The intravenous route to blood glucose control

IEEE Engineering in Medicine and Biology Magazine 20, 65-73 DOI: 10.1109/51.897829

Citation Report

#	Article	IF	CITATIONS
1	Run-to-run control strategy for diabetes management. , 0, , .		9
2	Model predictive control of blood glucose in type I diabetics using subcutaneous glucose measurements. , 2002, , .		74
3	Closed-loop Control of Blood Glucose Levels in Critically Ill Patients. Anaesthesia and Intensive Care, 2002, 30, 295-307.	0.2	35
4	Chronic disease management: a systems model relating outcomes, reporting, monitoring, interventions and satisfaction. Control Engineering Practice, 2002, 10, 101-110.	3.2	5
5	The effect of physical exercise on the dynamics of glucose and insulin. Journal of Biomechanics, 2002, 35, 911-917.	0.9	111
6	Closed-loop glucose control in critically III patients using continuous glucose monitoring system (CCMS) in real time. IEEE Transactions on Information Technology in Biomedicine, 2003, 7, 43-53.	3.6	116
8	Optimal estimation applications to continuous glucose monitoring. , 2004, , .		18
9	Model based control for insulin delivery for type 1 diabetics via parametric programming. Computer Aided Chemical Engineering, 2004, 18, 1045-1050.	0.3	7
11	Closed-loop insulin delivery—the path to physiological glucose control. Advanced Drug Delivery Reviews, 2004, 56, 125-144.	6.6	277
12	Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological Measurement, 2004, 25, 905-920.	1.2	1,025
13	Modeling of Water Transport in and Release from Glucose-Sensitive Swelling-Controlled Release Systems Based on Poly(Diethylaminoethyl Methacrylate-g-Ethylene Glycol). Industrial & Engineering Chemistry Research, 2004, 43, 7500-7512.	1.8	28
14	Robust PID Controller for Blood Clucose Regulation in Type I Diabetics. Industrial & Engineering Chemistry Research, 2004, 43, 8257-8268.	1.8	44
15	A mathematical model for the burden of diabetes and its complications. BioMedical Engineering OnLine, 2004, 3, 20.	1.3	60
16	Integration of Biological Systems Content into the Process Dynamics and Control Curriculum. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2004, 37, 467-474.	0.4	1
17	Glucose Control in Type I Diabetic Patients: A Volterra Model-Based Approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2004, 37, 353-358.	0.4	4
18	GLUCOSE REGULATION IN TYPE 1 DIABETIC PATIENTS BY A MULTI-DOSES REGIMEN. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 160-165.	0.4	0
19	Linear quadratic control problem in biomedical engineering. Computer Aided Chemical Engineering, 2005, 20, 1195-1200.	0.3	2
20	PRELIMINARY STUDY OF THE HEART RATE VARIABILITY AS A INDICATOR OF THE INTERACTION BETWEEN THE GLYCAEMIA REGULATION SYSTEM AND THE AUTONOMOUS NERVOUS SYSTEM. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 178-183.	0.4	0

ATION REI

#	Article	IF	CITATIONS
21	Self-tuning insulin adjustment algorithm for type 1 diabetic patients based on multi-doses regime. Applied Bionics and Biomechanics, 2005, 2, 61-71.	0.5	10
22	Autofluorescence characterization of advanced glycation end products of hemoglobin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 163-170.	2.0	23
23	Modelling and control of drug delivery systems. Computers and Chemical Engineering, 2005, 29, 2290-2296.	2.0	24
24	A Critical Assessment of Algorithms and Challenges in the Development of a Closed-Loop Artificial Pancreas. Diabetes Technology and Therapeutics, 2005, 7, 28-47.	2.4	245
25	Management of diabetes using adaptive control. International Journal of Adaptive Control and Signal Processing, 2005, 19, 309-325.	2.3	49
26	Multi-objective Parametric Control of Blood Glucose Concentration for Type 1 Diabetes. , 0, , .		6
27	Closed-loop insulin delivery – what lies between where we are and where we are going?. Expert Opinion on Drug Delivery, 2005, 2, 353-362.	2.4	36
28	Blood Glucose Regulation for Diabetic Mellitus Using a Hybrid Intelligent Techniques. , 2005, , 863.		3
29	Modeling Insulin Action for Development of a Closed-Loop Artificial Pancreas. Diabetes Technology and Therapeutics, 2005, 7, 94-108.	2.4	71
30	EPSAC Predictive Control of Blood Glucose Level in Type I Diabetic Patients. , 0, , .		5
31	Empirical Modeling for Glucose Control in Critical Care and Diabetes. European Journal of Control, 2005, 11, 601-616.	1.6	22
32	Towards an Ultra Low Power Chemically Inspired Electronic Beta Cell for Diabetes. , 0, , .		3
33	A critical review of mathematical models and data used in diabetology. BioMedical Engineering OnLine, 2006, 5, 43.	1.3	94
34	An adaptive input–output modeling approach for predicting the glycemia of critically ill patients. Physiological Measurement, 2006, 27, 1057-1069.	1.2	32
35	Dynamic Modeling and Control of a Micro-needle Integrated Piezoelectric Micro-pump for Diabetes Care. , 2006, , .		4
36	Robust Blood-Glucose Control using Mathematica. , 2006, 2006, 451-4.		9
39	DEVELOPMENT OF A CRITICALLY ILL PATIENT INPUT-OUTPUT MODEL. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 481-486.	0.4	3
40	MODELLING LIGHT AND MODERATE EXERCISE IN TYPE 1 DIABETIC PATIENTS WITH GLYCOGEN DEPLETION AND REPLENISHMENT. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 465-470.	0.4	1

#	Article	IF	CITATIONS
41	Automated insulin delivery for type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2006, 13, 205-211.	0.6	18
42	Continuous glucose monitoring and closed-loop systems. Diabetic Medicine, 2006, 23, 1-12.	1.2	371
43	On-line adaptive algorithm with glucose prediction capacity for subcutaneous closed loop control of glucose: evaluation under fasting conditions in patients with Type 1 diabetes. Diabetic Medicine, 2006, 23, 90-93.	1.2	50
44	Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview. Applied Numerical Mathematics, 2006, 56, 559-573.	1.2	299
45	Modeling, identification and nonlinear model predictive control of type I diabetic patient. Medical Engineering and Physics, 2006, 28, 240-250.	0.8	31
46	Model-based blood glucose control for type 1 diabetes via parametric programming. IEEE Transactions on Biomedical Engineering, 2006, 53, 1478-1491.	2.5	174
49	Model predictive control for optimal oral anticoagulant drug administration. AICHE Journal, 2006, 52, 3315-3320.	1.8	8
50	Robust Parameter Estimation in a Model for Glucose Kinetics in Type 1 Diabetes Subjects. , 2006, 2006, 319-22.		5
51	Multicentric, Randomized, Controlled Trial to Evaluate Blood Glucose Control by the Model Predictive Control Algorithm Versus Routine Glucose Management Protocols in Intensive Care Unit Patients. Diabetes Care, 2006, 29, 271-276.	4.3	189
52	A closed-loop optimal control of the plasma glycemia. , 2006, , .		1
53	Higher Order Sliding Mode Control for Blood Glucose Regulation. , 0, , .		13
54	An Approach to Control the Blood Glucose Level in Diabetic Patients. , 2006, , .		1
55	An Improved PID Switching Control Strategy for Type 1 Diabetes. , 2006, 2006, 5041-4.		11
56	Blood Glucose Regulation in Diabetics Using Sliding Mode Control Techniques. , 0, , .		11
57	Glucose Estimation and Prediction through Meal Responses Using Ambulatory Subject Data for Advisory Mode Model Predictive Control. Journal of Diabetes Science and Technology, 2007, 1, 825-833.	1.3	58
58	Hybrid model predictive control of induction of Escherichia coli. , 2007, , .		1
59	State Feedback Control of the Glucose-Insulin System. , 2007, , 241-252.		2
60	A new algorithm-based type-2 fuzzy controller for diabetic patient. International Journal of Biomedical Engineering and Technology, 2007, 1, 18.	0.2	15

#	Article	IF	CITATIONS
61	A personalized approach to insulin regulation using brain-inspired neural sematic memory in diabetic glucose control. , 2007, , .		6
62	Monte Carlo Logarithmic Number System for Model Predictive Control. , 2007, , .		1
63	Adaptive backstepping control of a micro-needle micro-pump integrated insulin delivery system for diabetes care. , 2007, , .		2
64	A population model of diabetes and pre-diabetes. International Journal of Computer Mathematics, 2007, 84, 57-66.	1.0	18
65	Adaptive Closed-Loop Control Provides Blood-Glucose Regulation Using Dual Subcutaneous Insulin and Glucagon Infusion in Diabetic Swine. Journal of Diabetes Science and Technology, 2007, 1, 181-192.	1.3	87
66	Controlling biological systems: the lactose regulation system of Escherichia coli. Proceedings of the American Control Conference, 2007, , .	0.0	4
67	I. Glucose control strategies for treating type 1 diabetes mellitus. Journal of Process Control, 2007, 17, 572-576.	1.7	31
68	Blood glucose regulation using higher-order sliding mode control. International Journal of Robust and Nonlinear Control, 2008, 18, 557-569.	2.1	113
70	A feedforward–feedback glucose control strategy for type 1 diabetes mellitus. Journal of Process Control, 2008, 18, 149-162.	1.7	101
71	MPC on a chip—Recent advances on the application of multi-parametric model-based control. Computers and Chemical Engineering, 2008, 32, 754-765.	2.0	48
72	An Improved PID Switching Control Strategy for Type 1 Diabetes. IEEE Transactions on Biomedical Engineering, 2008, 55, 857-865.	2.5	171
73	The INCA System: A Further Step Towards a Telemedical Artificial Pancreas. IEEE Transactions on Information Technology in Biomedicine, 2008, 12, 470-479.	3.6	55
74	Model-based nonlinear optimal blood glucose control of Type I diabetes patients. , 2008, 2008, 1607-10.		12
75	Simulation models for in silico testing of closed-loop glucose controllers in type 1 diabetes. Drug Discovery Today: Disease Models, 2008, 5, 289-298.	1.2	38
76	Closed-Loop Control and Advisory Mode Evaluation of an Artificial Pancreatic β Cell: Use of Proportional-Integral-Derivative Equivalent Model-Based Controllers. Journal of Diabetes Science and Technology, 2008, 2, 636-644.	1.3	24
77	Stochastic Modeling and Control of Biological Systems: The Lactose Regulation System of <i>Escherichia Coli</i> . IEEE Transactions on Automatic Control, 2008, 53, 51-65.	3.6	84
78	Nonlinear EPSAC predictive control of blood glucose level in diabetic patients for prandial disturbance rejection. , 2008, , .		0
79	A Survey of Insulin-Dependent Diabetes—Part I: Therapies and Devices. International Journal of Telemedicine and Applications, 2008, 2008, 1-15.	1.1	17

#	Article	IF	CITATIONS
80	Microneedle-Based Automated Therapy for Diabetes Mellitus. Journal of Diabetes Science and Technology, 2008, 2, 1122-1129.	1.3	48
81	Robust closed-loop control of plasma glycemia: A discrete-delay model approach. , 2008, , .		7
82	Impact of disturbance filter in nonlinear EPSAC predictive control of blood glucose level in type I diabetic patients. , 2008, , .		1
83	Blood Glucose Regulation via Double Loop Higher Order Sliding Mode Control and Multiple Sampling Rate. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 3811-3816.	0.4	3
84	Robust Sliding Mode Closed-loop Glucose Control with Meal Compensation in Type 1 Diabetes Mellitus. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 4240-4245.	0.4	17
85	Mathematical models of subcutaneous injection of insulin analogues: A mini-review. Discrete and Continuous Dynamical Systems - Series B, 2009, 12, 401-414.	0.5	30
86	Self-tuning insulin dosing algorithm for glucose regulation in type 1 diabetic patients. , 2009, , .		3
87	An approximate solution to the norm optimal control problem. , 2009, , .		11
88	Intensive Care Unit Insulin Delivery Algorithms: Why So Many? How to Choose?. Journal of Diabetes Science and Technology, 2009, 3, 125-140.	1.3	48
89	Indirect iterative learning control: Application on artificial pancreatic β-cell. , 2009, , .		7
90	Maximal Open-Loop Operation Under Integral Error Constraints. IEEE Transactions on Automatic Control, 2009, 54, 2894-2899.	3.6	2
91	A Feasibility Study of Bihormonal Closed-Loop Blood Glucose Control Using Dual Subcutaneous Infusion of Insulin and Glucagon in Ambulatory Diabetic Swine. Journal of Diabetes Science and Technology, 2009, 3, 789-803.	1.3	40
92	Optimal low error control of disturbed systems. , 2009, , .		0
93	Translational Potential of Systemsâ€Based Models of Inflammation. Clinical and Translational Science, 2009, 2, 85-89.	1.5	42
94	Effect of input excitation on the quality of empirical dynamic models for type 1 diabetes. AICHE Journal, 2009, 55, 1135-1146.	1.8	65
95	Multi-objective blood glucose control for type 1 diabetes. Medical and Biological Engineering and Computing, 2009, 47, 343-352.	1.6	33
96	Glucose optimal control system in diabetes treatment. Applied Mathematics and Computation, 2009, 209, 19-30.	1.4	12
97	Effectiveness of Intravenous Infusion Algorithms for Glucose Control in Diabetic Patients Using Different Simulation Models. Industrial & Engineering Chemistry Research, 2009, 48, 4402-4414.	1.8	19

#	ARTICLE	IF	CITATIONS
98	Observer-based closed-loop control of plasma glycemia. , 2009, , .		6
70			0
99	Weighting Restriction for Intravenous Insulin Delivery on T1DM Patient via \$H_{infty}\$ Control. IEEE Transactions on Automation Science and Engineering, 2009, 6, 239-247.	3.4	38
100	Soft computing control of Type 1 diabetes described at molecular levels. , 2009, , .		3
101	A System-on-a-Chip Implementation for Embedded Real-Time Model Predictive Control. IEEE Transactions on Control Systems Technology, 2009, 17, 1006-1017.	3.2	83
102	Practical Approach to Design and Implementation of a Control Algorithm in an Artificial Pancreatic Beta Cell. Industrial & Engineering Chemistry Research, 2009, 48, 6059-6067.	1.8	21
103	Induced L2-norm Minimization of Glucose-Insulin System for Type I Diabetic Patients. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 55-60.	0.4	3
104	The future of open- and closed-loop insulin delivery systems. Journal of Pharmacy and Pharmacology, 2010, 60, 1-13.	1.2	58
105	Feedforward–feedback multiple predictive controllers for glucose regulation in type 1 diabetes. Computer Methods and Programs in Biomedicine, 2010, 99, 113-123.	2.6	26
106	Model predictive control with learningâ€ŧype setâ€point: Application to artificial pancreatic βâ€cell. AICHE Journal, 2010, 56, 1510-1518.	1.8	39
107	Internal model sliding mode control approach for glucose regulation in type 1 diabetes. Biomedical Signal Processing and Control, 2010, 5, 94-102.	3.5	41
108	Digital closed-loop control of plasma glycemia. , 2010, , .		2
109	PSECMAC Intelligent Insulin Schedule for Diabetic Blood Glucose Management Under Nonmeal Announcement. IEEE Transactions on Neural Networks, 2010, 21, 361-380.	4.8	11
110	In silico evaluation of a control system and algorithm for automated insulin infusion in the ICU setting. BioMedical Engineering OnLine, 2010, 9, 35.	1.3	4
111	ANFIS regulated type 1diabetic model for different glucose absorption scenarios. , 2010, , .		2
112	Robust optimal control: low-error operation for the longest time. International Journal of Control, 2010, 83, 731-740.	1.2	22
113	Robust control techniques and its graphical representation in case of Type I diabetes using Mathematica. , 2010, , .		2
114	Review and Analysis of Blood Glucose (BG) Models for Type 1 Diabetic Patients. Industrial & Engineering Chemistry Research, 2011, 50, 12041-12066.	1.8	56
115	Quasi Model Based Optimal Control of Type 1 Diabetes Mellitus*. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 5012-5017.	0.4	1

#	Article	IF	CITATIONS
116	Numerical Applications for Insulin Treatment Models. Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi - Matematica, 2011, 57, .	0.2	0
117	Quasi In-Silico Validations of a Nonlinear LPV Model-based Robust Glucose Control Algorithm for Type I Diabetes. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 7114-7119.	0.4	3
119	Induced L2-norm minimization of glucose–insulin system for Type I diabetic patients. Computer Methods and Programs in Biomedicine, 2011, 102, 105-118.	2.6	60
120	A physiological Intensive Control Insulin-Nutrition-Glucose (ICING) model validated in critically ill patients. Computer Methods and Programs in Biomedicine, 2011, 102, 192-205.	2.6	169
121	On hypoglycemic levels induced by Hâ^ž control on type I diabetes mellitus. Applied Mathematics and Computation, 2011, 218, 376-385.	1.4	3
122	Artificial Pancreas: Past, Present, Future. Diabetes, 2011, 60, 2672-2682.	0.3	487
123	Closed loop control for type 1 diabetes. BMJ: British Medical Journal, 2011, 342, d1911-d1911.	2.4	14
124	Optimal control in diabetes. Optimal Control Applications and Methods, 2011, 32, 181-184.	1.3	6
125	Development of a multi-parametric model predictive control algorithm for insulin delivery in type 1 diabetes mellitus using clinical parameters. Journal of Process Control, 2011, 21, 391-404.	1.7	67
126	Electrical and Computer Technology for Effective Diabetes Management and Treatment. Journal of Electrical and Computer Engineering, 2011, 2011, 1-2.	0.6	1
127	Quasi-Model-Based Control of Type 1 Diabetes Mellitus. Journal of Electrical and Computer Engineering, 2011, 2011, 1-12.	0.6	4
128	Diabetes Technology: Markers, Monitoring, Assessment, and Control of Blood Glucose Fluctuations in Diabetes. Scientifica, 2012, 2012, 1-14.	0.6	25
129	Diabetic Blood Glucose Control via Optimization over Insulin and Glucose Doses. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 40-45.	0.4	0
130	â"< â^ž Robust control of a T1DM model. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 61-66.	0.4	0
131	Improving model predictive control arithmetic robustness by Monte Carlo simulations. IET Control Theory and Applications, 2012, 6, 1064-1070.	1.2	0
132	Modular Closed-Loop Control of Diabetes. IEEE Transactions on Biomedical Engineering, 2012, 59, 2986-2999.	2.5	150
133	Neural inverse optimal control applied to type 1 diabetes mellitus patients. , 2012, , .		3
134	Model-based control algorithms for optimal therapy of high-impact public health diseases. , 2012, , .		6

#	Article	IF	CITATIONS
135	Comparison of control algorithms for the blood glucose concentration in a virtual patient with an artificial pancreas. Chemical Engineering Research and Design, 2012, 90, 926-937.	2.7	9
136	Nonparametric Identification of Glucose-Insulin Process in IDDM Patient with Multi-meal Disturbance. Journal of the Institution of Engineers (India): Series B, 2012, 93, 237-246.	1.3	1
137	A new robust nonlinear control algorithm for the regulation of blood glucose in diabetic patients. , 2012, , .		3
138	A feedback glucose control strategy for type II diabetes mellitus based on fuzzy logic. Canadian Journal of Chemical Engineering, 2012, 90, 1411-1417.	0.9	9
139	A genetic algorithm tuned optimal controller for glucose regulation in type 1 diabetic subjects. International Journal for Numerical Methods in Biomedical Engineering, 2012, 28, 877-889.	1.0	9
140	Inverse optimal neural control of blood glucose level for type 1 diabetes mellitus patients. Journal of the Franklin Institute, 2012, 349, 1851-1870.	1.9	26
141	Closed-loop control of blood glucose level in type-1 diabetics: A simulation study. , 2013, , .		12
142	Blood glucose control algorithms for type 1 diabetic patients: A methodological review. Biomedical Signal Processing and Control, 2013, 8, 107-119.	3.5	101
143	Neural inverse optimal control applied to type 1 diabetes mellitus patients. Analog Integrated Circuits and Signal Processing, 2013, 76, 343-352.	0.9	8
144	Nonlinear state estimation for complex immune responses. , 2013, , .		8
144 145		0.7	8
	Nonlinear state estimation for complex immune responses. , 2013, , . SystematicallyIn SilicoComparison of Unihormonal and Bihormonal Artificial Pancreas Systems.	0.7	
145	Nonlinear state estimation for complex immune responses. , 2013, , . SystematicallyIn SilicoComparison of Unihormonal and Bihormonal Artificial Pancreas Systems. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-10. The Diabetes Assistant: A Smartphone-Based System for Real-Time Control of Blood Glucose.		7
145 146	 Nonlinear state estimation for complex immune responses. , 2013, , . SystematicallyIn SilicoComparison of Unihormonal and Bihormonal Artificial Pancreas Systems. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-10. The Diabetes Assistant: A Smartphone-Based System for Real-Time Control of Blood Glucose. Electronics (Switzerland), 2014, 3, 609-623. Neural Inverse Optimal Control via Passivity for Subcutaneous Blood Glucose Regulation in Type 1 	1.8	7 62
145 146 147	Nonlinear state estimation for complex immune responses. , 2013, , . SystematicallyIn SilicoComparison of Unihormonal and Bihormonal Artificial Pancreas Systems. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-10. The Diabetes Assistant: A Smartphone-Based System for Real-Time Control of Blood Glucose. Electronics (Switzerland), 2014, 3, 609-623. Neural Inverse Optimal Control via Passivity for Subcutaneous Blood Glucose Regulation in Type 1 Diabetes Mellitus Patients. Intelligent Automation and Soft Computing, 2014, 20, 279-295. LMI Based Robust Blood Glucose Regulation in Type-1 Diabetes Patient with Daily Multi-meal Ingestion.	1.8 1.6	7 62 7
145 146 147 148	Nonlinear state estimation for complex immune responses. , 2013, , . SystematicallyIn SilicoComparison of Unihormonal and Bihormonal Artificial Pancreas Systems. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-10. The Diabetes Assistant: A Smartphone-Based System for Real-Time Control of Blood Glucose. Electronics (Switzerland), 2014, 3, 609-623. Neural Inverse Optimal Control via Passivity for Subcutaneous Blood Glucose Regulation in Type 1 Diabetes Mellitus Patients. Intelligent Automation and Soft Computing, 2014, 20, 279-295. LMI Based Robust Blood Clucose Regulation in Type-1 Diabetes Patient with Daily Multi-meal Ingestion. Journal of the Institution of Engineers (India): Series B, 2014, 95, 121-128. A constrained subâ€optimal controller for glucose regulation in type 1 diabetes mellitus. Optimal	1.8 1.6 1.3	7 62 7 8
145 146 147 148 149	Nonlinear state estimation for complex immune responses. , 2013, , . SystematicallyIn SilicoComparison of Unihormonal and Bihormonal Artificial Pancreas Systems. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-10. The Diabetes Assistant: A Smartphone-Based System for Real-Time Control of Blood Glucose. Electronics (Switzerland), 2014, 3, 609-623. Neural Inverse Optimal Control via Passivity for Subcutaneous Blood Glucose Regulation in Type 1 Diabetes Mellitus Patients. Intelligent Automation and Soft Computing, 2014, 20, 279-295. LMI Based Robust Blood Glucose Regulation in Type-1 Diabetes Patient with Daily Multi-meal Ingestion. Journal of the Institution of Engineers (India): Series B, 2014, 95, 121-128. A constrained subâ€optimal controller for glucose regulation in type 1 diabetes mellitus. Optimal Control Applications and Methods, 2014, 35, 191-203. Optimizing the simultaneous management of blood pressure and cholesterol for type 2 diabetes	1.8 1.6 1.3 1.3	7 62 7 8 3

#	Article	IF	CITATIONS
154	Insulin sensitivity predictions in individuals with obesity and type II diabetes mellitus using mathematical model of the insulin signal transduction pathway. Molecular Genetics and Metabolism, 2016, 119, 288-292.	0.5	30
155	Data driven nonparametric identification and model based control of glucose-insulin process in type 1 diabetics. Journal of Process Control, 2016, 41, 14-25.	1.7	17
156	Multi-objective control of blood glucose with \$\$hbox {H}_{infty }\$\$ H â^ž and pole-placement constraint. International Journal of Dynamics and Control, 2017, 5, 357-366.	1.5	10
157	Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 179, 250-254.	2.0	52
158	Rational Design of Glucoseâ€Responsive Insulin Using Pharmacokinetic Modeling. Advanced Healthcare Materials, 2017, 6, 1700601.	3.9	10
159	Glucose-responsive insulin by molecular and physical design. Nature Chemistry, 2017, 9, 937-944.	6.6	106
160	Design of Bi-hormonal artificial pancreas system using switching economic model predictive control. , 2017, , .		3
161	Blood glucose regulation system using model predictive controller. , 2017, , .		0
162	Mathematical modelling and simulation analysis of a modified Butterworth van Dyke circuit model for nonâ€invasive diabetes detection. IET Circuits, Devices and Systems, 2017, 11, 682-687.	0.9	3
163	Stability analysis and control of the glucose insulin glucagon system in humans. Chinese Journal of Physics, 2018, 56, 1362-1369.	2.0	16
164	Rapid and simultaneous analysis of five alkaloids in four parts of Coptidis Rhizoma by near-infrared spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 611-618.	2.0	40
165	Effects of Renal Clearance, Gut Absorption, Plasma Insulin and Independent Glucose Flux on Glucose Concentration of Human Body. , 2018, , .		0
166	Automated closed-loop control of diabetes: the artificial pancreas. Bioelectronic Medicine, 2018, 4, 14.	1.0	53
167	Mechanistic machine learning: how data assimilation leverages physiologic knowledge using Bayesian inference to forecast the future, infer the present, and phenotype. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 1392-1401.	2.2	30
168	Diabetes Technology: Monitoring, Analytics, and Optimal Control. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034389.	2.9	11
169	Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. Progress in Materials Science, 2019, 106, 100589.	16.0	72
170	The parameter Houlihan: A solution to high-throughput identifiability indeterminacy for brutally ill-posed problems. Mathematical Biosciences, 2019, 316, 108242.	0.9	11
171	The evolution of control algorithms in artificial pancreas: A historical perspective. Annual Reviews in Control, 2019, 48, 222-232.	4.4	25

#	Article	IF	CITATIONS
172	Models, Devices, Properties, and Verification of Artificial Pancreas Systems. Computational Biology, 2019, , 93-131.	0.1	6
173	Optimal regulation of blood glucose level in Type I diabetes using insulin and glucagon. PLoS ONE, 2019, 14, e0213665.	1.1	11
174	A review on control-relevant glucose–insulin dynamics models and regulation strategies. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2020, 234, 596-608.	0.7	8
175	Robust LPV control design for blood glucose regulation considering daily life factors. Biomedical Signal Processing and Control, 2020, 57, 101830.	3.5	17
176	A revised Sorensen model: Simulating glycemic and insulinemic response to oral and intra-venous glucose load. PLoS ONE, 2020, 15, e0237215.	1.1	11
177	An Electrochemical Chip to Monitor In Vitro Clycation of Proteins and Screening of Antiglycation Potential of Drugs. Pharmaceutics, 2020, 12, 1011.	2.0	1
178	A multiâ€objective optimal insulin bolus advisor for type 1 diabetes based on personalized model and daily diet. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2651.	0.8	2
179	Modeling and simulation of glucose insulin glucagon algorithm for artificial pancreas to control the diabetes mellitus. Network Modeling Analysis in Health Informatics and Bioinformatics, 2021, 10, 1.	1.2	9
180	Disease Prevention, Detection, and Treatment. , 2013, , 437-447.		5
181	Glucose-Insulin Control of Type1 Diabetic Patients in H2/H â^žâ€‰ Space Via Computer Algebra. Lecture No in Computer Science, 2007, , 95-109.	otes 1.0	27
182	Blood Glucose Regulation Via Double Loop Higher Order Sliding Mode Control and Multiple Sampling Rate. , 2008, , 427-445.		14
183	New Principles and Adequate Robust Control Methods for Artificial Pancreas. Studies in Computational Intelligence, 2010, , 75-86.	0.7	4
184	Simulation Models for In-Silico Evaluation of Closed-Loop Insulin Delivery Systems in Type 1 Diabetes. Lecture Notes in Bioengineering, 2014, , 131-149.	0.3	4
185	Arbitraryâ€order sliding modeâ€based robust control algorithm for the developing artificial pancreas mechanism. IET Systems Biology, 2020, 14, 307-313.	0.8	4
186	Close-to-reality evaluation of a PID control algorithm for blood glucose regulation in diabetic Goettingen minipigs. , 2013, , .		2
187	Mathematical Modelling and Simulation of <i>β</i> -Cell Mass, Insulin and Glucose Dynamics: Effect of Genetic Predisposition to Diabetes. Journal of Biomedical Science and Engineering, 2014, 07, 330-342.	0.2	17
188	A NeuroCognitive Approach to Decision-Making in Chance Discovery. Studies in Computational Intelligence, 2006, , 231-250.	0.7	0
189	Mobile Telemedicine for Diabetes Care. , 2008, , 143-159.		Ο

	Citation Report		
#	Article	IF	Citations
190	Type 1 Diabetes Regulated by ANFIS at Molecular Levels. IFMBE Proceedings, 2009, , 841-844.	0.2	6
191	Analyzing a novel model of human blood glucose system at molecular levels. , 2009, , .		4
194	Neural Network and Physiological Parameters Based Control of Artificial Pancreas for Improved Patient Safety. Lecture Notes in Computer Science, 2012, , 339-351.	1.0	2
195	Biomedical Test Instruments. Advances in Human and Social Aspects of Technology Book Series, 2018, , 34-55.	0.3	0
199	New Principles and Adequate Control Methods for Insulin Dosage in Case of Diabetes. Advances in Soft Computing, 0, , 40-44.	0.4	3
200	Model Based Control for Drug Delivery Systems. , 2008, , 2276-2284.		3
202	Robust nonlinear control of blood glucose in diabetic patients subject to model uncertainties. ISA Transactions, 2023, 133, 353-368.	3.1	3
203	Multi-Objective Optimal Regulation of Glucose Concentration in Type I Diabetes Mellitus. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2022, , 1-12.	0.3	0
207	Bi-hormonal Linear Time-Varying Model Predictive Control for Blood Glucose Regulation in Type 1 Diabetes Patients. , 2023, , .		0