Lung Tissue Mechanics and Extracellular Matrix Remod

American Journal of Respiratory and Critical Care Medicine 164, 1067-1071

DOI: 10.1164/ajrccm.164.6.2007062

Citation Report

#	Article	IF	CITATIONS
1	Critical Care Medicine inAJRCCM2001. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 565-583.	2.5	3
2	On the preparation of lung strip for tissue mechanics measurement. Respiratory Physiology and Neurobiology, 2003, 134, 255-262.	0.7	14
3	Effect of Corticosteroid on Lung Parenchyma Remodeling at an Early Phase of Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 677-684.	2.5	94
4	Therapeutic potential of a new phosphodiesterase inhibitor in acute lung injury. European Respiratory Journal, 2003, 22, 20-27.	3.1	50
5	Negative impact of tissue inhibitor of metalloproteinase-3 null mutation on lung structure and function in response to sepsis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L1222-L1232.	1.3	43
6	Tissue heterogeneity in the mouse lung: effects of elastase treatment. Journal of Applied Physiology, 2004, 97, 204-212.	1.2	106
8	Time course of respiratory mechanics and pulmonary structural remodelling in acute lung injury. Respiratory Physiology and Neurobiology, 2004, 143, 49-61.	0.7	24
9	What increases type III procollagen mRNA levels in lung tissue: stress induced by changes in force or amplitude?. Respiratory Physiology and Neurobiology, 2004, 144, 59-70.	0.7	37
10	Pulmonary and extrapulmonary acute lung injury: inflammatory and ultrastructural analyses. Journal of Applied Physiology, 2005, 98, 1777-1783.	1.2	149
11	Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. Journal of Applied Physiology, 2005, 98, 53-61.	1.2	84
12	Mechanics, nonlinearity, and failure strength of lung tissue in a mouse model of emphysema: possible role of collagen remodeling. Journal of Applied Physiology, 2005, 98, 503-511.	1.2	122
13	Collagen and elastic system in the remodelling process of major types of idiopathic interstitial pneumonias (IIP). Histopathology, 2005, 46, 413-421.	1.6	48
14	Differential response of TIMP-3 null mice to the lung insults of sepsis, mechanical ventilation, and hyperoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L244-L251.	1.3	19
15	Lung Parenchyma Remodeling in a Murine Model of Chronic Allergic Inflammation. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 829-837.	2.5	88
16	Low-Dose Steroid Therapy at an Early Phase of Postoperative Acute Respiratory Distress Syndrome. Annals of Thoracic Surgery, 2005, 79, 405-410.	0.7	80
18	Bench-to-bedside review: the role of glycosaminoglycans in respiratory disease. Critical Care, 2006, 10, 237.	2.5	89
19	Mouse strain dependence of lung tissue mechanics: Role of specific extracellular matrix composition. Respiratory Physiology and Neurobiology, 2006, 152, 186-196.	0.7	11
20	Respiratory changes in a murine model of spontaneous systemic lupus erythematosus. Respiratory Physiology and Neurobiology, 2006, 153, 107-114.	0.7	4

#	Article	IF	CITATIONS
21	Understanding the mechanisms of lung mechanical stress. Brazilian Journal of Medical and Biological Research, 2006, 39, 697-706.	0.7	44
22	Time course of lung parenchyma remodeling in pulmonary and extrapulmonary acute lung injury. Journal of Applied Physiology, 2006, 100, 98-106.	1.2	92
23	Immune Cell Infiltration and Broncovascular Remodeling After Nitric Acid Nasal Instillation in a Mouse Bronchiolitis Obliterans Model. Lung, 2006, 184, 229-238.	1.4	6
24	Relationship between pressure-volume curve and markers for collagen turn-over in early acute respiratory distress syndrome. Intensive Care Medicine, 2006, 32, 413-420.	3.9	34
25	Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties. Cytoskeleton, 2006, 63, 321-340.	4.4	111
26	Abnormal deposition of collagen/elastic vascular fibres and prognostic significance in idiopathic interstitial pneumonias. Thorax, 2007, 62, 428-437.	2.7	37
27	Vitamin A deficiency alters pulmonary parenchymal collagen and tissue mechanics. Respiratory Physiology and Neurobiology, 2007, 156, 312-319.	0.7	9
28	Therapeutic effect of Chinese medicine formula DSQRL on experimental pulmonary fibrosis. Journal of Ethnopharmacology, 2007, 109, 543-546.	2.0	10
29	The Extracellular Matrix of the Lung: The Forgotten Friend!. Yearbook of Intensive Care and Emergency Medicine, 2007, , 320-334.	0.1	2
30	The extracellular matrix of the lung and its role in edema formation. Anais Da Academia Brasileira De Ciencias, 2007, 79, 285-297.	0.3	52
31	Antifibrotic effect of captopril and enalapril on paraquat-induced lung fibrosis in rats. Journal of Applied Toxicology, 2007, 27, 342-349.	1.4	38
32	Idiopathic and Collagen Vascular Disease Nonspecific Interstitial Pneumonia: Clinical Significance of Remodeling Process. Lung, 2007, 185, 39-46.	1.4	22
33	Effects of mechanical ventilation on the extracellular matrix. Intensive Care Medicine, 2008, 34, 631-639.	3.9	100
34	Lowâ€dose dexamethasone alleviates lipopolysaccharideâ€induced acute lung injury in rats and upregulates pulmonary glucocorticoid receptors. Respirology, 2008, 13, 772-780.	1.3	46
35	Expression and arrangement of extracellular matrix proteins in the lungs of mice infected with <i>Paracoccidioides brasiliensis</i> conidia. International Journal of Experimental Pathology, 2008, 89, 106-116.	0.6	13
36	Temporal evolution of epithelial, vascular and interstitial lung injury in an experimental model of idiopathic pulmonary fibrosis induced by butylâ€hydroxytoluene. International Journal of Experimental Pathology, 2008, 89, 350-357.	0.6	7
37	Microcrystalline cellulose induces time-dependent lung functional and inflammatory changes. Respiratory Physiology and Neurobiology, 2008, 164, 331-337.	0.7	4
38	Inflammatory related changes in lung tissue mechanics after bleomycin-induced lung injury. Respiratory Physiology and Neurobiology, 2008, 160, 196-203.	0.7	8

#	Article	IF	CITATIONS
39	Impact of lung remodelling on respiratory mechanics in a model of severe allergic inflammation. Respiratory Physiology and Neurobiology, 2008, 160, 239-248.	0.7	15
40	Effects of amiodarone on lung tissue mechanics and parenchyma remodeling. Respiratory Physiology and Neurobiology, 2008, 162, 126-131.	0.7	2
41	La réparation alvéolaire est-elle responsable des modifications de mécanique respiratoire observées au cours du SDRAÂ?. Reanimation: Journal De La Societe De Reanimation De Langue Francaise, 2008, 17, 36-41.	0.1	0
42	Effects of chronic <scp>l</scp> -NAME treatment lung tissue mechanics, eosinophilic and extracellular matrix responses induced by chronic pulmonary inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L1197-L1205.	1.3	40
43	Methylprednisolone improves lung mechanics and reduces the inflammatory response in pulmonary but not in extrapulmonary mild acute lung injury in mice*. Critical Care Medicine, 2008, 36, 2621-2628.	0.4	69
44	What have anatomic and pathologic studies taught us about acute lung injury and acute respiratory distress syndrome?. Current Opinion in Critical Care, 2008, 14, 56-63.	1.6	12
45	Mapping and quantifying hyperpolarized 3He magnetic resonance imaging apparent diffusion coefficient gradients. Journal of Applied Physiology, 2008, 105, 693-699.	1.2	24
46	Early short-term versus prolonged low-dose methylprednisolone therapy in acute lung injury. European Respiratory Journal, 2009, 33, 634-645.	3.1	23
47	Lung Parenchymal Mechanics in Health and Disease. Physiological Reviews, 2009, 89, 759-775.	13.1	159
48	Oral tolerance attenuates airway inflammation and remodeling in a model of chronic pulmonary allergic inflammation. Respiratory Physiology and Neurobiology, 2009, 165, 13-21.	0.7	16
49	Inducible nitric oxide synthase inhibition attenuates lung tissue responsiveness and remodeling in a model of chronic pulmonary inflammation in guinea pigs. Respiratory Physiology and Neurobiology, 2009, 165, 185-194.	0.7	28
50	Different strains of mice present distinct lung tissue mechanics and extracellular matrix composition in a model of chronic allergic asthma. Respiratory Physiology and Neurobiology, 2009, 165, 202-207.	0.7	27
51	Prone position prevents regional alveolar hyperinflation and mechanical stress and strain in mild experimental acute lung injury. Respiratory Physiology and Neurobiology, 2009, 167, 181-188.	0.7	29
52	Recruitment maneuver: RAMP versus CPAP pressure profile in a model of acute lung injury. Respiratory Physiology and Neurobiology, 2009, 169, 62-68.	0.7	17
53	Prolonged recruitment manoeuvre improves lung function with less ultrastructural damage in experimental mild acute lung injury. Respiratory Physiology and Neurobiology, 2009, 169, 271-281.	0.7	34
54	Effects of frequency and inspiratory plateau pressure during recruitment manoeuvres on lung and distal organs in acute lung injury. Intensive Care Medicine, 2009, 35, 1120-1128.	3.9	47
55	Bone marrow-derived mononuclear cell therapy in experimental pulmonary and extrapulmonary acute lung injury. Critical Care Medicine, 2010, 38, 1733-1741.	0.4	60
56	Recruitment maneuver in experimental acute lung injury: The role of alveolar collapse and edema. Critical Care Medicine, 2010, 38, 2207-2214.	0.4	47

#	Article	IF	Citations
57	Assisted ventilation modes reduce the expression of lung inflammatory and fibrogenic mediators in a model of mild acute lung injury. Intensive Care Medicine, 2010, 36, 1417-1426.	3.9	47
58	Degree of endothelium injury promotes fibroelastogenesis in experimental acute lung injury. Respiratory Physiology and Neurobiology, 2010, 173, 179-188.	0.7	18
59	Pulmonary function and histological impairment in mice after acute exposure to aluminum dust. Inhalation Toxicology, 2010, 22, 861-867.	0.8	23
60	Sex-specific lung remodeling and inflammation changes in experimental allergic asthma. Journal of Applied Physiology, 2010, 109, 855-863.	1.2	40
61	Chymase mediates paraquat-induced collagen production in human lung fibroblasts. Toxicology Letters, 2010, 193, 19-25.	0.4	17
62	Hypervolemia induces and potentiates lung damage after recruitment maneuver in a model of sepsis-induced acute lung injury. Critical Care, 2010, 14, R114.	2.5	41
63	Increased expression of endothelial iNOS accounts for hyporesponsiveness of pulmonary artery to vasoconstrictors after paraquat poisoning. Toxicology in Vitro, 2010, 24, 1019-1025.	1.1	9
64	Paraquat increases connective tissue growth factor and collagen expression via angiotensin signaling pathway in human lung fibroblasts. Toxicology in Vitro, 2010, 24, 803-808.	1.1	15
65	Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. DMM Disease Models and Mechanisms, 2011, 4, 165-178.	1.2	1,248
66	Mesenchymal Stem Cells Stably Transduced with a Dominant-Negative Inhibitor of CCL2 Greatly Attenuate Bleomycin-Induced Lung Damage. American Journal of Pathology, 2011, 179, 1088-1094.	1.9	43
67	Impact of pressure profile and duration of recruitment maneuvers on morphofunctional and biochemical variables in experimental lung injury*. Critical Care Medicine, 2011, 39, 1074-1081.	0.4	40
68	Lung tissue mechanics as an emergent phenomenon. Journal of Applied Physiology, 2011, 110, 1111-1118.	1.2	115
69	Early and late effects of bone marrow-derived mononuclear cell therapy on lung and distal organs in experimental sepsis. Respiratory Physiology and Neurobiology, 2011, 178, 304-314.	0.7	25
70	On the crucial ventilatory setting adjustment from two- to one-lung ventilation. Respiratory Physiology and Neurobiology, 2011, 179, 198-204.	0.7	5
71	Matrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair. European Respiratory Journal, 2011, 38, 959-970.	3.1	187
72	Regular and moderate exercise before experimental sepsis reduces the risk of lung and distal organ injury. Journal of Applied Physiology, 2012, 112, 1206-1214.	1.2	38
73	Inducible Nitric Oxide Synthase Inhibition Attenuates Physical Stress-Induced Lung Hyper-Responsiveness and Oxidative Stress in Animals with Lung Inflammation. NeuroImmunoModulation, 2012, 19, 158-170.	0.9	14
74	Lymphatic fluctuation in the parenchymal remodeling stage of acute interstitial pneumonia, organizing pneumonia, nonspecific interstitial pneumonia and idiopathic pulmonary fibrosis. Brazilian Journal of Medical and Biological Research, 2012, 45, 466-472.	0.7	9

#	Article	IF	CITATIONS
75	Bark extract of Bathysa cuspidata attenuates extraâ€pulmonary acute lung injury induced by paraquat and reduces mortality in rats. International Journal of Experimental Pathology, 2012, 93, 225-233.	0.6	42
76	Pivotal Role of the 5-Lipoxygenase Pathway in Lung Injury after Experimental Sepsis. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 87-95.	1.4	29
77	Dose- and time-dependent effects of lipopolysaccharide on technetium-99-m-labeled diethylene-triamine pentaacetatic acid clearance, respiratory system mechanics and pulmonary inflammation. Experimental Biology and Medicine, 2013, 238, 209-222.	1.1	4
78	Methylene blue protects against paraquat-induced acute lung injury in rats. International Immunopharmacology, 2013, 17, 309-313.	1.7	18
79	Effects of Mesenchymal Stem Cell Therapy on the Time Course of Pulmonary Remodeling Depend on the Etiology of Lung Injury in Mice. Critical Care Medicine, 2013, 41, e319-e333.	0.4	58
80	Eosinophilic Inflammation in Allergic Asthma. Frontiers in Pharmacology, 2013, 4, 46.	1.6	136
81	Angiotensin II type 1 and 2 receptors and lymphatic vessels modulate lung remodeling and fibrosis in systemic sclerosis and idiopathic pulmonary fibrosis. Clinics, 2014, 69, 47-54.	0.6	19
82	The Role of Extracellular Matrix in Lung Diseases. Biology and Medicine (Aligarh), 2014, 06, .	0.3	6
83	Protective effect of Xuebijing injection on paraquat-induced pulmonary injury via down-regulating the expression of p38 MAPK in rats. BMC Complementary and Alternative Medicine, 2014, 14, 498.	3.7	73
84	Effects of bone marrow mononuclear cells from healthy or ovalbumin-induced lung inflammation donors on recipient allergic asthma mice. Stem Cell Research and Therapy, 2014, 5, 108.	2.4	23
85	Effect of Lung Fibrosis on Glycogen Content in Different Extrapulmonary Tissues. Lung, 2014, 192, 125-131.	1.4	5
86	Numerical identification method for the non-linear viscoelastic compressible behavior of soft tissue using uniaxial tensile tests and image registration – Application to rat lung parenchyma. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 360-374.	1.5	30
87	DNA nanoparticle-mediated thymulin gene therapy prevents airway remodeling in experimental allergic asthma. Journal of Controlled Release, 2014, 180, 125-133.	4.8	51
88	Effects of Rho-kinase inhibition in lung tissue with chronic inflammation. Respiratory Physiology and Neurobiology, 2014, 192, 134-146.	0.7	37
89	Effects of Bone Marrow–Derived Mononuclear Cells From Healthy or Acute Respiratory Distress Syndrome Donors on Recipient Lung-Injured Mice. Critical Care Medicine, 2014, 42, e510-e524.	0.4	24
90	Alterations in expression of elastogenic and angiogenic genes by different conditions of mechanical ventilation in newborn rat lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L639-L649.	1.3	10
91	Investigating the therapeutic effects of LASSBio-596 in an inÂvivo model of cylindrospermopsin-induced lung injury. Toxicon, 2015, 94, 29-35.	0.8	11
92	Inhibition of endogenous glucocorticoid synthesis aggravates lung injury triggered by septic shock in rats. International Journal of Experimental Pathology, 2015, 96, 133-139.	0.6	11

#	ARTICLE	IF	CITATIONS
93	Y-27632 is associated with corticosteroid-potentiated control of pulmonary remodeling and inflammation in guinea pigs with chronic allergic inflammation. BMC Pulmonary Medicine, 2015, 15, 85.	0.8	33
94	Effects of acute hypercapnia with and without acidosis on lung inflammation and apoptosis in experimental acute lung injury. Respiratory Physiology and Neurobiology, 2015, 205, 1-6.	0.7	9
95	Pediatric Acute Respiratory Distress Syndrome: Fibrosis versus Repair. Frontiers in Pediatrics, 2016, 4, 28.	0.9	11
96	2,2′-Azobis (2-Amidinopropane) Dihydrochloride Is a Useful Tool to Impair Lung Function in Rats. Frontiers in Physiology, 2016, 7, 475.	1.3	7
97	Chronic heart failure modifies respiratory mechanics in rats: a randomized controlled trial. Brazilian Journal of Physical Therapy, 2016, 20, 320-327.	1.1	4
98	Curcumin inhibits paraquat induced lung inflammation and fibrosis by extracellular matrix modifications in mouse model. Inflammopharmacology, 2016, 24, 335-345.	1.9	34
99	Respiratory and Systemic Effects of LASSBio596 Plus Surfactant in Experimental Acute Respiratory Distress Syndrome. Cellular Physiology and Biochemistry, 2016, 38, 821-835.	1.1	10
100	Prophylactic and therapeutic treatment with the flavonone sakuranetin ameliorates LPS-induced acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L217-L230.	1.3	38
101	Changes in rat respiratory system produced by exposure to exhaust gases of combustion of glycerol. Respiratory Physiology and Neurobiology, 2017, 242, 80-85.	0.7	7
102	Bone Marrow, Adipose, and Lung Tissue-Derived Murine Mesenchymal Stromal Cells Release Different Mediators and Differentially Affect Airway and Lung Parenchyma in Experimental Asthma. Stem Cells Translational Medicine, 2017, 6, 1557-1567.	1.6	74
103	Lung remodeling associated with recovery from acute lung injury. Cell and Tissue Research, 2017, 367, 495-509.	1.5	32
104	Effects of pressure support and pressure-controlled ventilation on lung damage in a model of mild extrapulmonary acute lung injury with intra-abdominal hypertension. PLoS ONE, 2017, 12, e0178207.	1.1	7
105	New insights into the mechanisms of pulmonary edema in acute lung injury. Annals of Translational Medicine, 2018, 6, 32-32.	0.7	161
106	Elastin degradation products in acute lung injury induced by gastric contents aspiration. Respiratory Research, 2018, 19, 165.	1.4	4
107	The Organophosphorus Pesticide Chlorpyrifos Induces Sex-Specific Airway Hyperreactivity in Adult Rats. Toxicological Sciences, 2018, 165, 244-253.	1.4	13
108	Bone Marrow-Derived Mononuclear Cell Therapy in Papain-Induced Experimental Pulmonary Emphysema. Frontiers in Physiology, 2018, 9, 121.	1.3	12
109	Eicosapentaenoic Acid Enhances the Effects of Mesenchymal Stromal Cell Therapy in Experimental Allergic Asthma. Frontiers in Immunology, 2018, 9, 1147.	2.2	36
110	Efficient Spatial Sampling for AFM-Based Cancer Diagnostics: A Comparison between Neural Networks and Conventional Data Analysis. Condensed Matter, 2019, 4, 58.	0.8	13

#	Article	IF	CITATIONS
111	Effects of Obesity on Pulmonary Inflammation and Remodeling in Experimental Moderate Acute Lung Injury. Frontiers in Immunology, 2019, 10, 1215.	2.2	31
112	Analysis of respiratory mechanics in animal models: Its use in understanding lung behavior in emphysema and asthma. Drug Discovery Today: Disease Models, 2019, 29-30, 11-17.	1.2	2
113	Extracellular matrix components remodeling and lung function parameters in experimental emphysema and allergic asthma: Differences among the mouse strains. Drug Discovery Today: Disease Models, 2019, 29-30, 27-34.	1.2	0
114	Serum from Asthmatic Mice Potentiates the Therapeutic Effects of Mesenchymal Stromal Cells in Experimental Allergic Asthma. Stem Cells Translational Medicine, 2019, 8, 301-312.	1.6	40
115	Personalized pharmacological therapy for ARDS: a light at the end of the tunnel. Expert Opinion on Investigational Drugs, 2020, 29, 49-61.	1.9	34
116	Characterizing the viscoelasticity of extra- and intra-parenchymal lung bronchi. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103824.	1.5	21
117	Implications of microscale lung damage for COVID-19 pulmonary ventilation dynamics: A narrative review. Life Sciences, 2021, 274, 119341.	2.0	17
118	Effects of Eugenol and Dehydrodieugenol B from <i>Nectandra leucantha</i> against Lipopolysaccharide (LPS)-Induced Experimental Acute Lung Inflammation. Journal of Natural Products, 2021, 84, 2282-2294.	1.5	11
119	Procollagen I and III as Prognostic Markers in Patients Treated with Extracorporeal Membrane Oxygenation: A Prospective Observational Study. Journal of Clinical Medicine, 2021, 10, 3686.	1.0	1
120	Mechanisms, Pathophysiology and Currently Proposed Treatments of Chronic Obstructive Pulmonary Disease. Pharmaceuticals, 2021, 14, 979.	1.7	29
121	Role of Collagen in Airway Mechanics. Bioengineering, 2021, 8, 13.	1.6	35
122	Experimental Models of Acute Lung Injury. , 2002, , 175-191.		1
123	Paraquat-Induced Oxidative Stress and Lung Inflammation. , 2020, , 245-270.		3
124	Mechanical Ventilation–associated Lung Fibrosis in Acute Respiratory Distress Syndrome. Anesthesiology, 2014, 121, 189-198.	1.3	145
125	Thymic Stromal Lymphopoietin Promotes Fibrosis and Activates Mitogen-Activated Protein Kinases in MRC-5 Cells. Medical Science Monitor, 2016, 22, 2357-2362.	0.5	4
126	Chemokine Localization in Bronchial Angiogenesis. PLoS ONE, 2013, 8, e66432.	1.1	6
127	Lung tissue remodeling in the acute respiratory distress syndrome. Jornal De Pneumologia, 2003, 29, 235-245.	0.1	3
128	Respiratory Mechanics and Lung Parenchyma Remodelling in Acute Respiratory Distress Syndrome. , 2004, , 61-70.		0

#	Article	IF	CITATIONS
129	Mechanisms of repair and remodelling in ARDS. , 2006, , 381-403.		0
130	Improved Oxygenation by Steroid Pulse Therapy in Early-Phase Acute Respiratory Distress Syndrome. Nihon Kyukyu Igakukai Zasshi, 2007, 18, 1-9.	0.0	0
131	Glucocorticoid Treatment in Acute Respiratory Distress Syndrome: Friend or Foe?. Yearbook of Intensive Care and Emergency Medicine, 2008, , 214-223.	0.1	0
132	Corticosteroids in ARDS: back to the future. , 2006, , 405-418.		0
134	The Extracellular Matrix of the Lung: The Forgotten Friend!. , 2007, , 320-334.		1
137	Extracellular Vesicles and Alveolar Epithelial-Capillary Barrier Disruption in Acute Respiratory Distress Syndrome: Pathophysiological Role and Therapeutic Potential. Frontiers in Physiology, 2021, 12, 752287.	1.3	8
138	Role of elastin and elastin-derived peptides in arterial stiffness: from synthesis to potential therapeutic interventions. , 2022, , 299-313.		3
151	Composition, host responses and clinical applications of bioadhesives. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 0, , .	1.6	6
152	Treatment for acute respiratory distress syndrome in adults: a narrative review of phase 2 and 3 trials. Expert Opinion on Emerging Drugs, 2022, 27, 187-209.	1.0	5
153	Senescent macrophages alter fibroblast fibrogenesis in response to SARS-CoV-2 infection. , 2022, .		0
154	Lumican is elevated in the lung in human and experimental acute respiratory distress syndrome and promotes early fibrotic responses to lung injury. Journal of Translational Medicine, 2022, 20, .	1.8	10
155	Effects of tissue degradation by collagenase and elastase on the biaxial mechanics of porcine airways. Respiratory Research, 2023, 24, .	1.4	6