Symbolic Control of Visual Attention

Psychological Science 12, 360-365 DOI: 10.1111/1467-9280.00367

Citation Report

#	Article	IF	CITATIONS
1	Are eyes special? It depends on how you look at it. Psychonomic Bulletin and Review, 2002, 9, 507-513.	2.8	345
2	The role of spatial working memory in inhibition of return: Evidence from divided attention tasks. Perception & Psychophysics, 2003, 65, 970-981.	2.3	75
3	Automatic spatial coding of perceived gaze direction is revealed by the Simon effect. Psychonomic Bulletin and Review, 2003, 10, 423-429.	2.8	51
4	Rethinking the focusing effect in decision-making. Acta Psychologica, 2003, 113, 67-81.	1.5	16
5	Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 2003, 6, 555-556.	14.8	555
6	Symbolic control of visual attention: The role of working memory and attentional control settings Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 835-845.	0.9	96
7	Does Facial Expression Affect Attention Orienting by Gaze Direction Cues?. Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 1228-1243.	0.9	174
8	Why does the gaze of others direct visual attention?. Visual Cognition, 2004, 11, 71-79.	1.6	67
9	Reflexive orienting in response to eye gaze and an arrow in children with and without autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2004, 45, 445-458.	5.2	207
10	What are you looking at?. Neuropsychologia, 2004, 42, 1657-1665.	1.6	63
11	Inner speech as a retrieval aid for task goals: the effects of cue type and articulatory suppression in the random task cuing paradigm. Acta Psychologica, 2004, 115, 123-142.	1.5	237
12	Assessing the Effectiveness of Various Auditory Cues in Capturing a Driver's Visual Attention Journal of Experimental Psychology: Applied, 2005, 11, 157-174.	1.2	169
13	Variation in cue duration reveals top-down modulation of involuntary orienting to uninformative symbolic cues. Perception & Psychophysics, 2005, 67, 749-758.	2.3	60
14	Gaze and arrow cueing of attention reveals individual differences along the autism spectrum as a function of target context. British Journal of Psychology, 2005, 96, 95-114.	2.3	154
15	Facilitation of return in voluntary orienting to visual attributes1. Japanese Psychological Research, 2005, 47, 271-279.	1.1	2
16	Interruption from irrelevant auditory and visual onsets even when attention is in a focused state. Experimental Brain Research, 2005, 164, 464-471.	1.5	46
17	VISUAL ORIENTING OCCURS ASYMMETRICALLY IN HORIZONTAL VS. VERTICAL PLANES. Psychologia, 2005, 48, 205-217.	0.3	3
18	Preparing for perception and action (II): Automatic and effortful processes in response cueing. Visual Cognition, 2005, 12, 1444-1473.	1.6	37

ATION REDO

#	Article	IF	CITATIONS
19	Orienting to Eye Gaze and Face Processing Journal of Experimental Psychology: Human Perception and Performance, 2005, 31, 843-856.	0.9	43
20	Sex differences in eye gaze and symbolic cueing of attention. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 2005, 58, 631-650.	2.3	253
21	Spatial information is processed even when it is task-irrelevant: implications for neuroimaging task design. NeuroImage, 2005, 25, 1043-1055.	4.2	12
22	The inhibitory effect of a recent distracter. Vision Research, 2005, 45, 3365-3378.	1.4	12
23	Action-feature integration blinds to feature-overlapping perceptual events: Evidence from manual and vocal actions. Quarterly Journal of Experimental Psychology, 2006, 59, 509-523.	1.1	42
24	Automatic attention orienting by social and symbolic cues activates different neural networks: An fMRI study. NeuroImage, 2006, 33, 406-413.	4.2	147
25	The spatial correspondence hypothesis and orienting in response to central and peripheral spatial cues. Visual Cognition, 2006, 13, 65-88.	1.6	20
26	The differential effect of vibrotactile and auditory cues on visual spatial attention. Ergonomics, 2006, 49, 724-738.	2.1	85
27	Executive control in a modified antisaccade task: Effects of aging and bilingualism Journal of Experimental Psychology: Learning Memory and Cognition, 2006, 32, 1341-1354.	0.9	299
28	Gaze cues evoke both spatial and object-centered shifts of attention. Perception & Psychophysics, 2006, 68, 310-318.	2.3	22
29	Number magnitude orients attention, but not against one's will. Psychonomic Bulletin and Review, 2006, 13, 869-874.	2.8	122
30	Verbal interface design: Do verbal directional cues automatically orient visual spatial attention?. Computers in Human Behavior, 2006, 22, 733-748.	8.5	36
31	Eye gaze does not produce reflexive shifts of attention: Evidence from frontal-lobe damage. Neuropsychologia, 2006, 44, 150-159.	1.6	72
32	Visual Attention and the Semantics of Space. Psychological Science, 2006, 17, 622-627.	3.3	83
33	Attention to Arrows: Pointing to a New Direction. Quarterly Journal of Experimental Psychology, 2006, 59, 1921-1930.	1.1	139
34	Spatial coding and central patterns: Is there something special about the eyes?. Canadian Journal of Experimental Psychology, 2007, 61, 79-90.	0.8	13
35	The suppression of reflexive visual and auditory orienting when attention is otherwise engaged Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 137-148.	0.9	77
36	The role of spatial and nonspatial information in visual selection Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 1335-1351.	0.9	76

#	Article	IF	CITATIONS
37	Separate mechanisms recruited by exogenous and endogenous spatial cues: Evidence from a spatial Stroop paradigm Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 348-362.	0.9	64
38	Assessing the Automaticity of the Exogenous Orienting of Tactile Attention. Perception, 2007, 36, 1497-1505.	1.2	30
39	Task-Relevance Modulates the Effects of Peripheral Distractors. Quarterly Journal of Experimental Psychology, 2007, 60, 1216-1226.	1.1	16
40	Facilitation and inhibition caused by the orienting of attention in propositional reasoning tasks. Quarterly Journal of Experimental Psychology, 2007, 60, 1496-1523.	1.1	2
41	The phenomenology of endogenous orienting. Consciousness and Cognition, 2007, 16, 144-161.	1.5	44
42	Comparing the time course and efficacy of spatial and feature-based attention. Vision Research, 2007, 47, 108-113.	1.4	146
43	Attentional control and reflexive orienting to gaze and arrow cues. Psychonomic Bulletin and Review, 2007, 14, 964-969.	2.8	99
44	Gaze cueing of attention: Visual attention, social cognition, and individual differences Psychological Bulletin, 2007, 133, 694-724.	6.1	1,094
45	Top-down control is not lost in the attentional blink: evidence from intact endogenous cuing. Experimental Brain Research, 2008, 185, 287-295.	1.5	13
46	ERP correlates of anticipatory attention: spatial and non-spatial specificity and relation to subsequent selective attention. Experimental Brain Research, 2008, 188, 45-62.	1.5	27
47	Is the exogenous orienting of spatial attention truly automatic? Evidence from unimodal and multisensory studies. Consciousness and Cognition, 2008, 17, 989-1015.	1.5	77
48	Testing whether gaze cues and arrow cues produce reflexive or volitional shifts of attention. Psychonomic Bulletin and Review, 2008, 15, 1148-1153.	2.8	47
49	Orienting to counterpredictive gaze and arrow cues. Perception & Psychophysics, 2008, 70, 77-87.	2.3	130
50	Is location cueing inherently superior to color cueing? Not if color is presented early enough. Acta Psychologica, 2008, 127, 89-102.	1.5	10
51	Visuospatial attention shifts by gaze and arrow cues: An ERP study. Brain Research, 2008, 1215, 123-136.	2.2	90
52	Attentional SNARC: There's something special about numbers (let us count the ways). Cognition, 2008, 108, 810-818.	2.2	94
53	Preventing falls in older adults: New interventions to promote more effective change-in-support balance reactions. Journal of Electromyography and Kinesiology, 2008, 18, 243-254.	1.7	99
54	Attending to objects: Endogenous cues can produce inhibition of return. Visual Cognition, 2008, 16, 659-674.	1.6	18

ARTICLE IF CITATIONS # Gaze selection in complex social scenes. Visual Cognition, 2008, 16, 341-355. 1.6 145 55 Head Up, Foot Down. Psychological Science, 2008, 19, 93-97. 3.3 Short Article: Coding Strategies in Number Space: Memory Requirements Influence Spatial–Numerical 57 1.1 76 Associations. Quarterly Journal of Experimental Psychology, 2008, 61, 515-524. Enhanced orienting effects: Evidence for an interaction principle. Visual Cognition, 2008, 16, 979-1000. Prism adaptation improves voluntary but not automatic orienting in neglect. NeuroReport, 2008, 19, 59 1.2 51 293-298. Transient and sustained brain activity during anticipatory visuospatial attention. NeuroReport, 2008, 1.2 19, 155-159. Interventions to Promote More Effective Balance-Recovery Reactions in Industrial Settings: New 61 1.0 22 Perspectives on Footwear and Handrails. Industrial Health, 2008, 46, 40-50. The Simon Effect with Conventional Signals. Experimental Psychology, 2009, 56, 219-227. 49 Training attention: Interactions between central cues and reflexive attention. Visual Cognition, 2009, 63 1.6 17 17, 736-754. Normal and Impaired Reflexive Orienting of Attention after Central Nonpredictive Cues. Journal of 64 2.3 Cognitive Neuroscience, 2009, 21, 745-759. Simultaneous Preparation of Multiple Potential Movements: Opposing Effects of Spatial Proximity 65 1.8 43 Mediated by Premotor and Parietal Cortex. Journal of Neurophysiology, 2009, 102, 2084-2095. Get real! Resolving the debate about equivalent social stimuli. Visual Cognition, 2009, 17, 904-924. 1.6 Attentional orienting induced by arrows and eye-gaze compared with an endogenous cue. 67 1.6 91 Neuropsychologia, 2009, 47, 370-381. Neural mechanisms of attentional shifts due to irrelevant spatial and numerical cues. 1.6 Neuropsychologia, 2009, 47, 2615-2624. The saccadic Stroop effect: Evidence for involuntary programming of eye movements by linguistic 69 1.4 23 cues. Vision Research, 2009, 49, 569-574. Is there a direct link between gaze perception and joint attention behaviours? Effects of gaze contrast polarity on oculomotor behaviour. Experimental Brain Research, 2009, 194, 347-357. Reflexive social attention is mapped according to effector-specific reference systems. Experimental 71 1.518 Brain Research, 2009, 197, 143-151. Human Social Attention. Annals of the New York Academy of Sciences, 2009, 1156, 118-140. 3.8 139

	CITATION	Report	
#	Article	IF	CITATIONS
73	What is special about the index finger?: The index finger advantage in manipulating reflexive attentional shift ¹ . Japanese Psychological Research, 2009, 51, 258-265.	1.1	31
74	Attention control and susceptibility to hypnosis. Consciousness and Cognition, 2009, 18, 856-863.	1.5	44
75	You look where I look! Effect of gaze cues on overt and covert attention in misdirection. Visual Cognition, 2009, 17, 925-944.	1.6	113
76	The effects of implicit attentional learning and habituation on inhibition of return. Perception & Psychophysics, 2009, 71, 26-41.	2.3	4
77	Look away! Eyes and arrows engage oculomotor responses automatically. Attention, Perception, and Psychophysics, 2009, 71, 314-327.	1.3	160
78	Symbolic control of visual attention: Semantic constraints on the spatial distribution of attention. Attention, Perception, and Psychophysics, 2009, 71, 363-374.	1.3	13
79	Symbolic control of attention: Tracking its temporal dynamics. Attention, Perception, and Psychophysics, 2009, 71, 385-391.	1.3	4
80	Nonattentional effects of nonpredictive central cues. Attention, Perception, and Psychophysics, 2009, 71, 872-880.	1.3	14
81	Are spatial selection and identity extraction separable when attention is controlled endogenously?. Attention, Perception, and Psychophysics, 2009, 71, 1233-1240.	1.3	14
82	Neural mechanisms of social attention. Trends in Cognitive Sciences, 2009, 13, 135-143.	7.8	346
83	Interactions between Voluntary and Stimulus-driven Spatial Attention Mechanisms across Sensory Modalities. Journal of Cognitive Neuroscience, 2009, 21, 2384-2397.	2.3	41
84	Commonalities in the neural mechanisms underlying automatic attentional shifts by gaze, gestures, and symbols. NeuroImage, 2009, 45, 984-992.	4.2	69
85	Human social attention. Progress in Brain Research, 2009, 176, 309-320.	1.4	41
86	Auditory and visual capture during focused visual attention Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1303-1315.	0.9	33
87	Influence of visual stimulus mode on transfer of acquired spatial associations Journal of Experimental Psychology: Learning Memory and Cognition, 2009, 35, 434-445.	0.9	45
88	How attentional systems process conflicting cues. The superiority of social over symbolic orienting revisited Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1738-1754.	0.9	21
89	Testing the attention shift hypothesis as an account for the flanker sequence-based congruency modulation in spatial flanker tasks. American Journal of Psychology, 2010, 123, 337.	0.3	5
90	Attention, Uncertainty, and Free-Energy. Frontiers in Human Neuroscience, 2010, 4, 215.	2.0	896

#	Article	IF	CITATIONS
91	The Impact of Social Presence on Voluntary and Involuntary Control of Spatial Attention. Social Cognition, 2010, 28, 145-160.	0.9	17
92	Is object-based attention mandatory? Strategic control over mode of attention Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 565-579.	0.9	28
93	Thinking about the future moves attention to the right Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 17-24.	0.9	91
94	Grasping beer mugs: On the dynamics of alignment effects induced by handled objects Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 341-358.	0.9	134
95	How do selected arrows guide visuospatial attention? Dissociating symbolic value and spatial proximity Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 1314-1320.	0.9	3
96	Visuospatial attention is guided by both the symbolic value and the spatial proximity of selected arrows Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 1321-1324.	0.9	13
97	Mental-state attribution drives rapid, reflexive gaze following. Attention, Perception, and Psychophysics, 2010, 72, 695-705.	1.3	111
98	Shift and deviate: Saccades reveal that shifts of covert attention evoked by trained spatial stimuli are obligatory. Attention, Perception, and Psychophysics, 2010, 72, 1244-1250.	1.3	11
99	What the experimenter's prime tells the observer's brain. Attention, Perception, and Psychophysics, 2010, 72, 1367-1376.	1.3	18
100	Visual and auditory accessory stimulus offset and the Simon effect. Attention, Perception, and Psychophysics, 2010, 72, 1965-1974.	1.3	6
101	Redundant spoken labels facilitate perception of multiple items. Attention, Perception, and Psychophysics, 2010, 72, 2236-2253.	1.3	70
102	Orienting of attention with eye and arrow cues and the effect of overtraining. Acta Psychologica, 2010, 134, 353-362.	1.5	36
103	Eye movements affirm: automatic overt gaze and arrow cueing for typical adults and adults with autism spectrum disorder. Experimental Brain Research, 2010, 201, 155-165.	1.5	62
104	Endogenous orienting is reduced during the attentional blink. Experimental Brain Research, 2010, 205, 115-121.	1.5	10
105	The proportion valid effect in covert orienting: Strategic control or implicit learning?. Consciousness and Cognition, 2010, 19, 432-442.	1.5	33
106	Unconscious strategies? Commentary on Risko and Stolz (2010): "The proportion valid effect in covert orienting: Strategic control or implicit learning?― Consciousness and Cognition, 2010, 19, 443-444.	1.5	8
107	Feature integration and spatial attention: common processes for endogenous and exogenous orienting. Psychological Research, 2010, 74, 239-254.	1.7	8
108	A review of methods in the study of attention in autism. Developmental Review, 2010, 30, 52-73.	4.7	135

#	Article	IF	CITATIONS
109	An early parietal ERP component of the frontoparietal system: EDANâ‰N2pc. Brain Research, 2010, 1317, 203-210.	2.2	38
110	Months in space: Synaesthesia modulates attention and action. Cognitive Neuropsychology, 2010, 27, 665-679.	1.1	8
111	Gaze and Arrow Distractors Influence Saccade Trajectories Similarly. Quarterly Journal of Experimental Psychology, 2010, 63, 2120-2140.	1.1	29
112	Involuntary but not voluntary orienting contributes to a disengage deficit in visual neglect. Cortex, 2010, 46, 1149-1164.	2.4	27
113	Spatial cueing in time–space synesthetes: An event-related brain potential study. Brain and Cognition, 2010, 74, 35-46.	1.8	18
114	Reduced congruency effects only for repeated spatial irrelevant information. European Journal of Cognitive Psychology, 2010, 22, 1137-1167.	1.3	5
115	Reorienting of spatial attention in gaze cuing is reflected in N2pc. Social Neuroscience, 2011, 6, 257-269.	1.3	34
116	Visual orienting in response to attentional cues: Spatial correspondence is critical, conscious awareness is not. Visual Cognition, 2011, 19, 730-761.	1.6	19
117	Implicit attentional orienting in a target detection task with central cues. Consciousness and Cognition, 2011, 20, 1532-1547.	1.5	9
118	Follow the sign! Top-down contingent attentional capture of masked arrow cues. Advances in Cognitive Psychology, 2011, 7, 82-91.	0.5	27
119	Understanding the Development of Attention in Persons with Intellectual Disability: Challenging the Myths. , 0, , 89-96.		0
120	Transient Attention Degrades Perceived Apparent Motion. Perception, 2011, 40, 905-918.	1.2	19
121	Curved saccade trajectories reveal conflicting predictions in associative learning Journal of Experimental Psychology: Learning Memory and Cognition, 2011, 37, 1164-1177.	0.9	12
122	Flexible foundations of abstract thought: A review and a theory. , 2011, , 39-108.		41
123	Neurobehavioral correlates of the rapid formation of the symbolic control of visuospatial attention. Psychophysiology, 2011, 48, 1227-1241.	2.4	2
124	Voluntary and involuntary spatial attentions interact differently with awareness. Neuropsychologia, 2011, 49, 2465-2474.	1.6	20
125	A Taxonomy of External and Internal Attention. Annual Review of Psychology, 2011, 62, 73-101.	17.7	1,027
126	Timing of reflexive visuospatial orienting in young, young-old, and old-old adults. Attention, Perception, and Psychophysics, 2011, 73, 1546-1561.	1.3	33

#	Article	IF	CITATIONS
127	Increased gaze following for fearful faces. It depends on what you're looking for!. Psychonomic Bulletin and Review, 2011, 18, 89-95.	2.8	63
128	Negative numbers eliminate, but do not reverse, the attentional SNARC effect. Psychological Research, 2011, 75, 2-9.	1.7	11
129	Grounding spatial language in the motor system: Reciprocal interactions between spatial semantics and orienting. Visual Cognition, 2011, 19, 79-116.	1.6	10
130	Going the distance: Extra-symbolic contributions to the symbolic control of spatial attention. Visual Cognition, 2011, 19, 1237-1261.	1.6	6
131	Going rogue in the spatial cuing paradigm: High spatial validity is insufficient to elicit voluntary shifts of attention Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 1192-1201.	0.9	14
132	Saccade preparation is required for exogenous attention but not endogenous attention or IOR Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 1438-1447.	0.9	65
133	Eye gaze versus arrows as spatial cues: Two qualitatively different modes of attentional selection Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 326-335.	0.9	61
134	Giving Subjects the Eye and Showing Them the Finger: Socio-Biological Cues and Saccade Generation in the Anti-Saccade Task. Perception, 2012, 41, 131-147.	1.2	23
135	The evocative power of words: Activation of concepts by verbal and nonverbal means Journal of Experimental Psychology: General, 2012, 141, 170-186.	2.1	117
136	A Bayesian account of 'hysteria'. Brain, 2012, 135, 3495-3512.	7.6	579
136 137		7.6 1.5	579 18
	A Bayesian account of 'hysteria'. Brain, 2012, 135, 3495-3512.		
137	A Bayesian account of 'hysteria'. Brain, 2012, 135, 3495-3512. Gaze cues influence memory…but not for long. Acta Psychologica, 2012, 141, 270-275.	1.5	18
137 138	 A Bayesian account of 'hysteria'. Brain, 2012, 135, 3495-3512. Gaze cues influence memory…but not for long. Acta Psychologica, 2012, 141, 270-275. The site of interference in the saccadic Stroop effect. Vision Research, 2012, 73, 10-22. From top to bottom: spatial shifts of attention caused by linguistic stimuli. Cognitive Processing, 	1.5 1.4	18 5
137 138 139	A Bayesian account of 'hysteria'. Brain, 2012, 135, 3495-3512. Gaze cues influence memory…but not for long. Acta Psychologica, 2012, 141, 270-275. The site of interference in the saccadic Stroop effect. Vision Research, 2012, 73, 10-22. From top to bottom: spatial shifts of attention caused by linguistic stimuli. Cognitive Processing, 2012, 13, 151-154. Mighty metaphors: Behavioral and ERP evidence that power shifts attention on a vertical dimension.	1.5 1.4 1.4	18 5 26
137 138 139 140	A Bayesian account of 'hysteria'. Brain, 2012, 135, 3495-3512. Gaze cues influence memory…but not for long. Acta Psychologica, 2012, 141, 270-275. The site of interference in the saccadic Stroop effect. Vision Research, 2012, 73, 10-22. From top to bottom: spatial shifts of attention caused by linguistic stimuli. Cognitive Processing, 2012, 13, 151-154. Mighty metaphors: Behavioral and ERP evidence that power shifts attention on a vertical dimension. Brain and Cognition, 2012, 78, 50-58. The functional role of alternation advantage in the sequence effect of symbolic cueing with	1.5 1.4 1.4 1.8	18 5 26 137
137 138 139 140 141	A Bayesian account of 'hysteria'. Brain, 2012, 135, 3495-3512. Gaze cues influence memory…but not for long. Acta Psychologica, 2012, 141, 270-275. The site of interference in the saccadic Stroop effect. Vision Research, 2012, 73, 10-22. From top to bottom: spatial shifts of attention caused by linguistic stimuli. Cognitive Processing, 2012, 13, 151-154. Mighty metaphors: Behavioral and ERP evidence that power shifts attention on a vertical dimension. Brain and Cognition, 2012, 78, 50-58. The functional role of alternation advantage in the sequence effect of symbolic cueing with nonpredictive arrow cues. Attention, Perception, and Psychophysics, 2012, 74, 1430-1436. Shifting Attention among Working Memory Representations: Testing Cue Type, Awareness, and	1.5 1.4 1.4 1.8 1.3	18 5 26 137 5

#	Article	IF	CITATIONS
145	A Cue from the Unconscious – Masked Symbols Prompt Spatial Anticipation. Frontiers in Psychology, 2012, 3, 397.	2.1	9
146	Automated Symbolic Orienting: The Missing Link. Frontiers in Psychology, 2012, 3, 560.	2.1	22
147	Feature-based effects in the coupling between attention and saccades. Journal of Vision, 2012, 12, 27-27.	0.3	20
148	The role of the left posterior parietal lobule in topâ€down modulation on spaceâ€based attention: A transcranial magnetic stimulation study. Human Brain Mapping, 2012, 33, 2477-2486.	3.6	17
149	Sequence effects by non-predictive arrow cues. Psychological Research, 2012, 76, 253-262.	1.7	14
150	The Premotor theory of attention: Time to move on?. Neuropsychologia, 2012, 50, 1104-1114.	1.6	185
151	Right hemispheric dominance and interhemispheric cooperation in gazeâ€ŧriggered reflexive shift of attention. Psychiatry and Clinical Neurosciences, 2012, 66, 97-104.	1.8	8
152	Numbers reorient visuo-spatial attention during cancellation tasks. Experimental Brain Research, 2013, 225, 549-557.	1.5	11
153	Postural adjustment errors reveal deficits in inhibition during lateral step initiation in older adults. Journal of Neurophysiology, 2013, 109, 415-428.	1.8	36
154	Cueing spatial attention through timing and probability. Cortex, 2013, 49, 211-221.	2.4	10
155	Object-based attentional effects in response to eye-gaze and arrow cues. Acta Psychologica, 2013, 143, 317-321.	1.5	23
156	The cost and benefit of implicit spatial cues for visual attention Journal of Experimental Psychology: General, 2013, 142, 1028-1046.	2.1	45
157	Resolving conflicting views: Gaze and arrow cues do not trigger rapid reflexive shifts of attention. Visual Cognition, 2013, 21, 61-71.	1.6	21
158	Pointing Hand Stimuli Induce Spatial Compatibility Effects and Effector Priming. Frontiers in Psychology, 2013, 4, 219.	2.1	7
159	What We Observe Is Biased by What Other People Tell Us: Beliefs about the Reliability of Gaze Behavior Modulate Attentional Orienting to Gaze Cues. PLoS ONE, 2014, 9, e94529.	2.5	37
160	Contributions of Cognitive Factors in Conceptual Metaphors. Metaphor and Symbol, 2014, 29, 171-184.	1.0	7
161	Control of task sequences: What is the role of language?. Journal of Experimental Psychology: Learning Memory and Cognition, 2014, 40, 376-384.	0.9	9
162	Looking up to others: Social status, Chinese honorifics, and spatial attention Canadian Journal of Experimental Psychology, 2014, 68, 77-83.	0.8	6

#	Article	IF	CITATIONS
163	Guiding attention to specific locations by combining symbolic information about direction and distance: Are human observers direction experts?. Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 731-751.	0.9	2
164	Shape beyond recognition: Form-derived directionality and its effects on visual attention and motion perception Journal of Experimental Psychology: General, 2014, 143, 434-454.	2.1	10
165	Which way is which? Examining global/local processing with symbolic cues Journal of Experimental Psychology: General, 2014, 143, 1429-1436.	2.1	12
166	Commonalities and differences in the spatiotemporal neural dynamics associated with automatic attentional shifts induced by gaze and arrows. Neuroscience Research, 2014, 87, 56-65.	1.9	7
167	Effects of spatial, temporal and spatiotemporal cueing are alike when attention is directed voluntarily. Experimental Brain Research, 2014, 232, 3623-3633.	1.5	12
168	Effects of Interactive Realâ€Time Simulations and Humanoid Avatars on Consumers' Responses in Online House Products Marketing. Computer-Aided Civil and Infrastructure Engineering, 2014, 29, 31-46.	9.8	9
169	The Spatial Orienting paradigm: How to design and interpret spatial attention experiments. Neuroscience and Biobehavioral Reviews, 2014, 40, 35-51.	6.1	160
170	Applying the Flanker Task to Political Psychology: A Research Note. Political Psychology, 2014, 35, 831-840.	3.6	27
171	Impaired reflexive orienting to social cues in attention deficit hyperactivity disorder. European Child and Adolescent Psychiatry, 2014, 23, 649-657.	4.7	27
172	Seeing is believing: Utilization of subliminal symbols requires a visible relevant context. Attention, Perception, and Psychophysics, 2014, 76, 489-507.	1.3	20
173	Reflexive orienting in response to short- and long-duration gaze cues in young, young-old, and old-old adults. Attention, Perception, and Psychophysics, 2014, 76, 407-419.	1.3	16
174	ls eye gaze direction always determined without intent?. Psychonomic Bulletin and Review, 2014, 21, 1495-1500.	2.8	4
175	Measuring effects of voluntary attention: A comparison among predictive arrow, colour, and number cues. Quarterly Journal of Experimental Psychology, 2014, 67, 2025-2041.	1.1	11
176	The Spatial Semantics of Symbolic Attention Control. Current Directions in Psychological Science, 2014, 23, 271-276.	5.3	7
177	Poor vigilance affects attentional orienting triggered by central uninformative gaze and arrow cues. Cognitive Processing, 2014, 15, 503-513.	1.4	5
178	Forms of momentum across space: Representational, operational, and attentional. Psychonomic Bulletin and Review, 2014, 21, 1371-1403.	2.8	55
179	Does gaze cueing produce automatic response activation: A lateralized readiness potential (LRP) study. Neuroscience Letters, 2014, 567, 1-5.	2.1	2
180	When do infants begin to follow a point?. Developmental Psychology, 2014, 50, 2036-2048.	1.6	30

		CITATION R	EPORT	
#	Article		IF	Citations
181	The varieties of momentum-like experience Psychological Bulletin, 2015, 141, 1081-1	119.	6.1	53
182	Trajectory deviations in spatial compatibility tasks with peripheral and central stimuli. Research, 2015, 79, 650-657.	Psychological	1.7	4
183	Spatial organisation between targets and cues affects the sequence effect of symbolic of Cognitive Psychology, 2015, 27, 855-865.	cueing. Journal	0.9	6
184	Combining attention: a novel way of conceptualizing the links between attention, sens and behavior. Attention, Perception, and Psychophysics, 2015, 77, 36-49.	sory processing,	1.3	20
185	The cued recognition task: dissociating the abrupt onset effect from the social and arrout effect. Attention, Perception, and Psychophysics, 2015, 77, 97-110.	ow cueing	1.3	5
186	Timing the events of directional cueing. Psychological Research, 2015, 79, 1009-1021.		1.7	2
187	The Effects of Short-term and Long-term Learning on the Responses of Lateral Intrapar to Visually Presented Objects. Journal of Cognitive Neuroscience, 2015, 27, 1360-1375	ietal Neurons 5.	2.3	5
188	Words, objects, and locations: Perceptual matching explains spatial interference and fa Journal of Memory and Language, 2015, 84, 167-189.	acilitation.	2.1	21
189	Exposing the cuing task: the case of gaze and arrow cues. Attention, Perception, and P 2015, 77, 1088-1104.	'sychophysics,	1.3	29
190	Attention and ageing: Measuring effects of involuntary and voluntary orienting in isola combination. British Journal of Psychology, 2015, 106, 235-252.	tion and in	2.3	16
191	The Many Shades of Attention. , 2015, , 21-55.			0
192	The Development of Social Attention in Human Infants. , 2015, , 21-65.			6
193	Monkeys head-gaze following is fast, precise and not fully suppressible. Proceedings of Society B: Biological Sciences, 2015, 282, 20151020.	⁻ the Royal	2.6	8
194	Interaction Between Attention and Language Systems in Humans. , 2015, , .			26
195	The Many Faces of Social Attention. , 2015, , .			13
196	The Influence of Human Body Orientation on Distance Judgments. Frontiers in Psychol	ogy, 2016, 7, 217.	2.1	7
197	Do You Trust One's Gaze? Commonalities and Differences in Gaze-Cueing Effect Be Japanese. Lecture Notes in Computer Science, 2016, , 120-129.	etween American and	1.3	0
198	Cross-Cultural Design. Lecture Notes in Computer Science, 2016, , .		1.3	1

#	Article	IF	CITATIONS
199	The Politics of Attention. Psychology of Learning and Motivation - Advances in Research and Theory, 2016, , 277-309.	1.1	4
200	Which way is which? Examining symbolic control of attention with compound arrow cues. Attention, Perception, and Psychophysics, 2016, 78, 2152-2163.	1.3	0
201	Orienting of visual attention in aging. Neuroscience and Biobehavioral Reviews, 2016, 69, 357-380.	6.1	53
202	Cognitive and psychological science insights to improve climate change data visualization. Nature Climate Change, 2016, 6, 1080-1089.	18.8	107
203	The coupling between spatial attention and other components of task-set: A task-switching investigation. Quarterly Journal of Experimental Psychology, 2016, 69, 2248-2275.	1.1	12
204	Decomposing experience-driven attention: Opposite attentional effects of previously predictive cues. Attention, Perception, and Psychophysics, 2016, 78, 2185-2198.	1.3	14
205	â€~In the mind's eye': A cognitive linguistic re-construction of WD Snodgrass' â€~Matisse: The Red Stu Language and Literature, 2016, 25, 130-144.	udio'. 0.7	1
206	High spatial validity is not sufficient to elicit voluntary shifts of attention. Attention, Perception, and Psychophysics, 2016, 78, 2110-2123.	1.3	11
207	Inhibition of return and attentional facilitation: Numbers can be counted in, letters tell a different story. Acta Psychologica, 2016, 163, 74-80.	1.5	2
208	Only pre-cueing but no retro-cueing effects emerge with masked arrow cues. Consciousness and Cognition, 2016, 42, 93-100.	1.5	5
209	Inhibitory cueing effects following manual and saccadic responses to arrow cues. Attention, Perception, and Psychophysics, 2016, 78, 1020-1029.	1.3	3
210	Peripheral cues and gaze direction jointly focus attention and inhibition of return. Cognitive Neuroscience, 2016, 7, 67-73.	1.4	1
211	Action or attention in social inhibition of return?. Psychological Research, 2017, 81, 43-54.	1.7	12
212	Is it all task-specific? The role of binary responses, verbal mediation, and saliency for eliciting language-space associations Journal of Experimental Psychology: Learning Memory and Cognition, 2017, 43, 259-270.	0.9	20
213	Toward a general theory of momentum-like effects. Behavioural Processes, 2017, 141, 50-66.	1.1	26
214	Spatial orienting of attention to social cues is modulated by cue type and gender of viewer. Experimental Brain Research, 2017, 235, 1481-1490.	1.5	16
215	Further evidence in favor of prior entry from endogenous attention to a location in space. Attention, Perception, and Psychophysics, 2017, 79, 1027-1038.	1.3	3
216	Averted body postures facilitate orienting of the eyes. Acta Psychologica, 2017, 175, 28-32.	1.5	5

#	Article	IF	CITATIONS
217	How different location modes influence responses in a Simon-like task. Psychological Research, 2017, 81, 1125-1134.	1.7	7
218	Examination of reactive motor responses to Achilles tendon vibrations during an inhibitory stepping reaction time task. Human Movement Science, 2017, 56, 119-128.	1.4	3
219	The time-course of activation in the dorsal and ventral visual streams during landmark cueing and perceptual discrimination tasks. Neuropsychologia, 2017, 103, 1-11.	1.6	10
220	Action relevance induces an attentional weighting of representations in visual working memory. Memory and Cognition, 2017, 45, 413-427.	1.6	22
221	Changing What You See by Changing What You Know: The Role of Attention. Frontiers in Psychology, 2017, 8, 553.	2.1	21
222	Eye Gaze and Aging: Selective and Combined Effects of Working Memory and Inhibitory Control. Frontiers in Human Neuroscience, 2017, 11, 563.	2.0	17
223	Speech-in-speech perception and executive function involvement. PLoS ONE, 2017, 12, e0180084.	2.5	10
224	If not When, then Where? Ignoring Temporal Information Eliminates Reflexive but not Volitional Spatial Orienting. Vision (Switzerland), 2017, 1, 12.	1.2	7
225	Spatial Attention and Eye Movements. , 2017, , 159-196.		0
226	Gaze and Arrows: The Effect of Element Orientation on Apparent Motion is Modulated by Attention. Vision (Switzerland), 2017, 1, 21.	1.2	5
227	Sequence effects of the involuntary and the voluntary components of symbolic cueing. Attention, Perception, and Psychophysics, 2018, 80, 662-668.	1.3	3
228	Face stimulus eliminates antisaccade-cost: gaze following is a different kind of arrow. Experimental Brain Research, 2018, 236, 1041-1052.	1.5	3
229	Combined attention controls complex behavior by suppressing unlikely events. Brain and Cognition, 2018, 120, 17-25.	1.8	2
230	The location-, word-, and arrow-based Simon effects: An ex-Gaussian analysis. Memory and Cognition, 2018, 46, 497-506.	1.6	13
231	Effects of stimulus pair orientation and hand switching on reaction time estimates of interhemispheric transfer. Experimental Brain Research, 2018, 236, 1593-1602.	1.5	0
232	Cue-target contingencies modulate voluntary orienting of spatial attention: dissociable effects for speed and accuracy. Psychological Research, 2018, 82, 272-283.	1.7	7
233	Biasing spatial attention with semantic information: an event coding approach. Psychological Research, 2018, 82, 840-858.	1.7	8
234	Controlled information processing, automaticity, and the burden of proof. Psychonomic Bulletin and Review, 2018, 25, 1814-1823.	2.8	23

#	Article	IF	CITATIONS
235	Attention and Memory Play Different Roles in Syntactic Choice During Sentence Production. Discourse Processes, 2018, 55, 218-229.	1.8	14
236	Visual attention and action: How cueing, direct mapping, and social interactions drive orienting. Psychonomic Bulletin and Review, 2018, 25, 1585-1605.	2.8	23
237	Stopping at a red light: Recruitment of inhibitory control by environmental cues. PLoS ONE, 2018, 13, e0196199.	2.5	11
238	Feature-based attention elicited by precueing in an orientation discrimination task. Vision Research, 2018, 148, 15-25.	1.4	3
239	Predictive timing disturbance is a precise marker of schizophrenia. Schizophrenia Research: Cognition, 2018, 12, 42-49.	1.3	17
240	Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing. Frontiers in Human Neuroscience, 2018, 12, 212.	2.0	7
241	The effect of temporal concept on the automatic activation of spatial representation: From axis to plane. Consciousness and Cognition, 2018, 65, 95-108.	1.5	7
242	Periodic Fluctuation of Perceived Duration. I-Perception, 2018, 9, 204166951876062.	1.4	2
243	How different direct association routes influence the indirect route in the same Simon-like task. Psychological Research, 2019, 83, 1733-1748.	1.7	7
244	New Principles of Visual Attention and Association Influenced Mobile Devices. Advances in Intelligent Systems and Computing, 2019, , 39-46.	0.6	0
245	Dealing with distractors in the spatial cueing paradigm can reflect the strategic influence of cognitive effort minimization rather than a limit to selective attention. Visual Cognition, 2019, 27, 367-383.	1.6	1
246	Biochemistry instructors' use of intentions for student learning to evaluate and select external representations of protein translation. Chemistry Education Research and Practice, 2019, 20, 787-803.	2.5	2
247	Multifactorial effects of aging on the orienting of visual attention. Experimental Gerontology, 2019, 128, 110757.	2.8	2
248	Neurophysiological correlates of visuospatial attention and the social dynamics of gaze processing. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 1218-1230.	2.0	6
249	Distorted gaze direction input to attentional priority map in spatial neglect. Neuropsychologia, 2019, 131, 119-128.	1.6	1
250	Attention Combines Similarly in Covert and Overt Conditions. Vision (Switzerland), 2019, 3, 16.	1.2	9
251	The functional arrangement of objects biases gaze direction. Psychonomic Bulletin and Review, 2019, 26, 1266-1272.	2.8	3
252	The role of eye movements in manual responses to social and nonsocial cues. Attention, Perception, and Psychophysics, 2019, 81, 1236-1252.	1.3	13

#	Article	IF	CITATIONS
253	Distract yourself: prediction of salient distractors by own actions and external cues. Psychological Research, 2019, 83, 159-174.	1.7	4
254	Alertness and cognitive control: Is there a spatial attention constraint?. Attention, Perception, and Psychophysics, 2019, 81, 119-136.	1.3	16
255	Facing the "Right―Side? The Effect of Product Facing Direction. Journal of Advertising, 2019, 48, 153-166.	6.6	15
256	Beyond one's body parts: Remote object movement with sense of agency involuntarily biases spatial attention. Psychonomic Bulletin and Review, 2019, 26, 576-582.	2.8	4
257	Ironic capture: top-down expectations exacerbate distraction in visual search. Psychological Research, 2019, 83, 1070-1082.	1.7	8
258	Trial-by-trial modulations in the orienting of attention elicited by gaze and arrow cues. Quarterly Journal of Experimental Psychology, 2019, 72, 543-556.	1.1	8
259	Keep Calm and Pump Up the Jams: How Musical Mood and Arousal Affect Visual Attention. Music & Science, 2020, 3, 205920432092273.	1.0	3
260	Endogenous shifts of attention cause distortions in the perception of space: Reviewing and examining the attentional repulsion effect. Visual Cognition, 2020, 28, 292-310.	1.6	2
261	Benefits of Multisensory Cues in a Realistic Target Discrimination Task. , 2020, , .		1
262	A novel variation of the Stroop task reveals reflexive supremacy of peripheral over gaze stimuli in pro and anti saccades. Consciousness and Cognition, 2020, 85, 103020.	1.5	0
263	Early saccade planning cannot override oculomotor interference elicited by gaze and arrow distractors. Psychonomic Bulletin and Review, 2020, 27, 990-997.	2.8	17
264	Component processes in free-viewing visual search: Insights from fixation-aligned pupillary response averaging. Journal of Vision, 2020, 20, 5.	0.3	7
265	Can subliminal spatial words trigger an attention shift? Evidence from event-related-potentials in visual cueing. Visual Cognition, 2020, 28, 10-32.	1.6	2
266	Alertness and cognitive control: Interactions in the spatial Stroop task. Attention, Perception, and Psychophysics, 2020, 82, 2257-2270.	1.3	15
267	Attentional Orienting by Non-informative Cue Is Shaped via Reinforcement Learning. Frontiers in Psychology, 2020, 10, 2884.	2.1	1
268	Social modulators of gaze-mediated orienting of attention: A review. Psychonomic Bulletin and Review, 2020, 27, 833-855.	2.8	104
269	Increased perceptual distraction and task demand enhances gaze and non-biological cuing effects. Quarterly Journal of Experimental Psychology, 2021, 74, 221-240.	1.1	6
270	Prior attentional bias is modulated by social gaze. Attention, Perception, and Psychophysics, 2021, 83, 1-6.	1.3	5

#	Article	IF	CITATIONS
271	Multiple Routes to Control in the Prime-Target Task: Congruence Sequence Effects Emerge Due to Modulation of Irrelevant Prime Activity and Utilization of Temporal Order Information. Journal of Cognition, 2021, 4, 18.	1.4	11
272	The Effect of Simultaneously Presented Words and Auditory Tones on Visuomotor Performance. Multisensory Research, 2021, 34, 715-742.	1.1	0
273	The Effects of Biofeedback on Performance and Technique of the Boxing Jab. Perceptual and Motor Skills, 2021, 128, 1607-1622.	1.3	11
274	A question of (perfect) timing: A preceding head turn increases the head-fake effect in basketball. PLoS ONE, 2021, 16, e0251117.	2.5	7
275	Cerebellar lesions disrupt spatial and temporal visual attention. Cortex, 2021, 139, 27-42.	2.4	9
276	Investigating facilitatory versus inhibitory effects of dynamic social and non-social cues on attention in a realistic space. Psychological Research, 2022, 86, 1578-1590.	1.7	6
277	Healthy or not: Influencing attention to bias food choices. Food Quality and Preference, 2022, 96, 104384.	4.6	4
278	A Look Toward the Future of Social Attention Research. , 2015, , 221-245.		3
279	Gazes Induce Similar Sequential Effects as Arrows in a Target Discrimination Task. IFIP Advances in Information and Communication Technology, 2017, , 57-65.	0.7	3
280	Irrelevant Words Trigger an Attentional Blink. Experimental Psychology, 2010, 57, 301-307.	0.7	12
281	Space-Time Compatibility Effects in the Auditory Modality. Experimental Psychology, 2012, 59, 82-87.	0.7	28
282	Influence of Temporal Overlap on Time Course of the Simon Effect. Experimental Psychology, 2012, 59, 88-98.	0.7	10
283	Can Methodological Considerations Challenge the Dissociation of the Perceptual and Motor Inhibitory Processes?. Experimental Psychology, 2017, 64, 413-421.	0.7	3
284	Age deficits in the control of prepotent responses: Evidence for an inhibitory decline Psychology and Aging, 2006, 21, 638-643.	1.6	64
285	Towards a unified model of vision and attention: Effects of visual landmarks and identity cues on covert and overt attention movements Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 412-432.	0.9	6
286	How does "not left―become "right� Electrophysiological evidence for a dynamic conflict-bound negation processing account Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 716-728.	0.9	33
287	Joint attention enhances visual working memory Journal of Experimental Psychology: Learning Memory and Cognition, 2017, 43, 237-249.	0.9	37
288	SOCIAL CUEING ELICITS A DISTINCT FORM OF VISUAL SPATIAL ORIENTING. , 2012, , 221-250.		4

ARTICLE IF CITATIONS INVESTIGATING SOCIAL ATTENTION., 2012, , 251-276. 289 16 Reading "Sun―and Looking Up: The Influence of Language on Saccadic Eye Movements in the Vertical 2.5 48 Dimension. PLoS ONE, 2013, 8, e56872. The Developmental Emergence of the Mental Time-Line: Spatial and Numerical Distortion of Time 291 2.5 26 Judgement. PLoS ONE, 2015, 10, e0130465. Bow Your Head in Shame, or, Hold Your Head Up with Pride: Semantic Processing of Self-Esteem Concepts Orients Attention Vertically. PLoS ONE, 2015, 10, e0137704. Implied Spatial Meaning and Visuospatial Bias: Conceptual Processing Influences Processing of Visual 293 2.5 6 Targets and Distractors. PLoS ONE, 2016, 11, e0150928. Do you look where I look? Attention shifts and response preparation following dynamic social cues. 294 0.8 Journal of Eye Movement Research, 2012, 5, . 295 AUTOMATIC ATTENTIONAL SHIFTS BY GAZE, GESTURES, AND SYMBOLS. Psychologia, 2010, 53, 27-35. 0.3 13 Sources of Stimulus-Response Compatibility: Frames, Rules, and Response Tendencies. The Ergonomics 296 1.8 Open Journal, 2009, 2, 163-169. Top-down contingent feature-specific orienting with and without awareness of the visual input. 297 0.5 20 Advances in Cognitive Psychology, 2011, 7, 108-119. Redundant spoken labels facilitate perception of multiple items. Attention, Perception, and 1.3 Psychophysics, 2010, 72, 2236-2253. A novel handrail cueing system to prevent falls in older adults. Gerontechnology, 2007, 6, . 299 0.1 10 An Evaluation of Direction Indicators by Visuospatial Attention Paradigm. Ningen Kogaku = the 0.1 Japanese Journal of Ergonomics, 2008, 44, 144-150. Eyes Gaze Cueing Effect: Endogenous or Exogenous Processing Mechanism?. Acta Psychologica Sinica, 301 0.7 1 2009, 41, 1133-1142. Cognitive Science of Attention: Current Concepts and Approaches., 2014, 55-68. Hand position biases processing toward task irrelevant flankers.. Journal of Experimental Psychology: 304 0.9 1 Human Perception and Performance, 2016, 42, 151-157. Unconscious Endogenous Attention. Korean Journal of Cognitive and Biological Psychology, 2017, 29, 21-40. Response Priming with Horizontally and Vertically Moving Primes: A Comparison of German, 307 0.5 1 Malaysian, and Japanese Subjects. Advances in Cognitive Psychology, 2020, 16, 131-149. Can arrows change the subjective perception of space? Exploring symbolic attention repulsion. Quarterly Journal of Experimental Psychology, 2022, 75, 1997-2011. 1.1

#	Article	IF	CITATIONS
309	"Dove tirerà?" Un paradigma sperimentale per l'indagine del riconoscimento delle intenzioni del giocatore nel calcio del. Ricerche Di Psicologia, 2021, , 1-21.	0.1	1
310	A test of the unified model of vision and attention: Effects of parietal-occipital damage on visual orienting Neuropsychologia, 2022, 168, 108185.	1.6	0
311	EEG alpha and theta signatures of socially and non-socially cued working memory in virtual reality. Social Cognitive and Affective Neuroscience, 2022, 17, 531-540.	3.0	7
312	Top-down, bottom-up, and history-driven processing of multisensory attentional cues in intellectual disability: An experimental study in virtual reality. PLoS ONE, 2021, 16, e0261298.	2.5	5
313	Look Into my "Virtual―Eyes: What Dynamic Virtual Agents add to the Realistic Study of Joint Attention. Frontiers in Virtual Reality, 2021, 2, .	3.7	1
315	Motion or sociality? The cueing effect and temporal course of autistic traits on gaze-triggered attention. Attention, Perception, and Psychophysics, 2022, 84, 1167.	1.3	0
316	Parietal but not temporoparietal alpha-tACS modulates endogenous visuospatial attention. Cortex, 2022, 154, 149-166.	2.4	4
318	Interactions among endogenous, exogenous, and agency-driven attentional selection mechanisms in in interactive displays. Attention, Perception, and Psychophysics, 2022, 84, 1477-1488.	1.3	2
319	Catch the star! Spatial information activates the manual motor system. PLoS ONE, 2022, 17, e0262510.	2.5	5
320	Enhancing performance with multisensory cues in a realistic target discrimination task. PLoS ONE, 2022, 17, e0272320.	2.5	1
321	Transcranial magnetic stimulation over posterior parietal cortex modulates alerting and executive control processes in attention. European Journal of Neuroscience, 2022, 56, 5853-5868.	2.6	4
322	Are there quantitative differences between eye-gaze and arrow cues? A meta-analytic answer to the debate and a call for qualitative differences. Neuroscience and Biobehavioral Reviews, 2023, 144, 104993.	6.1	10
323	Gaze cues vs. arrow cues at short vs. long durations. Visual Cognition, 2022, 30, 587-596.	1.6	1
324	Focused attention: its key role in gaze and arrow cues for determining where attention is directed. Psychological Research, 2023, 87, 1966-1980.	1.7	1
325	How does language affect spatial attention? Deconstructing the prime-target relationship. Memory and Cognition, 2023, 51, 1115-1124.	1.6	2
326	Eye-Gaze direction triggers a more specific attentional orienting compared to arrows. PLoS ONE, 2023, 18, e0280955.	2.5	4
327	The Effects of Directional and Non-Directional Stimuli during a Visuomotor Task and Their Correlation with Reaction Time: An ERP Study. Sensors, 2023, 23, 3143.	3.8	2
328	Segregation of Neural Circuits Involved in Social Gaze and Non-Social Arrow Cues: Evidence from an Activation Likelihood Estimation Meta-Analysis. Neuropsychology Review, 0, , .	4.9	2

#	Article	IF	CITATIONS
329	Deficiency of object-based attention specific to the gaze cue is independent of top-down attentional strategies. Perception, 0, , 030100662311685.	1.2	0
330	The hidden arrow in the FedEx logo: Do we really unconsciously "see―it?. Cognitive Research: Principles and Implications, 2023, 8, .	2.0	0
331	Aligning top-down and voluntary attention control across individuals. , 0, 2, .		0
332	Embodied Processing at Six Linguistic Granularity Levels: A Consensus Paper. Journal of Cognition, 2023, 6, .	1.4	2
333	The Active Suppression of a Distractor's Location Can Be Elusive. Experimental Psychology, 2023, 70, 119-134.	0.7	1
334	Investigating the role of task relevance during rhythmic sampling of spatial locations. Scientific Reports, 2023, 13, .	3.3	1
335	Neural basis of social attention: common and distinct mechanisms for social and nonsocial orienting stimuli. Cerebral Cortex, 0, , .	2.9	0
336	Allocation of Space-Based Attention is Guided by Efficient Comprehension of Spatial Direction. Journal of Cognition, 2024, 7, 1.	1.4	1