2021.	0.9	8
223	Measuring the effect of adaptive directionality and split processing on noise acceptance at multiple input levels. International Journal of Audiology, 2023, 62, 21-29.	0.9	3
224	Robust parameter strategy for Wiener-based binaural noise reduction methods in hearing aids. Biomedical Signal Processing and Control, 2022, 74, 103461.	3.5	1
225	Speech sound discrimination by Mongolian gerbils. Hearing Research, 2022, 418, 108472.	0.9	10
230	An End-to-End Deep Learning Speech Coding and Denoising Strategy for Cochlear Implants. , 2022, , .		3

#	Article	IF	CITATIONS
231	Training Data-Driven Speech Intelligibility Predictors on Heterogeneous Listening Test Data. IEEE Access, 2022, 10, 66175-66189.	2.6	1
232	Spatial speech detection for binaural hearing aids using deep phoneme classifiers. Acta Acustica, 2022, 6, 25.	0.4	0
233	Adult Normative Data for the Adaptation of the Hearing in Noise Test in European French (HINT-5 Min). Healthcare (Switzerland), 2022, 10, 1306.	1.0	0
234	Beamforming and Single-Microphone Noise Reduction: Effects on Signal-to-Noise Ratio and Speech Recognition of Bimodal Cochlear Implant Users. Trends in Hearing, 2022, 26, 233121652211127.	0.7	2
235	Spectro-temporal modulation glimpsing for speech intelligibility prediction. Hearing Research, 2022, , 108620.	0.9	5
236	How much individualization is required to predict the individual effect of suprathreshold processing deficits? Assessing Plomp's distortion component with psychoacoustic detection thresholds and FADE. Hearing Research, 2022, 426, 108609.	0.9	0
238	Interactions between acoustic challenges and processing depth in speech perception as measured by task-evoked pupil response. Frontiers in Psychology, 0, 13, .	1.1	3
240	Functional consequences of extended high frequency hearing impairment: Evidence from the speech, spatial, and qualities of hearing scale. Journal of the Acoustical Society of America, 2022, 152, 2946-2952.	0.5	5
241	Age effects on cognitive functions and speech-in-noise processing: An event-related potential study with cochlear-implant users and normal-hearing listeners. Frontiers in Neuroscience, 0, 16, .	1.4	3
242	Sprachverstehen im Störschall—Überlegungen zur ökologisch validen Bewertung der Kommunikationsfäigkeit mit Cochleaimplantat. Hno, 2023, 71, 26-34.	0.4	1
243	A Deep Denoising Sound Coding Strategy for Cochlear Implants. IEEE Transactions on Biomedical Engineering, 2023, 70, 2700-2709.	2.5	1
244	Residual Hearing Does Not Influence the Effectiveness of Beamforming when Using a Cochlear Implant in Conjunction with Contralateral Routing of Signals. Audiology and Neuro-Otology, 2023, 28, 262-271.	0.6	0
247	On Batching Variable Size Inputs for Training End-to-End Speech Enhancement Systems. , 2023, , .		1
257	Using response time to evaluate noise fluctuations and Lombard speech in auralizations. , 2023, , .		0
259	A Two-Stage CNN with Feature Reduction for Speech-Aware Binaural DOA Estimation. , 2023, , .		0

A Two-Stage CNN with Feature Reduction for Speech-Aware Binaural DOA Estimation. , 2023, , . 259