CITATION REPORT List of articles citing

The impact of the MIT-BIH arrhythmia database

DOI: 10.1109/51.932724 IEEE Engineering in Medicine and Biology Magazine, 2001, 20, 45-50.

Source: https://exaly.com/paper-pdf/33247699/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
2258	IEEE Transactions on Information Theory information for authors. 1988 , 34, 1365-1365		
2257	On Adaptive Robust Control and Control-Relevant System Identification. 1992,		12
2256	Low frequency noise in AllnAs/InGaAs/InP HFETs.		
2255	Multi-thread implementation of a fuzzy neural network for automatic ECG arrhythmia detection.		3
2254	PhysioNet: a Web-based resource for the study of physiologic signals. <i>IEEE Engineering in Medicine and Biology Magazine</i> , 2001 , 20, 70-5		219
2253	Arrhythmia classification using the RR-interval duration signal.		28
2252	PhysioNet: an NIH research resource for complex signals. 2003 , 36 Suppl, 139-44		22
2251	Clustering of electrocardiograph signals in computer-aided Holter analysis. 2003, 72, 179-96		38
2250	Long term continuous collection of high resolution ECG signals from a coronary care unit. 2003,		3
2249	ELECTROCARDIOGRAM DIAGNOSIS USING HYBRID CASE-BASED REASONING. 2004 , 19, 43-68		1
2248	Wavelet-based lossy-to-lossless ECG compression in a unified vector quantization framework. 2005 , 52, 539-43		61
2247	Three-dimensional trajectory assessment of an IVUS transducer from single-plane cineangiograms: a phantom study. 2005 , 52, 543-9		3
2246	Introduction. 2005 , 1-24		3
2245	A novel ECG data compression method based on nonrecursive discrete periodized wavelet transform. 2006 , 53, 2577-83		33
2244	Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. 2006 , 53, 2583-7		322
2243	Continuous blood pressure-derived cardiac output monitoringshould we be thinking long term?. 2006 , 101, 373-4		9
2242	Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features. 2006 , 53, 2507-15		234

2241	Comparison of extrasystolic ECG signal classifiers using discrete wavelet transforms. 2006 , 27, 393-407	32
2240	Discovering dangerous patterns in long-term ambulatory ECG recordings using a fast QRS detection algorithm and explorative data analysis. 2006 , 82, 20-30	67
2239	A Novel ECG Data Compression Based On Reversible Round-Off 1-D NRDPWT. 2006,	
2238	Blind source separation of electrocardiographic signals using system stability criteria. 2007 , 2007, 3493-5	2
2237	An efficient closed-form design method for cosine-modulated filter banks using window functions. 2007 , 87, 811-823	37
2236	ECG signal compression based on Burrows-Wheeler transformation and inversion ranks of linear prediction. 2007 , 54, 410-8	34
2235	BioLab: An Educational Tool for Signal Processing Training in Biomedical Engineering. 2007 , 50, 34-40	14
2234	A 2-D ECG compression algorithm based on wavelet transform and vector quantization. 2008 , 18, 179-188	49
2233	Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. 2008 , 44, 51-64	219
2232	Diagnosis of cardiac arrhythmia using kernel difference weighted KNN classifier. 2008,	29
2231	Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter. 2008 , 29, 15-32	245
2230	Ubiquitous evolvable hardware system for heart disease diagnosis applications. 2008 , 95, 637-651	2
2229	Learning ECG Patterns with the Aid of Multilayer Perceptrons and Classification Trees. 2008,	1
2228	A Novel Personal Identity Verification Approach Using a Discrete Wavelet Transform of the ECG Signal. 2008 ,	41
2227	A High Efficient Quality Control Strategy for Wavelet-Based ECG Data Compression System. 2008,	
2226	Wavelet Transformation, Artificial Neural Network and Neuro-Fuzzy Approach for CVD Detection and Classification An Overview. 2008 ,	
2225	A single-variable non-linear quantization scheme for wavelet-based ECG data compression. 2008,	
2224	A fast quality-on-demand algorithm for wavelet-based electrocardiogram signal compression. 2009	1

2223	An Efficient Technique for Classification of Electrocardiogram Signals. 2009 , 9, 89-93	12
2222	DISCRETE WAVELET TRANSFORM APPLIED ON PERSONAL IDENTITY VERIFICATION WITH ECG SIGNAL. 2009 , 07, 341-355	37
2221	Wireless Body Sensor Network With Adaptive Low-Power Design for Biometrics and Healthcare Applications. 2009 , 3, 398-409	96
2220	A linear quality control design for high efficient wavelet-based ECG data compression. 2009 , 94, 109-17	6
2219	Wavelet-based hybrid ECG compression technique. 2009 , 59, 301-308	14
2218	The cardiac output from blood pressure algorithms trial. 2009 , 37, 72-80	47
2217	Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features. 2010 , 5, 252-263	96
2216	Wavelet-based ECG data compression system with linear quality control scheme. 2010 , 57, 1399-409	49
2215	Classification of the electrocardiogram signals using supervised classifiers and efficient features. 2010 , 99, 179-94	71
2214	Detection of premature ventricular contractions using MLP neural networks: A comparative study. 2010 , 43, 103-112	45
2213	Towards automatic detection of atrial fibrillation: A hybrid computational approach. 2010 , 40, 919-30	42
2212	The morphological classification of heartbeats as dominant and non-dominant in ECG signals. 2010 , 31, 611-31	2
2211	Arrhythmia disease classification using Artificial Neural Network model. 2010,	5
2210	Weighted-PCA for unsupervised classification of cardiac arrhythmias. 2010 , 2010, 1906-9	4
2209	An ECG T waves detection scheme based on the compensatory criterion. 2010 ,	5
2208	. 2010,	32
2207	Computer Analysis of the Electrocardiogram. 2010 , 1721-1765	4
2206	Design and Construction of a Continuous Ambulatory Electrocardiogram Recorder, Auxiliary in the Detection of Cardiac Arrhythmias. 2010 ,	

(2011-2010)

2205 Realization of RRO-NRDPWT-based ECG signal compression with modified run-length coding. **2010**,

2204	. 2010,	17
2203	Real-time compressed sensing-based electrocardiogram compression on energy-constrained wireless body sensors. 2011 ,	О
2202	Higher order statistics for automated classification of ECG beats. 2011,	4
2201	An asynchronous multi-sensor micro control unit for wireless body sensor networks (WBSNs). 2011 , 11, 7022-36	30
2200	Artificial Neural Network Based Cardiac Arrhythmia Disease Diagnosis. 2011,	9
2199	Multiparameter Intelligent Monitoring in Intensive Care II: a public-access intensive care unit database. 2011 , 39, 952-60	1185
2198	A Modified Run-Length Coding towards the Realization of a RRO-NRDPWT-Based ECG Data Compression System. 2011 , 2011,	2
2197	Robust genetic programming-based detection of atrial fibrillation using RR intervals. 2011 , 29, no-no	0
2196	Wireless LAN with medical-grade QoS for e-healthcare. 2011 , 13, 149-159	27
2195	A New Concept of Virtual Patient for Real-Time ECG Analyzers. 2011 , 60, 939-946	7
2194	A medical-grade wireless architecture for remote electrocardiography. 2011 , 15, 260-7	28
2193	Using an ECG reference ontology for semantic interoperability of ECG data. 2011 , 44, 126-36	34
2192	High efficient system for automatic classification of the electrocardiogram beats. 2011 , 39, 996-1011	18
2191	Auto-detection of R wave in ECG (electrocardiography) for patch-type ECG remote monitoring system. 2011 , 1, 180-187	5
2190	Structured sparsity models for compressively sensed electrocardiogram signals: A comparative study. 2011 ,	13
2189	Performance Assessment of Wireless ECG Transmission over IEEE 802.11 WLANs. 2011 ,	1
2188	Efficient thresholding-based ECG compressors for high quality applications using cosine modulated filter banks. 2011 , 2011, 7079-82	3

2187	A real-time compressed sensing-based personal electrocardiogram monitoring system. 2011,	33
2186	How the choice of samples for building arrhythmia classifiers impact their performances. 2011 , 2011, 4988-91	7
2185	An efficient micro control unit with a reconfigurable filter design for wireless body sensor networks (WBSNs). 2012 , 12, 16211-27	34
2184	Robust suppression of nonstationary power-line interference in electrocardiogram signals. 2012 , 33, 1151-69	9
2183	Detecting ECG abnormalities via transductive transfer learning. 2012,	8
2182	Optimization of an electrocardiogram compression technique based on wavelets. 2012,	
2181	Spectrogram analysis of electrocardiogram with Normal Sinus Rhythm, Arrhythmia and Atrial Fibrillation. 2012 ,	2
2180	Signal agnostic compressive sensing for Body Area Networks: comparison of signal reconstructions. 2012 , 2012, 4497-500	17
2179	Multi-lead QRS detection using window pairs. 2012 , 2012, 3143-6	3
2178	. 2012,	6
2178 2177	. 2012, Automatic QRS complex detection algorithm designed for a novel wearable, wireless electrocardiogram recording device. 2012, 2012, 2913-6	5
2177	Automatic QRS complex detection algorithm designed for a novel wearable, wireless	
2177	Automatic QRS complex detection algorithm designed for a novel wearable, wireless electrocardiogram recording device. 2012 , 2012, 2913-6	5
2177 2176	Automatic QRS complex detection algorithm designed for a novel wearable, wireless electrocardiogram recording device. 2012, 2012, 2913-6 . 2012, Developing a continuous monitoring infrastructure for detection of inpatient deterioration. 2012,	5
2177 2176 2175	Automatic QRS complex detection algorithm designed for a novel wearable, wireless electrocardiogram recording device. 2012, 2012, 2913-6 . 2012, Developing a continuous monitoring infrastructure for detection of inpatient deterioration. 2012, 38, 428-31, 385	5 5 12
2177 2176 2175 2174	Automatic QRS complex detection algorithm designed for a novel wearable, wireless electrocardiogram recording device. 2012, 2012, 2913-6 . 2012, Developing a continuous monitoring infrastructure for detection of inpatient deterioration. 2012, 38, 428-31, 385 Cross-database evaluation of a multilead heartbeat classifier. 2012, 16, 658-64	5 5 12
2177 2176 2175 2174 2173	Automatic QRS complex detection algorithm designed for a novel wearable, wireless electrocardiogram recording device. 2012, 2012, 2913-6 .2012, Developing a continuous monitoring infrastructure for detection of inpatient deterioration. 2012, 38, 428-31, 385 Cross-database evaluation of a multilead heartbeat classifier. 2012, 16, 658-64 A New Statistical-based Algorithm for ECG Identification. 2012, A new approach of QRS complex detection based on matched filtering and triangle character	5 5 12 12 8

2169 ECG baseline drift correction through phase space for simple R-point detection. 2012 ,	3
2168 Resiliency analysis and modeling for real-time cardiovascular diagnostic devices. 2012 ,	2
2167 Active Flash: Out-of-core data analytics on flash storage. 2012 ,	18
2166 Link-level reliability control for wireless electrocardiogram monitoring in indoor hospital. 2012 ,	1
2165 On the Performance of Virtualized Infrastructures for Processing Realtime Streaming Data. 2012 ,	
A real-time automated point-process method for the detection and correction of erroneous and ectopic heartbeats. 2012 , 59, 2828-37	69
2163 A PLL based adaptive power line interference filtering from ECG signals. 2012 ,	1
Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices. 2012 , 2012, 2452-5	80
Continuous ECG Transmission via Mobile Telephone Network and Waiting Time of Packets for Smooth Display. 2012 ,	1
2160 Joint time-frequency analysis of phonocardiograms. 2012 ,	1
Selecting the Most Favorable Wavelet for Compressing ECG Signals Using Compressive Sensing Approach. 2012 ,	5
2158 . 2012 ,	
Evaluating and comparing performance of feature combinations of heart rate variability measures for cardiac rhythm classification. 2012 , 7, 245-255	32
Detection of cardiac arrhythmia in electrocardiograms using adaptive feature extraction and modified support vector machines. 2012 , 39, 7845-7852	39
2155 Bio-Interactive Healthcare Service System Using Lifelog Based Context Computing. 2013 , 73, 341-351	23
2154 A heart disease recognition embedded system with fuzzy cluster algorithm. 2013 , 110, 447-54	18
2153 ECG beat classification using wavelets and SVM. 2013 ,	14
A parallel genetic algorithm for adaptive hardware and its application to ECG signal classification. 21 52 2013 , 22, 1609-1626	14

2151	A new non-exact aho-corasick framework for ECG classification. 2013 , 41, 41-46	1
2150	An Ultra-Low Power QRS Complex Detection Algorithm Based on Down-Sampling Wavelet Transform. 2013 , 20, 515-518	52
2149	ECG arrhythmia classification based on optimum-path forest. 2013 , 40, 3561-3573	119
2148	Design and QoS of a wireless system for real-time remote electrocardiography. 2013 , 17, 745-55	11
2147	Fusion of Algorithms for Compressed Sensing. 2013 , 61, 3699-3704	22
2146	An adaptive filtering approach for electrocardiogram (ECG) signal noise reduction using neural networks. 2013 , 117, 206-213	155
2145	Wavelet-based ECG data compression optimization with genetic algorithm. 2013 , 06, 746-753	7
2144	Evaluating QoS of a Wireless System for Real-Time Cardiac Monitoring. 2013,	2
2143	Application of higher order statistics for atrial arrhythmia classification. 2013 , 8, 888-900	77
2142	. 2013,	1
	. 2013, ECG baseline extraction by gradient varying weighting functions. 2013,	2
2141		
2141	ECG baseline extraction by gradient varying weighting functions. 2013 ,	2
2141 2140	ECG baseline extraction by gradient varying weighting functions. 2013, A robust reference signal generator for synchronized ventricular assist devices. 2013, 60, 2174-83	18
2141 2140 2139	ECG baseline extraction by gradient varying weighting functions. 2013, A robust reference signal generator for synchronized ventricular assist devices. 2013, 60, 2174-83 A single chip system for ECG feature extraction. 2013,	2 18
2141 2140 2139 2138	ECG baseline extraction by gradient varying weighting functions. 2013, A robust reference signal generator for synchronized ventricular assist devices. 2013, 60, 2174-83 A single chip system for ECG feature extraction. 2013, A novel approach for suppression of powerline interference and impulse noise in ECG signals. 2013, Comparison of different computational intelligent classifier to autonomously detect cardiac	2 18 1 21
2141 2140 2139 2138 2137	ECG baseline extraction by gradient varying weighting functions. 2013, A robust reference signal generator for synchronized ventricular assist devices. 2013, 60, 2174-83 A single chip system for ECG feature extraction. 2013, A novel approach for suppression of powerline interference and impulse noise in ECG signals. 2013, Comparison of different computational intelligent classifier to autonomously detect cardiac pathologies diagnosed by ECG. 2013, An integration of improved median and morphological filtering techniques for electrocardiogram	2 18 1 21 2

2133	Premature ventricular contraction arrhythmia detection using wavelet coefficients. 2013,	4
2132	An awareness approach to analyze ECG streaming data. 2013 , 37, 9901	2
2131	Data structure-guided development of electrocardiographic signal characterization and classification. 2013 , 59, 197-204	3
2130	Electrocardiogram beat detection enhancement using independent component analysis. 2013, 35, 704-11	9
2129	A highly energy-efficient compressed sensing encoder with robust subthreshold clockless pipeline for wireless BANs. 2013 ,	
2128	Arrhythmia detection from heartbeat using k-nearest neighbor classifier. 2013,	26
2127	An Ensemble Model for Mobile Device based Arrhythmia Detection. 2013,	
2126	A Robust Approach for Detecting QRS Complexes of Electrocardiogram Signal with Different Morphologies. 2013 , 594-595, 972-979	
2125	ECG Denoising Based on MP Algorithm. 2013 , 433-435, 510-513	1
2124	Ambulatory electrocardiology. 2013 , 21, 239-48	4
2123	Combining neural networks and ANFIS classifiers for supervised examining of electrocardiogram beats. 2013 , 37, 484-97	7
2122	Improved removal of electrocardiogram baseline wandering. 2013,	4
2121	Cardiac arrhythmia detection using combination of heart rate variability analyses and PUCK analysis. 2013 , 2013, 1696-9	4
2120	Arrhythmic dynamics from singularity analysis of electrocardiographic maps. 2013 , 2013, 6142-5	1
2119	Fusion of algorithms for Compressed Sensing. 2013,	7
2118	Zero-aliasing correlation filters. 2013,	6
2117	Swarm fuzzy inference system and R wave features for ventricular premature beat detection. 2013,	1
2116	Heart Arrhythmia Detection using support vector machines. 2013 , 19, 1-9	6

2115	Real-Time and Memory-Efficient Arrhythmia Detection in ECG Monitors Using Antidictionary Coding. 2013 , E96.A, 2343-2350	3
2114	A Non-Linear Approach to ECG Signal Processing using Morphological Filters. 2013 , 3, 46-59	15
2113	Recoverability analysis for modified compressive sensing with partially known support. 2014 , 9, e87985	О
2112	Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems. 2014 , 9, e84018	131
2111	Independent component analysis and decision trees for ECG holter recording de-noising. 2014, 9, e98450	20
2110	Computational model of erratic arrhythmias in a cardiac cell network: the role of gap junctions. 2014 , 9, e100288	9
2109	Memetic Algorithm with Local Search as Modified Swine Influenza Model-Based Optimization and Its Use in ECG Filtering. 2014 , 2014, 1-22	2
2108	An adaptive framework for real-time ECG transmission in mobile environments. 2014 , 2014, 678309	4
2107	Similar patient search using the results of heartbeat classification. 2014 ,	1
2106	The performance of the Daubechies mother wavelets on ECG compression. 2014,	1
2105	Cardiac arrhythmia detection using linear and non-linear features of HRV signal. 2014,	2
2104	An efficient abnormal beat detection scheme from ECG signals using neural network and ensemble classifiers. 2014 ,	7
2103	Remote health monitoring system for detecting cardiac disorders. 2014 ,	2
2102	Enabling Health Monitoring as a Service in the Cloud. 2014 ,	8
2101	False alarm reduction in continuous cardiac monitoring using 3D acceleration signals. 2014,	О
2100	Accurate ECG R-peak detection for telemedicine. 2014,	1
2099	Poster. 2014 ,	
2098	Peak misdetection in heart-beat-based security: Characterization and tolerance. 2014 , 2014, 5401-5	8

2097	Information-enhanced sparse binary matrix in compressed sensing for ECG. 2014 , 50, 1271-1273	10
2096	Predictable and reliable ECG monitoring over IEEE 802.11 WLANs within a hospital. 2014 , 20, 875-82	1
2095	Comparison of real-time classification systems for arrhythmia detection on Android-based mobile devices. 2014 , 2014, 2690-3	10
2094	QRS detection by lifting scheme constructing multi-resolution morphological decomposition. 2014 , 2014, 94-7	
2093	A Committee Machine Approach for Compressed Sensing Signal Reconstruction. 2014 , 62, 1705-1717	12
2092	Muscle and electrode motion artifacts reduction in ECG using adaptive Fourier decomposition. 2014 ,	14
2091	Heartbeat classification using decision level fusion. 2014 , 4, 388-395	24
2 090	ECG identification based on neural networks. 2014,	4
2089	Arrhythmias Classification Using Singular Value Decomposition and Support Vector Machine. 2014 , 591-600	
2088	Individualized arrhythmia detection with ECG signals from wearable devices. 2014,	4
2088	Individualized arrhythmia detection with ECG signals from wearable devices. 2014, Fetal ECG extraction from abdominal signals: a review on suppression of fundamental power line interference component and its harmonics. 2014, 2014, 239060	18
	Fetal ECG extraction from abdominal signals: a review on suppression of fundamental power line interference component and its harmonics. 2014 , 2014, 239060 Simultaneous Greedy Analysis Pursuit for compressive sensing of multi-channel ECG signals. 2014	
2087	Fetal ECG extraction from abdominal signals: a review on suppression of fundamental power line interference component and its harmonics. 2014 , 2014, 239060 Simultaneous Greedy Analysis Pursuit for compressive sensing of multi-channel ECG signals. 2014 ,	18
2087	Fetal ECG extraction from abdominal signals: a review on suppression of fundamental power line interference component and its harmonics. 2014, 2014, 239060 Simultaneous Greedy Analysis Pursuit for compressive sensing of multi-channel ECG signals. 2014, 2014, 6385-8 Neural network and wavelet average framing percentage energy for atrial fibrillation classification. 2014, 113, 919-26 Multiclass maximum margin clustering via immune evolutionary algorithm for automatic diagnosis	18
2087 2086 2085	Fetal ECG extraction from abdominal signals: a review on suppression of fundamental power line interference component and its harmonics. 2014, 2014, 239060 Simultaneous Greedy Analysis Pursuit for compressive sensing of multi-channel ECG signals. 2014, 2014, 6385-8 Neural network and wavelet average framing percentage energy for atrial fibrillation classification. 2014, 113, 919-26 Multiclass maximum margin clustering via immune evolutionary algorithm for automatic diagnosis	18 4 26
2087 2086 2085	Fetal ECG extraction from abdominal signals: a review on suppression of fundamental power line interference component and its harmonics. 2014, 2014, 239060 Simultaneous Greedy Analysis Pursuit for compressive sensing of multi-channel ECG signals. 2014, 2014, 6385-8 Neural network and wavelet average framing percentage energy for atrial fibrillation classification. 2014, 113, 919-26 Multiclass maximum margin clustering via immune evolutionary algorithm for automatic diagnosis of electrocardiogram arrhythmias. 2014, 227, 428-436	18 4 26 15
2087 2086 2085 2084 2083	Fetal ECG extraction from abdominal signals: a review on suppression of fundamental power line interference component and its harmonics. 2014, 2014, 239060 Simultaneous Greedy Analysis Pursuit for compressive sensing of multi-channel ECG signals. 2014, 2014, 6385-8 Neural network and wavelet average framing percentage energy for atrial fibrillation classification. 2014, 113, 919-26 Multiclass maximum margin clustering via immune evolutionary algorithm for automatic diagnosis of electrocardiogram arrhythmias. 2014, 227, 428-436 A level-crossing based QRS-detection algorithm for wearable ECG sensors. 2014, 18, 183-92 A low-complexity data-adaptive approach for premature ventricular contraction recognition. 2014,	18 4 26 15

2079	Evaluating the use of ECG signal in low frequencies as a biometry. 2014 , 41, 2309-2315	22
2078	A correlation analysis-based detection and delineation of ECG characteristic events using template waveforms extracted by ensemble averaging of clustered heart cycles. 2014 , 44, 66-75	26
2077	WE-CARE: an intelligent mobile telecardiology system to enable mHealth applications. 2014 , 18, 693-702	52
2076	Automated removal of EKG artifact from EEG data using independent component analysis and continuous wavelet transformation. 2014 , 61, 1634-41	59
2075	EP-based wavelet coefficient quantization for linear distortion ECG data compression. 2014 , 36, 809-21	17
2074	Detection of electrocardiogram signals using an efficient method. 2014 , 22, 108-117	23
2073	A machine learning approach to multi-level ECG signal quality classification. 2014 , 117, 435-47	114
2072	On handling negative transfer and imbalanced distributions in multiple source transfer learning. 2014 , 7, 254-271	48
2071	Design and Development of a Mobile Cardiac Rehabilitation System. 2014 , 45, 92-108	1
2070	Adaptive Threshold and Principal Component Analysis for Features Extraction of Electrocardiogram Signals. 2014 ,	3
2069	Detection of life-threatening arrhythmias using feature selection and support vector machines. 2014 , 61, 832-40	134
2068	A Dynamic Compression Scheme for Energy-Efficient Real-Time Wireless Electrocardiogram Biosensors. 2014 , 63, 2160-2169	34
2067	Computer aided diagnosis of atrial arrhythmia using dimensionality reduction methods on transform domain representation. 2014 , 13, 295-305	72
2066	Wavelet-based electrocardiogram signal compression methods and their performances: A prospective review. 2014 , 14, 73-107	74
2065	Formal Modeling and Analysis of Timed Systems. 2014 ,	
2064	Confidence bands for time series data. 2014 , 28, 1530-1553	12
2063	Hiding patients confidential datainthe ECG signal viaa transform-domain quantization scheme. 2014 , 38, 54	40
2062	Enabling smart personalized healthcare: a hybrid mobile-cloud approach for ECG telemonitoring. 2014 , 18, 739-45	79

2061 Automated analysis of ECG waveforms with atypical QRS complex morphologies. 2014 , 10, 41-49	22
2060 Time series for blind biosignal classification model. 2014 , 54, 32-6	3
2059 . 2014 ,	
2058 ECG image representation of normal sinus rythm. 2014 ,	1
2057 Heartbeat classification using disease-specific feature selection. 2014 , 46, 79-89	190
Progressive fusion of reconstruction algorithms for low latency applications in compressed sensing. 2014 , 97, 146-151	6
2055 Fuzzy logic-based diagnostic algorithm for implantable cardioverter defibrillators. 2014 , 60, 113-21	8
2054 Cloud enabled fractal based ECG compression in wireless body sensor networks. 2014 , 35, 91-101	23
The STAFF III ECG database and its significance for methodological development and evaluation. 2053 2014 , 47, 408-17	10
2052 Threshold-Independent QRS Detection Using the Dynamic Plosion Index. 2014 , 21, 554-558	30
2051 A novel low-complexity post-processing algorithm for precise QRS localization. 2014 , 3, 376	18
2050 Patient-specific ECG beat classification technique. 2014 , 1, 98-103	20
2049 Bayesian methods for the Shape Invariant Model. 2014 , 8,	5
Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. 2014 , 15 Suppl 6, S2	57
Well proven and commercially available biometric technologies versus electrocardiogram: A review. 2014 ,	
2046 A constrained two-layer compression technique for ECG waves. 2015 , 2015, 6130-3	
2045 Enhanced algorithm for QRS detection using discrete wavelet transform (DWT). 2015 ,	5
2044 Arrhythmia detection using amplitude difference features based on random forest. 2015 , 2015, 5191-4	12

2043 ECG signal compressed sensing using the wavelet tree model. 2015 ,	3
2042 Monitoring electrocardiogram using android based smart phone. 2015 ,	1
2041 Detection of life-threatening arrhythmias using temporal, spectral and wavelet features. 2015 ,	3
Baseline wander removal of electrocardiogram signals using multivariate empirical mode decomposition. 2015 , 2, 164-6	13
2039 Atrial fibrillation detection using support vector machine. 2015 ,	2
A comparative study of multivariate approach with neural networks and support vector machines for arrhythmia classification. 2015 ,	5
Classifying Normal Sinus Rhythm and Cardiac Arrhythmias in ECG Signals Using Statistical Features in Temporal Domain. 2015 ,	5
2036 Goodness of fit in nonlinear dynamics: Misspecified rates or misspecified states?. 2015 , 9,	8
2035 Signal quality indices for state space electrophysiological signal processing and vice versa. 2015 , 345-	-366 3
2034 A multi. 2015 ,	5
2033 Simulation of Physiologic Ectopic Beats in Heartbeat Intervals to Validate Algorithms. 2015 , 48, 123-	128 1
2032 ECG baseline wander removal with recovery of the isoelectric level. 2015 ,	0
Machine intelligent diagnosis of ECG for arrhythmia classification using DWT, ICA and SVM techniques. 2015 ,	27
2030 Applying Non Linear Approach for ECG Denoising and Waves Localization. 2015 ,	O
2029 Individual identification via electrocardiogram analysis. 2015 , 14, 78	74
2028 ECG Sensor Card with Evolving RBP Algorithms for Human Verification. 2015 , 15, 20730-51	7
Optimal Base Wavelet Selection for ECG Noise Reduction Using a Comprehensive Entropy Criterion. 2015 , 17, 6093-6109	20
Fast T Wave Detection Calibrated by Clinical Knowledge with Annotation of P and T Waves. 2015 , 15, 17693-714	30

(2015-2015)

Superiority of Classification Tree versus Cluster, Fuzzy and Discriminant Models in a Heartbeat Classification System. 2015 , 10, e0140123	23
2024 Performance Analysis of Multiscale Entropy for the Assessment of ECG Signal Quality. 2015 , 2015, 1-9	13
Classification of Right Bundle Branch Block and Left Bundle Branch Block Cardiac Arrhythmias Based on ECG Analysis. 2015 , 331-341	2
Human recognition using Fisher?s discriminant analysis of heartbeat interval features and ECG morphology. 2015 , 167, 322-335	29
Automatic Real-Time Embedded QRS Complex Detection for a Novel Patch-Type Electrocardiogram Recorder. 2015 , 3, 1900112	21
2020 Electrocardiogram signal denoising using non-local wavelet transform domain filtering. 2015 , 9, 88-96	67
2019 Image features of spectral correlation function for arrhythmia classification. 2015 , 2015, 5199-202	1
2018 On Using a Von Neumann Extractor in Heart-Beat-Based Security. 2015 ,	4
2017 Software tool for the analysis of components characteristic for ECG signal. 2015 ,	
2016 The accuracy of beat-interval based algorithms for detecting atrial fibrillation. 2015 ,	1
Structured prediction for differentiating between normal rhythms, ventricular tachycardia, and ventricular fibrillation in the ECG. 2015 , 2015, 310-4	1
Energy-Aware Bio-signal Compressed Sensing Reconstruction: FOCUSS on the WBSN-Gateway. 2014	9
2013 ECG based biometric human identification using chaotic encryption. 2015 ,	5
2012 HeartSearcher: finds patients with similar arrhythmias based on heartbeat classification. 2015 , 9, 303-8	2
2011 Remote health monitoring system for detecting cardiac disorders. 2015 , 9, 309-14	26
Arrhythmia classification based on novel distance series transform of phase space trajectories. 2015 , 2015, 5195-8	4
Temporal correction of detected R-peaks in ECG signals: A crucial step to improve QRS detection algorithms. 2015 , 2015, 522-5	4
Recognition of pathological beats in ECG signals based on Singular Value Decomposition of wavelet coefficients and support vector machine. 2015 ,	1

Feature selection using genetic algorithms for premature ventricular contraction classification. 2007 2015,	18
2006 Greedy pursuits assisted basis pursuit for compressive sensing. 2015,	13
Stream computing for biomedical signal processing: A QRS complex detection case-study. 2015 , 2015, 5928-31	1
2004 Arrhythmia disease classification using a higher-order neural unit. 2015 ,	4
2003 Automated home monitoring of atrial fibrillation in heart failure patients. 2015 ,	
Robust detection of heart beats in multimodal records using slope- and peak-sensitive band-pass filters. 2015 , 36, 1645-64	15
Automatic cardiac arrhythmia detection and classification using vectorcardiograms and complex networks. 2015 , 2015, 5203-6	4
2000 . 2015,	6
1999 ECG biometric authentication using a dynamical model. 2015 ,	6
1998 . 2015,	206
1998 . 2015, 1997 The effect of denoising on classification of ECG signals. 2015,	206
	1
The effect of denoising on classification of ECG signals. 2015 , Realizing Low-Energy Classification Systems by Implementing Matrix Multiplication Directly Within	1
The effect of denoising on classification of ECG signals. 2015 , Realizing Low-Energy Classification Systems by Implementing Matrix Multiplication Directly Within an ADC. 2015 , 9, 825-37	1 1 23
The effect of denoising on classification of ECG signals. 2015 , Realizing Low-Energy Classification Systems by Implementing Matrix Multiplication Directly Within an ADC. 2015 , 9, 825-37 1995 . 2015 ,	1 23 6
The effect of denoising on classification of ECG signals. 2015, Realizing Low-Energy Classification Systems by Implementing Matrix Multiplication Directly Within an ADC. 2015, 9, 825-37 1995 . 2015, R-peak detection algorithm based on differentiation. 2015, Distribution Entropy (DistEn): A complexity measure to detect arrhythmia from short length RR	1 23 6 18 11
The effect of denoising on classification of ECG signals. 2015, Realizing Low-Energy Classification Systems by Implementing Matrix Multiplication Directly Within an ADC. 2015, 9, 825-37 1995 . 2015, R-peak detection algorithm based on differentiation. 2015, Distribution Entropy (DistEn): A complexity measure to detect arrhythmia from short length RR interval time series. 2015, 2015, 5207-10 Heartheat classification for detecting arrhythmia using normalized heat morphology features. 2015	1 23 6 18 11

1989	. 2015 , 23, 1459-1470	27
1988	A novel DWT method for ECG noise elimination. 2015 , 10, 353-355	2
1987	Automatic ECG arrhythmia classification using dual tree complex wavelet based features. 2015 , 69, 715-721	110
1986	Classification of ECG Cardiac Arrhythmias Using Bijective Soft Set. 2015 , 323-350	4
1985	Sparse Coding with Anomaly Detection. 2015 , 79, 179-188	47
1984	Feature Extraction of Electrocardiogram Signals by Applying Adaptive Threshold and Principal Component Analysis. 2015 , 13, 261-269	68
1983	Online ECG quality assessment for context-aware wireless body area networks. 2015,	6
1982	High-rate compression of ECG signals by an accuracy-driven sparsity model relying on natural basis. 2015 , 45, 96-106	13
1981	A study on the representation of QRS complexes with the optimum number of Hermite functions. 2015 , 22, 11-18	8
1980	IoT Data Compression: Sensor-Agnostic Approach. 2015 ,	29
1979	A new music-empirical wavelet transform methodology for timefrequency analysis of noisy nonlinear and non-stationary signals. 2015 , 45, 55-68	100
1978	. 2015,	10
1977	A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. 2015 , 42, 8361-8368	70
1976	False alarm reduction in BSN-based cardiac monitoring using signal quality and activity type information. 2015 , 15, 3952-74	12
1975	QRS detection algorithm based on the quadratic filter. 2015 , 42, 4867-4877	77
1974	Baseline wander removal of ECG signals using Hilbert vibration decomposition. 2015 , 51, 447-449	33
1973	A novel biometric authentication approach using ECG and EMG signals. 2015 , 39, 226-38	36
1972	Medical-Grade Quality of Service for Real-Time Mobile Healthcare. 2015 , 48, 41-49	9

1971	Automatic diagnosis of premature ventricular contraction based on Lyapunov exponents and LVQ neural network. 2015 , 122, 47-55	21
1970	18.4 A matrix-multiplying ADC implementing a machine-learning classifier directly with data conversion. 2015 ,	24
1969	Electrocardiogram data compression using adaptive bit encoding of the discrete Fourier transforms coefficients. 2015 , 9, 866-874	12
1968	. 2015,	2
1967	Robust algorithm to locate heart beats from multiple physiological waveforms by individual signal detector voting. 2015 , 36, 1705-16	12
1966	Template based classification of cardiac Arrhythmia in ECG data. 2015,	1
1965	Artificial Metaplasticity: Application to MIT-BIH Arrhythmias Database. 2015 , 133-142	3
1964	Using Algorithms on Smart Transducer: An IEEE Standard Perspective. 2015 , 15, 2523-2530	6
1963	Low-complexity compressed sensing with variable orthogonal multi-matching pursuit and partially known support for ECG signals. 2015 ,	4
1962	Consistent quality control in ECG compression by means of direct metrics. 2015 , 36, 1981-94	8
1961	Arrhythmia ECG signal analysis using non parametric time-frequency technique. 2015,	5
1960	Comparison of classification algorithms in classification of ECG beats by time series. 2015,	7
1959	Simple real-time QRS detector with the MaMeMi filter. 2015 , 21, 137-145	45
1958	Zero-Aliasing Correlation Filters for Object Recognition. 2015 , 37, 1702-15	23
1957	Low complexity all-pass based polyphase decimation filters for ECG monitoring. 2015,	2
1956	Fast multi-scale feature fusion for ECG heartbeat classification. 2015 , 2015,	17
1955	Novel human computer interaction principles for cardiac feedback using google glass and Android wear. 2015 ,	4
1954	A Portable System to Support Electrocardiography in Emergency Care. 2015 ,	0

1953 Fuzzy Partition Rules for Heart Arrhythmia Detection. **2015**,

1952 A Method for Context-Based Adaptive QRS Clustering in Real Time. 2015 , 19, 1660-71	13
1951 An iterative framework for sparse signal reconstruction algorithms. 2015 , 108, 351-364	10
1950 A joint QRS detection and data compression scheme for wearable sensors. 2015 , 62, 165-75	78
1949 MS-QI: A Modulation Spectrum-Based ECG Quality Index for Telehealth Applications. 2016 , 63, 1613-22	33
1948 TERMA Framework for Biomedical Signal Analysis: An Economic-Inspired Approach. 2016 , 6,	14
Wavelet Based Method for Congestive Heart Failure Recognition by Three Confirmation Functions. 2016 , 2016, 7359516	5
1946 ECG Sensor Verification System with Mean-Interval Algorithm for Handling Sport Issue. 2016 , 2016, 1-12	1
1945 Eventogram: A Visual Representation of Main Events in Biomedical Signals. 2016 , 3,	9
A Proof-of-Concept Study: Simple and Effective Detection of P and T Waves in Arrhythmic ECG Signals. 2016 , 3,	24
1943 ECG Classification Using Wavelet Packet Entropy and Random Forests. 2016 , 18, 285	206
1942 Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks. 2016 , 16,	40
Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators. 2016 , 11, e0159654	37
Medical-Grade Channel Access and Admission Control in 802.11e EDCA for Healthcare Applications. 2016 , 11, e0160052	6
1939 Design of a medical-grade QoS metric for wireless environments. 2016 , 27, 1022-1029	5
1938 ISO/IEC/IEEE P21451-001 standard for signal treatment of sensory data. 2016 ,	1
1937 A Novel Method for Classification of ECG Arrhythmias Using Deep Belief Networks. 2016 , 15, 1650021	20
1936 . 2016 ,	7

1935 QRS complex detection using zero frequency filtering. **2016**,

1934	A transform-based ECG compression using discrete tchebichef moments with global and local error measures as control. 2016 ,	
1933	Distribution of premature heartbeats. 2016,	1
1932	Matrix Profile III: The Matrix Profile Allows Visualization of Salient Subsequences in Massive Time Series. 2016 ,	11
1931	Detection of false arrhythmia alarms with emphasis on ventricular tachycardia. 2016 , 37, 1326-39	5
1930	Detection of atrial fibrillation using coherency of power spectrum in electrocardiogram. 2016,	1
1929	Influence of embedding dimension on distribution entropy in analyzing heart rate variability. 2016 , 2016, 6222-6225	1
1928	Comparison of MFCC and DWT features extractors applied to PCG classification. 2016 ,	4
1927	A stacked contractive denoising auto-encoder for ECG signal denoising. 2016 , 37, 2214-2230	38
1926	Using ordinal partition transition networks to analyze ECG data. 2016 , 26, 073114	36
1925	A parallel probabilistic neural network ECG recognition architecture over GPU platforms. 2016,	5
1924	Cloud-based real-time heart monitoring and ECG signal processing. 2016,	7
1923	Low-cost prototype design of a portable ECG signal recorder. 2016 ,	1
1922	m-CADE: A mobile based cardiovascular abnormality detection engine using efficient multi-domain feature combinations. 2016 , 20, 575-596	
1921	Energy profile analysis of Zynq-7000 programmable SoC for embedded medical processing: Study on ECG arrhythmia detection. 2016 ,	4
1920	Effective QRS-Detector Based on Hilbert Transform and Adaptive Thresholding. 2016 , 140-144	1
1919	Population Based Ant Colony Optimization for Reconstructing ECG Signals. 2016 , 770-785	1
1918	ECG signal enhancement based on improved denoising auto-encoder. 2016 , 52, 194-202	71

1917	Biometric Authentication Using Noisy Electrocardiograms Acquired by Mobile Sensors. 2016 , 4, 1266-1273	58
1916	QRS Detection Algorithm for Telehealth Electrocardiogram Recordings. 2016 , 63, 1377-88	52
1915	Applications of Evolutionary Computation. 2016,	2
1914	Effective Electrocardiogram Steganography Based on Coefficient Alignment. 2016 , 40, 66	24
1913	Perpetual and Virtual Patients for Cardiorespiratory Physiological Studies. 2016 , 5, 122-128	4
1912	ECG signals classification using MFCC coefficients and ANN classifier. 2016 ,	9
1911	Adaptive thresholding based EMD for delineation of QRS complex in ECG signal analysis. 2016,	2
1910	ECG Beat Classification Using Evidential K -Nearest Neighbours. 2016 , 89, 499-505	23
1909	Real-time arrhythmia detection with supplementary ECG quality and pulse wave monitoring for the reduction of false alarms in ICUs. 2016 , 37, 1273-97	18
1908	High energy efficient analog compressed sensing encoder for wireless ECG system. 2016 , 56, 10-16	5
1907	An improved method for R-peak detection by using Shannon energy envelope. 2016 , 41, 469-477	13
1906	Population based ant colony optimization for reconstructing ECG signals. 2016 , 9, 55-66	4
1905	A Robust Method for Detecting the QRS Complex of the ECG Signal. 2016 , 50, 40-43	4
1904	Identifying usage anomalies for ECG-based sensor nodes. 2016 ,	О
1903	Adaptive Fourier decomposition based ECG denoising. 2016 , 77, 195-205	46
1902	Instantaneous P- and T-wave detection: Assessment of three ECG fiducial points detection algorithms. 2016 ,	5
1901	Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. 2016 , 56, 100-109	45
1900	Distributed QoS management for internet of things under resource constraints. 2016 ,	24

1899	Using Lempel-Ziv Complexity to Assess ECG Signal Quality. 2016 , 36, 625-634	20
1898	FPGA-based electrocardiography (ECG) signal analysis system using least-square linear phase finite impulse response (FIR) filter. 2016 , 3, 513-526	16
1897	Improving automatic cardiac arrhythmia classification: Joining temporal-VCG, complex networks and SVM classifier. 2016 ,	4
1896	Biomedical signal compression with time- and subject-adaptive dictionary for wearable devices. 2016 ,	7
1895	Towards real-time QRS feature extraction for wearable monitors. 2016 , 2016, 3519-3522	3
1894	Improved abnormality detection from raw ECG signals using feature enhancement. 2016,	7
1893	Effect of embedding dimension on complexity measures in identifying Arrhythmia. 2016 , 2016, 6230-6233	1
1892	Recommendations for antiarrhythmic drugs based on latent semantic analysis with fc-means clustering. 2016 , 2016, 4423-4426	2
1891	A quality-on-demand electrocardiogram signal compression using modified set partitioning in hierarchical tree. 2016 , 10, 1559-1566	4
1890	Applicability of multiresolution wavelet analysis for QRS-waves detection. 2016 , 2016, 3793-3796	1
1889	GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm. 2016 , 2016, 5327-5330	5
1888	Analysis of HRV signal for disease diagnosis. 2016,	O
1887	A Novel Features Learning Method for ECG Arrhythmias Using Deep Belief Networks. 2016,	10
1886	An application of EMD technique in detection of tachycardia beats. 2016,	4
1885	An area and performance aware ECG encoder design for wireless healthcare services. 2016,	1
1884	Efficient R-peak detection algorithm for real-time analysis of ECG in portable devices. 2016,	8
1883	ECG signal analysis and arrhythmia detection on IoT wearable medical devices. 2016,	67
1882	Matrix-Inversion-Free Compressed Sensing With Variable Orthogonal Multi-Matching Pursuit Based on Prior Information for ECG Signals. 2016 , 10, 864-873	20

(2015-2016)

1881	monitoring. 2016 , 75, 190-202	12
1880	Detection of Shockable Ventricular Arrhythmia using Variational Mode Decomposition. 2016 , 40, 79	60
1879	Big data-based extraction of fuzzy partition rules for heart arrhythmia detection: a semi-automated approach. 2016 , 28, 360-373	12
1878	Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. 2016 , 127, 52-63	234
1877	Machine Learning and Decision Support in Critical Care. 2016 , 104, 444-466	161
1876	FPGA Implementation of Heart Rate Monitoring System. 2016 , 40, 49	17
1875	ECG feature extraction based on the bandwidth properties of variational mode decomposition. 2016 , 37, 530-43	35
1874	A robust QRS detection using novel pre-processing techniques and kurtosis based enhanced efficiency. 2016 , 87, 194-204	41
1873	Expanding the Coverage of Ambient Assisted Living Systems. 2016 ,	1
1872	ECG compression using non-recursive wavelet transform with quality control. 2016 , 1-16	
1872 1871	ECG compression using non-recursive wavelet transform with quality control. 2016 , 1-16 Cloud-assisted Industrial Internet of Things (IIoT) Enabled framework for health monitoring. 2016 , 101, 192-202	442
1871	Cloud-assisted Industrial Internet of Things (IIoT) Enabled framework for health monitoring. 2016 ,	442 19
1871 1870	Cloud-assisted Industrial Internet of Things (IIoT) Œnabled framework for health monitoring. 2016 , 101, 192-202	
1871 1870 1869	Cloud-assisted Industrial Internet of Things (IIoT) Œnabled framework for health monitoring. 2016, 101, 192-202 A Deterministic Approach to Detect Median Filtering in 1D Data. 2016, 11, 1425-1437	19
1871 1870 1869 1868	Cloud-assisted Industrial Internet of Things (IIoT) (Enabled framework for health monitoring. 2016, 101, 192-202 A Deterministic Approach to Detect Median Filtering in 1D Data. 2016, 11, 1425-1437 ECG-based heartbeat classification for arrhythmia detection: A survey. 2016, 127, 144-64	19 390
1871 1870 1869 1868	Cloud-assisted Industrial Internet of Things (IIoT) Enabled framework for health monitoring. 2016, 101, 192-202 A Deterministic Approach to Detect Median Filtering in 1D Data. 2016, 11, 1425-1437 ECG-based heartbeat classification for arrhythmia detection: A survey. 2016, 127, 144-64 ECG Authentication for Mobile Devices. 2016, 65, 591-600	19 390 105
1871 1870 1869 1868	Cloud-assisted Industrial Internet of Things (IIoT) (Enabled framework for health monitoring. 2016, 101, 192-202 A Deterministic Approach to Detect Median Filtering in 1D Data. 2016, 11, 1425-1437 ECG-based heartbeat classification for arrhythmia detection: A survey. 2016, 127, 144-64 ECG Authentication for Mobile Devices. 2016, 65, 591-600 Wiki-Health: From Quantified Self to Self-Understanding. 2016, 56, 333-359 A new personalized ECG signal classification algorithm using Block-based Neural Network and	19 390 105

1863	Novel Real-Time FPGA-Based R-Wave Detection Using Lifting Wavelet. 2016 , 35, 281-299	13
1862	A signal invariant wavelet function selection algorithm. 2016 , 54, 629-42	12
1861	A Baseline Wander Tracking System for Artifact Rejection in Long-Term Electrocardiography. 2016 , 10, 255-65	13
1860	Development of Ventricular Fibrillation Diagnosis Method Based on Neuro-fuzzy Systems for Automated External Defibrillators. 2017 , 19, 440-451	7
1859	Enhancing Heart-Beat-Based Security for mHealth Applications. 2017, 21, 254-262	13
1858	Neighborhood rough set based ECG signal classification for diagnosis of cardiac diseases. 2017 , 21, 4721-473.	3 27
1857	An FPGA-Based Cloud System for Massive ECG Data Analysis. 2017 , 64, 309-313	8
1856	An energy-efficient system on a programmable chip platform for cloud applications. 2017 , 76, 117-132	18
1855	A 0.45 V 147B75 nW ECG Compression Processor With Wavelet Shrinkage and Adaptive Temporal Decimation Architectures. 2017 , 25, 1307-1319	19
1854	ECG Signal Analysis Using DCT-Based DOST and PSO Optimized SVM. 2017 , 66, 470-478	116
1853	Evaluation of effect of unsupervised dimensionality reduction techniques on automated arrhythmia classification. 2017 , 34, 1-8	22
1852	Arduino-based noise robust online heart-rate detection. 2017 , 41, 170-178	5
1851	Heart beat classification from single-lead ECG using the synchrosqueezing transform. 2017 , 38, 171-187	48
1850	Rakeness-Based Design of Low-Complexity Compressed Sensing. 2017 , 64, 1201-1213	27
1849	Genetic algorithm for the optimization of features and neural networks in ECG signals classification. 2017 , 7, 41011	90
1848	ECG beat classification via deterministic learning. 2017 , 240, 1-12	31
1847	Automatic pattern recognition of ECG signals using entropy-based adaptive dimensionality reduction and clustering. 2017 , 55, 238-252	42
1846	. 2017 , 4, 815-823	155

(2017-2017)

41
24
25
13
11
9
1
136
35
6
56
1
46
1
132
14
69

1827	A body sensor node SoC for ECG/EMG applications with compressed sensing and wireless powering. 2017 ,	1
1826	Fisher information framework for time series modeling. 2017 , 480, 22-38	3
1825	An Exploration Framework for Efficient High-Level Synthesis of Support Vector Machines: Case Study on ECG Arrhythmia Detection for Xilinx Zynq SoC. 2017 , 88, 127-147	15
1824	Emerging Trends in Neuro Engineering and Neural Computation. 2017,	3
1823	A fast noise-tolerant ECG feature recognition algorithm based on probabilistic analysis of gradient discontinuity. 2017 , 50, 491-503	
1822	Heartbeat monitoring from adaptively down-sampled electrocardiogram. 2017 , 84, 217-225	7
1821	Efficient ECG Compression and QRS Detection for E-Health Applications. 2017, 7, 459	51
1820	Noise-aware dictionary-learning-based sparse representation framework for detection and removal of single and combined noises from ECG signal. 2017 , 4, 2-12	18
1819	Noise Reduction in ECG Signals Using Wavelet Transform and Dynamic Thresholding. 2017, 193-206	2
1818	A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm. 2017 , 144, 61-75	54
1817	Deterioration of R-Wave Detection in Pathology and Noise: A Comprehensive Analysis Using Simultaneous Truth and Performance Level Estimation. 2017 , 64, 2163-2175	11
1816	Biometric Security and Privacy. 2017 ,	3
1815	Secondary measures of regularity from an entropy profile in detecting Arrhythmia. 2017, 2017, 3485-3488	2
1814	ECG signal denoising using Ehill climbing algorithm and wavelet transform. 2017,	9
1813	Neural network based ECG anomaly detection on FPGA and trade-off analysis. 2017,	20
1812	SHOCKABLE VERSUS NONSHOCKABLE LIFE-THREATENING VENTRICULAR ARRHYTHMIAS USING DWT AND NONLINEAR FEATURES OF ECG SIGNALS. 2017 , 17, 1740004	8
1811	Data Series Similarity Using Correlation-Aware Measures. 2017 ,	8
1810	An ECG signal analysis and prediction method combined with VMD and neural network. 2017 ,	2

1809 ECG classification and prognostic approach towards personalized healthcare. 2017 ,	9
$_{f 1}808$ Minimum-Width Confidence Bands via Constraint Optimization. 2017 , 443-459	1
Preserving privacy of online digital physiological signals using blind and reversible steganography. 2017 , 151, 159-170	29
1806 Multiresolution Analysis of ECG Signals in Heart Rhythm Monitoring. 2017 , 51, 178-182	
1805 Cardiac arrhythmia classification using the phase space sorted by Poincare sections. 2017 , 37, 690-70	00 9
1804 Personalized Monitoring and Advance Warning System for Cardiac Arrhythmias. 2017 , 7, 9270	49
1803 . 2017 , 5, 14195-14203	22
1802 A channel-dependent algorithm for heart beats detection in ECG recordings. 2017 ,	O
Combining Low-dimensional Wavelet Features and Support Vector Machine for Arrhythmia Beat Classification. 2017 , 7, 6067	39
Personalized wearable systems for real-time ECG classification and healthcare interoperability: Real-time ECG classification and FHIR interoperability. 2017 ,	14
An improved EMD based ECG denoising method using adaptive switching mean filter. 2017 ,	6
Protocol of the sepsivit study: a prospective observational study to determine whether continuous heart rate variability measurement during the first 48 hours of hospitalisation provides an early warning for deterioration in patients presenting with infection or sepsis to the emergency	7
1797 DeepQ Arrhythmia Database. 2017 ,	3
A compressive sensing information aware analog front end for IoT sensors using adaptive clocking techniques. 2017 ,	1
1795 ECG beat classification using empirical mode decomposition and mixture of features. 2017 , 41, 652-6	561 16
1794 On the detection of Cardiac Arrhythmia with Principal Component Analysis. 2017 , 97, 5495-5509	15
Adaptive Detector of QRS Complexes of an Electrocardiogram Signal Based on the Hilbert Transform. 2017 , 60, 196-202	1
Motion artifact removal based on periodical property for ECG monitoring with wearable systems. 2017, 40, 267-278	19

1791 Multiwa	velet feature sets for ECG beat classification. 2017 ,	2
1790 Rate-dis	tortion classification for self-tuning IoT networks. 2017 ,	2
1789 A New W	Javelet-Based ECG Delineator for the Evaluation of the Ventricular Innervation. 2017, 5, 2000215	21
1788 Classific	ation of normal and abnormal ECG signals based on their PQRST intervals. 2017,	5
	edge-driven framework for ECG representation and interpretation for wearable ons. 2017 ,	2
	al performance de-noising assessment based on threshold tuning of dual-tree wavelet m. 2017 , 16, 26	41
1785 Use of cl	ustering algorithms and extreme learning machine in determining arrhythmia types. 2017,	5
1784 QRS Cor	nplex Detection Based on Ensemble Empirical Mode Decomposition. 2017 , 286-293	2
DSP-bas 2017 , 32	ed arrhythmia classification using wavelet transform and probabilistic neural network. , 44-56	66
	nia classification using Mahalanobis distance based improved Fuzzy C-Means clustering for ealth monitoring systems. 2017 , 220, 221-235	43
	h all-pass based half-band infinite impulse response decimation filters and the effects of n-linear phase response on ECG signal acquisition. 2017 , 31, 529-538	4
17 ⁸⁰ Softward 2017 , 29	e Design and Optimization of ECG Signal Analysis and Diagnosis for Embedded IoT Devices. 9-322	3
1779 Compon	ents and Services for IoT Platforms. 2017 ,	12
1778 Smart as	sisted diagnosis solution with multi-sensor Holter. 2017 , 220, 67-75	7
1777 Cascade	Classification with Adaptive Feature Extraction for Arrhythmia Detection. 2017, 41, 11	10
	ven Sampling Matrix Boolean Optimization for Energy-Efficient Biomedical Signal on by Compressive Sensing. 2017 , 11, 255-266	18
1775 Clusterir	ng ECG heartbeat using improved semi-supervised affinity propagation. 2017 , 11, 207-213	10
1774 . 2017,		1

1773 A logarithmic level-crossing ADC. 2017 ,	О
Low power FIR filter design for wearable devices using frequency response masking technique. 2017,	О
1771 Real-time QRS detector using Stationary Wavelet Transform for Automated ECG Analysis. 2017 ,	15
1770 Unbiased FIR denoising of ECG signals. 2017 ,	3
1769 The role of blockchain and IoT in recruiting participants for digital clinical trials. 2017 ,	40
1768 Domain Adaptation for Online ECG Monitoring. 2017 ,	4
1767 Adaptive Fourier decomposition based R-peak detection for noisy ECG Signals. 2017 , 2017, 3501-3504	5
1766 A convolutional neural network based approach to QRS detection. 2017 ,	13
Automatic Rate-Distortion Classification for the IoT: Towards Signal-Adaptive Network Protocols. 2017 ,	3
From edge to cloud: Design and implementation of a healthcare Internet of Things infrastructure. 2017 ,	8
1763 Wave2Vec: Learning Deep Representations for Biosignals. 2017 ,	19
Detection of heart abnormalities via artificial neural network: An application of self learning algorithms. 2017 ,	3
1761 Motion artifact removal for wearable ECG using stationary wavelet multi-resolution analysis. 2017 ,	5
1760 Delay in QRS complex detection using the wavelet transform for real-time applications. 2017 ,	1
1759 A robust algorithm for R peak detection based on optimal Discrete Wavelet Transform. 2017 ,	4
$_{1758}$ Privacy preserving data management in recruiting participants for digital clinical trials. 2017 ,	13
1757 Algorithm for detection the QRS complexes based on support vector machine. 2017 , 929, 012041	2
1756 Artificial Intelligence in XPRIZE DeepQ Tricorder. 2017 ,	7

1755	Automatic arrhythmia identification based on electrocardiogram data using hybrid of Support Vector Machine and Genetic Algorithm. 2017 ,	1
1754	Feature extraction of HRV signal using wavelet transform. 2017,	1
1753	Fast ECG anomaly detection on Android platform. 2017,	О
1752	Efficient EPE based thresholding and adaptive coding for wavelet based ECG compression. 2017,	
1751	Bundle branch block detection using statistical features of QRS-complex and k-nearest neighbors. 2017 ,	4
1750	Motion artefact removals for wearable ECG using stationary wavelet transform. 2017 , 4, 138-141	21
1749	Spectro-Temporal Electrocardiogram Analysis for Noise-Robust Heart Rate and Heart Rate Variability Measurement. 2017 , 5, 1900611	10
1748	Heartbeat classification system based on modified stacked denoising autoencoders and neural networks. 2017 ,	2
1747	Deep learning based classification for healthcare data analysis system. 2017,	2
1746	Application of variational mode decomposition and ABC optimized DAG-SVM in arrhythmia analysis. 2017 ,	4
1745	Recognition of arrhythmic electrocardiogram using wavelet based feature extraction. 2017,	
1744	A linear stochastic state space model for electrocardiograms. 2017,	
1743	Unbiased FIR denoising of ECG data for features extraction. 2017,	
1742	. 2017,	2
1741	Stability, Consistency and Performance of Distribution Entropy in Analysing Short Length Heart Rate Variability (HRV) Signal. 2017 , 8, 720	16
1740	Set-Based Discriminative Measure for Electrocardiogram Beat Classification. 2017 , 17,	9
1739	Toward Improving Electrocardiogram (ECG) Biometric Verification using Mobile Sensors: A Two-Stage Classifier Approach. 2017 , 17,	39
1738	Privacy-Preserving Electrocardiogram Monitoring for Intelligent Arrhythmia Detection. 2017 , 17,	14

1737	A QRS Detection and R Point Recognition Method for Wearable Single-Lead ECG Devices. 2017, 17,	41
1736	Adaptive Integration of the Compressed Algorithm of CS and NPC for the ECG Signal Compressed Algorithm in VLSI Implementation. 2017 , 17,	9
1735	Arrhythmia Evaluation in Wearable ECG Devices. 2017 , 17,	20
1734	Patient-Specific Deep Architectural Model for ECG Classification. 2017 , 2017, 4108720	52
1733	An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm. 2017, 2017, 5980541	38
1732	A Novel ECG Eigenvalue Detection Algorithm Based on Wavelet Transform. 2017 , 2017, 5168346	6
1731	R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope. 2017 , 2017, 4901017	40
1730	Electrocardiograph signal denoising based on sparse decomposition. 2017 , 4, 134-137	12
1729	Cardiorespiratory dynamics measured from continuous ECG monitoring improves detection of deterioration in acute care patients: A retrospective cohort study. 2017 , 12, e0181448	25
1728	Clinical accuracy QRS detector with automatic parameter adjustment in an autonomous, real-time physiologic monitor. 2017 ,	
1727	ECG beat quality assessment using Self Organizing Map. 2017,	2
1726	Network/system co-simulation for design space exploration of IoT applications. 2017,	1
1725	Classification of ventricular arrhythmias using feature ranking score algorithm. 2017,	
1724	Discussion of "Representation of People's Decisions in Health Information Systems: A Complementary Approach for Understanding Health Care Systems and Population Health". 2017 , 56, e20-e29	O
1723	Efficient algorithm for baseline wander and powerline noise removal from ECG signals based on discrete Fourier series. 2018 , 41, 143-160	15
1722	Methods for Improved Discrimination Between Ventricular Fibrillation and Tachycardia. 2018 , 65, 2143-2151	7
1721	Simultaneous optimisation of clustering quality and approximation error for time series segmentation. 2018 , 442-443, 186-201	4
1720	P and T wave detection and delineation of ECG signal using differential evolution (DE) optimization strategy. 2018 , 41, 225-241	13

1719	An improved QRS complex detection method having low computational load. 2018 , 42, 230-241	22
1718	An Automatic Cardiac Arrhythmia Classification System With Wearable Electrocardiogram. 2018 , 6, 16529-165	5 36 6
1717	Constructing a Guided Filter by Exploiting the Butterworth Filter for ECG Signal Enhancement. 2018 , 38, 980-992	7
1716	A Review of Signal Processing Techniques for Electrocardiogram Signal Quality Assessment. 2018 , 11, 36-52	76
1715	A Novel Adaptive Feature Extraction for Detection of Cardiac Arrhythmias Using Hybrid Technique MRDWT & MPNN Classifier from ECG Big Data. 2018 , 12, 13-22	15
1714	A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. 2018 , 86, 446-455	166
1713	The application of ECG cancellation in diaphragmatic electromyographic by using stationary wavelet transform. 2018 , 8, 259-266	4
1712	A deep multi-task learning approach for ECG data analysis. 2018 ,	7
1711	A unique feature extraction using MRDWT for automatic classification of abnormal heartbeat from ECG big data with Multilayered Probabilistic Neural Network classifier. 2018 , 72, 596-608	17
1710	Context-aware reinforcement learning-based mobile cloud computing for telemonitoring. 2018,	1
1709	Deep learning for healthcare applications based on physiological signals: A review. 2018 , 161, 1-13	442
1708	A closed form expression for the GaussianBased CaputoBabrizio fractional derivative for signal processing applications. 2018 , 61, 138-148	38
1707	Robust Methods for Automated Selection of Cardiac Signals After Blind Source Separation. 2018 , 65, 2248-2258	4
1706	Local Deep Field for Electrocardiogram Beat Classification. 2018 , 18, 1656-1664	19
1705	Heartbeat Classification of ECG Signals Using Rational Function Systems. 2018, 187-195	3
1704	A Speed- and Power-Efficient SPIHT Design for Wearable Quality-On-Demand ECG Applications. 2018 , 22, 1456-1465	4
1703	Scalable Coding and Prioritized Transmission of ECG for Low-Latency Cardiac Monitoring Over Cellular M2M Networks. 2018 , 6, 8189-8200	3
1702	Neural Networks for Biomedical Signals Classification Based on Empirical Mode Decomposition and Principal Component Analysis. 2018 , 267-278	2

(2018-2018)

1701	2018, 63, 139-153	22
1700	Deterministic construction of sparse binary matrices via incremental integer optimization. 2018 , 430-431, 504-518	4
1699	Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier. 2018 , 41, 242-254	74
1698	Feature fusion for imbalanced ECG data analysis. 2018, 41, 152-160	44
1697	Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances. 2018 , 15,	92
1696	ECG and fingerprint bimodal authentication. 2018 , 40, 274-283	21
1695	Localization and classification of heart beats in phonocardiography signals I comprehensive review. 2018 , 2018,	25
1694	A Real-Time QRS Detection Method Based on Phase Portraits and Box-Scoring Calculation. 2018 , 18, 3694-3702	31
1693	Smart Pet Clothing for Monitoring of Health and Mood. 2018,	Ο
1692	A predictive framework for ECG signal processing using controlled nonlinear transformation. 2018,	4
1691	Fully-automated ventricular ectopic beat classification for use with mobile cardiac telemetry. 2018,	4
1690	Shearlet and contourlet transforms for analysis of electrocardiogram signals. 2018 , 161, 125-132	6
1689	Visualization of physiologic signals based on Hjorth parameters and Gramian Angular Fields. 2018,	6
1688	A Beta basis function Interval Type-2 Fuzzy Neural Network for time series applications. 2018 , 71, 259-274	31
1687	Understanding Irregularity Characteristics of Short-Term HRV Signals Using Sample Entropy Profile. 2018 , 65, 2569-2579	22
1686	Empirical mode decomposition for improved least square T-wave alternans estimation. 2018,	
1685	Speeding up similarity search under dynamic time warping by pruning unpromising alignments. 2018 , 32, 988-1016	35
1681	. 2018 , 6, 370-381	17

1683	Nearest neighbor search with locally weighted linear regression for heartbeat classification. 2018 , 22, 1225-1236	7
1682	Heartbeat Classification Using Abstract Features From the Abductive Interpretation of the ECG. 2018 , 22, 409-420	50
1681	Robust automated cardiac arrhythmia detection in ECG beat signals. 2018, 29, 679-693	43
1680	A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression. 2018 , 9, 1733-1740	35
1679	Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. 2018 , 78, 641-658	573
1678	A Modular Low-Complexity ECG Delineation Algorithm for Real-Time Embedded Systems. 2018 , 22, 429-441	35
1677	Design of a Low-Complexity Real-Time Arrhythmia Detection System. 2018 , 90, 145-156	7
1676	Cardiac arrhythmia classification using multi-granulation rough set approaches. 2018, 9, 651-666	7
1675	Automated ECG Noise Detection and Classification System for Unsupervised Healthcare Monitoring. 2018 , 22, 722-732	67
1674	A Novel Short-Term Event Extraction Algorithm for Biomedical Signals. 2018 , 65, 754-762	26
1673	A Diagnostic System for Detection of Atrial and Ventricular Arrhythmia Episodes from Electrocardiogram. 2018 , 38, 304-315	12
1672	Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals. 2018 , 39, 192-208	95
1671	Rapid and coding-efficient SPIHT algorithm for wavelet-based ECG data compression. 2018 , 60, 248-256	5
1670	Pattern Recognition of a Digital ECG. 2018 , 93-102	3
1669	Application of Recurrence-Based Methods to Heart Work Analysis. 2018, 343-352	
1668	Adaptive Differential Pulse Coding for ECG Signal Compression. 2018, 150-159	
1667	An efficient ECG denoising methodology using empirical mode decomposition and adaptive switching mean filter. 2018 , 40, 140-148	88
1666	Detection of ventricular tachycardia and fibrillation using adaptive variational mode decomposition and boosted-CART classifier. 2018 , 39, 219-229	29

1665	A novel approach to phase space reconstruction of single lead ECG for QRS complex detection. 2018 , 39, 405-415	11
1664	Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. 2018 , 79, 952-959	139
1663	Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system. 2018 , 92, 334-349	126
1662	Low-Cost Security of IoT Sensor Nodes With Rakeness-Based Compressed Sensing: Statistical and Known-Plaintext Attacks. 2018 , 13, 327-340	20
1661	Finding representative electrocardiogram beat morphologies with CUR. 2018, 77, 97-110	7
1660	Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm. 2018 , 32, 183-193	8
1659	Low prevalence of atrial fibrillation in Amerindians: a population-based study in frequent fish consumers living in rural coastal Ecuador (The Atahualpa Project). 2018 , 30, 539-542	6
1658	Greedy Pursuits Assisted Basis Pursuit for reconstruction of joint-sparse signals. 2018 , 142, 485-491	10
1657	. 2018 , 67, 222-236	7
1656	AUNTY: A Tool to Automatically Analyze Data Using Fuzzy Automata. 2018,	1
	AUNTY: A Tool to Automatically Analyze Data Using Fuzzy Automata. 2018, A Low-Power Current-Mode Analog QRS-Detection Circuit for Wearable ECG Sensors. 2018,	1
1655	A Low-Power Current-Mode Analog QRS-Detection Circuit for Wearable ECG Sensors. 2018, ECG Based Biometric Human Identification Using Convolutional Neural Network in Smart Health	1
1655 1654	A Low-Power Current-Mode Analog QRS-Detection Circuit for Wearable ECG Sensors. 2018, ECG Based Biometric Human Identification Using Convolutional Neural Network in Smart Health Applications. 2018,	1
1655 1654 1653	A Low-Power Current-Mode Analog QRS-Detection Circuit for Wearable ECG Sensors. 2018, ECG Based Biometric Human Identification Using Convolutional Neural Network in Smart Health Applications. 2018, Zero cross algorithm performance on raspberry pi machine for ECG QRS detection. 2018, 1080, 012040 Novel Scalable Deep Learning Approaches for Big Data Analytics Applied to ECG Processing. 2018,	5
1655 1654 1653	A Low-Power Current-Mode Analog QRS-Detection Circuit for Wearable ECG Sensors. 2018, ECG Based Biometric Human Identification Using Convolutional Neural Network in Smart Health Applications. 2018, Zero cross algorithm performance on raspberry pi machine for ECG QRS detection. 2018, 1080, 012040 Novel Scalable Deep Learning Approaches for Big Data Analytics Applied to ECG Processing. 2018, 9, 33-51	1 5
1655 1654 1653 1652	A Low-Power Current-Mode Analog QRS-Detection Circuit for Wearable ECG Sensors. 2018, ECG Based Biometric Human Identification Using Convolutional Neural Network in Smart Health Applications. 2018, Zero cross algorithm performance on raspberry pi machine for ECG QRS detection. 2018, 1080, 012040 Novel Scalable Deep Learning Approaches for Big Data Analytics Applied to ECG Processing. 2018, 9, 33-51 ECG Monitoring and Anomaly Detection Based on Compressed Measurements. 2018, An Adaptive Rate ECG Acquisition and Analysis for Efficient Diagnosis of the Cardiovascular	1 5 1

1647	Evaluation of Performance of Cloud Based Neural Network Models on Arrhythmia Classification. 2018 ,	
1646	A Selective Ensemble Learning Framework for ECG-Based Heartbeat Classification with Imbalanced Data. 2018 ,	1
1645	Patient-Specific Heartbeat Classification Based on I-Vector Adapted Deep Neural Networks. 2018,	10
1644	High-Resolution Time-Frequency Energy Features of HRV signals using the SPWVD and the STFT-Spectrogram. 2018 ,	2
1643	Fast Detection of P, Q, S and T Waves from Normal ECG Signals Using Local Context Windows. 2018	0
1642	ECG-based Human Authentication using High-level Spectro-temporal Signal Features. 2018,	11
1641	A Comparative Study of FFT, DCT, and DWT for Efficient Arrhytmia Classification in RP-RF Framework. 2018 , 9, 35-49	0
1640	An Efficient Lossless Compression Algorithm for Electrocardiogram Signals. 2018,	3
1639	A wearable ECG monitoring system for real-time arrhythmia detection. 2018,	11
1638	Matlab Based GUI for ECG Arrhythmia Detection Using Pan-Tompkin Algorithm. 2018,	1
1637	On the Design of a Physiological Signal Feature Extraction and Segmentation Digital Subsystem. 2018 ,	
1636	Denoising Noisy ECG Signal Based on Adaptive Fourier Decomposition. 2018,	1
1635	Variational Mode Decomposition with Nonlocal Means Technique for Robust Denoising ECG Signal. 2018 ,	Ο
1634	Time-Incremental Convolutional Neural Network for Arrhythmia Detection in Varied-Length Electrocardiogram. 2018 ,	6
1633	Non-Adaptive Methods for Fetal ECG Signal Processing: A Review and Appraisal. 2018, 18,	30
1632	Modified Neighborhood Determination in Nonlinear State-Space Projective Filtering. 2018,	
1631	Real-Time Cardiac Arrhythmia Classification Using Memristor Neuromorphic Computing System. 2018 , 2018, 2567-2570	5
1630	Local Interval Estimation Improves Accuracy and Robustness of Heart Rate Variability Derivation from Photoplethysmography. 2018 , 2018, 3558-3561	5

1629 Integrated IoT intelligent system for the automatic detection of cardiac variability. 2018 , 2018, 5798-5801	2
1628 Monitoring and Warning System for the Elderly: A Case Study of Cardiac Arrhythmias. 2018 ,	
Automated QRS complex detection using MFO-based DFOD. 2018 , 12, 1172-1184	10
1626 ECG Signals Denoising in State Space using UFIR Filtering for Features Extraction. 2018 ,	O
1625 Arrhythmia Detection Using MIT-BIH Dataset: A Review. 2018 ,	10
Enhanced Machine Learning Feature Selection Algorithm for Cardiac Arrhythmia in a Personal Healthcare Application. 2018 ,	1
1623 Electrocardiogram Fiducial Points Detection for Health Care Systems. 2018,	0
1622 Feasibility Study For In-Vehicle Detection of Severe Cardiac Events. 2018 , 9, 316-322	
A Convolutional Neural Network for Identifying Premature Ventricular Contraction Beat and Right Bundle Branch Block Beat. 2018 ,	O
Multiple Leads With a Switch Mode for Lossless and Lossy Compression Using Very-Large-Scale Integration Technology. 2018 , 6, 67291-67300	O
1619 Fast basis search for adaptive Fourier decomposition. 2018 , 2018,	1
Impact of Compression Ratio and Reconstruction Methods on ECG Classification for E-Health Gadgets: A Preliminary Study. 2018 , 85-97	O
1617 . 2018 ,	
1616 Automated Dynamic Electrocardiogram Noise Reduction Using Multilayer LSTM Network. 2018 ,	1
Assessment of an IoT Platform for Data Collection and Analysis for Medical Sensors. 2018 ,	1
Towards an Architecture to Guarantee Both Data Privacy and Utility in the First Phases of Digital Clinical Trials. 2018 , 18,	9
1613 Robust ECG Biometrics Using Two-Stage Model. 2018,	6
Noise Detection in Electrocardiography Signal for Robust Heart Rate Variability Analysis: A Deep Learning Approach. 2018 , 2018, 5632-5635	5

1611 R Peak Detection using Empirical Mode Decomposition with Shannon Energy Envelope. 2018 ,	1
1610 Readily available ECG databases. 2018, 51, 1095-1097	1
An Efficient Teager Energy Operator-Based Automated QRS Complex Detection. 2018 , 2018, 8360475	9
Algorithm and VLSI Architecture Design of Low-Power SPIHT Decoder for mHealth Applications. 2018 , 12, 1450-1457	4
A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms. 2018 , 39, 104005	33
1606 D-ECG: A Dynamic Framework for Cardiac Arrhythmia Detection from IoT-Based ECGs. 2018 , 85-99	9
1605 . 2018 ,	
1604 Data Prediction of ECG Based on Phase Space Reconstruction and Neural Network. 2018 ,	3
1603 Mobile/android application for QRS detection using zero cross method. 2018 , 978, 012048	
1602 A Personalized Point-of-Care Platform for Real-Time ECG Monitoring. 2018 , 64, 452-460	11
1601 Greedy Pursuits Based Gradual Weighting Strategy for Weighted \$ell_{1}\$-Minimization. 2018,	1
A novel wavelet-based filtering strategy to remove powerline interference from electrocardiograms with atrial fibrillation. 2018 , 39, 115006	12
Removal of Baseline Wander Noise in ECG Signal Using Asymmetrical Frequency-Response Masking Bandpass Filters. 2018 , 2018, 6002-6005	1
1598 Inter-Patient ECG Classification Using Deep Convolutional Neural Networks. 2018 ,	11
Removing ECG Noise from Surface EMG Based On Information Theory. 2018 ,	1
1596 Low power analog comb filter for biomedical applications. 2018 , 97, 371-386	3
Variational mode decomposition based ECG denoising using non-local means and wavelet domain filtering. 2018 , 41, 891-904	31
Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks. 2018, 5,	56

(2018-2018)

1593	piecewise linear spline and XGBoost. 2018 , 39, 104006	21
1592	Capturing Electrocardiogram Signals from Chairs by Multiple Capacitively Coupled Unipolar Electrodes. 2018 , 18,	4
1591	Dynamic signal quality index for electrocardiograms. 2018 , 39, 105008	7
1590	Semi-real-time removal of baseline fluctuations in electrocardiogram (ECG) signals by an infinite impulse response low-pass filter (IIR-LPF). 2018 , 74, 6785-6793	3
1589	Arrhythmia detection using deep convolutional neural network with long duration ECG signals. 2018 , 102, 411-420	322
1588	Amplitude Rescaling Influence on QRS Detection. 2018, 259-272	1
1587	VLSI Implementation of an Efficient Lossless EEG Compression Design for Wireless Body Area Network. 2018 , 8, 1474	6
1586	An open source benchmarked toolbox for cardiovascular waveform and interval analysis. 2018 , 39, 105004	67
1585	An Architecture for Cloud-Assisted Clinical Support System for Patient Monitoring and Disease Detection In Mobile Environments. 2018 ,	3
1584	. 2018 , 6, 50609-50626	14
1584 1583	. 2018 , 6, 50609-50626 Deep Learning on 1-D Biosignals: a Taxonomy-based Survey. 2018 , 27, 98-109	14 40
1583		·
1583 1582	Deep Learning on 1-D Biosignals: a Taxonomy-based Survey. 2018 , 27, 98-109	·
1583 1582 1581	Deep Learning on 1-D Biosignals: a Taxonomy-based Survey. 2018 , 27, 98-109 An Enhanced Random Forest for Cardiac Diseases Identification based on ECG signal. 2018 ,	40
1583 1582 1581	Deep Learning on 1-D Biosignals: a Taxonomy-based Survey. 2018, 27, 98-109 An Enhanced Random Forest for Cardiac Diseases Identification based on ECG signal. 2018, Designing a low-cost real-time group heart rate monitoring system. 2018, 63, 75-84	40 4 7
1583 1582 1581 1580	Deep Learning on 1-D Biosignals: a Taxonomy-based Survey. 2018, 27, 98-109 An Enhanced Random Forest for Cardiac Diseases Identification based on ECG signal. 2018, Designing a low-cost real-time group heart rate monitoring system. 2018, 63, 75-84 A Novel R Peak Detection Method for Mobile Environments. 2018, 6, 51227-51237	40 4 7 14
1583 1582 1581 1580	Deep Learning on 1-D Biosignals: a Taxonomy-based Survey. 2018, 27, 98-109 An Enhanced Random Forest for Cardiac Diseases Identification based on ECG signal. 2018, Designing a low-cost real-time group heart rate monitoring system. 2018, 63, 75-84 A Novel R Peak Detection Method for Mobile Environments. 2018, 6, 51227-51237 Empowering healthcare IoT systems with hierarchical edge-based deep learning. 2018, Heartbeat classification in wearables using multi-layer perceptron and time-frequency joint	40 4 7 14 24

1575	ECGLens. 2018,	14
1574	Machine Learning and Mobile Health Monitoring Platforms: A Case Study on Research and Implementation Challenges 2018 , 2, 179-203	5
1573	A Real-Time QRS Detection System With PR/RT Interval and ST Segment Measurements for Wearable ECG Sensors Using Parallel Delta Modulators. 2018 , 12, 751-761	43
1572	Symmetric-Key Generation Protocol (SGenP) for Body Sensor Network. 2018,	2
1571	Performance Analysis of Ten Common QRS Detectors on Different ECG Application Cases. 2018 , 2018, 9050812	34
1570	Frequency-domain interpolation for simultaneous periodic nonuniform samples. 2018,	1
1569	Energy-Aware Key Exchange for Securing Implantable Medical Devices. 2018 , 2018, 1-16	3
1568	Personalizing a Generic ECG Heartbeat Classification for Arrhythmia Detection: A Deep Learning Approach. 2018 ,	3
1567	Optimal DSP bandpass filtering for QRS detection. 2018,	Ο
1566	High-speed FPGA implementation of orthogonal matching pursuit for compressive sensing signal reconstruction. 2018 , 71, 173-190	3
1565	Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach. 2018, 8,	24
1564	A topological approach to delineation and arrhythmic beats detection in unprocessed long-term ECG signals. 2018 , 164, 159-168	4
1563	Feature selection using binary cuckoo search algorithm. 2018,	3
1562	Heartbeats Do Not Make Good Pseudo-Random Number Generators: An Analysis of the Randomness of Inter-Pulse Intervals. 2018 , 20,	7
1561	Analysis of the High-Frequency Content in Human QRS Complexes by the Continuous Wavelet Transform: An Automatized Analysis for the Prediction of Sudden Cardiac Death. 2018 , 18,	14
1560	LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices. 2018 , 18,	23
1559	On the Beat Detection Performance in Long-Term ECG Monitoring Scenarios. 2018, 18,	8
1558	Routing Protocols for Underwater Wireless Sensor Networks: Taxonomy, Research Challenges, Routing Strategies and Future Directions. 2018 , 18,	35

1557	A Fast and Robust Non-Sparse Signal Recovery Algorithm for Wearable ECG Telemonitoring Using ADMM-Based Block Sparse Bayesian Learning. 2018 , 18,	10
1556	Automated Method for Discrimination of Arrhythmias Using Time, Frequency, and Nonlinear Features of Electrocardiogram Signals. 2018 , 18,	13
1555	Multiscale Wavelet Method for Heart Abnormality Detection Within IoTs Environment. 2018,	
1554	Distributed Trade-Based Edge Device Management in Multi-Gateway IoT. 2018 , 2, 1-25	4
1553	A Real-time QRS Detector Based on Low-pass Differentiator and Hilbert Transform. 2018 , 175, 02008	2
1552	Simultaneously ensuring smartness, security, and energy efficiency in Internet-of-Things sensors. 2018 ,	5
1551	A new approach for analysis of heart rate variability and QT variability in long-term ECG recording. 2018 , 17, 54	6
1550	On clustering based nonlinear projective filtering of biomedical signals. 2018 , 44, 237-246	4
1549	High-Pass Converter Design Using a State-Space Approach and Its Application to Cardiac Signal Acquisition. 2018 , 12, 483-494	4
1548	A method to extract realistic artifacts from electrocardiogram recordings for robust algorithm testing. 2018 , 51, S56-S60	2
1547	Development of robust, fast and efficient QRS complex detector: a methodological review. 2018 , 41, 581-600	21
1546	Multi-stage SVM approach for cardiac arrhythmias detection in short single-lead ECG recorded by a wearable device. 2018 , 39, 094003	14
1545	A Comparative Analysis of Methods for Evaluation of ECG Signal Quality after Compression. 2018 , 2018, 1868519	25
1544	Design of wavelet transform based electrocardiogram monitoring system. 2018 , 80, 381-398	39
1543	Real-time premature ventricular contractions detection based on Redundant Discrete Wavelet Transform. 2018 , 34, 187-197	3
1542	A Personalized Arrhythmia Monitoring Platform. 2018 , 8, 11395	12
1541	ECG multi-class classification using neural network as machine learning model. 2018,	4
1540	Efficient support vector machines implementation on Intel/Movidius Myriad 2. 2018 ,	5

1539	An Efficient Kalman Noise Canceller for Cardiac Signal Analysis in Modern Telecardiology Systems. 2018 , 6, 34616-34630	10
1538	Arrhythmia Recognition and Classification Using ECG Morphology and Segment Feature Analysis. 2019 , 16, 131-138	29
1537	Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. 2019 , 40, 1975-1986	180
1536	A new fuzzy learning vector quantization method for classification problems based on a granular approach. 2019 , 4, 197-209	12
1535	Wave2Vec: Deep representation learning for clinical temporal data. 2019 , 324, 31-42	19
1534	An Efficient QRS Complex Detection Using Optimally Designed Digital Differentiator. 2019 , 38, 716-749	15
1533	A deep learning approach for real-time detection of atrial fibrillation. 2019 , 115, 465-473	135
1532	Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers. 2019 , 47, 41-48	113
1531	MULTISAB: A Web Platform for Analysis of Multivariate Heterogeneous Biomedical Time-Series. 2019 , 411-415	0
1530	Assessment of Electrocardiogram Quality Using Lossless Compression Technique for Heart Rate Variability Analysis. 2019 ,	O
1529	Intelligent Exercise Guidance System Based on Smart Clothing. 2019 , 39, 702-712	5
1528	Cardiac arrhythmia detection using deep learning: A review. 2019 , 57S, S70-S74	33
1527	. 2019 , 7, 109870-109883	22
1526	Machine learning in the electrocardiogram. 2019 , 57S, S61-S64	28
1525	Optimizing SVM Classifier Through Approximate and High Level Synthesis Techniques. 2019,	5
1524	Interpretable ECG Beat Embedding using Disentangled Variational Auto-Encoders. 2019,	2
1523	Removal of Baseline Wander in ECG Signals Using Singular Spectrum Analysis. 2019,	3
1522	Determination of the Signal-to-Noise Ratio for Noisy Electrocardiogram Using Lossless Data Compression. 2019 ,	

Artificial Intelligence of Things Wearable System for Cardiac Disease Detection. 2019 ,	9
. 2019 , 6, 9200-9210	35
Multiscale entropy profiling to estimate complexity of heart rate dynamics. 2019 , 100, 012405	4
Application of convolutional neural network in automatic classification of arrhythmia. 2019,	0
Feature Extraction for Heartbeat Classification in Single-Lead ECG. 2019 ,	2
The New Approach for ECG Signal Quality Index Estimation on the Base of Robust Statistic. 2019 , 481-494	
ECG-based personal recognition using a convolutional neural network. 2019 , 125, 668-676	16
ECG Arrhythmia Classification Using STFT-Based Spectrogram and Convolutional Neural Network. 2019 , 7, 92871-92880	134
A Fast Machine Learning Model for ECG-Based Heartbeat Classification and Arrhythmia Detection. 2019 , 7,	65
ECG Classification Based on Long Short-Term Memory Networks. 2019 , 129-140	0
A robust algorithm for heart rate variability time series artefact correction using novel beat classification. 2019 , 43, 173-181	46
Classification of ECG Arrhythmia Using CNN, SVM and LDA. 2019 , 191-201	5
Noise Detection in Electrocardiogram Signals for Intensive Care Unit Patients. 2019 , 7, 88357-88368	18
A Novel Approach for Multi-Lead ECG Classification Using DL-CCANet and TL-CCANet. 2019 , 19,	12
Arrhythmia detection based on timefrequency features of heart rate variability and back-propagation neural network. 2019 , 2, 245-257	12
An Automated ECG Beat Classification System Using Deep Neural Networks with an Unsupervised Feature Extraction Technique. 2019 , 9, 2921	33
Analysis of Noise Perturbation on Neural Network Based ECG Classification. 2019 , 349-358	
Adaptive Motion Artifact Reduction Based on Empirical Wavelet Transform and Wavelet Thresholding for the Non-Contact ECG Monitoring Systems. 2019 , 19,	24
	Multiscale entropy profiling to estimate complexity of heart rate dynamics. 2019, 100, 012405 Application of convolutional neural network in automatic classification of arrhythmia. 2019, Feature Extraction for Heartbeat Classification in Single-Lead ECG. 2019, The New Approach for ECG Signal Quality Index Estimation on the Base of Robust Statistic. 2019, 481-494 ECG-based personal recognition using a convolutional neural network. 2019, 125, 668-676 ECG Arrhythmia Classification Using STFT-Based Spectrogram and Convolutional Neural Network. 2019, 7, 92871-92880 A Fast Machine Learning Model for ECG-Based Heartbeat Classification and Arrhythmia Detection. 2019, 7, ECG Classification Based on Long Short-Term Memory Networks. 2019, 129-140 A robust algorithm for heart rate variability time series artefact correction using novel beat classification. 2019, 43, 173-181 Classification of ECG Arrhythmia Using CNN, SVM and LDA. 2019, 191-201 Noise Detection in Electrocardiogram Signals for Intensive Care Unit Patients. 2019, 7, 88357-88368 A Novel Approach for Multi-Lead ECG Classification Using DL-CCANet and TL-CCANet. 2019, 19, Arrhythmia detection based on timefrequency features of heart rate variability and back-propagation neural network. 2019, 2, 245-257 An Automated ECG Beat Classification System Using Deep Neural Networks with an Unsupervised feature Extraction Technique. 2019, 9, 2921 Analysis of Noise Perturbation on Neural Network Based ECG Classification. 2019, 349-358 Adaptive Motion Artifact Reduction Based on Empirical Wavelet Transform and Wavelet

1503 Dee p	Learning and Big Data in Healthcare: A Double Review for Critical Beginners. 2019 , 9, 2331	39
1502 Nois	e Removal from ECG Signal Based on Filtering Techniques. 2019 ,	О
1501 ECG	Analysis and Heartbeat Classification Based on Shallow Neural Networks. 2019 ,	7
4 FOO	pressed sensing for electrocardiogram acquisition in wireless body sensor network: A parative analysis. 2019 , 15, 155014771986488	6
1499 Evalı	uation of Heart Disease Diagnosis Approach using ECG Images. 2019 ,	0
	gn and development of an Internet-of-Things enabled wearable ExG measuring system with a I signal processing algorithm for electrocardiogram. 2019 , 13, 903-907	3
1 107	Arrhythmias Detection Using Auxiliary Classifier Generative Adversarial Network and Residual vork. 2019 , 7, 100910-100922	20
	Resource Complexity R-peak Detection Based on Triangle Template Matching and Moving age Filter. 2019 , 19,	7
	tive and Negative Evidence Accumulation Clustering for Sensor Fusion: An Application to tbeat Clustering. 2019 , 19,	4
	uency response masking based FIR filter using approximate multiplier for bio-medical cations. 2019 , 44, 1	3
1493 Are v	we training our heartbeat classification algorithms properly?. 2019 , 2019, 6363-6366	0
1492 Hea r	tbeat Anomaly Detection using Adversarial Oversampling. 2019,	4
Mult ¹⁴⁹¹ 2019	iple Physiological Signals Fusion Techniques for Improving Heartbeat Detection: A Review. 7, 19,	11
	ccurate QRS complex and P wave Detection in ECG Signals using Complete Ensemble Empirical e Decomposition Approach. 2019 , 7, 128869-128880	29
	ligent Analysis of Premature Ventricular Contraction Based on Features and Random Forest. 9, 2019, 5787582	7
1488 Ha rn	nonic Decomposition of ECG Signal using Analytic Signal Matched Filter Bank. 2019 ,	
	hted Single-Step Genome-Wide Association Study of Semen Traits in Holstein Bulls of China. , 10, 1053	6
	mated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet sform with ECG signals. 2019 , 186, 104923	105

1485 Phase-domain Deep Patient-ECG Image Learning for Zero-effort Smart Health Security. **2019**, 2019, 2622-26284

A Deep Learning Method to Detect Atrial Fibrillation Based on Continuous Wavelet Transform. 1484 2019 , 2019, 1908-1912	11
Muscle Artifacts Cancellation Framework for ECG Signals Combining Convolution Auto-encoder and Average Beat Subtraction. 2019 ,	
$_{1482}$ FPGA-based system for heart rate monitoring. 2019 , 13, 771-782	10
ECG Classification Algorithm Based on STDP and R-STDP Neural Networks for Real-Time Monitoring on Ultra Low-Power Personal Wearable Devices. 2019 , 13, 1483-1493	27
Feature Enrichment Based Convolutional Neural Network for Heartbeat Classification From Electrocardiogram. 2019 , 7, 153751-153760	11
Smart Heart Monitoring: Early Prediction of Heart Problems Through Predictive Analysis of ECG Signals. 2019 , 7, 120831-120839	19
Secured healthcare monitoring system in wireless body area network using polynomial based technique. 2019 , 25, 171-177	1
Electrocardiogram Processing System Design with Parallel Computing and Memory Transferring Using Fuzzy ART Neural Network. 2019 ,	
1476 . 2019 , 7, 110012-110022	3
Analysis and classification of heart diseases using heartbeat features and machine learning algorithms. 2019 , 6,	54
Automated Heartbeat Classification Exploiting Convolutional Neural Network With Channel-Wise Attention. 2019 , 7, 122955-122963	8
A 65-nm CMOS Lossless Bio-Signal Compression Circuit With 250 FemtoJoule Performance Per Bit. 2019 , 13, 1087-1100	3
Atrial Fibrillation Detection Based on the Combination of Depth and Statistical Features of ECG. 2019,	
A 0.5 nW Analog ECG Processor for Real Time R-wave Detection Based on Pan-Tompkins Algorithm. 2019,	0
Classification of Premature Ventricular Contraction based on ECG Signal using Multiorder RByi Entropy. 2019 ,	1
1469 Method and VLSI implementation of lossy-to-lossless LTM ECG compression framework. 2019 , 55, 70-72	1
1468 VERB: VFCDM-Based Electrocardiogram Reconstruction and Beat Detection Algorithm. 2019 , 7, 13856-13866	5 23

1467	Fog-Computing-Based Heartbeat Detection and Arrhythmia Classification Using Machine Learning. 2019 , 12, 32	16
1466	Dynamical memetization in coral reef optimization algorithms for optimal time series approximation. 2019 , 8, 253-262	3
1465	QRS detection method based on fully convolutional networks for capacitive electrocardiogram. 2019 , 134, 66-78	16
1464	Arrhythmia detection in electrocardiogram based on recurrent neural network encoderdecoder with Lyapunov exponent. 2019 , 14, 1273-1274	2
1463	. 2019 , 7, 68316-68330	8
1462	Reservoir Transfer on Analog Neuromorphic Hardware. 2019 ,	4
1461	Classifying heart conditions based on class probability output networks. 2019 , 360, 198-208	2
1460	Automated Heartbeat Classification Using 3-D Inputs Based on Convolutional Neural Network With Multi-Fields of View. 2019 , 7, 76295-76304	19
1459	A system for automatic cardiac arrhythmia recognition using electrocardiogram signal. 2019, 891-911	4
1458	A reversible and multipurpose ECG data hiding technique for telemedicine applications. 2019, 125, 463-473	18
1457	Arrhythmia classification on ECG using Deep Learning. 2019,	9
1456	. 2019,	3
1455	Reduction of Noise of Cloud Medical Images Using Image Enhancement Technique. 2019 , 825-835	О
1454	Ultra-thin Skin Electronics for High Quality and Continuous Skin-Sensor-Silicon Interfacing. 2019,	2
1453	Nonlinear dynamic approaches to identify atrial fibrillation progression based on topological methods. 2019 , 53, 101563	8
1452	A novel IRBF-RVM model for diagnosis of atrial fibrillation. 2019 , 177, 183-192	10
1451	SIMIT: Subjectively Interesting Motifs in Time Series. 2019 , 21,	2
1450	From Bioinspired Systems and Biomedical Applications to Machine Learning. 2019 ,	4

1449	. 2019 , 7, 60276-60289	12
1448	Application of Koniocortex-Like Networks to Cardiac Arrhythmias Classification. 2019 , 264-273	1
1447	Optimal data fusion for the improvement of QRS complex detection in multi-channel ECG recordings. 2019 , 57, 1673-1681	10
1446	Hybrid approach for ECG signal enhancement using dictionary learning-based sparse representation. 2019 , 13, 381-391	4
1445	Matrix Mapping on Crossbar Memory Arrays with Resistive Interconnects and Its Use in In-Memory Compression of Biosignals. 2019 , 10,	6
1444	A 1.06- \$mu\$ W Smart ECG Processor in 65-nm CMOS for Real-Time Biometric Authentication and Personal Cardiac Monitoring. 2019 , 54, 2316-2326	26
1443	Deep Learning Approach to Cardiovascular Disease Classification Employing Modified ECG Signal from Empirical Mode Decomposition. 2019 , 52, 128-140	52
1442	Deep Intermediate Representation and In-Set Voting Scheme for Multiple-Beat Electrocardiogram Classification. 2019 , 19, 6895-6904	1
1441	Assessment of Electrocardiogram Rhythms by GoogLeNet Deep Neural Network Architecture. 2019 , 2019, 2826901	19
1440	Inter- and intra-patient ECG heartbeat classification for arrhythmia detection: A sequence to sequence deep learning approach. 2019 , 2019, 1308-1312	32
1439	An Efficient Cardiac Arrhythmia Onset Detection Technique Using a Novel Feature Rank Score Algorithm. 2019 , 43, 167	2
1438	Design of dynamic ECG diagnosis system based on multiresolution. 2019 , 1176, 052035	
1437	Very large-scale integration architecture for wavelet-based ECG signal adaptive coder. 2019 , 13, 56-64	2
1436	Adversarial de-noising of electrocardiogram. 2019 , 349, 212-224	16
1435	Improving the QRS detection for one-channel ECG sensor. 2019 , 27, 623-642	2
1434	Embedded Solution for Atrial Fibrillation Detection Using Smart Wireless Body Sensors. 2019 , 19, 5740-5750	6
1433	Lossless electrocardiogram signal compression: A review of existing methods. 2019 , 51, 338-346	10
1432	A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification. 2019 , 97, 564-577	59

1431 ECG Baseline Wander Correction and Denoising Based on Sparsity. 2019 , 7, 31573-31585	16
1430 ECG Signal Denoising and Features Extraction Using Unbiased FIR Smoothing. 2019 , 2019, 2608547	20
Classification and Prediction of Arrhythmias from Electrocardiograms Patterns Based on Empirical Mode Decomposition and Neural Network. 2019 , 174-184	2
1428 Computer-aided Arrhythmia Diagnosis with Bio-signal Processing. 2019 , 52, 1-37	14
Bayesian Real-Time QRS Complex Detector for Healthcare System. 2019 , 6, 5540-5549	5
Automated detection of congestive heart failure from electrocardiogram signal using Stockwell transform and hybrid classification scheme. 2019 , 173, 53-65	31
A hybrid dynamic exploitation barebones particle swarm optimisation algorithm for time series segmentation. 2019 , 353, 45-55	11
Synchronization control of pulsatile ventricular assist devices by combination usage of different physiological signals. 2019 , 24, 105-112	4
1423 MedChain: Efficient Healthcare Data Sharing via Blockchain. 2019 , 9, 1207	112
Feasibility analysis of Inter-Pulse Intervals based solutions for cryptographic token generation by two electrocardiogram sensors. 2019 , 96, 283-296	3
Probabilistic principal component analysis-based dimensionality reduction and optimization for arrhythmia classification using ECG signals. 2019 , 15,	4
1420 Sparse ECG Denoising with Generalized Minimax Concave Penalty. 2019 , 19,	11
1419 Effective high compression of ECG signals at low level distortion. 2019 , 9, 4564	9
Detecting Premature Ventricular Contraction by Using Regulated Discriminant Analysis with Very Sparse Training Data. 2019 , 33, 229-248	1
1417 A novel multi-module neural network system for imbalanced heartbeats classification. 2019 , 1, 100	003 18
1416 Accurate tunable-Q wavelet transform based method for QRS complex detection. 2019 , 75, 101-11	1 25
Comparison of Atrial Fibrillation Detection Performance Using Decision Trees, SVM and Artificial Neural Network. 2019 , 693-701	
Towards patient connected imaging with ACROBEAT: Adaptive CaRdiac cOne BEAm computed Tomography. 2019 , 64, 065006	3

1413	A novel methodology of cardiac arrhythmia classification based on ECG and context-dependent HMM. 2019 ,	
1412	Automated Classification of Sleep Apnea and Hypopnea on Polysomnography Data. 2019,	1
1411	Deep Embedded Clustering for Data-Driven ECG Exploration Using Continuous Wavelet Transforms. 2019 ,	
1410	Resource Efficient Personalized ECG Beat Classification via Temporal Logic Synthesis. 2019,	
1409	Fusing Transformer Model with Temporal Features for ECG Heartbeat Classification. 2019,	11
1408	Distilled Deep Learning based Classification of Abnormal Heartbeat Using ECG Data through a Low Cost Edge Device. 2019 ,	1
1407	Parametric Canonical Correlation Analysis. 2019,	Ο
1406	. 2019,	2
1405	Arrhythmia Detection - A Machine Learning based Comparative Analysis with MIT-BIH ECG Data. 2019 ,	2
1404	PV,Battery and Ultra-capacitor Based Hybrid Energy Storage System. 2019 ,	3
1404	PV,Battery and Ultra-capacitor Based Hybrid Energy Storage System. 2019, Best Parameters Selection of Arrhythmia Classification Using Convolutional Neural Networks. 2019,	3
1403		3
1403 1402	Best Parameters Selection of Arrhythmia Classification Using Convolutional Neural Networks. 2019	3
1403 1402 1401	Best Parameters Selection of Arrhythmia Classification Using Convolutional Neural Networks. 2019 , Computation of Strain in Deformed Pearlitic Steel Using Digital Image Correlation Technique. 2019,	3
1403 1402 1401	Best Parameters Selection of Arrhythmia Classification Using Convolutional Neural Networks. 2019 , Computation of Strain in Deformed Pearlitic Steel Using Digital Image Correlation Technique. 2019, Super-Resolution Direction-of-Arrival Estimation based on Multiplicative Array Processing. 2019,	1
1403 1402 1401 1400	Best Parameters Selection of Arrhythmia Classification Using Convolutional Neural Networks. 2019 Computation of Strain in Deformed Pearlitic Steel Using Digital Image Correlation Technique. 2019, Super-Resolution Direction-of-Arrival Estimation based on Multiplicative Array Processing. 2019, Online Heartbeat Classification Using Low Cost Algorithms. 2019, Intelligence ECG Monitoring System: Wireless platform and Arrhythmia classification using Residual neural network. 2019,	
1403 1402 1401 1400	Best Parameters Selection of Arrhythmia Classification Using Convolutional Neural Networks. 2019 Computation of Strain in Deformed Pearlitic Steel Using Digital Image Correlation Technique. 2019, Super-Resolution Direction-of-Arrival Estimation based on Multiplicative Array Processing. 2019, Online Heartbeat Classification Using Low Cost Algorithms. 2019, Intelligence ECG Monitoring System: Wireless platform and Arrhythmia classification using Residual neural network. 2019, Global Independence, Possible Local Dependence: Towards More Realistic Error Estimates for	1

1395 Towards High Energy Efficiency in the Internet of Things. **2019**,

1394	Optimal Temporal Logic Planning for Multi-Robot Systems in Uncertain Semantic Maps. 2019,	4
1393	Scheduling method of maintenance support resource with task timing constraint. 2019,	
1392	Relations between Femininity and the Movements in Japanese Traditional Dance. 2019,	O
1391	. 2019,	4
1390	Analysis of the Impact of Different Reactive Power Compensation Devices on HVDC System Rectifier Station Power System Automation. 2019 ,	1
1389	AAMI Standard Cardiac Arrhythmia Detection with Random Forest Using Mixed Features. 2019,	2
1388	Abnormality Heartbeat Classification of ECG Signal Using Deep Neural Network and Autoencoder. 2019 ,	
1387	A methodology to analyze heart data using fuzzy automata1. 2019 , 37, 7389-7399	7
1386	Simultaneously Concentrated PSWF-based Synchrosqueezing S-transform and its application to R peak detection in ECG signal. 2019 ,	O
1385	An assistive low-vision platform that augments spatial cognition through proprioceptive guidance: Point-to-Tell-and-Touch. 2019 ,	2
1384	Design and Implementation of a Novel R-Peak Detection Algorithm. 2019,	О
1383	Dense Convolutional Networks With Focal Loss and Image Generation for Electrocardiogram Classification. 2019 , 7, 182225-182237	15
1382	Improving Arabic Stemmer: ISRI Stemmer. 2019 ,	
1381	Light-weight configurable architecture for QRS detection. 2019 , 13, 70-77	
1380	Anomaly Detection in Time Series using Generative Adversarial Networks. 2019,	3
1379	High Frequency Electrocardiography Signal Acquisition and Impact on Heart Rate Variability. 2019,	
1378	A Novel Pitch-Frequency-Based ECG Signal Classification Approach for Abnormality Detection. 2019 ,	O

1377	Assessing Context-Aware Data Consistency. 2019 ,	
1376	What Motivates Learners' Intention to Use Blackboard Mobile Learning (BML)?: Evidence from Thailand. 2019 ,	1
1375	Multi Mobile Agent Based Remote Health Monitoring. 2019,	
1374	Localization of Steady Sound Source and Direction Detection of Moving Sound Source using CNN. 2019 ,	Ο
1373	SiO2/SiN membranes as MEMS Pirani gauges for wide pressure measurement range. 2019,	0
1372	Arrhythmia Classification Using Deep Neural Network. 2019,	O
1371	A Health Indicator Construction Method based on Deep Belief Network for Remaining Useful Life Prediction. 2019 ,	1
1370	Fast Global Active Contour Model with Local Information. 2019,	1
1369	Development of Neural Network-Based Approach for QRS Segmentation. 2019,	1
1368	Using Floating-Gate MOS as a Non-Volatile Analog Memory for Energy-Efficient Adaptive Thresholding in ECG Sensors. 2019 ,	O
1367	A Spatio-Temporal Flow Model of Dockless Shared Bikes. 2019 ,	1
1366	Optimization and Calorimetric Analysis of Axial Flux Permanent Magnet Motor for Implantable Blood Pump Assisting the Fontan Circulation. 2019 ,	
1365	An Analysis of Univariate and Multivariate Electrocardiography Signal Classification. 2019,	0
1364	An improved classification method for arrhythmia electrocardiogram dataset. 2019,	O
1363	Poster Abstract: Automated Detection of the Onset of Ventricular Depolarization in Challenging Clinical ECG Data. 2019 ,	
1362	A Bot for Suggesting Questions That Match Each User's Expertise. 2019,	1
1361	Use one-bit technique to measure the coherence in the time, frequency and space domain in a reverberation chamber. 2019 , 13, 2632-2635	О
1360	A Free and Open Source Toolbox based on Mathematica for Power System Analysis. 2019 ,	

2359 Zero Voltage Vector - Based Predictive Direct Torque Control for PMSM. 2019,

High Noise Tolerant R-Peak Detection Method Based on Deep Convolution Neural Network. 2019 , E102.D, 2272-2275	1
1357 Regularised Encoder-Decoder Architecture for Anomaly Detection in ECG Time Signals. 2019 ,	1
1356 Portable Real Time ECG Monitor and Disease Diagnostics. 2019 ,	
Application of Dispersion Entropy to Healthy and Pathological Heartbeat ECG Segments. 2019 , 2019, 2269-2272	2
1354 . 2019 , 7 , 159369-159378	11
A High-Precise Arrhythmia Detection Method Based on Biorthogonal Wavelet and Fully Connected Neural Network. 2019 ,	О
A Novel Method to Detect Multiple Arrhythmias Based on Time-Frequency Analysis and Convolutional Neural Networks. 2019 , 7, 170820-170830	13
1351 Real-Time Classification for Cardiac Arrhythmia ECG Beat. 2019 ,	1
1350 IoTNet: An Efficient and Accurate Convolutional Neural Network for IoT Devices. 2019 , 19,	16
1349 Heart Rate Variability: A Methodological Survey. 2019 ,	2
1348 Deep Learning Models for Denoising ECG Signals. 2019 ,	23
A general-purpose signal processing algorithm for biological profiles using only first-order derivative information. 2019 , 20, 611	4
1346 Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique. 2019 ,	16
Towards Real-Time Heartbeat Classification: Evaluation of Nonlinear Morphological Features and Voting Method. 2019 , 19,	29
1344 A Novel Detection Method of Bundle Branch Block from Multi-lead ECG. 2019 , 2019, 79-82	1
Reconfigurable Architecture for Multi-lead ECG Signal Compression with High-frequency Noise Reduction. 2019 , 9, 17233	7
Pareto-optimal cost optimization for large scale cloud systems using joint allocation of resources. 2019, 1	6

1341 Inter-Patient CNN-LSTM for QRS Complex Detection in Noisy	ECG Signals. 2019 , 7, 169359-169370 13
1340 . 2019,	1
A Deviation Analysis Framework for ECG Signals Using Contro 2019,	olled Spatial Transformation. 2019 ,
Advanced P Wave Detection in Ecg Signals During Pathology: Contexts. 2019 , 9, 19053	Evaluation in Different Arrhythmia
A Cascaded Convolutional Neural Network for Assessing Sign 2019, 7095137	aal Quality of Dynamic ECG. 2019 ,
1336 QRS Detection in ECG Signal Based on Residual Network. 201	9, 4
1335 Real Time Electrocardiogram Annotation with a Long Short T	erm Memory Neural Network. 2019 , o
1334 An Optimal Set of Features for Multi-Class Heart Beat Abnor	mality Classification. 2019 , 1
Clustering Continuous Wavelet Transform Characteristics of Unsupervised Learning. 2019 , 2019, 4584-4587	Heart Rate Variability through O
1332 ECG Arrhythmia Classification By Using Convolutional Neural	Network And Spectrogram. 2019 , 3
Electrocardiogram beat type dictionary based compressed se 2019 , 47, 207-218	ensing for telecardiology application.
1330 Comprehensive Analysis of Nonlocal Means Algorithm on Wid	de Set of ECG Signals. 2019 , 571-580 1
1329 ACLT-Based QRS Detection and ECG Compression Architectu	re. 2019 , 39-57
$_{ m 1328}$ Ultra Low Power ECG Processing System for IoT Devices. 201	9,
1327 QR Code-Based Highly Secure ECG Steganography. 2019 , 171	-178 8
A robust deep convolutional neural network with batch-weig 2019 , 122, 75-84	hted loss for heartbeat classification. 81
Matching Pursuit Decomposition on Electrocardiograms for J 2019, 38, 2653-2676	oint Compression and QRS Detection.
Geometrical features for premature ventricular contraction r process based machine learning algorithms selection. 2019 , 1	

1323 Mathematical Modeling of Real Time ECG Waveform. **2019**, 606-614

1322	A Granular Resampling Method and Adaptive Speculative Mechanism-Based Energy-Efficient Architecture for Multiclass Heartbeat Classification. 2019 , 38, 2172-2176	3
1321	Automated real-time method for ventricular heartbeat classification. 2019, 169, 1-8	10
1320	WNC-ECGlet: Weighted non-convex minimization based reconstruction of compressively transmitted ECG using ECGlet. 2019 , 49, 1-13	1
1319	Artificial intelligence for the electrocardiogram. 2019 , 25, 22-23	47
1318	Multi-lead model-based ECG signal denoising by guided filter. 2019 , 79, 34-44	19
1317	An optimally designed digital differentiator based preprocessor for R-peak detection in electrocardiogram signal. 2019 , 49, 440-464	19
1316	. 2019 , 19, 277-286	32
1315	Efficient QRS complex detection algorithm based on Fast Fourier Transform. 2019, 9, 145-151	17
1314	Deep Learning in Cardiology. 2019 , 12, 168-193	58
1313	Bimodal classification algorithm for atrial fibrillation detection from m-health ECG recordings. 2019 , 104, 310-318	9
1312	Design and implementation of an ultra-low energy FFT ASIC for processing ECG in Cardiac Pacemakers. 2019 , 27, 983-987	10
1311	Signal discrimination using category-preserving bag-of-words model for condition monitoring. 2019 , 31, 8615-8630	3
1310	SSTS: A syntactic tool for pattern search on time series. 2019 , 56, 61-76	11
1309	Towards End-to-End ECG Classification With Raw Signal Extraction and Deep Neural Networks. 2019 , 23, 1574-1584	78
1308	Ultra-Low Power QRS Detection and ECG Compression Architecture for IoT Healthcare Devices. 2019 , 66, 669-679	43
1307	Automatic detection of electrocardiographic arrhythmias by parallel continuous neural networks implemented in FPGA. 2019 , 31, 363-375	8
1306	A Novel Blaschke Unwinding Adaptive-Fourier-Decomposition-Based Signal Compression Algorithm With Application on ECG Signals. 2019 , 23, 672-682	32

1305	Fast QRS Detection and ECG Compression Based on Signal Structural Analysis. 2019, 23, 123-131	26
1304	PhysOnline: An Open Source Machine Learning Pipeline for Real-Time Analysis of Streaming Physiological Waveform. 2019 , 23, 59-65	23
1303	Heart Rate Variability (HRV) Analysis: A Methodology for Organizational Neuroscience. 2019, 22, 354-393	52
1302	Detection of shockable ventricular arrhythmia using optimal orthogonal wavelet filters. 2020 , 32, 15869-1588	34 ₂₁
1301	Wearable ECG signal processing for automated cardiac arrhythmia classification using CFASE-based feature selection. 2020 , 37, e12432	3
1300	Multi-class Arrhythmia detection from 12-lead varied-length ECG using Attention-based Time-Incremental Convolutional Neural Network. 2020 , 53, 174-182	120
1299	I-Vector-Based Patient Adaptation of Deep Neural Networks for Automatic Heartbeat Classification. 2020 , 24, 717-727	5
1298	Next-generation heartbeat classification with a column-store DBMS and UDFs. 2020 , 54, 363-390	2
1297	Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals. 2020 , 32, 11137-1116	1 84
1296	AMSOM: artificial metaplasticity in SOM neural networks application to MIT-BIH arrhythmias database. 2020 , 32, 13213-13220	4
1295	A High-Throughput Subspace Pursuit Processor for ECG Recovery in Compressed Sensing Using Square-Root-Free MGS QR Decomposition. 2020 , 28, 174-187	3
1294	New Paradigm in Decision Science and Management. 2020 ,	2
1293	Detecting outliers with one-class selective transfer machine. 2020 , 62, 1781-1818	2
1292	RR-APET - Heart rate variability analysis software. 2020 , 185, 105127	5
1291	A Real-Time Arrhythmia Heartbeats Classification Algorithm Using Parallel Delta Modulations and Rotated Linear-Kernel Support Vector Machines. 2020 , 67, 978-986	23
1290	Detection of premature ventricular contraction (PVC) using linear and nonlinear techniques: an experimental study. 2020 , 23, 759-774	4
1289	Heart Arrhythmia Classification Based on Statistical Moments and Structural Co-occurrence. 2020 , 39, 631-650	12
1288	. 2020 , 14, 1953-1962	4

1287	An Efficient R-Peak Detection Using Riesz Fractional-Order Digital Differentiator. 2020 , 39, 1965-1987	8
1286	Investigation of Kronecker-Based Recovery of Compressed ECG Signal. 2020 , 69, 3642-3653	30
1285	Cloud-based health monitoring framework using smart sensors and smartphone. 2020 , 217-243	2
1284	Implementation and validation of real-time algorithms for atrial fibrillation detection on a wearable ECG device. 2020 , 116, 103540	17
1283	Arrhythmia identification and classification using wavelet centered methodology in ECG signals. 2020 , 32, e5553	7
1282	Biomedical Signal Processing. 2020 ,	4
1281	Inter-Patient ECG Classification With Symbolic Representations and Multi-Perspective Convolutional Neural Networks. 2020 , 24, 1321-1332	42
1280	A Novel Approach for ECG-Based Human Identification Using Spectral Correlation and Deep Learning. 2020 , 2, 1-14	22
1279	Machine Learning Approach to Detect Cardiac Arrhythmias in ECG Signals: A Survey. 2020 , 41, 185-194	23
1278	Electrocardiogram signal denoising by a new noise variation estimate. 2020 , 36, 13-20	5
1277	Computational approaches for detection of cardiac rhythm abnormalities: Are we there yet?. 2020 , 59, 28-34	1
1276	Empirical mode decomposition with shape-preserving spline interpolation. 2020 , 5, 100086	6
1275	Robust ECG biometrics using GNMF and sparse representation. 2020 , 129, 70-76	17
1274	A 13.34 W Event-Driven Patient-Specific ANN Cardiac Arrhythmia Classifier for Wearable ECG Sensors. 2020 , 14, 186-197	24
1273	Are the Interpulse Intervals of an ECG signal a good source of entropy? An in-depth entropy analysis based on NIST 800-90B recommendation. 2020 , 105, 346-360	2
1272	Classification of temporal data using dynamic time warping and compressed learning. 2020 , 57, 101781	6
1271	Automated arrhythmia classification based on a combination network of CNN and LSTM. 2020 , 57, 101819	60
1270	Low-complexity lossless multichannel ECG compression based on selective linear prediction. 2020 , 57, 101705	7

(2020-2020)

1269	Wearable Wireless Sensors Network for ECG Telemonitoring Using Neural Network for Features Extraction. 2020 , 111, 1955-1976	10
1268	Heartbeat classification using local transform pattern feature and hybrid neural fuzzy-logic system based on self-organizing map. 2020 , 57, 101690	9
1267	An efficient removal of power-line interference and baseline wander from ECG signals by employing Fourier decomposition technique. 2020 , 57, 101741	45
1266	Smart Computing Paradigms: New Progresses and Challenges. 2020 ,	
1265	Automatic digital ECG signal extraction and normal QRS recognition from real scene ECG images. 2020 , 187, 105254	8
1264	Heart Monitor Using Flexible Capacitive ECG Electrodes. 2020 , 69, 4314-4323	16
1263	Modular Design and Optimization of Biomedical Applications for Ultralow Power Heterogeneous Platforms. 2020 , 39, 3821-3832	2
1262	A Graph-constrained Changepoint Detection Approach for ECG Segmentation. 2020 , 2020, 332-336	O
1261	RPnet: A Deep Learning approach for robust R Peak detection in noisy ECG. 2020 , 2020, 345-348	9
1260	Shannon Energy Application for Detection of ECG R-peak using Bandpass Filter and Stockwell Transform Methods. 2020 , 20, 41-48	O
1259	Social Status and Its Relationship to Non-specific Stress at Late Iron Age Non Ban Jak, Northeast Thailand. 2020 , 3, 283-304	0
1258	Health Information Science. 2020 ,	
1257	SpEC: A system for patient specific ECG beat classification using deep residual network. 2020 , 40, 1446-1457	10
1256	Deep Learning Algorithm Classifies Heartbeat Events Based on Electrocardiogram Signals. 2020 , 11, 569050	9
1255	Complex study on compression of ECG signals using novel single-cycle fractal-based algorithm and SPIHT. 2020 , 10, 15801	4
1254	Stages-Based ECG Signal Analysis From Traditional Signal Processing to Machine Learning Approaches: A Survey. 2020 , 8, 177782-177803	23
1253	Neural Respiratory Drive Estimation in Respiratory sEMG with Cardiac Arrhythmias. 2020, 2020, 2748-2751	
1252	A novel method based on Adaptive Periodic Segment Matrix and Singular Value Decomposition for removing EMG artifact in ECG signal. 2020 , 62, 102060	11

1251	A novel PLI suppression method in ECG by notch filtering with a modulation-based detection and frequency estimation scheme. 2020 , 62, 102150	1
1250	Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records. 2020 , 197, 105740	30
1249	DDxNet: a deep learning model for automatic interpretation of electronic health records, electrocardiograms and electroencephalograms. 2020 , 10, 16428	3
1248	Interpretation of Electrocardiogram (ECG) Rhythm by Combined CNN and BiLSTM. 2020 , 8, 125380-125388	19
1247	Power Efficiency Comparison of Event-Driven and Fixed-Rate Signal Conversion and Compression for Biomedical Applications. 2020 , 14, 746-756	5
1246	Multi-scale differential feature for ECG biometrics with collective matrix factorization. 2020 , 102, 107211	15
1245	A Hybrid Deep Model for Automatic Arrhythmia Classification based on LSTM Recurrent Networks. 2020 ,	1
1244	Variable step dynamic threshold local binary pattern for classification of atrial fibrillation. 2020 , 108, 101932	6
1243	Wearable Sensors for Monitoring and Preventing Noncommunicable Diseases: A Systematic Review. 2020 , 11, 521	8
1242	A novel method for ECG signal classification via one-dimensional convolutional neural network. 2020 , 1	2
1241	Robust convolutional neural network for arrhythmia prediction in ECG signals. 2020,	1
1240	Towards better heartbeat segmentation with deep learning classification. 2020 , 10, 20701	7
1239	A Modified Heart Dipole Model for the Generation of Pathological ECG Signals. 2020 , 8, 92	1
1238	Wavelet Scattering Transform for ECG Beat Classification. 2020 , 2020, 3215681	13
1237	Fold Electrocardiogram Into a Fingerprint. 2020 ,	3
1236	Low-Cost DNN Hardware Accelerator for Wearable, High-Quality Cardiac Arrythmia Detection. 2020 ,	3
1235	An Efficient Analysis Scheme for Intelligent ECG Monitoring Devices. 2020,	0
1234	Robust QRS complex detector algorithm based on modified Pan-Tompkins method and wavelet transform. 2020 ,	1

1233 Bio-inspired Information and Communication Technologies. 2020 ,	О
1232 Analysis of Pan-Tompkins Algorithm Performance with Noisy ECG Signals. 2020 , 1532, 012022	8
1231 ECG Waveforms Reconstruction based on Equivalent Time Sampling. 2020 ,	1
1230 Smart Healthcare Device for Cardiac Patients. 2020 ,	
ECG Biometrics Using Deep Learning and Relative Score Threshold Classification. 2020 , 20,	11
Detection of shockable ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and deep convolutional neural network. 2020 , 124, 103939	26
Migrating Intelligence from Cloud to Ultra-Edge Smart IoT Sensor Based on Deep Learning: An Arrhythmia Monitoring Use-Case. 2020 ,	9
Exploratory data analysis based efficient QRS-complex detection technique with minimal computational load. 2020 , 43, 1049-1067	6
CraftNet: A deep learning ensemble to diagnose cardiovascular diseases. 2020 , 62, 102091	6
1224 . 2020 , 4, 1-4	8
	J
Deterministic Compressed Domain Analysis of Multi-channel ECG Measurements. 2020 ,	
Deterministic Compressed Domain Analysis of Multi-channel ECG Measurements. 2020 , A Batteryless Motion-Adaptive Heartbeat Detection System-on-Chip Powered by Human Body Heat. 2020 , 55, 2902-2913	9
A Batteryless Motion-Adaptive Heartbeat Detection System-on-Chip Powered by Human Body	
A Batteryless Motion-Adaptive Heartbeat Detection System-on-Chip Powered by Human Body Heat. 2020 , 55, 2902-2913	9
A Batteryless Motion-Adaptive Heartbeat Detection System-on-Chip Powered by Human Body Heat. 2020, 55, 2902-2913 1221 A robust approach to denoise ECG signals based on fractional Stockwell transform. 2020, 62, 102090	9
A Batteryless Motion-Adaptive Heartbeat Detection System-on-Chip Powered by Human Body Heat. 2020, 55, 2902-2913 1221 A robust approach to denoise ECG signals based on fractional Stockwell transform. 2020, 62, 102090 1220 An E-Health system for data stream analysis. 2020,	9
A Batteryless Motion-Adaptive Heartbeat Detection System-on-Chip Powered by Human Body Heat. 2020, 55, 2902-2913 1221 A robust approach to denoise ECG signals based on fractional Stockwell transform. 2020, 62, 102090 1220 An E-Health system for data stream analysis. 2020, 1219 Efficient Reconstruction and Compression of Large Size ECG Signal by Tchebichef Moments. 2020, Towards Interpretable Arrhythmia Classification With Human-Machine Collaborative Knowledge	9 5

A Resource-Optimized Patient-Specific Nonlinear-SVM Hypertension Detection Algorithm for Minimally-Invasive High Blood Pressure Control. **2020**,

1214	A Delay-Based Neuromorphic Processor for Arrhythmias Detection. 2020 ,	O
1213	LUDB: A New Open-Access Validation Tool for Electrocardiogram Delineation Algorithms. 2020 , 8, 186181-18	6§90
1212	Multidatabase ECG signal processing. 2020,	1
1211	Deep Neural Network Models for Detection of Arrhythmia based on Electrocardiogram Reports. 2020 ,	1
1210	Efficient dynamic modelling of ECG with myocardial infarction using interacting multiple model and particle filter. 2020 , 14, 495-505	
1209	Low Power Optimisations for IoT Wearable Sensors Based on Evaluation of Nine QRS Detection Algorithms. 2020 , 1, 115-123	8
1208	An Improved Real-Time R-Wave Detection Efficient Algorithm in Exercise ECG Signal Analysis. 2020 , 2020, 8868685	O
1207	Unsupervised Domain Adaptation for ECG Arrhythmia Classification. 2020 , 2020, 304-307	4
1206	. 2020,	1
1205	Modeling and Reconstructing Textile Sensor Noise: Implications for Wearable Technology. 2020 , 2020, 4563-4566	1
1204	P wave Detection in Electrocardiogram Based on Wavelet Transform and Differential Correction. 2020 ,	
1203	A Novel Diagnostic Algorithm for Heart Disease in ECG Monitoring System. 2020,	О
1202	Generative Imputation and Stochastic Prediction. 2020 , PP,	3
1201	Detection of Premature Ventricular Complexes using Semisupervised Autoencoders and Random Forests. 2020 , 2020, 337-340	О
1200	Multi-label Arrhythmia Classification from Fixed-length Compressed ECG Segments in Real-time Wearable ECG Monitoring. 2020 , 2020, 580-583	2
1199	Deep Multi-instance Networks for Bundle Branch Block Detection from Multi-lead ECG. 2020 , 2020, 353-356	1
1198	A Non-Invasive Approach for Fetal Arrhythmia Detection and Classification from ECG Signals. 2020 ,	O

1197	Feature matching based ECG generative network for arrhythmia event augmentation. 2020, 2020, 296-299	1
1196	A 1.02-IN STT-MRAM-Based DNN ECG Arrhythmia Monitoring SoC With Leakage-Based Delay MAC Unit. 2020 , 3, 390-393	6
1195	A Method for Sleep Quality Analysis Based on CNN Ensemble With Implementation in a Portable Wireless Device. 2020 , 8, 158523-158537	2
1194	R-peak Detection Using a Hybrid of Gaussian and Threshold Sensitivity. 2020 , 2020, 4470-4474	3
1193	Extended Segmented Beat Modulation Method for Cardiac Beat Classification and Electrocardiogram Denoising. 2020 , 9, 1178	4
1192	Anobeat: Anomaly Detection for Electrocardiography Beat Signals. 2020,	1
1191	A Randomly Accessible Lossless Compression Scheme for Time-Series Data. 2020,	8
1190	Arrhythmia Classification using Deep Learning and Machine Learning with Features Extracted from Waveform-based Signal Processing. 2020 , 2020, 292-295	2
1189	Adversarial Multi-Task Learning for Robust End-to-End ECG-based Heartbeat Classification. 2020 , 2020, 341-344	1
1188	Denoising Wearable Armband ECG Data Using the Variable Frequency Complex Demodulation Technique. 2020 , 2020, 592-595	5
1187	Online Model-Based Beat-by-beat Heart Rate Estimation. 2020 ,	
1186	Detecting Noisy ECG QRS Complexes Using WaveletCNN Autoencoder and ConvLSTM. 2020 , 8, 143802-1438	17 ₂
1185	An Embedded CNN Implementation for On-Device ECG Analysis. 2020,	8
1184	Using the Redundant Convolutional Encoder-Decoder to Denoise QRS Complexes in ECG Signals Recorded with an Armband Wearable Device. 2020 , 20,	8
1183	. 2020 , 8, 197828-197852	14
1182	A Fast Compressed Sensing Decoding Technique for Remote ECG Monitoring Systems. 2020 , 8, 197124-1971.	333
1181	. 2020 , 8, 217791-217799	O
1180	Heart Arrhythmia Abnormality Classification Using Machine Learning. 2020,	1

1179 Removal of Noises from an ECG Signal Using an Adaptive S-Median Thresholding Technique. 2020 ,	O
Entropy Profiling: A Reduced-Parametric Measure of Kolmogorov-Sinai Entropy from Short-Term HRV Signal. 2020 , 22,	3
1177 Impact of Data Transformation: An ECG Heartbeat Classification Approach. 2020 , 2, 610956	2
Efficient Learning of Healthcare Data from IoT Devices by Edge Convolution Neural Networks. 2020 , 10, 8934	3
1175 Platform for Analysis and Labeling of Medical Time Series. 2020 , 20,	1
1174 Accurate ECG Data Generation with a Simple Generative Adversarial Network. 2020 , 1631, 012073	1
1173 SynSigGAN: Generative Adversarial Networks for Synthetic Biomedical Signal Generation. 2020 , 9,	12
Searching for Premature Ventricular Contraction from Electrocardiogram by Using One-Dimensional Convolutional Neural Network. 2020 , 9, 1790	O
1171 Large Size 1D Signal Analysis by Hybrid Tchebichef-Charlier Moments. 2020 ,	О
Neural Network Classification of Cardiac Activity Based on Cardiogram Data for Driver Support System. 2020 ,	5
1169 A Fusion Based Classification of Normal, Arrhythmia and Congestive Heart Failure in ECG. 2020 ,	5
Accurate classification of ECG arrhythmia using MOWPT enhanced fast compression deep learning networks. 2020 , 1	23
1167 Biomedical Engineering Systems and Technologies. 2020 ,	
Detection of Atrial Fibrillation from Single Lead ECG Signal Using Multirate Cosine Filter Bank and Deep Neural Network. 2020 , 44, 114	16
1165 Electrocardiogram Classification Using Wavelet Transformations. 2020 ,	2
1164 . 2020 ,	4
1163 . 2020 ,	18
Adaptive Data-hiding in Electrocardiogram Based on Integer Wavelet Transform Domain and Incremental Approach. 2020 ,	1

1161	. 2020,	2
1160	ECG Identification For Personal Authentication Using LSTM-Based Deep Recurrent Neural Networks. 2020 , 20,	22
1159	Kalman-based Spectro-Temporal ECG Analysis using Deep Convolutional Networks for Atrial Fibrillation Detection. 2020 , 92, 621-636	7
1158	Deep Learners and Deep Learner Descriptors for Medical Applications. 2020,	O
1157	Co-occurrence and phase relationship between alternans of the R wave amplitude (RWAA) and of the T wave (TWA) in ECGs. 2020 , 121, 103785	3
1156	Semi-supervised learning for ECG classification without patient-specific labeled data. 2020 , 158, 113411	19
1155	An efficient reversible ECG steganography by adaptive LSB approach based on 1D FDCT domain. 2020 , 79, 24449-24462	0
1154	An Event-Based System for Low-Power ECG QRS Complex Detection. 2020 ,	1
1153	Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation. 2020 , 12, 1685	60
1152	Extracting deep features from short ECG signals for early atrial fibrillation detection. 2020 , 109, 101896	7
1151	QRS Complex Detection Using Novel Deep Learning Neural Networks. 2020 , 8, 97082-97089	18
1150	Design and Implementation of A Novel Real Time P-QRS-T Waves Detection Algorithm. 2020,	
1149	The fractional Fourier transform as a biomedical signal and image processing tool: A review. 2020 , 40, 1081-1093	9
1148	An Analysis of the Effects of Noisy Electrocardiogram Signal on Heartbeat Detection Performance. 2020 , 7,	6
1147	Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. 2020 , 122, 103801	92
1146	PTB-XL, a large publicly available electrocardiography dataset. 2020 , 7, 154	70
1145	An Architectural Study for Inference Coprocessor Core at the Edge in IoT Sensing. 2020,	1
1144	Decision Boundary-Based Anomaly Detection Model Using Improved AnoGAN From ECG Data. 2020 , 8, 108664-108674	15

1143	Optimal length of R-R interval segment window for Lorenz plot detection of paroxysmal atrial fibrillation by machine learning. 2020 , 19, 49	4
1142	DeepArrNet: An Efficient Deep CNN Architecture for Automatic Arrhythmia Detection and Classification From Denoised ECG Beats. 2020 , 8, 104788-104800	14
1141	A Pipeline for Adaptive Filtering and Transformation of Noisy Left-Arm ECG to Its Surrogate Chest Signal. 2020 , 9, 866	2
1140	Fast and Accurate Algorithm for ECG Authentication Using Residual Depthwise Separable Convolutional Neural Networks. 2020 , 10, 3304	11
1139	Detection and classification of ECG noises using decomposition on mixed codebook for quality analysis. 2020 , 7, 18-24	9
1138	Neighbor Profile: Bagging Nearest Neighbors for Unsupervised Time Series Mining. 2020,	2
1137	Semantic based Clinical Notes Mining for Factual Information Extraction. 2020,	1
1136	An Efficient IoT-Based Platform for Remote Real-Time Cardiac Activity Monitoring. 2020 , 66, 106-114	19
1135	Machine Learning with Health Care Perspective. 2020 ,	10
1134	Automatic arrhythmia recognition from electrocardiogram signals using different feature methods with long short-term memory network model. 2020 , 14, 1255-1263	13
1133	On the automatic parameter selection for permutation entropy. 2020 , 30, 033130	13
1132	Cloud-based ECG monitoring using event-driven ECG acquisition and machine learning techniques. 2020 , 43, 623-634	20
1131	A Survey of Heart Anomaly Detection Using Ambulatory Electrocardiogram (ECG). 2020, 20,	12
1130	Comparison of Motion Artefact Reduction Methods and the Implementation of Adaptive Motion Artefact Reduction in Wearable Electrocardiogram Monitoring. 2020 , 20,	8
1129	Spectral entropy and deep convolutional neural network for ECG beat classification. 2020, 40, 691-700	16
1128	Automatic ECG Diagnosis Using Convolutional Neural Network. 2020 , 9, 951	23
1127	A Metaheuristic Optimization Approach for Parameter Estimation in Arrhythmia Classification from Unbalanced Data. 2020 , 20,	4
1126	WCTECGdb: A 12-Lead Electrocardiography Dataset Recorded Simultaneously with Raw Exploring Electrodes' Potential Directly Referred to the Right Leg. 2020 , 20,	

1125	ECG Baseline Wander Removal via a Signal-Piloted Filtering. 2020 ,	1
1124	Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss. 2020 , 123, 103866	28
1123	Exploring time-delay-based numerical differentiation using principal component analysis. 2020 , 556, 124839	1
1122	Very-large-scale integration implementation of a convolutional neural network accelerator for abnormal heartbeat detection. 2020 , 56, 330-331	2
1121	An ECG arrhythmia image classification system based on convolutional neural network. 2020 , 1544, 012109	
1120	A Lossless Electrocardiogram Compression System Based on Dual-Mode Prediction and Error Modeling. 2020 , 8, 101153-101162	6
1119	ECG Biometric Authentication: A Comparative Analysis. 2020 , 8, 117853-117866	19
1118	ECG Heartbeat Arrhythmia Classification Using Time-Series Augmented Signals and Deep Learning Approach. 2020 , 171, 524-531	8
1117	Automated Detection and Classification of Arrhythmia From ECG Signals Using Feature-Induced Long Short-Term Memory Network. 2020 , 4, 1-4	15
1116	Active Model Selection for Positive Unlabeled Time Series Classification. 2020,	4
1115	ECG heartbeat classification by means of variable rational projection. 2020 , 61, 102034	4
1114	A novel approach to create synthetic biomedical signals using BiRNN. 2020 , 541, 218-241	17
1113	Effects of Electrons on the Propagation of Bernstein Waves in a Nonrelativistic Symmetric and Asymmetric Pair Ion Plasma. 2020 , 48, 643-646	О
1112	Multimodal biometric systems based on different fusion levels of ECG and fingerprint using different classifiers. 2020 , 24, 12599-12632	8
1111	An innovative approach to integrate unequal protection-based steganography and progressive transmission of physiological data. 2020 , 2, 1	3
1110	A Comprehensive Study of Complexity and Performance of Automatic Detection of Atrial Fibrillation: Classification of Long ECG Recordings Based on the PhysioNet Computing in Cardiology Challenge 2017. 2020 , 6, 025010	4
1109	Generalization of Convolutional Neural Networks for ECG Classification Using Generative Adversarial Networks. 2020 , 8, 35592-35605	50
1108	An Automatic Diagnosis of Arrhythmias Using a Combination of CNN and LSTM Technology. 2020 , 9, 121	30

1107	Robust QRS Detection Using High-Resolution Wavelet Packet Decomposition and Time-Attention Convolutional Neural Network. 2020 , 8, 16979-16988	17
1106	Supervised learning as an inverse problem based on non-smooth loss function. 2020 , 62, 3039-3058	6
1105	Reducing Energy of Approximate Feature Extraction in Heterogeneous Architectures for Sensor Inference via Energy-Aware Genetic Programming. 2020 , 67, 1576-1587	1
1104	An adaptive QRS detection algorithm for ultra-long-term ECG recordings. 2020 , 60, 165-171	6
1103	A framework for cardiac arrhythmia detection from IoT-based ECGs. 2020 , 23, 2835-2850	27
1102	P-Wave Detection Using a Fully Convolutional Neural Network in Electrocardiogram Images. 2020 , 10, 976	3
1101	Adversarial Attacks for Image Segmentation on Multiple Lightweight Models. 2020, 8, 31359-31370	7
1100	High-Capacity Super-Channel-Enabled Multi-Core Fiber Optical Switching System for Converged Inter/Intra Data Center and Edge Optical Networks. 2020 , 26, 1-13	5
1099	Energy Collaboration for Non-Homogeneous Energy Harvesting in Cooperative Wireless Sensor Networks. 2020 , 8, 27027-27037	2
1098	A high-precision arrhythmia classification method based on dual fully connected neural network. 2020 , 58, 101874	28
1097	Heartbeat classification by using a convolutional neural network trained with Walsh functions. 2020 , 32, 12515-12534	9
1096	Photoplethysmography based atrial fibrillation detection: a review. 2020 , 3, 3	76
1095	Fully Adaptive Denoising of ECG Signals Using Empirical Mode Decomposition with the Modified Indirect Subtraction and the Adaptive Window Techniques. 2020 , 39, 4021-4046	5
1094	Transfer Learning in ECG Classification from Human to Horse Using a Novel Parallel Neural Network Architecture. 2020 , 10, 186	22
1093	A Crucial Wave Detection and Delineation Method for Twelve-Lead ECG Signals. 2020, 8, 10707-10717	8
1092	On learning with shift-invariant structures. 2020 , 99, 102654	3
1091	An Efficient Algorithm for Cardiac Arrhythmia Classification Using Ensemble of Depthwise Separable Convolutional Neural Networks. 2020 , 10, 483	17
1090	Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model. 2020 , 23, 100886	35

(2021-2020)

1089	wavelet-Based Quality-Constrained ECG Data Compression System Without Decoding Process. 2020, 27, 33-45	4
1088	A new approach for optimal time-series segmentation. 2020 , 135, 153-159	3
1087	Recognition of ECG signals using wavelet based on atomic functions. 2020 , 40, 803-814	19
1086	Automated pre-screening of arrhythmia using hybrid combination of Fourier-Bessel expansion and LSTM. 2020 , 120, 103753	14
1085	Simulation of Solar Energy Photovoltaic Conversion. 2020 ,	3
1084	ECG arrhythmia classification using modified visual geometry group network (mVGGNet). 2020 , 38, 3151-3165	5 19
1083	Arrhythmia Diagnosis by Using Level-Crossing ECG Sampling and Sub-Bands Features Extraction for Mobile Healthcare. 2020 , 20,	16
1082	Deep learning for comprehensive ECG annotation. 2020 , 17, 881-888	19
1081	ECG Beat Classifiers: A Journey from ANN To DNN. 2020 , 167, 747-759	10
1080	Structural sparse representation with class-specific dictionary for ECG biometric recognition. 2020 , 135, 44-49	8
1079	Patient Specific Machine Learning Models for ECG Signal Classification. 2020 , 167, 2181-2190	20
1078	Efficient lossless compression scheme for multi-channel ECG signal processing. 2020 , 59, 101879	5
1077	NCFET to Rescue Technology Scaling: Opportunities and Challenges. 2020,	2
1076	GB-SVNN: Genetic BAT assisted support vector neural network for arrhythmia classification using ECG signals. 2021 , 33, 54-67	8
1075	Usefulness of Machine Learning-Based Detection and Classification of Cardiac Arrhythmias With 12-Lead Electrocardiograms. 2021 , 37, 94-104	17
1074	. 2021 , 18, 381-385	5
1073	Empirical Mode Decomposition, Viterbi and Wavelets Applied to Electrocardiogram Noise Removal. 2021 , 40, 691-718	5
1072	Recourse-Cost Constrained Robust Optimization for Microgrid Dispatch With Correlated Uncertainties. 2021 , 68, 2266-2278	22

1071	Dataset retrieval system based on automation of data preparation with dataset description model. 2021 , 33, e5288	О
1070	Intelligent and Efficient Detection of Life-Threatening Ventricular Arrhythmias in Short Segments of Surface ECG Signals. 2021 , 21, 14110-14120	4
1069	Noise Reduction in ECG Signal Using Combined Ensemble Empirical Mode Decomposition Method with Stationary Wavelet Transform. 2021 , 40, 827-844	12
1068	Detection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithm. 2021 , 163, 113807	6
1067	Ensemble of kernel extreme learning machine based random forest classifiers for automatic heartbeat classification. 2021 , 63, 102138	17
1066	Energy efficient ECG classification with spiking neural network. 2021 , 63, 102170	15
1065	Automated Atrial Fibrillation Detection using a Hybrid CNN-LSTM Network on Imbalanced ECG Datasets. 2021 , 63, 102194	42
1064	Clustering based multiple statespace projections. 2021 , 178, 107762	1
1063	Age-of-Information-Constrained Transmission Optimization for ECG-Based Body Sensor Networks. 2021 , 8, 3851-3863	2
1062	A robust ECG denoising technique using variable frequency complex demodulation. 2021 , 200, 105856	7
1061	Encryption of ECG signals for telemedicine applications. 2021 , 80, 10679-10703	5
1060	A review of Hidden Markov models and Recurrent Neural Networks for event detection and localization in biomedical signals. 2021 , 69, 52-72	8
1059	An ultra-low power analog QRS-detection circuit for ambulatory ECG monitoring. 2021 , 129, 153551	O
1058	A new automated CNN deep learning approach for identification of ECG congestive heart failure and arrhythmia using constant-Q non-stationary Gabor transform. 2021 , 65, 102326	22
1057	Classification and analysis of cardiac arrhythmia based on incremental support vector regression on IOT platform. 2021 , 64, 102324	5
1056	A multi-stage denoising framework for ambulatory ECG signal based on domain knowledge and motion artifact detection. 2021 , 116, 103-116	10
1055	Stationary wavelet transform based ECG signal denoising method. 2021 , 114, 251-262	22
1054	Biomedical signals reconstruction and zero-watermarking using separable fractional order Charlier K rawtchouk transformation and Sine Cosine Algorithm. 2021 , 180, 107854	17

ECG arrhythmia classification by using a recurrence plot and convolutional neural network. 2021 , 64, 102262	40
1052 FM-ECG: A fine-grained multi-label framework for ECG image classification. 2021 , 549, 164-177	12
1051 ADET: anomaly detection in time series with linear time. 2021 , 12, 271-280	0
1050 A Multistage Algorithm Design for Electrocardiogram Signal Denoising. 2021 , 30, 2150061	4
ECG steganography based on tunable Q-factor wavelet transform and singular value decomposition. 2021 , 31, 270-287	4
1048 Low-Power Hardware Accelerator for Detrending Measured Biopotential Data. 2021 , 70, 1-9	5
Efficient computation of high-order Meixner moments for large-size signals and images analysis. 2021 , 80, 1641-1670	8
1046 Classification of Arrhythmia Beats Using Optimized K-Nearest Neighbor Classifier. 2021 , 349-359	4
Arrhythmia Classification Using Biased Dropout and Morphology-Rhythm Feature With Incremen Broad Learning. 2021 , 9, 66132-66140	ital 1
1044 Development of a Low-Cost ECG Device. 2021 , 401-419	
A Rigorous Analysis of Biomedical Edge Computing: An Arrhythmia Classification Use-Case Leveraging Deep Learning. 2021 ,	3
A Rigorous Analysis of Biomedical Edge Computing: An Arrhythmia Classification Use-Case	3
A Rigorous Analysis of Biomedical Edge Computing: An Arrhythmia Classification Use-Case Leveraging Deep Learning. 2021 ,	
A Rigorous Analysis of Biomedical Edge Computing: An Arrhythmia Classification Use-Case Leveraging Deep Learning. 2021 , K-Means Clustering Algorithm Based Arrhythmic Heart Beat Detection in ECG Signal.	-444 1
A Rigorous Analysis of Biomedical Edge Computing: An Arrhythmia Classification Use-Case Leveraging Deep Learning. 2021, K-Means Clustering Algorithm Based Arrhythmic Heart Beat Detection in ECG Signal. Early Detection of Hypotension Using a Multivariate Machine Learning Approach. 2021, 186, 440.	-444 1
A Rigorous Analysis of Biomedical Edge Computing: An Arrhythmia Classification Use-Case Leveraging Deep Learning. 2021, K-Means Clustering Algorithm Based Arrhythmic Heart Beat Detection in ECG Signal. Early Detection of Hypotension Using a Multivariate Machine Learning Approach. 2021, 186, 440-1040 Mixup Asymmetric Tri-Training for Heartbeat Classification Under Domain Shift. 2021, 28, 718-72	-444 1 22 3
A Rigorous Analysis of Biomedical Edge Computing: An Arrhythmia Classification Use-Case Leveraging Deep Learning. 2021, K-Means Clustering Algorithm Based Arrhythmic Heart Beat Detection in ECG Signal. Early Detection of Hypotension Using a Multivariate Machine Learning Approach. 2021, 186, 440. Mixup Asymmetric Tri-Training for Heartbeat Classification Under Domain Shift. 2021, 28, 718-72. QRS Peaks, P and T Waves Identification in ECG. 2021, 181, 957-964. Inter-Patient Atrial Flutter Classification Using FFT-Based Features and a Low-Variance Stacking.	-444 1 22 3

1035	A New Framework to Estimate Breathing Rate From Electrocardiogram, Photoplethysmogram, and Blood Pressure Signals. 2021 , 9, 45832-45844	5
1034	Robust R-Peak Detection in Low-Quality Holter ECGs using 1D Convolutional Neural Network. 2021 , PP,	6
1033	A Novel Incremental and Interactive Method for Actual Heartbeat Classification With Limited Additional Labeled Samples. 2021 , 70, 1-12	6
1032	Automated detection of arrhythmia from electrocardiogram signal based on new convolutional encoded features with bidirectional long short-term memory network classifier. 2021 , 44, 173-182	7
1031	A Study on Arrhythmia via ECG Signal Classification Using the Convolutional Neural Network. 2020 , 14, 564015	21
1030	H2K: A Heartbeat-based Key Generation Framework for ECG and PPG Signals. 2021 , 1-1	2
1029	A Novel Method of QRS Detection Using Time and Amplitude Thresholds With Statistical False Peak Elimination. 2021 , 9, 46079-46092	6
1028	Heartbeats Classification Using Hybrid Time-Frequency Analysis and Transfer Learning Based on ResNet. 2021 , 25, 4175-4184	5
1027	A Survey of Challenges and Opportunities in Sensing and Analytics for Risk Factors of Cardiovascular Disorders. 2021 , 2,	1
1026	Automatic detection of characteristic segments of a recorded ECG signal with noise handling methods. 1032, 012047	1
1025	Convolutional Neural Network Based Arrhythmia Classification with Selective Features from Empirical Mode Decomposition. 2021 , 375-383	O
1024	An Arrhythmia Diagnosis Method Based on the Combined Feature of Instantaneous Frequency and Power Spectrum Entropy. 2021 , 11, 495-504	O
1023	Deep LSTM Transfer Learning for Personalized ECG Anomaly Detection on Wearable Devices. 2021 , 348-357	
1022	EasiECG: A Novel Inter-Patient Arrhythmia Classification Method using ECG Waves. 2021,	1
1021	Multi-Disease Prediction Based on Deep Learning: A Survey. 2021 , 128, 489-522	71
1020	Fundamentals of Adaptive Filters. 2021 , 21-50	
1019	Modeling and Reproducing Textile Sensor Noise: Implications for Textile-Compatible Signal Processing Algorithms. 2021 , PP,	
1018	A Proof-of-Concept of Ultra-Edge Smart IoT Sensor: A Continuous and Lightweight Arrhythmia Monitoring Approach. 2021 , 9, 26093-26106	8

1017	Sequence to Sequence ECG Cardiac Rhythm Classification using Convolutional Recurrent Neural Networks. 2021 , PP,	5
1016	. 2021 , 1-1	8
1015	A Novel Efficient Secure and Error-Robust Scheme for Internet of Things Using Compressive Sensing. 2021 , 9, 40903-40914	3
1014	Multi-Scale and Attention based ResNet for Heartbeat Classification. 2021,	1
1013	CardioGAN: An Attention-based Generative Adversarial Network for Generation of Electrocardiograms. 2021 ,	
1012	Evaluation of Pencil Lead Based Electrodes for Electrocardiogram Monitoring in Hot Spring. 2021 , 66, 1411-1425	O
1011	Multi-model Deep Learning Ensemble for ECG Heartbeat Arrhythmia Classification. 2021,	O
1010	. 2021 , 9, 28608-28631	1
1009	Opportunities for connected healthcare. 2021 , 1-30	2
1008	A Dynamically Reconfigurable ECG Analog Front-End With a 2.5IData-Dependent Power Reduction. 2021 , 15, 1066-1078	O
1007	Fuzzy-Based Algorithm for QRS Detection. 2021 , 202-215	1
1006	Group Invariant Dictionary Learning. 2021 , 69, 3612-3626	1
1005	ULECGNet: An Ultra-Lightweight End-to-End ECG Classification Neural Network. 2021, PP,	3
1004	A Comparative Study of Deep Learning Techniques Aimed at Detection of Arrhythmias from ECG Signals. 2021 , 385-395	1
1003	Electrocardiogram Quality Assessment with Autoencoder. 2021 , 693-706	2
1002	ECG-Based Arrhythmia Detection Using Attention-Based Convolutional Neural Network. 2021 , 481-504	
1001	Negative-ResNet: noisy ambulatory electrocardiogram signal classification scheme. 2021 , 33, 8857	O
1000	Electrocardiogram signal reconstruction based on mode component identification by heartbeat physical feature in improved empirical mode decomposition domain. 2021 , 70, 038702-038702	O

999	Denoising ECG Signals Using Unbiased FIR Smoother and Harmonic State-Space Model. 2021,	O
998	Multiclass ECG Signal Analysis Using Global Average-Based 2-D Convolutional Neural Network Modeling. 2021 , 10, 170	7
997	A novel technique for the detection of myocardial dysfunction using ECG signals based on hybrid signal processing and neural networks. 2021 , 25, 4571-4595	6
996	Method for detecting R-waves of an ECG signal based on wavelet decomposition. 2021 , 67-72	
995	Design Prototype and Security Analysis of a Lightweight Joint Compression and Encryption Scheme for Resource-constrained IoT Devices. 2021 , 1-1	4
994	Introduction. 2021 , 1-20	
993	Lightweight Time-Series Signal Compression Period Extraction and Multiresolution using Difference Sequences. 2021 , 1-1	
992	Automatic ECG Classification Using Continuous Wavelet Transform and Convolutional Neural Network. 2021 , 23,	30
991	An Ensemble of Deep Learning-Based Multi-Model for ECG Heartbeats Arrhythmia Classification. 2021 , 9, 103452-103464	13
990	Exploiting feature fusion and long-term context dependencies for simultaneous ECG heartbeat segmentation and classification. 2021 , 11, 181-193	3
989	Extreme Learning Machine for Heartbeat Classification with Hybrid Time-Domain and Wavelet Time-Frequency Features. 2021 , 2021, 6674695	3
988	Personal Heart Health Monitoring Based on 1D Convolutional Neural Network. 2021 , 7,	6
987	Deep learning and the electrocardiogram: review of the current state-of-the-art. 2021 , 23, 1179-1191	19
986	An Improved Empirical Mode Decomposition Based on Local Integral Mean and Its Application in Signal Processing. 2021 , 2021, 1-30	2
985	Visualizing and Quantifying Irregular Heart Rate Irregularities to Identify Atrial Fibrillation Events. 2021 , 12, 637680	6
984	Can the application of certain music information retrieval methods contribute to the machine learning classification of electrocardiographic signals?. 2021 , 7, e06257	1
983	HeartNetEC: a deep representation learning approach for ECG beat classification. 2021, 11, 69-84	4
982	Analysis of ECG Signal based on Feature Fusion and Two-Fold Classification Approach. 2021 ,	1

981	From ECG signals to images: a transformation based approach for deep learning. 2021, 7, e386	22
980	ECG Enhancement and R-Peak Detection Based on Window Variability. 2021, 9,	2
979	Denoising of Electrocardiogram Signal Using S-Transform Based Time E requency Filtering Approach. 2021 , 46, 9515-9525	2
978	Deep convolutional neural networks based ECG beats classification to diagnose cardiovascular conditions. 2021 , 11, 147-162	5
977	Multirate Processing with Selective Subbands and Machine Learning for Efficient Arrhythmia Classification. 2021 , 21,	9
976	Usefulness of multi-labelling artificial intelligence in detecting rhythm disorders and acute ST-elevation myocardial infarction on 12-lead electrocardiogram.	Ο
975	Classification of electrocardiogram signal using an ensemble of deep learning models. 2021 , 55, 446-460	5
974	P-SCADA - A novel area and energy efficient FPGA architectures for LSTM prediction of heart arrthymias in biot applications. e12687	O
973	Adaptive learning and cross training improves R-wave detection in ECG. 2021, 200, 105931	2
972	A greedy graph search algorithm based on changepoint analysis for automatic QRS complex detection. 2021 , 130, 104208	2
971	Automated arrhythmia diagnosis based on ECG signal filtering wavelet transformation and machine learning. 2021 ,	
970	SR-ScatNet Algorithm for On-device ECG Time Series Anomaly Detection. 2021 ,	1
969	Automatic Detection for Multi-Labeled Cardiac Arrhythmia Based on Frame Blocking Preprocessing and Residual Networks. 2021 , 8, 616585	O
968	Automatic Premature Ventricular Contraction Detection Using Deep Metric Learning and KNN. 2021 , 11,	4
967	Robust deep learning pipeline for PVC beats localization. 2021 , 29, 475-486	2
966	Interpretable morphological features for efficient single-lead automatic ventricular ectopy detection. 2021 , 65, 55-63	3
965	System Design for Data Analysis with Multiscale Entropy. 2021 ,	
964	Distributed detection of sequential anomalies in univariate time series. 2021 , 30, 579-602	O

963	Human Knowledge Based Efficient Interactive Data Annotation via Active Weakly Supervised Learning. 2021 ,	1
962	Automatic heart disease class detection using convolutional neural network architecture-based various optimizers-networks. 2021 , 3, 3-15	2
961	Efficient Implementations of Echo State Network Cross-Validation. 1	3
960	ECG Classification using Deep Transfer Learning. 2021 ,	2
959	Wavelet Sub-bands Features-based ECG Signal Quality Assessment Scheme for Computer-aided Monitoring System. 1-10	1
958	An innovative method based on Shannon energy envelope and summit navigation for detecting R peaks of noise stress test signals. 2021 , 65, 8-17	
957	An Extended DEIM Algorithm for Subset Selection and Class Identification. 2021 , 110, 621-650	1
956	Sensitivity and Positive Prediction of Secured Electrocardiograph (ECG) Transmission using Fully Homomorphic Encryption Technique (FHE). 2021 ,	
955	Unsupervised and scalable subsequence anomaly detection in large data series. 2021, 30, 909	9
954	DENS-ECG: A deep learning approach for ECG signal delineation. 2021 , 165, 113911	23
954 953	DENS-ECG: A deep learning approach for ECG signal delineation. 2021, 165, 113911 Data encoding for IoHT ECG Application. 2021,	23
		23
953	Data encoding for IoHT ECG Application. 2021, Classification of Arrhythmia in Time Series ECG Signals Using Image Encoding And Convolutional	23
953 952	Data encoding for IoHT ECG Application. 2021, Classification of Arrhythmia in Time Series ECG Signals Using Image Encoding And Convolutional Neural Networks. 2021,	
953 952 951	Data encoding for IoHT ECG Application. 2021, Classification of Arrhythmia in Time Series ECG Signals Using Image Encoding And Convolutional Neural Networks. 2021, ECG Heartbeat Classification Based on an Improved ResNet-18 Model. 2021, 2021, 6649970 O-WCNN: an optimized integration of spatial and spectral feature map for arrhythmia classification.	12
953 952 951 950	Data encoding for IoHT ECG Application. 2021, Classification of Arrhythmia in Time Series ECG Signals Using Image Encoding And Convolutional Neural Networks. 2021, ECG Heartbeat Classification Based on an Improved ResNet-18 Model. 2021, 2021, 6649970 O-WCNN: an optimized integration of spatial and spectral feature map for arrhythmia classification. 2021, 1-14 Classification of human electrocardiograms by multi-layer convolutional neural network and	12
953 952 951 950 949	Data encoding for IoHT ECG Application. 2021, Classification of Arrhythmia in Time Series ECG Signals Using Image Encoding And Convolutional Neural Networks. 2021, ECG Heartbeat Classification Based on an Improved ResNet-18 Model. 2021, 2021, 6649970 O-WCNN: an optimized integration of spatial and spectral feature map for arrhythmia classification. 2021, 1-14 Classification of human electrocardiograms by multi-layer convolutional neural network and hyperparameter optimization. 2021, 40, 7883-7891 SUPRAVENTRICULAR TACHYCARDIA CLASSIFICATION USING ATTENTION-BASED RESIDUAL	12

945	Arrhythmic Heartbeat Classification Using 2D Convolutional Neural Networks. 2021,	7
944	SIP: An Efficient and Secure Information Propagation Scheme in E-Health Networks. 2021 , 8, 1502-1516	2
943	An improved cardiac arrhythmia classification using an RR interval-based approach. 2021 , 41, 656-666	13
942	Atrial fibrillation detection with and without atrial activity analysis using lead-I mobile ECG technology. 2021 , 66, 102462	5
941	A Tandem Feature Extraction Approach for Arrhythmia Identification. 2021, 10, 976	1
940	A comparative study and analysis of LSTM deep neural networks for heartbeats classification. 2021 , 11, 663-671	2
939	TOP-Net Prediction Model Using Bidirectional Long Short-term Memory and Medical-Grade Wearable Multisensor System for Tachycardia Onset: Algorithm Development Study. 2021 , 9, e18803	5
938	A Real-Time QRS Detection Algorithm Based on Energy Segmentation for Exercise Electrocardiogram. 2021 , 40, 4969-4985	3
937	Music mood and human emotion recognition based on physiological signals: a systematic review.	4
936	ECG beat classification using neural classifier based on deep autoencoder and decomposition techniques. 2021 , 10, 333-347	3
935	KecNet: A Light Neural Network for Arrhythmia Classification Based on Knowledge Reinforcement. 2021 , 2021, 6684954	2
934	An Internet of Things (IoT) Homecare Management System Using Cardiac Arrhythmia Classification. 2021 ,	
933	Key Generation for Internet of Things. 2021 , 54, 1-37	4
932	Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram. 2021 , 24, 102373	9
931	Multi-view discriminant analysis with sample diversity for ECG biometric recognition. 2021, 145, 110-117	2
930	An effective arrhythmia classification via ECG signal subsampling and mutual information based subbands statistical features selection. 1	6
929	A robust QRS detection and accurate R-peak identification algorithm for wearable ECG sensors. 2021 , 64, 1	9
928	A Review of Arrhythmia Classification with Artificial Intelligence Techniques: Deep vs Machine Learning. 2021 ,	1

927	A robust fusion algorithm of LBP and IMF with recursive feature elimination-based ECG processing for QRS and arrhythmia detection. 1	4
926	Design of a nearly linear-phase IIR filter and JPEG compression ECG signal in real-time system. 2021 , 67, 102431	1
925	Automated ECG classification using a non-local convolutional block attention module. 2021, 203, 106006	16
924	Real Time Arrhythmia Monitoring and Classification Based on Edge Computing and DNN. 2021 , 2021, 1-9	O
923	Hybrid algorithm for multi artifact removal from single channel EEG. 2021, 7,	0
922	ECG Noise Removal and Efficient Arrhythmia Identification Based on Effective Signal-Piloted Processing and Machine Learning. 2021 ,	O
921	Detection of ventricular fibrillation rhythm by using boosted support vector machine with an optimal variable combination. 2021 , 91, 107035	9
920	BP Signal Analysis Using Emerging Techniques and its Validation Using ECG Signal. 2021 , 22, 1	5
919	ECG Denoising Methodology using Intrinsic Time Scale Decomposition and Adaptive Switching Mean Filter. 2021 , 1, 7-12	
918	Interpatient ECG Heartbeat Classification with an Adversarial Convolutional Neural Network. 2021 , 2021, 9946596	2
917	IoT-enabled cloud-based real-time remote ECG monitoring system. 2021, 45, 473-485	3
916	Two Stage Step-Size Scaler Adaptive Filter Design for ECG Denoising. 2021 ,	2
915	ECG Guided Automated Diagnostic Intervention of Cardiac Arrhythmias with Extra-Cardiac Noise Detection using Neural Network. 2021 ,	1
914	Multi-Scale Deep Cascade Bi-Forest for Electrocardiogram Biometric Recognition. 2021 , 36, 617-632	3
913	Autoencoder-Based Extrasystole Detection and Modification of RRI Data for Precise Heart Rate Variability Analysis. 2021 , 21,	1
912	Real-Time Arrhythmia Classification Algorithm Using Time-Domain ECG Feature Based on FFNN and CNN. 2021 , 2021, 1-17	4
911	QRS detection of ECG signal using U-Net and DBSCAN. 1	2
910	An immune optimization based deterministic dendritic cell algorithm. 1	1

(2021-2021)

909	A Resource-Efficient, Robust QRS Detector Using Data Compression and Time-Sharing Architecture. 2021 ,	1
908	Three-class ECG beat classification by ordinal entropies. 2021 , 67, 102506	2
907	Dynamic thresholding based efficient QRS complex detection with low computational overhead. 2021 , 67, 102519	10
906	Adaptive Filtering of Electrocardiogram Signal Using Hybrid Empirical Mode Decomposition-Jaya algorithm. 2150209	2
905	Energy and sparse coding coefficients as sufficient measures for VEBs classification. 2021 , 67, 102493	
904	How machine learning is impacting research in atrial fibrillation: implications for risk prediction and future management. 2021 , 117, 1700-1717	8
903	Blind extraction of ECG signals based on similarity in the phase space. 2021 , 147, 110950	1
902	An Efficient ECG Classification System Using Resource-Saving Architecture and Random Forest. 2021 , 25, 1904-1914	5
901	The feasibility of predicting impending malignant ventricular arrhythmias by using nonlinear features of short heartbeat intervals. 2021 , 205, 106102	4
900	Integrating ECG Monitoring and Classification via IoT and Deep Neural Networks. 2021, 11,	4
899	Low-Dimensional Denoising Embedding Transformer for ECG Classification. 2021,	1
898	A Rigorous Wavelet-Packet Transform to Retrieve Snow Depth from SSMIS Data and Evaluation of its Reliability by Uncertainty Parameters. 2021 , 35, 2723-2740	1
897	Arrhythmic Heartbeat Classification Using Ensemble of Random Forest and Support Vector Machine Algorithm. 2021 , 2, 260-268	3
896	Efficient Methods for Signal Processing Using Charlier Moments and Artificial Bee Colony Algorithm. 1	8
895	Single beat ECG-based Identification System: development and robustness test in different working conditions. 2021 ,	1
894	A signal quality analysis method for electrocardiosignals in the CS domain. 2021 , 32, 095116	O
893	A Deep Neural Network Approach to Automatic Multi-Class Classification of Electrocardiogram Signals. 2021 ,	0
892	Label-Guided Dictionary Pair Learning for ECG Biometric Recognition. 2021 ,	

891	Digital biomarkers and algorithms for detection of atrial fibrillation using surface electrocardiograms: A systematic review. 2021 , 133, 104404	4
890	Hidden Markov model-based heartbeat detector using electrocardiogram and arterial pressure signals. 2021 , 11, 249-261	O
889	ECG Heart-Beat Classification Using Multimodal Image Fusion. 2021,	1
888	A 1.2nW Analog Electrocardiogram Processor Achieving a 99.63% QRS Complex Detection Sensitivity. 2021 , 15, 617-628	2
887	Diagnosis-Steganography-Transmission: An Innovative Integrated Paradigm for ECG Healthcare. 2021 , 2, 1	1
886	Computer-Aided-Diagnosis as a Service on Decentralized Medical Cloud for Efficient and Rapid Emergency Response Intelligence. 2021 , 1-24	4
885	A multiview feature fusion model for heartbeat classification. 2021 , 42,	3
884	Internet of things-assisted architecture for QRS complex detection in real time. 2021 , 14, 100395	4
883	Improved complete ensemble empirical mode decomposition with adaptive noise: quasi-oppositional Jaya hybrid algorithm for ECG denoising. 2021 , 109, 467	0
882	Electrocardiogram Data Compression Techniques for Cardiac Healthcare Systems: A Methodological Review. 2021 ,	4
881	Uncertainty-Aware Deep Learning-Based Cardiac Arrhythmias Classification Model of Electrocardiogram Signals. 2021 , 10, 82	3
880	Assessment of Artificial Intelligence Techniques for Automated Remote Classification of Cardiac Arrhythmia using Instantaneous Heart Rates. 2021 ,	
879	Length No Longer Matters: A Real Length Adaptive Arrhythmia Classification Model with Multi-Scale Convolution. 2021 ,	1
878	Machine learning based pervasive analytics for ECG signal analysis. 2021, ahead-of-print,	
877	QRS Detection Based on Medical Knowledge and Cascades of Moving Average Filters. 2021 , 11, 6995	2
876	Fully automatic electrocardiogram classification system based on generative adversarial network with auxiliary classifier. 2021 , 174, 114809	3
875	Heartbeat Classification with Spiking Neural Networks on the Loihi Neuromorphic Processor. 2021,	0
874	Cardiac Arrhythmia Recognition Using Transfer Learning with a Pre-trained DenseNet. 2021,	1

873	An effective feature extraction method based on GDS for atrial fibrillation detection. 2021 , 119, 103819	3
872	Locating abnormal heartbeats in ECG segments based on deep weakly supervised learning. 2021 , 68, 102674	3
871	An Intelligent Heartbeat Classification System Based on Attributable Features with AdaBoost+Random Forest Algorithm. 2021 , 2021, 9913127	2
870	A novel method to reduce false alarms in ECG diagnostic systems: capture and quantification of noisy signals. 2021 , 42,	O
869	Neural Network Clustering Technology for Cartographic Images Recognition. 2021,	О
868	Certainty in QRS detection with artificial neural networks. 2021 , 68, 102628	1
867	Self-training dictionary based approximated D norm constraint reconstruction for compressed ECG. 2021 , 68, 102768	2
866	Arrhythmia diagnosis of young martial arts athletes based on deep learning for smart medical care. 1	3
865	ECG arrhythmia classification based on variational mode decomposition, Shannon energy envelope and deterministic learning. 2021 , 12, 2963-2988	3
864	Understanding Heart Rate Reactions to Post-Traumatic Stress Disorder (PTSD) Among Veterans: A Naturalistic Study. 2021 , 187208211034024	3
863	An intelligent computer-aided diagnosis approach for atrial fibrillation detection based on multi-scale convolution kernel and Squeeze-and-Excitation network. 2021 , 68, 102778	1
862	ECG signal denoising based on similar segments cooperative filtering. 2021 , 68, 102751	2
861	Premature beats detection based on a novel convolutional neural network. 2021, 42,	1
860	AFibNet: an implementation of atrial fibrillation detection with convolutional neural network. 2021 , 21, 216	9
859	Time Series Segmentation Using Neural Networks with Cross-Domain Transfer Learning. 2021, 10, 1805	4
858	Registered report protocol: Developing an artifact index for capacitive electrocardiography signals acquired with an armchair. 2021 , 16, e0254780	1
857	Essential R Peak Detector Based on the Polynomial Fitting. 2022 , 148-163	
856	A Fast ECG Diagnosis by Using Non-Uniform Spectral Analysis and the Artificial Neural Network. 2021 , 2, 1-21	1

855 Elastic AI: system support for adaptive machine learning in pervasive computing systems. **2021**, 3, 300-328

854	Implementation and Performance Measurement of Q-Varying and r-Varying IIR Notch Filter for Bio-medical Application. 2022 , 447-461	
853	A compact QRS detection system based on 0.79 W analog CMOS energy-of-derivative circuit. 2021 , 113, 105097	1
852	A new approach for optimal offline time-series segmentation with error bound guarantee. 2021 , 115, 107917	2
851	ECG compression using wavelet-based compressed sensing with prior support information. 2021 , 68, 102786	4
850	Automated cardiac condition diagnosis using AI based ECG analysis system for school children. 2021 ,	O
849	Copula-Based Data Augmentation on a Deep Learning Architecture for Cardiac Sensor Fusion. 2021 , 25, 2521-2532	2
848	Early detection of heart diseases using a low-cost compact ECG sensor. 2021 , 80, 32615	1
847	An efficient data hiding for ECG signals based on the integer wavelet transform and block standard deviation. 2021 ,	1
846	Automated arrhythmia classification using depthwise separable convolutional neural network with focal loss. 2021 , 69, 102843	10
845	DeepECG: Image-based electrocardiogram interpretation with deep convolutional neural networks. 2021 , 69, 102824	5
844	Arrhythmia Classification Using Deep Learning: A Review. 2021 , 18, 96-105	1
843	Fast and stable computation of higher-order Hahn polynomials and Hahn moment invariants for signal and image analysis. 2021 , 80, 1-27	3
842	Heart Rate Monitoring System Using Feature Extraction in Electrocardiogram Signal by Convolutional Neural Network. 2021 ,	
841	A novel convolutional neural network for reconstructing surface electrocardiograms from intracardiac electrograms and vice versa. 2021 , 118, 102135	1
840	A Classification and Prediction Hybrid Model Construction with the IQPSO-SVM Algorithm for Atrial Fibrillation Arrhythmia. 2021 , 21,	3
839	STERLING: Towards Effective ECG Biometric Recognition. 2021,	0
838	Detection of Brief Episodes of Atrial Fibrillation Based on Electrocardiomatrix and Convolutional Neural Network. 2021 , 12, 673819	1

837	Cardiac Arrhythmia Detection and Classification From ECG Signals Using XGBoost Classifier. 2021, 141-157	1
836	Development and Validation of an Arterial Pressure-Based Cardiac Output Algorithm Using a Convolutional Neural Network: Retrospective Study Based on Prospective Registry Data. 2021 , 9, e24762	2
835	Combining Trauma Script Exposure With rTMS to Reduce Symptoms of Post-Traumatic Stress Disorder: Randomized Controlled Trial. 2021 ,	Ο
834	Local Penalized Least Squares Combined with the Segment Similarity for ECG Denoising. 1	
833	New human identification method using Tietze graph-based feature generation. 2021 , 25, 13437	О
832	Robust Heartbeat Classification for Wearable Single-Lead ECG via Extreme Gradient Boosting. 2021 , 21,	O
831	Interpretation of Electrocardiogram Heartbeat by CNN and GRU. 2021, 2021, 6534942	3
830	MyWear: A Novel Smart Garment for Automatic Continuous Vital Monitoring. 2021 , 67, 214-222	5
829	A Review on Remote Health Monitoring Sensors and Their Filtering Techniques. 2021, 2, 392-392	1
828	Optimized adaptive noise canceller for denoising cardiovascular signal using SOS algorithm. 2021 , 69, 102830	5
827	Analysis of atrial and ventricular premature contractions using the Short Time Fourier Transform with the window size fixed in the frequency domain. 2021 , 69, 102835	2
826	ECG pulse train analysis. 2021 ,	
825	Automated detection of shockable ECG signals: A review. 2021 , 571, 580-604	7
824	Enabling on-device classification of ECG with compressed learning for health IoT. 2021 , 115, 105188	1
823	Classification of ECG heartbeats using deep neural networks. 1	2
822	Machine Learning for Real-Time Heart Disease Prediction. 2021 , 25, 3627-3637	5
821	A Different View on Artificial Intelligence Applications for Cardiac Arrhythmia Detection and Classification. 2022 , 415-427	О
820	Few-shot learning for cardiac arrhythmia detection based on electrocardiogram data from wearable devices. 2021 , 116, 103094	2

819	Stable analysis of large-size signals and images by Racahl discrete orthogonal moments. 2021 , 113830	2
818	Prediction of atrial fibrillation based on nonlinear modeling of heart rate variability signal and SVM classifier. 1	1
817	CSNet: A deep learning approach for ECG compressed sensing. 2021 , 70, 103065	3
816	Lattice-Based Minimum-Distortion Data Hiding. 2021 , 25, 2839-2843	2
815	An ECG Heartbeat Classification Method Based on Deep Convolutional Neural Network. 2021 , 2021, 7167891	1
814	ECG-based machine-learning algorithms for heartbeat classification. 2021 , 11, 18738	11
813	ECG data dependency for atrial fibrillation detection based on residual networks. 2021, 11, 18256	Ο
812	Practical fine-grained learning based anomaly classification for ECG image. 2021 , 119, 102130	3
811	Electrocardiogram Quality Assessment with a Generalized Deep Learning Model Assisted by Conditional Generative Adversarial Networks. 2021 , 11,	0
810	Reaction-diffusion informed approach to determine myocardial ischemia using stochastic in-silico ECGs and CNNs. 2021 , 136, 104635	2
809	Visual Electrocardiogram Synchronization Monitor Using Perovskite-Based Multicolor Light-Emitting Diodes.	0
808	Automated detection of premature ventricular contraction based on the improved gated recurrent unit network. 2021 , 208, 106284	2
807	On the reliability of a novel MODWT-based hybrid ARIMA-artificial intelligence approach to forecast daily Snow Depth (Case study: The western part of the Rocky Mountains in the U.S.A). 2021 , 189, 103342	2
806	. 2021 , 8, 13251-13265	3
805	High-concentration timefrequency analysis for multi-component nonstationary signals based on combined multi-window Gabor transform. 2021 , ahead-of-print,	0
804	An Assessment of the Application of Private Aggregation of Ensemble Models to Sensible Data. 2021 , 3, 788-801	
803	Generative Adversarial Network Enabled Sparse Signal Compression and Recovery for Internet of Medical Things. 2021 ,	1
802	A Low-Latency, Low-Power FPGA Implementation of ECG Signal Characterization Using Hermite Polynomials. 2021 , 10, 2324	2

801	Time-varying data processing with nonvolatile memristor-based temporal kernel. 2021, 12, 5727	7
800	Generalized Analog-to-Information Converter With Analysis Sparse Prior. 2021 , 68, 3574-3586	1
799	Time adaptive ECG driven cardiovascular disease detector. 2021 , 70, 102968	3
798	A Novel Adaptive Multilevel Thresholding Based Algorithm For QRS Detection. 2021 , 100016	O
797	Automated arrhythmia detection with homeomorphically irreducible tree technique using more than 10,000 individual subject ECG records. 2021 , 575, 323-337	11
796	Variable spectral segmentation empirical wavelet transform for noisy signal processing. 2021 , 117, 103151	1
795	Automatic identification of atrial fibrillation based on the modified Elman neural network with exponential moving average algorithm. 2021 , 183, 109806	1
794	An intelligent computer-aided approach for atrial fibrillation and atrial flutter signals classification using modified bidirectional LSTM network. 2021 , 574, 320-332	12
793	AFCNNet: Automated detection of AF using chirplet transform and deep convolutional bidirectional long short term memory network with ECG signals. 2021 , 137, 104783	8
792	Temporal convolutional autoencoder for unsupervised anomaly detection in time series. 2021 , 112, 107751	8
791	Automated classification of five arrhythmias and normal sinus rhythm based on RR interval signals. 2021 , 181, 115031	10
790	Interactive ECG annotation: An artificial intelligence method for smart ECG manipulation. 2021 , 581, 42-59	3
789	A novel approach for decomposition of biomedical signals in different applications based on data-adaptive Gaussian average filtering. 2022 , 71, 103104	1
788	Unsupervised semantic-aware adaptive feature fusion network for arrhythmia detection. 2022 , 582, 509-528	2
787	Multiple contaminant biosignal quality analysis for electrocardiography. 2022, 71, 103127	1
786	Imbalanced heartbeat classification using EasyEnsemble technique and global heartbeat information. 2022 , 71, 103105	1
7 ⁸ 5	Early detection of cardiovascular diseases using deep convolutional neural network & fourier wavelet transform. 2021 ,	1
784	Research on Identification Algorithm Based on ECG Signal and Improved Convolutional Neural Network. 2021 , 1757, 012046	2

ECG biometric using 2D Deep Convolutional Neural Network. **2021**,

782	Generalized Variational Mode Decomposition: A Multiscale and Fixed-Frequency Decomposition Algorithm. 2021 , 70, 1-13	1
781	CareEdge: A Lightweight Edge Intelligence Framework for ECG-Based Heartbeat Detection. 2021 , 187, 329-334	3
780	Biomedical Signals. 2021 , 1-20	1
779	Digital Twin for Intelligent Context-Aware IoT Healthcare Systems. 2021 , 1-1	49
778	R-R Interval Estimation for Wearable Electrocardiogram Based on Single Complex Wavelet Filtering and Morphology-Based Peak Selection. 2021 , 9, 60802-60827	4
777	Early detection of Coronary Heart Disease by using Naive Bayes Algorithm. 2021 , 1717, 012040	2
776	An Arbitrarily Reconfigurable Extreme Learning Machine Inference Engine for Robust ECG Anomaly Detection. 2021 , 2, 196-209	4
775	LISH: A New Random Number Generator using ECG Noises. 2021,	0
774	Data Independent Acquisition Based Bi-Directional Deep Networks for Biometric ECG Authentication. 2021 , 11, 1125	3
773	An improved time-frequency method for efficient diagnosis of cardiac arrhythmias. 2021 , 185-213	
772	ECG Heartbeat Classification Using Multimodal Fusion. 2021 , 9, 100615-100626	11
771	A novel machine learning framework for automated detection of arrhythmias in ECG segments. 2021 , 12, 10145-10162	7
770	In situ learning using intrinsic memristor variability via Markov chain Monte Carlo sampling. 2021 , 4, 151-161	33
769	One-Dimensional CNN Approach for ECG Arrhythmia Analysis in Fog-Cloud Environments. 2021 , 9, 103513-10.	3 58 3
768	Context-Aware Computing Based Adaptable Heart Diseases Diagnosis Algorithm. 2005 , 284-290	2
767	Encyclopedia of Computational Neuroscience. 2014 , 1-3	2
766	An Empirical Validation of a New Memetic CRO Algorithm for the Approximation of Time Series. 2018 , 209-218	1

765	Effective Reversible Data Hiding in Electrocardiogram Based on Fast Discrete Cosine Transform. 2019 , 640-648	2
764	An Improved High-Capacity ECG Steganography with Smart Offset Coefficients. 2019, 3-10	Ο
763	Electrocardiogram Diagnosis Based on SMOTE+ENN and Random Forest. 2019 , 747-757	1
762	From Artificial Intelligence to Deep Learning in Bio-medical Applications. 2020 , 253-284	1
761	Topological Data Analysis for Arrhythmia Detection Through Modular Neural Networks. 2020 , 177-188	10
760	An Advanced Two-Step DNN-Based Framework for Arrhythmia Detection. 2020 , 422-434	7
759	Deep Convolutional Neural Networks for ECG Heartbeat Classification Using Two-Stage Hierarchical Method. 2021 , 137-147	2
758	A Multi-center Physiological Data Repository for SUDEP: Data Curation, Data Conversion and Workflow. 2017 , 66-75	
757	Low-Complexity Biosignal Compression Using Compressed Sensing. 2018 , 211-254	1
756	Optimizing the Impact of Resampling on QRS Detection. 2018 , 107-119	0
755	Unified Wavelet Transform Analysis Adapted to Different Biomedical Applications. 2018 , 597-617 Signal-Adaptive Analog-to-Digital Converters for ULP Wearable and Implantable Medical Devices.	
754	2018 , 231-261	
753	Classification and Compression of ECG Signal for Holter Device. 2018, 46-63	4
752	EKG Bretindeki Gfftferin Temizlenmesi ifh IIR Tabanl Bay Bal Filtre Tasar Bal Signal-Adaptive Analog-to-Digital Converters for ULP Wearable and Implantable Medical Devices.	1
751	Nontraditional Electrocardiogram and Algorithms for Inconspicuous In-Home Monitoring:	2
75° 749	Extension and Performance/Accuracy Formulation for Optimal GeAr-Based Approximate Adder	1
748	Designs. 2018 , E101.A, 1014-1024 Robust ECG data compression method based on $\[\mathbb{I} \]$ -insensitive Huber loss function. 1-1	0

747	Long short-term memory based electrocardiogram diagnosis for premature ventricular contraction in children. 2018 ,	
746	A Comprehensive Study of Mobile Computing in Telemedicine. 2019 , 413-425	0
745	Intra-patient Arrhythmia Heartbeat Modeling by Gibbs Sampling. 2019 , 195-205	
744	Digital Filter Technique Used in Signal Processing for Analysing of ECG Signal. 2019, 371-378	
743	Arrhythmia Detection with Antidictionary Coding and Its Application on Mobile Platforms. 2019 , 50-67	0
742	R-DECO: An open-source Matlab based graphical user interface for the detection and correction of R-peaks.	
741	The feasibility of atrial and ventricular arrhythmias recognition using metrics of signal complexity for heartbeat intervals.	
740	R-peak detector stress test with a new noisy ECG database reveals significant performance differences amongst popular detectors.	4
739	Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model.	0
738	Dynamic ECG Classification Using Shift-Invariant DTCWT and Discriminant Analysis. 2020 , 490-500	O
737	Towards automatic pathology classification for a 24/7 ECG-based telemonitoring service. 2019,	
736	Heartbeat Classification Using 1D Convolutional Neural Networks. 2020 , 502-511	3
735	Syntactic Methods for ECG Signal Diagnosis and QRS Complexes Recognition. 2020, 325-355	
734	The Feasibility of Predicting Impending Malignant Ventricular Arrhythmias on the basis of Signal Complexity of Heartbeat Intervals.	
733	A Fast Method for Segmenting ECG Waveforms. 2020 , 209-215	
732	Representative Databases for Feature Engineering and Computational Intelligence in ECG Processing. 2020 , 13-29	1
731	A Novel ECG Signal Classification Algorithm Based on Common and Specific Components Separation. 2020 , 583-595	0
730	Cardiac Arrhythmia Detection from ECG with Convolutional Recurrent Neural Networks. 2020 , 311-327	1

729	An Efficient Method for Computer-Aided Diagnosis of Cardiac Arrhythmias. 2020 , 295-315	1
728	A DNN for Arrhythmia Prediction Based on ECG. 2020 , 146-153	1
727	The Research on Feature Extraction Method of ECG Signal Based on KPCA Dimension Reduction. 2020 ,	О
726	KARINCIK VE KULAK I K ERKEN VURULARININ OTOMAT K TESP II NE DAYALI YEN BR YAKLA I M. 2020 , 8, 165-174	
725	Digitization of Electrocardiogram Using Bilateral Filtering.	
724	Projective Filtering with Adaptive Selected Projective Dimensions. 2021 , 251-261	
723	A data-dependent energy reduction algorithm for SAR ADC using self-adaptive window. 2020 , 100, 104754	4
722	Network-level Design Space Exploration of Resource-constrained Networks-of-Systems. 2020 , 19, 1-26	1
721	Electrocardiogram Beat Classification Using Data Filtration Technique and Support Vector Machine. 2020 , 17, 3613-3620	
720	Automatic recognition of arrhythmia using a CNN-based broad learning system. 2020,	
719	. 2020,	
718	Protecting ECG Signals with Hybrid Swarm Intelligence Algorithm. 2022 , 47-60	2
717	Interpreting Convolutional Sequence Model by Learning Local Prototypes with Adaptation Regularization. 2021 ,	O
716	Communication-efficient hierarchical federated learning for IoT heterogeneous systems with imbalanced data. 2021 ,	1
715	Atrial Fibrillation Classification with Smart Wearables Using Short-Term Heart Rate Variability and Deep Convolutional Neural Networks. 2021 , 21,	3
714	Automatic ECG Screening as a Supporting Tool on a Telemedicine Framework. 2020 , 289-296	
713	A TRANSFER LEARNING APPROACH BY USING 2-D CONVOLUTIONAL NEURAL NETWORK FEATURES TO DETECT UNSEEN ARRHYTHMIA CLASSES.	1
712	Single Channel QRS Detection Using Wavelet And Median Denoising With Adaptive Multilevel Thresholding. 2020 ,	Ο

711	Secured Electrocardiograph (ECG) Signal Using Partially Homomorphic Encryption Technique R SA Algorithm. 2020 , 28,	1
710	Wavelet Transform in Physiological Signal Analysis: A Survey. 2020 ,	
709	Noise Reduction Method based on Autocorrelation for Threshold-Based Heartbeat Detection. 2020	
708	Compression, Denoising and Classification of ECG Signals using the Discrete Wavelet Transform and Deep Convolutional Neural Networks. 2020 ,	1
707	Deep Learning for Real-time ECG R-peak Prediction. 2020,	0
706	. 2020,	2
705	Analysis of ECG signals to classify abnormal patterns by employing Artificial Neural Network and Discrete Wavelet Coefficients. 2020 ,	0
704	Classification of Normal and Abnormal ECG signals using Support Vector Machine and Fourier Decomposition Method. 2020 ,	1
703	Reconstruct Anomaly to Normal: Adversarially Learned and Latent Vector-Constrained Autoencoder for Time-Series Anomaly Detection. 2021 , 515-529	О
702	A deep learning-based framework For ECG signal denoising based on stacked cardiac cycle tensor. 2022 , 71, 103275	4
701	Arrhythmia classification of LSTM autoencoder based on time series anomaly detection. 2022, 71, 103228	6
700	A Global Training Model for Beat Classification Using Basic Electrocardiogram Morphological Features. 2022 , 70, 4503-4521	
699	Cognitive assistant DeepNet model for detection of cardiac arrhythmia. 2022 , 71, 103221	2
698	Robust multi-feature collective non-negative matrix factorization for ECG biometrics. 2022 , 123, 108376	3
697	An Approximate High Quality Nearest Neighbor Distance Profile. 2020 , 158-182	1
696	Latent Space Exploration Using Generative Kernel PCA. 2020 , 70-82	2
695	Effective Removal of Baseline Wander from ECG Signals: A Comparative Study. 2020, 310-324	1
694	HRV Signal Feature Estimation and Classification for Healthcare System Based on Machine Learning. 2020 , 437-448	

693	Ensemble Learning for Heartbeat Classification Using Adaptive Orthogonal Transformations. 2020 , 355-363	3
692	Predicting Cardiac Arrhythmia Using QRS Detection and Multilayer Perceptron. 2020, 781-789	
691	Novel Scalable Deep Learning Approaches for Big Data Analytics Applied to ECG Processing. 2020 , 633-653	
690	A Novel Method for Extracting High-Quality RR Intervals from Noisy Single-Lead ECG Signals. 2020 , 68-79	
689	Automatic Detection of Arrhythmia Using Optimized Feature Selection. 2020, 1731-1742	
688	Comparative Study Between Artificial Metaplasticity Learning Algorithm and Other Machine Learning Techniques: Application for Cardiac Arrhythmias Classification. 2020 , 72-82	
687	Effective ECG Beat Classification and Decision Support System Using Dual-Tree Complex Wavelet Transform. 2020 , 366-374	2
686	Simultaneous ECG Heartbeat Segmentation and Classification with Feature Fusion and Long Term Context Dependencies. 2020 , 371-383	1
685	Combination of Convolutional and Recurrent Neural Networks for Heartbeat Classification. 2020, 362-371	2
684	Performance Comparison of SVM and ANN for Reversible ECG Data Hiding. 2020 , 197-207	
683	Artificial Neural Networks in Cardiology: Analysis of Numerical and Text Data. 2020 , 15, 40-56	1
682	Arrhythmia Diagnosis through ECG Signal Classification Using A Hybrid CNN-LSTM Model: Comparison with current Deep Learning Approaches (Preprint).	
681	SAND in action. 2021 , 14, 2867-2870	3
680	Access control method using electrocardiogram signal for fog computing security. 2020,	
679	TOP-Net Prediction Model Using Bidirectional Long Short-term Memory and Medical-Grade Wearable Multisensor System for Tachycardia Onset: Algorithm Development Study (Preprint).	
678	A Comparative Analysis of Deep Neural Network Models using Transfer Learning for Electrocardiogram Signal Classification. 2021 ,	O
677	Feature Selection and Extraction in Sequence Labeling for Arrhythmia Detection. 2021,	
676	IoT-Based Low-cost Remote Patient Monitoring and Management system with Deep Learning-Based Arrhythmia and Pneumonia detection. 2021 ,	1

675	Arrhythmia detection and classification using ECG and PPG techniques: a review. 2021, 44, 1027	3
674	A Review on ECG Classification Methods. 2020 , 220-227	
673	Unsupervised non-parametric change point detection in electrocardiography. 2020,	2
672	Signal-Adaptive Analog-to-Digital Converters for ULP Wearable and Implantable Medical Devices. 199-228	O
671	STREAMER. 2020 ,	
670	Synthesis of Dependent Multichannel ECG using Generative Adversarial Networks. 2020,	3
669	Faithfully Truncated Adder-Based Area-Power Efficient FIR Design with Predefined Output Accuracy. 2020 , E103.A, 1063-1070	0
668	REAL-TIME METHOD FOR ECG R-PEAK DETECTION COMBINING AUTOMATIC THRESHOLD AND DIFFERENTIATION. 2020 , 20, 1950023	1
667	ECG-based Arrhythmia Classification & Clinical Suggestions. 2020,	1
666	Arrhythmia Classifier Using a Layer-wise Quantized Convolutional Neural Network for Resource-Constrained Devices. 2020 ,	O
665	Data filtering for corrupted MIMIC III dataset with deep learning. 2020,	
664	A Programmatic Approach for Development of the ViewHRV Service Platform with Accurate and Reliable Results. 2020 ,	O
663	Detection of Uninterpretable ECG Signal Segments. 2020,	1
662	Detection of Ventricular Arrhythmias using HRV Analysis and Quadratic Features. 2020 , 13, 847-855	
661	Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm. 2018, 8, 423-434	3
660	Representation Learning Approaches to Detect False Arrhythmia Alarms from ECG Dynamics. 2018 , 85, 571-586	6
659	[Heartbeat-based end-to-end classification of arrhythmias]. 2019 , 39, 1071-1077	
658	An Algorithm for Automatic QRS Delineation Based on ECG-gradient Signal. 2021 , 118-129	O

(2021-2021)

657	Multi-Channel Biopotential Acquisition System using Frequency-Division Multiplexing with Cable Motion Artifact Suppression. 2021 , PP,	О
656	ECG signal diagnosis using Discrete Wavelet Transform and K-Nearest Neighbor classifier 2021,	2
655	Photoplethysmography signal processing and synthesis. 2022 , 69-146	4
654	Designing ECG monitoring healthcare system with federated transfer learning and explainable AI. 2022 , 236, 107763	10
653	A novel Discrete Wavelet-Concatenated Mesh Tree and ternary chess pattern based ECG signal recognition method. 2022 , 72, 103331	3
652	Classification of Imbalanced Electrocardiosignal Data using Convolutional Neural Network. 2021 , 214, 106483	5
651	OptRPC: A novel and optimized recurrence plot-based system for ECG beat classification. 2022 , 72, 103328	2
650	Modified LSTM-CNN Model for Arrhythmia Classification With Mixed Handcrafted Features. 2021,	
649	Flow Empirical Mode Decomposition. 2022 , 234-250	
648	Application of a novel Anonymization Method for Electrocardiogram data. 2021 ,	O
648	Application of a novel Anonymization Method for Electrocardiogram data. 2021, A Method to Detect Ventricular Fibrillation in Electrocardiograms. 2021,	0
		0
647	A Method to Detect Ventricular Fibrillation in Electrocardiograms. 2021,	
647	A Method to Detect Ventricular Fibrillation in Electrocardiograms. 2021, A Novel Dual-scale Dilated Convolutional Neural Network for Heartbeat Classification. 2021, A Two-Dimensional Arrhythmia Diagnosis Method Aiming to the Application of Mobile Terminal	
647 646 645	A Method to Detect Ventricular Fibrillation in Electrocardiograms. 2021, A Novel Dual-scale Dilated Convolutional Neural Network for Heartbeat Classification. 2021, A Two-Dimensional Arrhythmia Diagnosis Method Aiming to the Application of Mobile Terminal Devices. 2021,	0
647 646 645	A Method to Detect Ventricular Fibrillation in Electrocardiograms. 2021, A Novel Dual-scale Dilated Convolutional Neural Network for Heartbeat Classification. 2021, A Two-Dimensional Arrhythmia Diagnosis Method Aiming to the Application of Mobile Terminal Devices. 2021, Heart Beat Classification Method based on Random Forest Algorithm. 2021,	0
647 646 645 644	A Method to Detect Ventricular Fibrillation in Electrocardiograms. 2021, A Novel Dual-scale Dilated Convolutional Neural Network for Heartbeat Classification. 2021, A Two-Dimensional Arrhythmia Diagnosis Method Aiming to the Application of Mobile Terminal Devices. 2021, Heart Beat Classification Method based on Random Forest Algorithm. 2021, Arrhythmia Classification of Merged Features Method Based on SENet and BiLSTM. 2021,	0

639	Fixed complexity tiny reservoir heterogeneous network for on-line ECG learning of anomalies. 2021	О
638	Classification of ECG beats using optimized decision tree and adaptive boosted optimized decision tree. 1	4
637	Robust wave-feature adaptive heartbeat classification based on self-attention mechanism using a transformer model. 2021 ,	3
636	ECG scalogram classification with CNN micro-architectures. 1	
635	Optimal Neuro Fuzzy Classification for Arrhythmia Data Driven System. 2021 , 11, 70-80	О
634	Inter-patient automated arrhythmia classification: A new approach of weight capsule and sequence to sequence combination. 2021 , 214, 106533	3
633	A Tree Based Machine Learning Approach for PTB Diagnostic Dataset. 2021 , 2115, 012042	
632	Deep learning for single-lead ECG beat arrhythmia-type detection using novel iris spectrogram representation. 2022 , 26, 1123	1
631	A primer on the present state and future prospects for machine learning and artificial intelligence applications in cardiology. 2021 ,	1
630	An Ontology driven model for detection and classification of cardiac arrhythmias using ECG data. 1	1
629	Improving the Efficacy of Deep-Learning Models for Heart Beat Detection on Heterogeneous Datasets 2021 , 8,	1
628	Automatic heartbeat classification using S-shaped reconstruction and a squeeze-and-excitation residual network. 2021 , 140, 105108	3
627	Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder. 2021 , 16, e0260612	2
626	. 2021 , 1-1	1
625	Automated Classification Model With OTSU and CNN Method for Premature Ventricular Contraction Detection. 2021 , 9, 156581-156591	4
624	Multivariate Generative Adversarial Networks and Their Loss Functions for Synthesis of Multichannel ECGs. 2021 , 9, 158936-158945	O
623	A Neuromorphic Model with Delay-based Reservoir for Continuous Ventricular Heartbeat Detection. 2021 , PP,	
622	A novel interpretable method based on dual level attentional deep neural network for actual Multi label Arrhythmia detection. 2021 , 1-1	4

621	Handling High Dimensionality in Ensemble Learning for Arrhythmia Prediction. 2022, 32, 1729-1742	1
620	Watermarking of ECG signals compressed using Fourier decomposition method. 1	O
619	ANNet: A Lightweight Neural Network for ECG Anomaly Detection in IoT Edge Sensors 2022, PP,	8
618	Time Series Anomaly Detection with Adversarial Reconstruction Networks. 2022, 1-1	1
617	FPGA Implementation of Sparsity Independent Regularized Pursuit for Fast CS Reconstruction. 2022 , 1-12	2
616	SLC-GAN: An Automated Myocardial Infarction Detection Model Based on Generative Adversarial Networks and Convolutional Neural Networks with Single-Lead Electrocardiogram Synthesis. 2022 , 589, 738-738	9
615	Inter-patient arrhythmia classification with improved deep residual convolutional neural network 2021 , 214, 106582	4
614	A physiological signal compression approach using optimized Spindle Convolutional Auto-encoder in mHealth applications. 2022 , 73, 103436	О
613	Denoising of ECG signals using weighted stationary wavelet total variation. 2022 , 73, 103478	2
612	Differentially private synthetic medical data generation using convolutional GANs. 2022 , 586, 485-500	5
611	Detection of arrhythmia from electrocardiogram signals using a novel gaussian assisted signal smoothing and pattern recognition. 2022 , 73, 103469	4
610	Feature Selection for ECG Beat Classification using Genetic Algorithms. 2018, 149-156	O
609	Feature Extraction of ECG Signals using NI LabVIEW Biomedical Workbench and Classification with Artificial Neural Network. 2019 , 34-38	
608	An Effective QRS Selection Based on the Level-Crossing Sampling and Activity Selection. 2020,	1
607	Analysis and Selection of Neural Network Architectures for Recognizing Heart Diseases by Cardiogram. 2020 ,	O
606	Design of Deep Convolutional Neural Network Architectures for Denoising Electrocardiographic Signals.	2
606 605		0

603	Detection of Arrhythmias for Multi-lead Electrocardiogram using Convolutional Neural Network. 2020 ,	
602	An Octave Convolution Neural Network-based QRS Detector. 2020 ,	O
601	Classification of electrocardiogram (ECG) data using deep learning methods. 2020,	
600	A Technique for Classifying the ECG Signal into Various Possible States of the Cardiovascular System. 2020 ,	
599	Person Identification using Spatial Variation of Cardiac Signal. 2020,	О
598	A 1D Convolutional Neural Network for Heartbeat Classification from Single Lead ECG. 2020 ,	3
597	The ECGview Tool for Time and Frequency Domain ECG Visualization and Signal Generation. 2020,	
596	Quantized Convolutional Neural Network toward Real-time Arrhythmia Detection in Edge Device. 2020 ,	1
595	Preconditioned K-SVD for ECG Anomaly Detection. 2020,	
594	A Graph-Constrained Changepoint Learning Approach for Automatic QRS-Complex Detection. 2020 ,	
593	iMED: Ubiquitous healthcare platform for chronic patients. 2020 ,	1
592	Detection of Heart Arrhythmia Using Hybrid Neural Networks. 2020 ,	1
591	R Peak Detection in ECG signals using Chebfun. 2020 ,	
590	Detecting Anomalies from Streaming Time Series using Matrix Profile and Shapelets Learning. 2020 ,	
589	Detection of Arrhythmia using ECG waves with Deep Convolutional Neural Networks. 2020,	1
588	Evaluation and Optimization of Distributed Machine Learning Techniques for Internet of Things. 2021 , 1-1	O
587	EDITH: ECG Biometrics Aided by Deep Learning for Reliable Individual Authentication. 2021, 1-13	5
586	Selective Prediction With Long Short-term Memory Using Unit-Wise Batch Standardization for Time Series Health Data Sets: Algorithm Development and Validation 2022 , 10, e30587	O

585	ECG Denoising Methodology using Intrinsic Time Scale Decomposition and Adaptive Switching Mean Filter. 2021 , 1, 7-12	О
584	ECG Real-time Monitoring and Heart Anomaly Detection Reimagined. 2021,	O
583	Asynchronous Federated Learning-based ECG Analysis for Arrhythmia Detection. 2021,	3
582	Cardiac Arrhythmias Detection Based on Sequential and Linguistic Analysis. 2021,	
581	Heart Rate Classification Using ECG Signal Processing and Machine Learning Methods. 2021,	О
580	Hardware-oriented pruning and quantization of Deep Learning models to detect life-threatening arrhythmias. 2021 ,	
579	Denoising ECG by a New Wavelet Threshold Function. 2021 ,	
578	A Convolutional Neural Network for Arrhythmia Classification: A Review. 2021 ,	
577	A Neuromorphic Processing System for Low-Power Wearable ECG Classification. 2021,	1
576	A 3.75 nW Analog Electrocardiogram Processor Facilitating Stochastic Resonance for Real-Time R-wave Detection. 2021 ,	1
575	Segment Origin Prediction: A Self-supervised Learning Method for Electrocardiogram Arrhythmia Classification. 2021 , 2021, 1132-1135	О
574	Simulating cardiac disorders with a lumped parameter synergistic model. 2021 , 2021, 5614-5617	
573	Effects of denoising strategies on R-wave detection in ECG analysis. 2021 , 2021, 373-376	
572	Analysis of ECG De-Noising Using Non-Local Means with Approximate Coefficients and Particle Swarm Optimization. 2021 ,	O
571	Electrocardiogram Signal Classification in the Diagnosis of Heart Disease Based on RBF Neural Network 2022 , 2022, 9251225	1
570	Artificial Intelligence for Detection of Cardiovascular-Related Diseases from Wearable Devices: A Systematic Review and Meta-Analysis 2022 , 63, S93-S107	5
569	Hybrid-Pattern Recognition Modeling with Arrhythmia Signal Processing for Ubiquitous Health Management 2022 , 22,	1
568	A DNN Based Low Power ECG Co-Processor Architecture to Classify Cardiac Arrhythmia for Wearable Devices. 2022 , 1-1	2

567	PerAE: An Effective Personalized AutoEncoder for ECG-based Biometric in Augmented Reality System 2022 , PP,	4
566	Detection and categorization of severe cardiac disorders based solely on pulse interval measurements.	
565	Adaptive Fourier decomposition for multi-channel signal analysis. 2022, 1-1	1
564	Machine Learning for Cardiovascular Outcomes From Wearable Data: Systematic Review From a Technology Readiness Level Point of View 2022 , 10, e29434	2
563	An Early Warning of Atrial Fibrillation Based on Short-Time ECG Signals 2022 , 2022, 2205460	1
562	STCT: Spatial-Temporal Conv-Transformer Network for Cardiac Arrhythmias Recognition. 2022 , 86-100	2
561	Low computation heartbeat classification based on ECG using artificial neural networks. 2022,	0
560	A Novel Bidirectional LSTM Network Based on Scale Factor for Atrial Fibrillation Signals Classification.	
559	Deep learning-based electrocardiogram rhythm and beat features for heart abnormality classification 2022 , 8, e825	2
558	A novel method for reducing arrhythmia classification from 12-lead ECG signals to single-lead ECG with minimal loss of accuracy through teacher-student knowledge distillation. 2022 , 593, 64-77	5
557	Load Position Estimation Method for Wearable Devices Based on Difference in Pulse Wave Arrival Time 2022 , 22,	
556	Working procedure and analysis for an ECG dataset. 2022 , 285-315	
555	Technical design: data processing pipeline in eHealth: The case of ECG data sets. 2022, 259-283	
554	Dual-stage SVD basis approach for ECG signal associated noise removal. 1	
553	Breaking Barriers in Emerging Biomedical Applications 2022 , 24,	1
552	Deep Learning Models for Magnetic Cardiography Edge Sensors Implementing Noise Processing and Diagnostics. 2022 , 10, 2656-2668	1
551	A fast algorithm for complex discord searches in time series: HOT SAX Time. 1	
550	Quantified Explainability: Convolutional Neural Network Focus Assessment in Arrhythmia Detection. 2022 , 2, 124-138	0

549	An ECG classification using DNN classifier with modified pigeon inspired optimizer. 1	O
548	Automated ECG multi-class classification system based on combining deep learning features with HRV and ECG measures. 1	3
547	A novel arrhythmia classification of electrocardiogram signal based on modified HRNet and ECA.	O
546	IoT based ECG monitoring system with encryption and authentication in secure data transmission for clinical health care approach. 2022 , 74, 103481	O
545	Medical image analysis. 2022 , 541-577	
544	Biosignal time-series analysis. 2022 , 491-539	
543	Power-aware feature selection for optimized Analog-to-Feature converter. 2022 , 105386	
542	Comparison of Selection Criteria for Model Selection of Support Vector Machine on Physiological Data with Inter-Subject Variance. 2022 , 12, 1749	2
541	Redundancy cancellation of compressed measurements by QRS complex alignment 2022 , 17, e0262219	O
540	Pacing Electrocardiogram Detection With Memory-Based Autoencoder and Metric Learning 2021 , 12, 727210	O
539	Towards Precomputed 1D-Convolutional Layers for Embedded FPGAs. 2021, 327-338	O
538	A new approach to adaptive threshold based method for QRS detection with fuzzy clustering. 2022 , 42, 404-425	5
537	Noise Suppressing Cascaded IIR Elliptic Filter Design for ECG Signals. 2022, 1-13	O
536	Conception and realization of an IoT-enabled deep CNN decision support system for automated arrhythmia classification. 2022 , 31, 407-419	
535	Extended Instantaneous Spectral Analysis (E-ISA) for Advanced Signal Processing. 2022, 1-1	1
534	LPClass: Lightweight Personalized Sensor Data Classification in Computational Social Systems. 2022 , 1-11	1
533	Arrhythmia Classification Using Deep Learning Architecture. 2022 , 148-172	1
532	Learning-Based Efficient Sparse Sensing and Recovery for Privacy-Aware IoMT. 2022 , 1-1	2

531 Detection of Arrhythmia Using Convolutional Neural Networks. **2022**, 21-30

530	Two-Stage Intelligent Multi-Type Artifact Removal for Single-Channel EEG Settings: A GRU Autoencoder based Approach 2022 , PP,	
529	HMCKRAutoEncoder: An Interpretable Deep Learning Framework for Time Series Analysis. 2022 , 10, 99-111	О
528	A new transfer learning approach to detect cardiac arrhythmia from ECG signals. 1	1
527	A random deep neural system for heartbeat classification. 1	O
526	ECG Recurrence Plot-Based Arrhythmia Classification Using Two-Dimensional Deep Residual CNN Features 2022 , 22,	5
525	Recognition of Electrocardiogram Signal using Multi-class Kernel Support Vector Machine. 2022,	
524	LDIAED: A lightweight deep learning algorithm implementable on automated external defibrillators 2022 , 17, e0264405	1
523	A New Approach for Congestive Heart Failure and Arrhythmia Classification Using Angle Transformation with LSTM. 1	2
522	New method for bio - signals zero - watermarking using quaternion shmaliy moments and short-time fourier transform.	O
521	A ROBUST QRS COMPLEX DETECTION METHOD BASED ON SHANNON ENERGY ENVELOPE AND HILBERT TRANSFORM.	О
520	Variance Approximation and Probabilistic Decomposition Noise Removal Framework for Arrhythmia Detection and Classification on Internet of Medical Things Environment. 1	2
519	Generalizable Beat-by-Beat Arrhythmia Detection by Using Weakly Supervised Deep Learning 2022 , 13, 850951	О
518	Automatic detection of arrhythmias from an ECG signal using an auto-encoder and SVM classifier 2022 , 1	1
517	Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model Inputs. 2022 ,	1
516	Inter-patient arrhythmia identification method with RR-intervals and convolutional neural networks 2022 ,	
515	Premature Ventricular Contraction Recognition Based on a Deep Learning Approach 2022 , 2022, 1450723	О
514	A deep dynamic neural network model and its application for ECG classification. 2022 , 1-8	O

513 A novel vertical-cross-horizontal network. 1

512	Structural Anomalies Detection from Electrocardiogram (ECG) with Spectrogram and Handcrafted Features 2022 , 22,	2
511	A DENOISING METHOD OF DIAPHRAGM ELECTROMYOGRAM SIGNALS BASED ON DUAL-THRESHOLD FILTER.	
510	A Linearly Adaptive Sinetosine Algorithm with Application in Deep Neural Network for Feature Optimization in Arrhythmia Classification using ECG Signals. 2022 , 242, 108411	O
509	A Hybrid Deep Learning Approach for ECG-Based Arrhythmia Classification 2022, 9,	4
508	Optimal reconstruction and compression of signals and images by Hahn moments and artificial bee Colony (ABC) algorithm 2022 , 1-31	2
507	Premature Beats Rejection Strategy on Paroxysmal Atrial Fibrillation Detection 2022, 13, 890139	
506	ECG noise classification using deep learning with feature extraction. 1	2
505	Electrocardiogram signal filtering using circulant singular spectrum analysis and cascaded Savitzky-Golay filter. 2022 , 75, 103583	0
504	A transformer-based deep neural network for arrhythmia detection using continuous ECG signals 2022 , 144, 105325	6
503	A regularization method to improve adversarial robustness of neural networks for ECG signal classification 2022 , 144, 105345	1
502	A new data augmentation convolutional neural network for human emotion recognition based on ECG signals. 2022 , 75, 103580	1
501	Multi-class privacy-preserving cloud computing based on compressive sensing for IoT. 2022 , 66, 103139	O
500	Embedded QRS complex detection based on ECG signal strength and trend. 2022 , 3, 100030	
499	ECG_SegNet: An ECG delineation model based on the encoder-decoder structure 2022, 145, 105445	1
498	Automatic classification of electrocardiogram signals based on transfer learning and continuous wavelet transform. 2022 , 69, 101628	O
497	A novel bidirectional LSTM network based on scale factor for atrial fibrillation signals classification. 2022 , 76, 103663	1
496	On computational aspects of high-order dual Hahn moments. 2022 , 127, 108596	1

495	Compressed-Domain ECG-based Biometric User Identification Using Task-Driven Dictionary Learning. 2022 , 3, 1-15	
494	A Novel Method for Detecting Noise Segments in ECG Signals. 2021 ,	
493	A novel dynamic Principal Component Analysis method, applied to ECG signals. 2021,	
492	A New Approach to Classify Cardiac Arrythmias Using 2D Convolutional Neural Networks. 2021 , 2021, 566-570	1
491	Arrhythmia Classification with Continuous Wavelet Transform and Convolutional Neural Network on ECG. 2021 ,	
490	Multistage Pruning of CNN Based ECG Classifiers for Edge Devices. 2021 , 2021, 1965-1968	2
489	Brain Tumour Detection Using CNN. 2021 ,	1
488	MATLAB-based ECG R-peak Detection and Signal Classification using Deep Learning Approach. 2021 ,	Ο
487	Cardiac Arrhythmia Teletriage using Electrocardiogram. 2021,	
486	Patient-Specific Heartbeat Classification in Single-Lead ECG using Convolutional Neural Network. 2021 , 2021, 932-936	
485	ApproxBioWear: Approximating Additions for Efficient Biomedical Wearable Computing at the Edge. 2021 , 2021, 7566-7569	
484	Star-ECG: Visualization of Electrocardiograms for Arrhythmia and Heart Rate Variability. 2021 , 2021, 2815-2821	
483	A Lightweight Central Learning Approach for Arrhythmia Detection from ECG Signals. 2021,	
482	Sensitivity and Positive Prediction of Secured Electrocardiograph (ECG) Transmission using Fully Homomorphic Encryption Technique (FHE). 97-104	
481	Toward Improving the Fuzzy KNN Algorithm Based on TakagiBugeno Fuzzy Inference System. 2022 , 237-252	
480	R-Peak Detection from ECG Signals Using Fractal Based Mathematical Morphological Operators. 2021 ,	1
479	BePOCH: Improving Federated Learning Performance in Resource-Constrained Computing Devices. 2021 ,	2
478	Directional Sweat Transport and Breathable Sandwiched Electrodes for Electrocardiogram Monitoring System. 2022 , 9, 2101602	O

477	Improvement In ECG R-Peak Detection Compared To Conventional Methods Using LSTM. 2021,	
476	Novel feature extraction method for signal analysis based on independent component analysis and wavelet transform 2021 , 16, e0260764	
475	Remote Arrhythmia Detection for Eldercare in Malaysia 2021 , 21,	
474	A Novel Method for Detection of ECG with Deep Learning. 2021,	
473	Low-Dimensional Depth Local Dual-View Features Embedded Transformer for Electrocardiogram Signal Quality Assessment. 2021 ,	О
472	Deep Learning for Morphological Arrhythmia Classification in Encoded ECG Signal. 2021,	1
471	Ventricular Arrhythmia Classification and Interpretation Using Residual Neural Network with Guided Backpropagation. 2021 ,	1
470	ECG-Adv-GAN: Detecting ECG Adversarial Examples with Conditional Generative Adversarial Networks. 2021 ,	4
469	Schrdinger equation based ECG signal denoising. 2021,	
468	Environmental noise-induced cardiovascular responses during sleep 2021,	1
467	An Efficient and Affordable R-Pi Based Cardiac Disease Detection System. 2022 , 1-15	
	All Lincient and Arrordable K-Fr based Cardiac bisease Detection System. 2022, 1-13	
466	Batch and Online Variational Learning of Hierarchical Pitman-Yor Mixtures of Multivariate Beta Distributions. 2021 ,	1
466 465	Batch and Online Variational Learning of Hierarchical Pitman-Yor Mixtures of Multivariate Beta	0
	Batch and Online Variational Learning of Hierarchical Pitman-Yor Mixtures of Multivariate Beta Distributions. 2021 , HeartNet: Self Multi-Head Attention Mechanism via Convolutional Network with Adversarial Data	
465	Batch and Online Variational Learning of Hierarchical Pitman-Yor Mixtures of Multivariate Beta Distributions. 2021, HeartNet: Self Multi-Head Attention Mechanism via Convolutional Network with Adversarial Data Synthesis for ECG-based Arrhythmia Classification.	0
465 464	Batch and Online Variational Learning of Hierarchical Pitman-Yor Mixtures of Multivariate Beta Distributions. 2021, HeartNet: Self Multi-Head Attention Mechanism via Convolutional Network with Adversarial Data Synthesis for ECG-based Arrhythmia Classification. Effect of the recording condition on the quality of a single-lead electrocardiogram. 2021, 1	0
465 464 463	Batch and Online Variational Learning of Hierarchical Pitman-Yor Mixtures of Multivariate Beta Distributions. 2021, HeartNet: Self Multi-Head Attention Mechanism via Convolutional Network with Adversarial Data Synthesis for ECG-based Arrhythmia Classification. Effect of the recording condition on the quality of a single-lead electrocardiogram. 2021, 1 Identification of Arrhythmia Using ECG Signal Patterns. 2021,	0

459	Optical electrocardiogram monitor with real-time analysis of abnormal heart rhythm for home-based medical alerts.	
458	Backpropagation With Sparsity Regularization for Spiking Neural Network Learning 2022 , 16, 760298	2
457	State-of-the-art Deep Learning Methods on Electrocardiogram Data: A Systematic Review (Preprint).	
456	mm-Wave Radar-Based Vital Signs Monitoring and Arrhythmia Detection Using Machine Learning 2022 , 22,	О
455	An Effective and Lightweight Deep Electrocardiography Arrhythmia Recognition Model Using Novel Special and Native Structural Regularization Techniques on Cardiac Signal 2022 , 2022, 3408501	4
454	A wavelet-based capsule neural network for ECG biometric identification. 2022 , 76, 103692	2
453	Data_Sheet_1.docx. 2020 ,	
452	Reliable P wave detection in pathological ECG signals 2022 , 12, 6589	1
451	An ECG Signal Denoising Method Using Conditional Generative Adversarial Net 2022, PP,	1
450	Unsupervised ECG Analysis: A Review 2022 , PP,	Ο
449	Weak Supervision for Affordable Modeling of Electrocardiogram Data 2021 , 2021, 536-545	0
448	A Novel and Efficient CNN Architecture for Detection and Classification of ECG Arrhythmia. 2022 , 217-225	
447	Electrocardiogram Effective Analysis Based on the Random Forest Model with Preselected Parameters. 2022 , 137-145	
446	Detection of Paroxysmal Atrial Fibrillation from Dynamic ECG Recordings Based on a Deep Learning Model.	
445	Machine Learning Algorithms for Atrioventricular Conduction Defects Prediction using ECG: A Comparative Study. 2022 ,	
444	Disentangling temporal and amplitude variations in ECG synthesis using anchored GANs. 2022,	
443	Mathematical Morphology and the Heart Signals.	
442	Supraventricular ectopic beats and ventricular ectopic beats detection based on improved U-net 2022 ,	Ο

441	Reversible ECG Watermarking for Ownership Detection, Tamper Localization, and Recovery. 1	1
440	Feature-Based Sensing Matrix Design for Analog to Information Converters. 2022,	
439	Nearest Subspace Search in The Signed Cumulative Distribution Transform Space For 1d Signal Classification. 2022 ,	
438	Regularization Using Denoising: Exact and Robust Signal Recovery. 2022,	1
437	Online Ecg Biometrics Via Hadamard Code. 2022 ,	
436	Deep Learning Models for Arrhythmia Detection in IoT Healthcare Applications. 2022, 100, 108011	5
435	An Experimental Study on Transferring Data-Driven Image Compressive Sensing to Bioelectric Signals. 2022 ,	
434	Automatic Detection of Atrial Fibrillation from Single-Lead ECG Using Deep Learning of the Cardiac Cycle. 2022 , 2022, 1-12	O
433	Joint Dual-Domain Matrix Factorization for ECG Biometric Recognition. 2022,	0
432	Compelling new electrocardiographic markers for automatic diagnosis 2022 , 221, 106807	O
431	Reprint of: Few-shot learning for cardiac arrhythmia detection based on electrocardiogram data from wearable devices. 2022 , 125, 103574	0
430	FPGA-based reservoir computing system for ECG denoising. 2022 , 91, 104549	O
429	Short-term atrial fibrillation detection using electrocardiograms: A comparison of machine learning approaches 2022 , 163, 104790	1
428	Multi-classification of arrhythmias using ResNet with CBAM on CWGAN-GP augmented ECG Gramian Angular Summation Field. 2022 , 77, 103684	1
427	Novel cascade filter design of improved sparse low-rank matrix estimation and kernel adaptive filtering for ECG denoising and artifacts cancellation. 2022 , 77, 103750	O
426	Sparsity-based modified wavelet de-noising autoencoder for ECG signals. 2022 , 198, 108605	1
425	An automatic residual-constrained and clustering-boosting architecture for differentiated heartbeat classification. 2022 , 77, 103690	1
424	Dual phase dependent RLS filtering approach for baseline wander removal in ECG signal acquisition. 2022 , 77, 103767	1

423	Comprehensive survey of computational ECG analysis: Databases, methods and applications. 2022 , 203, 117206	4
422	Soft, stretchable, wireless intelligent three-lead electrocardiograph monitors with feedback functions for warning of potential heart attack.	
421	Detection of bradycardia from electrocardiogram signals using feature extraction and snapshot ensembling.	О
420	Classification of cardiac arrhythmia using a convolutional neural network and bi-directional long short-term memory. 2022 , 8, 205520762211027	1
419	Uniform and Non-uniform Embedding Quality Using Electrocardiographic Signals. 2022, 605-614	
418	A Stochastic Resonance Electrocardiogram Enhancement Algorithm for Robust QRS Detection. 2022 , 1-1	2
417	Signal-piloted processing metaheuristic optimization and wavelet decomposition based elucidation of arrhythmia for mobile healthcare. 2022 , 42, 681-694	2
416	A high-performance arrhythmic heartbeat classification using ensemble learning method and PSD based feature extraction approach. 2022 ,	O
415	Arrhythmia classification using multirate processing metaheuristic optimization and variational mode decomposition. 2022 ,	2
414	The influence of atrial flutter in automated detection of atrial arrhythmias - are we ready to go into clinical practice? [2022, 221, 106901]	O
413	An efficient neural network-based method for patient-specific information involved arrhythmia detection. 2022 , 250, 109021	О
412	The Unsupervised Pattern Recognition for the ECG Signal Features Detection.	
411	Cost-Sensitive Learning for Anomaly Detection in Imbalanced ECG Data Using Convolutional Neural Networks. 2022 , 22, 4075	2
410	Three-Dimensional Poincar[Plot Analysis for Heart Rate Variability. 2022 , 2022, 1-9	1
409	Deepaware: A hybrid deep learning and context-aware heuristics-based model for atrial fibrillation detection. 2022 , 221, 106899	2
408	Arrhythmia Classifier Using Convolutional Neural Network with Adaptive Loss-aware Multi-bit Networks Quantization. 2021 ,	
407	Data Quality Enhancement for Machine Learning on Wearable ECGs. 2022, 269-279	
406	Distributed Matrix Multiplication Based on Frame Quantization for Straggler Mitigation. 2022 , 1-16	

405	A Near-sensor ECG Delineation and Arrhythmia Classification System. 2022, 1-1	2
404	A method for removing ECG interference from lumbar EMG based on signal segmentation and SSA. 2022 , 1-1	1
403	Interpretability and Optimisation of Convolutional Neural Networks Based on Sinc-Convolution. 2022 , 1-12	
402	An Ultra-Energy-Efficient and High Accuracy ECG Classification Processor with SNN Inference assisted by On-chip ANN Learning. 2022 , 1-9	1
401	ECG Arrhythmia Classification on an Ultra-Low-Power Microcontroller. 2022, 1-11	O
400	A Machine Learning Framework for Fetal Arrhythmia Detection via Single ECG Electrode. 2022 , 546-553	
399	Adaptive Partition of ECG Diagnosis Between Cloud and Wearable Sensor Net Using Open-Loop and Closed-Loop Switch Mode. 2022 , 10, 63684-63697	O
398	Automatic Cardiac Arrhythmia Classification Using Residual Network Combined with Long Short-term Memory. 2022 , 1-1	1
397	Real-Time Deep Compressed Sensing Reconstruction for Electrocardiogram Signals. 2022,	О
396	TranAD. 2022 , 15, 1201-1214	11
396 395	TranAD. 2022, 15, 1201-1214 Deep Atrial Fibrillation Classification Based on Multi-modal Attention Network. 2022,	11
		11 5
395	Deep Atrial Fibrillation Classification Based on Multi-modal Attention Network. 2022 ,	
395 394	Deep Atrial Fibrillation Classification Based on Multi-modal Attention Network. 2022 , TSB-UAD. 2022 , 15, 1697-1711	
395 394 393	Deep Atrial Fibrillation Classification Based on Multi-modal Attention Network. 2022, TSB-UAD. 2022, 15, 1697-1711 Multiclass Heartbeat Classification using ECG Signals and Convolutional Neural Networks. 2022, Accurate ECG Classification Based on Spiking Neural Network and Attentional Mechanism for	5
395 394 393 392	Deep Atrial Fibrillation Classification Based on Multi-modal Attention Network. 2022, TSB-UAD. 2022, 15, 1697-1711 Multiclass Heartbeat Classification using ECG Signals and Convolutional Neural Networks. 2022, Accurate ECG Classification Based on Spiking Neural Network and Attentional Mechanism for Real-Time Implementation on Personal Portable Devices. 2022, 11, 1889 Agreement process of ECG annotations using thesaurus (list of typical phrases) of ECG conclusions.	5
395 394 393 392 391	Deep Atrial Fibrillation Classification Based on Multi-modal Attention Network. 2022, TSB-UAD. 2022, 15, 1697-1711 Multiclass Heartbeat Classification using ECG Signals and Convolutional Neural Networks. 2022, Accurate ECG Classification Based on Spiking Neural Network and Attentional Mechanism for Real-Time Implementation on Personal Portable Devices. 2022, 11, 1889 Agreement process of ECG annotations using thesaurus (list of typical phrases) of ECG conclusions. 2022, 19-26 A large-scale multi-label 12-lead electrocardiogram database with standardized diagnostic	5 0

387	Predictive analytics that reflect disease burden I the cumulative COMET score.	
386	Automated Detection of Left Bundle Branch Block from ECG Signal Utilizing the Maximal Overlap Discrete Wavelet Transform with ANFIS. 2022 , 11, 93	1
385	Exploring novel algorithms for atrial fibrillation detection by driving graduate level education in medical machine learning.	1
384	The Identification of ECG Signals Using Wavelet Transform and WOA-PNN. 2022 , 22, 4343	
383	PEK: A cloud-based application for automatic electrocardiogram pre-diagnosis. 2022, 19, 101124	0
382	Electrocardiogram based arrhythmia classification using wavelet transform with deep learning model. 2022 , 37, 100502	О
381	Multilevel Classification and Detection of Cardiac Arrhythmias With High-Resolution Superlet Transform and Deep Convolution Neural Network. 2022 , 71, 1-13	1
380	Two-Stage Detection Method of Supraventricular and Ventricular Ectopic Beats Based on Sequential Artificial Features and Heartbeats.	
379	A Neuromorphic Processing System With Spike-Driven SNN Processor for Wearable ECG Classification. 2022 , 1-12	1
378	ECG-Based Heartbeat Classification for Arrhythmia Detection Using Artificial Neural Networks. 2022 , 247-259	2
377	PhysioNet. 2022 , 2806-2808	
376	The Deep Radial Basis Function Data Descriptor (D-RBFDD) Network: A One-Class Neural Network for Anomaly Detection. 2022 , 10, 70645-70661	1
375	State-of-the-art Deep Learning Methods on Electrocardiogram Data: A Systematic Review (Preprint).	1
374	Detecting Ventricular Beats with Machine Learning Models. 2022,	
373	Detection of Premature Heartbeats. 2022,	
372	Quality-Controlled ECG Data Compression and Classification for Cardiac Healthcare Devices. 2022 , 112-128	
371	Classification and Feature Extraction of Biological Signals Using Machine Learning Techniques. 2022 ,	
370	A Review of Automated Diagnosis of ECG Arrhythmia Using Deep Learning Methods. 2022 , 98-111	О

369 Heart Arrhythmia Detection with Novel Approach H3-SAD. 2022,

368	Benchmarking Deep Learning Methods for Arrhythmia Detection. 2022 ,	1
367	Cardiac Arrhythmia Classification from 12-lead Electrocardiogram Using a Combination of Deep Learning Approaches. 2022 ,	0
366	Electrocardiogram Classification Problem Solving using Deep Learning Algorithms: Fully connected Neural Networks. 2022 ,	
365	Explorative Evaluation of Heart Rate Variability Spectral Analysis Approaches. 2022,	
364	Sign Retention in Classical MF-DFA. 2022 , 6, 365	O
363	New ECG Compression Method for Portable ECG Monitoring System Merged with Binary Convolutional Auto-Encoder and Residual Error Compensation. 2022 , 12, 524	1
362	A New Ensemble Approach for Congestive Heart Failure and Arrhythmia Classification Using Shifted One-Dimensional Local Binary Patterns with Long Short-Term Memory.	1
361	Performance and Information Leakage in Splitfed Learning and Multi-Head Split Learning in Healthcare Data and Beyond. 2022 , 5, 60	1
360	Enhancing Inference on Physiological and Kinematic Periodic Signals via Phase-Based Interpretability and Multi-Task Learning. 2022 , 13, 326	
359	Application of artificial intelligence techniques for automated detection of myocardial infarction: a review.	2
358	Channel-Wise Average Pooling and 1D Pixel-Shuffle Denoising Autoencoder for Electrode Motion Artifact Removal in ECG. 2022 , 12, 6957	O
357	CACHET-CADB: A Contextualized Ambulatory Electrocardiography Arrhythmia Dataset. 9,	О
356	The unsupervised pattern recognition for the ECG signal features detection. 2022, 78, 103947	
355	A clinical study on Atrial Fibrillation, Premature Ventricular Contraction, and Premature Atrial Contraction screening based on an ECG deep learning model. 2022 , 126, 109213	
354	MGNN: A multiscale grouped convolutional neural network for efficient atrial fibrillation detection. 2022 , 148, 105863	1
353	Electrocardiogram signal compression using tunable-Q wavelet transform and meta-heuristic optimization techniques. 2022 , 78, 103932	О
352	ECG beat classification based on discriminative multilevel feature analysis and deep learning approach. 2022 , 78, 103943	0

351	HCTNet: An experience-guided deep learning network for inter-patient arrhythmia classification on imbalanced dataset. 2022 , 78, 103910	O
350	A Comparative Analysis of 2D Deep CNN Models for Arrhythmia Detection Using STFT-Based Long Duration ECG Spectrogram. 2022 ,	1
349	Autoregressive Modeling based ECG Cardiac Arrhythmias Database System. 2022 , 16, 1074-1083	
348	A systematic review of deep learning methods for modeling electrocardiograms during sleep.	O
347	ROSEmark: Robust semi-blind ECG watermarking scheme using SWT-DCT framework. 2022, 103648	О
346	QRS detection and classification in Holter ECG data in one inference step. 2022 , 12,	O
345	An Intelligent Multimodal Biometric Authentication Model for Personalised Healthcare Services. 2022 , 14, 222	1
344	Classification of ECG Signal for Cardiac Arrhythmia Detection Using GAN Method. 2023, 257-271	1
343	Deep Compressive Sensing on ECG Signals with Modified Inception Block and LSTM. 2022, 24, 1024	1
342	Sensor technologies to detect out-of-hospital cardiac arrest: A systematic review of diagnostic test performance. 2022 , 11, 100277	O
341	ELEKTRA: ELEKTRokardiomatrix application to biometric identification with convolutional neural networks. 2022 , 506, 37-49	O
340	Low Complexity Binarized 2D-CNN Classifier for Wearable Edge AI Devices. 2022 , 1-10	
339	Analysis of Arrhythmia Classification on ECG Dataset. 2022,	
338	A New Atrial Fibrillation Detection System with Noise Cancellation and Signal Annotation. 2022,	
337	12-Lead ECG Platform for Real-time Monitoring and Early Anomaly Detection. 2022,	1
336	A support for signal compression in living environments: the Analog-to-Information Converter. 2022 ,	O
335	SIC-EDGE: Semantic Iterative ECG Compression for Edge-Assisted Wearable Systems. 2022,	
334	Attention-LRCN: Long-term Recurrent Convolutional Network for Stress Detection from Photoplethysmography. 2022 ,	

333	Assessment of Cardiac Dynamics and Risk Factor Analysis Using Deep Neural Nets. 2022 , 138-165	
332	Reduced complexity on micro-controller learning of ECG anomalies. 2022,	
331	A universal, high-performance ECG signal processing engine to reduce clinical burden.	
330	REACT. 2022 ,	
329	ECG Heartbeat Classification of Myocardial Infarction and Arrhythmia using CNN. 2022,	
328	Evolving SimGANs to improve abnormal electrocardiogram classification. 2022,	
327	Science in brief: The Dorothy Havemeyer International Workshop on poor performance in horses: Recent advances in technology to improve monitoring and quantification. 2022 , 54, 844-846	1
326	A transient dual-type sensor based on MXene/cellulose nanofibers composite for intelligent sedentary and sitting postures monitoring. 2022 ,	1
325	Weak self-supervised learning for seizure forecasting: a feasibility study. 2022, 9,	0
324	FPGA-Based Low-Cost Architecture for R-Peak Detection and Heart-Rate Calculation Using Lifting-Based Discrete Wavelet Transform.	
323	A Power-Efficient Level-Crossing Analog-to-Digital Converter with Adaptive Resolution Based on a Signal-Dependent Sampling Mechanism.	
322	Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence. 2022 ,	2
321	A deep learning refinement strategy based on efficient channel attention for atrial fibrillation and atrial flutter signals identification. 2022 , 109552	
320	A High-Performance Low Complex Design and Implementation of QRS Detector using Modified MaMeMi Filter optimized with Mayfly Optimization Algorithm.	
319	An Adaptive ECG Noise Removal Process Based on Empirical Mode Decomposition (EMD). 2022 , 2022, 1-9	1
318	Discriminative Convolutional Sparse Coding of ECG Signals for Automated Recognition of Cardiac Arrhythmias. 2022 , 10, 2874	2
317	A High Accuracy & Ditra-Low Power ECG-Derived Respiration Estimation Processor for Wearable Respiration Monitoring Sensor. 2022 , 12, 665	
316	CRT-Net: A generalized and scalable framework for the Computer-Aided Diagnosis of Electrocardiogram signals. 2022 , 109481	O

315	An improved adaptive periodical segment matrix algorithm for ECG denoising based on singular value decomposition. 2022 , 1-13	
314	Evaluation of Fast Sample Entropy Algorithms on FPGAs: From Performance to Energy Efficiency. 2022 , 24, 1177	O
313	TraTSA: A Transprecision Framework for Efficient Time Series Analysis. 2022 , 63, 101784	
312	On the fractal geometry of different heart rhythms. 2022 , 9, 100085	
311	Inter-patient ECG classification with i-vector based unsupervised patient adaptation. 2022, 210, 118410	
310	An investigation of the contextual distribution of false positives in a deep learning-based atrial fibrillation detection algorithm. 2023 , 211, 118540	
309	Compressive sensing of ECG signals using plug-and-play regularization. 2023 , 202, 108738	1
308	Deep Learning Model for Arrhythmia Classification with 2D Convolutional Neural Network. 2023 , 1-11	O
307	Ensemble classification combining ResNet and handcrafted features with three-steps training.	O
306	A novel P-QRS-T wave localization method in ECG signals based on hybrid neural networks. 2022 , 150, 106110	O
305	Personalized Arrhythmia Detection Based on Lightweight Autoencoder and Variational Autoencoder. 2022 , 50-62	O
304	HeartNet: Self Multihead Attention Mechanism via Convolutional Network With Adversarial Data Synthesis for ECG-Based Arrhythmia Classification. 2022 , 10, 100501-100512	1
303	DSCSSA: A Classification Framework for Spatiotemporal Features Extraction of Arrhythmia Based on the Seq2Seq Model With Attention Mechanism. 2022 , 71, 1-12	1
302	An Evolutionary-Neural Mechanism for Arrhythmia Classification With Optimum Features Using Single-Lead Electrocardiogram. 2022 , 10, 99050-99065	O
301	Deep arrhythmia classification based on SENet and lightweight context transform. 2022 , 20, 1-17	O
300	A Self-Contained STFT CNN for ECG Classification and Arrhythmia Detection at the Edge. 2022 , 10, 94469-94	1486
299	Video-Based Heart Rate Detection: A Remote Healthcare Surveillance Tool for Smart Homecare. 2022 , 159-195	О
298	Hardware Efficient Low-Frequency Artifact Reduction Technique for Wearable ECG Device. 2022 , 71, 1-9	O

297	ECG-ATK-GAN: Robustness Against Adversarial Attacks on ECGs Using Conditional Generative Adversarial Networks. 2022 , 68-78	О
296	Identifying heart arrhythmias through multi-level algorithmic processing of ECG on edge devices. 2022 , 203, 699-706	O
295	Detection of Paroxysmal Atrial Fibrillation from Dynamic ECG Recordings Based on a Deep Learning Model.	1
294	Novel QRS Detection Based on the Adaptive Improved Permutation Entropy.	O
293	Kernels for Incoherent Projection and Orthogonal Matching Pursuit. 2022 , 398-406	0
292	Biometric Identification From ECG Signals Using Fourier Decomposition and Machine Learning. 2022 , 71, 1-9	1
291	Tensile-Force-Resilient Biomedical Front-End Circuits Employing Auto-Calibrated Omni-Directional Thin-Film Transistors. 2022 , 21, 575-585	0
290	Classification Techniques for Arrhythmia Patterns Using Convolutional Neural Networks and Internet of Things (IoT) Devices. 2022 , 10, 87387-87403	Ο
289	A 2.66µ́W Clinician-like Cardiac Arrhythmia Watchdog Based on P-QRS-T for Wearable Applications. 2022 , 1-14	0
288	Electrocardiogram Signal Analysis Based on Statistical Approaches Using K-Nearest Neighbor. 2022 , 148-160	Ο
288	Electrocardiogram Signal Analysis Based on Statistical Approaches Using K-Nearest Neighbor. 2022 , 148-160 Standardized Gaussian Dictionary for ECG Analysis a Metrological Approach. 2022 , 1, 1-9	0
287	Standardized Gaussian Dictionary for ECG Analysis a Metrological Approach. 2022 , 1, 1-9	0
287	Standardized Gaussian Dictionary for ECG Analysis a Metrological Approach. 2022 , 1, 1-9 Explainable AI for Healthcare 5.0: Opportunities and Challenges. 2022 , 10, 84486-84517	0 4
287 286 285	Standardized Gaussian Dictionary for ECG Analysis a Metrological Approach. 2022, 1, 1-9 Explainable AI for Healthcare 5.0: Opportunities and Challenges. 2022, 10, 84486-84517 Interpretation and Classification of Arrhythmia Using Deep Convolutional Network. 2022, 71, 1-12 Heartbeat Classification by Random Forest With a Novel Context Feature: A Segment Label. 2022,	0 4
287 286 285 284	Standardized Gaussian Dictionary for ECG Analysis a Metrological Approach. 2022, 1, 1-9 Explainable AI for Healthcare 5.0: Opportunities and Challenges. 2022, 10, 84486-84517 Interpretation and Classification of Arrhythmia Using Deep Convolutional Network. 2022, 71, 1-12 Heartbeat Classification by Random Forest With a Novel Context Feature: A Segment Label. 2022, 10, 1-8	o 4 1
287 286 285 284 283	Standardized Gaussian Dictionary for ECG Analysis a Metrological Approach. 2022, 1, 1-9 Explainable AI for Healthcare 5.0: Opportunities and Challenges. 2022, 10, 84486-84517 Interpretation and Classification of Arrhythmia Using Deep Convolutional Network. 2022, 71, 1-12 Heartbeat Classification by Random Forest With a Novel Context Feature: A Segment Label. 2022, 10, 1-8 A Novel Arrhythmia Classification Method Based on GASF and Optimized Inception-Resnet-v2. A Spatio-Temporal Approach with Transformer Network for Heart Disease Classification with	04100

279	ZEN: A flexible energy-efficient hardware classifier exploiting temporal sparsity in ECG data. 2022,	1
278	Efficient and Private ECG Classification on the Edge Using a Modified Split Learning Mechanism. 2022 ,	Ο
277	Convolutional Neural Network-based ECG Classification on PYNQ-Z2 Framework. 2022,	0
276	Evaluation of handcrafted features and learned representations for the classification of arrhythmia and congestive heart failure in ECG. 2023 , 79, 104230	O
275	A smart decision support system to diagnose arrhythymia using ensembled ConvNet and ConvNet-LSTM model. 2023 , 213, 118933	1
274	Hardware Co-Simulation of an Efficient Adaptive Filter based ECG Denoising System with Inbuilt Reference Generator. 2022 ,	1
273	Muscle Artifact Removal in Single-Channel Electrocardiograms using Temporal Convolutional Networks. 2022 ,	0
272	Lightweight Convolutional Neural Network for Real-Time Arrhythmia Classification on Low-Power Wearable Electrocardiograph. 2022 ,	O
271	ECG heartbeat classification based on combined features extracted by PCA, KPCA, AKPCA and DWT. 2022 ,	0
270	A Meta-Transfer Learning Approach to ECG Arrhythmia Detection. 2022 ,	O
269	Similarity Maps for Ventricular Arrhythmia Classification. 2022,	0
268	A Transfer-Learning Based Ensemble Architecture for ECG Signal Classification. 2022,	O
267	Generative Adversarial Networks in Time Series: A Systematic Literature Review.	1
267 266	Generative Adversarial Networks in Time Series: A Systematic Literature Review. Arrhythmia Classification Algorithm Based on a Two-Dimensional Image and Modified EfficientNet. 2022, 2022, 1-10	1 O
ŕ	Arrhythmia Classification Algorithm Based on a Two-Dimensional Image and Modified EfficientNet.	
266	Arrhythmia Classification Algorithm Based on a Two-Dimensional Image and Modified EfficientNet. 2022 , 2022, 1-10	O
266 265	Arrhythmia Classification Algorithm Based on a Two-Dimensional Image and Modified EfficientNet. 2022, 2022, 1-10 Statistical and Diagnostic Properties of pRRx Parameters in Atrial Fibrillation Detection. 2022, 11, 5702 A novel technique for the detection of myocardial dysfunction using ECG signals based on CEEMD,	0

261	Biomedical Signal Denoising Via Permutating, Thresholding and Averaging Noise Components Obtained from Hierarchical Multiresolution Analysis-Based Empirical Mode Decomposition.	O
260	Congestive Heart Failure Detection based on Attention Mechanism-Enabled Bi-Directional Long Short-Term Memory Model in the Internet of Medical Things. 2022 , 100402	O
259	Device agnostic AI-based analysis of ambulatory ECG recordings. 2022,	О
258	Accelerated univariate sequential clustering.	0
257	A new database with annotations of P waves in ECGs with various types of arrhythmias.	0
256	Optimized Orthogonal Wavelet-Based Filtering Method for Electrocardiogram Signal Denoising.	O
255	A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing.	7
254	A novel deep learning package for electrocardiography research.	O
253	Two-Step Approaches to Overcome Data Imbalance in the Development of an Electrocardiography Data Quality Assessment Algorithm: A Real-World Data Challenge.	0
252	Broken Heart: Privacy Leakage Analysis on ECG-Based Authentication Schemes. 2022 , 2022, 1-14	0
251	A Novel Method for Diagnosis of Cardiac Disease Using ECG on Proposed CNN. 2023, 47-54	0
250	A Parallel Cross Convolutional Recurrent Neural Network for Automatic Imbalanced ECG Arrhythmia Detection with Continuous Wavelet Transform. 2022 , 22, 7396	0
249	Electrocardiogram signal classification using VGGNet: a neural network based classification model.	0
248	Preserving Spatio-Temporal Information in Machine Learning: A Shift-Invariant k-Means Perspective.	0
247	A Deep Neural Network Ensemble Classifier with Focal Loss for Automatic Arrhythmia Classification. 2022 , 2022, 1-11	0
246	A Systematic Review on Artificial Intelligence-Based Techniques for Diagnosis of Cardiovascular Arrhythmia Diseases: Challenges and Opportunities.	0
245	Applications of Federated Learning in Mobile Health: Scoping Review (Preprint).	0
244	Practical joint human-machine exploration of industrial time series using the matrix profile.	O

243	ML algorithms to estimate data reliability metric of ECG from inter-patient data for trustable AI-based cardiac monitors. 2022 , 100350	1
242	Dual-Factor WBAN Enhanced Authentication System Based on Iris and ECG Descriptors. 2022 , 22, 19000-1900)9 0
241	Online Time-series Anomaly Detection: A Survey of Modern Model-based Approaches.	О
240	A novel deep neural network for detection of Atrial Fibrillation using ECG signals. 2022 , 109926	O
239	RPAA. 2022 ,	О
238	An improved deep learning approach based on exponential moving average algorithm for atrial fibrillation signals identification. 2022 , 513, 127-136	O
237	Deep learning-based system to predict cardiac arrhythmia using hybrid features of transform techniques. 2022 , 16, 200127	1
236	A review of automated sleep disorder detection. 2022 , 150, 106100	2
235	Sleep classification using Consumer Sleep Technologies and AI: A review of the current landscape. 2022 , 100, 390-403	1
234	ECG-Based Arrhythmia Classification using Recurrent Neural Networks in Embedded Systems. 2022 , 207, 3479-3487	O
233	Multilinear Karhunen-Lo∏e Transforms. 2022 , 1-17	0
232	ECG Signals Classification Model Based on Frequency Domain Features Coupled with Least Square Support Vector Machine (LS-SVM). 2022 , 303-312	O
231	A new distributional treatment for time series and an anomaly detection investigation. 2022 , 15, 2321-2333	0
230	ECG Beat Classification using CNN. 2022 ,	O
229	Segment Based Pattern Analysis Reveals a Persistent Regular Rhythm in the Motion Artifact Record of the MIT-BIH Noise Stress Test Database.	0
228	Generalizability and Clinical Implications of Electrocardiogram Denoising with Cardio-NAFNet.	O
227	TSFEDL: A Python Library for Time Series Spatio-Temporal Feature Extraction and Prediction using Deep Learning. 2022 ,	0
226	ECG steganography using Base64 encoding and pixel swapping technique.	O

225	Imbalanced ECG signal-based heart disease classification using ensemble machine learning technique. 5,	O
224	Detection and categorization of severe cardiac disorders based solely on heart period measurements. 2022 , 12,	O
223	Electrocardiogram classification using TSST-based spectrogram and ConViT. 9,	0
222	Arrhythmia Classification and Diagnosis Based on ECG Signal: A Multi-Domain Collaborative Analysis and Decision Approach. 2022 , 11, 3251	O
221	Arrhythmia Detection Based on WGAN-GP and SE-ResNet1D. 2022 , 11, 3427	0
220	Bias Analysis in Healthcare Time-Series (BAHT) Decision Support Systems from Meta Data.	O
219	Automatic ECG Quality Assessment Techniques: A Systematic Review. 2022 , 12, 2578	2
218	A novel automated CNN arrhythmia classifier with memory-enhanced artificial hummingbird algorithm. 2022 , 119162	O
217	CVD prediction on micro-controller: ECG morphology learning approach.	О
216	Vital Signs Sensing Gown Employing ECG-Based Intelligent Algorithms. 2022 , 12, 964	O
215	A comparative study on neural networks for paroxysmal atrial fibrillation events detection from electrocardiography. 2022 , 75, 19-27	0
214	From signal to image: An effective preprocessing to enable deep learning-based classification of ECG. 2022 ,	O
213	A new vision of a simple 1D Convolutional Neural Networks (1D-CNN) with Leaky-ReLU function for ECG abnormalities classification. 2022 , 100080	0
212	Novel QRS detection based on the Adaptive Improved Permutation Entropy. 2023 , 80, 104270	1
211	Efficient IoT Big Data Streaming with Deep Learning-enabled Dynamics. 2022, 1-1	0
2 10	1-Bit Compressed Sensing via an L1-TV Regularization Method. 2022 , 10, 116473-116484	O
209	ECG denoising method based on an improved VMD algorithm. 2022 , 1-1	2
208	Agile Entwicklung einer KI-basierten EKG-Auswertung im Kindesalter. 2022 , 413-440	O

207	A Fully Analog Autonomous QRS Complex Detection and Low-Complexity Asystole, Extreme Bradycardia, and Tachycardia Classification System. 2022 , 71, 1-13	1
206	A GPU-Accelerated Neural Network Approach for the Diagnosis of Heart Disease in Clinical Medicine. 2022 , 705-717	О
205	A two-staged classifier to reduce false positives: On device detection of atrial fibrillation using phase-based distribution of poincar[plots and deep learning. 2023, 76, 17-21	О
204	An energy-efficient analog circuit for detecting QRS complexes from ECG signal. 2023 , 88, 390-399	О
203	An explainable attention-based TCN heartbeats classification model for arrhythmia detection. 2023 , 80, 104337	0
202	A real-time embedded system to detect QRS-complex and arrhythmia classification using LSTM through hybridized features. 2023 , 214, 119221	O
201	Hardware calibrated learning to compensate heterogeneity in analog RRAM-based Spiking Neural Networks. 2022 ,	O
200	A Compact Online-Learning Spiking Neuromorphic Biosignal Processor. 2022 ,	O
199	TDPRO: Ultra-low Power ECG Processor with High-Precision Time-Domain Computing Engine. 2022,	0
198	An Event-Driven Compressive Neuromorphic System for Cardiac Arrhythmia Detection. 2022,	O
197	Spectrum Estimation of Heart Rate Variability Using Low-rank Matrix Completion. 2022,	О
196	Development of a Variety of Fast Machine Learning Model for ECG-based Arrhythmia Classifier. 2022 ,	O
195	Development and Analysis of Sparse Spasmodic Sampling Techniques. 2022,	О
194	Event-Driven ECG Classification using Functional Approximation and Chebyshev Polynomials. 2022,	O
193	Neuromorphic implementation of ECG anomaly detection using delay chains. 2022,	О
192	Dataflow Optimizations in a Sub-uW Data-Driven TCN Accelerator for Continuous ECG Monitoring. 2022 ,	O
191	Robust R-peak detection in an electrocardiogram with stationary wavelet transformation and separable convolution. 2022 , 12,	2
190	The Athletell Heart and Machine Learning: A Review of Current Implementations and Gaps for Future Research. 2022 , 9, 382	O

189	Enhancing Electrocardiogram Classification with Multiple Datasets and Distant Transfer Learning. 2022 , 9, 683	0
188	An Integrated Secure Efficient Computing Architecture for Embedded and Remote ECG Diagnosis. 2023 , 4,	Ο
187	Multimodal 12-lead ECG data classification using multi-label DenseNet for heart disease detection. 2022 ,	О
186	A Power-aware ECG Processing Node for Real-time Feature Extraction in WBAN. 2022 , 104724	О
185	Smart Biomedical Sensor Network for Multi-patient Cardiac Arrhythmia Monitoring. 2022, 1-1	О
184	Hardware Design of Two Stage Reference Free Adaptive Filter for ECG Denoising. 2022, 305-319	О
183	Gradient pursuit architecture for reduced complexity sparsity independent CS recovery. 2022 , 1-1	О
182	Generalized Generative Deep Learning Models for Biosignal Synthesis and Modality Transfer 2022 , 1-12	О
181	Temporal Convolutional Networks with RNN approach for chaotic time series prediction. 2023, 133, 109945	О
180	An adaptive transformer model for anomaly detection in wireless sensor networks in real-time. 2023 , 25, 100625	Ο
179	A novel convolutional neural network structure for differential diagnosis of wide QRS complex tachycardia. 2023 , 81, 104506	О
178	Automated Detection of Abnormalities in ECG signals using Deep Neural Network. 2023 , 5, 100066	О
177	Atrial fibrillation classification and detection from ECG recordings. 2023 , 82, 104531	О
176	ECG signal classification using machine learning techniques. 2022 , 70-77	О
175	What Leads to Arrhythmia: Active Causal Representation Learning of ECG Classification. 2022, 501-515	О
174	VLSI Implementation of QRS Complex Detector Based on Wavelet Decomposition. 2022, 1-1	O
173	Two-stage Classifier for Resource Constrained On-board Cardiac Arrhythmia Detection. 2022, 1-1	О
172	Differential Beat Accuracy for ECG Family Classification Using Machine Learning. 2022 , 10, 129362-129381	О

171	MS-MLP: Multi-scale Sampling MLP for ECG Classification. 2022 ,	0
170	An Improved Adaptive Periodical Segment Matrix for Processing EMG Artifacts in ECG Signal Detection. 2022 ,	O
169	An efficient clustering-based non-fiducial approach for ECG biometric recognition. 2022,	0
168	ECG Signals Classification Method for Wireless Body Area Network Based on Quantized Residual Network. 2022 ,	O
167	Stacked Variational Autoencoder in the Classification of Cardiac Arrhythmia using ECG Signals with 2D-ECG Images. 2022 ,	О
166	R PEAK DETERMINATION USING A WDFR ALGORITHM AND ADAPTIVE THRESHOLD. 2022 , 18, 19-30	O
165	Accurate Reconstruction of ECG Signals using Chebyshev Polynomials. 2022,	0
164	DSD-R: Deep Learning Based Segmentation for the Detection of R peaks in ECG Signals. 2022,	О
163	Restoration of Time-Series Medical Data with Diffusion Model. 2022,	0
162	Runtime Verification for Clinically Interpretable Arrhythmia Classification. 2022,	O
161	Hardware Accelerator Design of Personal Identification with ECG Signal Based on Artificial Neural Network. 2022 ,	0
160	An acceleration measure for heart rate variability via Poincar[plot. 2022 ,	O
159	Improved Neural Network Arrhythmia Classification Through Integrated Data Augmentation. 2022,	О
158	Arrhythmia Classification on Different Time Windows Using CSR-BiGRU Network. 2022,	O
157	SEmbedNet: Hardware-Friendly CNN for Ectopic Beat Classification on STM32-Based Edge Device. 2022 ,	0
156	Sampling Rate Impact on Heart Rate Variability. 2022,	О
155	Study On The Application Of Small CNN In Arrhythmia Classification. 2022,	О
154	ECG Arrhythmia Classification for Comparing Pre-Trained Deep Learning Models. 2022,	O

153	A Lightweight R peak Detection Algorithm For Noisy ECG Signals. 2022,	O
152	ECG signal classification to detect heart arrhythmia using ELM and CNN.	O
151	Arrhythmia detection using TQWT, CEEMD and deep CNN-LSTM neural networks with ECG signals.	О
150	A Reparameterization Multifeature Fusion CNN for Arrhythmia Heartbeats Classification. 2022 , 2022, 1-9	O
149	Effect of Baier Interpolation on Similarity of Heartbeats in Electrocardiograms. 2022,	О
148	Heart disease recognition based on extended ECG sequence database and deep learning techniques. 2022 ,	О
147	An energy-efficient and accuracy-aware edge computing framework for heart arrhythmia detection: A joint model selection and task offloading approach.	O
146	A novel predictive analytics score reflecting accumulating disease burden (an investigation of the cumulative CoMET score.	О
145	Detection of cardiac arrhythmia patterns in ECG through H 🖸 plane. 2022 , 32, 123118	О
144	Electrocardiogram (ECG) Circuit Design and Using the Random Forest to ECG Arrhythmia Classification. 2023 , 477-494	О
143	A variation rate measure for the arrhythmia via Poincar[plot. 2022 ,	О
142	A novel proposed CNNBVM architecture for ECG scalograms classification.	О
141	A Novel Algorithm for Automated Human Single-Lead ECG Pre-Annotation and Beat-to-Beat Separation for Heartbeat Classification Using Autoencoders. 2022 , 11, 4021	0
140	Automated electrocardiogram signal quality assessment based on Fourier analysis and template matching.	О
139	A Privacy-Preserving Approach For Building Learning Models in Smart Healthcare using Blockchain and Federated Learning. 2022 ,	0
138	Improving ECG Classification Performance by Using an Optimized One-Dimensional Residual Network Model. 2022 , 12, 12957	О
137	A lightweight 2-D CNN model with dual attention mechanism for heartbeat classification.	0
136	Identification of Heart Arrhythmias by Utilizing a Deep Learning Approach of the ECG Signals on Edge Devices. 2022 , 11, 176	O

135	Efficient Lightweight Multimodel Deep Fusion Based on ECG for Arrhythmia Classification. 2022 , 22, 9347	1
134	An energy-concentrated wavelet transform for time-frequency analysis of transient signal. 2023 , 108934	О
133	Arrhythmia disease diagnosis based on ECG time-frequency domain fusion and convolutional neural network. 2022 , 1-1	0
132	Multi-class Detection of Arrhythmia Conditions Through the Combination of Compressed Sensing and Machine Learning. 2022 , 213-235	O
131	A novel temporal generative adversarial network for electrocardiography anomaly detection. 2023 , 102489	O
130	Siamese Convolutional Neural Network for Heartbeat Classification Using Limited 12-lead ECG Datasets. 2023 , 1-1	O
129	Chancen und Hemmnisse beim Transfer von Science-Industry Innovationen im Gesundheitswesen 🛭 Anwendungsfall der Implementierung von KI-basierten EKG-Auswertungen in das hüsliche Pflegeumfeld. 2023 , 271-291	0
128	Designing very fast and accurate convolutional neural networks with application in ICD and smart electrocardiograph devices. 2023 , 1-1	О
127	Machine Learning Algorithms for Epilepsy Detection Based on Published EEG Databases: A Systematic Review. 2023 , 11, 564-594	0
126	A 2.2 nW Analog Electrocardiogram Processor based on Stochastic Resonance Achieving a 99.94% QRS Complex Detection Sensitivity. 2023 , 1-11	O
125	ECG Biometrics via Enhanced Correlation and Semantic-rich Embedding.	0
124	2D-wavelet encoded deep CNN for image-based ECG classification.	1
123	A Detection Method of Atrial Fibrillation from 24-hour Holter-ECG Using CNN.	0
122	Machine Learning approach for TWA detection relying on ensemble data design. 2023 , 9, e12947	O
121	Fuzz-ClustNet: Coupled fuzzy clustering and deep neural networks for Arrhythmia detection from ECG signals. 2023 , 153, 106511	0
120	Time-frequency domain methods for the identification of breathing cracks in beam-like structures. 2023 , 180, 108202	O
119	Diagnosis of arrhythmias with few abnormal ECG samples using metric-based meta learning. 2023 , 153, 106465	1
118	Preprocessing and pattern recognition for Single-Lead cardiac dynamic model. 2023 , 82, 104544	O

117	Real-Time Smart System for ECG Monitoring Using a One-Dimensional Convolutional Neural Network. 2022 ,	Ο
116	A Deep Learning Framework for the Classification of ECG Signals. 2022,	О
115	A Hybrid 2D ECG Compression Algorithm using DCT and Embedded Zero Tree Wavelet. 2022,	О
114	LMAU-Net: A Local Mask Attention Convolutional Neural Network for QRS Wave Detection. 2022,	O
113	Temporal Variation Measure Analysis: An Improved Second-Order Difference Plot. 2022 , 2022, 1-11	O
112	FERST: A Full ECG Reception System for User Authentication using Two-stage Deep Learning. 2022,	O
111	AdapSQA: Adaptive ECG Signal Quality Assessment Model for Inter-Patient Paradigm using Unsupervised Domain Adaptation. 2022 ,	O
110	Arrhythmia Classification Using CGAN-Augmented ECG Signals*. 2022,	1
109	A Machine Learning-based Lightweight and Real-time Cardiac Arrhythmia Detection using Optimum Samples and Features. 2022 ,	O
108	Pan-Tompkins++: A Robust Approach to Detect R-peaks in ECG Signals. 2022 ,	1
107	Pan-Tompkins++: A Robust Approach to Detect R-peaks in ECG Signals. 2022, Patient-specific ECG beat classification using EMD and deep learning-based technique. 2023, 87-108	0
107	Patient-specific ECG beat classification using EMD and deep learning-based technique. 2023 , 87-108 Biometric Recognition: A Systematic Review on Electrocardiogram Data Acquisition Methods. 2023 ,	0
107	Patient-specific ECG beat classification using EMD and deep learning-based technique. 2023 , 87-108 Biometric Recognition: A Systematic Review on Electrocardiogram Data Acquisition Methods. 2023 , 23, 1507	0
107 106 105	Patient-specific ECG beat classification using EMD and deep learning-based technique. 2023, 87-108 Biometric Recognition: A Systematic Review on Electrocardiogram Data Acquisition Methods. 2023, 23, 1507 Semi-supervised active transfer learning for fetal ECG arrhythmia detection. 2023, 3, 100096 A training pipeline of an arrhythmia classifier for atrial fibrillation detection using	0 2 1
107 106 105	Patient-specific ECG beat classification using EMD and deep learning-based technique. 2023, 87-108 Biometric Recognition: A Systematic Review on Electrocardiogram Data Acquisition Methods. 2023, 23, 1507 Semi-supervised active transfer learning for fetal ECG arrhythmia detection. 2023, 3, 100096 A training pipeline of an arrhythmia classifier for atrial fibrillation detection using Photoplethysmography signal. 14,	0 2 1
107 106 105 104	Patient-specific ECG beat classification using EMD and deep learning-based technique. 2023, 87-108 Biometric Recognition: A Systematic Review on Electrocardiogram Data Acquisition Methods. 2023, 23, 1507 Semi-supervised active transfer learning for fetal ECG arrhythmia detection. 2023, 3, 100096 A training pipeline of an arrhythmia classifier for atrial fibrillation detection using Photoplethysmography signal. 14, Classifying Cardiac Arrhythmia from ECG Signal Using 1D CNN Deep Learning Model. 2023, 11, 562	0 2 1 0

99	ECG Signals Segmentation Using Deep Spatiotemporal Feature Fusion U-Net for QRS Complexes and R-peak Detection. 2023 , 1-1	O
98	TinyML-Based Classification in an ECG Monitoring Embedded System. 2023 , 75, 1751-1764	О
97	A Tiny Matched Filter-Based CNN for Inter-Patient ECG Classification and Arrhythmia Detection at the Edge. 2023 , 23, 1365	1
96	Efficient Clustering-Based electrocardiographic biometric identification. 2023 , 219, 119609	O
95	Multi-task cascaded assessment of signal quality for long-term single-lead ECG monitoring. 2023 , 83, 104674	О
94	Heartbeat detection from single-lead ECG contaminated with simulated EMG at different intensity levels: A comparative study. 2023 , 83, 104612	O
93	An overview on state-of-the-art electrocardiogram signal processing methods: Traditional to AI-based approaches. 2023 , 217, 119561	0
92	Applications of Federated Learning in Mobile Health: Scoping Review (Preprint).	О
91	Heartbeat Classification Using Energy Percentage Distribution with Wavelet Transform and PCA. 2022 ,	О
90	Biometrics and Healthcare System Using EMG and ECG Signals. 2022,	O
89	Real-Time Classification of Cardiac Events in Arrhythmia Disease. 2022,	0
88	Deep Knowledge Distillation Learning for Efficient Wearable Data Mining on the Edge. 2023,	O
87	Deep Learning of Sparse Patterns in Medical IoT for Efficient Big Data Harnessing. 2023, 11, 25856-25864	0
86	Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising. 2023, 2023, 1-17	O
85	Signal Acquisition-Independent Lossless Electrocardiogram Compression Using Adaptive Linear Prediction. 2023 , 20, 2753	0
84	Pre-training in Medical Data: A Survey. 2023 , 20, 147-179	O
83	A novel algorithm to assess the quality of 12-lead ECG recordings: validation in a real telecardiology application. 2023 , 44, 035006	О
82	WavelNet: A novel convolutional neural network architecture for arrhythmia classification from electrocardiograms. 2023 , 231, 107375	O

81	Deep Learning-Based ECG Arrhythmia Classification: A Systematic Review. 2023, 13, 4964	0
80	BGcsSENet: Bidirectional GRU With Spatial and Channel Squeeze-Excitation Network for Bundle Branch Block Detection. 2023 , 53, 449-457	O
79	Synthetic data generation: State of the art in health care domain. 2023, 48, 100546	O
78	A novel unsupervised domain adaptation framework based on graph convolutional network and multi-level feature alignment for inter-subject ECG classification. 2023 , 221, 119711	O
77	Two-stage detection method of supraventricular and ventricular ectopic beats based on sequential artificial features and heartbeats. 2023 , 85, 104804	O
76	An evaluation of ECG data fusion algorithms for wearable IoT sensors. 2023 , 96, 237-251	O
75	Fragment-level classification of ECG arrhythmia using wavelet scattering transform. 2023, 224, 120019	О
74	DeepArr: An investigative tool for arrhythmia detection using a contextual deep neural network from electrocardiograms (ECG) signals. 2023 , 85, 104954	O
73	BTAD: A binary transformer deep neural network model for anomaly detection in multivariate time series data. 2023 , 56, 101949	О
72	Detection of High Noise Levels in Electrocardiograms. 2022 , 190-204	O
71	Anomaly Detection Using Smart Shirt and Machine Learning: A Systematic Review. 2022, 470-485	О
70	Distributed Learning in Healthcare. 2022 , 183-212	O
69	Design of DNN-Based Low-Power VLSI Architecture to Classify Atrial Fibrillation for Wearable Devices. 2023 , 31, 320-330	О
68	One-dimensional VGGNet for high-dimensional data. 2023 , 135, 110035	O
67	Identification of Morphological Patterns for the Detection of Premature Ventricular Contractions. 2022 ,	0
66	A micro variation measure for HRV via Poincar[blot. 2023,	O
65	Method for Solving Difficulties in Rhythm Classification Caused by Few Samples and Similar Characteristics in Electrocardiograms. 2023 , 10, 196	0
64	A Review of Remote Health Monitoring System for Patients using IoT. 2022 ,	O

63	A Signal Processing Framework for the Detection of Abnormal Cardiac Episodes. 2023 , 14, 331-349	O
62	Hierarchical deep learning with Generative Adversarial Network for automatic cardiac diagnosis from ECG signals. 2023 , 155, 106641	O
61	IoT Based System for Heart Monitoring and Arrhythmia Detection Using Machine Learning. 2023 , 2023, 1-13	О
60	Determination of Non-Zero Initial Conditions for IIR Notch Filters Using the Vector Projection Method with Minimum Delay. 2023 , 16, 1702	О
59	Knowledge graph analysis and visualization of artificial intelligence applied in electrocardiogram. 14,	О
58	Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review. 2023 , 9, e13601	1
57	Lossless ECG Signal Compression Using Non-linear Predictor and ASCII Character Encoding. 2022 , 513-523	O
56	Evaluation of a decided sample size in machine learning applications. 2023 , 24,	O
55	ECG compression using optimized B-spline.	0
54	Influence of Photoplethysmogram Signal Quality on Pulse Arrival Time during Polysomnography. 2023 , 23, 2220	O
53	Towards Automated Optimization of Residual Convolutional Neural Networks for Electrocardiogram Classification.	0
52	Multi-Modal Stacking Ensemble for the Diagnosis of Cardiovascular Diseases. 2023 , 13, 373	O
51	A Deep Learning Architecture Using 3D Vectorcardiogram to Detect R-Peaks in ECG with Enhanced Precision. 2023 , 23, 2288	О
50	Atrial Fibrillation Detection Algorithm with Ratio Variation-Based Features. 2022,	O
49	Premature Ventricular Contraction Detection Algorithm Based on Robust Feature Extraction. 2022,	O
48	DDGAN: Deep Dense Generative Adversarial Networks for Improvement in Arrhythmia Classification. 2023 , 701-717	O
47	ResNet-TCN: A Joint Model for ECG Heartbeat Classification with High Accuracy. 2023,	О
46	Features selection for cardiac arrhythmia diagnosis using multiple objective binary particle swarm optimization. 2021 , 18, 163-176	O

45	Improved Deep Residual Convolution Neural Network for Detection of Arrythmia from Electrocardiographic Data. 2022 ,	0
44	Automatic classification of arrhythmias using multi-branch convolutional neural networks based on channel-based attention and bidirectional LSTM. 2023 ,	Ο
43	UnbiasedNets: a dataset diversification framework for robustness bias alleviation in neural networks.	0
42	Accurate detection of arrhythmias on raw electrocardiogram images: An aggregation attention multi-label model for diagnostic assistance. 2023 , 114, 103964	Ο
41	Heartbeat detector from ECG and PPG signals based on wavelet transform and upper envelopes.	Ο
40	Premature Ventricular Contraction Beat Classification via Hyperdimensional Computing. 2022,	O
39	Deep Neural Network Denoising Model Based on Sparse Representation Algorithm for ECG Signal. 2023 , 72, 1-11	О
38	Practical R-R Interval Editing for Heart Rate Variability Analysis Using Single-Channel Wearable ECG Devices. 2023 , 11, 25543-25582	O
37	Unsupervised Transformer-Based Anomaly Detection in ECG Signals. 2023, 16, 152	O
36	A novel approach for congestive heart failure and arrhythmia classification using OD- 1D-LBP with LSTM and 1D-CNN.	O
35	Arrhythmia detectionAn Enhanced Method Using Gramian Angular Matrix for Deep Learning. 2023 , 785-798	О
34	ECG beat classification using proposed pattern adaptive wavelet-based hybrid classifiers.	O
33	An Iterative Warping and Clustering Algorithm to Estimate Multiple Wave-Shape Functions From a Nonstationary Oscillatory Signal. 2023 , 71, 701-712	О
32	A Two-Step Approach to Overcoming Data Imbalance in the Development of an Electrocardiography Data Quality Assessment Algorithm: A Real-World Data Challenge. 2023 , 8, 119	O
31	Transfer learning-based electrocardiogram classification using wavelet scattered features. 2023 , 7, 52	O
30	An ECG Beat Classification Method using Multi-kernel ResNet with Transformer. 2023,	O
29	A Review on Heartbeat Classification for Arrhythmia Detection Using ECG signal Processing. 2023,	Ο
28	Variational Mode Decomposition-Based Simultaneous R Peak Detection and Noise Suppression for Automatic ECG Analysis. 2023 , 23, 8703-8713	O

27	An improved cardiac arrhythmia classification using stationary wavelet transform decomposed short duration QRS segment and Bi-LSTM network.	О
26	Multimodality Monitoring and Artificial Intelligence. 2013 , 391-402.e2	O
25	GAN-based patient information hiding for an ECG authentication system.	O
24	Stacked machine learning models to classify atrial disorders based on clinical ECG features: a method to predict early atrial fibrillation. 2023 ,	О
23	Person identification using electrocardiogram and deep long short term memory. 2023, 15, 1709-1717	0
22	Anomaly Detection of ECG Signals using Attention-derived Convolutional Long Short-term Memory. 2022 ,	О
21	An Experimental Method for Bio-Signal Denoising Using Unconventional Sensors. 2023, 23, 3527	0
20	Arrhythmia Classification Using BiLSTM with DTCWT and MFCC Features. 2023, 311-318	О
19	ECG Heartbeat Classification Using Machine Learning and Metaheuristic Optimization for Smart Healthcare Systems. 2023 , 10, 429	0
18	IMPLEMENTATION OF AN ARTIFICIAL INTELLIGENCE-BASED ECG ACQUISITION SYSTEM FOR THE DETECTION OF CARDIAC ABNORMALITIES. 2023 , 13, 22-25	О
17	Convolutional Neural Network Based ECG Quality Assessment Using Derivative Signal. 2022,	0
16	A Comprehensive Review of Computer-based Techniques for R-Peaks/QRS Complex Detection in ECG Signal.	O
15	ECG signal classification in wearable devices based on compressed domain. 2023, 18, e0284008	0
14	A Review on Analysis of Cardiac Arrhythmia from Heart Beat Classification. 2023,	О
13	G2-ResNeXt: A Novel Model for ECG Signal Classification. 2023, 11, 34808-34820	O
12	Classification of ECG Arrhythmias Using Conventional Tree-Based Machine Learning Approaches. 2023 , 729-741	О
11	Detection and classification of atrial and ventricular cardiovascular diseases to improve the cardiac health literacy for resource constrained regions.	0
10	A Power-Aware ECG Transmission Framework with Server Aided Lossless Compression. 2022 ,	O

CITATION REPORT

9	A Novel ECG Enhancement and QRS Detection Scheme Based on the 1-D High-Order Non-convex Total Variation Denoising.	O
8	Imbalanced Ectopic Beat Classification Using a Low-Memory-Usage CNN LMUEBCNet and Correlation-Based ECG Signal Oversampling. 2023 , 11, 1833	O
7	ECG Beats Classification with Interpretability. 2022 ,	O
6	ECG Compression Techniques of Spiht Decoder for Mobile Health Applications. 2023,	О
5	Hardware/Software Co-design of an ECG- PPG Preprocessor: A Qualitative & Duantitative Analysis. 2023 ,	О
4	Inter-Patient ECG Classification with Intra-Class Coherence based Weighted Kernel Extreme Learning Machine. 2023 , 120095	O
3	A novel approach for biometric recognition based on ECG feature vectors. 2023 , 86, 104922	0
2	Electrocardiogram Analysis Using Discrete Wavelet Transform for Anomalies Detection. 2023, 4,	O
1	Improving a cortical pyramidal neuron model classification performance on a real-world ecg dataset by extending inputs.	O