The Haber-Weiss cycle $\hat{a} {\ensuremath{\varepsilon}}^{"}$ 70 years later

Redox Report 6, 229-234 DOI: 10.1179/135100001101536373

Citation Report

#	Article	IF	CITATIONS
2	100 Years of peroxynitrite chemistry and 11 years of peroxynitrite biochemistry. Redox Report, 2001, 6, 339-341.	1.4	36
3	The Haber-Weiss cycle—71 years later. Redox Report, 2002, 7, 59-60.	1.4	40
4	The Haber-Weiss cycle—70 years later: an alternative view. Redox Report, 2002, 7, 55-57.	1.4	222
5	A Tale of Two Controversies. Journal of Biological Chemistry, 2002, 277, 17415-17427.	1.6	452
6	One-electron oxidation of "photo-Fenton―reagents and inhibition of lipid peroxidation. Biochemical and Biophysical Research Communications, 2002, 299, 155-159.	1.0	12
7	Theories on malarial pigment formation and quinoline action. International Journal for Parasitology, 2002, 32, 1645-1653.	1.3	176
8	Kinetic study of the reactions of oxoiron(IV) with aromatic substrates in aqueous solutions. International Journal of Chemical Kinetics, 2002, 34, 488-494.	1.0	71
9	Hydroxyl radical in living systems and its separation methods. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 781, 481-496.	1.2	114
10	Mécanismes physiologiques de la défense antioxydante. Nutrition Clinique Et Metabolisme, 2002, 16, 233-239.	0.2	48
11	Proapoptotic and redox state-related signaling of reactive oxygen species generated by transformed fibroblasts. Oncogene, 2002, 21, 5886-5896.	2.6	58
12	Function and Therapeutic Development of Apotransferrin. Vox Sanguinis, 2002, 83, 321-326.	0.7	25
14	Yeast, a model organism for iron and copper metabolism studies. BioMetals, 2003, 16, 185-197.	1.8	125
15	Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 533, 153-171.	0.4	362
16	O2 Evolution in the Fenton Reaction. Chemistry - A European Journal, 2003, 9, 3436-3444.	1.7	81
17	Chromaffin cell death induced by 6-hydroxydopamine is independent of mitochondrial swelling and caspase activation. Journal of Neurochemistry, 2003, 84, 1066-1073.	2.1	52
18	Iron-Catalyzed Oxidation of Arsenic(III) by Oxygen and by Hydrogen Peroxide:Â pH-Dependent Formation of Oxidants in the Fenton Reaction. Environmental Science & amp; Technology, 2003, 37, 2734-2742.	4.6	708
19	Treatment of post-burns bacterial infections by Fenton reagent, particularly the ubiquitous multiple drug resistant Pseudomonas spp Medical Hypotheses, 2003, 61, 431-434.	0.8	6
20	Effect of pH and Oxalate on Hydroquinone-Derived Hydroxyl Radical Formation during Brown Rot Wood Degradation. Applied and Environmental Microbiology, 2003, 69, 6025-6031.	1.4	89

#	Article	IF	CITATIONS
21	A Diffusible Substance(s) Mediates Endothelium-Dependent Contractions in the Aorta of SHR. Hypertension, 2003, 41, 143-148.	1.3	105
22	Chemical, Biological and Medical Controversies Surrounding the Fenton Reaction. Progress in Reaction Kinetics and Mechanism, 2003, 28, 75-104.	1.1	53
23	Exploratory and Confirmatory Gene Expression Profiling of mac1î". Journal of Biological Chemistry, 2004, 279, 4450-4458.	1.6	43
24	Stress Induction and Mitochondrial Localization of Oxr1 Proteins in Yeast and Humans. Molecular and Cellular Biology, 2004, 24, 3180-3187.	1.1	97
25	The effects of iron dextran on the oxidative stress in cardiovascular tissues of rats with chronic renal failure. Kidney International, 2004, 65, 1802-1809.	2.6	68
26	Heme oxygenase-2 products activate IKCa: role of CO and iron in guinea pig. Journal of Muscle Research and Cell Motility, 2004, 25, 411-421.	0.9	2
27	Complex Formation of ICL670 and Related Ligands with Fellland Fell. European Journal of Inorganic Chemistry, 2004, 2004, 4177-4192.	1.0	149
28	Detection of Lipid Radicals Using EPR. Antioxidants and Redox Signaling, 2004, 6, 631-638.	2.5	36
29	Low micromolar concentrations of copper augment the impairment of endothelium-dependent relaxation of aortae from diabetic rabbits. Metabolism: Clinical and Experimental, 2004, 53, 1315-1321.	1.5	17
30	Neuronal trauma model: in search of Thanatos. International Journal of Developmental Neuroscience, 2004, 22, 485-496.	0.7	29
31	Nitric oxide consumption through lipid peroxidation in brain cell suspensions and homogenates. Biochemical Journal, 2005, 387, 685-694.	1.7	13
32	Peroxynitritometal complexes. Coordination Chemistry Reviews, 2005, 249, 499-506.	9.5	45
33	Pivotal Role of gp91 phox -Containing NADH Oxidase in Lipopolysaccharide-Induced Tumor Necrosis Factor-α Expression and Myocardial Depression. Circulation, 2005, 111, 1637-1644.	1.6	122
34	Biological oxidants and therapeutic antioxidants. , 2005, , 18-32.		0
35	Quantification of Singlet Oxygen Production in the Reaction of Superoxide with Hydrogen Peroxide Using a Selective Chemiluminescent Probe. Journal of the American Chemical Society, 2005, 127, 8954-8955.	6.6	50
36	Does oxidative stress change ceruloplasmin from a protective to a vasculopathic factor?. Atherosclerosis, 2006, 187, 238-250.	0.4	118
37	Noncovalent DNA Binding and the Mechanism of Oxidative DNA Damage by Fecapentaene-12. Chemical Research in Toxicology, 2006, 19, 117-121.	1.7	16
39	Penicillamine administration reverses the inhibitory effect of hyperhomocysteinaemia on endothelium-dependent relaxation in the corpus cavernosum in the rabbit. BJU International, 2006, 98, 440-444	1.3	18

#	Article	IF	CITATIONS
40	The interaction between dinitrosy iron complexes and intermediates of oxidative stress. Biophysics (Russian Federation), 2006, 51, 423-428.	0.2	12
41	Avoiding high-valent iron intermediates: Superoxide reductase and rubrerythrin. Journal of Inorganic Biochemistry, 2006, 100, 679-693.	1.5	85
42	Regioselective hydroxylation of phenols by simultaneous photochemical generation of phenol cation-radical and hydroxyl radical. Tetrahedron, 2006, 62, 2927-2935.	1.0	15
43	Free radical biology and medicine: it's a gas, man!. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R491-R511.	0.9	383
44	Intracellular distribution of oxidized proteins and proteasome in HT22 cells during oxidative stress. Free Radical Biology and Medicine, 2006, 40, 1303-1312.	1.3	67
45	Penicillamine administration reverses the inhibitory effect of hyperhomocysteinaemia on endothelium-dependent relaxation and superoxide formation in the aorta of the rabbit. European Journal of Pharmacology, 2006, 531, 201-208.	1.7	15
46	The Significance of Oxidative Stress in Articular Cartilage Ageing and Degradation. Current Rheumatology Reviews, 2007, 3, 261-274.	0.4	14
47	Oxidative decomposition of atrazine by a Fenton-like reaction in a H2O2/ferrihydrite system. Water Research, 2007, 41, 55-62.	5.3	116
48	Hydroxyl Radical-Mediated Modification of Proteins as Probes for Structural Proteomics. Chemical Reviews, 2007, 107, 3514-3543.	23.0	597
49	What Is Responsible for the Initiating Chemistry of Iron-Mediated Lipid Peroxidation:  An Update. Chemical Reviews, 2007, 107, 748-766.	23.0	178
50	Superoxide Does React with Peroxides: Direct Observation of the Haber–Weiss Reaction in the Gas Phase. Angewandte Chemie - International Edition, 2007, 46, 4948-4950.	7.2	33
52	Sodium nitroprusside and l-arginine attenuates ferric nitrilotriacetate-induced oxidative renal injury in rats. Toxicology, 2007, 232, 183-191.	2.0	12
53	Immunolocalization of hypochlorite-induced, catalase-bound free radical formation in mouse hepatocytes. Free Radical Biology and Medicine, 2007, 42, 530-540.	1.3	55
54	Spin-trapping of oxygen free radicals in chemical and biological systems: New traps, radicals and possibilities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 69, 1354-1366.	2.0	91
55	Epidermal growth factor receptor activation by diesel particles is mediated by tyrosine phosphatase inhibition. Toxicology and Applied Pharmacology, 2008, 233, 382-388.	1.3	18
56	The Basics of Oxidative Biochemistry. , 2008, , 11-35.		9
57	The prophylactic protective effect of sesamol against ferric–nitrilotriacetate-induced acute renal injury in mice. Food and Chemical Toxicology, 2008, 46, 2736-2741.	1.8	32
58	Oxidation of Methanol by FeO ²⁺ in Water:  DFT Calculations in the Gas Phase and Ab Initio MD Simulations in Water Solution. Journal of Physical Chemistry A, 2008, 112, 1000-1012.	1.1	43

#	Article	IF	CITATIONS
59	Effects of static magnetic fields in biology: role of free radicals. Frontiers in Bioscience - Landmark, 2008, Volume, 6106.	3.0	97
60	Copper Complexes as Anticancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 2009, 9, 185-211.	0.9	661
61	Enhancement of iron-catalyzed lipid peroxidation by acidosis in brain homogenate: Comparative effect of diphenyl diselenide and ebselen. Brain Research, 2009, 1258, 71-77.	1.1	21
62	pHâ€Dependent Fe (II) pathophysiology and protective effect of an organoselenium compound. FEBS Letters, 2009, 583, 1011-1016.	1.3	22
63	A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochemistry and Biophysics, 2009, 53, 75-100.	0.9	994
64	Hereditary haemochromatosis. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2009, 23, 171-183.	1.0	37
65	Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: Role of molecular charge, central metal and hydroxyl radical production. Cancer Letters, 2009, 282, 63-76.	3.2	114
66	Reaction of hydrogen peroxide with coordinated superoxide in [(NH3)5CoIII(μ-O2)CoIII(NH3)5]5+: a mechanistic study. Dalton Transactions, 2009, , 5469.	1.6	9
67	Chapter 2 Biochemical Biomarkers of Oxidative Collagen Damage. Advances in Clinical Chemistry, 2009, 49, 31-55.	1.8	18
68	Products of Thymine Oxygenation by a Non-heme Oxygenation Model, Fe ^{ll} (MeCN) ₆ ²⁺ –Ac <sub> and the Transition State Model between Oxoiron and Thymine. Chemical and Pharmaceutical Bulletin, 2010. 58. 775-781.</sub> 	;2<:/sub	>O&i
69	Electrode potentials of partially reduced oxygen species, from dioxygen to water. Free Radical Biology and Medicine, 2010, 49, 317-322.	1.3	336
71	Mechanism of the Catalytic Deperoxidation of <i>tert</i> â€Butylhydroperoxide with Cobalt(II) Acetylacetonate. Chemistry - A European Journal, 2010, 16, 13226-13235.	1.7	66
72	Diclofenac removal from water by ozone and photolytic TiO ₂ catalysed processes. Journal of Chemical Technology and Biotechnology, 2010, 85, 798-804.	1.6	80
73	The influence of iron on water radiolysis in cement-based materials. Journal of Nuclear Materials, 2010, 403, 167-183.	1.3	21
73 74	The influence of iron on water radiolysis in cement-based materials. Journal of Nuclear Materials, 2010, 403, 167-183. The antagonistic effect of hydroxyl radical on the development of a hypersensitive response in tobacco. FEBS Journal, 2010, 277, 5097-5111.	1.3 2.2	21
73 74 75	The influence of iron on water radiolysis in cement-based materials. Journal of Nuclear Materials, 2010, 403, 167-183. The antagonistic effect of hydroxyl radical on the development of a hypersensitive response in tobacco. FEBS Journal, 2010, 277, 5097-5111. Toxicological Disruption of Signaling Homeostasis: Tyrosine Phosphatases as Targets. Annual Review of Pharmacology and Toxicology, 2010, 50, 215-235.	1.3 2.2 4.2	21 11 32
73 74 75 76	The influence of iron on water radiolysis in cement-based materials. Journal of Nuclear Materials, 2010, 403, 167-183.The antagonistic effect of hydroxyl radical on the development of a hypersensitive response in tobacco. FEBS Journal, 2010, 277, 5097-5111.Toxicological Disruption of Signaling Homeostasis: Tyrosine Phosphatases as Targets. Annual Review of Pharmacology and Toxicology, 2010, 50, 215-235.Current Status of Measuring Oxidative Stress. Methods in Molecular Biology, 2010, 594, 3-17.	1.3 2.2 4.2 0.4	21 11 32 16

	CITATION RE	PORT	
#	Article	IF	CITATIONS
78	Ion Channels and Plant Stress Responses. Signaling and Communication in Plants, 2010, , .	0.5	11
79	Copper Redox Cycling in the Prion Protein Depends Critically on Binding Mode. Journal of the American Chemical Society, 2011, 133, 12229-12237.	6.6	86
82	Biomanagement of Metal-Contaminated Soils. Environmental Pollution, 2011, , .	0.4	32
83	Crystal structure of Campylobacter jejuni ChuZ: A split-barrel family heme oxygenase with a novel heme-binding mode. Biochemical and Biophysical Research Communications, 2011, 415, 82-87.	1.0	37
84	Metal–Plant Interactions: Toxicity and Tolerance. Environmental Pollution, 2011, , 29-63.	0.4	11
85	The Effect of an Atmospheric Pressure, DC Nonthermal Plasma Microjet on Tooth Root Canal, Dentinal Tubules Infection and Reinfection Prevention. Plasma Medicine, 2011, 1, 143-155.	0.2	22
86	Harmful effects of transfusion of older stored red blood cells: iron and inflammation. Transfusion, 2011, 51, 881-885.	0.8	66
87	Oxidative changes of lipids monitored by MALDI MS. Chemistry and Physics of Lipids, 2011, 164, 782-795.	1.5	68
88	Inactivation of <i>Staphylococcus aureus</i> in Water by a Cold, He/O ₂ Atmospheric Pressure Plasma Microjet. Plasma Processes and Polymers, 2011, 8, 424-431.	1.6	86
89	Radical (HO _• , H _• and HOO _•) Formation and Ionomer Degradation in Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2011, 158, B755-B769.	¹ 1.3	240
90	Redox homeostasis in mycobacteria: the key to tuberculosis control?. Expert Reviews in Molecular Medicine, 2011, 13, e39.	1.6	153
91	Quantitative high-field imaging of sub-cortical gray matter in multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 433-441.	1.4	45
92	Molecular neuropathogenesis of Alzheimer's disease: an interaction model stressing the central role of oxidative stress. Future Neurology, 2012, 7, 287-305.	0.9	13
93	NADPH Oxidases as Regulators of Tumor Angiogenesis: Current and Emerging Concepts. Antioxidants and Redox Signaling, 2012, 16, 1229-1247.	2.5	86
94	Impairment of antioxidant defenses as a contributor to arsenite-induced cell transformation. BioMetals, 2012, 25, 927-937.	1.8	5
95	Contribution of reactive oxygen species to UV-B-induced damage in bacteria. Journal of Photochemistry and Photobiology B: Biology, 2012, 117, 40-46.	1.7	70
96	Consequences of oxidative stress in age-related macular degeneration. Molecular Aspects of Medicine, 2012, 33, 399-417.	2.7	412
97	Induction of Oxidative DNA Damage by Flavonoids of Propolis: Its Mechanism and Implication about Antioxidant Capacity. Chemical Research in Toxicology, 2012, 25, 191-196.	1.7	42

#	Article	IF	CITATIONS
98	Oxo iron(iv) as an oxidative active intermediate of p-chlorophenol in the Fenton reaction: a DFT study. Physical Chemistry Chemical Physics, 2012, 14, 3766.	1.3	7
99	Investigation on the Hydrogen Abstraction from Methyl Glucoside by Active Oxygen Species under Oxygen Delignification Conditions. Part 2: Study on the C-2 Position. Journal of Wood Chemistry and Technology, 2012, 32, 12-27.	0.9	6
100	In vitro cytotoxicity, DNA cleavage and SOD-mimic activity of copper(II) mixed-ligand quinolinonato complexes. Journal of Inorganic Biochemistry, 2012, 116, 163-171.	1.5	59
101	Increased cerebral oxidative damage and decreased antioxidant defenses in ovariectomized and sham-operated rats supplemented with vitamin A. Cell Biology and Toxicology, 2012, 28, 317-330.	2.4	26
102	Non Transferrin Bound Iron: Nature, Manifestations and Analytical Approaches for Estimation. Indian Journal of Clinical Biochemistry, 2012, 27, 322-332.	0.9	60
103	Perioperative intravascular volume replacement and kidney insufficiency. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2012, 26, 463-474.	1.7	7
104	Oxidative stress biomarkers in patients with endometriosis: systematic review. Archives of Gynecology and Obstetrics, 2012, 286, 1033-1040.	0.8	102
105	Iron sensing and signalling. Gut, 2012, 61, 933-952.	6.1	247
106	Evidence for OH Radical Production during Electrocatalysis of Oxygen Reduction on Pt Surfaces: Consequences and Application. Journal of the American Chemical Society, 2012, 134, 2835-2841.	6.6	126
107	Inactivation of Candida Biofilms by Non-Thermal Plasma and Its Enhancement for Fungistatic Effect of Antifungal Drugs. PLoS ONE, 2012, 7, e40629.	1.1	51
108	The Influence of Extracellular Superoxide on Iron Redox Chemistry and Bioavailability to Aquatic Microorganisms. Frontiers in Microbiology, 2012, 3, 124.	1.5	55
109	Homocysteine in Red Blood Cells Metabolism - Pharmacological Approaches. , 2012, , .		2
110	Mitochondrial Dynamics and Mitophagy in the 6-Hydroxydopamine Preclinical Model of Parkinson's Disease. Parkinson's Disease, 2012, 2012, 1-8.	0.6	21
111	Oxidation of oat β-glucan in aqueous solutions during processing. Carbohydrate Polymers, 2012, 87, 589-597.	5.1	54
112	Thermal and catalytic formation of radicals during autoxidation. Journal of Catalysis, 2012, 287, 1-4.	3.1	34
113	Liquid Phase Oxidation and the Use of Heterogeneous Catalysts – A Critical Overview. Chemie-Ingenieur-Technik, 2013, 85, 420-436.	0.4	9
114	Screening protocol for identifying inorganic oxides with anti-oxidant and pro-oxidant activity for biomedical, environmental and food preservation applications. RSC Advances, 2013, 3, 900-909.	1.7	4
115	Therapeutic Benefits from Nanoparticles: The Potential Significance of Nanoscience in Diseases with Compromise to the Blood Brain Barrier. Chemical Reviews, 2013, 113, 1877-1903.	23.0	187

#	Article	IF	CITATIONS
116	Reactive oxygen species responsible for beta-glucan degradation. Food Chemistry, 2013, 141, 589-596.	4.2	34
117	Iron Homeostasis in the Liver. , 2013, 3, 315-330.		165
118	Reactive Oxygen and Nitrogen Species in Biological Systems: Reactions and Regulation by Carotenoids. , 2013, , 57-101.		4
119	Acid–Base Properties of the (1-4,18-36) Fragments of Neuropeptide K and their Mono- and Polynuclear Copper(II) Complexes Products of Metal-Catalyzed Oxidation. Inorganic Chemistry, 2013, 52, 130-143.	1.9	13
120	Structural Alterations of Human Serum Albumin Caused by Glycative and Oxidative Stressors Revealed by Circular Dichroism Analysis. International Journal of Molecular Sciences, 2013, 14, 10694-10709.	1.8	24
121	Standard electrode potentials involving radicals in aqueous solution: inorganic radicals. Bioinorganic Reaction Mechanisms, 2013, 9, .	0.5	48
122	Bioeffects of Static Magnetic Fields: Oxidative Stress, Genotoxic Effects, and Cancer Studies. BioMed Research International, 2013, 2013, 1-12.	0.9	156
123	The Impact of Iron on the Bleaching Efficacy of Hydrogen Peroxide in Liquid Whey Systems. Journal of Food Science, 2013, 78, R129-37.	1.5	18
124	Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. Magnetic Resonance in Chemistry, 2013, 51, 255-268.	1.1	32
125	Combined Therapy of Iron Chelator and Antioxidant Completely Restores Brain Dysfunction Induced by Iron Toxicity. PLoS ONE, 2014, 9, e85115.	1.1	84
126	DNA Damage. , 2014, , 9-69.		0
127	Research on physico-chemical pretreatment of wastewater from the production of wood coating materials. Ecological Chemistry and Engineering S, 2014, 21, 101-112.	0.3	4
128	6-Hydroxydopamine as Preclinical Model of Parkinson's Disease. , 2014, , 639-651.		1
129	Understanding the biology of reactive oxygen species and their link to cancer: <scp>NADPH</scp> oxidases as novel pharmacological targets. Clinical and Experimental Pharmacology and Physiology, 2014, 41, 533-542.	0.9	35
130	Redox control of enzymatic functions: The electronics of life's circuitry. IUBMB Life, 2014, 66, 167-181.	1.5	18
131	An ionogel composite including copolymer nanowires for disposable electrochemiluminescent sensor configurations. RSC Advances, 2014, 4, 57235-57244.	1.7	5
133	Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast. Redox Biology, 2014, 2, 308-313.	3.9	97
134	Mass spectrometry and inflammation—MS methods to study oxidation and enzyme-induced changes of phospholipids. Analytical and Bioanalytical Chemistry, 2014, 406, 1291-1306.	1.9	28

	CHANON R	LPORT	
# 136	ARTICLE Advances in Copper Complexes as Anticancer Agents. Chemical Reviews, 2014, 114, 815-862.	IF 23.0	Citations
137	Ferrous ions promoted aerobic simazine degradation with Fe@Fe2O3 core–shell nanowires. Applied Catalysis B: Environmental, 2014, 150-151, 1-11.	10.8	35
138	Solar photo-Fenton like using persulphate for carbamazepine removal from domestic wastewater. Water Research, 2014, 48, 229-236.	5.3	173
139	Cells with Impaired Mitochondrial H ₂ O ₂ Sensing Generate Less [•] OH Radicals and Live Longer. Antioxidants and Redox Signaling, 2014, 21, 1490-1503.	2.5	19
140	Possibility of H2O2 decomposition in thin liquid films on Mars. Planetary and Space Science, 2014, 103, 153-166.	0.9	12
141	Superoxide Inhibits Guanine Nucleotide Exchange Factor (GEF) Action on Ras, but not on Rho, through Desensitization of Ras to GEF. Biochemistry, 2014, 53, 518-532.	1.2	4
142	Reactive Oxygen Species in Normal and Tumor Stem Cells. Advances in Cancer Research, 2014, 122, 1-67.	1.9	291
143	Copper–amyloid-β complex may catalyze peroxynitrite production in brain: evidence from molecular modeling. Physical Chemistry Chemical Physics, 2014, 16, 10169-10174.	1.3	21
144	Oxidative Damage and Macular Degeneration. , 2014, , 3625-3653.		2
145	Synthesis of Hydrophilic and Hydrophobic Carbon Nanoparticles from Benzene/Water Bilayer Solution with Femtosecond Laser Generated Plasma Filaments in Water. Bulletin of the Chemical Society of Japan, 2015, 88, 251-261.	2.0	17
146	Does static magnetic field-exposure induced oxidative stress and†apoptosis in rat kidney and muscle? Effect of†vitamin E and†selenium supplementations. General Physiology and Biophysics, 2015, 34, 23-32.	0.4	13
147	Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction. Biomolecules, 2015, 5, 472-484.	1.8	474
148	Advances and Recent Trends in Heterogeneous Photo(Electro)-Catalysis for Solar Fuels and Chemicals. Molecules, 2015, 20, 6739-6793.	1.7	61
149	Role of oxygen-containing species at Pt(111) on the oxygen reduction reaction in acid media. Journal of Solid State Electrochemistry, 2015, 19, 2831-2841.	1.2	14
150	Hydrogen peroxide induced cell death: One or two modes of action?. Heliyon, 2015, 1, e00049.	1.4	40
151	Validation of a general method for activity estimation of cyanide evolving oxidoreductases. Analytical Biochemistry, 2015, 471, 44-50.	1.1	0
152	Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. Journal of Assisted Reproduction and Genetics, 2015, 32, 509-520.	1.2	186
153	The effect of iron in MRI and transverse relaxation of amyloidâ€beta plaques in Alzheimer's disease. NMR in Biomedicine, 2015, 28, 297-305.	1.6	41

ARTICLE IF CITATIONS Application of Click Chemistry Conditions for 5â€Bromoâ€2â€2â€Deoxyuridine Determination Through Fenton 3.7 1 154 and Related Reactions. Current Protocols in Cytometry, 2015, 71, 7.43.1-7.43.17. Metal chelators as antioxidants for food preservation., 2015, , 79-104. Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer. Advances in 156 1.2 141 Pharmacology, 2015, 74, 35-84. A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva. Biosensors and Bioelectronics, 2015, 70, 455-461. Unraveling the Mechanism for the Viability Deficiency of Shewanella oneidensis oxyR Null Mutant. 158 1.0 49 Journal of Bacteriology, 2015, 197, 2179-2189. Hydrogen peroxide causes Vibrio vulnificus bacteriolysis accelerated by sulfonyl fluoride compounds. Archives of Microbiology, 2015, 197, 1075-1085. 1.0 Reactive oxygen species-activated nanomaterials as theranostic agents. Nanomedicine, 2015, 10, 160 1.7 69 2709-2723. The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer's disease: Two sides 161 2.1 of the same coin. Neurobiology of Disease, 2015, 81, 49-65. Piperazine derivatives as iron chelators: a potential application in neurobiology. BioMetals, 2015, 28, 162 1.8 15 1043-1061. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and 669 Experimental Botany, 2015, 109, 212-228. Endogenous Generation of Singlet Oxygen and Ozone in Human and Animal Tissues: Mechanisms, Biological Significance, and Influence of Dietary Components. Oxidative Medicine and Cellular 164 1.9 62 Longevity, 2016, 2016, 1-22. Hydrogen Peroxide Induced Cell Death: The Major Defences Relative Roles and Consequences in E. coli. 1.1 28 PLoS ONE, 2016, 11, e0159706. The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications. Diseases 166 1.0 60 (Basel, Switzerland), 2016, 4, 24. New Insights of the Fenton Reaction Using Glycerol as the Experimental Model. Effect of O₂, Inhibition by Mg²⁺, and Oxidation State of Fe. Journal of Physical Chemistry A, 2016, 120, 5435-5445. 1.1 23 Iron(III) Contrast Agent Candidates for MRI: a Survey of the Structure–Effect Relationship in the Last 168 1.0 48 15 ÄYears of Studies. European Journal of Inorganic Chemistry, 2016, 2016, 445-458. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria. Redox Biology, 2016, 8, 110-118. 170 Evidence for genistein as a mitochondriotropic molecule. Mitochondrion, 2016, 29, 35-44. 1.6 35 $\label{eq:competitive Hydrogen Atom Transfer to Oxyl- and Peroxyl Radicals in the Cu-Catalyzed Oxidative Coupling of <i>N</i>-Aryl Tetrahydroisoquinolines Using <i>tert</i>-Butyl Hydroperoxide. ACS$ 171 Catalysis, 2016, 6, 3253-3261.

#	Article	IF	CITATIONS
172	Quality control of chemically damaged RNA. Cellular and Molecular Life Sciences, 2016, 73, 3639-3653.	2.4	74
173	Antireduction: an ancient strategy fit for future. Bioscience Reports, 2016, 36, .	1.1	11
174	Siderophores as molecular tools in medical and environmental applications. Organic and Biomolecular Chemistry, 2016, 14, 8212-8227.	1.5	79
175	A combination of an iron chelator with an antioxidant effectively diminishes the dendritic loss, tau-hyperphosphorylation, amyloids-Î ² accumulation and brain mitochondrial dynamic disruption in rats with chronic iron-overload. Neuroscience, 2016, 332, 191-202.	1.1	66
176	Sodium ascorbate kills <i>Candida albicans in vitro</i> via iron-catalyzed Fenton reaction: importance of oxygenation and metabolism. Future Microbiology, 2016, 11, 1535-1547.	1.0	17
177	The neurotoxicity of iron, copper and cobalt in Parkinson's disease through ROS-mediated mechanisms. BioMetals, 2016, 29, 665-678.	1.8	73
178	In vitro antioxidant and anti-inflammatory properties of Limonium algarvense flowers' infusions and decoctions: A comparison with green tea (Camellia sinensis). Food Chemistry, 2016, 200, 322-329.	4.2	78
179	Extrapolating between toxicity endpoints of metal oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR. Ecotoxicology and Environmental Safety, 2016, 126, 238-244.	2.9	44
180	Effect of apotransferrin, lactoferrin and ovotransferrin on the hydroxyl radical mediated degradation of beta-glucan. Food Chemistry, 2016, 204, 1-6.	4.2	10
181	Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 727-748.	1.9	111
182	Studies on the redox activity of iron N,O-complexes: Potential T1-contrast agents. Redox Report, 2016, 21, 37-44.	1.4	6
183	X-ray and DFT-calculated structures of bis[<i>N</i> -(quinolin-8-yl)benzamidato-ΰ ² <i>N</i> , <i>N</i> â€2]copper(II). Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 234-238.	0.2	1
184	Oxidative damage and the pathogenesis of menopause related disturbances and diseases. Clinical Chemistry and Laboratory Medicine, 2016, 54, 739-53.	1.4	64
185	Biological signaling by small inorganic molecules. Coordination Chemistry Reviews, 2016, 306, 708-723.	9.5	73
186	The Chemistry of Neurodegeneration: Kinetic Data and Their Implications. Molecular Neurobiology, 2016, 53, 3400-3415.	1.9	62
187	Radiation induced environmental remediation of Cr(VI) heavy metal in aerated neutral solution under simulated industrial effluent. Radiochimica Acta, 2017, 105, 493-504.	0.5	3
188	Microwave Effects on DNA and Proteins. , 2017, , .		1
189	Cryptosporidium-contaminated water disinfection by a novel Fenton process. Free Radical Biology and Medicine, 2017, 106, 158-167.	1.3	14

#	Article	IF	CITATIONS
190	New cofactors and inhibitors for a DNA-cleaving DNAzyme: superoxide anion and hydrogen peroxide mediated an oxidative cleavage process. Scientific Reports, 2017, 7, 378.	1.6	17
191	DNA interaction, antioxidant and in vitro cytotoxic activities of some mononuclear metal(II) complexes of a bishydrazone ligand. Materials Science and Engineering C, 2017, 78, 1006-1015.	3.8	29
192	Juncaceae species as sources of innovative bioactive compounds for the food industry: InÂvitro antioxidant activity, neuroprotective properties and in silico studies. Food and Chemical Toxicology, 2017, 107, 590-596.	1.8	12
193	Characterization of High Affinity Iron Acquisition Systems in Campylobacter jejuni. Methods in Molecular Biology, 2017, 1512, 65-78.	0.4	8
194	Abiotic thermo-oxidative degradation of high density polyethylene: Effect of manganese stearate concentration. Polymer Degradation and Stability, 2017, 143, 95-103.	2.7	25
195	Spinâ€Forbidden Branching in the Mechanism of the Intrinsic Haber–Weiss Reaction. ChemistryOpen, 2017, 6, 360-363.	0.9	10
196	Role of Sod Gene in Response to Static Magnetic Fields in Pseudomonas aeruginosa. Current Microbiology, 2017, 74, 930-937.	1.0	7
197	Photosensitization mechanism of Cu(<scp>ii</scp>) porphyrins. Physical Chemistry Chemical Physics, 2017, 19, 20533-20540.	1.3	9
198	Catalytic hydroxylation of phenol to dihydroxybenzene by Fe(II) complex in aqueous phase at ambient temperature. Catalysis Communications, 2017, 101, 93-97.	1.6	17
199	Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews, 2017, 117, 11302-11336.	23.0	2,613
201	Photooxidation of Aniline Derivatives Can Be Activated by Freezing Their Aqueous Solutions. Environmental Science & Technology, 2017, 51, 13763-13770.	4.6	12
202	PPARα agonists acutely inhibit calcium-independent PLA2 to reduce H2O2-induced contractions in aortae of spontaneously hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 314, ajpheart.00314	1.5	3
203	Stereo-Preference in the degradation of the <i>erythro</i> and <i>threo</i> isomers of <i>²⁻O</i> -4-type lignin model compounds in oxidation processes. part 2: In the reaction with hydroxyl and oxyl anion radicals under hydrogen peroxide bleaching conditions. Journal of Wood Chemistry and Technology. 2017, 37, 87-98.	0.9	6
204	Chemistry of Reactive Species. , 2017, , 13-64.		7
205	New Challenges to Study Heterogeneity in Cancer Redox Metabolism. Frontiers in Cell and Developmental Biology, 2017, 5, 65.	1.8	65
206	Protein oxidation an overview of metabolism of sulphur containing amino acid cysteine. Frontiers in Bioscience - Scholar, 2017, 9, 71-87.	0.8	93
207	Use of Annexin V based Sperm Selection in Assisted Reproduction. Journal of Antimicrobial Agents, 2017, 06, .	0.2	4
208	DFT study of the mechanisms of nonenzymatic DNA repair by phytophenolic antioxidants. Journal of Molecular Modeling, 2018, 24, 78.	0.8	13

#	Article	IF	CITATIONS
209	Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update. Heart Failure Reviews, 2018, 23, 801-816.	1.7	61
210	Haemochromatosis. Nature Reviews Disease Primers, 2018, 4, 18016.	18.1	253
211	ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radical Research, 2018, 52, 507-543.	1.5	208
212	Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated 'ROS-Ca2+ Hub'. Functional Plant Biology, 2018, 45, 9.	1.1	115
213	An efficient and innovative method to preserve the harvested plums during storage. Journal of Food Processing and Preservation, 2018, 42, e13398.	0.9	3
214	"Only a Life Lived for Others Is Worth Living†Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions. Antioxidants and Redox Signaling, 2018, 29, 1333-1358.	2.5	33
215	Vitamin C supplementation improve the sputum conversion culture rate in pulmonary tuberculosis treatment while rifampicin susceptible. IOP Conference Series: Earth and Environmental Science, 2018, 125, 012140.	0.2	3
216	Second generation periodic table-based descriptors to encode toxicity of metal oxide nanoparticles to multiple species: QSTR modeling for exploration of toxicity mechanisms. Environmental Science: Nano, 2018, 5, 2742-2760.	2.2	26
217	Cancer Treatment through Nanoparticle-Facilitated Fenton Reaction. ACS Nano, 2018, 12, 11819-11837.	7.3	428
218	Reactive oxygen species in seminal plasma as a cause of male infertility. Journal of Gynecology Obstetrics and Human Reproduction, 2018, 47, 565-572.	0.6	32
219	Characterization and functionality of two members of the SPFH protein superfamily, prohibitin 1 and 2 in Leishmania major. Parasites and Vectors, 2018, 11, 622.	1.0	10
220	Hydrophilic Linear Peptide with Histidine and Lysine Residues as a Key Factor Affecting Antifungal Activity. International Journal of Molecular Sciences, 2018, 19, 3781.	1.8	12
221	Relationship of Crystals Shape, Aggregation Mode and Surface Purity in Catalytic Wet Peroxide Oxidation of Phenol in Dark with Titania Anatase Nanocrystals. Catalysis Letters, 2018, 148, 3524-3533.	1.4	2
222	Reactive Oxygen Species and Bone Fragility. , 2018, , .		1
223	Ferroportin deficiency in erythroid cells causes serum iron deficiency and promotes hemolysis due to oxidative stress. Blood, 2018, 132, 2078-2087.	0.6	65
224	Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models. International Journal of Molecular Sciences, 2018, 19, 2608.	1.8	27
225	Cobaltâ€Copper Nanoparticles Catalyzed Selective Oxidation Reactions: Efficient Catalysis at Room Temperature. ChemistrySelect, 2018, 3, 9826-9832.	0.7	11
226	Oxidative Stress in Urolithiasis. , 2018, , .		5

#	Article	IF	CITATIONS
227	MC-LR induces dysregulation of iron homeostasis by inhibiting hepcidin expression: A preliminary study. Chemosphere, 2018, 212, 572-584.	4.2	13
228	Low Doses of Polyethylene Glycol Coated Iron Oxide Nanoparticles Cause Significant Elemental Changes within Main Organs. Chemical Research in Toxicology, 2018, 31, 876-884.	1.7	10
229	Potential Mechanisms of Action for Vitamin C in Cancer: Reviewing the Evidence. Frontiers in Physiology, 2018, 9, 809.	1.3	120
230	Liver Disease in Iron Overload. , 2018, , 151-165.		2
231	Growth and development of carnation â€~Dreambyul' plantlets in a temporary immersion system and comparisons with conventional solid culture methods. In Vitro Cellular and Developmental Biology - Plant, 2019, 55, 539-548.	0.9	10
232	Role of Dietary Flavonoids in Iron Homeostasis. Pharmaceuticals, 2019, 12, 119.	1.7	35
233	The Influence of Solution pH on the Kinetics of Resorcinol Electrooxidation (Degradation) on Polycrystalline Platinum. Molecules, 2019, 24, 2309.	1.7	4
234	Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation. Cancers, 2019, 11, 1030.	1.7	112
235	Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Bratislava Medical Journal, 2019, 120, 397-409.	0.4	55
237	An electrochemiluminescent sensing matrix for real-time probing of cell-output reactive oxygen species. Biomicrofluidics, 2019, 13, 044115.	1.2	0
238	Anamorsin attenuates cupric chloride-induced dopaminergic neuronal cell death. Biochemical and Biophysical Research Communications, 2019, 520, 99-106.	1.0	3
239	The Haber-Weiss reaction – The latest revival. Free Radical Biology and Medicine, 2019, 145, 221-222.	1.3	18
240	Design of DNA-intercalators based copper(II) complexes, investigation of their potential anti-cancer activity and sub-chronic toxicity. Materials Science and Engineering C, 2019, 105, 110079.	3.8	12
241	Antioxidative nanomaterials and biomedical applications. Nano Today, 2019, 27, 146-177.	6.2	116
242	N ¹⁰ â€carbonylâ€substituted phenothiazines inhibiting lipid peroxidation and associated nitric oxide consumption powerfully protect brain tissue against oxidative stress. Chemical Biology and Drug Design, 2019, 94, 1680-1693.	1.5	8
243	Iron and the heart: A paradigm shift from systemic to cardiomyocyte abnormalities. Journal of Cellular Physiology, 2019, 234, 21613-21629.	2.0	53
244	Metalloproteins in the Biology of Heterocysts. Life, 2019, 9, 32.	1.1	23
245	Reactive Oxygen Species Production and Scavenging During Seed Germination of Halophytes. , 2019, , 63-81.		4

		Citation Report		
# 246	ARTICLE Intracellular catalase activity instead of glutathione level dominates the resistance of ce reactive oxygen species. Cell Stress and Chaperones, 2019, 24, 609-619.	Ils to	IF 1.2	Citations 36
247	Complex I syndrome in striatum and frontal cortex in a rat model of Parkinson disease. I Biology and Medicine, 2019, 135, 274-282.	Free Radical	1.3	21
248	Risk assessment of heterogeneous TiO ₂ -based engineered nanoparticles (approach using simple periodic table based descriptors. Nanotoxicology, 2019, 13, 701	NPs): a QSTR -716.	1.6	20
249	Malarial Pathophysiology and Phytochemical Interventions: A Current Discourse on Oxic Anti-Disease Phytotherapeutics. , 2019, , .	dative Stress		0
250	Metal/Metal Oxide Nanoparticles: Toxicity, Applications, and Future Prospects. Current Pharmaceutical Design, 2019, 25, 4013-4029.		0.9	72
251	Metabisulfite as an Unconventional Reagent for Green Oxidation of Emerging Contamir Iron-Based Catalyst. ACS Omega, 2019, 4, 20732-20741.	nants Using an	1.6	16
254	Emerging Strategies of Nanomaterialâ€Mediated Tumor Radiosensitization. Advanced № e1802244.	Лaterials, 2019, 31,	11.1	244
255	Iron and redox cycling. Do's and don'ts. Free Radical Biology and Medicine, 2019, 133, 3	3-10.	1.3	151
256	Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free ra reaction?. Free Radical Biology and Medicine, 2019, 133, 153-161.	ıdical	1.3	212
257	Effect of inorganic salt and organic acid on the thermal runaway of hydrogen peroxide. Loss Prevention in the Process Industries, 2019, 57, 34-40.	Journal of	1.7	18
258	Molecular effects of copper on the reproductive system of <i>mytilus galloprovincialis< Molecular Reproduction and Development, 2019, 86, 1357-1368.</i>	li>.	1.0	39
259	Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Ca Treatment. Antioxidants and Redox Signaling, 2019, 30, 1096-1123.	ncer	2.5	21
260	Advancing Fenton and photo-Fenton water treatment through the catalyst design. Journ Hazardous Materials, 2019, 372, 103-112.	nal of	6.5	221
261	Coupling sea lavender (Limonium algarvense Erben) and green tea (Camellia sinensis (L. produce an innovative herbal beverage with enhanced enzymatic inhibitory properties. Journal of Botany, 2019, 120, 87-94.) Kuntze) to South African	1.2	19
262	Proteolysis and Oxidation of Therapeutic Proteins After Intradermal or Subcutaneous Administration. Journal of Pharmaceutical Sciences, 2020, 109, 191-205.		1.6	24
263	Recent Progress in the Biological Applications of Reactive Oxygen Species-Responsive P Polymer Reviews, 2020, 60, 114-143.	olymers.	5.3	34
264	Electronic spectroscopic characterization of the formation of iron(III) metal complexes: 8-HydroxyQuinoline as ligand case study. Journal of Inorganic Biochemistry, 2020, 203,	The 110864.	1.5	11
265	Mechanism of the Oxidation of 3,3′,5,5′â€Tetramethylbenzidine Catalyzed by Per Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes: A Kinetic Study. ChemP 21, 450-458.	oxidaseâ€Like Pt hysChem, 2020,	1.0	25

#	Article	IF	CITATIONS
266	Role of Reactive Species in Destructions. , 2020, , 23-54.		1
267	Mechanism of Heterogeneous Fenton Reaction Kinetics Enhancement under Nanoscale Spatial Confinement. Environmental Science & Technology, 2020, 54, 10868-10875.	4.6	188
269	Kinetics of autoxidation of tartaric acid in presence of iron. Journal of Chemical Physics, 2020, 153, 064503.	1.2	9
270	Targeting Lipid Peroxidation for Cancer Treatment. Molecules, 2020, 25, 5144.	1.7	51
271	Electrochemical radical reactions of alkyl iodides: a highly efficient, clean, green alternative to tin reagents. Chemical Science, 2020, 11, 5333-5338.	3.7	14
272	Regulations of reactive oxygen species in plants abiotic stress: an integrated overview. , 2020, , 323-353.		6
274	Two Faces of Vitamin C—Antioxidative and Pro-Oxidative Agent. Nutrients, 2020, 12, 1501.	1.7	169
275	Molecular Changes Induced by Oxidative Stress that Impair Human Sperm Motility. Antioxidants, 2020, 9, 134.	2.2	106
276	Evidence that Criegee intermediates drive autoxidation in unsaturated lipids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4486-4490.	3.3	36
277	Plasma oxidative stress (hydrogen peroxide/trolox) responses during a 7-day road cycling stage race and a competitive football match in top-level athletes. Sport Sciences for Health, 2020, 16, 691-702.	0.4	0
278	Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurological Sciences, 2020, 41, 2389-2406.	0.9	10
279	A secreted fungal histidine―and alanineâ€rich protein regulates metal ion homeostasis and oxidative stress. New Phytologist, 2020, 227, 1174-1188.	3.5	35
280	Subcellular mechanism of microbial inactivation during water disinfection by cold atmospheric-pressure plasma. Water Research, 2021, 188, 116513.	5.3	83
281	Reactive oxygen and nitrogen species and innate immune response. Biochimie, 2021, 181, 52-64.	1.3	44
282	The role of iron in doxorubicin-induced cardiotoxicity: recent advances and implication for drug delivery. Journal of Materials Chemistry B, 2021, 9, 4793-4803.	2.9	29
283	Current understanding of nanoparticle toxicity mechanisms and interactions with biological systems. New Journal of Chemistry, 2021, 45, 14328-14344.	1.4	22
284	Assessment of toxicity of metal oxide and hydroxide nanoparticles using the QSAR modeling approach. Environmental Science: Nano, 2021, 8, 3395-3407.	2.2	13
285	The antioxidant defense system and bioremediation. , 2021, , 205-220.		2

#	Article	IF	Citations
286	Antioxidant, Cytotoxic, Genotoxic, and DNA-Protective Potential of 2,3-Substituted Quinazolinones: Structure—Activity Relationship Study. International Journal of Molecular Sciences, 2021, 22, 610.	1.8	9
287	Copper-assisted oxidation of catechols into quinone derivatives. Chemical Science, 2021, 12, 2257-2267.	3.7	16
288	Flavonoids: Potential Candidates for the Treatment of Neurodegenerative Disorders. Biomedicines, 2021, 9, 99.	1.4	53
289	Fenton Chemistry for Achmatowicz Rearrangement. ACS Catalysis, 2021, 11, 3740-3748.	5.5	29
290	A facile colorimetric method for the quantification of labile iron pool and total iron in cells and tissue specimens. Scientific Reports, 2021, 11, 6008.	1.6	24
291	Optimal serum ferritin level range: iron status measure and inflammatory biomarker. Metallomics, 2021, 13, .	1.0	24
292	Luminescent lanthanide complexes for reactive oxygen species biosensing and possible application in Alzheimer's diseases. FEBS Journal, 2022, 289, 2516-2539.	2.2	12
293	Regulatory Involvement of the PerR and SloR Metalloregulators in the Streptococcus mutans Oxidative Stress Response. Journal of Bacteriology, 2021, 203, .	1.0	6
294	Antibacterial mechanism of Cu-bearing 430 ferritic stainless steel. Rare Metals, 2022, 41, 559-569.	3.6	18
295	Role of Iron in the Molecular Pathogenesis of Diseases and Therapeutic Opportunities. ACS Chemical Biology, 2021, 16, 945-972.	1.6	21
296	An overview on interactions between natural product-derived β-glucan and small-molecule compounds. Carbohydrate Polymers, 2021, 261, 117850.	5.1	8
297	Treatment of the railway freight wagon wash effluents by coagulation methods on accelator reactor. Journal of Environmental Health Science & Engineering, 2021, 19, 1399-1412.	1.4	0
298	Oxidative Damage to RNA is Altered by the Presence of Interacting Proteins or Modified Nucleosides. Frontiers in Molecular Biosciences, 2021, 8, 697149.	1.6	9
299	Crystallinity engineering of Au nanoparticles on graphene for in situ SERS monitoring of Fenton-like reaction. Chinese Chemical Letters, 2022, 33, 1263-1266.	4.8	2
300	Theoretical Aspects of the Antioxidant Properties of Humic Acids. Solid Fuel Chemistry, 2021, 55, 236-243.	0.2	0
301	Detection of Oxidative Stress Induced by Nanomaterials in Cells—The Roles of Reactive Oxygen Species and Glutathione. Molecules, 2021, 26, 4710.	1.7	42
302	An enhancement of singlet oxygen generation from dissolved oxygen activated by three-dimensional graphene wrapped nZVI-doped amorphous Al species for chloramphenicol removal in the Fenton-like system. Chemical Engineering Journal, 2021, 425, 131497.	6.6	26
303	COMPARATIVE STUDY ON DIFFERENT TYPES OF ALUM SLUDGE CONDITIONERS. Journal of Advanced Engineering Trends, 2022, 41, 1-12.	0.2	0

#	Article	IF	CITATIONS
304	Competition between electron transfer and base-induced elimination mechanisms in the gas-phase reactions of superoxide with alkyl hydroperoxides. Physical Chemistry Chemical Physics, 2021, 23, 5583-5595.	1.3	1
305	A Robust Flow-Through Platform for Organic Contaminant Removal. Cell Reports Physical Science, 2021, 2, 100296.	2.8	8
307	Physiological Role of ROS in Sperm Function. , 2020, , 337-345.		26
308	Heavy Metals, Trace Elements and Their Cellular Effects. , 2011, , 3-28.		57
309	Saussurea lappa root extract ameliorates the hazards effect of thorium induced oxidative stress and neuroendocrine alterations in adult male rats. Environmental Science and Pollution Research, 2020, 27, 13237-13246.	2.7	15
310	Metal homeostasis in pathogenic Epsilonproteobacteria: mechanisms of acquisition, efflux, and regulation. Metallomics, 2021, 13, .	1.0	8
311	Progress in the Mechanism and Kinetics of Fenton Reaction. MOJ Ecology & Environmental Sciences, 2018, 3, .	0.1	17
312	The role of labile iron pool in cardiovascular diseases Acta Biochimica Polonica, 2019, 51, 471-480.	0.3	97
313	Total body irradiation and iron chelation treatment are associated with pancreatic injury following pediatric hematopoietic stem cell transplantation. Oncotarget, 2018, 9, 19543-19554.	0.8	2
314	USING QUANTUM-CHEMICAL PARAMETERS FOR PREDICTING ANTI-RADICAL (ÐОâ^™) ACTIVITY OF RELATED STRUCTURES CONTAINING A CINNAMIC MOLD FRAGMENT. I. DERIVATIVES OF CINNAMIC ACID, CHALCON AND FLAVANON. Farmatsiya I Farmakologiya, 2019, 7, 53-66.	0.2	9
315	DFT Study of the Entire Reaction Cycle of H2O2 Decomposition and O2 Generation Catalyzed by Fenton Reagent. Chemistry Journal of Moldova, 2019, 14, 88-97.	0.3	3
316	Vanadium, Ruthenium and Copper Compounds: A New Class of Nonplatinum Metallodrugs with Anticancer Activity. Current Medicinal Chemistry, 2017, 24, 112-148.	1.2	114
317	Therapeutic Macromolecular Iron Chelators. Current Medicinal Chemistry, 2019, 26, 323-334.	1.2	6
319	L'ischémie reperfusion : un passage obligatoire de la transplantation. Bulletin De L'Academie Nationale De Medecine, 2011, 195, 831-845.	0.0	0
320	Neuropathology and Iron: Central Nervous System Iron Homeostasis. , 2012, , 455-476.		0
321	Ascorbic Acid and Thiol Antioxidants Suppress Spontaneous Mutagenesis in a Cu,Zn-superoxide Dismutase-deficient Mutant of Saccharomyces cerevisiae. Genes and Environment, 2013, 35, 110-114.	0.9	1
322	Ultra-High-Frequency Electromagnetic Radiation and Reactive Species in Mammals. , 2017, , 249-274.		0
323	Bitkilerde Aktif Oksijen Türleri ve Oksidatif Stres. International Journal of Life Sciences and Biotechnology, 2020, 3, 205-226.	0.2	3

		CITATION REPORT		
#	Article		IF	CITATIONS
326	Molekulare Regulation der Bildung und Inaktivierung reaktiver Sauerstoffspezies. , 2006,	159-199.		0
328	Copper Complexes as Antitumor Agents: <i>In vitro</i> and <i>In vivo</i> Evidence. Current Chemistry, 2023, 30, 510-557.	: Medicinal	1.2	20
329	Photocatalytic reaction mechanisms at the gas–solid interface for environmental and en applications. Catalysis Science and Technology, 2021, 11, 7807-7839.	ıergy	2.1	12
330	Mechanistic Insights Expatiating the Redox-Active-Metal-Mediated Neuronal Degeneration Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 678.	n in	1.8	12
331	New insights into the competition between antioxidant activities and pro-oxidant risks of acid. RSC Advances, 2022, 12, 1499-1514.	rosmarinic	1.7	11
332	A resurrection of the Haberâ \in "Weiss reaction. Nature Communications, 2022, 13, 396.		5.8	5
333	Facile Design of Two-Dimensional Heterogeneous Fenton-Like Catalysis for Micropollutan Degradation: Metal Dependence of Reactive Oxygen Species Generation. SSRN Electronic	ts Journal, O, , .	0.4	0
334	Hydroxyl Radical Overproduction in the Envelope: an Achilles' Heel in Peptidoglycan S Microbiology Spectrum, 2022, 10, e0120321.	ynthesis.	1.2	3
335	Enhanced antitumor effect of l-buthionine sulfoximine or ionizing radiation by copper con with 2,2´-biquinoline and sulfonamides on A549 2D and 3D lung cancer cell models. Jour Biological Inorganic Chemistry, 2022, 27, 329-343.	ıplexes nal of	1.1	1
336	Mn3O4-g-C3N4 composite to activate peroxymonosulfate for organic pollutants degrada Electron transfer and structure-dependence. Journal of Hazardous Materials, 2022, 434, 1	tion: 28818.	6.5	28
337	Oxidative distress in aging and age-related diseases: Spatiotemporal dysregulation of protoxidation and degradation. Biochimie, 2022, 195, 114-134.	ein	1.3	17
338	Studies on some biologically active Metal(II) chelates: Spectral, thermal, biological and mo modelling approaches. Journal of Molecular Structure, 2022, 1259, 132717.	vlecular	1.8	2
339	Hydrogen Peroxide in Ecological and Environmental Chemistry. Chemistry Journal of Mold 16, 28-45.	ova, 2021,	0.3	3
340	Fenton-like chemistry enables catalytic oxidative desulfurization of thioacetals and thioke hydrogen peroxide. Green Chemistry, 2022, 24, 4041-4049.	tals with	4.6	13
343	Degradation of Multiple Pharmaceuticals at Low Concentrations Via Cu-Doped-Graphitic (Nitride (G-C3n4) Under Simulated Solar Irradiation at a Wide Ph Range. SSRN Electronic Jo	Carbon ournal, 0, , .	0.4	0
344	H2o2 Activation by Two-Dimensional Metal-Organic Frameworks with Different Metal Noo Micropollutants Degradation: Metal Dependence of Boosting Reactive Oxygen Species Ge SSRN Electronic Journal, 0, , .	les for eneration.	0.4	0
345	Boosting the Oxidative Capacity of the Fe(0)/O2 System Via an Air-Breathing Cathode. SS Journal, 0, , .	RN Electronic	0.4	0
346	Plasma oxysterols in drug-free patients with schizophrenia. Journal of Steroid Biochemistr Molecular Biology, 2022, 221, 106123.	y and	1.2	7

#	Article	IF	CITATIONS
347	The effect of iron sulfate nanoparticles and their fortified bread on Wistar rats and human cell lines. Journal of Trace Elements in Medicine and Biology, 2022, 73, 127005.	1.5	1
349	A comparative study between olive oil and corn oil on oxidative metabolism. Food and Function, 0, , .	2.1	3
351	Relevance of Ferroptosis to Cardiotoxicity Caused by Anthracyclines: Mechanisms to Target Treatments. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	9
352	Low-Molecular-Weight Fe(III) Complexes for MRI Contrast Agents. Molecules, 2022, 27, 4573.	1.7	3
353	Controls on Reactive Oxygen Species Cycles in Yellowstone Hot Springs: Implications for Biosignature Preservation on Mars. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	0
354	Boosting the oxidative capacity of the Fe(0)/O2 system via an air-breathing cathode. Journal of Hazardous Materials, 2022, 438, 129552.	6.5	1
355	Photo-Fenton degradation of multiple pharmaceuticals at low concentrations via Cu-doped-graphitic carbon nitride (g-C3N4) under simulated solar irradiation at a wide pH range. Journal of Environmental Chemical Engineering, 2022, 10, 108290.	3.3	9
357	Morphophysiological Acclimation of Developed and Senescing Beech Leaves to Different Light Conditions. Forests, 2022, 13, 1333.	0.9	2
358	H2O2 activation by two-dimensional metal-organic frameworks with different metal nodes for micropollutants degradation: Metal dependence of boosting reactive oxygen species generation.	6.5	14
	Journal of Hazardous Materials, 2022, 440, 129757.		
359	Journal of Hazardous Materials, 2022, 440, 129757. Risk assessment and data gap filling of toxicity of metal oxide nanoparticles (Me _{O<i>x</i>}) Tj ETQq1 3456-3470.	1 0.7843 2.2	14 rgBT /O∨ 7
359 360	Journal of Hazardous Materials, 2022, 440, 129757. Risk assessment and data gap filling of toxicity of metal oxide nanoparticles (Me _{O<i>x</i>(i>}) Tj ETQq1 3456-3470. The potential role of ischaemia–reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochemical Journal, 2022, 479, 1653-1708.	1 0.7843 2.2 1.7	14 rgBT /Qv 7 27
359 360 362	Journal of Hazardous Materials, 2022, 440, 129757. Risk assessment and data gap filling of toxicity of metal oxide nanoparticles (Me _{O<i>x</i>(i>}) Tj ETQq1 3456-3470. The potential role of ischaemia–reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochemical Journal, 2022, 479, 1653-1708. Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells. Nanotoxicology, 2022, 16, 629-644.	1 0.7843 2.2 1.7 1.6	14 rgBT /Qv 7 27 6
359 360 362 363	Journal of Hazardous Materials, 2022, 440, 129757. Risk assessment and data gap filling of toxicity of metal oxide nanoparticles (Me _{O<i>×</i>}) Tj ETQq1 3456-3470. The potential role of ischaemia–reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochemical Journal, 2022, 479, 1653-1708. Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells. Nanotoxicology, 2022, 16, 629-644. Multiple types of programmed necrosis such as necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos contribute simultaneously to retinal damage after ischemia–reperfusion. Scientific Reports, 2022, 12, .	1 0.7843 2.2 1.7 1.6 1.6	14 rgBT /Ov 7 27 6 11
359 360 362 363	Journal of Hazardou's Materials, 2022, 440, 129757. Risk assessment and data gap filling of toxicity of metal oxide nanoparticles (Me _{O<i>×</i>}) Tj ETQq1 3456-3470. The potential role of ischaemia–reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochemical Journal, 2022, 479, 1653-1708. Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells. Nanotoxicology, 2022, 16, 629-644. Multiple types of programmed necrosis such as necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos contribute simultaneously to retinal damage after ischemia– reperfusion. Scientific Reports, 2022, 12, . The Role of Iron in DNA and Genomic Instability in Cancer, a Target for Iron Chelators That Can Induce ROS. Applied Sciences (Switzerland), 2022, 12, 10161.	1.0.7843 2.2 1.7 1.6 1.6 1.3	14 rgBT /Ov 27 6 11 6
 359 360 362 363 364 365 	Journal of Hazardous Materials, 2022, 440, 129757. Risk assessment and data gap filling of toxicity of metal oxide nanoparticles (Me _{O<i>×</i>3456-3470.The potential role of ischaemia–reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochemical Journal, 2022, 479, 1653-1708.Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells. Nanotoxicology, 2022, 16, 629-644.Multiple types of programmed necrosis such as necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos contribute simultaneously to retinal damage after ischemia– reperfusion. Scientific Reports, 2022, 12, .The Role of Iron in DNA and Genomic Instability in Cancer, a Target for Iron Chelators That Can Induce ROS. Applied Sciences (Switzerland), 2022, 12, 10161.Structural Investigation of Therapeutic Antibodies Using Hydroxyl Radical Protein Footprinting Methods. Antibodies, 2022, 11, 71.}	1.0.7843 2.2 1.7 1.6 1.6 1.3 1.2	14 rgBT /Ov 27 6 11 6 8
359 360 362 363 365 366	Journal of Hazardous Materials, 2022, 440, 129757. Risk assessment and data gap filling of toxicity of metal oxide nanoparticles (Me _{O<i>×</i>3456-3470.The potential role of ischaemia–reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochemical Journal, 2022, 479, 1653-1708.Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells. Nanotoxicology, 2022, 16, 629-644.Multiple types of programmed necrosis such as necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos contribute simultaneously to retinal damage after ischemia– reperfusion. Scientific Reports, 2022, 12, .The Role of Iron in DNA and Genomic Instability in Cancer, a Target for Iron Chelators That Can Induce ROS. Applied Sciences (Switzerland), 2022, 12, 10161.Structural Investigation of Therapeutic Antibodies Using Hydroxyl Radical Protein Footprinting Methods. Antibodies, 2022, 11, 71.Integration of physical and advanced oxidation processes for treatment and reuse of textile dye-bath effluents with minimum area footprint. Journal of Cleaner Production, 2023, 383, 135366.}	1.0.7843 2.2 1.7 1.6 1.6 1.3 1.2 4.6	14 rgBT /Ov 27 6 11 6 8 25
 359 360 362 363 364 365 366 367 	Journal of Hazardous Materials, 2022, 440, 129757. Risk assessment and data gap filling of toxicity of metal oxide nanoparticles (Me _{O<i>×<(i></i>}) TJ ETQq1 3456-3470. The potential role of ischaemiaâ€"reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochemical Journal, 2022, 479, 1653-1708. Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOX ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells. Nanotoxicology, 2022, 16, 629-644. Multiple types of programmed necrosis such as necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos contribute simultaneously to retinal damage after ischemiaâ€" reperfusion. Scientific Reports, 2022, 12, . The Role of Iron in DNA and Genomic Instability in Cancer, a Target for Iron Chelators That Can Induce ROS. Applied Sciences (Switzerland), 2022, 12, 10161. Structural Investigation of Therapeutic Antibodies Using Hydroxyl Radical Protein Footprinting Methods. Antibodies, 2022, 11, 71. Integration of physical and advanced oxidation processes for treatment and reuse of textile dye-bath effluents with minimum area footprint. Journal of Cleaner Production, 2023, 383, 135366. Prevention of Oxidative Stress and Diseases by Antioxidant Supplementation. Medicinal Chemistry, 2023, 19, 509-537.	1.0.7843 2.2 1.7 1.6 1.6 1.3 1.2 4.6 0.7	14 rgBT /Ov 27 6 11 6 8 25 3

#	Article	IF	CITATIONS
369	Correlation between Perturbation of Redox Homeostasis and Antibiofilm Capacity of Phytochemicals at Non-Lethal Concentrations. Antioxidants, 2022, 11, 2451.	2.2	2
370	Biological activity of mixed chelate copper(II) complexes, with substituted diimine and tridentate Schiff bases (NNO) and their hydrogenated derivatives as secondary ligands: CasiopeÃna's fourth generation. Journal of Inorganic Biochemistry, 2023, 242, 112097.	1.5	9
371	The role of ferroptosis in the side effects of dexamethasone. International Journal of Transgender Health, 2022, 15, 1330-1339.	1.1	1
372	Revealing the synergistic mechanism of the generation, migration and nearby utilization of reactive oxygen species in FeOCI-MOF yolk-shell reactors. Water Research, 2023, 231, 119631.	5.3	10
373	Superoxide: The enigmatic chemical chameleon in neutrophil biology. Immunological Reviews, 2023, 314, 181-196.	2.8	5
374	Enhanced H2O2 utilization efficiency in Fenton-like system for degradation of emerging contaminants: Oxygen vacancy-mediated activation of O2. Water Research, 2023, 230, 119562.	5.3	27
376	A coupled electrochemical process for schwertmannite recovery from acid mine drainage: Important roles of anodic reactive oxygen species and cathodic alkaline. Journal of Hazardous Materials, 2023, 451, 131075.	6.5	1
377	Unraveling the harmful effect of oxidative stress on male fertility: A mechanistic insight. Frontiers in Endocrinology, 0, 14, .	1.5	18
378	Crosstalk between Oxidative Stress and Aging in Neurodegeneration Disorders. Cells, 2023, 12, 753.	1.8	7
379	A Review on Wastewater Treatment Containing Organic Pollutants Using Advance Oxidation Processes. International Journal of Scientific Research in Science and Technology, 2023, , 50-75.	0.1	0
380	Plasma jet decontamination of sulfur mustard and its analogues in water by oxidation effect. Journal of Water Process Engineering, 2023, 53, 103647.	2.6	2
381	1,2,4,5-Tetrazine-tethered probes for fluorogenically imaging superoxide in live cells with ultrahigh specificity. Nature Communications, 2023, 14, .	5.8	7
388	Physiological Impact of Reactive Oxygen Species on Leaf. , 2023, , 95-113.		1
390	Advanced redox processes for sustainable water treatment. , 2023, 1, 666-681.		13
391	Nrf2: a dark horse in doxorubicin-induced cardiotoxicity. Cell Death Discovery, 2023, 9, .	2.0	8
393	H2O2 as Efficient Oxidizing Agent for Wool Processing and the Preparation of Wool-Based Materials. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 323-347.	0.3	0
395	Oxidative stress and the role of redox signalling in chronic kidney disease. Nature Reviews Nephrology, 2024, 20, 101-119.	4.1	2
399	Evaluating metal oxide nanoparticle (MeOx NP) toxicity with different types of nano descriptors mainly focusing on simple periodic table-based descriptors: a mini-review. Environmental Science: Nano, 2023, 10, 2989-3011.	2.2	2

ARTICLE

IF CITATIONS