CITATION REPORT List of articles citing

Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matte

DOI: 10.1016/s0891-5849(01)00703-1 Free Radical Biology and Medicine, 2001, 31, 1132-8.

Source: https://exaly.com/paper-pdf/33253621/citation-report.pdf

Version: 2024-04-27

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
372	Comparison of the pro-oxidative and proinflammatory effects of organic diesel exhaust particle chemicals in bronchial epithelial cells and macrophages. 2002 , 169, 4531-41		260
371	The origin, fate, and health effects of combustion by-products: a research framework. 2002 , 110, 1155-	62	44
370	Protein oxidation at the air-lung interface. 2003 , 25, 375-96		77
369	Pulmonary arterial endothelial cells affect the redox status of coenzyme Q0. <i>Free Radical Biology and Medicine</i> , 2003 , 34, 892-907	7.8	16
368	Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). <i>Free Radical Biology and Medicine</i> , 2003 , 34, 1369-82	7.8	331
367	Reactive oxygen species in pulmonary inflammation by ambient particulates. <i>Free Radical Biology and Medicine</i> , 2003 , 35, 327-40	7.8	284
366	X-ray spectroscopic studies of the high temperature reduction of Cu(II)O by 2-chlorophenol on a simulated fly ash surface. <i>Environmental Science & Environmental Science & En</i>	10.3	42
365	Nicotinamide adenine dinucleotide (phosphate) reduced:quinone oxidoreductase and glutathione S-transferase M1 polymorphisms and childhood asthma. 2003 , 168, 1199-204		86
364	Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. 2003 , 285, L671-9		211
363	Inhaled particles and lung cancer. Part A: Mechanisms. 2004 , 109, 799-809		477
362	Physicochemical characteristics and biological activities of seasonal atmospheric particulate matter sampling in two locations of Paris. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	89
361	Genotoxicity of airborne particulate matter: the role of cell-particle interaction and of substances with adduct-forming and oxidizing capacity. 2004 , 565, 1-10		55
360	Oxidant mechanisms in response to ambient air particles. 2004 , 25, 169-82		180
359	An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. 2004 , 423, 200-12		179
358	9,10-Phenanthraquinone in diesel exhaust particles downregulates Cu,Zn-SOD and HO-1 in human pulmonary epithelial cells: intracellular iron scavenger 1,10-phenanthroline affords protection against apoptosis. <i>Free Radical Biology and Medicine</i> , 2005 , 38, 388-95	7.8	67
357	Genotoxicity and physicochemical characteristics of traffic-related ambient particulate matter. 2005 , 46, 71-80		79
356	Nitrotyrosine-modified proteins and oxidative stress induced by diesel exhaust particles. 2005 , 26, 280	-92	40

(2006-2005)

355	Determination of selected polycyclic aromatic hydrocarbons and oxygenated polycyclic aromatic hydrocarbons in aerosol samples by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry. 2005 , 381, 508-19		60	
354	Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. 2005 , 2, 10		602	
353	Combustion of dried animal dung as biofuel results in the generation of highly redox active fine particulates. 2005 , 2, 6		77	
352	Diesel exhaust activates redox-sensitive transcription factors and kinases in human airways. 2005 , 289, L724-30		127	
351	Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter. 2005 , 10, 37-51		151	
350	Exposure to traffic exhausts and oxidative DNA damage. 2005 , 62, 216-22		78	
349	Development and application of an electron spin resonance spectrometry method for the determination of oxygen free radical formation by particulate matter. <i>Environmental Science & Technology</i> , 2005 , 39, 8420-6	10.3	49	
348	Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. <i>Environmental Research</i> , 2005 , 99, 40-7	7.9	472	
347	Comparative study of the formation of oxidative damage marker 8-hydroxy-2©deoxyguanosine (8-OHdG) adduct from the nucleoside 2©deoxyguanosine by transition metals and suspensions of particulate matter in relation to metal content and redox reactivity. 2005 , 39, 1071-81		67	
346	Formation of cyclopentadienyl radical from the gas-phase pyrolysis of hydroquinone, catechol, and phenol. <i>Environmental Science & Environmental Scien</i>	10.3	62	
345	Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. 2006 , 92, 5-22		924	
344	Aerosol-borne quinones and reactive oxygen species generation by particulate matter extracts. <i>Environmental Science & Environmental &</i>	10.3	170	
343	Oxidant denuder sampling for analysis of polycyclic aromatic hydrocarbons and their oxygenated derivates in ambient aerosol: evaluation of sampling artefact. <i>Chemosphere</i> , 2006 , 62, 1889-98	8.4	62	
342	Toxicological assessment of ambient and traffic-related particulate matter: a review of recent studies. 2006 , 613, 103-22		311	
341	The role of iron in reactive oxygen species generation from diesel exhaust particles. 2006 , 20, 851-7		42	
340	The potential risks of nanomaterials: a review carried out for ECETOC. 2006 , 3, 11		870	
339	Determination of oxygenated polycyclic aromatic hydrocarbons in particulate matter using high-performance liquid chromatography-tandem mass spectrometry. 2006 , 1133, 241-7		43	
338	Physicochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars. <i>Atmospheric Environment</i> , 2006 , 40, 6988-7004	5.3	169	

337	Bioreactivity of particulate matter in Beijing air: results from plasmid DNA assay. <i>Science of the Total Environment</i> , 2006 , 367, 261-72	10.2	43
336	Origin and health impacts of emissions of toxic by-products and fine particles from combustion and thermal treatment of hazardous wastes and materials. 2006 , 114, 810-7		128
335	Organic extracts of urban aerosol (2006, 90, 377-84		21
334	Determination of Selective Quinones and Quinoid Radicals in Airborne Particulate Matter and Vehicular Exhaust Particles. 2006 , 3, 118		55
333	Oxidant generation by particulate matter: from biologically effective dose to a promising, novel metric. 2007 , 64, 73-4		138
332	Relationship between radical generation by urban ambient particulate matter and pulmonary function of school children. 2006 , 69, 245-62		28
331	Is air pollution a cause of cardiovascular disease? Updated review and controversies. 2007 , 22, 115-37		56
330	Cigarette smoke-induced proinflammatory alterations in the endothelial phenotype: role of NAD(P)H oxidase activation. 2007 , 292, H130-9		162
329	Concentration of oxygenated polycyclic aromatic hydrocarbons and oxygen free radical formation from urban particulate matter. 2007 , 70, 1866-9		51
328	Lung fibrotic responses to particle exposure. 2007 , 35, 148-53		77
327	Toxicology of Nanoparticles in Environmental Air Pollution. 2007,		
326	[Air pollution and respiratory diseases: a central role for oxidative stress]. 2007, 23, 497-501		5
325	Diesel exhaust particles induce matrix metalloprotease-1 in human lung epithelial cells via a NADP(H) oxidase/NOX4 redox-dependent mechanism. 2007 , 293, L170-81		72
324	Daytime resolved analysis of polycyclic aromatic hydrocarbons in urban aerosol samples - impact of sources and meteorological conditions. <i>Chemosphere</i> , 2007 , 67, 934-43	8.4	52
323	Source-dependent variation in hydroxyl radical production by airborne particulate matter. <i>Environmental Science & Environmental Science & Environment</i>	10.3	45
322	Quinone emissions from gasoline and diesel motor vehicles. <i>Environmental Science & Environmental Scie</i>	10.3	111
321	Impact of air pollution and genotype variability on DNA damage in Prague policemen. 2007, 172, 37-47		56
320	Genotoxicity of poorly soluble particles. 2007 , 19 Suppl 1, 189-98		203

319	Formation and stabilization of persistent free radicals. 2007 , 31, 521-528		198
318	The health effects of combustion-generated aerosols. 2007 , 31, 2757-2770		248
317	Relationship between redox activity and chemical speciation of size-fractionated particulate matter. 2007 , 4, 5		180
316	Combustion-derived nanoparticles: mechanisms of pulmonary toxicity. 2007 , 34, 1044-50		104
315	Assessment of oxidative DNA damage formation by organic complex mixtures from airborne particles PM(10). 2007 , 620, 135-44		18
314	Carbon black particles increase reactive oxygen species formation in rat alveolar macrophages in vitro. 2007 , 81, 441-6		44
313	Production of ozone and reactive oxygen species after welding. 2007 , 53, 513-8		33
312	Reduced alveolar macrophage migration induced by acute ambient particle (PM10) exposure. 2008 , 24, 243-52		28
311	[Influence of environmental factors on allergy development]. 2008, 56, 752-8		3
310	Diesel exhaust increases EGFR and phosphorylated C-terminal Tyr 1173 in the bronchial epithelium. 2008 , 5, 8		57
309		12.8	57 113
	2008, 5, 8 Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic. <i>Journal of Hazardous Materials</i>	12.8	
309	 2008, 5, 8 Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic. <i>Journal of Hazardous Materials</i>, 2008, 156, 277-84 Ab initio study of the formation and degradation reactions of semiquinone and phenoxyl radicals. 	12.8	113
309	Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic. <i>Journal of Hazardous Materials</i> , 2008, 156, 277-84 Ab initio study of the formation and degradation reactions of semiquinone and phenoxyl radicals. 2008, 848, 16-23 On the interaction between glyceraldehyde-3-phosphate dehydrogenase and airborne particles:		113
309 308 307	Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic. <i>Journal of Hazardous Materials</i> , 2008, 156, 277-84 Ab initio study of the formation and degradation reactions of semiquinone and phenoxyl radicals. 2008, 848, 16-23 On the interaction between glyceraldehyde-3-phosphate dehydrogenase and airborne particles: Evidence for electrophilic species. <i>Atmospheric Environment</i> , 2008, 42, 517-529 Atmospheric formation of 9,10-phenanthraquinone in the Los Angeles air basin. <i>Atmospheric</i>	5.3	113 32 23
309 308 307 306	Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic. <i>Journal of Hazardous Materials</i> , 2008, 156, 277-84 Ab initio study of the formation and degradation reactions of semiquinone and phenoxyl radicals. 2008, 848, 16-23 On the interaction between glyceraldehyde-3-phosphate dehydrogenase and airborne particles: Evidence for electrophilic species. <i>Atmospheric Environment</i> , 2008, 42, 517-529 Atmospheric formation of 9,10-phenanthraquinone in the Los Angeles air basin. <i>Atmospheric Environment</i> , 2008, 42, 2312-2319 Polycyclic aromatic hydrocarbons in size-segregated particulate matter from six urban sites in	5·3 5·3	113 32 23 58
309 308 307 306 305	Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic. <i>Journal of Hazardous Materials</i> , 2008, 156, 277-84 Ab initio study of the formation and degradation reactions of semiquinone and phenoxyl radicals. 2008, 848, 16-23 On the interaction between glyceraldehyde-3-phosphate dehydrogenase and airborne particles: Evidence for electrophilic species. <i>Atmospheric Environment</i> , 2008, 42, 517-529 Atmospheric formation of 9,10-phenanthraquinone in the Los Angeles air basin. <i>Atmospheric Environment</i> , 2008, 42, 2312-2319 Polycyclic aromatic hydrocarbons in size-segregated particulate matter from six urban sites in Europe. <i>Atmospheric Environment</i> , 2008, 42, 9087-9097 Oxidatively damaged DNA and its repair after experimental exposure to wood smoke in healthy	5·3 5·3	113 32 23 58 82

301	Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive - a case study. 2008 , 20, 547-66		234
300	Mechanisms of molecular product and persistent radical formation from the pyrolysis of hydroquinone. <i>Chemosphere</i> , 2008 , 71, 107-13	8.4	35
299	Mechanisms of product formation from the pyrolytic thermal degradation of catechol. <i>Chemosphere</i> , 2008 , 73, 629-33	8.4	54
298	Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potentiala workshop report and consensus statement. 2008 , 20, 75-99		407
297	Characterization of products formed in the reaction of ozone with alpha-pinene: case for organic peroxides. 2008 , 10, 966-74		31
296	Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe. 2008 , 20, 1215-31		62
295	Source apportionment of in vitro reactive oxygen species bioassay activity from atmospheric particulate matter. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	136
294	Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter. <i>Environmental Science & Environmental Science</i>	10.3	176
293	Radicals from the Gas-Phase Pyrolysis of Hydroquinone: 1. Temperature Dependence of the Total Radical Yield. 2008 , 22, 2986-2990		23
292	Mechanisms related to the genotoxicity of particles in the subway and from other sources. 2008 , 21, 726-31		100
291	Development and Laboratory Testing of an Automated Monitor for the Measurement of Atmospheric Particle-Bound Reactive Oxygen Species (ROS). 2008 , 42, 629-635		51
290	A Macrophage-Based Method for the Assessment of the Reactive Oxygen Species (ROS) Activity of Atmospheric Particulate Matter (PM) and Application to Routine (Daily-24 h) Aerosol Monitoring Studies. 2008 , 42, 946-957		127
289	Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations. 2008 , 294, H2721-35		211
288	Cardiovascular effects of air pollution. 2008, 115, 175-87		442
287	Chapter 9 Cell Signaling by Oxidants: Pathways Leading to Activation of Mitogen-activated Protein Kinases (MAPK) and Activator Protein-1 (AP-1). 2008 , 191-209		3
286	Oxidative stress and accelerated vascular aging: implications for cigarette smoking. 2009 , 14, 3128-44		126
285	Associations of urban air particulate composition with inflammatory and cytotoxic responses in RAW 246.7 cell line. 2009 , 21, 994-1006		73
284	Particle-Lung Interactions. 2009 ,		5

(2010-2009)

283	The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential. 2009 , 117, 1116-23		179
282	Role of Paris PM(2.5) components in the pro-inflammatory response induced in airway epithelial cells. 2009 , 261, 126-35		50
281	Evaluation of Direct-Oxidative DNA Damage on Human Lung Epithelial Cells Exposed to Urban Airborne Particulate Matter. 2009 , 9, 69-77		1
280	The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles. 2009 , 6, 13		84
279	Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties. 2009 , 6, 29		228
278	Synergistic effect of co-exposure to carbon black and Fe2O3 nanoparticles on oxidative stress in cultured lung epithelial cells. 2009 , 6, 4		63
277	Influence of ozone on traffic-related particulate matter on the generation of hydroxyl radicals through a heterogeneous synergistic effect. <i>Journal of Hazardous Materials</i> , 2009 , 162, 886-92	2.8	21
276	PM2.5 constituents and oxidative DNA damage in humans. <i>Environmental Science & Environmental Science </i>	0.3	103
275	Generation of hydroxyl radicals from ambient fine particles in a surrogate lung fluid solution. Environmental Science & amp; Technology, 2009, 43, 922-7	0.3	80
274	Diesel exhaust particles induce apoptosis via p53 and Mdm2 in J774A.1 macrophage cell line. 2009 , 23, 21-8		19
273	N-acetylcysteineamide (NACA) prevents inflammation and oxidative stress in animals exposed to diesel engine exhaust. 2009 , 187, 187-93		32
²⁷³ ²⁷²			3 ²
	diesel engine exhaust. 2009 , 187, 187-93 Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of		
272	diesel engine exhaust. 2009, 187, 187-93 Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. 2009, 6, 445-62 Air pollution and antibodies against modified lipoproteins are associated with atherosclerosis and		303
272 271	diesel engine exhaust. 2009, 187, 187-93 Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. 2009, 6, 445-62 Air pollution and antibodies against modified lipoproteins are associated with atherosclerosis and vascular remodeling in hyperlipemic mice. 2009, 207, 368-73 EPR spectra of aerosol particles formed by pyrolysis of C3H8 plus Ar and C3H8 plus Fe(CO)5 plus Ar		303 61
272 271 270	Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. 2009, 6, 445-62 Air pollution and antibodies against modified lipoproteins are associated with atherosclerosis and vascular remodeling in hyperlipemic mice. 2009, 207, 368-73 EPR spectra of aerosol particles formed by pyrolysis of C3H8 plus Ar and C3H8 plus Fe(CO)5 plus Ar mixtures in a flow reactor. 2009, 35, 625-637 Carbon-Centered Free Radicals in Particulate Matter Emissions from Wood and Coal Combustion.		303 61 2
272 271 270 269	Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. 2009, 6, 445-62 Air pollution and antibodies against modified lipoproteins are associated with atherosclerosis and vascular remodeling in hyperlipemic mice. 2009, 207, 368-73 EPR spectra of aerosol particles formed by pyrolysis of C3H8 plus Ar and C3H8 plus Fe(CO)5 plus Ar mixtures in a flow reactor. 2009, 35, 625-637 Carbon-Centered Free Radicals in Particulate Matter Emissions from Wood and Coal Combustion. 2009, 23, 2523-2526 Oxidative Stress More Strongly Induced by ortho- Than para-quinoid Polycyclic Aromatic		303 61 2
272 271 270 269 268	Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. 2009, 6, 445-62 Air pollution and antibodies against modified lipoproteins are associated with atherosclerosis and vascular remodeling in hyperlipemic mice. 2009, 207, 368-73 EPR spectra of aerosol particles formed by pyrolysis of C3H8 plus Ar and C3H8 plus Fe(CO)5 plus Ar mixtures in a flow reactor. 2009, 35, 625-637 Carbon-Centered Free Radicals in Particulate Matter Emissions from Wood and Coal Combustion. 2009, 23, 2523-2526 Oxidative Stress More Strongly Induced by ortho- Than para-quinoid Polycyclic Aromatic Hydrocarbons in A549 Cells. 2009, 55, 845-850		303 61 2 66 45

265	Role of oxidative damage in toxicity of particulates. 2010 , 44, 1-46		307
264	Roles of oxidative stress in signaling and inflammation induced by particulate matter. 2010 , 26, 481-98		113
263	Chemical composition of ambient particulate matter and redox activity. 2010 , 169, 597-606		36
262	Exposure assessment of PM2.5 and urinary 8-OHdG for diesel exhaust emission inspector. <i>Science of the Total Environment</i> , 2010 , 408, 505-10	10.2	31
261	Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: Molecular characterization and occurrence. <i>Atmospheric Environment</i> , 2010 , 44, 1831-1846	5.3	227
260	The application of profluorescent nitroxides to detect reactive oxygen species derived from combustion-generated particulate matter: Cigarette smoke [A case study. <i>Atmospheric Environment</i> , 2010 , 44, 2224-2230	5.3	36
259	Personal exposure to particulate PAHs and anthraquinone and oxidative DNA damages in humans. <i>Chemosphere</i> , 2010 , 81, 1280-5	8.4	88
258	Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. 2010 , 121, 2331-78		4009
257	DNA strand breakage and lipid peroxidation after exposure to welding fumes in vivo. 2010 , 25, 71-6		16
256	Particulate matter oxidative potential from waste transfer station activity. 2010 , 118, 493-8		38
255	Radicals from the gas-phase pyrolysis of catechol: 1. o-Semiquinone and ipso-catechol radicals. 2010 , 114, 2306-12		28
254	Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter. <i>Environmental Science & Environmental Science & En</i>	10.3	77
253	Oxidative damage induced by carcinogenic polycyclic aromatic hydrocarbons and organic extracts from urban air particulate matter. 2010 , 696, 114-21		49
252	The time course of vasoconstriction and endothelin receptor A expression in pulmonary arterioles of mice continuously exposed to ambient urban levels of air pollution. <i>Environmental Research</i> , 2010 , 110, 237-43	7.9	17
251	In vitro and in vivo assessment of pulmonary risk associated with exposure to combustion generated fine particles. 2010 , 29, 173-82		44
250	An acellular assay to assess the genotoxicity of complex mixtures of organic pollutants bound on size segregated aerosol. Part II: oxidative damage to DNA. 2010 , 198, 312-6		15
249	Ocular discomfort by environmental and personal risk factors altering the precorneal tear film. 2010 , 199, 203-12		66
248	The Role of Stable Free Radicals, Metals and PAHs of Airborne Particulate Matter in Mechanisms of Oxidative Stress and Carcinogenicity. 2010 , 411-426		9

247	In vivo and In vitro Assessment of Particulate Matter Toxicology. 2010 , 427-449		1
246	Reactive oxygen species activity and chemical speciation of size-fractionated atmospheric particulate matter from Lahore, Pakistan: an important role for transition metals. 2010 , 12, 704-15		102
245	Air pollution and effects on reproductive-system functions globally with particular emphasis on the Brazilian population. 2010 , 13, 1-15		35
244	Development of sensing system for carbonaceous particles using LIBS combined with LII temporal analytical technique. 2010 ,		O
243	Cytotoxic and proinflammatory effects of ambient and source-related particulate matter (PM) in relation to the production of reactive oxygen species (ROS) and cytokine adsorption by particles. 2010 , 22 Suppl 2, 37-47		105
242	Inflammation and tissue damage in mouse lung by single and repeated dosing of urban air coarse and fine particles collected from six European cities. 2010 , 22, 402-16		74
241	Generation of reactive oxygen species mediated by humic-like substances in atmospheric aerosols. <i>Environmental Science & Environmental Science & Envi</i>	10.3	165
240	Comparison of the Chemical and Oxidative Characteristics of Particulate Matter (PM) Collected by Different Methods: Filters, Impactors, and BioSamplers. 2011 , 45, 1294-1304		32
239	Redox-cycling and H2O2 generation by fabricated catecholic films in the absence of enzymes. 2011 , 12, 880-8		48
238	Evaluation of the effects of ozone oxidation on redox-cycling activity of two-stroke engine exhaust particles. <i>Environmental Science & Environmental </i>	10.3	57
237	Ambient particulate matter on DNA damage in HepG2 cells. 2011 , 27, 87-95		12
236	Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions. <i>Environmental Science & Environmental & Envi</i>	10.3	179
235	Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines. 2011 , 24, 168-84		169
234	Method development for the measurement of quinone levels in urine. 2011 , 879, 3592-8		6
233	Modification of the Versatile Aerosol Concentration Enrichment System (VACES) for conducting inhalation exposures to semi-volatile vapor phase pollutants. 2011 , 42, 555-566		6
232	Biomimetic fabrication of information-rich phenolic-chitosan films. 2011 , 7, 9601		42
231	Laboratory and field testing of an automated atmospheric particle-bound reactive oxygen species sampling-analysis system. 2011 , 2011, 419476		28
230	Oxidative stress and air pollution exposure. 2011 , 2011, 487074		350

229	Quantification of aerosol chemical composition using continuous single particle measurements. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 7027-7044	6.8	57
228	Why is particulate matter produced by wildfires toxic to lung macrophages?. 2011 , 257, 182-8		32
227	Nitration of particle-associated PAHs and their derivatives (nitro-, oxy-, and hydroxy-PAHs) with NO3 radicals. <i>Atmospheric Environment</i> , 2011 , 45, 2515-2521	5.3	62
226	Hydrogen peroxide generation from ⊞and Epinene and toluene secondary organic aerosols. <i>Atmospheric Environment</i> , 2011 , 45, 3149-3156	5.3	47
225	The reactive oxidant potential of different types of aged atmospheric particles: An outdoor chamber study. <i>Atmospheric Environment</i> , 2011 , 45, 3848-3855	5.3	75
224	Slow dissociation of a charged ligand: analysis of the primary quinone Q(A) site of photosynthetic bacterial reaction centers. 2011 , 133, 17375-85		12
223	Association of polycyclic aromatic hydrocarbons (PAHs) and metallic species in a tropical urban atmosphere [Delhi, India. 2011 , 68, 107-126		19
222	Particulates and Oxidative Stress. 2011 , 249-271		
221	Effects of Nanoparticles on the Pulmonary Vasculature. 2011 , 317-350		1
220	Particle Characterization. 2011 , 59-87		1
220	Particle Characterization. 2011, 59-87 Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior. 2011, 18, e209-26		91
	Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior.		
219	Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior. 2011 , 18, e209-26		91
219	Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior. 2011, 18, e209-26 Oxidative stress induced by urban fine particles in cultured EA.hy926 cells. 2011, 30, 579-90 Development of a sensitive long pathlength absorbance photometer to quantify peroxides in		91
219218217	Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior. 2011, 18, e209-26 Oxidative stress induced by urban fine particles in cultured EA.hy926 cells. 2011, 30, 579-90 Development of a sensitive long pathlength absorbance photometer to quantify peroxides in aerosol particles (Peroxide-LOPAP). 2012, Development of a sensitive long path absorption photometer to quantify peroxides in aerosol		91 42 3
219218217216	Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior. 2011, 18, e209-26 Oxidative stress induced by urban fine particles in cultured EA.hy926 cells. 2011, 30, 579-90 Development of a sensitive long pathlength absorbance photometer to quantify peroxides in aerosol particles (Peroxide-LOPAP). 2012, Development of a sensitive long path absorption photometer to quantify peroxides in aerosol particles (Peroxide-LOPAP). 2012, 5, 2339-2348 Hydrogen Peroxide Associated with Ambient Fine-Mode, Diesel, and Biodiesel Aerosol Particles in		91 42 3
219218217216215	Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior. 2011, 18, e209-26 Oxidative stress induced by urban fine particles in cultured EA.hy926 cells. 2011, 30, 579-90 Development of a sensitive long pathlength absorbance photometer to quantify peroxides in aerosol particles (Peroxide-LOPAP). 2012, Development of a sensitive long path absorption photometer to quantify peroxides in aerosol particles (Peroxide-LOPAP). 2012, 5, 2339-2348 Hydrogen Peroxide Associated with Ambient Fine-Mode, Diesel, and Biodiesel Aerosol Particles in Southern California. 2012, 46, 394-402	10.3	91 42 3 35 25

211	Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling. <i>Environmental Science & Environmental Sci</i>	10.3	49
210	Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. 2012 , 15, 1-21		334
209	Rapid and direct low micromolar NMR method for the simultaneous detection of hydrogen peroxide and phenolics in plant extracts. 2012 , 60, 4508-13		24
208	Jacaranone induces apoptosis in melanoma cells via ROS-mediated downregulation of Akt and p38 MAPK activation and displays antitumor activity in vivo. <i>PLoS ONE</i> , 2012 , 7, e38698	3.7	40
207	The chemical biology of naphthoquinones and its environmental implications. 2012, 52, 221-47		219
206	Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments. <i>Free Radical Biology and Medicine</i> , 2012 , 52, 2038-46	7.8	117
205	Characterization, sources and redox activity of fine and coarse particulate matter in Milan, Italy. <i>Atmospheric Environment</i> , 2012 , 49, 130-141	5.3	75
204	In vitro toxicological characterization of particulate emissions from residential biomass heating systems based on old and new technologies. <i>Atmospheric Environment</i> , 2012 , 50, 24-35	5.3	54
203	Using a pattern recognition approach to link inorganic chemical fingerprints of ambient PM2.5 0 .1 with in vitro biological effects. 2012 , 5, 125-147		6
202	Graphenic Nanoparticles from Combustion Sources Scavenge Hydroxyl Radicals Depending Upon Their Structure. 2013 , 3, 112-122		9
202		10.3	9 134
	Their Structure. 2013 , 3, 112-122 Increased biomass burning due to the economic crisis in Greece and its adverse impact on	10.3	
201	Their Structure. 2013, 3, 112-122 Increased biomass burning due to the economic crisis in Greece and its adverse impact on wintertime air quality in Thessaloniki. <i>Environmental Science & Environmental & Environme</i>	10.3	134
201	Their Structure. 2013, 3, 112-122 Increased biomass burning due to the economic crisis in Greece and its adverse impact on wintertime air quality in Thessaloniki. <i>Environmental Science & Environmental & Environme</i>		134 45
201 200 199	Increased biomass burning due to the economic crisis in Greece and its adverse impact on wintertime air quality in Thessaloniki. <i>Environmental Science & Damp; Technology</i> , 2013 , 47, 13313-20 Materials science. Nature@ other self-assemblers. 2013 , 341, 136-7 Environmentally persistent free radicals and their lifetimes in PM2.5. <i>Environmental Science & Damp; Technology</i> , 2013 , 47, 8172-8 Particulate matter containing environmentally persistent free radicals and adverse infant		134 45 132
201 200 199 198	Increased biomass burning due to the economic crisis in Greece and its adverse impact on wintertime air quality in Thessaloniki. <i>Environmental Science & Damp; Technology</i> , 2013 , 47, 13313-20 Materials science. Nature@ other self-assemblers. 2013 , 341, 136-7 Environmentally persistent free radicals and their lifetimes in PM2.5. <i>Environmental Science & Damp; Technology</i> , 2013 , 47, 8172-8 Particulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects: a review. 2013 , 27, 56-68	10.3	134 45 132 69
201 200 199 198	Increased biomass burning due to the economic crisis in Greece and its adverse impact on wintertime air quality in Thessaloniki. <i>Environmental Science & Damp; Technology</i> , 2013 , 47, 13313-20 Materials science. Nature@ other self-assemblers. 2013 , 341, 136-7 Environmentally persistent free radicals and their lifetimes in PM2.5. <i>Environmental Science & Damp; Technology</i> , 2013 , 47, 8172-8 Particulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects: a review. 2013 , 27, 56-68 Indoor air pollution and risk of lung cancer among Chinese female non-smokers. 2013 , 24, 439-50	10.3	134 45 132 69

193	Oxidative stress in airway diseases. 2013 , 10 Suppl, S150-7		89
192	ATR-IR study of ozone initiated heterogeneous oxidation of squalene in an indoor environment. <i>Environmental Science & Environmental &</i>	10.3	48
191	Comparison of Emissions from Wood Combustion. Part 2: Impact of Combustion Conditions on Emission Factors and Characteristics of Particle-Bound Organic Species and Polycyclic Aromatic Hydrocarbon (PAH)-Related Toxicological Potential. 2013 , 27, 1482-1491		56
190	Seasonal and spatial variation in reactive oxygen species activity of quasi-ultrafine particles (PM0.25) in the Los Angeles metropolitan area and its association with chemical composition. <i>Atmospheric Environment</i> , 2013 , 79, 566-575	5.3	34
189	Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species. 2013 , 26, 1862-71		46
188	Filterable redox cycling activity: a comparison between diesel exhaust particles and secondary organic aerosol constituents. <i>Environmental Science & Environmental & </i>	10.3	72
187	Development and testing of an online method to measure ambient fine particulate Reactive Oxygen Species (ROS) based on the 2070 dichlorofluorescin (DCFH) assay. 2013 ,		
186	Development and testing of an online method to measure ambient fine particulate reactive oxygen species (ROS) based on the 2Q7Odichlorofluorescin (DCFH) assay. 2013 , 6, 1647-1658		36
185	Exposure to heavy metals and polycyclic aromatic hydrocarbons and DNA damage in taiwanese traffic conductors. 2013 , 22, 102-8		31
184	Naphthalene SOA: redox activity and naphthoquinone gasparticle partitioning. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 9731-9744	6.8	72
183	Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. 2013 , 10, 3886-907		393
182	Is household air pollution a risk factor for eye disease?. 2013 , 10, 5378-98		45
181	Gas Chromatography Mass Spectrometry Identification of Labile Radicals Formed during Pyrolysis of Catechool, Hydroquinone, and Phenol through Neutral Pyrolysis Product Mass Analysis. 2013 , 2013, 1-8		5
180	General threshold limit value for dust (R fraction) (Biopersistent granular dusts) [MAK Value Documentation, 2012]. 2014 , 1-78		3
179	Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries. 2014 , 24, 42-50		5
178	Studies on Respiratory Disorders. <i>Oxidative Stress in Applied Basic Research and Clinical Practice</i> , 2014 ,		1
177	Oxidative potential and chemical speciation of size-resolved particulate matter (PM) at near-freeway and urban background sites in the greater Beirut area. <i>Science of the Total Environment</i> , 2014 , 470-471, 417-26	10.2	69
176	Toxic assessment of urban atmospheric particle-bound PAHs: relevance of composition and particle size in Barcelona (Spain). 2014 , 184, 555-62		55

175	A novel NMR method for the determination and monitoring of evolution of hydrogen peroxide in aqueous solutions. 2014 , 406, 3371-5		8
174	Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5. <i>Environmental Science & Environmental Science & Environme</i>	10.3	120
173	Nanoparticles, lung injury, and the role of oxidant stress. 2014 , 76, 447-65		86
172	Seasonal and spatial variation in dithiothreitol (DTT) activity of quasi-ultrafine particles in the Los Angeles Basin and its association with chemical species. 2014 , 49, 441-51		69
171	LABORATORY EVALUATION OF A MICROFLUIDIC ELECTROCHEMICAL SENSOR FOR AEROSOL OXIDATIVE LOAD. 2014 , 48, 489-497		19
170	Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame. 2014 , 16, 25862-75		49
169	Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. 2014 , 762, 133-66		192
168	Environmentally persistent free radicals (EPFRs). 3. Free versus bound hydroxyl radicals in EPFR aqueous solutions. <i>Environmental Science & Environmental Science & Environme</i>	10.3	43
167	Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation. <i>Environmental Science & Environmental Scien</i>	10.3	397
166	Redox activity and PAH content in size-classified nanoparticles emitted by a diesel engine fuelled with biodiesel and diesel blends. 2014 , 116, 490-497		45
165	The combined effects of physicochemical properties of size-fractionated ambient particulate matter on toxicity in human A549 lung epithelial cells. 2014 , 1, 145-156		63
164	Allgemeiner Staubgrenzwert (A-Fraktion) (Granulfe biobestfidige Stūbe (GBS)) [MAK Value Documentation in German language, 2012]. 2014 , 1-78		
163	Trace elements pollution and toxicity of airborne PM 10 in a coal industrial city. 2015, 6, 469-475		21
162	Development of helium-microwave-induced plasma-atomic emission spectroscopy system with two-way spectroscopic analysis. 2015 ,		1
161	Nitrative stress, oxidative stress and plasma endothelin levels after inhalation of particulate matter and ozone. 2015 , 12, 28		18
160	Fine particulate matter in acute exacerbation of COPD. 2015 , 6, 294		90
159	Quantitative investigation of free radicals in bio-oil and their potential role in condensed-phase polymerization. 2015 , 8, 894-900		51
158	Xenobiotic pulmonary exposure and systemic cardiovascular response via neurological links. 2015 , 309, H1609-20		4

157	Production of hydroxyl radicals from Fe-containing fine particles in Guangzhou, China. <i>Atmospheric Environment</i> , 2015 , 123, 72-78	7
156	New Methods for Personal Exposure Monitoring for Airborne Particles. 2015 , 2, 399-411	71
155	Organic extracts from African dust storms stimulate oxidative stress and induce inflammatory responses in human lung cells through Nrf2 but not NF- B . 2015 , 39, 845-56	19
154	Chemical reactivities of ambient air samples in three Southern California communities. 2015 , 65, 270-7	10
153	Phenols from pyrolysis and co-pyrolysis of tobacco biomass components. <i>Chemosphere</i> , 2015 , 138, 259-6 5 .4	32
152	A new method and tool for detection and quantification of PM oxidative potential. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 12469-78	8
151	Oxidative potential of particulate matter at a German motorway. 2015 , 17, 868-76	12
150	Toxicity of particulate matter from incineration of nanowaste. 2015 , 2, 143-154	32
149	Connecting the oxidation of soot to its redox cycling abilities. 2015 , 6, 6812	71
148	Why highly polluting methods are used to manufacture bricks in Bangladesh. 2015 , 28, 68-74	26
147	Reactive Ambient Particles. 2015 , 1-24	2
146	Impacts of Air Pollution on Reproductive Health. 2015 , 25-50	
145	Direct determination of quinones in fine atmospheric particulate matter by GCMS. 2015, 118, 26-31	11
144	Particulate Oxidative Burden as a Predictor of Exhaled Nitric Oxide in Children with Asthma. 2016 , 124, 1616-1622	36
143	Addressing Emerging Risks: Scientific and Regulatory Challenges Associated with Environmentally Persistent Free Radicals. 2016 , 13,	26
142	The relative importance of tailpipe and non-tailpipe emissions on the oxidative potential of ambient particles in Los Angeles, CA. 2016 , 189, 361-80	30
141	Development of an automated sampling-analysis system for simultaneous measurement of reactive oxygen species (ROS) in gas and particle phases: GAC-ROS. <i>Atmospheric Environment</i> , 2016 , 134, 18-26	18
140	Oxidative potential of secondary organic aerosols produced from photooxidation of different hydrocarbons using outdoor chamber under ambient sunlight. <i>Atmospheric Environment</i> , 2016 , 131, 382–389	42

139	Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms. 2016 , 90, 1541-53		152
138	Urban PM oxidative potential: Importance of chemical species and comparison of two spectrophotometric cell-free assays. 2016 , 219, 72-79		66
137	Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 13105-13119	6.8	84
136	Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). <i>Environmental Research</i> , 2016 , 146, 92-9	7.9	64
135	ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment. <i>Environmental Research</i> , 2016 , 146, 252-62	7.9	41
134	Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds. 2016 , 18, 205-12		28
133	Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 10976-10991	5.1	45
132	Development of an assay to assess genotoxicity by particulate matter extract. 2017 , 15, 1738-1746		8
131	The chemical composition of ultrafine particles and associated biological effects at an alpine town impacted by wood burning. <i>Science of the Total Environment</i> , 2017 , 587-588, 223-231	10.2	25
130	The Essential Role for Laboratory Studies in Atmospheric Chemistry. <i>Environmental Science & Technology</i> , 2017 , 51, 2519-2528	10.3	55
129	Exposure to fine particulate matter causes oxidative and methylated DNA damage in young adults: A longitudinal study. <i>Science of the Total Environment</i> , 2017 , 598, 289-296	10.2	24
128	Predictors of polycyclic aromatic hydrocarbon exposure and internal dose in inner city Baltimore children. 2017 , 27, 290-298		12
127	Land use regression modeling of oxidative potential of fine particles, NO2, PM2.5 mass and association to type two diabetes mellitus. <i>Atmospheric Environment</i> , 2017 , 171, 181-190	5.3	9
126	Graphite particles induce ROS formation in cell free systems and human cells. 2017 , 9, 13640-13650		12
125	Analytical methods to assess the oxidative potential of nanoparticles: a review. 2017 , 4, 1920-1934		43
124	Total free radical species and oxidation equivalent in polluted air. <i>Science of the Total Environment</i> , 2017 , 609, 1103-1113	10.2	3
123	A Scalable Field Study Protocol and Rationale for Passive Ambient Air Sampling: A Spatial Phytosampling for Leaf Data Collection. <i>Environmental Science & Environmental Scien</i>	1 0.3	12
122	Aerosol Health Effects from Molecular to Global Scales. <i>Environmental Science & Emp; Technology</i> , 2017 , 51, 13545-13567	10.3	235

121	Involvement of oxidative stress and calcium signaling in airborne particulate matter - induced damages in human pulmonary artery endothelial cells. 2017 , 45, 340-350		22
120	Reactive Oxidative Species and Speciated Particulate Light-Duty Engine Emissions from Diesel and Biodiesel Fuel Blends. 2017 , 31, 8171-8180		12
119	Acrolein and Human Disease: Untangling the Knotty Exposure Scenarios Accompanying Several Diverse Disorders. 2017 , 30, 145-161		31
118	External eye symptoms in indoor environments. <i>Indoor Air</i> , 2017 , 27, 246-260	5.4	46
117	Before the first breath: prenatal exposures to air pollution and lung development. 2017 , 367, 445-455		30
116	Surface bound radicals, char yield and particulate size from the burning of tobacco cigarette. 2017 , 11, 79		7
115	Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review. <i>Water Research</i> , 2018 , 137, 130-143	12.5	158
114	Environmentally Persistent Free Radicals: Insights on a New Class of Pollutants. <i>Environmental Science & Environmental Scienc</i>	10.3	103
113	The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing. <i>Science of the Total Environment</i> , 2018 , 626, 507-518	10.2	32
112	Evaluation of cellular effects of fine particulate matter from combustion of solid fuels used for indoor heating on the Navajo Nation using a stratified oxidative stress response model. <i>Atmospheric Environment</i> , 2018 , 182, 87-96	5.3	6
111	Unraveling mechanisms of toxicant-induced oxidative stress in cardiovascular disease. 2018 , 7, 1-8		5
110	Investigation into the pulmonary inflammopathology of exposure to nickel oxide nanoparticles in mice. 2018 , 14, 2329-2339		18
109	N-acetyl-l-cysteine ameliorates the PM-induced oxidative stress by regulating SIRT-1 in rats. 2018 , 57, 70-75		19
108	Measurement of oxidative potential of PM2.5 by DTT assay employing Flow Injection Analysis. <i>Indoor Environment</i> , 2018 , 21, 33-40	О	
107	Household Air Pollution, Levels of Micronutrients and Heavy Metals in Cord and Maternal Blood, and Pregnancy Outcomes. 2018 , 15,		7
106	In vitro cellular toxicity induced by extractable organic fractions of particles exhausted from urban combustion sources - Role of PAHs. 2018 , 243, 1166-1176		23
105	Particulate matter containing environmentally persistent free radicals induces AhR-dependent cytokine and reactive oxygen species production in human bronchial epithelial cells. <i>PLoS ONE</i> , 2018 , 13, e0205412	3.7	29
104	Oxidative potential of size-segregated PM in an urban and an industrial area of Italy. <i>Atmospheric Environment</i> , 2018 , 187, 292-300	5.3	42

103	How Environmental and Air Pollution Disrupt Spermatogenesis and Male Reproductive Health. 2018 , 5-32		2	
102	Cardiovascular and inflammatory mechanisms in healthy humans exposed to air pollution in the vicinity of a steel mill. 2018 , 15, 34		17	
101	Associations of Source-apportioned Fine Particles with Cause-specific Mortality in California. 2018 , 29, 639-648		15	
100	Significant contribution of metastable particulate organic matter to natural formation of silver nanoparticles in soils. 2019 , 10, 3775		41	
99	Hydroxytyrosol prevents PM-induced adiposity and insulin resistance by restraining oxidative stress related NF- B pathway and modulation of gut microbiota in a murine model. <i>Free Radical Biology and Medicine</i> , 2019 , 141, 393-407	7.8	22	
98	A multibiomarker approach to evaluate the effect of polyaromatic hydrocarbon exposure on oxidative and genotoxic damage in tandoor workers. 2019 , 35, 486-496		6	
97	Oxidative Potential of Water-Soluble Matter Associated with Chromophoric Substances in PM over Xi@n, China. <i>Environmental Science & Environmental Sci</i>	10.3	40	
96	An Intriguing Involvement of Mitochondria in Cystic Fibrosis. 2019 , 8,		11	
95	Molecular oxygenates from the thermal degradation of tobacco and material characterization of tobacco char. 2019 , 5, e00153		1	
94	Size-resolved particle oxidative potential in the office, laboratory, and home: Evidence for the importance of water-soluble transition metals. 2019 , 246, 704-709		18	
93	Quantitative detection method of semiquinone free radicals on particulate matters using electron spin resonance spectroscopy. <i>Sustainable Cities and Society</i> , 2019 , 49, 101614	10.1	10	
92	Cross Conjugation in Polyenes and Related Hydrocarbons: What Can Be Learned from Valence Bond Theory about Single-Molecule Conductance?. 2019 , 141, 6030-6047		14	
91	Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review. 2019 , 281, 457-468		142	
90	Ecotoxicology of Heavy Metal(loid)-Enriched Particulate Matter: Foliar Accumulation by Plants and Health Impacts. 2021 , 253, 65-113		7	
89	Environmentally persistent free radicals in PM: a review. 2019 , 1, 177-197		10	
88	PM, Fine Particulate Matter: A Novel Player in the Epithelial-Mesenchymal Transition?. 2019 , 10, 1404		23	
87	Chemical activation of biochar for energy and environmental applications: a comprehensive review. 2019 , 35, 777-815		65	
86	Using Nrf2/antioxidant response element-dependent signaling to assess the toxicity potential of fly ash particles. 2019 , 170, 172-179		3	

85	Management of air pollution in Mexico. 2019 , 30, 578-592		2
84	Genotoxic effects of PM and PM bound metals: metal bioaccessibility, free radical generation, and role of iron. 2019 , 41, 1163-1186		10
83	Photocatalytic degradation of atmospheric fine particulate matter (PM) collected on TiO supporting quartz fibre filter. 2020 , 41, 1266-1274		10
82	Proinflammatory properties and oxidative effects of atmospheric particle components in human keratinocytes. <i>Chemosphere</i> , 2020 , 240, 124746	8.4	25
81	Levels, spatial distribution, and source identification of airborne environmentally persistent free radicals from tree leaves. 2020 , 257, 113353		8
80	Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars. 2020 , 134, 105172		54
79	Enhanced H2O2 activation and sulfamethoxazole degradation by Fe-impregnated biochar. <i>Chemical Engineering Journal</i> , 2020 , 385, 123921	14.7	36
78	Janus Electrochemical Paper-Based Analytical Devices for Metals Detection in Aerosol Samples. 2020 , 92, 1439-1446		25
77	Comparison of fine particulate matter level, chemical content and oxidative potential derived from two dissimilar urban environments. <i>Science of the Total Environment</i> , 2020 , 708, 135209	10.2	2
76	Air pollution and chronic obstructive pulmonary disease. 2020 , 6, 260-269		19
76 75	Air pollution and chronic obstructive pulmonary disease. 2020 , 6, 260-269 Fine particulate matter inhibits phagocytosis of macrophages by disturbing autophagy. 2020 , 34, 16716	5-1673	
		5-1673 2.7	
75	Fine particulate matter inhibits phagocytosis of macrophages by disturbing autophagy. 2020 , 34, 16716 Airborne Aerosols and Human Health: Leapfrogging from Mass Concentration to Oxidative	2.7	
75 74	Fine particulate matter inhibits phagocytosis of macrophages by disturbing autophagy. 2020 , 34, 16716 Airborne Aerosols and Human Health: Leapfrogging from Mass Concentration to Oxidative Potential. <i>Atmosphere</i> , 2020 , 11, 917	2.7	17
75 74 73	Fine particulate matter inhibits phagocytosis of macrophages by disturbing autophagy. 2020, 34, 16716 Airborne Aerosols and Human Health: Leapfrogging from Mass Concentration to Oxidative Potential. <i>Atmosphere</i> , 2020, 11, 917 Acellular oxidative potential assay for screening of amorphous silica nanoparticles. 2020, 145, 4867-483 Relationship Between Particulate Matter (PM) and Hospitalizations and Mortality of Chronic Obstructive Pulmonary Disease Patients: A Meta-Analysis. <i>American Journal of the Medical Sciences</i> ,	2.7 79	5 ₄ 17 2
75 74 73	Fine particulate matter inhibits phagocytosis of macrophages by disturbing autophagy. 2020, 34, 16710 Airborne Aerosols and Human Health: Leapfrogging from Mass Concentration to Oxidative Potential. <i>Atmosphere</i> , 2020, 11, 917 Acellular oxidative potential assay for screening of amorphous silica nanoparticles. 2020, 145, 4867-483 Relationship Between Particulate Matter (PM) and Hospitalizations and Mortality of Chronic Obstructive Pulmonary Disease Patients: A Meta-Analysis. <i>American Journal of the Medical Sciences</i> , 2020, 359, 354-364 Characteristics and sources of water-soluble ionic associated with PM2.5 particles and cytotoxicity	2.7 79 2.2 6.8	5 ₄ 17 2
75 74 73 72 71	Fine particulate matter inhibits phagocytosis of macrophages by disturbing autophagy. 2020, 34, 16710 Airborne Aerosols and Human Health: Leapfrogging from Mass Concentration to Oxidative Potential. <i>Atmosphere</i> , 2020, 11, 917 Acellular oxidative potential assay for screening of amorphous silica nanoparticles. 2020, 145, 4867-480 Relationship Between Particulate Matter (PM) and Hospitalizations and Mortality of Chronic Obstructive Pulmonary Disease Patients: A Meta-Analysis. <i>American Journal of the Medical Sciences</i> , 2020, 359, 354-364 Characteristics and sources of water-soluble ionic associated with PM2.5 particles and cytotoxicity effects using MTT assay in Tehran, Iran. <i>Urban Climate</i> , 2020, 32, 100612 Investigating the effect of trees on urban quality in Dublin by combining air monitoring with i-Tree	2.7 79 2.2 6.8	54 17 2 10

(2019-2020)

67	Contrasts in chemical composition and oxidative potential in PM10 near flares in oil extraction and refining areas in Ecuador. <i>Atmospheric Environment</i> , 2020 , 223, 117302	5.3	5
66	Palm oil biodiesel: An assessment of PAH emissions, oxidative potential and ecotoxicity of particulate matter. <i>Journal of Environmental Sciences</i> , 2021 , 101, 326-338	6.4	9
65	Determination and Environmental Implications of Aqueous-Phase Rate Constants in Radical Reactions. <i>Water Research</i> , 2021 , 190, 116746	12.5	33
64	Molecular level insights into the direct health impacts of some organic aerosol components. <i>New Journal of Chemistry</i> , 2021 , 45, 6709-6723	3.6	1
63	Physical and chemical property of mainstream aerosol generated from heated tobacco products. <i>Indoor Environment</i> , 2021 , 24, 135-144	О	0
62	Continuous measurement of reactive oxygen species inside and outside of a residential house during summer. <i>Indoor Air</i> , 2021 , 31, 1199-1216	5.4	1
61	Assessment of personal exposure to environmentally persistent free radicals in airborne particulate matter. <i>Journal of Hazardous Materials</i> , 2021 , 409, 125014	12.8	7
60	Emission Factors of Polycyclic Aromatic Hydrocarbons and Oxidative Potential of Fine Particles Emitted from Crop Residues Burning. <i>Polycyclic Aromatic Compounds</i> , 1-21	1.3	
59	Formation of Environmentally Persistent Free Radicals during Thermochemical Processes and their Correlations with Unintentional Persistent Organic Pollutants. <i>Environmental Science & Environmental </i>	10.3	4
58	Emission factors of environmentally persistent free radicals in PM from rural residential solid fuels combusted in a traditional stove. <i>Science of the Total Environment</i> , 2021 , 773, 145151	10.2	4
57	Importance of secondary organic aerosol formation of <i></i>-pinene, limonene, and <i>m</i>-cresol comparing day- and nighttime radical chemistry. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 8479-8498	6.8	2
56	Effects prenatal exposure to peat smoke on the emotional behavior of rat offspring and its correction with fabomotizole. <i>Meditsinskii Akademicheskii Zhurnal</i> , 2021 , 21, 47-58	0.3	O
55	Environmentally Persistent Free Radicals, Reactive Oxygen Species Generation, and Oxidative Potential of Highway PM2.5. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 1865-1875	3.2	4
54	Chemiluminescent fingerprints from airborne particulate matter: A luminol-based assay for the characterization of oxidative potential with kinetical implications. <i>Science of the Total Environment</i> , 2021 , 789, 148005	10.2	O
53	Critical influences of metal compounds on the formation and stabilization of environmentally persistent free radicals. <i>Chemical Engineering Journal</i> , 2022 , 427, 131666	14.7	2
52	Tobacco Smoke Constituents Affecting Oxidative Stress. 2006 , 5-46		12
51	Toxicology of ambient particulate matter. Exs, 2012, 101, 165-217		37
50	Oxidative Stress and Pulmonary Carcinogenesis Through Mechanisms of Reactive Oxygen Species. How Respirable Particulate Matter, Fibrous Dusts, and Ozone Cause Pulmonary Inflammation and Initiate Lung Carcinogenesis. 2019 , 247-265		2

49	Oxidative Potential of Particulate Matter: A Prospective Measure to Assess PM Toxicity. <i>Energy, Environment, and Sustainability</i> , 2020 , 333-356	0.8	3
48	Quantitative Aspects of the Interfacial Catalytic Oxidation of Dithiothreitol by Dissolved Oxygen in the Presence of Carbon Nanoparticles. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	15
47	Chapter 11:Mechanism of Action of Combustion-derived Nanoparticles. <i>Issues in Toxicology</i> , 2015 , 361-3	3&1 3	1
46	Genotoxic Effects of Particles. 2006 , 285-298		3
45	Approaches to the Toxicological Testing of Particles. 2006 , 299-316		1
44	Respiratory Health Effects of Ambient Air Pollution Particles. <i>Lung Biology in Health and Disease</i> , 2004 , 257-288		9
43	Traffic-related air pollution and DNA damage: a longitudinal study in Taiwanese traffic conductors. <i>PLoS ONE</i> , 2012 , 7, e37412	3.7	45
42	DIESEL PARTICULATE ANALYSIS USING SEM-EDX AND LASER-INDUCED BREAKDOWN SPECTROSCOPY. <i>International Journal on Smart Sensing and Intelligent Systems</i> , 2011 , 4, 174-188	0.4	4
41	Quantification of aerosol chemical composition using continuous single particle measurements.		2
40	Redox activity of naphthalene secondary organic aerosol.		3
39	Toxicological Effects of Polycyclic Aromatic Hydrocarbon Quinones Contaminated in Diesel Exhaust Particles. <i>Asian Journal of Atmospheric Environment</i> , 2007 , 1, 28-35	1.3	4
38	Chemical composition modulates the adverse effects of particles on the mucociliary epithelium. <i>Clinics</i> , 2015 , 70, 706-13	2.3	9
37	Redox-Active Moieties in Dissolved Organic Matter Accelerate the Degradation of Nitroimidazoles in SO-Based Oxidation. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	4
36	Genetic Susceptibility Factors in the Cardiopulmonary Response to Air Pollution. 2005 , 163-184		
35	The Toxicology of Inhaled Particles. 2006 , 413-424		1
34	Particle-Mediated Extracellular Oxidative Stress in the Lung. 2006 , 89-117		3
33	Particle-Associated Organics and Proinflammatory Signaling. 2006, 211-225		0
32	Chapter 4:Hypertension and Vascular Toxicity of PM. <i>Issues in Toxicology</i> , 2010 , 121-142	0.3	

31	Development of Carbonaceous Particle Size Analyzer Using Laser-induced Incandescence Technology. <i>IEEJ Transactions on Sensors and Micromachines</i> , 2011 , 131, 171-177	0.2	3
30	Multi-spectral Analytical Systems Using LIBS and LII Techniques. <i>Lecture Notes in Electrical Engineering</i> , 2011 , 207-232	0.2	3
29	Basic Research on Elemental and Size Analytical System for Nano-Sized Suspended Particulate Matter Using Contactless Optical Measurement Techniques. <i>International Journal on Measurement Technologies and Instrumentation Engineering</i> , 2013 , 3, 16-27		1
28	Emissions of Organic and Inorganic Pollutants During the Combustion of Wood, Straw and Biogas. 2013 , 387-422		
27	Oxidative Injury Caused by Cigarette Smoking and Air Pollution. <i>Oxidative Stress in Applied Basic Research and Clinical Practice</i> , 2014 , 131-150		
26	Development of the Atomic Emission Spectroscopy System Using Helium-Microwave-Induced Plasma for Fine Particles on Environmental Monitoring. <i>Smart Sensors, Measurement and Instrumentation</i> , 2017 , 21-37	0.3	
25	Fine dust and eye health. Journal of the Korean Medical Association, 2019, 62, 486	0.5	4
24	Oxidative Stress in Environmental Lung Diseases. 2019 , 293-307		
23	Protective Effect of Uric Acid on ox-LDL-Induced HUVECs Injury via Keap1-Nrf2-ARE Pathway. Journal of Immunology Research, 2021 , 2021, 5151168	4.5	1
22	Research Progress on Characteristics and Environmental Chemical Behavior of Environmental Persistent Free Radicals. <i>Hans Journal of Chemical Engineering and Technology</i> , 2020 , 10, 462-475	O	
21	Basic Research on Elemental and Size Analytical System for Nano-Sized Suspended Particulate Matter Using Contactless Optical Measurement Techniques. 898-907		
20	The significance of nanoparticles in particle-induced pulmonary fibrosis. <i>McGill Journal of Medicine</i> , 2008 , 11, 43-50		35
19	The Impact of Oxidative Stress of Environmental Origin on the Onset of Placental Diseases <i>Antioxidants</i> , 2022 , 11,	7.1	O
18	Photoaged polystyrene microplastics serve as photosensitizers that enhance cimetidine photolysis in an aqueous environment <i>Chemosphere</i> , 2021 , 290, 133352	8.4	1
17	Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 157, 112056	16.2	7
16	Environmentally persistent free radicals in indoor particulate matter, dust, and on surfaces. <i>Environmental Science Atmospheres</i> ,		O
15	Contribution of Physical and Chemical Properties to Dithiothreitol-Measured Oxidative Potentials of Atmospheric Aerosol Particles at Urban and Rural Sites in Japan. <i>Atmosphere</i> , 2022 , 13, 319	2.7	О
14	Iron Speciation in Respirable Particulate Matter and Implications for Human Health <i>Environmental Science & Environmental Sc</i>	10.3	O

13	Polycyclic aromatic hydrocarbons and their oxygenated derivatives in urban aerosol: levels, chemical profiles, and contribution to PM oxidative potential <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	1
12	Role of angiotensin-converting enzyme 2 in fine particulate matter-induced acute lung injury <i>Science of the Total Environment</i> , 2022 , 153964	10.2	2
11	Implications of the Immune Landscape in COPD and Lung Cancer: Smoking Versus Other Causes <i>Frontiers in Immunology</i> , 2022 , 13, 846605	8.4	4
10	Oxidation potential and coupling effects of the fractionated components in airborne fine particulate matter. <i>Environmental Research</i> , 2022 , 213, 113652	7.9	O
9	Evaluation of IDH Production Potential of Particulate Matter (PM2.5) Collected on TiO2-Supporting Quartz Filters. 2022 , 12, 1016		О
8	Size-resolved environmentally persistent free radicals in cold region atmosphere: Implications for inhalation exposure risk. 2023 , 443, 130263		O
7	Dynamic Wood Smoke Aerosol Toxicity during Oxidative Atmospheric Aging.		1
6	An Overview of the Automated and On-Line Systems to Assess the Oxidative Potential of Particulate Matter. 2023 , 14, 256		O
5	A systematic review on mitigation of common indoor air pollutants using plant-based methods: a phytoremediation approach.		O
4	Comparative 6+studies of environmentally persistent free radicals on nano-sized coal dusts. 2023 , 878, 163163		O
3	Trade-off effect of dissolved organic matter on degradation and transformation of micropollutants: A review in water decontamination. 2023 , 450, 130996		O
2	Wildfire particulate matter as a source of environmentally persistent free radicals and reactive oxygen species. 2023 , 3, 581-594		O
1	Dust and Eye Inflictions. 2023 , 79-92		О