Mantle Flow Beneath a Continental Strike-Slip Fault: Po 1999 Hector Mine Earthquake

Science 293, 1814-1818 DOI: 10.1126/science.1061361

Citation Report

#	Article	IF	CITATIONS
1	Understanding and responding to earthquake hazards. , 0, , .		1
2	The 1999 (Mw 7.1) Hector Mine, California, Earthquake: Near-Field Postseismic Deformation from ERS Interferometry. Bulletin of the Seismological Society of America, 2002, 92, 1433-1442.	1.1	73
3	Coseismic Deformation from the 1999 Mw 7.1 Hector Mine, California, Earthquake as Inferred from InSAR and GPS Observations. Bulletin of the Seismological Society of America, 2002, 92, 1390-1402.	1.1	384
4	The Combined Inversion of Seismic and Geodetic Data for the Source Process of the 16 October 1999 Mw 7.1 Hector Mine, California, Earthquake. Bulletin of the Seismological Society of America, 2002, 92, 1266-1280.	1.1	113
5	Continuous GPS Observations of Postseismic Deformation Following the 16 October 1999 Hector Mine, California, Earthquake (Mw 7.1). Bulletin of the Seismological Society of America, 2002, 92, 1403-1422.	1.1	40
6	Accelerated stress buildup on the southern San Andreas fault and surrounding regions caused by Mojave Desert earthquakes. Geology, 2002, 30, 571.	2.0	56
7	Remote monitoring of the earthquake cycle using satellite radar interferometry. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 2873-2888.	1.6	37
8	Migration of seismicity and earthquake interactions monitored by GPS in SE Asia triple junction: Sulawesi, Indonesia. Journal of Geophysical Research, 2002, 107, ETG 7-1-ETG 7-11.	3.3	41
9	Eigenpatterns in southern California seismicity. Journal of Geophysical Research, 2002, 107, ESE 8-1-ESE 8-17.	3.3	62
10	Strong interseismic coupling, fault afterslip, and viscoelastic flow before and after the Oct. 9, 1995 Colima-Jalisco earthquake: Continuous GPS measurements from Colima, Mexico. Geophysical Research Letters, 2002, 29, 122-1-122-4.	1.5	38
11	Inverse modelling in geology by interactive evolutionary computation. Journal of Structural Geology, 2003, 25, 1615-1621.	1.0	45
12	Quartz microstructures developed during non-steady state plastic flow at rapidly decaying stress and strain rate. Journal of Structural Geology, 2003, 25, 2035-2051.	1.0	122
13	Carbonate platform growth influenced by contemporaneous basaltic intrusion (Albian of Larrano,) Tj ETQq0 0 0	rgBT /Ove 1.6	rlock 10 Tf 50
14	The relationship between the instantaneous velocity field and the rate of moment release in the lithosphere. Geophysical Journal International, 2003, 153, 595-608.	1.0	22
15	Fault compaction and overpressured faults: results from a 3-D model of a ductile fault zone. Geophysical Journal International, 2003, 155, 111-125.	1.0	8
16	Urbanization effects on tree growth in the vicinity of New York City. Nature, 2003, 424, 183-187.	13.7	355
17	Post-earthquake ground movements correlated to pore-pressure transients. Nature, 2003, 424, 179-183.	13.7	456

ITATION RED

18	Tide gauge records of uplift along the northern Pacific-North American plate boundary, 1937 to 2001. Journal of Geophysical Research, 2003, 108, .	3.3	48
----	---	-----	----

#	Article	IF	CITATIONS
19	Postseismic crustal deformation following the 1993 Hokkaido Nansei-oki earthquake, northern Japan: Evidence for a low-viscosity zone in the uppermost mantle. Journal of Geophysical Research, 2003, 108,	3.3	44
20	Coulomb stress accumulation along the San Andreas Fault system. Journal of Geophysical Research, 2003, 108, .	3.3	64
21	Rheology of the lithosphere inferred from postseismic uplift following the 1959 Hebgen Lake earthquake. Journal of Geophysical Research, 2003, 108, .	3.3	89
22	Finite element model predictions of static deformation from dislocation sources in a subduction zone: Sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions. Journal of Geophysical Research, 2003, 108, .	3.3	119
23	Near-field postseismic deformation associated with the 1992 Landers and 1999 Hector Mine, California, earthquakes. Journal of Geophysical Research, 2003, 108, .	3.3	27
24	Constraints on the viscosity of the continental crust and mantle from GPS measurements and postseismic deformation models in western Mongolia. Journal of Geophysical Research, 2003, 108, .	3.3	75
25	Fault interaction and stress triggering of twentieth century earthquakes in Mongolia. Journal of Geophysical Research, 2003, 108, .	3.3	70
26	Transient rheology of the uppermost mantle beneath the Mojave Desert, California. Earth and Planetary Science Letters, 2003, 215, 89-104.	1.8	192
27	Wrench faults down to the asthenosphere: geological and geophysical evidence and thermomechanical effects. Geological Society Special Publication, 2003, 210, 15-34.	0.8	47
28	Rapid uplift of southern Alaska caused by recent ice loss. Geophysical Journal International, 2004, 158, 1118-1133.	1.0	63
29	Evidence of power-law flow in the Mojave desert mantle. Nature, 2004, 430, 548-551.	13.7	282
30	Evidence of Strain Partitioning Between the Sierra Madre Fault and the Los Angeles Basin, Southern California from Numerical Models. Pure and Applied Geophysics, 2004, 161, 2343.	0.8	1
31	Detection of a slow slip event from small signal in GPS data. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	11
32	Evidence of fluid-filled upper crust from observations of postseismic deformation due to the 1992Mw7.3 Landers earthquake. Journal of Geophysical Research, 2004, 109, .	3.3	194
33	Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system. Journal of Geophysical Research, 2004, 109, .	3.3	74
34	A three-dimensional semianalytic viscoelastic model for time-dependent analyses of the earthquake cycle. Journal of Geophysical Research, 2004, 109, .	3.3	47
35	Lateral variation in upper mantle viscosity: role of water. Earth and Planetary Science Letters, 2004, 222, 451-467.	1.8	276
36	Deformation mechanism maps for feldspar rocks. Tectonophysics, 2004, 382, 173-187.	0.9	209

#	Article	IF	CITATIONS
37	Controls of shear zone rheology and tectonic loading on postseismic creep. Journal of Geophysical Research, 2004, 109, .	3.3	75
38	Constraints on fault slip rates of the southern California plate boundary from GPS velocity and stress inversions. Geophysical Journal International, 2005, 160, 634-650.	1.0	127
39	A synthetic fault system in a spherical and viscoelastic earth model. Geophysical Journal International, 2005, 160, 581-591.	1.0	1
40	Mode of crustal extension determined by rheological layering. Earth and Planetary Science Letters, 2005, 236, 120-134.	1.8	72
41	Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth and Planetary Science Letters, 2005, 237, 548-560.	1.8	232
42	Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles. Journal of Geophysical Research, 2005, 110, .	3.3	95
43	Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. Journal of Geophysical Research, 2005, 110, .	3.3	638
44	Rheology of synthetic anorthite-diopside aggregates: Implications for ductile shear zones. Journal of Geophysical Research, 2005, 110, .	3.3	105
45	Lithospheric rheology in southern Italy inferred from postseismic viscoelastic relaxation following the 1980 Irpinia earthquake. Journal of Geophysical Research, 2005, 110, .	3.3	26
46	Fault slip rates, effects of elastic heterogeneity on geodetic data, and the strength of the lower crust in the Salton Trough region, southern California. Journal of Geophysical Research, 2005, 110, .	3.3	72
47	Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquake. Journal of Geophysical Research, 2005, 110, .	3.3	79
48	Postseismic and interseismic displacements near a strike-slip fault: A two-dimensional theory for general linear viscoelastic rheologies. Journal of Geophysical Research, 2005, 110, .	3.3	79
49	Postseismic deformation following the June 2000 earthquake sequence in the south Iceland seismic zone. Journal of Geophysical Research, 2005, 110, .	3.3	36
50	Anisotropic viscous models of large-deformation Mohr–Coulomb failure. Philosophical Magazine, 2006, 86, 3287-3305.	0.7	34
51	Coseismic and Initial Postseismic Deformation from the 2004 Parkfield, California, Earthquake, Observed by Global Positioning System, Electronic Distance Meter, Creepmeters, and Borehole Strainmeters. Bulletin of the Seismological Society of America, 2006, 96, S304-S320.	1.1	135
52	Interseismic strain accumulation: Spin-up, cycle invariance, and irregular rupture sequences. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	57
53	Geometrical impact of the San Andreas Fault on stress and seismicity in California. Geophysical Research Letters, 2006, 33, .	1.5	37
54	A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years. Journal of Geophysical Research, 2006, 111, .	3.3	66

#	Article	IF	CITATIONS
55	Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	252
56	Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology. Journal of Geophysical Research, 2006, 111, .	3.3	157
57	Frictional Properties on the San Andreas Fault near Parkfield, California, Inferred from Models of Afterslip following the 2004 Earthquake. Bulletin of the Seismological Society of America, 2006, 96, S321-S338.	1.1	124
58	Temporal variations in slip rate of the White Mountain Fault Zone, Eastern California. Earth and Planetary Science Letters, 2006, 248, 168-185.	1.8	54
59	Geodetic observations of post-seismic transients in the context of the earthquake deformation cycle. Comptes Rendus - Geoscience, 2006, 338, 1012-1028.	0.4	31
60	Elastic and inelastic triggering of earthquakes in the North Anatolian Fault zone. Tectonophysics, 2006, 424, 271-289.	0.9	49
61	Inversion for rheological parameters from post-seismic surface deformation associated with the 1960 Valdivia earthquake, Chile. Geophysical Journal International, 2006, 164, 75-87.	1.0	47
62	A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model (I)-vertical displacement and gravity variation. Geophysical Journal International, 2006, 164, 273-289.	1.0	76
63	Simplified models of the Alpine Fault seismic cycle: stress transfer in the mid-crust. Geophysical Journal International, 2006, 166, 386-402.	1.0	54
64	Mechanical deformation model of the western United States instantaneous strain-rate field. Geophysical Journal International, 2006, 167, 421-444.	1.0	9
65	Stress transfer relations among the earthquakes that occurred in Kerman province, southern Iran since 1981. Geophysical Journal International, 2006, 167, 309-318.	1.0	25
66	Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR, FEMs, and an adaptive mesh algorithm. Journal of Volcanology and Geothermal Research, 2006, 150, 186-201.	0.8	21
67	Stress evolution and seismicity in the central-eastern United States: Insights from geodynamic modeling. , 2007, , .		14
68	Simulating coseismic deformation of quartz in the middle crust and fabric evolution during postseismic stress relaxation $\hat{a} \in$ " An experimental study. Tectonophysics, 2007, 442, 83-104.	0.9	85
69	Parallel computing of multi-scale continental deformation in the Western United States: Preliminary results. Physics of the Earth and Planetary Interiors, 2007, 163, 35-51.	0.7	11
70	Strain accumulation across the Gazikoy–Saros segment of the North Anatolian Fault inferred from Persistent Scatterer Interferometry and GPS measurements. Earth and Planetary Science Letters, 2007, 255, 432-444.	1.8	53
72	Significance of strain localization in the lower crust for structural evolution and thermal history of metamorphic core complexes. Tectonics, 2007, 26, n/a-n/a.	1.3	42
73	Slip rate of the Calico fault: Implications for geologic versus geodetic rate discrepancy in the Eastern California Shear Zone. Journal of Geophysical Research, 2007, 112, .	3.3	65

		CITATION REPORT		
#	Article		IF	CITATIONS
74	Postseismic relaxation and aftershocks. Journal of Geophysical Research, 2007, 112, .		3.3	31
75	Crustal deformation across the Sierra Nevada, northern Walker Lane, Basin and Range tr western United States measured with GPS, 2000–2004. Journal of Geophysical Resear	ansition, ch, 2007, 112, .	3.3	76
76	Influence of lithosphere viscosity structure on estimates of fault slip rate in the Mojave r the San Andreas fault system. Journal of Geophysical Research, 2007, 112, .	egion of	3.3	61
77	Plate Rheology and Mechanics. , 2007, , 99-151.			7
78	Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations a Geophysical Journal International, 2007, 169, 1009-1027.	nd modelling.	1.0	141
79	Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March GRACE satellite gravity. Geophysical Journal International, 2007, 171, 177-190.	earthquakes in	1.0	103
80	Vein quartz microfabrics indicating progressive evolution of fractures into cavities during postseismic creep in the middle crust. Journal of Structural Geology, 2007, 29, 1445-146	52.	1.0	39
81	Initiation of the San Jacinto Fault and its Interaction with the San Andreas Fault: Insights Geodynamic Modeling. Pure and Applied Geophysics, 2007, 164, 1937-1945.	from	0.8	23
82	Tidally driven stress accumulation and shear failure of Enceladus's tiger stripes. Icarus, 20 435-451.)08, 198,	1.1	87
83	Importance of post-seismic viscous relaxation in southern Iceland. Nature Geoscience, 20	008, 1, 136-139.	5.4	32
84	Shallow afterslip following the 2003 May 21, <i>M</i> _w = 6.9 Boumerdes ea Algeria. Geophysical Journal International, 2008, 172, 155-166.	ırthquake,	1.0	34
85	Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 <i>M</i> = 9 earthquake. Geophysical Journal International, 2008, 173, 189-204.	.2 Sumatra	1.0	109
86	Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodes Observations. Annual Review of Earth and Planetary Sciences, 2008, 36, 531-567.	y, and Field	4.6	855
87	Slow earthquake in Afghanistan detected by InSAR. Geophysical Research Letters, 2008,	35,.	1.5	39
88	Fluvial terrace riser degradation and determination of slip rates on strikeâ€slip faults: An the Kunlun fault, China. Geophysical Research Letters, 2008, 35, .	example from	1.5	53
89	Plate motion at the ridgeâ€ŧransform boundary of the south Cleft segment of the Juan d from GPSâ€Acoustic data. Journal of Geophysical Research, 2008, 113, .	e Fuca Ridge	3.3	51
90	Dislocation models of interseismic deformation in the western United States. Journal of Research, 2008, 113, .	Geophysical	3.3	38
91	Coupled stress and pore fluid pressure changes in the middle crust: Vein record of coseis and postseismic stress relaxation. Tectonics, 2008, 27, .	mic loading	1.3	26

#	Article	IF	CITATIONS
92	Smallâ€scale upper mantle convection and crustal dynamics in southern California. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	22
93	Southern California Earthquake Center Geologic Vertical Motion Database. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	8
94	Numerical Simulation and Discussion on the Mechanism of Postseismic Deformation After Kunlun <i>M</i> _s 8.1 Earthquake. Chinese Journal of Geophysics, 2008, 51, 584-596.	0.2	21
95	Long-Term Influence of Giant Earthquakes: Backward Empirical Evidence and Forward Test. Bulletin of the Seismological Society of America, 2008, 98, 1102-1112.	1.1	5
96	Earthquake-cycle deformation and fault slip rates in northern Tibet. Geology, 2009, 37, 31-34.	2.0	45
97	Spatiotemporal Complexity of Continental Intraplate Seismicity: Insights from Geodynamic Modeling and Implications for Seismic Hazard Estimation. Bulletin of the Seismological Society of America, 2009, 99, 52-60.	1.1	72
98	A RHEOLOGICAL MODEL OF POST-SEISMIC RESPONSE DUE TO 2004 SUMATRA-ANDAMAN EARTHQUAKE: CONTRIBUTION FROM LOW VISCOSITY LITHOSPHERE. Journal of Earthquake and Tsunami, 2009, 03, 25-34.	0.7	3
99	Shortâ€ŧime postseismic deformation of 2001 Ms8.1 Kunlun (China) earthquake. Concurrency Computation Practice and Experience, 2010, 22, 1803-1812.	1.4	4
100	Dynamic mechanisms of the post-seismic deformation following large events: Case study of the 1999 Chi-Chi earthquake in Taiwan of China. Science in China Series D: Earth Sciences, 2009, 52, 1813-1824.	0.9	6
101	The postseismic response to the 2002 <i>M</i> 7.9 Denali Fault earthquake: constraints from InSAR 2003-2005. Geophysical Journal International, 2009, 176, 353-367.	1.0	42
102	A 3-D viscoelastoplastic model for simulating long-term slip on non-planar faults. Geophysical Journal International, 2009, 176, 293-306.	1.0	52
103	Spectral finite element approach to postseismic deformation in a viscoelastic self-gravitating spherical Earth. Geophysical Journal International, 2009, 176, 715-739.	1.0	19
104	Multiscale estimation of GPS velocity fields. Geophysical Journal International, 2009, 179, 945-971.	1.0	63
105	Co-seismic and post-seismic pore-fluid pressure changes in the Philippine Sea plate and Nankai decollement in response to a seismogenic strain event off Kii Peninsula, Japan. Earth, Planets and Space, 2009, 61, 649-657.	0.9	22
106	Increasing long-wavelength relief across the southeastern flank of the Sierra Nevada, California. Earth and Planetary Science Letters, 2009, 287, 255-264.	1.8	11
107	Time-dependent deformation of the eastern flank of Mt. Etna: After-slip or viscoelastic relaxation?. Tectonophysics, 2009, 473, 300-311.	0.9	34
108	Postseismic relaxation following the 1992 <i>M</i> 7.3 Landers and 1999 <i>M</i> 7.1 Hector Mine earthquakes, southern California. Journal of Geophysical Research, 2009, 114, .	3.3	32
109	Slow diffusive fault slip propagation following the 6 April 2009 L'Aquila earthquake, Italy. Geophysical Research Letters, 2009, 36, .	1.5	39

#	Article	IF	CITATIONS
110	Southern San Andreas‣an Jacinto fault system slip rates estimated from earthquake cycle models constrained by GPS and interferometric synthetic aperture radar observations. Journal of Geophysical Research, 2009, 114, .	3.3	59
111	Slip rate variations on faults during glacial loading and post-glacial unloading: implications for the viscosity structure of the lithosphere. Journal of the Geological Society, 2010, 167, 385-399.	0.9	22
112	Near-field postseismic deformation along the rupture of 2008 Wenchuan earthquake and its implications. Science Bulletin, 2010, 55, 2535-2541.	1.7	9
113	Optimal combination of InSAR and GPS for measuring interseismic crustal deformation. Advances in Space Research, 2010, 46, 236-249.	1.2	64
114	Viscoelastic-cycle model of interseismic deformation in the northwestern United States. Geophysical Journal International, 2010, , .	1.0	23
115	Fourier-domain Green's function for an elastic semi-infinite solid under gravity, with applications to earthquake and volcano deformation. Geophysical Journal International, 0, 182, 568-582.	1.0	71
116	Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatraâ€Andaman earthquake. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	72
117	Mechanics of active magmatic intraplating in the Rio Grande Rift near Socorro, New Mexico. Journal of Geophysical Research, 2010, 115, .	3.3	35
118	Inception of the eastern California shear zone and evolution of the Pacificâ€North American plate boundary: From kinematics to geodynamics. Journal of Geophysical Research, 2010, 115, .	3.3	27
119	Effect of viscoelastic postseismic relaxation on estimates of interseismic crustal strain accumulation at Yucca Mountain, Nevada. Geophysical Research Letters, 2010, 37, .	1.5	18
120	On the resolution of shallow mantle viscosity structure using postearthquake relaxation data: Application to the 1999 Hector Mine, California, earthquake. Journal of Geophysical Research, 2010, 115,	3.3	32
121	Stress transfer and its implication for earthquake hazard on the Kunlun Fault, Tibet. Tectonophysics, 2010, 482, 216-225.	0.9	75
122	Postseismic deformation in Pakistan after the 8 October 2005 earthquake: Evidence of afterslip along a flat north of the Balakot-Bagh thrust. Journal of Geophysical Research, 2011, 116, .	3.3	38
123	Stress evolution before and after the 2008 Wenchuan, China earthquake. Earth and Planetary Science Letters, 2011, 307, 222-232.	1.8	66
124	Rheology and strength of the lithosphere. Marine and Petroleum Geology, 2011, 28, 1402-1443.	1.5	316
125	Minas Fault Zone: Late Paleozoic history of an intra-continental orogenic transform fault in the Canadian Appalachians. Journal of Structural Geology, 2011, 33, 312-328.	1.0	81
126	Reconciling geologic and geodetic model fault slip-rate discrepancies in Southern California: Consideration of nonsteady mantle flow and lower crustal fault creep. Geology, 2011, 39, 627-630.	2.0	81
127	Multi-timescale mechanical coupling between the San Jacinto fault and the San Andreas fault, southern California. Lithosphere, 2012, 4, 221-229.	0.6	28

#	Article	IF	CITATIONS
128	Postseismic motion after the 2001 M _W 7.8 Kokoxili earthquake in Tibet observed by InSAR time series. Journal of Geophysical Research, 2012, 117, .	3.3	67
129	The Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycle. Remote Sensing of Environment, 2012, 120, 164-174.	4.6	111
130	Response to comments raised on "Surface deformation caused by April 6th 2009 earthquake in L'Aquila (Italy): A comparative analysis from ENVISAT ASAR, ALOS PALSAR and ASTER―by Chini Marco; Bignami Christian and Salvatore Stramondo. International Journal of Applied Earth Observation and Geoinformation, 2012, 18, 582-583.	1.4	0
131	Interseismic deformation and geologic evolution of the Death Valley Fault Zone. Journal of Geophysical Research, 2012, 117, .	3.3	3
132	Dynamic models of interseismic deformation and stress transfer from plate motion to continental transform faults. Journal of Geophysical Research, 2012, 117, .	3.3	58
133	Illumination of rheological mantle heterogeneity by the M7.2 2010 El Mayorâ€Cucapah earthquake. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	30
134	Transient crustal deformation in the South Iceland Seismic Zone observed by GPS and InSAR during 2000–2008. Tectonophysics, 2012, 581, 6-18.	0.9	9
135	Transient postseismic mantle relaxation following 2004 Sumatra earthquake: implications of seismic vulnerability in the Andaman-Nicobar region. Natural Hazards and Earth System Sciences, 2012, 12, 431-441.	1.5	0
136	Faults (shear zones) in the Earth's mantle. Tectonophysics, 2012, 558-559, 1-27.	0.9	136
137	Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space. Surveys in Geophysics, 2013, 34, 141-163.	2.1	42
138	Toward a Time-Dependent Probabilistic Seismic Hazard Analysis for Alaska. Geophysical Monograph Series, 0, , 399-416.	0.1	3
139	WEGENER: World Earthquake GEodesy Network for Environmental Hazard Research. Journal of Geodynamics, 2013, 67, 2-12.	0.7	1
140	Study of effect of seismic displacements on landslide susceptibility zonation (LSZ) in Garhwal Himalayan region of India using GIS and remote sensing techniques. Computers and Geosciences, 2013, 61, 50-63.	2.0	19
141	Postseismic relaxation due to Bhuj earthquake on January 26, 2001: possible mechanisms and processes. Natural Hazards, 2013, 65, 1119-1134.	1.6	9
142	A domain decomposition approach to implementing fault slip in finiteâ€element models of quasiâ€static and dynamic crustal deformation. Journal of Geophysical Research: Solid Earth, 2013, 118, 3059-3079.	1.4	216
143	Shear wave attenuation characteristics over the Central India Tectonic Zone and its surroundings. Journal of Asian Earth Sciences, 2013, 73, 440-451.	1.0	9
144	Cyclic ductile and brittle deformation related to coseismic thrust fault propagation: Structural record at the base of a basement nappe (Preveli, Crete). Tectonics, 2013, 32, 1272-1293.	1.3	9
145	Inference of Multiple Earthquake-Cycle Relaxation Timescales from Irregular Geodetic Sampling of Interseismic Deformation. Bulletin of the Seismological Society of America, 2013, 103, 2824-2835.	1.1	64

#	Article	IF	CITATIONS
146	Viscous dissipation, slab melting, and post-subduction volcanism in south-central Baja California, Mexico. , 2013, 9, 1714-1728.		11
147	On the effects of thermally weakened ductile shear zones on postseismic deformation. Journal of Geophysical Research: Solid Earth, 2013, 118, 6295-6310.	1.4	33
148	Effect of shear zones on post-seismic deformation with application to the 1997 Mw 7.6 Manyi earthquake. Geophysical Journal International, 2014, 198, 259-269.	1.0	12
149	Temporal variations in Holocene slip rate along the central Garlock fault, Pilot Knob Valley, California. Lithosphere, 2014, 6, 48-58.	0.6	23
150	Is there a discrepancy between geological and geodetic slip rates along the San Andreas Fault System?. Journal of Geophysical Research: Solid Earth, 2014, 119, 2518-2538.	1.4	65
151	A Baseline-Combination Method for Precise Estimation of Ice Motion in Antarctica. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 5790-5797.	2.7	7
152	InSAR uncertainty due to orbital errors. Geophysical Journal International, 2014, 199, 549-560.	1.0	72
153	Rheological properties of the mantle lid beneath the Mojave region in southern California. Earth and Planetary Science Letters, 2014, 393, 60-72.	1.8	41
154	Vertical crustal displacement due to interseismic deformation along the San Andreas fault: Constraints from tide gauges. Geophysical Research Letters, 2014, 41, 3793-3801.	1.5	29
155	El Mayor-Cucapah (<i>M_w</i> 7.2) earthquake: Early near-field postseismic deformation from InSAR and GPS observations. Journal of Geophysical Research: Solid Earth, 2014, 119, 1482-1497.	1.4	66
156	A unified GPSâ€based earthquake catalog for the Sumatran plate boundary between 2002 and 2013. Journal of Geophysical Research: Solid Earth, 2015, 120, 3566-3598.	1.4	63
157	Recovery of secular deformation field of Mojave Shear Zone in Southern California from historical terrestrial and GPS measurements. Journal of Geophysical Research: Solid Earth, 2015, 120, 3965-3990.	1.4	24
158	Gravity-driven postseismic deformation following the Mw 6.3 2009 L'Aquila (Italy) earthquake. Scientific Reports, 2015, 5, 16558.	1.6	12
159	Assessing longâ€ŧerm postseismic deformation following the <i>M</i> 7.2 4 April 2010, El Mayor ucapah earthquake with implications for lithospheric rheology in the Salton Trough. Journal of Geophysical Research: Solid Earth, 2015, 120, 3664-3679.	1.4	12
160	Postearthquake relaxation evidence for laterally variable viscoelastic structure and water content in the Southern California mantle. Journal of Geophysical Research: Solid Earth, 2015, 120, 2672-2696.	1.4	43
161	Kinematic modeling of fault slip rates using new geodetic velocities from a transect across the Pacificâ€North America plate boundary through the San Bernardino Mountains, California. Journal of Geophysical Research: Solid Earth, 2015, 120, 2772-2793.	1.4	25
162	Crustal and Lithosphere Dynamics: An Introduction and Overview. , 2015, , 1-44.		4
163	Stress evolution and seismic hazard on the Maqin-Maqu segment of East Kunlun Fault zone from co-, post- and interseismic stress changes. Geophysical Journal International, 2015, 200, 244-253.	1.0	38

#	Article	IF	CITATIONS
164	A new multilayered visco-elasto-plastic experimental model to study strike-slip fault seismic cycle. Tectonics, 2015, 34, 232-264.	1.3	18
165	Open Fissure Folds record coseismic loading and postseismic stress relaxation. Journal of Structural Geology, 2015, 72, 1-14.	1.0	2
166	Preseismic deformation in the seismogenic zone of the Lushan M S7.0 earthquake detected by GPS observations. Science China Earth Sciences, 2015, 58, 1592-1601.	2.3	8
167	Plate Rheology and Mechanics. , 2015, , 95-152.		9
168	Mantle strength of the San Andreas fault system and the role of mantle-crust feedbacks. Geology, 2015, 43, 891-894.	2.0	18
169	Crustal-scale shear zones and heterogeneous structure beneath the North Anatolian Fault Zone, Turkey, revealed by a high-density seismometer array. Earth and Planetary Science Letters, 2015, 430, 129-139.	1.8	35
170	Time-Dependent Afterslip of the 2009 Mw 6.3 Dachaidan Earthquake (China) and Viscosity beneath the Qaidam Basin Inferred from Postseismic Deformation Observations. Remote Sensing, 2016, 8, 649.	1.8	11
171	Sensitivity of earthquake source inversions to atmospheric noise and corrections of InSAR data. Journal of Geophysical Research: Solid Earth, 2016, 121, 4031-4044.	1.4	15
172	Power-law rheology controls aftershock triggering and decay. Scientific Reports, 2016, 6, 36668.	1.6	16
173	Reconciling laboratory and observational models of mantle rheology in geodynamic modelling. Journal of Geodynamics, 2016, 100, 33-50.	0.7	33
174	4-D noise-based seismology at volcanoes: Ongoing efforts and perspectives. Journal of Volcanology and Geothermal Research, 2016, 321, 182-195.	0.8	39
175	CPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift. Journal of Geophysical Research: Solid Earth, 2016, 121, 7681-7703.	1.4	92
176	Physical applications of GPS geodesy: a review. Reports on Progress in Physics, 2016, 79, 106801.	8.1	161
177	Uncovering deformation processes from surface displacements. Journal of Geodynamics, 2016, 102, 58-82.	0.7	13
178	Rheologic constraints on the upper mantle from 5Âyears of postseismic deformation following the El Mayor ucapah earthquake. Journal of Geophysical Research: Solid Earth, 2016, 121, 6809-6827.	1.4	12
179	The vertical fingerprint of earthquake cycle loading in southern California. Nature Geoscience, 2016, 9, 611-614.	5.4	19
180	Investigating viscoelastic postseismic deformation due to large earthquakes in East Anatolia, Turkey. Journal of Geodynamics, 2016, 94-95, 50-58.	0.7	3
181	The anatomy of a wrinkle ridge revealed in the wall of Melas Chasma, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 889-900.	1.5	10

#	Article	IF	CITATIONS
182	Lower-crustal flow and detachment in the North American Cordillera: a consequence of Cordillera-wide high temperatures. Geophysical Journal International, 2017, 209, 1779-1799.	1.0	39
183	Decoding the origins of vertical land motions observed today at coasts. Geophysical Journal International, 2017, 210, 148-165.	1.0	23
184	Strain partitioning and stress perturbation around stepovers and bends of strike-slip faults: Numerical results. Tectonophysics, 2017, 721, 211-226.	0.9	19
185	Relationships between along-fault heterogeneous normal stress and fault slip patterns during the seismic cycle: Insights from a strike-slip fault laboratory model. Earth and Planetary Science Letters, 2017, 480, 147-157.	1.8	17
186	Dominant Controls of Downdip Afterslip and Viscous Relaxation on the Postseismic Displacements Following the <i>M</i> _{<i>w</i>} 7.9 Gorkha, Nepal, Earthquake. Journal of Geophysical Research: Solid Earth, 2017, 122, 8376-8401.	1.4	83
187	Geophysics From Terrestrial Timeâ€Variable Gravity Measurements. Reviews of Geophysics, 2017, 55, 938-992.	9.0	157
188	Forward and inverse modelling of post-seismic deformation. Geophysical Journal International, 2017, 208, 845-876.	1.0	12
189	Constraints on the rheology of the lower crust in a strike-slip plate boundary: evidence from the San QuintÃn xenoliths, BajaÂCalifornia,ÂMexico. Solid Earth, 2017, 8, 1211-1239.	1.2	14
190	Earthquake dynamics in the Central India Tectonic Zone. Natural Hazards, 2018, 92, 885-905.	1.6	3
191	Maxwell: A semi-analytic 4D code for earthquake cycle modeling of transform fault systems. Computers and Geosciences, 2018, 114, 84-97.	2.0	2
192	Loadingâ€Induced Earth's Stress Change Over Time. Journal of Geophysical Research: Solid Earth, 2018, 123, 4285-4306.	1.4	7
193	Stressing Rates and Seismicity on the Major Faults in Eastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,968.	1.4	22
194	Viscous Accretionary Prisms: Viscoelastic Relaxation of the Makran Accretionary Prism Following the 2013 Baluchistan, Pakistan Earthquake. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,107.	1.4	9
195	Spatiotemporal Variation of Mantle Viscosity and the Presence of Cratonic Mantle Inferred From 8ÂYears of Postseismic Deformation Following the 2010 Maule, Chile, Earthquake. Geochemistry, Geophysics, Geosystems, 2018, 19, 3272-3285.	1.0	18
196	Present-day crustal deformation characteristics of the southeastern Tibetan Plateau and surrounding areas by using GPS analysis. Journal of Asian Earth Sciences, 2018, 163, 22-31.	1.0	20
197	Craton Destruction 2: Evolution of Cratonic Lithosphere After a Rapid Keel Delamination Event. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,069.	1.4	12
198	Transient Deformation in California From Two Decades of GPS Displacements: Implications for a Threeâ€Dimensional Kinematic Reference Frame. Journal of Geophysical Research: Solid Earth, 2019, 124, 12189-12223.	1.4	25
199	Fault Geometry and Slip Distribution of the 2013 <i>Mw</i> 6.6 Lushan Earthquake in China Constrained by CPS, InSAR, Leveling, and Strong Motion Data. Journal of Geophysical Research: Solid Earth, 2019, 124, 7341-7353.	1.4	14

#	Article	IF	CITATIONS
200	Transient High Strain Rate During Localized Viscous Creep in the Dry Lower Continental Crust (Lofoten, Norway). Journal of Geophysical Research: Solid Earth, 2019, 124, 10240-10260.	1.4	23
201	Lower Crustal Heterogeneity Beneath the Northern Tibetan Plateau Constrained by GPS Measurements Following the 2001 Mw7.8 Kokoxili Earthquake. Journal of Geophysical Research: Solid Earth, 2019, 124, 11992-12022.	1.4	20
202	Great Basin Mantle Xenoliths Record Active Lithospheric Downwelling Beneath Central Nevada. Geochemistry, Geophysics, Geosystems, 2019, 20, 751-772.	1.0	13
203	Mantle Melting and Intraplate Volcanism Due to Selfâ€Buoyant Hydrous Upwellings From the Stagnant Slab That Are Conveyed by Smallâ€Scale Convection. Geochemistry, Geophysics, Geosystems, 2019, 20, 4972-4997.	1.0	17
204	Effects of source model variations on Coulomb stress analyses of a multi-fault intraplate earthquake sequence. Tectonophysics, 2019, 766, 151-166.	0.9	11
205	Evaluation of Temporally Correlated Noise in Global Navigation Satellite System Time Series: Geodetic Monument Performance. Journal of Geophysical Research: Solid Earth, 2019, 124, 925-942.	1.4	31
206	Fault interactions in a complex fault system: insight from the 1936–1997 NE Lut earthquake sequence. Geophysical Journal International, 2020, 224, 1157-1173.	1.0	1
207	Rheology of the Zagros Lithosphere from Post-Seismic Deformation of the 2017 Mw7.3 Kermanshah, Iraq, Earthquake. Remote Sensing, 2020, 12, 2032.	1.8	8
208	Presentâ€Day Crustal Vertical Velocity Field for the Contiguous United States. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020066.	1.4	9
209	Resolving the Kinematics and Moment Release of Early Afterslip Within the First Hours Following the 2016 M _w 7.1 Kumamoto Earthquake: Implications for the Shallow Slip Deficit and Frictional Behavior of Aseismic Creep. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019IB018928.	1.4	16
210	Impacts of Topographic Relief and Crustal Heterogeneity on Coseismic Deformation and Inversions for Fault Geometry and Slip: A Case Study of the 2015 Gorkha Earthquake in the Central Himalayan Arc. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009413.	1.0	4
211	Localized Afterslip at Geometrical Complexities Revealed by InSAR After the 2016 Central Italy Seismic Sequence. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019065.	1.4	13
212	Rapid Geodetic Observations of Spatiotemporally Varying Postseismic Deformation Following the Ridgecrest Earthquake Sequence: The U.S. Geological Survey Response. Seismological Research Letters, 2020, 91, 2108-2123.	0.8	12
213	Assessing Longâ€Term Postseismic Transients From GPS Time Series in Southern California. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018670.	1.4	8
214	Presentâ€Day and Longâ€Term Uplift Across the Western Transverse Ranges of Southern California. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019672.	1.4	7
215	Interactions of Earthquakes in Central Italy over the Past 100 Yr through Coulomb Stress Changes, and Implications for Seismic Hazards. Bulletin of the Seismological Society of America, 2020, 110, 178-190.	1.1	4
216	Magnetotelluric Constraints on the Temperature, Composition, Partial Melt Content, and Viscosity of the Upper Mantle Beneath Svalbard. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008985.	1.0	9
217	Thin crème brûlée rheological structure for the Eastern California Shear Zone. Geology, 2021, 49, 216-221.	2.0	14

#	Article	IF	CITATIONS
218	Constraints on Mantle Viscosity From Intermediateâ€Wavelength Geoid Anomalies in Mantle Convection Models With Plate Motion History. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021561.	1.4	14
219	Bayesian Inversion for a Stressâ€Driven Model of Afterslip and Viscoelastic Relaxation: Method and Application to Postseismic Deformation Following the 2011 <i>M</i> _{<i>W</i>} 9.0 Tohokuâ€Oki Earthquake. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021620.	1.4	23
220	Coulomb stress changes associated with the M7.3 Maduo earthquake and implications for seismic hazards. Natural Hazards Research, 2021, 1, 95-101.	2.0	32
221	Exploring GPS Observations of Postseismic Deformation Following the 2012 M W 7.8 Haida Gwaii and 2013 M W 7.5 Craig, Alaska Earthquakes: Implications for Viscoelastic Earth Structure. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021891.	1.4	1
222	Joint InSAR and Field Constraints on Faulting During the Mw 6.4, July 23, 2020, Nima/Rongma Earthquake in Central Tibet. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022212.	1.4	11
223	GPS: Applications in Crustal Deformation Monitoring. , 2011, , 589-622.		3
224	Geodetic constraints on contemporary deformation in the northern Walker Lane: 3. Central Nevada seismic belt postseismic relaxation. , 2009, , .		20
225	Continental Fault Structure and Rheology from the Frictional-to-Viscous Transition Downward. , 2007, , 139-182.		34
226	Evidence of Strain Partitioning Between the Sierra Madre Fault and the Los Angeles Basin, Southern California from Numerical Models. , 2004, , 2343-2357.		0
227	GPS: Applications in Crustal Deformation Monitoring. , 2009, , 4249-4283.		1
229	Geodetic Observation of Seismic Cycles before, during, and after the 2020 Monte Cristo Range, Nevada Earthquake. Seismological Research Letters, 2021, 92, 647-662.	0.8	11
230	Influences of the heterogeneity of viscoelastic medium on postseismic deformation of the 2008 MW7.9 Wenchuan earthquake. Geodesy and Geodynamics, 2022, 13, 1-10.	1.0	3
231	Coseismic and early post-seismic deformations due to the 2019 earthquake sequence in Ridgecrest, California. Geophysical Journal International, 2022, 230, 957-975.	1.0	2
232	Rheology of the Northern Tibetan Plateau Lithosphere Inferred from the Post-Seismic Deformation Resulting from the 2001 Mw 7.8 Kokoxili Earthquake. Remote Sensing, 2022, 14, 1207.	1.8	1
233	On the co-evolution of dislocations and grains in deforming rocks. Physics of the Earth and Planetary Interiors, 2022, , 106874.	0.7	3
234	Afterslip Moment Scaling and Variability From a Global Compilation of Estimates. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	13
235	Fault Geometry and Mechanism of the Mw 5.7 Nakchu Earthquake in Tibet Inferred from InSAR Observations and Stress Measurements. Remote Sensing, 2021, 13, 5142.	1.8	2
236	Postseismic Relaxation Following the 2019 Ridgecrest, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 2022, 112, 734-749.	1.1	3

#	Article	IF	CITATIONS
238	Vertical Postseismic Deformation of the 2019 Ridgecrest Earthquake Sequence. Journal of Geophysical Research: Solid Earth, 0, , .	1.4	0
239	Assessment of ERA-Interim and ERA5 reanalysis data on atmospheric corrections for InSAR. International Journal of Applied Earth Observation and Geoinformation, 2022, 111, 102822.	0.9	2
240	Post-seismic motion after 3 Chilean megathrust earthquakes: A clue for a linear asthenospheric viscosity. Geophysical Journal International, 0, , .	1.0	5
241	Kinematic Representations of Linear and Power‣aw Viscoelastic Deformation Through the Earthquake Cycle. Geophysical Research Letters, 0, , .	1.5	0
244	Co- and Postseismic Deformation of the 2020 Mw 6.3 Nima (Tibet, China) Earthquake Revealed by InSAR Observations. Remote Sensing, 2022, 14, 5390.	1.8	0
245	Physics-informed deep learning approach for modeling crustal deformation. Nature Communications, 2022, 13, .	5.8	9
246	Interplay between crystal-plasticity, fracturing and dissolution-precipitation creep in lower-crustal ultramylonite from hole U1473A, Atlantis Bank, Southwest Indian Ridge. Journal of Structural Geology, 2023, 167, 104780.	1.0	1
247	Research on composite dynamic disaster prevention and control system of mine earthquake and shock in thick and hard rock mines. Applied Mathematics and Nonlinear Sciences, 2023, 8, 371-382.	0.9	0
248	Stress triggering of the 2022 Lushan–Maerkang earthquake sequence by historical events and its implication for fault stress evolution in eastern Tibet. Frontiers in Earth Science, 0, 11, .	0.8	1
249	Spatiotemporal variation of crustal deformation in northeastern Tibet following the 2008 <i>M</i> w 7.9 Wenchuan earthquake and its impact on fault activity. Geophysical Journal International, 2023, 234, 313-330.	1.0	1