Plant pathogens and integrated defence responses to in

Nature

411, 826-833

DOI: 10.1038/35081161

Citation Report

#	Article	IF	CITATIONS
1	A quantitative study of Meissner's corpuscles in man. Neurology, 1966, 16, 1-1.	1.1	222
2	Molecular secrets of bacterial type III effector proteins. Trends in Plant Science, 2001, 6, 479-485.	8.8	107
3	Chromosome landing at the tomato Bs4 locus. Molecular Genetics and Genomics, 2001, 266, 639-645.	2.1	18
4	Avirulence proteins of plant pathogens: determinants of victory and defeat. Molecular Plant Pathology, 2001, 2, 355-364.	4.2	44
5	The arms race is ancient history in Arabidopsis, the wildflower. Nature Reviews Genetics, 2001, 2, 516-527.	16.3	553
6	Plant cell death: Unmasking the gatekeepers. Current Biology, 2001, 11, R1028-R1031.	3.9	17
7	Molecular Plant-Microbe Interactions That Cut the Mustard: Fig. 1 Plant Physiology, 2001, 127, 1476-1483.	4.8	8
8	Signal Transduction in Maize and Arabidopsis Mesophyll Protoplasts. Plant Physiology, 2001, 127, 1466-1475.	4.8	621
9	Sentinels of Disease. Plant Resistance Genes. Plant Physiology, 2001, 127, 1367-1374.	4.8	63
10	Cell Death Mediated by MAPK Is Associated with Hydrogen Peroxide Production in Arabidopsis. Journal of Biological Chemistry, 2002, 277, 559-565.	3.4	411
11	Structural Analysis of the Maize Rp1 Complex Reveals Numerous Sites and Unexpected Mechanisms of Local Rearrangement. Plant Cell, 2002, 14, 3213-3223.	6.6	72
12	RAR1 and NDR1 Contribute Quantitatively to Disease Resistance in Arabidopsis, and Their Relative Contributions Are Dependent on the R Gene Assayed. Plant Cell, 2002, 14, 1005-1015.	6.6	218
13	Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10865-10869.	7.1	385
14	A Novel PAAD-containing Protein That Modulates NF-κB Induction by Cytokines Tumor Necrosis Factor-α and Interleukin-1β. Journal of Biological Chemistry, 2002, 277, 35333-35340.	3.4	93
15	Cutting Edge: CATERPILLER: A Large Family of Mammalian Genes Containing CARD, Pyrin, Nucleotide-Binding, and Leucine-Rich Repeat Domains. Journal of Immunology, 2002, 169, 4088-4093.	0.8	272
16	Patterns of Positive Selection in the Complete NBS-LRR Gene Family of Arabidopsis thaliana. Genome Research, 2002, 12, 1305-1315.	5.5	278
17	Regulatory Role of SGT1 in Early R Gene-Mediated Plant Defenses. Science, 2002, 295, 2077-2080.	12.6	385
18	Role of SCF Ubiquitin-Ligase and the COP9 Signalosome in the N Gene–Mediated Resistance Response to Tobacco mosaic virus. Plant Cell, 2002, 14, 1483-1496.	6.6	306

#	ARTICLE	IF	CITATIONS
19	A Gain-of-Function Mutation in an Arabidopsis Toll Interleukin1 Receptor–Nucleotide Binding Site–Leucine-Rich Repeat Type R Gene Triggers Defense Responses and Results in Enhanced Disease Resistance. Plant Cell, 2002, 14, 3149-3162.	6.6	281
20	Age-related resistance to plant pathogens. Advances in Botanical Research, 2002, 38, 251-280.	1.1	92
21	Large-Scale Structure –Function Analysis of the Arabidopsis RPM1 Disease Resistance Protein. Plant Cell, 2002, 14, 435-450.	6.6	141
22	Preexisting Systemic Acquired Resistance Suppresses Hypersensitive Response-Associated Cell Death in Arabidopsishrl1 Mutant. Plant Physiology, 2002, 128, 1234-1244.	4.8	55
23	A Tomato Cysteine Protease Required for Cf-2-Dependent Disease Resistance and Suppression of Autonecrosis. Science, 2002, 296, 744-747.	12.6	365
24	The Tomato R Gene Products I-2 and Mi-1 Are Functional ATP Binding Proteins with ATPase Activity. Plant Cell, 2002, 14, 2929-2939.	6.6	369
25	Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 517-522.	7.1	1,488
26	Arabidopsis SGT1b Is Required for Defense Signaling Conferred by Several Downy Mildew Resistance Genes. Plant Cell, 2002, 14, 993-1003.	6.6	209
27	The RAR1 Interactor SGT1, an Essential Component of R Gene-Triggered Disease Resistance. Science, 2002, 295, 2073-2076.	12.6	574
29	New Gene for Bacterial Blight Resistance in Rice Located on Chromosome 12 Identified from Minghui 63, an Elite Restorer Line. Phytopathology, 2002, 92, 750-754.	2.2	133
30	A Comparison between Crop Domestication, Classical Plant Breeding, and Genetic Engineering. Crop Science, 2002, 42, 1780-1790.	1.8	171
31	Biochemical Characterization of the Kinase Domain of the Rice Disease Resistance Receptor-like Kinase XA21. Journal of Biological Chemistry, 2002, 277, 20264-20269.	3.4	65
32	Developmental Control of Promoter Activity Is Not Responsible for Mature Onset of Cf-9B-Mediated Resistance to Leaf Mold in Tomato. Molecular Plant-Microbe Interactions, 2002, 15, 1099-1107.	2.6	66
33	NHL25 and NHL3, Two NDR1/HIN1-Like Genes in Arabidopsis thaliana with Potential Role(s) in Plant Defense. Molecular Plant-Microbe Interactions, 2002, 15, 608-616.	2.6	72
34	Cutting Edge: <i>Salmonella</i> AvrA Effector Inhibits the Key Proinflammatory, Anti-Apoptotic NF-κB Pathway. Journal of Immunology, 2002, 169, 2846-2850.	0.8	260
35	"To degrade or not to degrade?â€â€"the emerging question in plant disease resistance. Physiological and Molecular Plant Pathology, 2002, 61, 73-76.	2.5	3
36	CARD games in apoptosis and immunity. EMBO Reports, 2002, 3, 616-621.	4.5	148
37	The Arabidopsis Thaliana-Pseudomonas Syringae Interaction. The Arabidopsis Book, 2002, 1, e0039.	0.5	421

#	ARTICLE	IF	CITATIONS
38	Plants Compared to Animals: The Broadest Comparative Study of Development. Science, 2002, 295, 1482-1485.	12.6	261
39	MOLECULARBASIS OFRECOGNITIONBETWEENPHYTOPHTHORAPATHOGENS ANDTHEIRHOSTS. Annual Review of Phytopathology, 2002, 40, 137-167.	7.8	224
40	HOST-SELECTIVETOXINS ANDAVIRULENCEDETERMINANTS: What's in a Name?. Annual Review of Phytopathology, 2002, 40, 251-285.	7.8	440
41	Resistance in Trees to Insects — an Overview of Mechanisms and Interactions. , 2002, , 1-29.		18
43	RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis. Cell, 2002, 108, 743-754.	28.9	1,055
44	Two Distinct Pseudomonas Effector Proteins Interact with the Pto Kinase and Activate Plant Immunity. Cell, 2002, 109, 589-598.	28.9	260
45	Plant Immunity and Film Noir. Cell, 2002, 109, 537-540.	28.9	55
46	A Yersinia Effector and a Pseudomonas Avirulence Protein Define a Family of Cysteine Proteases Functioning in Bacterial Pathogenesis. Cell, 2002, 109, 575-588.	28.9	417
47	Arabidopsis RAR1 Exerts Rate-Limiting Control of R Gene–Mediated Defenses against Multiple Pathogens. Plant Cell, 2002, 14, 979-992.	6.6	197
48	A Draft Sequence of the Rice Genome (<i>Oryza sativa</i> L. ssp. <i>japonica</i>). Science, 2002, 296, 92-100.	12.6	2,866
49	Mechanisms of Caspase Activation and Inhibition during Apoptosis. Molecular Cell, 2002, 9, 459-470.	9.7	1,520
50	An Evolutionarily Conserved Mediator of Plant Disease Resistance Gene Function Is Required for Normal Arabidopsis Development. Developmental Cell, 2002, 2, 807-817.	7.0	114
51	NPK1, an MEKK1-like Mitogen-Activated Protein Kinase Kinase Kinase, Regulates Innate Immunity and Development in Plants. Developmental Cell, 2002, 3, 291-297.	7.0	224
52	Intracellular vs extracellular recognition of pathogens – common concepts in mammals and flies. Trends in Microbiology, 2002, 10, 193-199.	7.7	203
53	Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends in Microbiology, 2002, 10, 462-469.	7.7	224
54	Balancing selection favors guarding resistance proteins. Trends in Plant Science, 2002, 7, 67-71.	8.8	154
55	Calcium-dependent protein kinases: versatile plant signalling components necessary for pathogen defence. Trends in Plant Science, 2002, 7, 97-98.	8.8	38
56	Flagellin perception: a paradigm for innate immunity. Trends in Plant Science, 2002, 7, 251-256.	8.8	488

#	Article	IF	Citations
57	Cell polarization, a crucial process in fungal defence. Trends in Plant Science, 2002, 7, 411-415.	8.8	167
58	Toll and interleukin-1 receptor (TIR) domain-containing proteins in plants: a genomic perspective. Trends in Plant Science, 2002, 7, 388-391.	8.8	49
59	Alternative splicing of transcripts encoding Toll-like plant resistance proteins $\hat{a} \in \text{``what's the functional relevance to innate immunity?.}$ Trends in Plant Science, 2002, 7, 392-398.	8.8	85
60	Recent breakthroughs in the study of salicylic acid biosynthesis. Trends in Plant Science, 2002, 7, 332-334.	8.8	151
61	The Arabidopsis RRS1-R disease resistance gene $\hat{a}\in$ " uncovering the plant's nucleus as the new battlefield of plant defense?. Trends in Plant Science, 2002, 7, 425-427.	8.8	44
62	Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition. Current Opinion in Microbiology, 2002, 5, 44-50.	5.1	150
63	Nods: a family of cytosolic proteins that regulate the host response to pathogens. Current Opinion in Microbiology, 2002, 5, 76-80.	5.1	223
64	A Gene-for-Gene Relationship Between Wheat and Mycosphaerella graminicola, the Septoria Tritici Blotch Pathogen. Phytopathology, 2002, 92, 439-445.	2.2	193
65	RICE ASA MODEL FORCOMPARATIVEGENOMICS OFPLANTS. Annual Review of Plant Biology, 2002, 53, 399-419.	18.7	123
66	Genetics of disease resistance in Arabidopsis to crop pathogens. Plant Protection Science, 2002, 38, S151-S154.	1.4	3
67	Summaries of National Science Foundation-Sponsored Arabidopsis 2010 Projects and National Science Foundation-Sponsored Plant Genome Projects That Are Generating Arabidopsis Resources for the Community. Plant Physiology, 2002, 129, 394-437.	4.8	29
68	Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Current Opinion in Plant Biology, 2002, 5, 318-324.	7.1	332
69	Yield penalties of disease resistance in crops. Current Opinion in Plant Biology, 2002, 5, 339-344.	7.1	282
70	Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 2002, 5, 325-331.	7.1	1,291
71	Plant Defence: A New Weapon In The Arsenal. Current Biology, 2002, 12, R352-R354.	3.9	17
72	Inducible Antibacterial Defense System in C. elegans. Current Biology, 2002, 12, 1209-1214.	3.9	417
73	Apoptosome. Structure, 2002, 10, 285-288.	3.3	109
74	A Blumeria graminis f.sp. hordei BAC library - contig building and microsynteny studies. Current Genetics, 2002, 42, 103-113.	1.7	14

#	Article	IF	CITATIONS
75	Probing plant-pathogen interactions and downstream defense signaling using DNA microarrays. Functional and Integrative Genomics, 2002, 2, 259-273.	3.5	102
76	Contoversies in Experimental Dermatology. Experimental Dermatology, 2002, 11, 159-187.	2.9	232
77	Lipoxygenase-mediated production of fatty acid hydroperoxides is a specific signature of the hypersensitive reaction in plants. Plant Physiology and Biochemistry, 2002, 40, 633-639.	5.8	56
78	Lon protease functions as a negative regulator of type III protein secretion in Pseudomonas syringae. Molecular Microbiology, 2002, 45, 397-409.	2.5	100
79	Runaway cell death, but not basal disease resistance, inlsd1is SA- andNIM1/NPR1-dependent. Plant Journal, 2002, 29, 381-391.	5 . 7	115
80	The tobacco mosaic virus resistance gene, N. Molecular Plant Pathology, 2002, 3, 167-172.	4.2	92
81	Recent advances in the study of tomato Cf resistance genes. Molecular Plant Pathology, 2002, 3, 277-282.	4.2	22
82	Pto update: recent progress on an ancient plant defence response signalling pathway. Molecular Plant Pathology, 2002, 3, 283-288.	4.2	12
83	Live and let live: insights into powdery mildew disease and resistance. Molecular Plant Pathology, 2002, 3, 495-502.	4.2	45
84	How the gut senses its content. Cellular Microbiology, 2002, 4, 61-72.	2.1	114
85	The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant Journal, 2002, 30, 361-371.	5.7	381
87	The Arabidopsis gain-of-function mutant dll1 spontaneously develops lesions mimicking cell death associated with disease. Plant Journal, 2002, 30, 61-70.	5.7	52
88	Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant Journal, 2002, 30, 415-429.	5 . 7	901
89	TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant Journal, 2002, 32, 77-92.	5.7	241
	my madiadpoint and denter plant benefited. Hand journal, 2002, 77, 72.		
90	NPP1, aPhytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant Journal, 2002, 32, 375-390.	5.7	289
90	NPP1, aPhytophthora-associated trigger of plant defense in parsley andArabidopsis. Plant Journal,	5.7 1.9	289
	NPP1, aPhytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant Journal, 2002, 32, 375-390. Isolation and linkage mapping of disease-resistance-like sequences from various rice cultivars,		

#	Article	IF	CITATIONS
94	Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature, 2002, 416, 447-451.	27.8	363
95	On guard. Nature, 2002, 416, 802-803.	27.8	9
96	Champagne surprise. Nature, 2002, 416, 801-801.	27.8	11
97	Testing times in space. Nature, 2002, 416, 803-804.	27.8	4
98	A receptor in symbiotic dialogue. Nature, 2002, 417, 910-911.	27.8	24
99	How old roots lose their bounce. Nature, 2002, 417, 911-913.	27.8	7
100	A new blueprint for plant pathogen resistance. Nature Biotechnology, 2002, 20, 450-451.	17.5	10
101	The perspectives of polygenic resistance in breeding for durable disease resistance. Euphytica, 2002, 124, 217-226.	1.2	132
102	Resistance and susceptibility of plants to fungal pathogens. Transgenic Research, 2002, 11, 567-582.	2.4	19
103	14-3-3 proteins and the response to abiotic and biotic stress. Plant Molecular Biology, 2002, 50, 1031-1039.	3.9	175
104	Protein-protein interactions in pathogen recognition by plants. Plant Molecular Biology, 2002, 50, 981-989.	3.9	40
105	Protein complexes mediate signalling in plant responses to hormones, light, sucrose and pathogens. Plant Molecular Biology, 2002, 50, 971-980.	3.9	36
106	Intestinal epithelial pathobiology: past, present and future. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2002, 16, 851-867.	2.4	53
107	Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO Journal, 2002, 21, 6681-6688.	7.8	257
108	Signal Molecules for Plant Defense Responses to Biotic Stress. Russian Journal of Plant Physiology, 2003, 50, 417-425.	1.1	24
109	The promoter of the nematode resistance gene Hs1pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana. Plant Molecular Biology, 2003, 52, 643-660.	3.9	73
110	UNDERSTANDING THEFUNCTIONS OFPLANTDISEASERESISTANCEPROTEINS. Annual Review of Plant Biology, 2003, 54, 23-61.	18.7	836
111	Identification of late blight, Colorado potato beetle, and blackleg resistance in three Mexican and two South American wild 2x (1EBN)Solanum species. American Journal of Potato Research, 2003, 80, 9-19.	0.9	33

#	Article	IF	CITATIONS
112	Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signalling. Current Genetics, 2003, 44, 231-260.	1.7	88
113	Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theoretical and Applied Genetics, 2003, 107, 1139-1147.	3.6	146
114	Barley putative hypersensitive induced reaction genes: genetic mapping, sequence analyses and differential expression in disease lesion mimic mutants. Theoretical and Applied Genetics, 2003, 107, 1094-1101.	3.6	75
115	Characterization of salicylic acid-induced genes in Chinese cabbage. Plant Cell Reports, 2003, 21, 1027-1034.	5.6	20
116	Comparative fine maps of bovine toll-like receptor 4 and toll-like receptor 2 regions. Mammalian Genome, 2003, 14, 149-155.	2.2	23
117	Brassinosteroid-Mediated Stress Responses. Journal of Plant Growth Regulation, 2003, 22, 289-297.	5.1	507
118	Lithium treatment induces a hypersensitive-like response in tobacco. Planta, 2003, 217, 417-424.	3.2	43
119	Barley disease resistance gene analogs of the NBS-LRR class: identification and mapping. Molecular Genetics and Genomics, 2003, 269, 150-161.	2.1	76
120	Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Molecular Genetics and Genomics, 2003, 269, 280-289.	2.1	105
121	A large scale analysis of resistance gene homologues in Arachis. Molecular Genetics and Genomics, 2003, 270, 34-45.	2.1	69
122	Receptor-like protein kinases: the keys to response. Current Opinion in Plant Biology, 2003, 6, 339-342.	7.1	197
123	Early phosphorylation events in biotic stress. Current Opinion in Plant Biology, 2003, 6, 334-338.	7.1	57
124	Early signal transduction events in specific plant disease resistance. Current Opinion in Plant Biology, 2003, 6, 300-306.	7.1	52
125	Plant–nematode interactions. Current Opinion in Plant Biology, 2003, 6, 327-333.	7.1	272
126	Role of ubiquitination in the regulation of plant defence against pathogens. Current Opinion in Plant Biology, 2003, 6, 307-311.	7.1	154
127	Light perception in plant disease defence signalling. Current Opinion in Plant Biology, 2003, 6, 390-396.	7.1	232
128	Fresh insights into processes of nonhost resistance. Current Opinion in Plant Biology, 2003, 6, 351-357.	7.1	357
129	The impact zone: genomics and breeding for durable disease resistance. Current Opinion in Plant Biology, 2003, 6, 397-404.	7.1	78

#	Article	IF	Citations
130	A cost of disease resistance: paradigm or peculiarity?. Trends in Genetics, 2003, 19, 667-671.	6.7	117
131	Evolution of Soybean mosaic virus-G7 molecularly cloned genome in Rsv1-genotype soybean results in emergence of a mutant capable of evading Rsv1-mediated recognition. Virology, 2003, 314, 497-509.	2.4	64
132	Plant disease resistance genes: recent insights and potential applications. Trends in Biotechnology, 2003, 21, 178-183.	9.3	249
133	Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiology Reviews, 2003, 27, 505-523.	8.6	317
134	Type III protein secretion in Pseudomonas syringae. Microbes and Infection, 2003, 5, 301-310.	1.9	110
135	Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology, 2003, 14, 177-193.	6.6	521
136	Resistance gene signaling in plants $\hat{a} \in \text{``}$ complex similarities to animal innate immunity. Current Opinion in Immunology, 2003, 15, 20-25.	5.5	80
137	Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease. Molecular Microbiology, 2003, 49, 1537-1546.	2.5	205
138	<i>Xanthomonas</i> type III effector XopD targets SUMOâ€conjugated proteins <i>in planta</i> Molecular Microbiology, 2003, 50, 377-389.	2.5	247
139	Expression profiling of the host response to bacterial infection: the transition from basal to induced defence responses in RPM1 -mediated resistance. Plant Journal, 2003, 33, 665-676.	5.7	94
140	Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco. Plant Journal, 2003, 33, 719-731.	5.7	170
141	Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid. Plant Journal, 2003, 33, 733-742.	5.7	215
142	Interaction between two mitogen-activated protein kinases during tobacco defense signaling. Plant Journal, 2003, 34, 149-160.	5.7	100
143	Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant Journal, 2003, 34, 217-228.	5.7	466
144	Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi. Plant Journal, 2003, 34, 585-593.	5.7	112
145	Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance inArabidopsisagainst wheat powdery mildew. Plant Journal, 2003, 34, 768-777.	5.7	161
146	ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant Journal, 2003, 36, 353-365.	5.7	239
147	Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis-Pseudomonas syringae pv. tomato interaction. Plant Journal, 2003, 36, 342-352.	5.7	128

#	Article	IF	CITATIONS
148	Potato virus Y NIa protease activity is not sufficient for elicitation of Ry-mediated disease resistance in potato. Plant Journal, 2003, 36, 755-761.	5.7	41
149	An ancientRgene from the wild potato speciesSolanum bulbocastanumconfers broad-spectrum resistance toPhytophthora infestansin cultivated potato and tomato. Plant Journal, 2003, 36, 867-882.	5.7	406
150	Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant Journal, 2003, 36, 905-917.	5.7	310
151	Tritium planigraphy comparative structural study of tobacco mosaic virus and its mutant with altered host specificity. FEBS Journal, 2003, 270, 3300-3308.	0.2	16
152	Wyerone Acid Phytoalexin Synthesis and Peroxidase Activity as Markers for Resistance of Broad Beans to Chocolate Spot Disease. Journal of Phytopathology, 2003, 151, 564-570.	1.0	52
153	Nucleotide sequence, functional characterization and evolution of pFKN, a virulence plasmid in Pseudomonas syringae pathovar maculicola. Molecular Microbiology, 2003, 47, 1545-1562.	2.5	53
154	The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants. Molecular Microbiology, 2003, 49, 377-387.	2.5	180
155	A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection. Molecular Microbiology, 2003, 49, 389-400.	2.5	120
156	First-generation SNP/InDel markers tagging loci for pathogen resistance in the potato genome. Plant Biotechnology Journal, 2003, 1, 399-410.	8.3	63
157	Intraspecific comparative genomics to identify avirulence genes from Phytophthora. New Phytologist, 2003, 159, 63-72.	7.3	50
158	Direct delivery of bacterial avirulence proteins into resistant Arabidopsis protoplasts leads to hypersensitive cell death. Plant Journal, 2003, 33, 131-137.	5.7	35
159	Pathogen derived elicitors: searching for receptors in plants. Molecular Plant Pathology, 2003, 4, 73-79.	4.2	199
160	The role of proteolysis in R gene mediated defence in plants. Molecular Plant Pathology, 2003, 4, 287-296.	4.2	23
161	Deciphering host resistance and pathogen virulence: the Arabidopsis /Pseudomonas interaction as a model. Molecular Plant Pathology, 2003, 4, 517-530.	4.2	57
162	Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature, 2003, 423, 74-77.	27.8	697
163	Non-classical receptive field mediates switch in a sensory neuron's frequency tuning. Nature, 2003, 423, 77-81.	27.8	168
164	Plant genetics: a decade of integration. Nature Genetics, 2003, 33, 294-304.	21.4	35
165	The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nature Reviews Genetics, 2003, 4, 948-958.	16.3	208

#	Article	IF	Citations
166	NODs: intracellular proteins involved in inflammation and apoptosis. Nature Reviews Immunology, 2003, 3, 371-382.	22.7	931
167	Corruption of host seven-transmembrane proteins by pathogenic microbes: a common theme in animals and plants?. Microbes and Infection, 2003, 5, 429-437.	1.9	34
168	Role of SGT1 in the regulation of plant R gene signalling. Microbes and Infection, 2003, 5, 969-976.	1.9	72
169	Triple gene block: modular design of a multifunctional machine for plant virus movement. Journal of General Virology, 2003, 84, 1351-1366.	2.9	337
170	Cucumoviruses. Advances in Virus Research, 2003, 62, 241-323.	2.1	464
171	TNF- $\hat{l}\pm$ and IFN- \hat{l}^3 regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology, 2003, 124, 1001-1009.	1.3	389
172	A novel transcription factor involved in plant defense endowed with protein phosphatase activity. EMBO Journal, 2003, 22, 3376-3384.	7.8	41
173	Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO Journal, 2003, 22, 5679-5689.	7.8	365
174	Nicotiana benthamiana gp91phox Homologs NbrbohA and NbrbohB Participate in H2O2 Accumulation and Resistance to Phytophthora infestans. Plant Cell, 2003, 15, 706-718.	6.6	573
175	Laminarin Elicits Defense Responses in Grapevine and Induces Protection Against Botrytis cinerea and Plasmopara viticola. Molecular Plant-Microbe Interactions, 2003, 16, 1118-1128.	2.6	423
176	THECOP9 SIGNALOSOME: Regulating Plant Development Through the Control of Proteolysis. Annual Review of Plant Biology, 2003, 54, 165-182.	18.7	143
177	Transcription of the defense response genes chitinase Ilb, PAL and peroxidase is induced by the barley powdery mildew fungus and is only indirectly modulated by R genes. Physiological and Molecular Plant Pathology, 2003, 63, 167-178.	2.5	27
178	Oomycetes and fungi: similar weaponry to attack plants. Trends in Microbiology, 2003, 11, 462-469.	7.7	287
179	Molecular Sensing of Bacteria in Plants. Journal of Biological Chemistry, 2003, 278, 6201-6208.	3.4	200
180	Recognition and Response in the Plant Immune System. Annual Review of Genetics, 2003, 37, 579-609.	7.6	489
181	Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 2003, 302, 100-103.	12.6	812
182	ESTABLISHMENT OFBIOTROPHY BYPARASITICFUNGI ANDREPROGRAMMING OFHOSTCELLS FORDISEASERESISTANCE. Annual Review of Phytopathology, 2003, 41, 641-667.	7.8	150
183	Isolation and linkage analysis of expressed disease-resistance gene analogues of sugar beet (Beta) Tj ETQq1 1 0.7	784314 rg 2.0	BT_/Overlock

#	Article	IF	CITATIONS
184	Designing Repeat Proteins: Modular Leucine-rich Repeat Protein Libraries Based on the Mammalian Ribonuclease Inhibitor Family. Journal of Molecular Biology, 2003, 332, 471-487.	4.2	123
185	Initiation of RPS2-Specified Disease Resistance in Arabidopsis Is Coupled to the AvrRpt2-Directed Elimination of RIN4. Cell, 2003, 112, 369-377.	28.9	745
186	Arabidopsis RIN4 Is a Target of the Type III Virulence Effector AvrRpt2 and Modulates RPS2-Mediated Resistance. Cell, 2003, 112, 379-389.	28.9	852
187	Inducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes. Cell, 2003, 113, 935-944.	28.9	1,348
188	Resistance mechanisms to plant viruses: an overview. Virus Research, 2003, 92, 207-212.	2.2	175
189	Identification of a putative cation transporter gene from sugar beet (Beta vulgaris L.) by DDRT-PCR closely linked to the beet cyst nematode resistance gene Hs1pro-1. Plant Science, 2003, 165, 777-784.	3.6	4
190	Harpin-elicited hypersensitive cell death and pathogen resistance require the NDR1 and EDS1 genes. Physiological and Molecular Plant Pathology, 2003, 62, 317-326.	2.5	98
191	A genetic map of the lettuce downy mildew pathogen, Bremia lactucae, constructed from molecular markers and avirulence genes. Fungal Genetics and Biology, 2003, 39, 16-30.	2.1	30
192	Plant Defense. Molecular Cell, 2003, 11, 284-286.	9.7	37
193	Genetic variation and activity of mouse Nod2, a susceptibility gene for Crohn's diseaseâ⁻†â⁻†Sequence data from this article have been deposited with the GenBank Data Library under Accession Nos. AY160220, AY160221, and AY160229†AY160678 Genomics, 2003, 81, 369-377.	2.9	45
194	Quorum quenching and proactive host defense. Trends in Plant Science, 2003, 8, 238-244.	8.8	139
195	Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends in Plant Science, 2003, 8, 252-258.	8.8	198
196	P58IPK, a Plant Ortholog of Double-Stranded RNA-Dependent Protein Kinase PKR Inhibitor, Functions in Viral Pathogenesis. Developmental Cell, 2003, 4, 651-661.	7.0	93
198	PARASITICNEMATODEINTERACTIONS WITHMAMMALS ANDPLANTS. Annual Review of Phytopathology, 2003, 41, 245-270.	7.8	114
200	QTLs for Tomato Powdery Mildew Resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 Co-localize with Two Qualitative Powdery Mildew Resistance Genes. Molecular Plant-Microbe Interactions, 2003, 16, 169-176.	2.6	95
201	MOLECULARBASIS OFPTO-MEDIATEDRESISTANCE TOBACTERIALSPECKDISEASE INTOMATO. Annual Review of Phytopathology, 2003, 41, 215-243.	7.8	303
202	Salicylic acid and wounding induce defenseâ€related proteins in Chinese cabbage. Korean Journal of Biological Sciences, 2003, 7, 213-219.	0.1	7
203	Cleavage of Arabidopsis PBS1 by a Bacterial Type III Effector. Science, 2003, 301, 1230-1233.	12.6	504

#	Article	IF	CITATIONS
204	Genetic Modification of Alternative Respiration Has Differential Effects on Antimycin A-Induced versus Salicylic Acid-Induced Resistance to Tobacco mosaic virus. Plant Physiology, 2003, 132, 1518-1528.	4.8	99
205	Pto Mutants Differentially ActivatePrf-Dependent, avrPto-Independent Resistance and Gene-for-Gene Resistance. Plant Physiology, 2003, 131, 1239-1249.	4.8	15
206	Natural Disulfide Bond-disrupted Mutants of AVR4 of the Tomato Pathogen Cladosporium fulvum Are Sensitive to Proteolysis, Circumvent Cf-4-mediated Resistance, but Retain Their Chitin Binding Ability. Journal of Biological Chemistry, 2003, 278, 27340-27346.	3.4	102
207	Signals for local and systemic responses of plants to pathogen attack. Journal of Experimental Botany, 2003, 55, 169-179.	4.8	41
208	BWMK1, a Rice Mitogen-Activated Protein Kinase, Locates in the Nucleus and Mediates Pathogenesis-Related Gene Expression by Activation of a Transcription Factor. Plant Physiology, 2003, 132, 1961-1972.	4.8	256
209	Recognition Specificity and RAR1/SGT1 Dependence in Barley Mla Disease Resistance Genes to the Powdery Mildew Fungus. Plant Cell, 2003, 15, 732-744.	6.6	225
210	Role of Nod2 in the Response of Macrophages to Toll-Like Receptor Agonists. Molecular and Cellular Biology, 2003, 23, 7531-7539.	2.3	248
211	Genome-Wide Analysis of NBS-LRR–Encoding Genes in Arabidopsis[W]. Plant Cell, 2003, 15, 809-834.	6.6	1,457
212	Ethylene Insensitivity Modulates Ozone-Induced Cell Death in Birch. Plant Physiology, 2003, 132, 185-195.	4.8	96
213	Molecular Characterization of a Novel Lipase-Like Pathogen-Inducible Gene Family of Arabidopsis. Plant Physiology, 2003, 132, 2230-2239.	4.8	49
214	Enhanced Transcription of the Arabidopsis Disease Resistance Genes RPW8.1 and RPW8.2 via a Salicylic Acid–Dependent Amplification Circuit Is Required for Hypersensitive Cell Death. Plant Cell, 2003, 15, 33-45.	6.6	222
215	Resistance Rodeo: Rounding up the Full Complement of Arabidopsis NBS-LRR Genes. Plant Cell, 2003, 15, 806-807.	6.6	7
216	Local Context Finder (LCF) reveals multidimensional relationships among mRNA expression profiles of Arabidopsis responding to pathogen infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10842-10847.	7.1	19
217	Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6831-6836.	7.1	164
218	A Gain-of-Function Mutation in a Plant Disease Resistance Gene Leads to Constitutive Activation of Downstream Signal Transduction Pathways in suppressor of npr1-1, constitutive 1. Plant Cell, 2003, 15, 2636-2646.	6.6	446
219	The Root-Knot Nematode Resistance Gene Mi-1.2 of Tomato Is Responsible for Resistance Against the Whitefly Bemisia tabaci. Molecular Plant-Microbe Interactions, 2003, 16, 645-649.	2.6	350
220	The Coat Protein of Turnip Crinkle Virus Suppresses Posttranscriptional Gene Silencing at an Early Initiation Step. Journal of Virology, 2003, 77, 511-522.	3.4	279
221	APseudomonas syringaetype III effector suppresses cell wall-based extracellular defense in susceptibleArabidopsisplants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8577-8582.	7.1	469

#	Article	IF	CITATIONS
222	Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8024-8029.	7.1	635
223	High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 16101-16106.	7.1	268
224	HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11777-11782.	7.1	440
225	Mitogen-activated Protein Kinases Play an Essential Role in Oxidative Burst-independent Expression of Pathogenesis-related Genes in Parsley. Journal of Biological Chemistry, 2003, 278, 2256-2264.	3.4	106
226	In Defense against Pathogens. Both Plant Sentinels and Foot Soldiers Need to Know the Enemy,. Plant Physiology, 2003, 131, 1580-1590.	4.8	122
227	Cleavage of the Pseudomonas syringae Type III Effector AvrRpt2 Requires a Host Factor(s) Common among Eukaryotes and Is Important for AvrRpt2 Localization in the Host Cell. Plant Physiology, 2003, 133, 1072-1082.	4.8	44
228	Quantitative Nature of Arabidopsis Responses during Compatible and Incompatible Interactions with the Bacterial Pathogen Pseudomonas syringae $\hat{A}[W]$. Plant Cell, 2003, 15, 317-330.	6.6	641
229	Map-based isolation of the leaf rust disease resistance gene <i>Lr10</i> from the hexaploid wheat () Tj ETQq1 1 States of America, 2003, 100, 15253-15258.	0.784314 7.1	rgBT Overlo 498
230	Solution Structure of the Plant Disease Resistance-triggering Protein NIP1 from the Fungus Rhynchosporium secalis Shows a Novel Î ² -Sheet Fold. Journal of Biological Chemistry, 2003, 278, 45730-45736.	3.4	21
231	The Arabidopsis NHL3 Gene Encodes a Plasma Membrane Protein and Its Overexpression Correlates with Increased Resistance to Pseudomonas syringae pv. tomato DC3000. Plant Physiology, 2003, 132, 2023-2033.	4.8	82
232	A Developmental Response to Pathogen Infection in Arabidopsis. Plant Physiology, 2003, 133, 339-347.	4.8	119
233	Molecular analysis of programmed cell death during senescence in Arabidopsis thaliana and Brassica oleracea: cloning broccoli LSD1, Bax inhibitor and serine palmitoyltransferase homologues. Journal of Experimental Botany, 2003, 55, 59-68.	4.8	72
234	Unexpected Protein Families Including Cell Defense Components Feature in the N-Myristoylome of a Higher Eukaryote. Journal of Biological Chemistry, 2003, 278, 43418-43429.	3.4	145
235	Gene <i>RB</i> cloned from <i>Solanum bulbocastanum</i> confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9128-9133.	7.1	532
236	RPS4-Mediated Disease Resistance Requires the Combined Presence of RPS4 Transcripts with Full-Length and Truncated Open Reading Frames. Plant Cell, 2003, 15, 2333-2342.	6.6	140
237	Hyperphosphorylation of a Mitochondrial Protein, Prohibitin, Is Induced by Calyculin A in a Rice Lesion-Mimic Mutant cdr1 Â. Plant Physiology, 2003, 132, 1861-1869.	4.8	59
238	Isolation and characterization of methyl jasmonateâ€inducible genes in chinese cabbage. Korean Journal of Biological Sciences, 2003, 7, 337-343.	0.1	1
239	Flagellin from an Incompatible Strain of Acidovorax avenae Mediates H2O2 Generation Accompanying Hypersensitive Cell Death and Expression of PAL, Cht-1, and PBZ1, but Not of LOX in Rice. Molecular Plant-Microbe Interactions, 2003, 16, 422-428.	2.6	65

#	Article	IF	CITATIONS
240	Cytological and Molecular Analysis of the Hordeum vulgare-Puccinia triticina Nonhost Interaction. Molecular Plant-Microbe Interactions, 2003, 16, 626-633.	2.6	38
241	A Pseudomonas syringae pv. tomato DC3000 Hrp (Type III Secretion) Deletion Mutant Expressing the Hrp System of Bean Pathogen P. syringae pv. syringae 61 Retains Normal Host Specificity for Tomato. Molecular Plant-Microbe Interactions, 2003, 16, 43-52.	2.6	41
242	Agrosuppression: A Bioassay for the Hypersensitive Response Suited to High-Throughput Screening. Molecular Plant-Microbe Interactions, 2003, 16, 7-13.	2.6	40
243	Nitric Oxide-Mediated Transcriptional Changes in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2003, 16, 1094-1105.	2.6	178
244	The Arabidopsis Genes RPW8.1 and RPW8.2 Confer Induced Resistance to Powdery Mildew Diseases in Tobacco. Molecular Plant-Microbe Interactions, 2003, 16, 289-294.	2.6	56
245	Novel Exchangeable Effector Loci Associated with the Pseudomonas syringae hrp Pathogenicity Island: Evidence for Integron-Like Assembly from Transposed Gene Cassettes. Molecular Plant-Microbe Interactions, 2003, 16, 495-507.	2.6	58
246	The Endopolygalacturonase 1 from Botrytis cinerea Activates Grapevine Defense Reactions Unrelated to Its Enzymatic Activity. Molecular Plant-Microbe Interactions, 2003, 16, 553-564.	2.6	164
247	Multiple Resistance Phenotypes to Lettuce mosaic virus Among Arabidopsis thaliana Accessions. Molecular Plant-Microbe Interactions, 2003, 16, 608-616.	2.6	41
248	Targeted Activation Tagging of the Arabidopsis NBS-LRR gene, ADR1, Conveys Resistance to Virulent Pathogens. Molecular Plant-Microbe Interactions, 2003, 16, 669-680.	2.6	140
249	Genetic and Physical Localization of the Soybean Rpg1-b Disease Resistance Gene Reveals a Complex Locus Containing Several Tightly Linked Families of NBS-LRR Genes. Molecular Plant-Microbe Interactions, 2003, 16, 817-826.	2.6	77
250	Conservation of a Resistance Gene-like Fragment ADG2 Related to Patato Y Potyvirus Resistance Gene Ryadg in Diploid and Tetrasomic Tetraploid Potato Lines. Breeding Science, 2003, 53, 149-154.	1.9	2
251	The molecular initiation and subsequent acquisition of disease resistance in plants. African Journal of Biotechnology, 2003, 2, 26-32.	0.6	33
252	Nonsynonymous polymorphisms and frequency-dependent selection., 2004,, 156-177.		3
253	LPS Signal Transduction: The Picture is Becoming More Complex. Current Topics in Medicinal Chemistry, 2004, 4, 1115-1126.	2.1	38
254	The Receptor for the Fungal Elicitor Ethylene-Inducing Xylanase Is a Member of a Resistance-Like Gene Family in Tomato. Plant Cell, 2004, 16, 1604-1615.	6.6	508
255	Multiple Genetic Processes Result in Heterogeneous Rates of Evolution within the Major Cluster Disease Resistance Genes in Lettuce[W]. Plant Cell, 2004, 16, 2870-2894.	6.6	276
256	Gene Expression Signatures from Three Genetically Separable Resistance Gene Signaling Pathways for Downy Mildew Resistance. Plant Physiology, 2004, 135, 1129-1144.	4.8	128
257	Effector Genes of Xanthamonas axonopodispv. vesicatoria Promote Transmission and Enhance Other Fitness Traits in the Field. Genetics, 2004, 166, 693-706.	2.9	80

#	Article	IF	CITATIONS
258	Binding of Arabinogalactan Proteins by Yariv Phenylglycoside Triggers Wound-Like Responses in Arabidopsis Cell Cultures. Plant Physiology, 2004, 135, 1346-1366.	4.8	99
259	A Haplotype-Specific Resistance Gene Regulated by BONZAI1 Mediates Temperature-Dependent Growth Control in Arabidopsis. Plant Cell, 2004, 16, 1060-1071.	6.6	292
260	Arabidopsis Downy Mildew Resistance Gene RPP27 Encodes a Receptor-Like Protein Similar to CLAVATA2 and Tomato Cf-9. Plant Physiology, 2004, 135, 1100-1112.	4.8	52
261	Plant eR Genes That Encode Photorespiratory Enzymes Confer Resistance against Disease. Plant Cell, 2004, 16, 172-184.	6.6	179
262	Role of Type III Effector Secretion during Bacterial Pathogenesis in Another Kingdom. Infection and Immunity, 2004, 72, 3697-3705.	2.2	13
263	Origin and Maintenance of a Broad-Spectrum Disease Resistance Locus in Arabidopsis. Molecular Biology and Evolution, 2004, 21, 1661-1672.	8.9	73
264	Molecular Chaperone Hsp90 Associates with Resistance Protein N and Its Signaling Proteins SGT1 and Rar1 to Modulate an Innate Immune Response in Plants. Journal of Biological Chemistry, 2004, 279, 2101-2108.	3.4	299
265	Interaction-Dependent Gene Expression in Mla-Specified Response to Barley Powdery Mildew[W]. Plant Cell, 2004, 16, 2514-2528.	6.6	204
266	Mechanism of Pto-Mediated Disease Resistance: Structural Analysis Provides a New Model. Plant Cell, 2004, 16, 2543-2545.	6.6	3
267	Marker-Based Cloning of the Region Containing the UhAvr1 Avirulence Gene From the Basidiomycete Barley Pathogen Ustilago hordei. Genetics, 2004, 166, 99-111.	2.9	34
268	Arabidopsis RIN4 Negatively Regulates Disease Resistance Mediated by RPS2 and RPM1 Downstream or Independent of the NDR1 Signal Modulator and Is Not Required for the Virulence Functions of Bacterial Type III Effectors AvrRpt2 or AvrRpm1. Plant Cell, 2004, 16, 2822-2835.	6.6	222
269	An Ancient Enzyme Domain Hidden in the Putative \hat{l}^2 -Glucan Elicitor Receptor of Soybean May Play an Active Part in the Perception of Pathogen-associated Molecular Patterns during Broad Host Resistance. Journal of Biological Chemistry, 2004, 279, 1132-1140.	3.4	137
270	Convergent Evolution of Disease Resistance Gene Specificity in Two Flowering Plant Families [W]. Plant Cell, 2004, 16, 309-318.	6.6	131
271	IL-1Â: An endosomal exit. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10241-10242.	7.1	49
272	Isolation and characterization of a Pti1 homologue from soybean. Journal of Experimental Botany, 2004, 55, 535-537.	4.8	21
273	Genetic Variation at the Tomato Cf-4/Cf-9 Locus Induced by EMS Mutagenesis and Intralocus Recombination. Genetics, 2004, 167, 459-470.	2.9	32
274	The Melampsora lini AvrL567 Avirulence Genes Are Expressed in Haustoria and Their Products Are Recognized inside Plant Cells. Plant Cell, 2004, 16, 755-768.	6.6	365
275	RNA silencing-suppressor function of Turnip crinkle virus coat protein cannot be attributed to its interaction with the Arabidopsis protein TIP. Journal of General Virology, 2004, 85, 3415-3420.	2.9	44

#	Article	IF	CITATIONS
276	NopL, an Effector Protein of Rhizobium sp. NGR234, Thwarts Activation of Plant Defense Reactions. Plant Physiology, 2004, 134, 871-879.	4.8	161
277	Cutting Edge Transcriptome Analysis: It's All about Design. Plant Cell, 2004, 16, 2249-2251.	6.6	0
278	Deletion of a Disease Resistance Nucleotide-Binding-Site Leucine-Rich-Repeat-like Sequence Is Associated With the Loss of the Phytophthora Resistance Gene Rps4 in Soybean. Genetics, 2004, 168, 2157-2167.	2.9	98
279	Diverse Evolutionary Mechanisms Shape the Type III Effector Virulence Factor Repertoire in the Plant Pathogen Pseudomonas syringae. Genetics, 2004, 167, 1341-1360.	2.9	114
280	Rice Blast: Interaction with Rice and Control. , 2004, , .		6
281	A Patch of Surface-Exposed Residues Mediates Negative Regulation of Immune Signaling by Tomato Pto Kinase[W]. Plant Cell, 2004, 16, 2809-2821.	6.6	77
282	From The Cover: Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15811-15816.	7.1	588
283	The crystal structure of Pseudomonas avirulence protein AvrPphB: A papain-like fold with a distinct substrate-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 302-307.	7.1	113
285	Aminotransferases Confer "Enzymatic Resistance―to Downy Mildew in Melon. Plant Cell, 2004, 16, 1-3.	6.6	240
286	Ethylene Response Factor 1 Mediates Arabidopsis Resistance to the Soilborne Fungus Fusarium oxysporum. Molecular Plant-Microbe Interactions, 2004, 17, 763-770.	2.6	268
287	A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9927-9932.	7.1	324
288	The Transcriptional Innate Immune Response to flg22. Interplay and Overlap with Avr Gene-Dependent Defense Responses and Bacterial Pathogenesis. Plant Physiology, 2004, 135, 1113-1128.	4.8	562
289	RAR1 Positively Controls Steady State Levels of Barley MLA Resistance Proteins and Enables Sufficient MLA6 Accumulation for Effective Resistance. Plant Cell, 2004, 16, 3480-3495.	6.6	252
290	The Role of Salicylic Acid and Nitric Oxide in Programmed Cell Death and Induced Resistance. Ecological Studies, 2004, , 111-150.	1.2	8
291	Proteases in pathogenesis and plant defence. Cellular Microbiology, 2004, 6, 905-913.	2.1	74
292	Disabling surveillance: bacterial type III secretion system effectors that suppress innate immunity. Cellular Microbiology, 2004, 6, 1027-1040.	2.1	147
293	Markers, old and new, for examining Phytophthora infestans diversity. Plant Pathology, 2004, 53, 692-704.	2.4	106
294	ThePseudomonas syringaetype III effector AvrRpt2 functions downstream or independently of SA to promote virulence onArabidopsis thaliana. Plant Journal, 2004, 37, 494-504.	5.7	57

#	Article	IF	CITATIONS
295	A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant Journal, 2004, 38, 215-226.	5.7	108
296	Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant Journal, 2004, 38, 142-151.	5.7	170
297	Molecular cloning of the potatoGro1-4gene conferring resistance to pathotype Ro1 of the root cyst nematodeGlobodera rostochiensis, based on a candidate gene approach. Plant Journal, 2004, 38, 285-297.	5.7	211
298	Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant Journal, 2004, 38, 810-822.	5.7	253
299	High humidity suppressesssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2production and defense gene expression. Plant Journal, 2004, 39, 920-932.	5.7	78
300	Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant Journal, 2004, 40, 213-224.	5.7	135
301	Two Arabidopsis srfr (suppressor of rps4â€RLD) mutants exhibit avrRps4 â€specific disease resistance independent of RPS4. Plant Journal, 2004, 40, 366-375.	5.7	26
302	Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant Journal, 2004, 40, 633-646.	5.7	186
303	Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant Journal, 2004, 40, 647-659.	5.7	107
304	The Pseudomonas syringae type III effector AvrRpt2 promotes virulence independently of RIN4, a predicted virulence target in Arabidopsis thaliana. Plant Journal, 2004, 40, 790-798.	5.7	51
305	Gene shuffling-generated and natural variants of the tomato resistance gene Cf-9 exhibit different auto-necrosis-inducing activities in Nicotiana species. Plant Journal, 2004, 40, 942-956.	5.7	38
306	Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant Journal, 2005, 41, 451-463.	5.7	222
307	Potato oxysterol binding protein and cathepsin B are rapidly up-regulated in independent defence pathways that distinguish R gene-mediated and field resistances to Phytophthora infestans. Molecular Plant Pathology, 2004, 5, 45-56.	4.2	50
308	Sugarbeet leaf spot disease (Cercospora beticola Sacc.)+. Molecular Plant Pathology, 2004, 5, 157-166.	4.2	138
309	Advances in understanding recessive resistance to plant viruses. Molecular Plant Pathology, 2004, 5, 223-233.	4.2	157
310	A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Molecular Microbiology, 2004, 53, 1373-1383.	2.5	359
311	HopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen-induced necrosis associated with both compatible and incompatible plant interactions. Molecular Microbiology, 2004, 54, 353-365.	2.5	105
312	HpaB from Xanthomonas campestris pv. vesicatoria acts as an exit control protein in type III-dependent protein secretion. Molecular Microbiology, 2004, 54, 755-768.	2.5	82

#	ARTICLE	IF	CITATIONS
313	Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New Phytologist, 2004, 163, 111-123.	7.3	87
314	Identification ofBotrytis cinereasusceptibility loci inArabidopsis thaliana. Plant Journal, 2004, 38, 473-486.	5.7	147
315	Innate immunity in plants and animals: striking similarities and obvious differences. Immunological Reviews, 2004, 198, 249-266.	6.0	1,071
316	Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunological Reviews, 2004, 198, 267-284.	6.0	272
317	Toll-like receptor control of the adaptive immune responses. Nature Immunology, 2004, 5, 987-995.	14.5	3,662
318	Calcium, kinases and nodulation signalling in legumes. Nature Reviews Molecular Cell Biology, 2004, 5, 566-576.	37.0	312
319	An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO Journal, 2004, 23, 980-988.	7.8	311
320	Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO Journal, 2004, 23, 1587-1597.	7.8	325
321	CITRX thioredoxin interacts with the tomato Cf-9 resistance protein and negatively regulates defence. EMBO Journal, 2004, 23, 2156-2165.	7.8	122
322	Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature, 2004, 428, 767-771.	27.8	176
323	Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 2004, 428, 764-767.	27.8	1,487
324	Crystal Structure of the Type III Effector AvrB from Pseudomonas syringae. Structure, 2004, 12, 487-494.	3.3	48
325	Crystal Structures of the Type III Effector Protein AvrPphF and Its Chaperone Reveal Residues Required for Plant Pathogenesis. Structure, 2004, 12, 1669-1681.	3.3	73
326	Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends in Genetics, 2004, 20, 116-122.	6.7	533
327	The plant proteolytic machinery and its role in defence. Current Opinion in Plant Biology, 2004, 7, 400-407.	7.1	231
328	Plant disease resistance protein signaling: NBS–LRR proteins and their partners. Current Opinion in Plant Biology, 2004, 7, 391-399.	7.1	462
329	A global view of defense gene expression regulation $\hat{a} \in \hat{a}$ a highly interconnected signaling network. Current Opinion in Plant Biology, 2004, 7, 506-511.	7.1	133
330	Plant Immunity: The Origami of Receptor Activation. Current Biology, 2004, 14, R22-R24.	3.9	88

#	Article	IF	Citations
331	Type III protein secretion mechanism in mammalian and plant pathogens. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1694, 181-206.	4.1	257
332	Plants as models for the study of human pathogenesis. Biotechnology Advances, 2004, 22, 363-382.	11.7	23
333	SIVB 2003 Congress Symposium Proceeding: Plant-Targets of Pathogenic Effectors Can Transduce Both Virulence and Resistance Signals. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 251-255.	2.1	0
334	Bacterial Inhibition of Eukaryotic Pro-Inflammatory Pathways. Immunologic Research, 2004, 29, 175-186.	2.9	31
335	REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 2004, 55, 373-399.	18.7	9,281
336	Isolation and identification of a gene in response to rice blast disease in rice. Plant Molecular Biology, 2004, 54, 99-109.	3.9	15
337	Cloning of soybean genes induced during hypersensitive cell death caused by syringolide elicitor. Planta, 2004, 218, 606-614.	3.2	21
338	Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine (Pinus monticola Dougl. ex. D. Don.). Molecular Genetics and Genomics, 2004, 270, 432-441.	2.1	78
339	Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive R gene xa13. Molecular Genetics and Genomics, 2004, 271, 111-120.	2.1	47
340	Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Molecular Genetics and Genomics, 2004, 271, 402-415.	2.1	421
341	Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries. Molecular Genetics and Genomics, 2004, 272, 480-487.	2.1	45
342	EST and microarray analyses of pathogen-responsive genes in hot pepper (Capsicum annuum L.) non-host resistance against soybean pustule pathogen (Xanthomonas axonopodis pv. glycines). Functional and Integrative Genomics, 2004, 4, 196-205.	3.5	56
343	Activation tagging in plants: a tool for gene discovery. Functional and Integrative Genomics, 2004, 4, 258-66.	3.5	59
344	Members of 14-3-3 protein isoforms interacting with the resistance gene product N and the elicitor of Tobacco mosaic virus. Journal of General Plant Pathology, 2004, 70, 221.	1.0	54
345	Jasmonates—Signals in plant-microbe interactions. Journal of Plant Growth Regulation, 2004, 23, 211-222.	5.1	12
346	GENE-FOR-GENE DISEASE RESISTANCE: BRIDGING INSECT PEST AND PATHOGEN DEFENSE. Journal of Chemical Ecology, 2004, 30, 2419-2438.	1.8	147
347	Recent progress in the characterization of molecular determinants in the Xanthomonas axonopodis pv. manihotis–cassava interaction. Plant Molecular Biology, 2004, 56, 573-584.	3.9	30
348	Jasmonates - Signals in Plant-Microbe Interactions. Journal of Plant Growth Regulation, 2004, 23, 211-222.	5.1	194

#	Article	IF	CITATIONS
349	Isolation and characterization of novel defense response genes involved in compatible and incompatible interactions between rice and Magnaporthe grisea. Theoretical and Applied Genetics, 2004, 108, 525-534.	3.6	44
350	High-resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice, Oryza sativa L Theoretical and Applied Genetics, 2004, 108, 800-807.	3.6	134
351	High-resolution genetic mapping of the leaf stripe resistance gene Rdg2a in barley. Theoretical and Applied Genetics, 2004, 108, 1401-1408.	3.6	34
352	Creation of BAC genomic resources for cocoa (Theobroma cacao L.) for physical mapping of RGA containing BAC clones. Theoretical and Applied Genetics, 2004, 108, 1627-1634.	3.6	21
353	The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Theoretical and Applied Genetics, 2004, 108, 1635-1642.	3.6	82
354	The Rxo1/Rba1 locus of maize controls resistance reactions to pathogenic and non-host bacteria. Theoretical and Applied Genetics, 2004, 109, 71-79.	3.6	42
355	Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theoretical and Applied Genetics, 2004, 109, 409-418.	3.6	56
356	Full-genome analysis of resistance gene homologues in rice. Theoretical and Applied Genetics, 2004, 109, 1434-1447.	3.6	233
357	Fine genetic mapping of the TuNI locus causing systemic veinal necrosis by turnip mosaic virus infection in Arabidopsis thaliana. Theoretical and Applied Genetics, 2004, 110, 33-40.	3.6	36
358	An extensive microarray analysis of AAL-toxin-induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants. Cellular and Molecular Life Sciences, 2004, 61, 1185-1197.	5.4	134
359	The Absence of TIR-Type Resistance Gene Analogues in the Sugar Beet (Beta vulgaris L.) Genome. Journal of Molecular Evolution, 2004, 58, 40-53.	1.8	48
360	Comparative analysis of NBS domain sequences of NBS-LRR disease resistance genes from sunflower, lettuce, and chicory. Molecular Phylogenetics and Evolution, 2004, 31, 153-163.	2.7	45
361	Characterisation of anArabidopsis-Leptosphaeria maculanspathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant Journal, 2004, 37, 9-20.	5.7	100
362	The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant Journal, 2004, 37, 46-60.	5.7	177
363	Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. Phytochemistry, 2004, 65, 1805-1816.	2.9	114
364	Basal Defenses Induced in Pepper by Lipopolysaccharides Are Suppressed by Xanthomonas campestris pv. vesicatoria. Molecular Plant-Microbe Interactions, 2004, 17, 805-815.	2.6	80
365	Rice Pi-ta gene Confers Resistance to the Major Pathotypes of the Rice Blast Fungus in the United States. Phytopathology, 2004, 94, 296-301.	2.2	78
366	The Effect of Stress on Genome Regulation and Structure. Annals of Botany, 2004, 94, 481-495.	2.9	262

#	Article	IF	Citations
367	Effects of Mosquito Genes on Plasmodium Development. Science, 2004, 303, 2030-2032.	12.6	390
368	The R3 Resistance to Phytophthora infestans in Potato is Conferred by Two Closely Linked R Genes with Distinct Specificities. Molecular Plant-Microbe Interactions, 2004, 17, 428-435.	2.6	121
369	The coat protein of tobamovirus acts as elicitor of both L 2 and L 4 gene-mediated resistance in Capsicum. Journal of General Virology, 2004, 85, 2077-2085.	2.9	52
370	TYPE III SECRETION SYSTEM EFFECTOR PROTEINS: Double Agents in Bacterial Disease and Plant Defense. Annual Review of Phytopathology, 2004, 42, 385-414.	7.8	684
371	Molecular and Genetic Basis of Plant-Fungal Pathogen Interactions. Applied Mycology and Biotechnology, 2004, 4, 59-97.	0.3	1
372	Allerg�nicitï;½ des prot�ines de dï;½fense vï;½gï;½tale. Revue Francaise D'allergologie Et D'immunologie 2004, 44, 469-469.	Clinique, 0.1	0
373	Host-Parasite Coevolutionary Conflict Between Arabidopsis and Downy Mildew. Science, 2004, 306, 1957-1960.	12.6	406
374	Metabolism-based herbicide resistance: regulationby safeners. Weed Science, 2004, 52, 454-467.	1.5	162
375	Light- and singlet oxygen-mediated antifungal activity of phenylphenalenone phytoalexins. Photochemical and Photobiological Sciences, 2004, 3, 706-710.	2.9	54
376	Salicylic Acid Is Part of the Mi-1-Mediated Defense Response to Root-Knot Nematode in Tomato. Molecular Plant-Microbe Interactions, 2004, 17, 351-356.	2.6	137
377	MYRbase: analysis of genome-wide glycine myristoylation enlarges the functional spectrum of eukaryotic myristoylated proteins. Genome Biology, 2004, 5, R21.	9.6	76
378	Flagellin Is Not a Major Defense Elicitor in Ralstonia solanacearum Cells or Extracts Applied to Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2004, 17, 696-706.	2.6	111
379	Type III protein secretion mechanism in mammalian and plant pathogens. Physica D: Nonlinear Phenomena, 2004, 1694, 181-181.	2.8	1
380	Linking sequence to phenotype in Phytophthora–plant interactions. Trends in Microbiology, 2004, 12, 193-200.	7.7	65
381	Specific recognition of bacteria by plant LysM domain receptor kinases. Trends in Microbiology, 2004, 12, 201-204.	7.7	30
382	Battling enteroinvasive bacteria: Nod1 comes to the rescue. Trends in Microbiology, 2004, 12, 529-532.	7.7	20
383	The role of SA in the hypersensitive response and systemic acquired resistance induced by elicitor PB90 from Phytophthora boehmeriae. Physiological and Molecular Plant Pathology, 2004, 65, 31-38.	2.5	29
384	Identification and expression analysis of BTH induced genes in papaya. Physiological and Molecular Plant Pathology, 2004, 65, 21-30.	2.5	18

#	Article	IF	CITATIONS
385	Ultrastructural characterisation of pathogen development and host responses during compatible and incompatible interactions between Arabidopsis thaliana and Peronospora parasitica. Physiological and Molecular Plant Pathology, 2004, 65, 67-78.	2.5	27
386	US-1 and US-8 genotypes of Phytophthora infestans differentially affect local, proximal and distal gene expression of phenylalanine ammonia-lyase and 3-hydroxy, 3-methylglutaryl CoA reductase in potato leaves. Physiological and Molecular Plant Pathology, 2004, 65, 157-167.	2.5	26
387	Identification and functional analysis of Arabidopsis proteins that interact with resistance gene product RPS2 in yeast. Physiological and Molecular Plant Pathology, 2004, 65, 257-267.	2.5	14
388	Illuminating the molecular basis of gene-for-gene resistance; Arabidopsis thaliana RRS1-R and its interaction with Ralstonia solanacearum popP2. Trends in Plant Science, 2004, 9, 1-4.	8.8	23
389	A new catch in the SNARE. Trends in Plant Science, 2004, 9, 187-195.	8.8	106
390	Convergent evolution of disease resistance genes. Trends in Plant Science, 2004, 9, 315-317.	8.8	17
391	Wake of the flood: ascribing functions to the wave of type III effector proteins of phytopathogenic bacteria. Current Opinion in Microbiology, 2004, 7, 11-18.	5.1	100
392	Plant perception systems for pathogen recognition and defence. Molecular Immunology, 2004, 41, 1055-1062.	2.2	66
393	Characterization of an NBS-LRR resistance gene homologue from soybean. Journal of Plant Physiology, 2004, 161, 815-822.	3.5	20
395	A "Whirly―Transcription Factor Is Required for Salicylic Acid-Dependent Disease Resistance in Arabidopsis. Developmental Cell, 2004, 6, 229-240.	7.0	183
396	Cg -Rel, the first Rel/NF- \hat{l}° B homolog characterized in a mollusk, the Pacific oyster Crassostrea gigas. FEBS Letters, 2004, 561, 75-82.	2.8	96
397	Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. Journal of Experimental Botany, 2004, 55, 2617-2623.	4.8	97
398	CHEMICAL BIOLOGY OF MULTI-HOST/PATHOGEN INTERACTIONS: Chemical Perception and Metabolic Complementation. Annual Review of Phytopathology, 2004, 42, 439-464.	7.8	62
399	Induced and Natural Epigenetic Variation. Cold Spring Harbor Symposia on Quantitative Biology, 2004, 69, 155-160.	1.1	5
400	Structural elucidation of novel phosphocholine-containing glycosylinositol-phosphoceramides in filamentous fungi and their induction of cell death of cultured rice cells. Biochemical Journal, 2004, 378, 461-472.	3.7	30
401	RaxH/RaxR: A Two-Component Regulatory System in Xanthomonas oryzae pv. oryzae Required for AvrXa21 Activity. Molecular Plant-Microbe Interactions, 2004, 17, 602-612.	2.6	71
402	Isolation and Characterization of a Novel Arabidopsis thaliana Mutant Unable to Develop Wilt Symptoms After Inoculation with a Virulent Strain of Ralstonia solanacearum. Phytopathology, 2004, 94, 289-295.	2.2	5
403	Rme1 is Necessary for Mi-1-Mediated Resistance and Acts Early in the Resistance Pathway. Molecular Plant-Microbe Interactions, 2004, 17, 55-61.	2.6	45

#	Article	IF	CITATIONS
404	Cloning, Characterization, and Evolution of the NBS-LRR-Encoding Resistance Gene Analogue Family in Polyploid Cotton (Gossypium hirsutum L.). Molecular Plant-Microbe Interactions, 2004, 17, 1234-1241.	2.6	49
405	Harpin Inactivates Mitochondria in Arabidopsis Suspension Cells. Molecular Plant-Microbe Interactions, 2004, 17, 131-139.	2.6	161
406	Identification of a Novel Pseudomonas syringae Psy61 Effector with Virulence and Avirulence Functions by a HrpL-Dependent Promoter-Trap Assay. Molecular Plant-Microbe Interactions, 2004, 17, 254-262.	2.6	14
407	Mutations in the Pseudomonas syringae avrRpt2 gene That Dissociate Its Virulence and Avirulence Activities Lead to Decreased Efficiency in AvrRpt2-Induced Disappearance of RIN4. Molecular Plant-Microbe Interactions, 2004, 17, 313-321.	2.6	24
408	The Avr1b Locus of Phytophthora sojae Encodes an Elicitor and a Regulator Required for Avirulence on Soybean Plants Carrying Resistance Gene Rps1b. Molecular Plant-Microbe Interactions, 2004, 17, 394-403.	2.6	343
409	The Avirulence Domain of Cauliflower mosaic virus Transactivator/Viroplasmin Is a Determinant of Viral Virulence in Susceptible Hosts. Molecular Plant-Microbe Interactions, 2004, 17, 475-483.	2.6	35
410	Arabidopsis DND2, a Second Cyclic Nucleotide-Gated Ion Channel Gene for Which Mutation Causes the "Defense, No Death―Phenotype. Molecular Plant-Microbe Interactions, 2004, 17, 511-520.	2.6	190
411	Characterization of the <i>Xanthomonas</i> AvrXv4 Effector, a SUMO Protease Translocated into Plant Cells. Molecular Plant-Microbe Interactions, 2004, 17, 633-643.	2.6	163
412	The Erwinia chrysanthemi EC16 hrp/hrc Gene Cluster Encodes an Active Hrp Type III Secretion System That Is Flanked by Virulence Genes Functionally Unrelated to the Hrp System. Molecular Plant-Microbe Interactions, 2004, 17, 644-653.	2.6	27
413	The Arabidopsis TIR-NB-LRR Gene RAC1 Confers Resistance to Albugo candida (White Rust) and Is Dependent on EDS1 but not PAD4. Molecular Plant-Microbe Interactions, 2004, 17, 711-719.	2.6	72
414	The Am Gene Controlling Resistance to Alfalfa mosaic virus in Tomato Is Located in the Cluster of Dominant Resistance Genes on Chromosome 6. Phytopathology, 2004, 94, 345-350.	2.2	26
415	Nitric Oxide and Reactive Oxygen Species Do Not Elicit Hypersensitive Cell Death but Induce Apoptosis in the Adjacent Cells During the Defense Response of Oat. Molecular Plant-Microbe Interactions, 2004, 17, 245-253.	2.6	102
416	Expression of HarpinXoo in Transgenic Tobacco Induces Pathogen Defense in the Absence of Hypersensitive Cell Death. Phytopathology, 2004, 94, 1048-1055.	2.2	116
417	Plant defence responses: what have we learnt from Arabidopsis?. Functional Plant Biology, 2005, 32, 1.	2.1	136
418	Differences in Intensity and Specificity of Hypersensitive Response Induction in Nicotiana spp. by INF1, INF2A, and INF2B of Phytophthora infestans. Molecular Plant-Microbe Interactions, 2005, 18, 183-193.	2.6	56
419	Pathogen-Induced Production of the Antifungal AFP Protein from Aspergillus giganteus Confers Resistance to the Blast Fungus Magnaporthe grisea in Transgenic Rice. Molecular Plant-Microbe Interactions, 2005, 18, 960-972.	2.6	60
420	Membrane Release and Destabilization of Arabidopsis RIN4 Following Cleavage by Pseudomonas syringae AvrRpt2. Molecular Plant-Microbe Interactions, 2005, 18, 1258-1268.	2.6	54
421	PecS and PecT Coregulate the Synthesis of HrpN and Pectate Lyases, Two Virulence Determinants in Erwinia chrysanthemi 3937. Molecular Plant-Microbe Interactions, 2005, 18, 1205-1214.	2.6	30

#	Article	IF	CITATIONS
422	Identification of Transcripts Involved in Resistance Responses to Leaf Spot Disease Caused by Cercosporidium personatum in Peanut (Arachis hypogaea). Phytopathology, 2005, 95, 381-387.	2.2	66
423	Biophoton Imaging: A Nondestructive Method for Assaying R Gene Responses. Molecular Plant-Microbe Interactions, 2005, 18, 95-102.	2.6	77
424	Diversification of Non-TIR Class NB-LRR Genes in Relation to Whole-Genome Duplication Events in Arabidopsis. Molecular Plant-Microbe Interactions, 2005, 18, 103-109.	2.6	24
425	Barley Rom1 Reveals a Potential Link Between Race-Specific and Nonhost Resistance Responses to Powdery Mildew Fungi. Molecular Plant-Microbe Interactions, 2005, 18, 291-299.	2.6	13
426	Tomato Defense to Oldium neolycopersici: Dominant OI Genes Confer Isolate-Dependent Resistance Via a Different Mechanism Than Recessive ol-2. Molecular Plant-Microbe Interactions, 2005, 18, 354-362.	2.6	83
427	Autoactive Alleles of the Flax L6 Rust Resistance Gene Induce Non-Race-Specific Rust Resistance Associated with the Hypersensitive Response. Molecular Plant-Microbe Interactions, 2005, 18, 570-582.	2.6	110
428	The Late Blight Resistance Locus Rpi-blb3 from Solanum bulbocastanum Belongs to a Major Late Blight R Gene Cluster on Chromosome 4 of Potato. Molecular Plant-Microbe Interactions, 2005, 18, 722-729.	2.6	133
429	Natural Variation in the Arabidopsis Response to the Avirulence Gene hopPsyA Uncouples the Hypersensitive Response from Disease Resistance. Molecular Plant-Microbe Interactions, 2005, 18, 1054-1060.	2.6	90
430	Genetic Analysis of Developmentally Regulated Resistance to Downy Mildew (Hyaloperonospora) Tj ETQq0 0 0	rgBT_/Over	ock 10 Tf 50
431	Late Blight of Potato and Tomato in the Genomics Era. Plant Disease, 2005, 89, 692-699.	1.4	99
431	Late Blight of Potato and Tomato in the Genomics Era. Plant Disease, 2005, 89, 692-699. The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiology and Biochemistry, 2005, 43, 397-406.	1.4 5.8	99
	The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiology and Biochemistry, 2005,		
432	The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiology and Biochemistry, 2005, 43, 397-406. Loss of susceptibility as an alternative for nematode resistance. Current Opinion in Biotechnology,	5.8	60
432 433	The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiology and Biochemistry, 2005, 43, 397-406. Loss of susceptibility as an alternative for nematode resistance. Current Opinion in Biotechnology, 2005, 16, 112-117. Resistance to plant viruses: old issue, news answers?. Current Opinion in Biotechnology, 2005, 16,	5.8 6.6	60 59
432 433 434	The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiology and Biochemistry, 2005, 43, 397-406. Loss of susceptibility as an alternative for nematode resistance. Current Opinion in Biotechnology, 2005, 16, 112-117. Resistance to plant viruses: old issue, news answers?. Current Opinion in Biotechnology, 2005, 16, 118-122. Cloning of a novel phosphateserine aminotransferase gene from a Triticum aestivum-Elytrigia	5.8 6.6 6.6	60 59 92
432 433 434 435	The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiology and Biochemistry, 2005, 43, 397-406. Loss of susceptibility as an alternative for nematode resistance. Current Opinion in Biotechnology, 2005, 16, 112-117. Resistance to plant viruses: old issue, news answers?. Current Opinion in Biotechnology, 2005, 16, 118-122. Cloning of a novel phosphateserine aminotransferase gene from a Triticum aestivum-Elytrigia elongatum alien substitution line with resistance to powdery mildew. Science Bulletin, 2005, 50, 646. Genome-wide identification of R genes and exploitation of candidate RGA markers in rice. Science	5.8 6.6 6.6	60 59 92 8
432 433 434 435	The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiology and Biochemistry, 2005, 43, 397-406. Loss of susceptibility as an alternative for nematode resistance. Current Opinion in Biotechnology, 2005, 16, 112-117. Resistance to plant viruses: old issue, news answers?. Current Opinion in Biotechnology, 2005, 16, 118-122. Cloning of a novel phosphateserine aminotransferase gene from a Triticum aestivum-Elytrigia elongatum alien substitution line with resistance to powdery mildew. Science Bulletin, 2005, 50, 646. Genome-wide identification of R genes and exploitation of candidate RGA markers in rice. Science Bulletin, 2005, 50, 1120.	5.8 6.6 6.6	60 59 92 8 5

#	Article	IF	CITATIONS
440	The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana. Plant Journal, 2005, 41, 801-814.	5.7	79
441	The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant Journal, 2005, 42, 95-110.	5.7	157
442	Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant Journal, 2005, 42, 251-261.	5.7	355
443	A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant Journal, 2005, 43, 873-888.	5.7	164
444	The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway. Plant Journal, 2005, 44, 155-166.	5.7	76
445	A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response. Plant Journal, 2005, 44, 258-270.	5.7	96
446	The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant Journal, 2005, 44, 208-222.	5.7	327
447	Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins. Plant Journal, 2005, 44, 348-359.	5.7	98
448	Structure-function analysis of the plasma membrane- localized Arabidopsis defense component ACD6. Plant Journal, 2005, 44, 798-809.	5.7	65
449	A constitutivePR-1::luciferaseexpression screen identifies Arabidopsis mutants with differential disease resistance to both biotrophic and necrotrophic pathogens. Molecular Plant Pathology, 2005, 6, 31-41.	4.2	8
450	cDNA-AFLP reveals genes differentially expressed during the hypersensitive response of cassava. Molecular Plant Pathology, 2005, 6, 113-123.	4.2	19
451	Host defence in a developmental context. Molecular Plant Pathology, 2005, 6, 347-360.	4.2	76
452	Conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. s.l Molecular Plant Pathology, 2005, 6, 395-409.	4.2	219
453	Microbial avirulence determinants: guided missiles or antigenic flak?. Molecular Plant Pathology, 2005, 6, 551-559.	4.2	18
454	Of genes and genomes, needles and haystacks: Blumeria graminis and functionality. Molecular Plant Pathology, 2005, 6, 561-575.	4.2	80
455	Invertebrate immunity and the limits of mechanistic immunology. Nature Immunology, 2005, 6, 651-654.	14.5	240
456	Are innate immune signaling pathways in plants and animals conserved?. Nature Immunology, 2005, 6, 973-979.	14.5	844
457	Induction and suppression of RNA silencing: insights from viral infections. Nature Reviews Genetics, 2005, 6, 206-220.	16.3	703

#	Article	IF	CITATIONS
458	A new CARD15 mutation in Blau syndrome. European Journal of Human Genetics, 2005, 13, 742-747.	2.8	72
459	The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO Journal, 2005, 24, 2579-2589.	7.8	480
460	Genetic architecture of Arabidopsis thaliana response to infection by Pseudomonas syringae. Heredity, 2005, 94, 507-517.	2.6	28
461	Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. Plant Journal, 2005, 43, 284-298.	5.7	130
462	NRG1, a CC-NB-LRR Protein, together with N, a TIR-NB-LRR Protein, Mediates Resistance against Tobacco Mosaic Virus. Current Biology, 2005, 15, 968-973.	3.9	267
463	MOS2, a Protein Containing G-Patch and KOW Motifs, Is Essential for Innate Immunity in Arabidopsis thaliana. Current Biology, 2005, 15, 1936-1942.	3.9	84
464	Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 2005, 23, 283-333.	11.7	1,555
465	Vacuolar proteases livening up programmed cell death. Trends in Cell Biology, 2005, 15, 124-127.	7.9	52
466	Engineering plants with increased disease resistance: how are we going to express it?. Trends in Biotechnology, 2005, 23, 283-290.	9.3	197
467	Evolving disease resistance genes. Current Opinion in Plant Biology, 2005, 8, 129-134.	7.1	325
468	Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology, 2005, 8, 397-403.	7.1	983
469	The nuclear localization of the Arabidopsis transcription factor TIP is blocked by its interaction with the coat protein of Turnip crinkle virus. Virology, 2005, 331, 316-324.	2.4	59
470	Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theoretical and Applied Genetics, 2005, 110, 660-668.	3.6	103
471	Distinct post-transcriptional modifications result into seven alternative transcripts of the CC–NBS–LRR gene JA1tr of Phaseolus vulgaris. Theoretical and Applied Genetics, 2005, 110, 895-905.	3.6	35
472	Isolation of TIR and nonTIR NBS–LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Theoretical and Applied Genetics, 2005, 111, 819-830.	3.6	56
473	Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theoretical and Applied Genetics, 2005, 111, 1504-1513.	3.6	74
474	Genetic and physical mapping of Pi37(t), a new gene conferring resistance to rice blast in the famous cultivar St. No. 1. Theoretical and Applied Genetics, 2005, 111, 1563-1570.	3.6	63
475	Identification of a large cluster of coiled coil-nucleotide binding site–leucine rich repeat-type genes from the Rps1 region containing Phytophthora resistance genes in soybean. Theoretical and Applied Genetics, 2005, 111, 75-86.	3.6	65

#	Article	IF	CITATIONS
476	RGA- and RAPD-derived SCAR markers for a Brassica B-genome introgression conferring resistance to blackleg in oilseed rape. Theoretical and Applied Genetics, 2005, 111, 281-290.	3.6	32
477	Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2. Theoretical and Applied Genetics, 2005, 111, 711-722.	3.6	68
478	Intestinal epithelial barrier and mucosal immunity. Cellular and Molecular Life Sciences, 2005, 62, 1339-1348.	5.4	67
479	Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide. Planta, 2005, 220, 826-837.	3.2	115
480	A proximal upstream sequence controls tissue-specific expression of Lem2, a salicylate-inducible barley lectin-like gene. Planta, 2005, 221, 170-183.	3.2	28
481	Motifs specific for the ADR1 NBS–LRR protein family in Arabidopsis are conserved among NBS–LRR sequences from both dicotyledonous and monocotyledonous plants. Planta, 2005, 221, 597-601.	3.2	21
482	Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8. Molecular Genetics and Genomics, 2005, 274, 394-401.	2.1	80
483	High-resolution mapping, cloning and molecular characterization of the Pi-k h gene of rice, which confers resistance to Magnaporthe grisea. Molecular Genetics and Genomics, 2005, 274, 569-578.	2.1	189
484	Survey of resistance gene analogs in Solanum caripense, a relative of potato and tomato, and update on R gene genealogy. Molecular Genetics and Genomics, 2005, 274, 595-605.	2.1	17
485	Moss-Erwinia pathosystem reveals possible similarities in pathogenesis and pathogen defense in vascular and nonvascular plants. Journal of General Plant Pathology, 2005, 71, 23-28.	1.0	41
486	Defense responses of Arabidopsis thaliana inoculated with Pseudomonas syringae pv. tabaci wild type and defective mutants for flagellin (î"fliC) and flagellin-glycosylation (î"orf1). Journal of General Plant Pathology, 2005, 71, 302-307.	1.0	21
487	Hrp-dependent biotrophic mechanism of virulence: How has it evolved in tumorigenic bacteria?. Phytoparasitica, 2005, 33, 317-324.	1.2	8
488	Expression of the Hypersensitive Response-assisting Protein in Arabidopsis Results in Harpin-dependent Hypersensitive Cell Death in Response to Erwinia carotovora. Plant Molecular Biology, 2005, 59, 771-780.	3.9	26
489	Secondary metabolites fulfill specific ecological functions in plants. , 2005, , 403-412.		0
490	A Scientific Review of The Hypersensitive Response. Journal of Natural Resources and Life Sciences Education, 2005, 34, 22-24.	0.2	0
491	Victorin Triggers Programmed Cell Death and the Defense Response via Interaction with a Cell Surface Mediator. Plant and Cell Physiology, 2005, 46, 1787-1798.	3.1	39
492	RESISTANCE TO FUSARIUM OXYSPORUM 1, a Dominant Arabidopsis Disease-Resistance Gene, Is Not Race Specific. Genetics, 2005, 171, 305-321.	2.9	299
493	HOW PLANTS DEFEND THEMSELVES AGAINST PATHOGENS. , 2005, , 207-248.		31

#	Article	IF	CITATIONS
494	Reduced Genetic Variation Occurs among Genes of the Highly Clonal Plant Pathogen Xanthomonas axonopodis pv. vesicatoria, Including the Effector Gene avrBs2. Applied and Environmental Microbiology, 2005, 71, 2418-2432.	3.1	36
495	Regulation of Plant Disease Resistance, Stress Responses, Cell Death, and Ethylene Signaling in Arabidopsis by the EDR1 Protein Kinase. Plant Physiology, 2005, 138, 1018-1026.	4.8	140
496	Natural Variation in the Pto Pathogen Resistance Gene Within Species of Wild Tomato (Lycopersicon). I. Functional Analysis of Pto Alleles. Genetics, 2005, 171, 345-357.	2.9	40
497	Patterns of Diversifying Selection in the Phytotoxin-like scr74 Gene Family of Phytophthora infestans. Molecular Biology and Evolution, 2005, 22, 659-672.	8.9	140
498	Electrophysiological Characterization of the Arabidopsis avrRpt2-Specific Hypersensitive Response in the Absence of Other Bacterial Signals. Plant Physiology, 2005, 138, 1009-1017.	4.8	35
499	Inhibitor ProteinSequence data from this article have been deposited with EMBL/GenBank Data Libraries under accession nos. AY461847, AY466133, AY466134, AY466135, AY466136, AY466137, AY466138, AY466139, AY466140, AY466141, AY466142, AY466143, AY466144, AY466145, AY466146, AY466147, AY4661 AY466149, AY466150, AY466151, AY466152, AY466153, AY466154, AY466155, AY466156, AY468381, AY4683	48,	66
500	AY468383, AY468384, Genetics, 2005, 169, 1009-1019. Molecular Basis for the RIN4 Negative Regulation of RPS2 Disease Resistance. Plant Cell, 2005, 17, 1292-1305.	6.6	153
501	Defense-related genes expressed in Norway spruce roots after infection with the root rot pathogen Ceratobasidium bicorne (anamorph: Rhizoctonia sp.). Tree Physiology, 2005, 25, 1533-1543.	3.1	28
502	Functional Analysis of Avr9/Cf-9 Rapidly Elicited Genes Identifies a Protein Kinase, ACIK1, That Is Essential for Full Cf-9–Dependent Disease Resistance in Tomato. Plant Cell, 2005, 17, 295-310.	6.6	164
503	RIN13 Is a Positive Regulator of the Plant Disease Resistance Protein RPM1. Plant Cell, 2005, 17, 1016-1028.	6.6	32
504	Benzothiadiazole Induces Local Resistance to Bemisia tabaci (Hemiptera: Aleyrodidae) in Tomato Plants. Journal of Economic Entomology, 2005, 98, 2266-2271.	1.8	30
505	Structure of Apaf-1 in the Auto-Inhibited Form: A Critical Role for ADP. Cell Cycle, 2005, 4, 1001-1003.	2.6	25
506	Molecular characterization of a PR4 gene in Chinese cabbage. Animal Cells and Systems, 2005, 9, 239-244.	0.2	4
507	Cloning and characterization of a non-TIR-NBS-LRR type disease resistance gene analogue from peach. DNA Sequence, 2005, 16, 103-110.	0.7	6
509	A maize resistance gene functions against bacterial streak disease in rice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15383-15388.	7.1	243
510	Genetic dissection of inflammatory bowel disease: unravelling etiology and improving diagnostics. Expert Review of Clinical Immunology, 2005, 1, 609-617.	3.0	2
511	Fusarium oxysporum Evades I-3-Mediated Resistance Without Altering the Matching Avirulence Gene. Molecular Plant-Microbe Interactions, 2005, 18, 15-23.	2.6	120
512	Genome Organization of More Than 300 Defensin-Like Genes in Arabidopsis Â. Plant Physiology, 2005, 138, 600-610.	4.8	226

#	Article	IF	CITATIONS
513	A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2549-2554.	7.1	231
514	Molecular characterization of proteolytic cleavage sites of the Pseudomonas syringae effector AvrRpt2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2087-2092.	7.1	143
515	A central role for S-nitrosothiols in plant disease resistance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8054-8059.	7.1	511
516	The Membrane-Anchored BOTRYTIS-INDUCED KINASE1 Plays Distinct Roles in Arabidopsis Resistance to Necrotrophic and Biotrophic Pathogens. Plant Cell, 2005, 18, 257-273.	6.6	381
517	A Putative Nucleoporin 96 Is Required for Both Basal Defense and Constitutive Resistance Responses Mediated by suppressor of npr1-1,constitutive 1 Â. Plant Cell, 2005, 17, 1306-1316.	6.6	211
518	NpPDR1, a Pleiotropic Drug Resistance-Type ATP-Binding Cassette Transporter from Nicotiana plumbaginifolia, Plays a Major Role in Plant Pathogen Defense. Plant Physiology, 2005, 139, 341-352.	4.8	188
519	Phylogenomic Analysis of the Receptor-Like Proteins of Rice and Arabidopsis. Plant Physiology, 2005, 138, 611-623.	4.8	211
520	Toll-like receptor-mediated responses of primary intestinal epithelial cells during the development of colitis. American Journal of Physiology - Renal Physiology, 2005, 288, G514-G524.	3.4	70
521	Loss and Gain of Elicitor Function of Soybean Mosaic Virus G7 Provoking Rsv1 -Mediated Lethal Systemic Hypersensitive Response Maps to P3. Journal of Virology, 2005, 79, 1215-1222.	3.4	79
522	Allelic Series of Four Powdery Mildew Resistance Genes at the Pm3 Locus in Hexaploid Bread Wheat. Plant Physiology, 2005, 139, 885-895.	4.8	156
523	The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6496-6501.	7.1	250
524	G Protein Regulation of Disease Resistance During Infection of Rice with Rice Blast Fungus. Science Signaling, 2005, 2005, cm13-cm13.	3.6	17
525	Cereal host interactions with Russian wheat aphid: A review. Journal of Plant Interactions, 2005, 1, 211-222.	2.1	34
526	Localization of Ptr ToxA Produced by Pyrenophora tritici-repentis Reveals Protein Import into Wheat Mesophyll Cells. Plant Cell, 2005, 17, 3203-3212.	6.6	196
527	Recognition and rejection of self in plant self-incompatibility: comparisons to animal histocompatibility. Trends in Immunology, 2005, 26, 412-418.	6.8	86
528	EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. Plant Journal, 2005, 42, 376-391.	5.7	98
529	Non-host resistance in plants: new insights into an old phenomenon. Molecular Plant Pathology, 2005, 6, 335-345.	4.2	279
530	Rice Defense Mechanisms Against Cochliobolus miyabeanus and Magnaporthe grisea Are Distinct. Phytopathology, 2005, 95, 1248-1255.	2.2	63

#	Article	IF	CITATIONS
531	Antagonistic Control of Disease Resistance Protein Stability in the Plant Immune System. Science, 2005, 309, 929-932.	12.6	226
532	Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. Plant Cell, 2005, 17, 1866-1875.	6.6	2,408
533	Physiologic and Pathologic Interactions of Bacteria with Gastrointestinal Epithelium. Gastroenterology Clinics of North America, 2005, 34, 383-399.	2.2	39
535	Programmed Cell Death in Plants During Development and Stress Responses. , 2004, , 107-152.		1
536	Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1773-1778.	7.1	275
537	PLANT SCIENCES: Recognition at a Distance. Science, 2005, 308, 506-508.	12.6	18
538	Activation of a Phytopathogenic Bacterial Effector Protein by a Eukaryotic Cyclophilin. Science, 2005, 308, 548-550.	12.6	220
539	An Arabidopsis Homeodomain Transcription Factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, Mediates Resistance to Infection by Necrotrophic Pathogens. Plant Cell, 2005, 17, 2123-2137.	6.6	108
540	Induction of a sunflower CC-NBS-LRR resistance gene analogue during incompatible interaction with Plasmopara halstedii. Journal of Experimental Botany, 2005, 56, 567-575.	4.8	45
541	Molecular tools in the study of the white pine blister rust [<i>Cronartium ribicola</i>] pathosystem. Canadian Journal of Plant Pathology, 2005, 27, 510-520.	1.4	5
542	Identification of Extracellular N -Acylhomoserine Lactone Acylase from a Streptomyces sp. and Its Application to Quorum Quenching. Applied and Environmental Microbiology, 2005, 71, 2632-2641.	3.1	254
543	The arms race continues: battle strategies between plants and fungal pathogens. Current Opinion in Microbiology, 2005, 8, 399-404.	5.1	109
544	α-Dioxygenases. Biochemical and Biophysical Research Communications, 2005, 338, 169-174.	2.1	76
545	Two Pseudomonas syringae Type III Effectors Inhibit RIN4-Regulated Basal Defense in Arabidopsis. Cell, 2005, 121, 749-759.	28.9	416
546	Genetics of anti-parasite resistance in invertebrates. Developmental and Comparative Immunology, 2005, 29, 9-32.	2.3	73
547	Regulation of Nod1 by Hsp90 chaperone complex. FEBS Letters, 2005, 579, 4513-4519.	2.8	70
548	Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Science, 2005, 169, 695-703.	3.6	96
549	Monitoring the expression patterns of potato genes associated with quantitative resistance to late blight during Phytophthora infestans infection using cDNA microarrays. Plant Science, 2005, 169, 1155-1167.	3.6	47

#	Article	IF	CITATIONS
550	Inducers of resistance reduce common bunt infection in wheat seedlings while differentially regulating defence-gene expression. Physiological and Molecular Plant Pathology, 2005, 67, 138-148.	2.5	55
551	Regulation of the Arabidopsis defense transcriptome. Trends in Plant Science, 2005, 10, 71-78.	8.8	396
552	Hemipterans as Plant Pathogens. Annual Review of Phytopathology, 2005, 43, 491-521.	7.8	223
553	PLANT-SPECIFIC CALMODULIN-BINDING PROTEINS. Annual Review of Plant Biology, 2005, 56, 435-466.	18.7	379
554	Signal Signature and Transcriptome Changes of Arabidopsis During Pathogen and Insect Attack. Molecular Plant-Microbe Interactions, 2005, 18, 923-937.	2.6	909
555	The cytosolic pattern-recognition receptor Nod2 and inflammatory granulomatous disorders. Journal of Dermatological Science, 2005, 39, 71-80.	1.9	34
558	Benzothiadiazole Induces Local Resistance to <i>Bemisia tabaci</i> (Hemiptera: Aleyrodidae) in Tomato Plants. Journal of Economic Entomology, 2005, 98, 2266-2271.	1.8	14
559	NOD-LRR PROTEINS: Role in Host-Microbial Interactions and Inflammatory Disease. Annual Review of Biochemistry, 2005, 74, 355-383.	11.1	871
560	Lipids, Lipases, and Lipid-Modifying Enzymes in Plant Disease Resistance. Annual Review of Phytopathology, 2005, 43, 229-260.	7.8	255
561	The Biotrophic Stages of Oomycete–Plant Interactions. Advances in Applied Microbiology, 2005, 57, 217-243.	2.4	39
562	Molecular Interactions Between Tomato and the Leaf Mold PathogenCladosporium fulvum. Annual Review of Phytopathology, 2005, 43, 395-436.	7.8	177
564	From Markers to Cloned Genes: Map-Based Cloning. , 2004, , 55-86.		1
565	Plant NBS-LRR proteins: adaptable guards. Genome Biology, 2006, 7, 212.	9.6	804
567	Signal Perception and Transduction in Plant Innate Immunity. , 2006, , 95-109.		1
568	Nematode Interactions in Nature: Models for Sustainable Control of Nematode Pests of Crop Plants?. Advances in Agronomy, 2006, 89, 227-260.	5.2	54
569	Electrophysiology and Plant Responses to Biotic Stress. , 2006, , 461-481.		14
570	Plant Responses to UV Radiation and Links to Pathogen Resistance. International Review of Cytology, 2006, 255, 1-40.	6.2	57
571	A Functional Screen to Characterize the Secretomes of Eukaryotic Pathogens and Their Hosts In Planta. Molecular Plant-Microbe Interactions, 2006, 19, 1368-1377.	2.6	76

#	Article	IF	CITATIONS
572	A Retrospective of an Unconventionally Trained Plant Pathologist: Plant Diseases to Molecular Plant Pathology. Annual Review of Phytopathology, 2006, 44, 1-17.	7.8	34
574	Recognition and Signal Transduction Associated with R Gene-mediated Resistance. , 2006, , 73-98.		5
575	Host Gene-mediated Virus Resistance Mechanisms and Signaling in Arabidopsis. , 2006, , 147-164.		3
576	Subterfuge and Manipulation: Type III Effector Proteins of Phytopathogenic Bacteria. Annual Review of Microbiology, 2006, 60, 425-449.	7.3	374
577	Reactive Oxygen Species Signaling in Plants. Antioxidants and Redox Signaling, 2006, 8, 1757-1764.	5.4	300
578	The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. Journal of Experimental Biology, 2006, 209, 2377-2383.	1.7	211
579	Plant Signal Transduction and Defense Against Viral Pathogens. Advances in Virus Research, 2006, 66, 161-191.	2.1	50
580	Early Signaling Events Induced by Elicitors of Plant Defenses. Molecular Plant-Microbe Interactions, 2006, 19, 711-724.	2.6	509
581	Two modes of pathogen recognition by plants. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8575-8576.	7.1	93
582	Recent developments toward achieving fungal disease resistance in transgenic plants. Canadian Journal of Plant Pathology, 2006, 28, S298-S308.	1.4	42
583	A two component chitin-binding protein from French bean - association of a proline-rich protein with a cysteine-rich polypeptide. FEBS Letters, 2006, 580, 1541-1546.	2.8	40
584	An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Letters, 2006, 580, 3498-3504.	2.8	134
585	CITRX thioredoxin is a putative adaptor protein connecting Cf-9 and the ACIK1 protein kinase during the Cf-9/Avr9- induced defence response. FEBS Letters, 2006, 580, 4236-4241.	2.8	48
586	A cDNA-AFLP based strategy to identify transcripts associated with avirulence in Phytophthora infestans. Fungal Genetics and Biology, 2006, 43, 111-123.	2.1	29
587	The Evolution of Adaptive Immune Systems. Cell, 2006, 124, 815-822.	28.9	642
588	Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. Cell, 2006, 124, 803-814.	28.9	2,467
589	Specific Bacterial Suppressors of MAMP Signaling Upstream of MAPKKK in Arabidopsis Innate Immunity. Cell, 2006, 125, 563-575.	28.9	386
590	Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 2006, 126, 969-980.	28.9	1,653

#	ARTICLE	IF	CITATIONS
591	Dual Detection of Fungal Infections in Drosophila via Recognition of Glucans and Sensing of Virulence Factors. Cell, 2006, 127, 1425-1437.	28.9	394
592	Differential display profiling of the Nicotiana response to LPS reveals elements of plant basal resistance. Biochemical and Biophysical Research Communications, 2006, 344, 1001-1007.	2.1	47
593	Suppression of CaCYP1, a novel cytochrome P450 gene, compromises the basal pathogen defense response of pepper plants. Biochemical and Biophysical Research Communications, 2006, 345, 638-645.	2.1	49
594	Mechanisms Involved in Induced Resistance to Plant Viruses. , 2006, , 335-359.		3
595	Within-Species Flagellin Polymorphism in Xanthomonas campestris pv campestris and Its Impact on Elicitation of Arabidopsis FLAGELLIN SENSING2–Dependent Defenses. Plant Cell, 2006, 18, 764-779.	6.6	181
596	MEKK1 Is Required for MPK4 Activation and Regulates Tissue-specific and Temperature-dependent Cell Death in Arabidopsis. Journal of Biological Chemistry, 2006, 281, 36969-36976.	3.4	271
597	An Arabidopsis Glutathione Peroxidase Functions as Both a Redox Transducer and a Scavenger in Abscisic Acid and Drought Stress Responses. Plant Cell, 2006, 18, 2749-2766.	6.6	466
598	Who comes first? How plant pathogenic bacteria orchestrate type III secretion. Current Opinion in Microbiology, 2006, 9, 193-200.	5.1	103
599	Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. Journal of Plant Physiology, 2006, 163, 233-255.	3.5	165
600	Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. Journal of Plant Physiology, 2006, 163, 256-272.	3.5	142
601	Effects of mutations and constitutive overexpression of EDS1 and PAD4 on plant resistance to different types of microbial pathogens. Plant Science, 2006, 171, 251-262.	3.6	39
602	Analysis of organ-specific responses of Pinus sylvestris to shoot (Gremmeniella abietina) and root (Heterobasidion annosum) pathogens. Physiological and Molecular Plant Pathology, 2006, 69, 140-152.	2.5	19
603	Trafficking arms: oomycete effectors enter host plant cells. Trends in Microbiology, 2006, 14, 8-11.	7.7	278
604	Polygalacturonase inhibiting proteins: players in plant innate immunity?. Trends in Plant Science, 2006, 11, 65-70.	8.8	153
605	Engineering Fungal Resistance in Crops. , 2006, , 225-239.		5
607	Apple Proteins that Interact with DspA/E, a Pathogenicity Effector of Erwinia amylovora, the Fire Blight Pathogen. Molecular Plant-Microbe Interactions, 2006, 19, 53-61.	2.6	68
608	A Pseudomonas syringae pv. tomato avrE1/hopM1 Mutant Is Severely Reduced in Growth and Lesion Formation in Tomato. Molecular Plant-Microbe Interactions, 2006, 19, 99-111.	2.6	146
609	Proteomic Comparison of Needles from Blister Rust-Resistant and Susceptible Pinus strobus Seedlings Reveals UpRegulation of Putative Disease Resistance Proteins. Molecular Plant-Microbe Interactions, 2006, 19, 150-160.	2.6	33

#	Article	IF	CITATIONS
610	Pervasive Purifying Selection Characterizes the Evolution of I2 Homologs. Molecular Plant-Microbe Interactions, 2006, 19, 288-303.	2.6	24
611	Heterologous Expression of the Mi-1.2 Gene from Tomato Confers Resistance Against Nematodes but Not Aphids in Eggplant. Molecular Plant-Microbe Interactions, 2006, 19, 383-388.	2.6	89
612	The Erwinia amylovora avrRpt2EA Gene Contributes to Virulence on Pear and AvrRpt2EA Is Recognized by Arabidopsis RPS2 When Expressed in Pseudomonas syringae. Molecular Plant-Microbe Interactions, 2006, 19, 644-654.	2.6	83
613	Synergistic Interactions of the Plant Cell Death Pathways Induced by Phytophthora infestans Nep1-Like Protein PiNPP1.1 and INF1 Elicitin. Molecular Plant-Microbe Interactions, 2006, 19, 854-863.	2.6	178
614	Stage-Specific Suppression of Basal Defense Discriminates Barley Plants Containing Fast- and Delayed-Acting Mla Powdery Mildew Resistance Alleles. Molecular Plant-Microbe Interactions, 2006, 19, 939-947.	2.6	88
615	Yeast Increases Resistance in Arabidopsis Against Pseudomonas syringae and Botrytis cinerea by Salicylic Acid-Dependent as Well as -Independent Mechanisms. Molecular Plant-Microbe Interactions, 2006, 19, 1138-1146.	2.6	35
616	Cloning and Characterization of Disease Resistance Gene Analogs from Poplar (Populus tremula) Chromosome 1. International Journal of Plant Sciences, 2006, 167, 403-412.	1.3	5
617	Does <l>R</l> Gene Resistance Allow Wheat to Prevent Plant Growth Effects Associated with Hessian Fly (Diptera: Cecidomyiidae) Attack?. Journal of Economic Entomology, 2006, 99, 1842-1853.	1.8	31
618	Recent Molecular and Genomic Studies on Stress Tolerance of Forage and Turf Grasses. Crop Science, 2006, 46, 497-511.	1.8	61
619	The Tat Pathway of the Plant Pathogen Pseudomonas syringae is Required for Optimal Virulence. Molecular Plant-Microbe Interactions, 2006, 19, 200-212.	2.6	40
620	Analysis of the defence phosphoproteome of Arabidopsis thaliana using differential mass tagging. Proteomics, 2006, 6, 4155-4165.	2.2	146
621	A proteomic analysis of 14-3-3 binding proteins from developing barley grains. Proteomics, 2006, 6, 1886-1896.	2.2	104
622	Signal Transduction and Transcriptional Regulation of Plant Defence Responses. Journal of Phytopathology, 2006, 154, 65-74.	1.0	51
623	Isolation and Characterization of Resistance Gene Homology Sequence from Wheat. Journal of Phytopathology, 2006, 154, 670-675.	1.0	5
624	Cloning, genetic and physical mapping of resistance gene analogs in barley (Hordeum vulgare L.). Plant Breeding, 2006, 125, 32-42.	1.9	8
625	Analysis of strawberry genes differentially expressed in response to Colletotrichum infection. Physiologia Plantarum, 2006, 128, 633-650.	5.2	74
626	Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnology Journal, 2006, 4, 647-666.	8.3	80
627	Majorâ€gene resistance to the rust pathogen Coleosporium ipomoeae is common in natural populations of Ipomoea purpurea. New Phytologist, 2006, 171, 137-144.	7.3	32

#	Article	IF	CITATIONS
628	Cereal rust fungi genomics and the pursuit of virulence and avirulence factors. FEMS Microbiology Letters, 2006, 264, 1-7.	1.8	22
629	Setting SNAREs in a Different Wood. Traffic, 2006, 7, 627-638.	2.7	66
630	Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex fromXanthomonas campestrispv.vesicatoria. Molecular Microbiology, 2006, 59, 513-527.	2.5	61
631	AvrB mutants lose both virulence and avirulence activities on soybean and Arabidopsis. Molecular Microbiology, 2006, 60, 951-962.	2.5	33
632	MAMPs and MIMPs: proposed classifications for inducers of innate immunity. Molecular Microbiology, 2006, 61, 1365-1371.	2.5	148
633	Eukaryotic cyclophilin as a molecular switch for effector activation. Molecular Microbiology, 2006, 61, 1485-1496.	2.5	64
634	The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Molecular Microbiology, 2006, 62, 26-44.	2.5	212
635	Recent insights into R gene evolution. Molecular Plant Pathology, 2006, 7, 437-448.	4.2	185
636	Agroinfection-based high-throughput screening reveals specific recognition of INF elicitins in Solanum. Molecular Plant Pathology, 2006, 7, 499-510.	4.2	50
637	Acyl-homoserine lactones modulate the settlement rate of zoospores of the marine alga Ulva intestinalis via a novel chemokinetic mechanism. Plant, Cell and Environment, 2006, 29, 608-618.	5 . 7	101
638	Functionality of resistance gene Hero, which controls plant root-infecting potato cyst nematodes, in leaves of tomato. Plant, Cell and Environment, 2006, 29, 1372-1378.	5.7	16
639	TomatoPtoencodes a functionalN-myristoylation motif that is required for signal transduction inNicotiana benthamiana. Plant Journal, 2006, 45, 31-45.	5 . 7	55
640	Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Plant Journal, 2006, 46, 14-33.	5 . 7	220
641	Dominantâ€negative interference with defence signalling by truncation mutations of the tomato Cfâ€9 disease resistance gene. Plant Journal, 2006, 46, 385-399.	5 . 7	6
642	A B-lectin receptor kinase gene conferring rice blast resistance. Plant Journal, 2006, 46, 794-804.	5 . 7	459
643	The disease resistance geneDm3is infrequent in natural populations ofLactuca serrioladue to deletions and frequent gene conversions at theRGC2locus. Plant Journal, 2006, 47, 38-48.	5.7	34
644	TheArabidopsis thalianaTIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis. Plant Journal, 2006, 47, 829-840.	5.7	103
645	The C-terminal half ofPhytophthora infestansRXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death inNicotiana benthamiana. Plant Journal, 2006, 48, 165-176.	5.7	402

#	Article	IF	CITATIONS
646	The C2 domain protein BAP1 negatively regulates defense responses in Arabidopsis. Plant Journal, 2006, 48, 238-248.	5.7	134
647	The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. Plant Journal, 2006, 48, 485-498.	5.7	192
648	Breaching the great wall: peptidoglycan and microbial interactions. Nature Reviews Microbiology, 2006, 4, 710-716.	28.6	113
649	The plant immune system. Nature, 2006, 444, 323-329.	27.8	10,939
650	Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Research, 2006, 16, 413-426.	12.0	176
651	Inhibition of human immunodeficiency virus type $1\mathrm{by}$ RNA interference using long-hairpin RNA. Gene Therapy, 2006, 13, 1403-1413.	4.5	69
652	A tomato mutant that shows stunting, wilting, progressive necrosis and constitutive expression of defence genes contains a recombinant Hcr9 gene encoding an autoactive protein. Plant Journal, 2006, 46, 369-384.	5.7	8
653	Phospholipase-dependent signalling during the AvrRpm1- and AvrRpt2-induced disease resistance responses inArabidopsis thaliana. Plant Journal, 2006, 47, 947-959.	5.7	160
654	A cDNA microarray approach to decipher sunflower (Helianthus annuus) responses to the necrotrophic fungus Phoma macdonaldii. New Phytologist, 2006, 170, 523-536.	7.3	38
655	Crystal structures of the free and sterol-bound forms of \hat{l}^2 -cinnamomin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 110-121.	2.3	24
656	Developmental changes inÂantioxidant metabolites, enzymes, andÂpigments inÂfruit exocarp ofÂfourÂtomato (LycopersiconÂesculentum Mill.) genotypes: β-carotene, high pigment-1, ripeningÂinhibitor, andÂâ€~Rutgers'. Plant Physiology and Biochemistry, 2006, 44, 806-818.	5.8	28
657	PLANT-MEDIATED INTERACTIONS BETWEEN PATHOGENIC MICROORGANISMS AND HERBIVOROUS ARTHROPODS. Annual Review of Entomology, 2006, 51, 663-689.	11.8	412
658	Chemosensation in C. elegans. WormBook, 2006, , 1-29.	5.3	603
659	Viral Determinants of Resistance Versus Susceptibility., 2006,, 13-43.		12
660	CASAR82A, a Pathogen-induced Pepper SAR8.2, Exhibits an Antifungal Activity and its Overexpression Enhances Disease Resistance and Stress Tolerance. Plant Molecular Biology, 2006, 61, 95-109.	3.9	39
661	Loss of NECROTIC SPOTTED LESIONS 1 associates with cell death and defense responses in Arabidopsis thaliana. Plant Molecular Biology, 2006, 62, 29-42.	3.9	68
662	Single amino acid alterations in Arabidopsis thaliana RCY1 compromise resistance to Cucumber mosaic virus, but differentially suppress hypersensitive response-like cell death. Plant Molecular Biology, 2006, 62, 669-682.	3.9	40
663	Isolation of a full-length CC–NBS–LRR resistance gene analog candidate from sugar pine showing low nucleotide diversity. Tree Genetics and Genomes, 2006, 2, 76-85.	1.6	22

#	Article	IF	CITATIONS
664	Compatible and Incompatible Xanthomonas Infections Differentially Affect Herbivore-Induced Volatile Emission by Pepper Plants. Journal of Chemical Ecology, 2006, 32, 1755-1768.	1.8	47
665	Towards Efficient Isolation of R Gene Orthologs from Multiple Genotypes: Optimization of Long Range-PCR. Molecular Breeding, 2006, 17, 137-148.	2.1	10
666	Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta, 2006, 223, 500-511.	3.2	86
667	Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta, 2006, 225, 1-12.	3.2	205
668	Screening and expression analysis of Phytophthora infestans induced genes in potato leaves with horizontal resistance. Plant Cell Reports, 2006, 25, 1094-1103.	5.6	41
669	Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Current Genetics, 2006, 50, 307-321.	1.7	247
670	Differential gene expression in Phaseolus vulgaris I locus NILs challenged with Bean common mosaic virus. Theoretical and Applied Genetics, 2006, 112, 1452-1457.	3.6	11
671	Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping. Theoretical and Applied Genetics, 2006, 113, 1081-1092.	3.6	74
672	Lipopolysaccharide-responsive phosphoproteins inÂNicotianaÂtabacum cells. Plant Physiology and Biochemistry, 2006, 44, 369-379.	5.8	48
673	Isolation ofÂaÂnovel Ser/Thr protein kinase gene from oligochitosan-induced tobacco andÂitsÂrole inÂresistance againstÂtobacco mosaic virus. Plant Physiology and Biochemistry, 2006, 44, 596-603.	5.8	24
674	Isolation and characterization of resistance and defense gene analogs in cotton (Gossypium) Tj ETQq0 0 0 rgBT	Overlock :	10 ₁₆ 50 342
675	Effects of a biocontrol bacterium on growth and defence of transgenic rice plants expressing a bacterial type-III effector. Annals of Microbiology, 2006, 56, 281-287.	2.6	22
676	Combinative effects of a bacterial type-III effector and a biocontrol bacterium on rice growth and disease resistance. Journal of Biosciences, 2006, 31, 617-627.	1.1	32
677	Plant peroxisomes respire in the light: Some gaps of the photorespiratory C2 cycle have become filled—Others remain. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1496-1510.	4.1	186
678	Analysing diversity in sugarcane resistance gene analogues. Australasian Plant Pathology, 2006, 35, 631.	1.0	4
679	Nematode resistance in plants: the battle underground. Trends in Genetics, 2006, 22, 396-403.	6.7	273
680	Type III effector proteins: doppelgangers of bacterial virulence. Current Opinion in Plant Biology, 2006, 9, 376-382.	7.1	64
681	The PTI1-like kinase ZmPti1a from maize (Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte. BMC Plant Biology, 2006, 6, 22.	3.6	28

#	Article	IF	CITATIONS
682	PAMP recognition and the plant–pathogen arms race. BioEssays, 2006, 28, 880-889.	2.5	106
683	Does R Gene Resistance Allow Wheat to Prevent Plant Growth Effects Associated with Hessian Fly (Diptera: Cecidomyiidae) Attack?. Journal of Economic Entomology, 2006, 99, 1842-1853.	1.8	48
684	The Arabidopsis Flavin-Dependent Monooxygenase FMO1 Is an Essential Component of Biologically Induced Systemic Acquired Resistance Â. Plant Physiology, 2006, 141, 1666-1675.	4.8	229
685	Mutations in the NB-ARC Domain of I-2 That Impair ATP Hydrolysis Cause Autoactivation. Plant Physiology, 2006, 140, 1233-1245.	4.8	276
686	Elicitor-Mediated Oligomerization of the Tobacco N Disease Resistance Protein. Plant Cell, 2006, 18, 491-501.	6.6	224
687	Isolation and characterization of a set of disease resistance-gene analogs (RGAs) from wild rice, ⟨i⟩Zizania latifolia ⟨/i⟩Griseb. I. Introgression, copy number lability, sequence change, and DNA methylation alteration in several rice–⟨i⟩Zizania ⟨/i⟩introgression lines. Genome, 2006, 49, 150-158.	2.0	19
688	The E3 Ubiquitin Ligase Activity of Arabidopsis PLANT U-BOX17 and Its Functional Tobacco Homolog ACRE276 Are Required for Cell Death and Defense. Plant Cell, 2006, 18, 1084-1098.	6.6	215
689	Chemical Signals in Plant Resistance: Salicylic Acid. , 2006, , 143-165.		1
690	Fragments of ATP synthase mediate plant perception of insect attack. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8894-8899.	7.1	375
691	Type III Effector Diversification via Both Pathoadaptation and Horizontal Transfer in Response to a Coevolutionary Arms Race. PLoS Genetics, 2006, 2, e209.	3.5	179
692	The Non-host Pathogen Botrytis cinerea Enhances Glucose Transport in Pinus pinaster Suspension-cultured Cells. Plant and Cell Physiology, 2006, 47, 290-298.	3.1	21
693	Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11086-11091.	7.1	1,001
694	Activation of Ntf4, a Tobacco Mitogen-Activated Protein Kinase, during Plant Defense Response and Its Involvement in Hypersensitive Response-Like Cell Death. Plant Physiology, 2006, 141, 1482-1493.	4.8	99
695	A conserved role for a GATA transcription factor in regulating epithelial innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14086-14091.	7.1	259
696	A Genome-Wide Survey of R Gene Polymorphisms in Arabidopsis. Plant Cell, 2006, 18, 1803-1818.	6.6	309
697	NDR1 Interaction with RIN4 Mediates the Differential Activation of Multiple Disease Resistance Pathways in Arabidopsis. Plant Cell, 2006, 18, 2782-2791.	6.6	141
698	Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes and Development, 2006, 20, 1250-1255.	5.9	457
699	S-Nitrosylation: an emerging redox-based post-translational modification in plants. Journal of Experimental Botany, 2006, 57, 1777-1784.	4.8	118

#	Article	IF	Citations
700	RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19200-19205.	7.1	111
701	Unique Evolutionary Mechanism in R-Genes Under the Presence/Absence Polymorphism in Arabidopsis thaliana. Genetics, 2006, 172, 1243-1250.	2.9	113
702	The Tomato NBARC-LRR Protein Prf Interacts with Pto Kinase in Vivo to Regulate Specific Plant Immunity. Plant Cell, 2006, 18, 2792-2806.	6.6	239
703	Rewiring Mitogen-Activated Protein Kinase Cascade by Positive Feedback Confers Potato Blight Resistance. Plant Physiology, 2006, 140, 681-692.	4.8	79
704	Point Mutations with Positive Selection Were a Major Force during the Evolution of a Receptor-Kinase Resistance Gene Family of Rice. Plant Physiology, 2006, 140, 998-1008.	4.8	45
705	Interactive effects of drought and pathogens in forest trees. Annals of Forest Science, 2006, 63, 597-612.	2.0	465
706	Elicitation of Plants. Biotechnology and Biotechnological Equipment, 2006, 20, 72-83.	1.3	135
707	Genetic and Molecular Characterization of the I Locus of Phaseolus vulgaris. Genetics, 2006, 172, 1229-1242.	2.9	80
708	Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. Journal of Experimental Botany, 2006, 57, 2193-2201.	4.8	73
709	A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11856-11861.	7.1	107
710	The Pto Kinase of Tomato, Which Regulates Plant Immunity, Is Repressed by Its Myristoylated N Terminus. Journal of Biological Chemistry, 2006, 281, 26578-26586.	3.4	16
711	Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures. Journal of Experimental Botany, 2006, 57, 1553-1562.	4.8	102
712	Fungal Pathogens: The Battle for Plant Infection. Critical Reviews in Plant Sciences, 2006, 25, 505-524.	5.7	66
713	ALLELOCHEMICALS FROM Ageratum conyzoides L. AND Oryza sativa L. AND THEIR EFFECTS ON RELATED PATHOGENS. , 2006, , 193-206.		9
714	The Use of Protoplasts to Study Innate Immune Responses. , 2007, 354, 1-10.		76
715	Defensins as anti-infective and immunomodulatory agents. Expert Opinion on Therapeutic Patents, 2006, 16, 1223-1234.	5.0	2
716	Mechanisms Involved in Plant Resistance to Nematodes. , 2006, , 314-334.		17
717	The Broad-Spectrum Blast Resistance Gene Pi9 Encodes a Nucleotide-Binding Site–Leucine-Rich Repeat Protein and Is a Member of a Multigene Family in Rice. Genetics, 2006, 172, 1901-1914.	2.9	479

#	Article	IF	CITATIONS
718	NOD2/CARD15 Mediates Induction of the Antimicrobial Peptide Human Beta-defensin-2. Journal of Biological Chemistry, 2006, 281, 2005-2011.	3.4	288
719	Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18395-18400.	7.1	110
721	Modifications to the Arabidopsis Defense Proteome Occur Prior to Significant Transcriptional Change in Response to Inoculation with Pseudomonas syringae Â. Plant Physiology, 2006, 142, 1603-1620.	4.8	168
722	Physical and Functional Interactions between Pathogen-Induced <i>Arabidopsis</i> WRKY18, WRKY40, and WRKY60 Transcription Factors. Plant Cell, 2006, 18, 1310-1326.	6.6	674
723	The Hypersensitive Response in Plant Disease Resistance. , 2006, , 83-111.		5
724	The U-Box Protein CMPG1 Is Required for Efficient Activation of Defense Mechanisms Triggered by Multiple Resistance Genes in Tobacco and Tomato. Plant Cell, 2006, 18, 1067-1083.	6.6	195
725	cDNA-AFLP Combined with Functional Analysis Reveals Novel Genes Involved in the Hypersensitive Response. Molecular Plant-Microbe Interactions, 2006, 19, 567-576.	2.6	107
726	Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18828-18833.	7.1	163
727	The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17554-17559.	7.1	303
728	Virulence Strategies of Plant Pathogenic Bacteria. , 2006, , 421-440.		20
729	A Single Binding Site Mediates Resistance- and Disease-Associated Activities of the Effector Protein NIP1 from the Barley Pathogen Rhynchosporium secalis. Plant Physiology, 2007, 144, 1654-1666.	4.8	29
7 30	Heat Shock Protein 90 Associates with Monarch-1 and Regulates Its Ability to Promote Degradation of NF-ÎB-Inducing Kinase. Journal of Immunology, 2007, 179, 6291-6296.	0.8	62
731	Proteolysis of the barley receptor-like protein kinase RPG1 by a proteasome pathway is correlated with Rpg1-mediated stem rust resistance. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10276-10281.	7.1	34
732	A Cluster of Disease Resistance Genes in <i>Arabidopsis</i> Is Coordinately Regulated by Transcriptional Activation and RNA Silencing. Plant Cell, 2007, 19, 2929-2939.	6.6	171
733	Arabidopsissystemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1075-1080.	7.1	384
734	The Blast Resistance Gene <i>Pi37</i> Encodes a Nucleotide Binding Site–Leucine-Rich Repeat Protein and Is a Member of a Resistance Gene Cluster on Rice Chromosome 1. Genetics, 2007, 177, 1871-1880.	2.9	190
735	Induction of <i>p</i> -Coumaroyldopamine and Feruloyldopamine, Two Novel Metabolites, in Tomato by the Bacterial Pathogen <i>Pseudomonas syringae</i> . Molecular Plant-Microbe Interactions, 2007, 20, 1439-1448.	2.6	74
736	Molecular Characterization of Plantain Class I Chitinase Gene and its Expression in Response to Infection by Gloeosporium musarum Cke and Massee and other Abiotic Stimuli. Journal of Biochemistry, 2007, 142, 561-570.	1.7	12

#	Article	IF	CITATIONS
737	Leaf scorch symptoms are not correlated with bacterial populations during Pierce's disease. Journal of Experimental Botany, 2007, 58, 4037-4046.	4.8	52
738	Type III Effector Activation via Nucleotide Binding, Phosphorylation, and Host Target Interaction. PLoS Pathogens, 2007, 3, e48.	4.7	89
739	Cowpea Chloroplastic ATP Synthase Is the Source of Multiple Plant Defense Elicitors during Insect Herbivory Â. Plant Physiology, 2007, 144, 793-805.	4.8	121
740	The Ebola Virus VP35 Protein Is a Suppressor of RNA Silencing. PLoS Pathogens, 2007, 3, e86.	4.7	277
741	Temporal Gene Expression Profiling of the Wheat Leaf Rust Pathosystem Using cDNA Microarray Reveals Differences in Compatible and Incompatible Defence Pathways. International Journal of Plant Genomics, 2007, 2007, 1-13.	2.2	35
742	The Arabidopsis <i>BAP1</i> and <i>BAP2</i> Genes Are General Inhibitors of Programmed Cell Death. Plant Physiology, 2007, 145, 135-146.	4.8	98
743	Oxo-Phytodienoic Acid-Containing Galactolipids in Arabidopsis: Jasmonate Signaling Dependence. Plant Physiology, 2007, 145, 1658-1669.	4.8	104
744	Rice Pti1a Negatively Regulates RAR1-Dependent Defense Responses. Plant Cell, 2007, 19, 2940-2951.	6.6	58
745	Crystal Structures of Flax Rust Avirulence Proteins AvrL567-A and -D Reveal Details of the Structural Basis for Flax Disease Resistance Specificity. Plant Cell, 2007, 19, 2898-2912.	6.6	143
746	PathoPlant(R): a platform for microarray expression data to analyze co-regulated genes involved in plant defense responses. Nucleic Acids Research, 2007, 35, D841-D845.	14.5	38
747	Acylâ€HSL Signal Decay: Intrinsic to Bacterial Cell–Cell Communications. Advances in Applied Microbiology, 2007, 61, 27-58.	2.4	17
748	The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11850-11855.	7.1	199
749	Functional Dissection of Naturally Occurring Amino Acid Substitutions in eIF4E That Confers Recessive Potyvirus Resistance in Plants. Plant Cell, 2007, 19, 2913-2928.	6.6	110
750	The Expression Pattern of a Rice Disease Resistance Gene <i>Xa3/Xa26</i> Is Differentially Regulated by the Genetic Backgrounds and Developmental Stages That Influence Its Function. Genetics, 2007, 177, 523-533.	2.9	133
751	Arabidopsis Transcriptome Changes in Response to Phloem-Feeding Silverleaf Whitefly Nymphs. Similarities and Distinctions in Responses to Aphids. Plant Physiology, 2007, 143, 849-865.	4.8	344
752	ARGONAUTE4 Is Required for Resistance to <i>Pseudomonas syringae</i> in <i>Arabidopsis</i> Plant Cell, 2007, 19, 3778-3790.	6.6	175
753	Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. Journal of Experimental Botany, 2007, 58, 797-806.	4.8	165
754	Positive and Negative Feedback Coordinate Regulation of Disease Resistance Gene Expression. Plant Cell, 2007, 19, 2700-2702.	6.6	12

#	Article	IF	CITATIONS
755	A Conserved Carboxylesterase Is a SUPPRESSOR OF AVRBST-ELICITED RESISTANCE in Arabidopsis. Plant Cell, 2007, 19, 688-705.	6.6	53
756	Stability of genetic polymorphism in host–parasite interactions. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 809-817.	2.6	122
757	Molecular Evolution of Pathogenicity-Island Genes in <i>Pseudomonas viridiflava</i> . Genetics, 2007, 177, 1031-1041.	2.9	10
758	Polymorphism in Multilocus Host–Parasite Coevolutionary Interactions. Genetics, 2007, 177, 1777-1790.	2.9	51
759	Genetic control of broad-spectrum resistance to turnip mosaic virus in Brassica rapa (Chinese) Tj ETQq0 0 0 rgB1	Overlock	2 19 ₇ Tf 50 582
760	Bacterial Cyclic \hat{I}^2 -(1,2)-Glucan Acts in Systemic Suppression of Plant Immune Responses. Plant Cell, 2007, 19, 2077-2089.	6.6	81
761	The Coactivator Function of Arabidopsis NPR1 Requires the Core of Its BTB/POZ Domain and the Oxidation of C-Terminal Cysteines. Plant Cell, 2007, 18, 3670-3685.	6.6	234
763	Identification and Mutational Analysis of <i>Arabidopsis</i> FLS2 Leucine-Rich Repeat Domain Residues That Contribute to Flagellin Perception. Plant Cell, 2007, 19, 3297-3313.	6.6	97
764	Transcriptome Analysis of Arbuscular Mycorrhizal Roots during Development of the Prepenetration Apparatus. Plant Physiology, 2007, 144, 1455-1466.	4.8	117
765	Application of Proteomics to Investigate Plant-Microbe Interactions. Current Proteomics, 2007, 4, 28-43.	0.3	55
766	Intraspecific Genetic Variations, Fitness Cost and Benefit of RPW8, A Disease Resistance Locus in Arabidopsis thaliana. Genetics, 2007, 176, 2317-2333.	2.9	60
767	The in Silico Map-Based Cloning of Pi36, a Rice Coiled-Coil–Nucleotide-Binding Site–Leucine-Rich Repeat Gene That Confers Race-Specific Resistance to the Blast Fungus. Genetics, 2007, 176, 2541-2549.	2.9	179
768	Transcript profiling of a conifer pathosystem: response of Pinus sylvestris root tissues to pathogen (Heterobasidion annosum) invasion. Tree Physiology, 2007, 27, 1441-1458.	3.1	60
769	Rice XA21 Binding Protein 3 Is a Ubiquitin Ligase Required for Full Xa21-Mediated Disease Resistance. Plant Cell, 2007, 18, 3635-3646.	6.6	274
771	Mechanisms of Defence to Pathogens: Biochemistry and Physiology. , 0, , 109-132.		15
772	Characterization of the Nonconserved <i>hpaB-hrpF</i> Region in the <i>hrp</i> Pathogenicity Island from <i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> Molecular Plant-Microbe Interactions, 2007, 20, 1063-1074.	2.6	39
773	The TIR-NB-LRR Gene SNC1 Is Regulated at the Transcript Level by Multiple Factors. Molecular Plant-Microbe Interactions, 2007, 20, 1449-1456.	2.6	59
774	Arabidopsis WRKY70 Is Required for Full RPP4-Mediated Disease Resistance and Basal Defense Against Hyaloperonospora parasitica. Molecular Plant-Microbe Interactions, 2007, 20, 120-128.	2.6	189

#	Article	IF	CITATIONS
775	The HopX (AvrPphE) Family of Pseudomonas syringae Type III Effectors Require a Catalytic Triad and a Novel N-Terminal Domain for Function. Molecular Plant-Microbe Interactions, 2007, 20, 346-357.	2.6	53
776	Expression of the Membrane-Associated Resistance Protein RPW8 Enhances Basal Defense Against Biotrophic Pathogens. Molecular Plant-Microbe Interactions, 2007, 20, 966-976.	2.6	88
777	Compatible and Incompatible Interactions in Wheat Involving the <i>Bt-10</i> Gene for Resistance to <i>Tilletia tritici</i> , the Common Bunt Pathogen. Phytopathology, 2007, 97, 1397-1405.	2.2	18
778	The CC-NBS-LRR Subfamily in Pinus monticola: Targeted Identification, Gene Expression, and Genetic Linkage with Resistance to Cronartium ribicola. Phytopathology, 2007, 97, 728-736.	2.2	33
779	Identification of Molecular Markers Linked to a Pyrenophora teres Avirulence Gene. Phytopathology, 2007, 97, 842-849.	2.2	22
780	Disease-associated mutations in CIAS1 induce cathepsin B–dependent rapid cell death of human THP-1 monocytic cells. Blood, 2007, 109, 2903-2911.	1.4	97
781	AtNUDT7, a Negative Regulator of Basal Immunity in Arabidopsis, Modulates Two Distinct Defense Response Pathways and Is Involved in Maintaining Redox Homeostasis. Plant Physiology, 2007, 145, 204-215.	4.8	127
782	Virulence mechanisms and host specificity of gall-forming Pantoea agglomerans. Trends in Microbiology, 2007, 15, 538-545.	7.7	61
783	The TIR–NBS but not LRR domains of two novel N-like proteins are functionally competent to induce the elicitor p50-dependent hypersensitive response. Physiological and Molecular Plant Pathology, 2007, 71, 78-87.	2.5	16
784	Histochemical studies on the accumulation of reactive oxygen species (O2â^' and H2O2) in the incompatible and compatible interaction of wheatâ€"Puccinia striiformis f. sp. tritici. Physiological and Molecular Plant Pathology, 2007, 71, 230-239.	2.5	234
785	New insights into the resistance of Nagami kumquat to canker disease. Physiological and Molecular Plant Pathology, 2007, 71, 240-250.	2.5	46
786	Check-In Procedures for Plant Cell Entry by Biotrophic Microbes. Molecular Plant-Microbe Interactions, 2007, 20, 1023-1030.	2.6	30
787	Structure and Function of Resistance Proteins in Solanaceous Plants. Annual Review of Phytopathology, 2007, 45, 43-72.	7.8	209
788	Origin and colonization history of newly virulent strains of the phytopathogenic fungus Venturia inaequalis. Fungal Genetics and Biology, 2007, 44, 284-292.	2.1	49
789	Identifying, cloning and structural analysis of differentially expressed genes upon Puccinia infection of Festuca rubra var. rubra. Gene, 2007, 393, 145-152.	2.2	16
790	Metabolomic alterations in elicitor treated Silybum marianum suspension cultures monitored by nuclear magnetic resonance spectroscopy. Journal of Biotechnology, 2007, 130, 133-142.	3.8	50
791	Recent Progress in Elucidating the Structure, Function and Evolution of Disease Resistance Genes in Plants. Journal of Genetics and Genomics, 2007, 34, 765-776.	3.9	198
792	Invited review: Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. Journal of Endotoxin Research, 2007, 13, 69-84.	2.5	138

#	Article	IF	Citations
795	Surprising complexity of the ancestral apoptosis network. Genome Biology, 2007, 8, R226.	9.6	77
796	Artificial Immune Systems. Lecture Notes in Computer Science, 2007, , .	1.3	11
799	Salicylic Acid in Plant Disease Resistance. , 2007, , 335-370.		37
800	Breeding for Blackleg Resistance: The Biology and Epidemiology. Advances in Botanical Research, 2007, 45, 271-311.	1.1	6
801	Ubiquitin, Hormones and Biotic Stress in Plants. Annals of Botany, 2007, 99, 787-822.	2.9	432
802	Functional Interplay Between Two Xanthomonas oryzae pv. oryzae Secretion Systems in Modulating Virulence on Rice. Molecular Plant-Microbe Interactions, 2007, 20, 31-40.	2.6	124
803	The Interplay Between Salicylic Acid and Reactive Oxygen Species During Cell Death in Plants. , 2007, , 247-276.		9
804	Genetics of Resistance to Pests and Disease. , 2007, , 117-155.		46
805	Salicylic Acid and Reactive Oxygen Species in the Activation of Stress Defense Genes., 2007,, 197-246.		16
806	Poplar defense against insect herbivoresThis review is one of a selection of papers published in the Special Issue on Poplar Research in Canada Canadian Journal of Botany, 2007, 85, 1111-1126.	1.1	65
807	Transgenic Crops V., 2007,,.		4
808	Dual Regulation Role of <i>GH3.5</i> in Salicylic Acid and Auxin Signaling during Arabidopsis- <i>Pseudomonas syringae</i> Interaction. Plant Physiology, 2007, 145, 450-464.	4.8	268
809	Calcium-Dependent Protein Kinases Regulate the Production of Reactive Oxygen Species by Potato NADPH Oxidase. Plant Cell, 2007, 19, 1065-1080.	6.6	562
810	Resistance gene analogues are clustered on chromosome 3 of sugar beet and cosegregate with QTL for rhizomania resistance. Genome, 2007, 50, 61-71.	2.0	35
811	Elicitors, Effectors, and RGenes: The New Paradigm and a Lifetime Supply of Questions. Annual Review of Phytopathology, 2007, 45, 399-436.	7.8	668
812	Plant physiology meets phytopathology: plant primary metabolism and plant pathogen interactions. Journal of Experimental Botany, 2007, 58, 4019-4026.	4.8	635
813	Lettuce., 2007,, 127-140.		3
814	Oxylipins Produced by the 9-Lipoxygenase Pathway in Arabidopsis Regulate Lateral Root Development and Defense Responses through a Specific Signaling Cascade. Plant Cell, 2007, 19, 831-846.	6.6	304

#	Article	IF	Citations
815	Avirulence proteins of rust fungi: penetrating the host - haustorium barrier. Australian Journal of Agricultural Research, 2007, 58, 512.	1.5	4
816	A Recessive Allele (tgr-1) Conditioning Tomato Resistance to Geminivirus Infection Is Associated with Impaired Viral Movement. Phytopathology, 2007, 97, 930-937.	2.2	25
817	Distinct Biphasic mRNA Changes in Response to Asian Soybean Rust Infection. Molecular Plant-Microbe Interactions, 2007, 20, 887-899.	2.6	112
818	Melon., 2007,, 209-240.		1
819	A Multidirectional Non-Cell Autonomous Control and a Genetic Interaction Restricting Tobacco Etch Virus Susceptibility in Arabidopsis. PLoS ONE, 2007, 2, e985.	2.5	2
820	A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. PLoS ONE, 2007, 2, e1326.	2.5	945
821	Genes associated with hypersensitive response (HR) in the citrus EST database (CitEST). Genetics and Molecular Biology, 2007, 30, 943-956.	1.3	16
823	A novel understanding of the three-way interaction between Trichoderma spp., the colonized plant and fungal pathogens., 0,, 291-309.		1
824	Reação de genótipos de mamoeiro à varÃola e à podridão-do-pé. Tropical Plant Pathology, 2007, 32, 419-423.	0.3	15
825	Putative resistance genes in the CitEST database. Genetics and Molecular Biology, 2007, 30, 931-942.	1.3	8
826	Reversal of an immunity associated plant cell death program by the growth regulator auxin. Nature Precedings, 2007, , .	0.1	2
827	Tollâ€like receptors' twoâ€edged sword: when immunity meets apoptosis. European Journal of Immunology, 2007, 37, 3311-3318.	2.9	156
828	Phylogenetic and evolutionary analysis of NBS-encoding genes in Rosaceae fruit crops. Molecular Phylogenetics and Evolution, 2007, 44, 315-324.	2.7	18
829	Transcriptomic analyses of space-induced rice mutants with enhanced susceptibility to rice blast. Advances in Space Research, 2007, 40, 540-549.	2.6	7
830	Insects feeding on plants: Rapid signals and responses preceding the induction of phytochemical release. Phytochemistry, 2007, 68, 2946-2959.	2.9	256
831	A high-throughput screen of cell-death-inducing factors in Nicotiana benthamiana identifies a novel MAPKK that mediates INF1-induced cell death signaling and non-host resistance to Pseudomonas cichorii. Plant Journal, 2007, 49, 1030-1040.	5.7	86
832	Selective targeting of plasma membrane and tonoplast traffic by inhibitory (dominantâ€negative) SNARE fragments. Plant Journal, 2007, 51, 1099-1115.	5.7	77
833	The role of the mitochondrion in plant responses to biotic stress. Physiologia Plantarum, 2007, 129, 253-266.	5.2	121

#	Article	IF	CITATIONS
834	Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Research, 2007, 17, 1030-1040.	12.0	190
835	Expression of a harpinâ€encoding gene in rice confers durable nonspecific resistance to <i>Magnaporthe grisea</i> . Plant Biotechnology Journal, 2008, 6, 73-81.	8.3	70
836	Cloning and in silico Mapping of Resistance Gene Analogues Isolated from Rice Lines Containing Known Genes for Blast Resistance. Journal of Phytopathology, 2007, 155, 273-280.	1.0	5
837	Calciumâ€dependent Protein Kinases are Involved in Potato Signal Transduction in Response to Elicitors from the Oomycete <i>Phytophthora infestans</i> . Journal of Phytopathology, 2008, 156, 53-61.	1.0	8
838	Should I stay or should I go? Nucleocytoplasmic trafficking in plant innate immunity. Cellular Microbiology, 2007, 9, 1880-1890.	2.1	56
839	Host–pathogen interplay and the evolution of bacterial effectors. Cellular Microbiology, 2007, 10, 071127144819001-???.	2.1	95
840	Translational Mini-Review Series on Toll-like Receptors:†Networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clinical and Experimental Immunology, 2007, 147, 199-207.	2.6	154
841	The ubiquitin pathway is required for innate immunity in Arabidopsis. Plant Journal, 2007, 49, 540-551.	5.7	95
842	EDM2 is required for RPP7-dependent disease resistance in Arabidopsis and affects RPP7 transcript levels. Plant Journal, 2007, 49, 829-839.	5.7	120
843	An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. Plant Journal, 2007, 50, 14-28.	5.7	175
844	Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant Journal, 2007, 51, 262-280.	5.7	377
845	The Nâ€terminal region of <i>Pseudomonas</i> type III effector AvrPtoB elicits Ptoâ€dependent immunity and has two distinct virulence determinants. Plant Journal, 2007, 52, 595-614.	5.7	81
846	Overexpression of Arabidopsis <i>MAP kinase kinase 7</i> leads to activation of plant basal and systemic acquired resistance. Plant Journal, 2007, 52, 1066-1079.	5.7	130
847	Characterization of a novel Toll/interleukin-1 receptor (TIR)-TIR gene differentially expressed in common bean (Phaseolus vulgaris cv. Othello) undergoing a defence response to the geminivirus Bean dwarf mosaic virus. Molecular Plant Pathology, 2007, 8, 151-162.	4.2	34
848	Sources of natural resistance to plant viruses: status and prospects. Molecular Plant Pathology, 2007, 8, 223-231.	4.2	171
849	DspA/E, a type III effector of Erwinia amylovora, is required for early rapid growth in Nicotiana benthamiana and causes NbSGT1-dependent cell death. Molecular Plant Pathology, 2007, 8, 255-265.	4.2	33
850	The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. Molecular Plant Pathology, 2007, 8, 503-514.	4.2	65
851	The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology, 2007, 8, 677-700.	4.2	217

#	Article	IF	Citations
852	Identification of loci controlling non-host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina. Molecular Plant Pathology, 2007, 8, 773-784.	4.2	58
853	Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist, 2007, 173, 11-26.	7.3	625
854	Early and specific gene expression triggered by rice resistance gene Pi33 in response to infection by ACE1 avirulent blast fungus. New Phytologist, 2007, 174, 159-171.	7.3	49
855	The genetic basis of quantitative variation in susceptibility of Arabidopsis thaliana to Pseudomonas syringae (Pst DC3000): evidence for a new genetic factor of large effect. New Phytologist, 2007, 174, 172-181.	7.3	22
856	Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea. New Phytologist, 2007, 175, 131-139.	7.3	82
857	Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytologist, 2007, 175, 405-416.	7.3	269
858	The grateful dead: damageâ€associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunological Reviews, 2007, 220, 60-81.	6.0	565
859	Avirulence proteins from haustoria-forming pathogens. FEMS Microbiology Letters, 2007, 269, 181-188.	1.8	99
860	Proteomic Analysis of Rice Plasma Membrane-associated Proteins in Response to Chitooligosaccharide Elicitors. Journal of Integrative Plant Biology, 2007, 49, 863-870.	8.5	14
861	Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in Arabidopsis thaliana. BMC Plant Biology, 2007, 7, 16.	3.6	64
862	Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne. BMC Plant Biology, 2007, 7, 43.	3.6	62
863	Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens. BMC Plant Biology, 2007, 7, 52.	3.6	102
864	Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biology, 2007, 7, 56.	3.6	166
865	Highly asymmetric rice genomes. BMC Genomics, 2007, 8, 154.	2.8	38
866	A J Domain Virulence Effector of Pseudomonas syringae Remodels Host Chloroplasts and Suppresses Defenses. Current Biology, 2007, 17, 499-508.	3.9	266
867	Modeling-based characterization of the elicitor function of amino acid 461 of Cucumber mosaic virus 1a protein in the hypersensitive response. Virology, 2007, 358, 109-118.	2.4	13
868	Inducible cell death in plant immunity. Seminars in Cancer Biology, 2007, 17, 166-187.	9.6	98
869	Differential expression of sunflower peroxidase isoforms and transcripts during necrotrophic interaction with Alternaria helianthi. Russian Journal of Plant Physiology, 2007, 54, 513-517.	1.1	3

#	Article	IF	CITATIONS
870	Molecular and genetic mechanisms of resistance of plants to viruses. Cytology and Genetics, 2007, 41, 125-135.	0.5	2
871	The Plant Host Pathogen Interface: Cell Wall and Membrane Dynamics of Pathogen-Induced Responses. Annals of the New York Academy of Sciences, 2007, 1113, 123-134.	3.8	22
872	Approaches for improving crop resistance to soilborne fungal diseases through biotechnology using Sclerotinia sclerotiorumas a case study. Australasian Plant Pathology, 2007, 36, 116.	1.0	12
873	Differential Expression in Response to Biotic and Abiotic Stress from Three Potato Glutaredoxins Induced during Suberization. Journal of Plant Biology, 2007, 50, 663-670.	2.1	3
874	Recognition and response in plant-pathogen interactions. Journal of Plant Biology, 2007, 50, 132-138.	2.1	13
875	CaMi, a root-knot nematode resistance gene from hot pepper (Capsium annuum L.) confers nematode resistance in tomato. Plant Cell Reports, 2007, 26, 895-905.	5.6	69
876	Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues. Theoretical and Applied Genetics, 2007, 114, 1289-1302.	3.6	48
877	The M flax rust resistance pre-mRNA is alternatively spliced and contains a complex upstream untranslated region. Theoretical and Applied Genetics, 2007, 115, 373-382.	3.6	9
878	Functional analysis of Xa3/Xa26 family members in rice resistance to Xanthomonas oryzae pv. oryzae. Theoretical and Applied Genetics, 2007, 115, 887-895.	3.6	41
879	Isolation, characterization and expression studies of resistance gene candidates (RGCs) from Zingiber spp Theoretical and Applied Genetics, 2007, 116, 123-134.	3.6	50
880	Identification of quantitative trait loci affecting virulence in the basidiomycete Heterobasidion annosum s.l Current Genetics, 2007, 52, 35-44.	1.7	34
881	Cloning of two classes of PR genes and the development of SNAP markers for powdery mildew resistance loci in chestnut rose (Rosa roxburghii Tratt). Molecular Breeding, 2007, 19, 179-191.	2.1	16
882	Plant translational genomics: from model species to crops. Molecular Breeding, 2007, 20, 1-13.	2.1	39
883	A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula. Plant Molecular Biology, 2007, 64, 499-518.	3.9	149
884	Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Molecular Biology, 2007, 65, 93-106.	3.9	299
885	N-terminal domain including conserved flg22 is required for flagellin-induced hypersensitive cell death in Arabidopsis thaliana. Journal of General Plant Pathology, 2007, 73, 281-285.	1.0	16
886	Involvement of mitogen-activated protein kinase in the induction of StrbohC and StrbohD genes in response to pathogen signals in potato. Journal of General Plant Pathology, 2007, 73, 304-313.	1.0	7
887	Depolymerization of the actin cytoskeleton induces defense responses in tobacco plants. Journal of General Plant Pathology, 2007, 73, 360-364.	1.0	26

#	Article	IF	Citations
888	Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines). Planta, 2007, 226, 1389-1409.	3.2	154
889	A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) infection. Planta, 2007, 226, 1423-1447.	3.2	111
890	Wounding and pathogen infection induce a chloroplast-targeted lipoxygenase in the common bean (Phaseolus vulgaris L.). Planta, 2007, 227, 363-373.	3.2	32
891	Distinct roles of the pepper hypersensitive induced reaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses. Planta, 2007, 227, 409-425.	3.2	60
892	Unique pattern of R-gene variation within populations in Arabidopsis. Molecular Genetics and Genomics, 2007, 277, 619-29.	2.1	39
893	Structural and phylogenetic analysis of Pto-type disease resistance gene candidates in banana. Molecular Genetics and Genomics, 2007, 278, 443-453.	2.1	33
894	Cloning of differential expression fragments in cauliflower after Xanthomonas campestris inoculation. Biologia Plantarum, 2008, 52, 462-468.	1.9	8
895	Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Molecular Biology, 2008, 66, 619-636.	3.9	247
896	Identification, isolation and characterization of a CC-NBS-LRR candidate disease resistance gene family in grapevine. Molecular Breeding, 2008, 22, 421-432.	2.1	55
897	Characterization of disease resistance gene candidates of the nucleotide binding site (NBS) type from banana and correlation of a transcriptional polymorphism with resistance to Fusarium oxysporum f.sp. cubense race 4. Molecular Breeding, 2008, 22, 565-579.	2.1	45
898	Cloning and sequence diversity analysis of GmHs1 pro-1 in Chinese domesticated and wild soybeans. Molecular Breeding, 2008, 22, 593-602.	2.1	9
899	Interactome of signaling networks in wheat: the protein–protein interaction between TaRAR1 and TaSGT1. Molecular Biology Reports, 2008, 35, 337-343.	2.3	14
900	Development of leucine-rich repeat polymorphism, amplified fragment length polymorphism, and sequence characterized amplified region markers to the Cronartium ribicola resistance gene Cr2 in western white pine (Pinus monticola). Tree Genetics and Genomes, 2008, 4, 601-610.	1.6	22
901	Isolation and linkage mapping of NBS-LRR resistance gene analogs in red raspberry (Rubus idaeus L.) and classification among 270 Rosaceae NBS-LRR genes. Tree Genetics and Genomes, 2008, 4, 881-896.	1.6	25
902	Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae. European Journal of Plant Pathology, 2008, 122, 41-55.	1.7	39
903	Host immunity-suppressive molecular weapons of phytopathogenic bacteria. Journal of Plant Biology, 2008, 51, 233-239.	2.1	2
904	Autophagy in plants. Journal of Plant Biology, 2008, 51, 313-320.	2.1	52
905	Expression of putative virulence factors in the potato pathogen Clavibacter michiganensis subsp. sepedonicus during infection. Archives of Microbiology, 2008, 189, 131-139.	2.2	23

#	Article	IF	CITATIONS
906	Genetic Diversity of Pto-Like Serine/Threonine Kinase Disease Resistance Genes in Cultivated and Wild Strawberries. Journal of Molecular Evolution, 2008, 67, 211-221.	1.8	21
907	Resistance to Colletotrichum lindemuthianum in Phaseolus vulgaris: a case study for mapping two independent genes. Theoretical and Applied Genetics, 2008, 116, 407-415.	3.6	100
908	Identification of defense-related genes in rice responding to challenge by Rhizoctonia solani. Theoretical and Applied Genetics, 2008, 116, 501-516.	3.6	55
909	Defence transcriptome profiling of Zingiber zerumbet (L.) Smith by mRNA differential display. Journal of Biosciences, 2008, 33, 81-90.	1.1	18
910	NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta, 2008, 228, 977-987.	3.2	108
911	Nematodes of Rhynchophorus palmarum, L. (Coleoptera: Curculionidae), vector of the Red Ring disease in coconut plantations from the north of the Rio de Janeiro State. Parasitology Research, 2008, 102, 1281-1287.	1.6	15
912	Genetic diversity and genomic distribution of homologs encoding NBS-LRR disease resistance proteins in sunflower. Molecular Genetics and Genomics, 2008, 280, 111-125.	2.1	94
913	Recent duplications dominate NBS-encoding gene expansion in two woody species. Molecular Genetics and Genomics, 2008, 280, 187-198.	2.1	405
914	Isolation of nucleotide binding siteâ€leucine rich repeat and kinase resistance gene analogues from sugarcane (<i>Saccharum</i> spp.). Pest Management Science, 2008, 64, 48-56.	3.4	22
915	The effect of the bacterial effector protein harpin on transcriptional profile and mitochondrial proteins of Arabidopsis thaliana. Journal of Proteomics, 2008, 71, 148-159.	2.4	13
916	NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Current Opinion in Immunology, 2008, 20, 377-382.	5.5	262
917	Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chemistry, 2008, 107, 362-368.	8.2	76
918	Isolation and molecular analysis of R-gene in resistant Zingiber officinale (ginger) varieties against Fusarium oxysporum f.sp. zingiberi. Bioresource Technology, 2008, 99, 4540-4543.	9.6	22
919	An outer membrane autotransporter, AoaA, ofAzorhizobium caulinodansis required for sustaining high N2-fixing activity of stem nodules. FEMS Microbiology Letters, 2008, 285, 16-24.	1.8	4
920	GEOGRAPHIC VARIATION IN ADAPTATION AT THE MOLECULAR LEVEL: A CASE STUDY OF PLANT IMMUNITY GENES. Evolution; International Journal of Organic Evolution, 2008, 62, 3069-3081.	2.3	37
921	Heterogeneous selection promotes maintenance of polymorphism in host–parasite interactions. Oikos, 2008, 117, 1281-1288.	2.7	73
922	Ethylene signaling is required for the acceleration of cell death induced by the activation of AtMEK5 in Arabidopsis. Cell Research, 2008, 18, 422-432.	12.0	67
923	Evolution of the type III secretion system and its effectors in plant–microbe interactions. New Phytologist, 2008, 177, 33-47.	7.3	121

#	Article	IF	CITATIONS
924	Self/nonself perception and recognition mechanisms in plants: a comparison of selfâ€incompatibility and innate immunity. New Phytologist, 2008, 178, 503-514.	7.3	101
925	Nematode resistance. New Phytologist, 2008, 180, 27-44.	7.3	201
926	Association of Lipoxygenase Response with Resistance of Various Cotton Genotypes to the Bacterial Blight Disease. Journal of Phytopathology, 2008, 156, 542-549.	1.0	14
927	Mapping of QTL for resistance to powdery mildew and resistance gene analogues in perennial ryegrass. Plant Breeding, 2008, 127, 368-375.	1.9	16
928	Mapping of rhizoctonia root rot resistance genes in sugar beet using pathogen responseâ€related sequences as molecular markers. Plant Breeding, 2008, 127, 602-611.	1.9	27
929	Rho1 has distinct functions in morphogenesis, cell wall biosynthesis and virulence of Fusarium oxysporum. Cellular Microbiology, 2008, 10, 1339-1351.	2.1	75
930	Comparative transcriptome analysis of <i> Agrobacterium tumefaciens </i> in response to plant signal salicylic acid, indole-3-acetic acid and \hat{I}^3 -amino butyric acid reveals signalling cross-talk and <i> Agrobacterium </i> - plant co-evolution. Cellular Microbiology, 2008, 10, 2339-2354.	2.1	102
931	Transcriptome analysis of the wheat– <i>Puccinia striiformis </i> f. sp. <i> tritici</i> interaction. Molecular Plant Pathology, 2008, 9, 157-169.	4.2	104
932	The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology, 2008, 9, 369-384.	4.2	209
933	Natural variation reveals key amino acids in a downy mildew effector that alters recognition specificity by an Arabidopsis resistance gene. Molecular Plant Pathology, 2008, 9, 511-523.	4.2	47
934	Expression profiling and mapping of defence response genes associated with the barley–⟨i⟩Pyrenophora teres⟨ i⟩ incompatible interaction. Molecular Plant Pathology, 2008, 9, 645-660.	4.2	20
935	Functional variation in a disease resistance gene in populations of <i>Arabidopsis thaliana</i> Molecular Ecology, 2008, 17, 4912-4923.	3.9	19
936	HpaA from <i>Xanthomonas</i> is a regulator of type III secretion. Molecular Microbiology, 2008, 69, 344-360.	2.5	41
937	Arabidopsis proteins important for modulating defense responses to ⟨i⟩Pseudomonas syringae⟨/i⟩ that secrete HopW1â€1. Plant Journal, 2008, 54, 452-465.	5.7	100
938	Constitutive activation of a CCâ€NB‣RR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant Journal, 2008, 55, 14-27.	5.7	82
939	The oomycete response gene <i>LURP1</i> is required for defense against <i>Hyaloperonospora parasitica</i> in <i>Arabidopsis thaliana</i> Plant Journal, 2008, 55, 53-64.	5.7	88
940	Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acuminata Colla: Isolation, RFLP marker development, and physical mapping. BMC Plant Biology, 2008, 8, 15.	3.6	63
941	Reversal of an immunity associated plant cell death program by the growth regulator auxin. BMC Research Notes, 2008, 1, 126.	1.4	18

#	Article	IF	CITATIONS
942	Endogenous small RNAs and antibacterial immunity in plants. FEBS Letters, 2008, 582, 2679-2684.	2.8	100
943	Genetic diversity in natural populations: a fundamental component of plant–microbe interactions. Current Opinion in Plant Biology, 2008, 11, 135-143.	7.1	85
944	Microtubules and Pathogen Defence. , 2007, , 121-140.		8
945	Functional Markers in Resistance Breeding. Progress in Botany Fortschritte Der Botanik, 2008, , 61-87.	0.3	18
946	Genomes, diversity and resistance gene analogues in <i>Musa</i> species. Cytogenetic and Genome Research, 2008, 121, 59-66.	1.1	34
947	Plant Resistance to Viruses: Natural Resistance Associated with Dominant Genes. , 2008, , 170-177.		2
948	Agrobacterium and Plant Biotechnology. , 2008, , 73-147.		26
949	Marshalling the Troops: Intracellular Dynamics in Plant Pathogen Defense. , 0, , 177-219.		1
950	Pseudomonas Syringae Type III-Secreted Proteins and their Activities and Effects on Plant Innate Immunity., 0,, 48-76.		1
951	Role of Plant Virus Movement Proteins. Methods in Molecular Biology, 2008, 451, 33-54.	0.9	65
953	Pseudomonas syringae Pathovars and Related Pathogens – Identification, Epidemiology and Genomics. , 2008, , .		9
954	Suppression of the MicroRNA Pathway by Bacterial Effector Proteins. Science, 2008, 321, 964-967.	12.6	341
955	Agrobacterium: From Biology to Biotechnology. , 2008, , .		42
956	ARCHIPELAGO: A Dedicated Resource for Exploiting Past, Present, and Future Genomic Data on Disease Resistance Regulation in Rice. Molecular Plant-Microbe Interactions, 2008, 21, 869-878.	2.6	31
957	mAtNOS1 induces apoptosis of human mammary adenocarcinoma cells. Life Sciences, 2008, 82, 1077-1082.	4.3	12
958	Identification of a multigene family encoding putative \hat{l}^2 -glucan-binding proteins in Medicago truncatula. Journal of Plant Physiology, 2008, 165, 766-776.	3.5	6
959	Gene expression profiling of single epidermal, basal and trichome cells of Arabidopsis thaliana. Journal of Plant Physiology, 2008, 165, 1530-1544.	3.5	35
960	Transcriptional responses of Arabidopsis thaliana to the bacteria-derived PAMPs harpin and lipopolysaccharide. Immunobiology, 2008, 213, 161-171.	1.9	54

#	Article	IF	CITATIONS
961	Building up plant defenses by breaking down proteins. Plant Science, 2008, 174, 375-385.	3.6	45
962	Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Science, 2008, 174, 524-533.	3.6	49
963	Ecological costs of biotrophic versus necrotrophic pathogen resistance, the hypersensitive response and signal transduction. Plant Science, 2008, 174, 551-556.	3.6	63
964	Chitosan induced resistance to downy mildew in sunflower caused by Plasmopara halstedii. Physiological and Molecular Plant Pathology, 2008, 72, 188-194.	2.5	76
965	Tomato leaf curl virus satellite DNA as a gene silencing vector activated by helper virus infection. Virus Research, 2008, 136, 30-34.	2.2	8
966	Identification of amino acids of the beet necrotic yellow vein virus p25 protein required for induction of the resistance response in leaves of Beta vulgaris plants. Journal of General Virology, 2008, 89, 1314-1323.	2.9	57
967	Arabidopsis AAL-toxin-resistant mutant atr1 shows enhanced tolerance to programmed cell death induced by reactive oxygen species. Biochemical and Biophysical Research Communications, 2008, 375, 639-644.	2.1	30
968	Plant NB-LRR Immune Receptors: From Recognition to Transcriptional Reprogramming. Cell Host and Microbe, 2008, 3, 126-135.	11.0	218
969	Molecular diversity at the plant–pathogen interface. Developmental and Comparative Immunology, 2008, 32, 736-744.	2.3	78
970	Mitochondrial retrograde regulation tuning fork in nuclear genes expressions of higher plants. Journal of Genetics and Genomics, 2008, 35, 65-71.	3.9	26
971	Chapter 3: Programmed Cell Death in Plants. International Review of Cell and Molecular Biology, 2008, 270, 87-144.	3.2	237
972	Oxalic Acid Is an Elicitor of Plant Programmed Cell Death during <i>Sclerotinia sclerotiorum</i> Disease Development. Molecular Plant-Microbe Interactions, 2008, 21, 605-612.	2.6	328
974	Toll-like receptors: a family of innate sensors of danger that alert and drive immunity. Allergologia Et Immunopathologia, 2008, 36, 347-357.	1.7	22
975	Molecular Evolution of the <i>Pi-ta </i> Gene Resistant to Rice Blast in Wild Rice (<i>Oryza) Tj ETQq1 1 0.784314</i>	rgBTJOve	rlock 10 Tf 5
976	Kunitz Trypsin Inhibitor: An Antagonist of Cell Death Triggered by Phytopathogens and Fumonisin B1 in Arabidopsis. Molecular Plant, 2008, 1, 482-495.	8.3	120
977	The hypersensitive response; the centenary is upon us but how much do we know?. Journal of Experimental Botany, 2008, 59, 501-520.	4.8	597
978	Low Levels of Polymorphism in Genes That Control the Activation of Defense Response in <i>Arabidopsis thaliana</i> Cenetics, 2008, 178, 2031-2043.	2.9	57
979	Nitric oxide function and signalling in plant disease resistance. Journal of Experimental Botany, 2008, 59, 147-154.	4.8	154

#	Article	IF	CITATIONS
980	Parasitism by <i>Cuscuta pentagona</i> Attenuates Host Plant Defenses against Insect Herbivores. Plant Physiology, 2008, 146, 987-995.	4.8	50
981	Genetic Variation Revealed in the Chloroplast-Encoded RNA Polymerase Â' Subunit of Downy Mildew-Resistant Genotype of Opium Poppy. Journal of Heredity, 2008, 100, 76-85.	2.4	5
982	Complex Genetics Control Natural Variation in <i>Arabidopsis thaliana</i> Resistance to <i>Botrytis cinerea</i> . Genetics, 2008, 180, 2237-2250.	2.9	104
983	RXLR-Mediated Entry of <i>Phytophthora sojae</i> Effector <i>Avr1b</i> into Soybean Cells Does Not Require Pathogen-Encoded Machinery. Plant Cell, 2008, 20, 1930-1947.	6.6	440
984	The Necrotroph Botrytis cinerea Induces a Non-Host Type II Resistance Mechanism in Pinus pinaster Suspension-Cultured Cells. Plant and Cell Physiology, 2008, 49, 386-395.	3.1	16
985	Recognition of Herbivory-Associated Molecular Patterns. Plant Physiology, 2008, 146, 825-831.	4.8	242
986	Chloroplast Signaling and <i>LESION SIMULATING DISEASE1 </i> Regulate Crosstalk between Light Acclimation and Immunity in <i>Arabidopsis </i> Relation 2008, 20, 2339-2356.	6.6	326
987	Characterization of Pea Aphid Resistance in <i>Medicago truncatula</i> Â Â Â. Plant Physiology, 2008, 146, 996-1009.	4.8	87
988	Mitogen-Activated Protein Kinase Cascades in Plant Intracellular Signaling., 0,, 100-136.		3
989	A Pathogenic Fungi Diphenyl Ether Phytotoxin Targets Plant Enoyl (Acyl Carrier Protein) Reductase. Plant Physiology, 2008, 147, 1062-1071.	4.8	41
990	Light Regulation and Daytime Dependency of Inducible Plant Defenses in Arabidopsis: Phytochrome Signaling Controls Systemic Acquired Resistance Rather Than Local Defense. Plant Physiology, 2008, 147, 790-801.	4.8	236
991	Genetic Resistance of Crops to Diseases. , 2008, , 23-170.		5
992	A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5638-5643.	7.1	317
993	From plants to animals; the role of plant cell death in ruminant herbivores. Journal of Experimental Botany, 2008, 59, 521-532.	4.8	35
994	Functional Interaction of the SNARE Protein NtSyp121 in Ca2+ Channel Gating, Ca2+ Transients and ABA Signalling of Stomatal Guard Cells. Molecular Plant, 2008, 1, 347-358.	8.3	49
995	XA27 Depends on an Amino-Terminal Signal-Anchor-Like Sequence to Localize to the Apoplast for Resistance to <i>Xanthomonas oryzae</i> pv <i>oryzae</i> Å. Plant Physiology, 2008, 148, 1497-1509.	4.8	44
996	HpaC Controls Substrate Specificity of the Xanthomonas Type III Secretion System. PLoS Pathogens, 2008, 4, e1000094.	4.7	39
997	Nuclear Trafficking During Plant Innate Immunity. Molecular Plant, 2008, 1, 411-422.	8.3	38

#	Article	IF	CITATIONS
998	Genomic Organization, Rapid Evolution and Meiotic Instability of Nucleotide-Binding-Site-Encoding Genes in a New Fruit Crop, "Chestnut Rose― Genetics, 2008, 178, 2081-2091.	2.9	10
999	Biosynthesis, Compartmentation and Cellular Functions of Glutathione in Plant Cells. Advances in Photosynthesis and Respiration, 2008, , 161-184.	1.0	6
1000	An Inositolphosphorylceramide Synthase Is Involved in Regulation of Plant Programmed Cell Death Associated with Defense in <i>Arabidopsis</i> . Plant Cell, 2008, 20, 3163-3179.	6.6	193
1001	Two arms are better than one: parasite variation leads to combined inducible and constitutive innate immune responses. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 937-945.	2.6	51
1002	The HopZ Family of <i>Pseudomonas syringae </i> Type III Effectors Require Myristoylation for Virulence and Avirulence Functions in <i>Arabidopsis thaliana </i> . Journal of Bacteriology, 2008, 190, 2880-2891.	2.2	105
1003	UV-Induced DNA Damage Promotes Resistance to the Biotrophic Pathogen <i>Hyaloperonospora parasitica</i> in Arabidopsis. Plant Physiology, 2008, 148, 1021-1031.	4.8	79
1004	RACK1 Functions in Rice Innate Immunity by Interacting with the Rac1 Immune Complex Â. Plant Cell, 2008, 20, 2265-2279.	6.6	183
1005	Identification and Characterization of Nucleotide-Binding Site-Leucine-Rich Repeat Genes in the Model Plant <i>Medicago truncatula </i> A. Plant Physiology, 2008, 146, 5-21.	4.8	295
1006	<i>Pseudomonas syringae</i> Elicits Emission of the Terpenoid (E,E)-4,8,12-Trimethyl-1,3,7,11-Tridecatetraene in <i>Arabidopsis</i> Expression of the Terpene Synthase TPS4. Molecular Plant-Microbe Interactions, 2008, 21, 1482-1497.	2.6	45
1007	Three-dimensional Models of NB-ARC Domains of Disease Resistance Proteins in Tomato, Arabidopsis, and Flax. Journal of Biomolecular Structure and Dynamics, 2008, 25, 357-371.	3.5	13
1008	From Guard to Decoy: A New Model for Perception of Plant Pathogen Effectors. Plant Cell, 2008, 20, 2009-2017.	6.6	626
1009	A Personal Perspective of the Last 40 Years of Plant Pathology: Emerging Themes, Paradigm Shifts and Future Promise., 0,, 1-15.		0
1010	Distinct Mechanisms Govern the Dosage-Dependent and Developmentally Regulated Resistance Conferred by the Maize <i>Hm2</i> Gene. Molecular Plant-Microbe Interactions, 2008, 21, 79-86.	2.6	23
1011	Responses of Two Contrasting Genotypes of Rice to Brown Planthopper. Molecular Plant-Microbe Interactions, 2008, 21, 122-132.	2.6	82
1012	Two Receptor-Like Genes, <i>Vfa1</i> and <i>Vfa2</i> , Confer Resistance to the Fungal Pathogen <i>Venturia inaequalis</i> Inciting Apple Scab Disease. Molecular Plant-Microbe Interactions, 2008, 21, 448-458.	2.6	70
1013	Silencing a Candidate Nematode Effector Gene Corresponding to the Tomato Resistance Gene <i>Mi-1</i> Leads to Acquisition of Virulence. Molecular Plant-Microbe Interactions, 2008, 21, 576-585.	2.6	105
1014	Gain of Virulence on <i>Rsv1</i> -Genotype Soybean by an Avirulent <i>Soybean mosaic virus</i> Requires Concurrent Mutations in Both P3 and HC-Pro. Molecular Plant-Microbe Interactions, 2008, 21, 931-936.	2.6	80
1015	Adaptation of <i>Soybean mosaic virus</i> Avirulent Chimeras Containing P3 Sequences from Virulent Strains to <i>Rsv1</i> -Genotype Soybeans Is Mediated by Mutations in HC-Pro. Molecular Plant-Microbe Interactions, 2008, 21, 937-946.	2.6	44

#	Article	IF	Citations
1016	The <i>Rx</i> Gene Confers Resistance to a Range of <i>Potexviruses</i> in Transgenic <i>Nicotiana</i> Plants. Molecular Plant-Microbe Interactions, 2008, 21, 1154-1164.	2.6	35
1017	Performance of Transgenic Potato Containing the Late Blight Resistance Gene <i>RB</i> . Plant Disease, 2008, 92, 339-343.	1.4	73
1018	The Relationship of Host-Mediated Induced Resistance to Polymorphism in Gene-for-Gene Relationships. Phytopathology, 2008, 98, 128-136.	2.2	11
1019	Haplotype Diversity at the <i>Pi-ta</i> Locus in Cultivated Rice and Its Wild Relatives. Phytopathology, 2008, 98, 1305-1311.	2.2	43
1020	The <i>Phytophthora infestans</i> Avirulence Gene <i>Avr4</i> Encodes an RXLR-dEER Effector. Molecular Plant-Microbe Interactions, 2008, 21, 1460-1470.	2.6	144
1021	Discovery of ADP-Ribosylation and Other Plant Defense Pathway Elements Through Expression Profiling of Four Different <i>Arabidopsis–Pseudomonas R-avr</i> Interactions. Molecular Plant-Microbe Interactions, 2008, 21, 646-657.	2.6	57
1022	High Level Expression of a Virus Resistance Gene, <i>RCY1</i> , Confers Extreme Resistance to <i>Cucumber mosaic virus</i> in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2008, 21, 1398-1407.	2.6	52
1023	Genome Organization and Evolution of the <i> AVR-Pita < /i > Avirulence Gene Family in the <i> Magnaporthe grisea < /i > Species Complex. Molecular Plant-Microbe Interactions, 2008, 21, 658-670.</i></i>	2.6	127
1024	Rooteomics: The Challenge of Discovering Plant Defense-Related Proteins in Roots. Current Protein and Peptide Science, 2008, 9, 108-116.	1.4	31
1025	Unsupervised Meta-Analysis on Diverse Gene Expression Datasets Allows Insight into Gene Function and Regulation. Bioinformatics and Biology Insights, 2008, 2, BBI.S665.	2.0	2
1026	An update on genetically modified crops. Ciencia E Investigacion Agraria, 2008, 35, .	0.2	7
1027	Phytotoxicity of the extracts of Lonchocarpus muehlbergianus Hassl. (Fabaceae) leaflets and galls on seed germination and early development of lettuce. Acta Botanica Brasilica, 2008, 22, 1095-1100.	0.8	11
1028	More About Plant Virus Evolution: Past, Present, and Future. , 2008, , 229-250.		26
1029	A Metasystem of Framework Model Organisms to Study Emergence of New Host-Microbe Adaptations. PLoS ONE, 2008, 3, e3891.	2.5	5
1030	Molecular Aspects of Plant Disease Resistance. , 2008, , .		6
1031	NEW CHALLENGES FOR DURABLE RESISTANCE BREEDING IN TOMATO. Acta Horticulturae, 2008, , 61-74.	0.2	1
1033	Extração e análise eletroforética em gel de poliacrilamida (SDS-PAGE) de proteÃnas totais de folhas e raÃzes de Piper tuberculatum. Acta Amazonica, 2009, 39, 255-260.	0.7	5
1034	Analysis of Temperature Modulation of Plant Defense Against Biotrophic Microbes. Molecular Plant-Microbe Interactions, 2009, 22, 498-506.	2.6	251

#	Article	IF	CITATIONS
1035	The BTB/POZ Domain of the <i>Arabidopsis</i> Disease Resistance Protein NPR1 Interacts with the Repression Domain of TGA2 to Negate Its Function. Plant Cell, 2009, 21, 3700-3713.	6.6	141
1036	The ERECTA Receptor-Like Kinase Regulates Cell Wall–Mediated Resistance to Pathogens in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2009, 22, 953-963.	2.6	100
1037	Host Plant Resistance for the Management of Bemisia tabaci: A Multi-crop Survey with Emphasis on Tomato. , 2009, , 357-383.		7
1038	Characterization of Rice Blast Resistance Genes in the <i>Pik</i> Cluster and Fine Mapping of the <i>Pik-p</i> Locus. Phytopathology, 2009, 99, 900-905.	2.2	40
1039	Coevolution of Plants and Their Pathogens in Natural Habitats. Science, 2009, 324, 755-756.	12.6	141
1040	Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15973-15978.	7.1	241
1041	The <i>Magnaporthe oryzae</i> Avirulence Gene <i>AvrPiz-t</i> Encodes a Predicted Secreted Protein That Triggers the Immunity in Rice Mediated by the Blast Resistance Gene <i>Piz-t</i> Molecular Plant-Microbe Interactions, 2009, 22, 411-420.	2.6	240
1042	Dynamics of Crop–Pathogen Interactions. , 2009, , 423-447.		3
1043	Advances in Genetics, Genomics and Control of Rice Blast Disease., 2009,,.		41
1044	Host Inhibition of a Bacterial Virulence Effector Triggers Immunity to Infection. Science, 2009, 324, 784-787.	12.6	120
1045	Molecular Analysis of a Large Subtelomeric Nucleotide-Binding-Site–Leucine-Rich-Repeat Family in Two Representative Genotypes of the Major Gene Pools of ⟨i⟩Phaseolus vulgaris⟨ i⟩. Genetics, 2009, 181, 405-419.	2.9	77
1046	Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans. Journal of Experimental Botany, 2009, 60, 1133-1140.	4.8	92
1047	Diversity and Evolution of Effector Loci in Natural Populations of the Plant Pathogen Melampsora lini. Molecular Biology and Evolution, 2009, 26, 2499-2513.	8.9	130
1048	The <i>Venturia </i> Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses. Journal of Biomedicine and Biotechnology, 2009, 2009, 1-10.	3.0	49
1049	A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes and Development, 2009, 23, 2496-2506.	5.9	244
1050	Involvement of Reactive Nitrogen and Oxygen Species (RNS and ROS) in Sunflower–Mildew Interaction. Plant and Cell Physiology, 2009, 50, 265-279.	3.1	168
1051	Positively Selected Disease Response Orthologous Gene Sets in the Cereals Identified Using Sorghum bicolor L. Moench Expression Profiles and Comparative Genomics. Molecular Biology and Evolution, 2009, 26, 2015-2030.	8.9	8
1052	Biotic and Abiotic Stimulation of Root Epidermal Cells Reveals Common and Specific Responses to Arbuscular Mycorrhizal Fungi Â. Plant Physiology, 2009, 149, 1424-1434.	4.8	78

#	Article	IF	CITATIONS
1053	Bacterial triggering of inflammation by intracellular sensors. Future Microbiology, 2009, 4, 65-75.	2.0	6
1054	Specific Targeting of the <i>Arabidopsis </i> Resistance Protein RPW8.2 to the Interfacial Membrane Encasing the Fungal Haustorium Renders Broad-Spectrum Resistance to Powdery Mildew Â. Plant Cell, 2009, 21, 2898-2913.	6.6	169
1055	The <i>Colletotrichum orbiculare ssd1</i> Mutant Enhances <i>Nicotiana benthamiana</i> Resistance by Activating a Mitogen-Activated Protein Kinase Pathway Â. Plant Cell, 2009, 21, 2517-2526.	6.6	47
1056	The multilevel and dynamic interplay between plant and pathogen. Plant Signaling and Behavior, 2009, 4, 283-293.	2.4	16
1057	Effect of Potato Virus Y on the NADP-Malic Enzyme from Nicotiana tabacum L.: mRNA, Expressed Protein and Activity. International Journal of Molecular Sciences, 2009, 10, 3583-3598.	4.1	15
1058	Identification and Analyses of Candidate Genes for <i>Rpp4</i> -Mediated Resistance to Asian Soybean Rust in Soybean Â. Plant Physiology, 2009, 150, 295-307.	4.8	100
1059	The Cyst Nematode SPRYSEC Protein RBP-1 Elicits Gpa2- and RanGAP2-Dependent Plant Cell Death. PLoS Pathogens, 2009, 5, e1000564.	4.7	182
1060	The Synthetic Elicitor 3,5-Dichloroanthranilic Acid Induces <i>NPR1</i> -Dependent and <i>NPR1</i> -Independent Mechanisms of Disease Resistance in Arabidopsis Â. Plant Physiology, 2009, 150, 333-347.	4.8	74
1061	Chapter 2 Plant Pathogens as Suppressors of Host Defense. Advances in Botanical Research, 2009, , 39-89.	1.1	14
1062	Chapter 3 From Nonhost Resistance to Lesion-Mimic Mutants. Advances in Botanical Research, 2009, 51, 91-121.	1.1	6
1063	Type III Protein Secretion in Plant Pathogenic Bacteria. Plant Physiology, 2009, 150, 1656-1664.	4.8	275
1064	Positive selection in AvrP4 avirulence gene homologues across the genus Melampsora. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2913-2922.	2.6	33
1065	E3 ubiquitin ligases and plant innate immunity. Journal of Experimental Botany, 2009, 60, 1123-1132.	4.8	140
1066	Identification of a New Rice Blast Resistance Gene, <i>Pid3</i> , by Genomewide Comparison of Paired Nucleotide-Binding Site–Leucine-Rich Repeat Genes and Their Pseudogene Alleles Between the Two Sequenced Rice Genomes. Genetics, 2009, 182, 1303-1311.	2.9	176
1067	Hormone (Dis)harmony Moulds Plant Health and Disease. Science, 2009, 324, 750-752.	12.6	416
1068	RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. Journal of Experimental Botany, 2009, 60, 591-602.	4.8	189
1069	cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici. BMC Genomics, 2009, 10, 289.	2.8	81
1070	Understanding diversity of human innate immunity receptors: analysis of surface features of leucine-rich repeat domains in NLRs and TLRs. BMC Immunology, 2009, 10, 48.	2.2	39

#	Article	IF	CITATIONS
1071	Common and contrasting themes in host cell-targeted effectors from bacterial, fungal, oomycete and nematode plant symbionts described using the Gene Ontology. BMC Microbiology, 2009, 9, S3.	3.3	38
1072	Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves. BMC Plant Biology, 2009, 9, 127.	3.6	76
1073	Plant origin and ploidy influence gene expression and life cycle characteristics in an invasive weed. BMC Plant Biology, 2009, 9, 33.	3.6	30
1074	Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass (Lolium perenne L.). BMC Plant Biology, 2009, 9, 62.	3.6	34
1075	TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders. BMC Research Notes, 2009, 2, 197.	1.4	104
1076	Salicylic acid induced defence responses in Curcuma longa (L.) against Pythium aphanidermatum infection. Crop Protection, 2009, 28, 974-979.	2.1	23
1077	Pathogenâ€inducible <i>CaUGT1</i> is involved in resistance response against TMV infection by controlling salicylic acid accumulation. FEBS Letters, 2009, 583, 2315-2320.	2.8	11
1078	Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Molecular Genetics and Genomics, 2009, 281, 609-626.	2.1	142
1079	Genome-wide identification of NBS-encoding resistance genes in Brassica rapa. Molecular Genetics and Genomics, 2009, 282, 617-31.	2.1	139
1080	Molecular typing of Japanese strains of Ralstonia solanacearum in relation to the ability to induce a hypersensitive reaction in tobacco. Journal of General Plant Pathology, 2009, 75, 369-380.	1.0	35
1081	Distribution of avirulence genes avrA and popP1 in 22 Japanese phylotype I strains of Ralstonia solanacearum. Journal of General Plant Pathology, 2009, 75, 362-368.	1.0	8
1082	Double Mutations in elF4E and elFiso4E Confer Recessive Resistance to Chilli Veinal Mottle Virus in Pepper. Molecules and Cells, 2009, 27, 329-336.	2.6	89
1083	The Calmodulin-Binding Transcription Factor OsCBT Suppresses Defense Responses to Pathogens in Rice. Molecules and Cells, 2009, 27, 563-570.	2.6	44
1084	Rice OsACDR1 (Oryza sativa Accelerated Cell Death and Resistance 1) Is a Potential Positive Regulator of Fungal Disease Resistance. Molecules and Cells, 2009, 28, 431-440.	2.6	67
1085	Molecular characterization of crossability gene Kr1 for intergeneric hybridization in Triticum aestivum (Poaceae: Triticeae). Plant Systematics and Evolution, 2009, 278, 125-131.	0.9	7
1086	Comprehensive proteome analysis of lettuce latex using multidimensional protein-identification technology. Phytochemistry, 2009, 70, 570-578.	2.9	31
1087	Functions of oligochitosan induced protein kinase in tobacco mosaic virus resistance and pathogenesis related proteins in tobacco. Plant Physiology and Biochemistry, 2009, 47, 724-731.	5.8	41
1088	Approaching the Asymptote: 20 Years Later. Immunity, 2009, 30, 766-775.	14.3	310

#	Article	IF	CITATIONS
1089	Molecular cloning and in silico analysis of potential Fusarium resistance genes in banana. Molecular Breeding, 2009, 23, 431-443.	2.1	13
1090	Development of SNP markers linked to the L locus in Capsicum spp. by a comparative genetic analysis. Molecular Breeding, 2009, 24, 433-446.	2.1	32
1091	Identification and characterization of differentially expressed genes in the resistance reaction in taro infected with PhytophthoraÂcolocasiae. Molecular Biology Reports, 2009, 36, 1291-1297.	2.3	18
1092	Characterization of the phenylalanine ammonia-lyase gene (SIPAL5) from tomato (Solanum) Tj ETQq1 1 0.784314	4 rgBT /Ov 2:3	erlock 10 T
1093	Identification of differential gene expression for Kr1 gene in bread wheat using annealing control primer system. Molecular Biology Reports, 2009, 36, 2111-2118.	2.3	3
1094	Recruitment of AtWHY1 and AtWHY3 by a distal element upstream of the kinesin gene AtKP1 to mediate transcriptional repression. Plant Molecular Biology, 2009, 71, 437-49.	3.9	34
1095	Isolation and Evolution Mode Analysis of NBS–LRR Resistance Gene Analogs from Hexaploid Wheat. Plant Molecular Biology Reporter, 2009, 27, 266-274.	1.8	11
1096	Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. European Journal of Plant Pathology, 2009, 125, 1-22.	1.7	97
1097	Cisgenic melons over expressing glyoxylate-aminotransferase are resistant to downy mildew. European Journal of Plant Pathology, 2009, 125, 355-365.	1.7	19
1098	Two distinct potato late blight resistance genes from SolanumÂberthaultii are located on chromosome 10. Euphytica, 2009, 165, 269-278.	1.2	37
1099	Spatial deployment of gene-for-gene resistance governs evolution and spread of pathogen populations. Theoretical Ecology, 2009, 2, 229-238.	1.0	47
1100	Proteomic analysis of rice mutants susceptible to Magnaporthe oryzae. Plant Biotechnology Reports, 2009, 3, 167-174.	1.5	8
1101	Cloning and structure analysis of an NBS-LRR disease-resistant gene from Setaria italica Beauv. Frontiers of Agriculture in China, 2009, 3, 240-246.	0.2	5
1102	Variation in metabolites constituent in leaves of downy mildew resistant and susceptible genotypes of pearl millet. Physiology and Molecular Biology of Plants, 2009, 15, 249-255.	3.1	9
1103	Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean–Phytophthora sojae interaction. Theoretical and Applied Genetics, 2009, 118, 399-412.	3.6	13
1104	Dissection of the factors affecting development-controlled and race-specific disease resistance conferred by leucine-rich repeat receptor kinase-type R genes in rice. Theoretical and Applied Genetics, 2009, 119, 231-239.	3.6	38
1105	Identification of elicitorâ€responsive proteins in rice leaves by a proteomic approach. Proteomics, 2009, 9, 2809-2819.	2.2	50
1106	A novel simple extracellular leucineâ€rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitiveâ€induced reaction protein 1 (OsHIR1). Plant, Cell and Environment, 2009, 32, 1804-1820.	5.7	44

#	ARTICLE	IF	CITATIONS
1107	Purification of lowâ€abundance Arabidopsis plasmaâ€membrane protein complexes and identification of candidate components. Plant Journal, 2009, 57, 932-944.	5.7	85
1108	Heterotrimeric G proteinsâ€mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acidâ€, jasmonic acid/ethylene†and abscisic acidâ€mediated defense signaling. Plant Journal, 2009, 58, 69-81.	5.7	149
1109	An Fâ€box gene, <i>CPR30</i> , functions as a negative regulator of the defense response in Arabidopsis. Plant Journal, 2009, 60, 757-770.	5.7	108
1110	A protein phosphatase 2C, responsive to the bacterial effector AvrRpm1 but not to the AvrB effector, regulates defense responses in Arabidopsis. Plant Journal, 2010, 61, 249-258.	5.7	47
1111	A new antimicrobial peptide isolated from <i>Oudneya africana</i> seeds. Microbiology and Immunology, 2009, 53, 658-666.	1.4	18
1112	Candidate effector gene identification in the ascomycete fungal phytopathogen <i>Venturia inaequalis</i> by expressed sequence tag analysis. Molecular Plant Pathology, 2009, 10, 431-448.	4.2	33
1113	The zigâ€ēagâ€ēig in oomycete–plant interactions. Molecular Plant Pathology, 2009, 10, 547-562.	4.2	136
1114	Advances in experimental methods for the elucidation of <i>Pseudomonas syringae</i> effector function with a focus on AvrPtoB. Molecular Plant Pathology, 2009, 10, 777-793.	4.2	20
1115	The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Research, 2009, 19, 1377-1387.	12.0	168
1116	The NS3 protein of rice hoja blanca virus complements the RNAi suppressor function of HIVâ€1 Tat. EMBO Reports, 2009, 10, 258-263.	4.5	62
1117	Functional Expression of the Intracellular Pattern Recognition Receptor NOD1 in Human Keratinocytes. Journal of Investigative Dermatology, 2009, 129, 1299-1302.	0.7	26
1118	Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature, 2009, 459, 992-995.	27.8	192
1119	Chitosan-induced programmed cell death in plants. Biochemistry (Moscow), 2009, 74, 1035-1043.	1.5	31
1120	Inflammasomes: guardians of cytosolic sanctity. Immunological Reviews, 2009, 227, 95-105.	6.0	334
1121	Riboflavinâ€induced Priming for Pathogen Defense in <i>Arabidopsis thaliana</i> . Journal of Integrative Plant Biology, 2009, 51, 167-174.	8.5	97
1122	Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS Journal, 2009, 276, 4666-4681.	4.7	179
1123	Isolation and Expression of an NBS-LRR Protein-encoding Resistance Gene Candidate that Segregates with a Rust Resistance Gene in Sunflower. Journal of Phytopathology, 2010, 158, 433-443.	1.0	12
1124	Functional marker-assisted selection for bacterial leaf blight resistance genes in rice (<i>Oryza) Tj ETQq1 1 0.784.</i>	314 rgBT / 1.9	Oygrlock 10

#	Article	IF	CITATIONS
1125	Plant invaders and their novel natural enemies: who is naÃ-ve?. Ecology Letters, 2009, 12, 107-117.	6.4	149
1126	Plant immunity: a lesson from pathogenic bacterial effector proteins. Cellular Microbiology, 2009, 11, 1453-1461.	2.1	83
1127	The LCB ₂ subunit of the sphingolip biosynthesis enzyme serine palmitoyltransferase can function as an attenuator of the hypersensitive response and Baxâ€induced cell death. New Phytologist, 2009, 181, 127-146.	7.3	32
1128	<i>RPW8</i> and resistance to powdery mildew pathogens in natural populations of <i>Arabidopsis lyrata</i> . New Phytologist, 2009, 182, 984-993.	7.3	7
1129	Nonhost and basal resistance: how to explain specificity?. New Phytologist, 2009, 182, 817-828.	7.3	152
1130	Activation tagging of <i>ADR2</i> conveys a spreading lesion phenotype and resistance to biotrophic pathogens. New Phytologist, 2009, 183, 1163-1175.	7.3	23
1131	Quantitative fitness effects of infection in a geneâ€forâ€gene system. New Phytologist, 2009, 184, 485-494.	7.3	18
1132	Two poplar methyl salicylate esterases display comparable biochemical properties but divergent expression patterns. Phytochemistry, 2009, 70, 32-39.	2.9	39
1133	Fatty Acid–Derived Signals in Plant Defense. Annual Review of Phytopathology, 2009, 47, 153-176.	7.8	374
1134	Analysis of resistance gene family diversity in pepper (Capsicum annuum). Doklady Biochemistry and Biophysics, 2009, 425, 73-75.	0.9	2
1135	Comparative Large-Scale Analysis of Interactions between Several Crop Species and the Effector Repertoires from Multiple Pathovars of $\langle i \rangle$ Pseudomonas $\langle i \rangle$ and $\langle i \rangle$ Ralstonia $\langle i \rangle$ Â Â Â. Plant Physiology, 2009, 150, 1733-1749.	4.8	100
1136	Autophagic Components Contribute to Hypersensitive Cell Death in Arabidopsis. Cell, 2009, 137, 773-783.	28.9	348
1137	OsBWMK1 mediates SA-dependent defense responses by activating the transcription factor OsWRKY33. Biochemical and Biophysical Research Communications, 2009, 387, 365-370.	2.1	67
1138	NB-LRRs work a "bait and switch―on pathogens. Trends in Plant Science, 2009, 14, 521-529.	8.8	267
1139	Plant systems for recognition of pathogen-associated molecular patterns. Seminars in Cell and Developmental Biology, 2009, 20, 1025-1031.	5.0	93
1140	The targeting of plant cellular systems by injected type III effector proteins. Seminars in Cell and Developmental Biology, 2009, 20, 1055-1063.	5.0	67
1141	Isolation and identification of two genes encoding leucine-rich repeat (LRR) proteins differentially responsive to pathogen attack and salt stress in tobacco. Plant Science, 2009, 176, 38-45.	3.6	24
1142	Alternatively spliced transcripts of Pi-ta blast resistance gene in Oryza sativa. Plant Science, 2009, 177, 468-478.	3.6	36

#	Article	IF	CITATIONS
1143	Spermine signaling plays a significant role in the defense response of Arabidopsis thaliana to cucumber mosaic virus. Journal of Plant Physiology, 2009, 166, 626-643.	3.5	107
1144	Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Current Opinion in Microbiology, 2009, 12, 53-60.	5.1	236
1145	Recognitional Specificity and Evolution in the Tomato– <i>Cladosporium fulvum</i> Pathosystem. Molecular Plant-Microbe Interactions, 2009, 22, 1191-1202.	2.6	48
1146	The Arabidopsis <i>RESURRECTION1</i> Gene Regulates a Novel Antagonistic Interaction in Plant Defense to Biotrophs and Necrotrophs. Plant Physiology, 2009, 151, 290-305.	4.8	56
1147	Molecular Aspects of Grapevine-Pathogenic Fungi Interactions. , 2009, , 407-428.		17
1148	Progress in Grapevine protoplast Technology. , 2009, , 429-460.		5
1149	Oxidative stress response of Mycosphaerella fijiensis, the causal agent of black leaf streak disease in banana plants, to hydrogen peroxide and paraquat. Canadian Journal of Microbiology, 2009, 55, 887-894.	1.7	10
1150	Bacterial Growth Restriction During Host Resistance to <i>Pseudomonas syringae </i> Is Associated with Leaf Water Loss and Localized Cessation of Vascular Activity in <i>Arabidopsis thaliana </i> Ionalized Cessation of Vascular Plant-Microbe Interactions, 2009, 22, 857-867.	2.6	68
1151	Mechanisms of Recognition in Dominant R Gene Mediated Resistance. Advances in Virus Research, 2009, 75, 1-229.	2.1	128
1152	Callose in Biotic Stress (Pathogenesis). , 2009, , 525-562.		10
1153	Poplar and Pathogen Interactions: Insights from <i>Populus </i> Genome-Wide Analyses of Resistance and Defense Gene Families and Gene Expression Profiling. Critical Reviews in Plant Sciences, 2009, 28, 309-334.	5.7	97
1154	Defence Responses in Plants. , 2009, , 363-385.		0
1155	Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Natural Product Reports, 2009, 26, 746.	10.3	333
1156	Reactive Oxygen Species in Plant–Pathogen Interactions. Signaling and Communication in Plants, 2009, , 113-133.	0.7	50
1157	Grapevine Molecular Physiology & Egotechnology. , 2009, , .		34
1158	Autophagy in Infection and Immunity. Current Topics in Microbiology and Immunology, 2009, , .	1.1	4
1159	Population Genetics of Fungal and Oomycete Effectors Involved in Gene-for-Gene Interactions. Molecular Plant-Microbe Interactions, 2009, 22, 371-380.	2.6	134
1160	Too much of a good thing? Hybrid necrosis as a by-product of plant immune system diversification. Botany, 2009, 87, 1013-1022.	1.0	25

#	Article	IF	CITATIONS
1161	Plant-Environment Interactions. Signaling and Communication in Plants, 2009, , .	0.7	16
1163	Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1654-1659.	7.1	260
1164	Reactive oxygen species as universal constraints in life-history evolution. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1737-1745.	2.6	525
1166	Plant Biotechnological Approaches for the Production and Commercialization of Transgenic Crops. Biotechnology and Biotechnological Equipment, 2009, 23, 1281-1288.	1.3	8
1167	S-Nitrosylation of AtSABP3 Antagonizes the Expression of Plant Immunity. Journal of Biological Chemistry, 2009, 284, 2131-2137.	3.4	227
1168	Divergent diversity patterns of NBS and LRR domains of resistance gene analogs in wild emmer wheat populations. Genome, 2009, 52, 557-565.	2.0	13
1169	Rice <i>Pi5</i> -Mediated Resistance to <i>Magnaporthe oryzae</i> Requires the Presence of Two Coiled-Coil–Nucleotide-Binding–Leucine-Rich Repeat Genes. Genetics, 2009, 181, 1627-1638.	2.9	239
1170	Plant–pathogen interactions: a view from the evolutionary basement. New Phytologist, 2009, 183, 237-239.	7.3	7
1171	In the trenches of plant pathogen recognition: Role of NB-LRR proteins. Seminars in Cell and Developmental Biology, 2009, 20, 1017-1024.	5.0	52
1172	Abscisic Acid Has a Key Role in Modulating Diverse Plant-Pathogen Interactions Â. Plant Physiology, 2009, 150, 1750-1761.	4.8	314
1173	Systemic effects on leaf glutathione metabolism and defence protein expression caused by esca infection in grapevines. Functional Plant Biology, 2009, 36, 260.	2.1	43
1174	Allelic Variants of the <i>Pseudomonas syringae</i> Type III Effector HopZ1 Are Differentially Recognized by Plant Resistance Systems. Molecular Plant-Microbe Interactions, 2009, 22, 176-189.	2.6	56
1175	Resistance to Subterranean clover mottle virus in Medicago truncatula and genetic mapping of a resistance locus. Crop and Pasture Science, 2009, 60, 480.	1.5	6
1176	Recognition events and host–pathogen co-evolution in gene-for-gene resistance to flax rust. Functional Plant Biology, 2009, 36, 395.	2.1	49
1177	UNDERSTANDING PLANT RESPONSES TO BIOTIC STRESS: ONGOING RESEARCH IN MUSA. Acta Horticulturae, 2009, , 255-272.	0.2	4
1178	Pathogenesis in Mosses. , 0, , 298-338.		1
1179	Distinct Amino Acids of the <i>Phytophthora infestans</i> Effector AVR3a Condition Activation of R3a Hypersensitivity and Suppression of Cell Death. Molecular Plant-Microbe Interactions, 2009, 22, 269-281.	2.6	65
1180	Serine Palmitoyltransferase, the First Step Enzyme in Sphingolipid Biosynthesis, Is Involved in Nonhost Resistance. Molecular Plant-Microbe Interactions, 2009, 22, 31-38.	2.6	37

#	Article	IF	CITATIONS
1181	A Draft Genome Sequence of <i>Pseudomonas syringae</i> pv. <i>tomato</i> T1 Reveals a Type III Effector Repertoire Significantly Divergent from That of <i>pseudomonas syringae</i> pv. <i>tomato</i> DC3000. Molecular Plant-Microbe Interactions, 2009, 22, 52-62.	2.6	134
1182	<i>GmRAR1</i> and <i>GmSGT1</i> Are Required for Basal, <i>R</i> Gene–Mediated and Systemic Acquired Resistance in Soybean. Molecular Plant-Microbe Interactions, 2009, 22, 86-95.	2.6	77
1183	Overexpression of Rice (<i>Oryza sativa</i> L.) <i>OsCDR1</i> Leads to Constitutive Activation of Defense Responses in Rice and <i>Arabidopsis</i> Molecular Plant-Microbe Interactions, 2009, 22, 1635-1644.	2.6	59
1184	The TIR Domain of TIR-NB-LRR Resistance Proteins Is a Signaling Domain Involved in Cell Death Induction. Molecular Plant-Microbe Interactions, 2009, 22, 157-165.	2.6	185
1185	Characterization of the Mesorhizobium loti MAFF303099 Type-Three Protein Secretion System. Molecular Plant-Microbe Interactions, 2009, 22, 519-528.	2.6	50
1186	Multiple <i>R</i> -Like Genes Are Negatively Regulated by <i>BON1</i> and <i>BON3</i> in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2009, 22, 840-848.	2.6	51
1187	DNA polymorphism in the blast disease resistance gene Pita of the wild rice Oryza rufipogon and its related species. Genes and Genetic Systems, 2009, 84, 121-136.	0.7	23
1188	Biology and Genetics of Crown Rust Disease in Ryegrasses. Crop Science, 2010, 50, 1605-1624.	1.8	25
1189	All Hands on Deckâ€"The Role of Chloroplasts, Endoplasmic Reticulum, and the Nucleus in Driving Plant Innate Immunity. Molecular Plant-Microbe Interactions, 2010, 23, 1368-1380.	2.6	94
1190	Silencing of WIPK and SIPK Mitogen-Activated Protein Kinases Reduces <i>Tobacco mosaic virus</i> Accumulation But Permits Systemic Viral Movement in Tobacco Possessing the <i>N</i> Resistance Gene. Molecular Plant-Microbe Interactions, 2010, 23, 1032-1041.	2.6	36
1191	Mass Spectrometric Analysis Reveals Remnants of Host–Pathogen Molecular Interactions at the Starch Granule Surface in Wheat Endosperm. Phytopathology, 2010, 100, 848-854.	2.2	14
1192	Physiology of Fresh-Cut Fruits and Vegetables. Food Preservation Technology, 2010, , 87-113.	0.0	3
1193	LeAbsi1 gene expression regulation by various abiotic and oxidative stresses. Canadian Journal of Plant Science, 2010, 90, 435-441.	0.9	0
1194	Engineering Pathogen Resistance in Crop Plants: Current Trends and Future Prospects. Annual Review of Phytopathology, 2010, 48, 269-291.	7.8	164
1195	Evidence for Light Wavelength-Specific Photoelectrophysiological Signaling and Memory of Excess Light Episodes in <i>Arabidopsis</i>	6.6	187
1196	A novel approach to locate Phytophthora infestans resistance genes on the potato genetic map. Theoretical and Applied Genetics, 2010, 120, 785-796.	3.6	49
1197	Three highly similar formate dehydrogenase genes located in the vicinity of the B4 resistance gene cluster are differentially expressed under biotic and abiotic stresses in Phaseolus vulgaris. Theoretical and Applied Genetics, 2010, 121, 87-103.	3.6	44
1198	Transcription factor profiling leading to the identification of putative transcription factors involved in the Medicago truncatula–Uromyces striatus interaction. Theoretical and Applied Genetics, 2010, 121, 1311-1321.	3.6	17

#	Article	IF	CITATIONS
1199	Fine mapping of the sunflower resistance locus PI ARG introduced from the wild species Helianthus argophyllus. Theoretical and Applied Genetics, 2010, 121, 1633-1644.	3.6	41
1200	Strong Positive Selection Drives Rapid Diversification of R-Genes in Arabidopsis Relatives. Journal of Molecular Evolution, 2010, 70, 137-148.	1.8	105
1201	Adaptive control of innate immunity. Immunology Letters, 2010, 131, 107-112.	2.5	23
1202	The inflammasomes: mechanisms of activation and function. Current Opinion in Immunology, 2010, 22, 28-33.	5.5	403
1203	Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis. Planta, 2010, 231, 537-548.	3.2	36
1204	Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant–microbe interactions. Planta, 2010, 232, 787-806.	3.2	113
1205	Unique evolutionary pattern of numbers of gramineous NBS–LRR genes. Molecular Genetics and Genomics, 2010, 283, 427-438.	2.1	147
1206	Meta-analysis of transcripts associated with race-specific resistance to stripe rust in wheat demonstrates common induction of blue copper-binding protein, heat-stress transcription factor, pathogen-induced WIR1A protein, and ent-kaurene synthase transcripts. Functional and Integrative Genomics, 2010, 10, 383-392.	3.5	60
1207	Identification and characterization of NBS-encoding disease resistance genes in Lotus japonicus. Plant Systematics and Evolution, 2010, 289, 101-110.	0.9	42
1208	Pathogenesis-related genes and proteins in forest tree species. Trees - Structure and Function, 2010, 24, 993-1006.	1.9	50
1209	Stable isotope labelled mass spectrometry for quantification of the relative abundances for expressed proteins induced by PeaT1. Science China Life Sciences, 2010, 53, 1410-1417.	4.9	2
1210	Immunology Taught by Bacteria. Journal of Clinical Immunology, 2010, 30, 507-511.	3.8	32
1211	High-resolution genetic map of the Rvi15 (Vr2) apple scab resistance locus. Molecular Breeding, 2010, 26, 561-572.	2.1	26
1212	Polymorphism analysis of genomic regions associated with broad-spectrum effective blast resistance genes for marker development in rice. Molecular Breeding, 2010, 26, 595-617.	2.1	28
1213	Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Molecular Breeding, 2010, 26, 357-370.	2.1	109
1214	Identification and mapping of adult-onset sensitivity to victorin in barley. Molecular Breeding, 2010, 26, 545-550.	2.1	10
1215	Cloning, structural features, and expression analysis of resistance gene analogs in Tobacco. Molecular Biology Reports, 2010, 37, 345-354.	2.3	34
1216	Mapping and functional analysis of four apple receptor-like protein kinases related to LRPKm1 in HcrVf2-transgenic and wild-type apple plants. Tree Genetics and Genomes, 2010, 6, 389-403.	1.6	14

#	Article	IF	CITATIONS
1217	GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development. Plant Molecular Biology, 2010, 74, 1-17.	3.9	89
1218	Identification of NBS-Type Resistance Gene Homologs in Tobacco Genome. Plant Molecular Biology Reporter, 2010, 28, 152-161.	1.8	13
1219	Ectopic Expression of the Tomato Mi-1 Gene Confers Resistance to Root Knot Nematodes in Lettuce (Lactuca sativa). Plant Molecular Biology Reporter, 2010, 28, 204-211.	1.8	13
1220	Cloning and Characterization of the BcTuR3 Gene Related to Resistance to Turnip Mosaic Virus (TuMV) from Non-heading Chinese Cabbage. Plant Molecular Biology Reporter, 2010, 28, 588-596.	1.8	37
1221	Variations in relative humidity modulate Leptosphaeria spp. pathogenicity and interfere with canola mechanisms of defence. European Journal of Plant Pathology, 2010, 126, 187-202.	1.7	12
1222	RGA-ILP, a new type of functional molecular markers in bread wheat. Euphytica, 2010, 172, 263-273.	1.2	19
1223	Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica, 2010, 174, 343-356.	1.2	90
1224	Phylogenetic analyses of peanut resistance gene candidates and screening of different genotypes for polymorphic markers. Saudi Journal of Biological Sciences, 2010, 17, 43-49.	3.8	7
1225	Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis. BMC Plant Biology, 2010, 10, 186.	3.6	43
1226	Co-option of EDM2 to distinct regulatory modules in Arabidopsis thaliana development. BMC Plant Biology, 2010, 10, 203.	3.6	18
1227	Transcript profiling of common bean (Phaseolus vulgaris L.) using the GeneChip(R) Soybean Genome Array: optimizing analysis by masking biased probes. BMC Plant Biology, 2010, 10, 85.	3.6	19
1228	Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biology, 2010, 10, 9.	3.6	81
1229	Comparative genomic sequence analysis of strawberry and other rosids reveals significant microsynteny. BMC Research Notes, 2010, 3, 168.	1.4	10
1230	Critical functions of priming and lysosomal damage for NLRP3 activation. European Journal of Immunology, 2010, 40, 620-623.	2.9	243
1231	The case for the defense: plants versus Pseudomonas syringae. Microbes and Infection, 2010, 12, 428-437.	1.9	35
1232	<i>SPL28</i> encodes a clathrinâ€associated adaptor protein complex 1, medium subunit Î⅓1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (<i>Oryza sativa</i>). New Phytologist, 2010, 185, 258-274.	7.3	162
1233	Functional characterization of the Xcs and Xps type II secretion systems from the plant pathogenic bacterium <i>Xanthomonas campestris</i> pv <i>vesicatoria</i> New Phytologist, 2010, 187, 983-1002.	7.3	114
1234	Suppression of the AvrBs1â€specific hypersensitive response by the YopJ effector homolog AvrBsT from <i>Xanthomonas</i>)depends on a SNF1â€related kinase. New Phytologist, 2010, 187, 1058-1074.	7.3	112

#	ARTICLE	IF	CITATIONS
1235	Towards population genomics of effector–effector target interactions. New Phytologist, 2010, 187, 929-939.	7.3	39
1236	The ubiquitin/26S proteasome system in plant–pathogen interactions: a neverâ€ending hideâ€andâ€seek game Molecular Plant Pathology, 2010, 11, 293-308.	·4.2	126
1237	<i>WRR4,</i> a broadâ€spectrum TIRâ€NB‣RR gene from <i>Arabidopsis thaliana</i> that confers white rust resistance in transgenic oilseed brassica crops. Molecular Plant Pathology, 2010, 11, 283-291.	4.2	61
1238	Devil inside: does plant programmed cell death involve the endomembrane system?. Plant, Cell and Environment, 2010, 33, 1453-73.	5.7	49
1239	Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels. Plant Journal, 2010, 62, 367-378.	5.7	215
1240	The Arabidopsis defense component EDM2 affects the floral transition in an FLC-dependent manner. Plant Journal, 2010, 62, 518-528.	5.7	54
1241	A mutant CHS3 protein with TIRâ€NBâ€LRRâ€LIM domains modulates growth, cell death and freezing tolerance in a temperatureâ€dependent manner in <i>Arabidopsis</i>). Plant Journal, 2010, 63, 283-296.	5.7	170
1242	Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant Journal, 2010, 64, 433-445.	5.7	76
1243	Catalytic domain of the diversified <i>Pseudomonas syringae</i> type III effector HopZ1 determines the allelic specificity in plant hosts. Molecular Microbiology, 2010, 76, 437-455.	2.5	18
1244	Combining flow cytometry andgfpreporter gene for quantitative evaluation of Pectpbacterium carotovorumssp.carotovoruminOrnithogalum dubiumplantlets. Journal of Applied Microbiology, 2010, 108, 1136-1144.	3.1	15
1245	Prf immune complexes of tomato are oligomeric and contain multiple Ptoâ€like kinases that diversify effector recognition. Plant Journal, 2010, 61, 507-518.	5.7	116
1246	Arabidopsis and the plant immune system. Plant Journal, 2010, 61, 1053-1066.	5.7	168
1247	Structural and functional characteristics of plant NADPH oxidase: A review. Applied Biochemistry and Microbiology, 2010, 46, 463-471.	0.9	36
1248	Effect of Ca2+ on programmed death of guard and epidermal cells of pea leaves. Biochemistry (Moscow), 2010, 75, 614-622.	1.5	7
1249	Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 2010, 42, 1053-1059.	21.4	987
1250	Innate immunity: quo vadis?. Nature Immunology, 2010, 11, 551-553.	14.5	57
1251	Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 2010, 11, 539-548.	16.3	2,790
1252	Ten years of genetics and genomics: what have we achieved and where are we heading?. Nature Reviews Genetics, 2010, 11, 723-733.	16.3	65

#	Article	IF	CITATIONS
1253	Central roles of NLRs and inflammasomes in viral infection. Nature Reviews Immunology, 2010, 10, 688-698.	22.7	369
1254	The nature of tobacco resistance against <i>Botrytis cinerea</i> depends on the infection structures of the pathogen. Environmental Microbiology, 2010, 12, 239-253.	3.8	63
1255	Molecular and histochemical characterisation of two distinct poplar <i>Melampsora</i> leaf rust pathosystems. Plant Biology, 2010, 12, 364-376.	3.8	19
1256	Health and Disease., 0,, 457-458.		0
1257	Evolutionary Medicine, Immunity, and Infectious Disease., 0,, 459-490.		3
1258	In silico identification of coffee genome expressed sequences potentially associated with resistance to diseases. Genetics and Molecular Biology, 2010, 33, 795-806.	1.3	13
1259	The Arabidopsis Wall Associated Kinase-Like 10 Gene Encodes a Functional Guanylyl Cyclase and Is Co-Expressed with Pathogen Defense Related Genes. PLoS ONE, 2010, 5, e8904.	2.5	155
1260	Characterization and cloning of TMV resistance gene N homologues from Nicotiana tabacum. African Journal of Biotechnology, 2010, 9, 7998-8006.	0.6	4
1261	Resistance of tomato genotypes to the greenhouse whitefly Trialeurodes vaporariorum (West.) (Hemiptera: Aleyrodidae). Neotropical Entomology, 2010, 39, 792-798.	1.2	9
1262	Molecular cloning, prokaryotic expression, and purification of an alternatively spliced oligochitosan-induced Ser/Thr protein kinase in tobacco. Israel Journal of Plant Sciences, 2010, 58, 67-75.	0.5	0
1263	The pollen S-determinant in Papaver: comparisons with known plant receptors and protein ligand partners. Journal of Experimental Botany, 2010, 61, 2015-2025.	4.8	49
1264	Association Mapping of Quantitative Disease Resistance in a Natural Population of Loblolly Pine (<i>Pinus taeda</i> L.). Genetics, 2010, 186, 677-686.	2.9	94
1265	<i>Arabidopsis</i> and relatives as models for the study of genetic and genomic incompatibilities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1815-1823.	4.0	27
1266	Pathogen-Associated Molecular Pattern-Triggered Immunity: Veni, Vidi…?. Plant Physiology, 2010, 154, 551-554.	4.8	206
1267	The type III effector HopF2 <i> _{Pto} </i> targets <i>Arabidopsis</i> RIN4 protein to promote <i>Pseudomonas syringae</i> virulence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2349-2354.	7.1	146
1268	Plasma Membrane Localization and Potential Endocytosis of Constitutively Expressed XA21 Proteins in Transgenic Rice. Molecular Plant, 2010, 3, 917-926.	8.3	38
1269	CRYPTOCHROME 1 Is Implicated in Promoting R Protein-Mediated Plant Resistance to Pseudomonas syringae in Arabidopsis. Molecular Plant, 2010, 3, 539-548.	8.3	85
1270	<i>R</i> gene-controlled host specificity in the legume–rhizobia symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18735-18740.	7.1	277

#	Article	IF	CITATIONS
1271	A synteny map and disease resistance gene comparison between barley and the model monocot <i>Brachypodium distachyon</i>). Genome, 2010, 53, 406-417.	2.0	21
1273	PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucleic Acids Research, 2010, 38, D814-D821.	14.5	149
1274	<i>Arabidopsis snc2-1D</i> Activates Receptor-Like Protein-Mediated Immunity Transduced through WRKY70. Plant Cell, 2010, 22, 3153-3163.	6.6	95
1275	Self/non-self perception in plants in innate immunity and defense. Self/nonself, 2010, 1, 40-54.	2.0	81
1276	<i>Pseudomonas syringae</i> hijacks plant stress chaperone machinery for virulence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13177-13182.	7.1	153
1277	Profile of Jeffery L. Dangl. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13203-13205.	7.1	0
1278	A Functional Genomics Approach Identifies Candidate Effectors from the Aphid Species Myzus persicae (Green Peach Aphid). PLoS Genetics, 2010, 6, e1001216.	3.5	397
1279	Autoimmunity in Arabidopsis ${\sf acd}11$ Is Mediated by Epigenetic Regulation of an Immune Receptor. PLoS Pathogens, 2010, 6, e1001137.	4.7	170
1280	Allele-Specific Virulence Attenuation of the Pseudomonas syringae HopZ1a Type III Effector via the Arabidopsis ZAR1 Resistance Protein. PLoS Genetics, 2010, 6, e1000894.	3.5	151
1281	Autoacetylation of the Ralstonia solanacearum Effector PopP2 Targets a Lysine Residue Essential for RRS1-R-Mediated Immunity in Arabidopsis. PLoS Pathogens, 2010, 6, e1001202.	4.7	164
1282	Network Modeling Reveals Prevalent Negative Regulatory Relationships between Signaling Sectors in Arabidopsis Immune Signaling. PLoS Pathogens, 2010, 6, e1001011.	4.7	110
1283	Characterization of the wheat- <i>Stagonospora nodorum</i> disease system: what is the molecular basis of this quantitative necrotrophic disease interaction? ^{â€} . Canadian Journal of Plant Pathology, 2010, 32, 20-28.	1.4	88
1284	The cytoskeleton enhances gene expression in the response to the Harpin elicitor in grapevine. Journal of Experimental Botany, 2010, 61, 4021-4031.	4.8	76
1285	Lessons learned from type III effector transgenic plants. Plant Signaling and Behavior, 2010, 5, 746-748.	2.4	4
1286	RIN4-like proteins mediate resistance protein-derived soybean defense against <i>Pseudomonas syringae</i> Plant Signaling and Behavior, 2010, 5, 1453-1456.	2.4	14
1287	Plant vaccination: Stimulation of defense system by caffeine production in planta. Plant Signaling and Behavior, 2010, 5, 489-493.	2.4	46
1288	Overview on Plant Antimicrobial Peptides. Current Protein and Peptide Science, 2010, 11, 181-188.	1.4	103
1289	Two vacuole-mediated defense strategies in plants. Plant Signaling and Behavior, 2010, 5, 1568-1570.	2.4	50

#	Article	IF	CITATIONS
1290	Endosome-Associated CRT1 Functions Early in <i>Resistance</i> Gene–Mediated Defense Signaling in <i>Arabidopsis</i> and Tobacco. Plant Cell, 2010, 22, 918-936.	6.6	55
1291	From Perception to Activation: The Molecular-Genetic and Biochemical Landscape of Disease Resistance Signaling in Plants. The Arabidopsis Book, 2010, 8, e012.	0.5	41
1292	Reactive oxygen species derived from impaired quality control of Photosystem II are irrelevant to plasma-membrane NADPH oxidases. Plant Signaling and Behavior, 2010, 5, 264-266.	2.4	4
1293	The Physiological, Biochemical and Molecular Roles of Brassinosteroids and Salicylic Acid in Plant Processes and Salt Tolerance. Critical Reviews in Plant Sciences, 2010, 29, 162-190.	5.7	262
1294	All Mold Is Not Alike: The Importance of Intraspecific Diversity in Necrotrophic Plant Pathogens. PLoS Pathogens, 2010, 6, e1000759.	4.7	23
1295	The Coevolution of Plants and Viruses. Advances in Virus Research, 2010, 76, 1-32.	2.1	83
1296	Signaling in Induced Resistance. Advances in Virus Research, 2010, 76, 57-121.	2.1	144
1297	<i>Hyaloperonospora arabidopsidis</i> as a Pathogen Model. Annual Review of Phytopathology, 2010, 48, 329-345.	7.8	119
1298	Insect and Nematode Resistance. Biotechnology in Agriculture and Forestry, 2010, , 177-197.	0.2	13
1299	Developmental Biology of Somatic Embryogenesis. , 2010, , 3-26.		36
1300	Activation Tagging for Gain-of-Function Mutants. , 2010, , 345-370.		2
1301	Salicylic Acid. , 2010, , 681-699.		6
1302	Plants versus pathogens: an evolutionary arms race. Functional Plant Biology, 2010, 37, 499.	2.1	156
1303	Compatible plant-aphid interactions: How aphids manipulate plant responses. Comptes Rendus - Biologies, 2010, 333, 516-523.	0.2	179
1304	Host plant resistance to aphids in cultivated crops: Genetic and molecular bases, and interactions with aphid populations. Comptes Rendus - Biologies, 2010, 333, 566-573.	0.2	146
1305	A novel method for constructing pathogen-regulated small RNA cDNA library. Biochemical and Biophysical Research Communications, 2010, 397, 532-536.	2.1	1
1306	Silencing of SIFTR-c, the catalytic subunit of ferredoxin:thioredoxin reductase, induces pathogenesis-related genes and pathogen resistance in tomato plants. Biochemical and Biophysical Research Communications, 2010, 399, 750-754.	2.1	15
1307	Identification and characterisation of Mycosphaerella graminicola secreted or surface-associated proteins with variable intragenic coding repeats. Fungal Genetics and Biology, 2010, 47, 19-32.	2.1	39

#	Article	IF	CITATIONS
1308	Pseudomonas syringae Effector Protein AvrB Perturbs Arabidopsis Hormone Signaling by Activating MAP Kinase 4. Cell Host and Microbe, 2010, 7, 164-175.	11.0	178
1309	Receptor-like Cytoplasmic Kinases Integrate Signaling from Multiple Plant Immune Receptors and Are Targeted by a Pseudomonas syringae Effector. Cell Host and Microbe, 2010, 7, 290-301.	11.0	713
1310	The swaposin-like domain of potato aspartic protease (StAsp-PSI) exerts antimicrobial activity on plant and human pathogens. Peptides, 2010, 31, 777-785.	2.4	41
1311	Disease resistance signature of the leucine-rich repeat receptor-like kinase genes in four plant species. Plant Science, 2010, 179, 399-406.	3.6	38
1312	Role of Small RNAs in Host-Microbe Interactions. Annual Review of Phytopathology, 2010, 48, 225-246.	7.8	315
1313	Chitosan in Plant Protection. Marine Drugs, 2010, 8, 968-987.	4.6	545
1314	In search of Decoy/Guardee to R Genes. Plant Signaling and Behavior, 2010, 5, 1081-1087.	2.4	12
1315	Resistance to Aphid Vectors of Virus Disease. Advances in Virus Research, 2010, 76, 179-210.	2.1	19
1318	Sequential Expression of Bacterial Virulence and Plant Defense Genes During Infection of Tomato with <i>Clavibacter michiganensis</i> subsp. <i>michiganensis</i> Phytopathology, 2010, 100, 252-261.	2.2	56
1319	The <i>Rvi15</i> (<i>Vr2</i>) Apple Scab Resistance Locus Contains Three TIR-NBS-LRR Genes. Molecular Plant-Microbe Interactions, 2010, 23, 608-617.	2.6	37
1320	<scp>dl</scp> -β-Aminobutyric Acid–Induced Resistance of Potato Against ⟨i>Phytophthora infestans⟨/i> Requires Salicylic Acid but Not Oxylipins. Molecular Plant-Microbe Interactions, 2010, 23, 585-592.	2.6	39
1321	Arabidopsis GLUTATHIONE REDUCTASE1 Plays a Crucial Role in Leaf Responses to Intracellular Hydrogen Peroxide and in Ensuring Appropriate Gene Expression through Both Salicylic Acid and Jasmonic Acid Signaling Pathways Â. Plant Physiology, 2010, 153, 1144-1160.	4.8	328
1322	Actinorhizal plant defence-related genes in response to symbiotic Frankia. Functional Plant Biology, 2011, 38, 639.	2.1	18
1323	Purification of Effector–Target Protein Complexes via Transient Expression in Nicotiana benthamiana. Methods in Molecular Biology, 2011, 712, 181-194.	0.9	90
1325	Cyanide, a Coproduct of Plant Hormone Ethylene Biosynthesis, Contributes to the Resistance of Rice to Blast Fungus Â. Plant Physiology, 2011, 155, 502-514.	4.8	61
1326	Identification of Inhibitors of NOD1-Induced Nuclear Factor-ΰB Activation. ACS Medicinal Chemistry Letters, 2011, 2, 780-785.	2.8	52
1327	Innovating immunology: an interview with Ruslan Medzhitov. DMM Disease Models and Mechanisms, 2011, 4, 430-432.	2.4	0
1328	Allele mining in the gene pool of wild Solanum species for homologues of late blight resistance gene RB/Rpi-blb1. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 305-308.	0.8	17

#	Article	IF	CITATIONS
1329	A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. Journal of Genetics and Genomics, 2011, 38, 209-216.	3.9	96
1330	Role of Cereal Secondary Metabolites Involved in Mediating the Outcome of Plant-Pathogen Interactions. Metabolites, 2011, 1, 64-78.	2.9	55
1333	Specific Threonine Phosphorylation of a Host Target by Two Unrelated Type III Effectors Activates a Host Innate Immune Receptor in Plants. Cell Host and Microbe, 2011, 9, 125-136.	11.0	168
1334	Pseudomonas syringae Type III Effector HopZ1 Targets a Host Enzyme to Suppress Isoflavone Biosynthesis and Promote Infection in Soybean. Cell Host and Microbe, 2011, 9, 177-186.	11.0	99
1335	Trained Immunity: A Memory for Innate Host Defense. Cell Host and Microbe, 2011, 9, 355-361.	11.0	1,177
1336	Unusual signatures of highly adaptable R-loci in closely-related Arabidopsis species. Gene, 2011, 482, 24-33.	2.2	26
1337	Isolation, molecular cloning and antimicrobial activity of novel defensins from common chickweed (Stellaria media L.) seeds. Biochimie, 2011, 93, 450-456.	2.6	40
1338	Genetic mapping of 14 avirulence genes in an EU-B04 $ ilde{A}$ —1639 progeny of Venturia inaequalis. Fungal Genetics and Biology, 2011, 48, 166-176.	2.1	26
1339	The role of vacuole in plant cell death. Cell Death and Differentiation, 2011, 18, 1298-1304.	11.2	223
1340	TLRs, NLRs and RLRs: Innate sensors and their impact on allergic diseases – A current view. Immunology Letters, 2011, 139, 14-24.	2.5	24
1341	Pathogen-Derived Effectors Trigger Protective Immunity via Activation of the Rac2 Enzyme and the IMD or Rip Kinase Signaling Pathway. Immunity, 2011, 35, 536-549.	14.3	92
1342	Identification of an amino acid residue required for differential recognition of a viral movement protein by the Tomato mosaic virus resistance gene Tm-22. Journal of Plant Physiology, 2011, 168, 1142-1145.	3.5	20
1343	Natural products and the search for novel vaccine adjuvants. Vaccine, 2011, 29, 6464-6471.	3.8	48
1344	Identification of a Passiflora alata Curtis dimeric peptide showing identity with 2S albumins. Peptides, 2011, 32, 868-874.	2.4	23
1345	Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation. Peptides, 2011, 32, 1741-1747.	2.4	57
1346	What can enzymes of C4 photosynthesis do for C3 plants under stress?. Plant Science, 2011, 180, 575-583.	3.6	173
1347	A systems biology perspective on plant–microbe interactions: Biochemical and structural targets of pathogen effectors. Plant Science, 2011, 180, 584-603.	3.6	65
1348	GSNOR-mediated de-nitrosylation in the plant defence response. Plant Science, 2011, 181, 540-544.	3.6	123

#	Article	IF	CITATIONS
1349	Isolation, characterization and expression analysis of resistance gene candidates in pear (Pyrus spp.). Scientia Horticulturae, 2011, 127, 282-289.	3.6	16
1350	Plasmodesmata: the battleground against intruders. Trends in Plant Science, 2011, 16, 201-210.	8.8	113
1351	Isolation and Characterization of NBS-LRR Class Resistance Homologous Gene from Wheat. Agricultural Sciences in China, 2011, 10, 1151-1158.	0.6	3
1352	Transgenic Rice Plants Harboring Genomic DNA from Zizania latifolia Confer Bacterial Blight Resistance. Rice Science, 2011, 18, 17-22.	3.9	6
1353	Programmed cell death in the plant immune system. Cell Death and Differentiation, 2011, 18, 1247-1256.	11.2	846
1354	Quo Vadis Soil Organic Matter Research? A Biological Link to the Chemistry of Humification. Advances in Agronomy, 2011, 113, 143-217.	5.2	63
1356	Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network. Science, 2011, 333, 596-601.	12.6	776
1357	Quo vadis Soil Organic Matter Research?. Advances in Agronomy, 2011, , i.	5.2	4
1359	Resistance against beet armyworms and cotton aphids in caffeine-producing transgenic chrysanthemum. Plant Biotechnology, 2011, 28, 393-395.	1.0	32
1360	Review Functional characterization and signal transduction ability of nucleotide-binding site-leucine-rich repeat resistance genes in plants. Genetics and Molecular Research, 2011, 10, 2637-2652.	0.2	51
1361	Mutations in an Atypical TIR-NB-LRR-LIM Resistance Protein Confer Autoimmunity. Frontiers in Plant Science, 2011, 2, 71.	3.6	45
1362	Genomes and Virulence Factors of Novel Bacterial Pathogens Causing Bleaching Disease in the Marine Red Alga Delisea pulchra. PLoS ONE, 2011, 6, e27387.	2.5	95
1363	Title is missing!. Kagaku To Seibutsu, 2011, 49, 734-736.	0.0	0
1364	A wheat disease resistance gene analog of the NBS-LRR class: identification and analysis. Journal of Plant Diseases and Protection, 2011, 118, 63-68.	2.9	2
1365	Detection of physically interacting proteins with the CC and NB-ARC domains of a putative yellow rust resistance protein, Yr10, in wheat. Journal of Plant Diseases and Protection, 2011, 118, 119-126.	2.9	9
1366	A RNAi-based Genome-wide Screen to Discover Genes Involved in Resistance to Tomato Yellow Leaf Curl Virus (TYLCV) in Tomato., 2011,, 155-176.		1
1367	Phytobacterial Type III Effectors HopX1, HopAB1 and HopF2 Enhance Sense-Post-Transcriptional Gene Silencing Independently of Plant R Gene-Effector Recognition. Molecular Plant-Microbe Interactions, 2011, 24, 907-917.	2.6	6
1368	Identification of a Second Asian Soybean Rust Resistance Gene in Hyuuga Soybean. Phytopathology, 2011, 101, 535-543.	2.2	53

#	Article	IF	CITATIONS
1369	Transcript Profiles in Sugar Beet Genotypes Uncover Timing and Strength of Defense Reactions to <i>Cercospora beticola </i> Infection. Molecular Plant-Microbe Interactions, 2011, 24, 758-772.	2.6	20
1370	A herbivore that manipulates plant defence. Ecology Letters, 2011, 14, 229-236.	6.4	257
1371	Isolation, Cloning and Characterization of Resistance Gene Analogues in Pearl Millet Based on Conserved Nucleotide-binding Sites. Journal of Phytopathology, 2011, 159, 382-389.	1.0	7
1372	Temporal association of potato tuber development with susceptibility to common scab and ⟨i⟩Streptomyces scabiei⟨/i⟩â€induced responses in the potato periderm. Plant Pathology, 2011, 60, 776-786.	2.4	57
1373	Semiâ€dominant mutations in the CCâ€NB‣RRâ€type <i>R</i> gene, <i>NLS1</i> , lead to constitutive activation of defense responses in rice. Plant Journal, 2011, 66, 996-1007.	on 5.7	82
1374	Antagonistic role of 9â€lipoxygenaseâ€derived oxylipins and ethylene in the control of oxidative stress, lipid peroxidation and plant defence. Plant Journal, 2011, 67, 447-458.	5.7	84
1375	<i>Venturia inaequalis</i> : the causal agent of apple scab. Molecular Plant Pathology, 2011, 12, 105-122.	4.2	142
1376	Identification of serine/threonine kinase and nucleotideâ€binding site–leucineâ€rich repeat (NBSâ€LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar  Evereste'. Molecular Plant Pathology, 2011, 12, 493-505.	4.2	58
1377	Physical association of patternâ€triggered immunity (PTI) and effectorâ€triggered immunity (ETI) immune receptors in Arabidopsis. Molecular Plant Pathology, 2011, 12, 702-708.	4.2	91
1378	Negative regulation of defence signalling pathways by the EDR1 protein kinase. Molecular Plant Pathology, 2011, 12, 746-758.	4.2	30
1379	The YopJ superfamily in plantâ€associated bacteria. Molecular Plant Pathology, 2011, 12, 928-937.	4.2	71
1380	Spatial variation in disease resistance: from molecules to metapopulations. Journal of Ecology, 2011, 99, 96-112.	4.0	162
1381	Sequence of arrival determines plantâ€mediated interactions between herbivores. Journal of Ecology, 2011, 99, 7-15.	4.0	160
1382	Mining the plant–herbivore interface with a leafmining <i>Drosophila</i> of <i>Arabidopsis</i> Molecular Ecology, 2011, 20, 995-1014.	3.9	68
1383	The isolation and characterization of <i>Pik</i> , a rice blast resistance gene which emerged after rice domestication. New Phytologist, 2011, 189, 321-334.	7.3	210
1384	Innate immunity: has poplar made its BED?. New Phytologist, 2011, 189, 678-687.	7.3	29
1385	Deubiquitinating enzymes AtUBP12 and AtUBP13 and their tobacco homologue NtUBP12 are negative regulators of plant immunity. New Phytologist, 2011, 191, 92-106.	7.3	94
1386	ADS1 encodes a MATE-transporter that negatively regulates plant disease resistance. New Phytologist, 2011, 192, 471-482.	7.3	62

#	Article	IF	CITATIONS
1387	Population growth rate and relative virulence of the two South African biotypes of Russian wheat aphid, Diuraphis noxia, and bird cherry-oat aphid, Rhopalosiphum padi, on resistant and non-resistant barley. Entomologia Experimentalis Et Applicata, 2011, 138, 12-20.	1.4	8
1388	Programmed cell death in plants: Protective effect of mitochondrial-targeted quinones. Biochemistry (Moscow), 2011, 76, 1120-1130.	1.5	15
1389	A multifaceted genomics approach allows the isolation of the rice <i>Pia</i> à€blast resistance gene consisting of two adjacent NBS‣RR protein genes. Plant Journal, 2011, 66, 467-479.	5.7	287
1390	Effector proteins that modulate plant–insect interactions. Current Opinion in Plant Biology, 2011, 14, 422-428.	7.1	408
1391	Cell biology of the plant–powdery mildew interaction. Current Opinion in Plant Biology, 2011, 14, 738-746.	7.1	148
1392	A pair of orthologs of a leucine-rich repeat receptor kinase-like disease resistance gene family regulates rice response to raised temperature. BMC Plant Biology, 2011, 11, 160.	3 . 6	11
1393	Developing stress tolerant plants through in vitro selection—An overview of the recent progress. Environmental and Experimental Botany, 2011, 71, 89-98.	4.2	291
1394	Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environmental and Experimental Botany, 2011, 74, 216-228.	4.2	92
1395	NLR functions in plant and animal immune systems: so far and yet so close. Nature Immunology, 2011, 12, 817-826.	14.5	378
1396	For security and stability. Plant Signaling and Behavior, 2011, 6, 1479-1482.	2.4	19
1397	What Can Plant Autophagy Do for an Innate Immune Response?. Annual Review of Phytopathology, 2011, 49, 557-576.	7.8	69
1398	The Pathogen-Actin Connection: A Platform for Defense Signaling in Plants. Annual Review of Phytopathology, 2011, 49, 483-506.	7.8	115
1399	The evolutionarily conserved MOS4-associated complex. Open Life Sciences, 2011, 6, 776-784.	1.4	6
1400	Genetic basis and functioning of the signal transduction system in plants under the conditions of viral resistance. Cytology and Genetics, 2011, 45, 249-258.	0.5	4
1401	Plant serine/arginineâ€rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. Wiley Interdisciplinary Reviews RNA, 2011, 2, 875-889.	6.4	111
1402	Disease severity, incidence and races of Setosphaeria turcica on sorghum in Uganda. European Journal of Plant Pathology, 2011, 131, 383-392.	1.7	31
1402 1403	Disease severity, incidence and races of Setosphaeria turcica on sorghum in Uganda. European Journal of Plant Pathology, 2011, 131, 383-392. TaFLRS, a novel mitogen-activated protein kinase in wheat defence responses. European Journal of Plant Pathology, 2011, 131, 643-651.	1.7	8

#	Article	IF	CITATIONS
1405	Molecular evolution of a family of resistance gene analogs of nucleotide-binding site sequences in Solanum lycopersicum. Genetica, 2011, 139, 1229-1240.	1.1	3
1406	Differential gene expression in Arachis diogoi upon interaction with peanut late leaf spot pathogen, Phaeoisariopsis personata and characterization of a pathogen induced cyclophilin. Plant Molecular Biology, 2011, 75, 497-513.	3.9	34
1407	Gene Expression in Wheat Induced by Inoculation with Puccinia striiformis West. Plant Molecular Biology Reporter, 2011, 29, 458-465.	1.8	18
1408	QTL mapping of stripe, leaf and stem rust resistance genes in a KariegaÂ×ÂAvocet S doubled haploid wheat population. Molecular Breeding, 2011, 27, 259-270.	2.1	78
1409	Identification of QTL for resistance to plum pox virus strains M and D in Lito and Harcot apricot cultivars. Molecular Breeding, 2011, 27, 289-299.	2.1	43
1410	Functional markers based molecular characterization and cloning of resistance gene analogs encoding NBS-LRR disease resistance proteins in finger millet (Eleusine coracana). Molecular Biology Reports, 2011, 38, 3427-3436.	2.3	37
1411	Genomic organization, induced expression and promoter activity of a resistance gene analog (PmTNL1) in western white pine (Pinus monticola). Planta, 2011, 233, 1041-1053.	3.2	19
1412	Relative evolutionary rates of NBS-encoding genes revealed by soybean segmental duplication. Molecular Genetics and Genomics, 2011, 285, 79-90.	2.1	58
1413	Phylogenetic and evolutionary analysis of NBS-encoding genes in Rutaceae fruit crops. Molecular Genetics and Genomics, 2011, 285, 151-161.	2.1	6
1414	Evolution of the number of LRRs in plant disease resistance genes. Molecular Genetics and Genomics, 2011, 285, 393-402.	2.1	8
1415	Transcript profiling of chitosan-treated Arabidopsis seedlings. Journal of Plant Research, 2011, 124, 619-629.	2.4	87
1416	Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana. Plant Cell Reports, 2011, 30, 2085-2096.	5.6	112
1417	Fine genetic mapping localizes cucumber scab resistance gene Ccu into an R gene cluster. Theoretical and Applied Genetics, 2011, 122, 795-803.	3.6	43
1418	Elicitor-Induced Cellular and Molecular Events Are Responsible for Productivity Enhancement in Hairy Root Cultures: An Insight Study. Applied Biochemistry and Biotechnology, 2011, 165, 1342-1355.	2.9	61
1419	Salicylic Acid Protects Potato Plants-from Phytoplasma-associated Stress and Improves Tuber Photosynthate Assimilation. American Journal of Potato Research, 2011, 88, 175-183.	0.9	35
1420	Studying genome-wide DNA polymorphisms to understand Magnaporthe-rice interactions. Australasian Plant Pathology, 2011, 40, 328-334.	1.0	3
1421	Involvement of hsr203J like gene homologue, protease and protease inhibitors in triggering differential defense response against Alternaria blight in Brassica. Australasian Plant Pathology, 2011, 40, 461-470.	1.0	4
1422	Isolation of an Rx homolog from C. annuum and the evolution of Rx genes in the Solanaceae family. Plant Biotechnology Reports, 2011, 5, 331-344.	1.5	1

#	Article	IF	CITATIONS
1423	Differential disease resistance response in the barley necrotic mutant nec1. BMC Plant Biology, 2011, 11, 66.	3.6	22
1424	Organization and molecular evolution of a disease-resistance gene cluster in coffee trees. BMC Genomics, 2011, 12, 240.	2.8	31
1425	Are stomatal responses the key to understanding the cost of fungal disease resistance in plants?. Journal of the Science of Food and Agriculture, 2011, 91, 1538-1540.	3.5	7
1426	Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells. Plant Physiology and Biochemistry, 2011, 49, 764-773.	5.8	21
1427	The Pepper Mannose-Binding Lectin Gene <i>CaMBL1</i> Is Required to Regulate Cell Death and Defense Responses to Microbial Pathogens \hat{A} \hat{A} . Plant Physiology, 2011, 155, 447-463.	4.8	145
1428	The Pepper E3 Ubiquitin Ligase RING1 Gene, <i>CaRING1 </i> , Is Required for Cell Death and the Salicylic Acid-Dependent Defense Response Â. Plant Physiology, 2011, 156, 2011-2025.	4.8	103
1429	Proteomics and Functional Analyses of Pepper <i>Abscisic Acid–Responsive 1</i> (<i>ABR1</i>), Which Is Involved in Cell Death and Defense Signaling Â. Plant Cell, 2011, 23, 823-842.	6.6	147
1430	Cloning and Characterization of <i>R3b</i> ; Members of the <i>R3</i> Superfamily of Late Blight Resistance Genes Show Sequence and Functional Divergence. Molecular Plant-Microbe Interactions, 2011, 24, 1132-1142.	2.6	113
1431	The impact of environmental change on host–parasite coevolutionary dynamics. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2283-2292.	2.6	58
1432	The specific binding to 21-nt double-stranded RNAs is crucial for the anti-silencing activity of <i>Cucumber vein yellowing virus</i> P1b and perturbs endogenous small RNA populations. Rna, 2011, 17, 1148-1158.	3.5	38
1433	Cloning and analysis of a NBS-LRR disease resistance gene candidate PnAG1 from peanut (Arachis) Tj ETQq0 0 0	rgBT _{.2} /Ove	rlogk 10 Tf 50
1434	Transcriptional Profiles Uncover Aspergillus flavus-Induced Resistance in Maize Kernels. Toxins, 2011, 3, 766-786.	3.4	29
1435	The Moss <i>Physcomitrella patens</i> as a Model System to Study Interactions between Plants and Phytopathogenic Fungi and Oomycetes. Journal of Pathogens, 2011, 2011, 1-6.	1.4	26
1436	Identification of defense-related genes newly-associated with tomato flower abscission. Plant Signaling and Behavior, 2011, 6, 590-593.	2.4	20
1437	Identification and utilization of a sow thistle powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis. Journal of Experimental Botany, 2011, 62, 2117-2129.	4.8	39
1438	Francisella tularensis Reveals a Disparity between Human and Mouse NLRP3 Inflammasome Activation. Journal of Biological Chemistry, 2011, 286, 39033-39042.	3.4	69
1439	Tomato 14-3-3 Protein TFT7 Interacts with a MAP Kinase Kinase to Regulate Immunity-associated Programmed Cell Death Mediated by Diverse Disease Resistance Proteins. Journal of Biological Chemistry, 2011, 286, 14129-14136.	3.4	73
1440	Expression profiles of differentially regulated genes during the early stages of apple flower infection with Erwinia amylovora. Journal of Experimental Botany, 2011, 62, 4851-4861.	4.8	45

#	Article	IF	CITATIONS
1441	Phosphorylation of a WRKY Transcription Factor by Two Pathogen-Responsive MAPKs Drives Phytoalexin Biosynthesis in $\langle i \rangle$ Arabidopsis $\langle i \rangle$ Â Â. Plant Cell, 2011, 23, 1639-1653.	6.6	674
1442	The <i>Ma</i> Gene for Complete-Spectrum Resistance to <i>Meloidogyne</i> Species in <i>Prunus</i> Is a TNL with a Huge Repeated C-Terminal Post-LRR Region Â. Plant Physiology, 2011, 156, 779-792.	4.8	99
1443	Linked, if Not the Same, <i>Mi-1 < /i> Homologues Confer Resistance to Tomato Powdery Mildew and Root-Knot Nematodes. Molecular Plant-Microbe Interactions, 2011, 24, 441-450.</i>	2.6	32
1444	Genome-Wide Comparison of Nucleotide-Binding Site-Leucine-Rich Repeat-Encoding Genes in <i>Arabidopsis</i> À Â Â. Plant Physiology, 2011, 157, 757-769.	4.8	175
1445	Computational and Biochemical Analysis of the Xanthomonas Effector AvrBs2 and Its Role in the Modulation of Xanthomonas Type Three Effector Delivery. PLoS Pathogens, 2011, 7, e1002408.	4.7	31
1446	Rapid Genetic Diversification and High Fitness Penalties Associated with Pathogenicity Evolution in a Plant Virus. Molecular Biology and Evolution, 2011, 28, 1425-1437.	8.9	67
1447	Avoidance and suppression of plant defenses by herbivores and pathogens. Journal of Plant Interactions, 2011, 6, 221-227.	2.1	64
1448	Plant-in-chip: Microfluidic system for studying root growth and pathogenic interactions in <i>Arabidopsis</i> . Applied Physics Letters, 2011, 98, .	3.3	60
1449	Physical Association of Arabidopsis Hypersensitive Induced Reaction Proteins (HIRs) with the Immune Receptor RPS2. Journal of Biological Chemistry, 2011, 286, 31297-31307.	3.4	94
1450	Fungal and oomycete effectors – strategies to subdue a host. Canadian Journal of Plant Pathology, 2011, 33, 425-446.	1.4	14
1451	Complex Evolutionary Events at a Tandem Cluster of Arabidopsis thaliana Genes Resulting in a Single-Locus Genetic Incompatibility. PLoS Genetics, 2011, 7, e1002164.	3.5	60
1452	Unraveling Plant Responses to Bacterial Pathogens through Proteomics. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-12.	3.0	22
1453	Novel Plant Immune-Priming Compounds Identified via High-Throughput Chemical Screening Target Salicylic Acid Glucosyltransferases in <i>Arabidopsis</i>	6.6	158
1454	How complex are intracellular immune receptor signaling complexes?. Frontiers in Plant Science, 2012, 3, 237.	3.6	58
1455	Self and Nonself. Advances in Experimental Medicine and Biology, 2012, , .	1.6	8
1456	Compatibility in Biotrophic Plant–Fungal Interactions: Ustilago maydis and Friends. Signaling and Communication in Plants, 2012, , 213-238.	0.7	2
1457	Balancing Selection at the Tomato RCR3 Guardee Gene Family Maintains Variation in Strength of Pathogen Defense. PLoS Genetics, 2012, 8, e1002813.	3.5	66
1458	Abc3-Mediated Efflux of an Endogenous Digoxin-like Steroidal Glycoside by Magnaporthe oryzae Is Necessary for Host Invasion during Blast Disease. PLoS Pathogens, 2012, 8, e1002888.	4.7	20

#	Article	IF	Citations
1459	Sulfonamides identified as plant immune-priming compounds in high-throughput chemical screening increase disease resistance in Arabidopsis thaliana. Frontiers in Plant Science, 2012, 3, 245.	3.6	68
1460	Silencing and Innate Immunity in Plant Defense Against Viral and Non-Viral Pathogens. Viruses, 2012, 4, 2578-2597.	3.3	214
1461	Molecular Determinants of Resistance Activation and Suppression by Phytophthora infestans Effector IPI-O. PLoS Pathogens, 2012, 8, e1002595.	4.7	103
1462	A Bacterial Acetyltransferase Destroys Plant Microtubule Networks and Blocks Secretion. PLoS Pathogens, 2012, 8, e1002523.	4.7	178
1463	Functional Characterization of CEBiP and CERK1 Homologs in Arabidopsis and Rice Reveals the Presence of Different Chitin Receptor Systems in Plants. Plant and Cell Physiology, 2012, 53, 1696-1706.	3.1	169
1464	Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10119-10124.	7.1	246
1465	Requirement of the Cytosolic Interaction between PATHOGENESIS-RELATED PROTEIN10 and LEUCINE-RICH REPEAT PROTEIN1 for Cell Death and Defense Signaling in Pepper. Plant Cell, 2012, 24, 1675-1690.	6.6	195
1466	A NAC transcription factor and SNI1 cooperatively suppress basal pathogen resistance in Arabidopsis thaliana. Nucleic Acids Research, 2012, 40, 9182-9192.	14.5	49
1467	Reactive Oxygen Species-Driven Transcription in Arabidopsis under Oxygen Deprivation Â. Plant Physiology, 2012, 159, 184-196.	4.8	117
1468	DAMP signaling in fungal infections and diseases. Frontiers in Immunology, 2012, 3, 286.	4.8	48
1469	Molecular mapping and validation of Rlm1 gene for resistance to Leptosphaeria maculans in canola (Brassica napus L.). Crop and Pasture Science, 2012, 63, 1007.	1.5	55
1470	Defense activation triggers differential expression of (i) phospholipase-C (i) ((i) PLC (i)) genes and elevated temperature induces phosphatidic acid (PA) accumulation in tomato. Plant Signaling and Behavior, 2012, 7, 1073-1078.	2.4	14
1471	SGT1b is required for HopZ3-mediated suppression of the epiphytic growth of <i>Pseudomonas syringae </i> Non <i>Non <i>No</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	2.4	2
1472	Membrane microdomain may be a platform for immune signaling. Plant Signaling and Behavior, 2012, 7, 454-456.	2.4	15
1473	RNA mediated toll-like receptor stimulation in health and disease. RNA Biology, 2012, 9, 828-842.	3.1	90
1474	Structure-Function Analysis of the Coiled-Coil and Leucine-Rich Repeat Domains of the RPS5 Disease Resistance Protein Â. Plant Physiology, 2012, 158, 1819-1832.	4.8	209
1475	Salicylic acids. Plant Signaling and Behavior, 2012, 7, 93-102.	2.4	21
1476	A Nucleotide Phosphatase Activity in the Nucleotide Binding Domain of an Orphan Resistance Protein from Rice. Journal of Biological Chemistry, 2012, 287, 4023-4032.	3.4	22

#	Article	IF	CITATIONS
1477	<i>RCY1</i> -Mediated Resistance to <i>Cucumber mosaic virus</i> Is Regulated by LRR Domain-Mediated Interaction with CMV(Y) Following Degradation of RCY1. Molecular Plant-Microbe Interactions, 2012, 25, 1171-1185.	2.6	29
1478	Multi-Trait and Multi-Environment QTL Analyses for Resistance to Wheat Diseases. PLoS ONE, 2012, 7, e38008.	2.5	35
1479	Identification of distinct quantitative trait loci associated with defence against the closely related aphids Acyrthosiphon pisum and A. kondoi in Medicago truncatula. Journal of Experimental Botany, 2012, 63, 3913-3922.	4.8	36
1480	Stress Response and Pathogenicity of the Necrotrophic Fungal Pathogen (i) Alternaria alternata (i). Scientifica, 2012, 2012, 1-17.	1.7	73
1481	A Rolling Stone Gathers No Moss, but Resistant Plants Must Gather Their MOSes. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 259-268.	1.1	42
1482	A Peroxidase-Dependent Apoplastic Oxidative Burst in Cultured Arabidopsis Cells Functions in MAMP-Elicited Defense Â. Plant Physiology, 2012, 158, 2013-2027.	4.8	189
1483	Evolution of a Complex Disease Resistance Gene Cluster in Diploid <i>Phaseolus</i> and Tetraploid <i>Glycine</i> ÂÂÂ. Plant Physiology, 2012, 159, 336-354.	4.8	76
1484	Revealing the importance of meristems and roots for the development of hypersensitive responses and full foliar resistance to Phytophthora infestans in the resistant potato cultivar Sarpo Mira. Journal of Experimental Botany, 2012, 63, 4765-4779.	4.8	18
1485	SR1, a Calmodulin-Binding Transcription Factor, Modulates Plant Defense and Ethylene-Induced Senescence by Directly Regulating <i>NDR1</i> and <i>EIN3</i> Å Å Å. Plant Physiology, 2012, 158, 1847-1859.	4.8	149
1486	Plant secondary metabolites and the interactions between plants and other organisms. , 2012, , 204-225.		5
1487	Identification and Characterization of Tomato Mutants Affected in the <i>Rx </i> -Mediated Resistance to PVX Isolates. Molecular Plant-Microbe Interactions, 2012, 25, 341-354.	2.6	5
1488	<i>Sugarwin (i>: A Sugarcane Insect-Induced Gene with Antipathogenic Activity. Molecular Plant-Microbe Interactions, 2012, 25, 613-624.</i>	2.6	31
1489	Expression of the Human NAD(P)-Metabolizing Ectoenzyme CD38 Compromises Systemic Acquired Resistance in <i>Arabidopsis</i> Molecular Plant-Microbe Interactions, 2012, 25, 1209-1218.	2.6	29
1490	Structural basis of the TAL effector–DNA interaction. Biological Chemistry, 2012, 393, 1055-1066.	2.5	10
1491	The pepper RNAâ€binding protein CaRBP1 functions in hypersensitive cell death and defense signaling in the cytoplasm. Plant Journal, 2012, 72, 235-248.	5.7	14
1492	Comparative Analysis of Transcriptomic and Hormonal Responses to Compatible and Incompatible Plant-Virus Interactions that Lead to Cell Death. Molecular Plant-Microbe Interactions, 2012, 25, 709-723.	2.6	53
1493	Virulence Dynamics and Regional Structuring of <i>Puccinia striiformis</i> f. sp. <i>tritici</i> in France Between 1984 and 2009. Plant Disease, 2012, 96, 131-140.	1.4	106
1494	Elicitor recognition, signal transduction and induced resistance in plants. Journal of Plant Interactions, 2012, 7, 95-120.	2.1	87

#	Article	IF	CITATIONS
1495	Discovery of novel antimicrobial peptides with unusual cysteine motifs in dandelion Taraxacum officinale Wigg. flowers. Peptides, 2012, 36, 266-271.	2.4	46
1496	NLRP1, a regulator of innate immunity associated with vitiligo. Pigment Cell and Melanoma Research, 2012, 25, 5-8.	3.3	23
1497	The interaction of Theobroma cacao and Moniliophthora perniciosa, the causal agent of witches' broom disease, during parthenocarpy. Tree Genetics and Genomes, 2012, 8, 1261-1279.	1.6	12
1498	Genetic diversity of NBS–LRR class disease-resistance gene analogs in cultivated and wild eggplants. Plant Systematics and Evolution, 2012, 298, 1399-1406.	0.9	19
1499	Phylogenetic Genomewide Comparisons of the Pentatricopeptide Repeat Gene Family in indica and japonica Rice. Biochemical Genetics, 2012, 50, 978-989.	1.7	7
1500	Up-regulation of resistance gene analogs (RGA) in chickpea in the early response to Fusarium wilt. Euphytica, 2012, 186, 793-804.	1.2	5
1501	Advanced backcross quantitative trait locus analysis in winter wheat: Dissection of stripe rust seedling resistance and identification of favorable exotic alleles originated from a primary hexaploid wheat (Triticum turgidum ssp. dicoccoidesÂ×ÂAegilops tauschii). Molecular Breeding, 2012, 30, 1219-1229.	2.1	14
1502	Metabolic fingerprinting of Tomato Mosaic Virus infected Solanum lycopersicum. Journal of Plant Physiology, 2012, 169, 1586-1596.	3.5	64
1503	Functional Regeneration of Rats with Nerve Injuries via Transplantation of Bamboos., 2012,,.		0
1504	Programmed cell death in plants. Biochemistry (Moscow), 2012, 77, 1452-1464.	1.5	28
1505	TMV-Gate vectors: Gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins. Scientific Reports, 2012, 2, 874.	3.3	32
1506	Involvement of OsJAZ8 in Jasmonate-Induced Resistance to Bacterial Blight in Rice. Plant and Cell Physiology, 2012, 53, 2060-2072.	3.1	171
1507	Examining host–microbial interactions through the lens of NOD: From plants to mammals. Seminars in Immunology, 2012, 24, 9-16.	5.6	21
1508	Cyclic nucleotide-gated ion channel-mediated cell death may not be critical for R gene-conferred resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiological and Molecular Plant Pathology, 2012, 79, 40-48.	2.5	13
1509	Temporal and tissue-specific expression of wheat TaHIR2 gene and resistant role of recombinant protein during interactions between wheat and leaf rust pathogen. Physiological and Molecular Plant Pathology, 2012, 79, 64-70.	2.5	3
1510	Plant LysM proteins: modules mediating symbiosis and immunity. Trends in Plant Science, 2012, 17, 495-502.	8.8	189
1511	Balancing resistance and infection tolerance through metabolic means. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13886-13887.	7.1	9
1512	SseF, a type III effector protein from the mammalian pathogen ⟨i>Salmonella enterica⟨ i>, requires resistanceâ€geneâ€mediated signalling to activate cell death in the model plant ⟨i>Nicotiana benthamiana⟨ i>. New Phytologist, 2012, 194, 1046-1060.	7.3	38

#	Article	IF	CITATIONS
1513	The RxLR effector Avh241 from <i>Phytophthora sojae</i> requires plasma membrane localization to induce plant cell death. New Phytologist, 2012, 196, 247-260.	7.3	151
1514	Experimental Evidence of a Role for RLKs in Innate Immunity. Signaling and Communication in Plants, 2012, , 67-77.	0.7	2
1515	Plant Programmed Cell Death Caused by an Autoactive Form of Prf Is Suppressed by Co-Expression of the Prf LRR Domain. Molecular Plant, 2012, 5, 1058-1067.	8.3	21
1516	How did Flowering Plants Learn to Avoid Blind Date Mistakes?. Advances in Experimental Medicine and Biology, 2012, 738, 108-123.	1.6	6
1517	Nonself Perception in Plant Innate Immunity. Advances in Experimental Medicine and Biology, 2012, 738, 79-107.	1.6	13
1518	Pathogen-Induced Accumulation of an Ellagitannin Elicits Plant Defense Response. Molecular Plant-Microbe Interactions, 2012, 25, 1430-1439.	2.6	22
1519	Synthesis of and signalling by small, redox active molecules in the plant immune response. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 770-776.	2.4	34
1520	C.Âelegans Detects Pathogen-Induced Translational Inhibition to Activate Immune Signaling. Cell Host and Microbe, 2012, 11, 375-386.	11.0	185
1521	Potato Late Blight Control Using R-Gene Polyculture by GMO. Energy Procedia, 2012, 16, 1925-1929.	1.8	3
1522	Immune Systems Evolution. Advances in Experimental Medicine and Biology, 2012, 739, 237-251.	1.6	25
1523	Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genomics, 2012, 13, 387.	2.8	83
1524	Evolution of the Rdr1 TNL-cluster in roses and other Rosaceous species. BMC Genomics, 2012, 13, 409.	2.8	19
1525	Xanthomonas oryzae pv oryzae triggers immediate transcriptomic modulations in rice. BMC Genomics, 2012, 13, 49.	2.8	26
1526	Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patterns. BMC Genomics, 2012, 13, 502.	2.8	75
1527	Local and systemic changes in expression of resistance genes, nb-lrr genes and their putative microRNAs in norway spruce after wounding and inoculation with the pathogen ceratocystis polonica. BMC Plant Biology, 2012, 12, 105.	3.6	25
1528	Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biology, 2012, 12, 139.	3.6	143
1529	Identification of expressed resistance gene-like sequences by data mining in 454-derived transcriptomic sequences of common bean (Phaseolus vulgaris L.). BMC Plant Biology, 2012, 12, 42.	3.6	21
1530	Characterization of non-host resistance in broad bean to the wheat stripe rust pathogen. BMC Plant Biology, 2012, 12, 96.	3.6	65

#	Article	IF	Citations
1531	In silico approach to predict candidate R proteins and to define their domain architecture. BMC Research Notes, 2012, 5, 678.	1.4	41
1532	OsRap2.6 transcription factor contributes to rice innate immunity through its interaction with Receptor for Activated Kinase-C 1 (RACK1). Rice, 2012, 5, 35.	4.0	33
1533	Isolation, Characterization and Sequence Analysis of Resistance Gene Analogs (RGAs) in Plants Related to Huanglongbing (HLB). Advances in Intelligent and Soft Computing, 2012, , 835-841.	0.2	0
1534	Arms race coâ€evolution of <i>Magnaporthe oryzae AVRâ€Pik</i> and rice <i>Pik</i> genes driven by their physical interactions. Plant Journal, 2012, 72, 894-907.	5.7	249
1535	Phytochemicals Against Drug-Resistant Microbes. , 2012, , 185-205.		11
1538	Controlling plant response to the environment. , 2012, , 343-352.		2
1539	Differentially Expressed Genes of Soybean During Infection by Phytophthora sojae. Journal of Integrative Agriculture, 2012, 11, 368-377.	3.5	19
1540	Biotic stress resistance in agriculture through antimicrobial peptides. Peptides, 2012, 36, 322-330.	2.4	37
1541	Identification, characterization and putative function of HvRin4, a barley homolog of Arabidopsis Rin4. Physiological and Molecular Plant Pathology, 2012, 80, 41-49.	2.5	2
1542	Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. South African Journal of Botany, 2012, 82, 11-20.	2.5	210
1543	Proteomic Analysis Reveals an Aflatoxin-Triggered Immune Response in Cotyledons of <i>Arachis hypogaea</i> Infected with <i>Aspergillus flavus</i> Journal of Proteome Research, 2012, 11, 2739-2753.	3.7	39
1544	Plant Signaling Peptides. Signaling and Communication in Plants, 2012, , .	0.7	2
1545	Signaling and Communication in Plant Symbiosis. Signaling and Communication in Plants, 2012, , .	0.7	20
1547	Changes in defence-related enzymes in rice responding to challenges by $\langle i \rangle$ Rhizoctonia solani $\langle i \rangle$. Archives of Phytopathology and Plant Protection, 2012, 45, 1840-1851.	1.3	10
1549	New faces in plant innate immunity: heterotrimeric G proteins. Journal of Plant Biochemistry and Biotechnology, 2012, 21, 40-47.	1.7	16
1550	Identification, characterization and mapping of differentially expressed genes in a winter wheat cultivar (Centenaire) resistant to Fusarium graminearum infection. Molecular Biology Reports, 2012, 39, 9583-9600.	2.3	16
1551	Cotton gene expression profiles in resistant Gossypium hirsutum cv. Zhongzhimian KV1 responding to Verticillium dahliae strain V991 infection. Molecular Biology Reports, 2012, 39, 9765-9774.	2.3	47
1552	Genome-Wide Identification and Mapping of NBS-Encoding Resistance Genes in Solanum tuberosum Group Phureja. PLoS ONE, 2012, 7, e34775.	2.5	107

#	Article	IF	CITATIONS
1553	A Primary Survey on Bryophyte Species Reveals Two Novel Classes of Nucleotide-Binding Site (NBS) Genes. PLoS ONE, 2012, 7, e36700.	2.5	54
1554	AvrRpm1 Missense Mutations Weakly Activate RPS2-Mediated Immune Response in Arabidopsis thaliana. PLoS ONE, 2012, 7, e42633.	2.5	25
1555	De Novo Foliar Transcriptome of Chenopodium amaranticolor and Analysis of Its Gene Expression During Virus-Induced Hypersensitive Response. PLoS ONE, 2012, 7, e45953.	2.5	30
1556	Olive – Colletotrichum acutatum: An Example of Fruit-Fungal Interaction. , 2012, , .		1
1557	Biotechnology and the Control of Viral Diseases of Crops. , 2012, , 77-89.		1
1559	Mutagenesis in Plant Breeding for Disease and Pest Resistance. , 0, , .		6
1560	Paraquat: An Oxidative Stress Inducer. , 0, , .		22
1561	A nonâ€destructive method for testing two components of the behaviour of soilâ€applied agricultural chemicals over a long period. Pest Management Science, 2012, 68, 897-905.	3.4	2
1562	Genetical Genomics for Evolutionary Studies. Methods in Molecular Biology, 2012, 856, 469-485.	0.9	2
1563	The Impact of Induced Plant Volatiles on Plant-Arthropod Interactions. , 2012, , 15-73.		5
1564	Plant Antimicrobial Peptides. Signaling and Communication in Plants, 2012, , 107-133.	0.7	17
1566	Co-evolution of Pathogens, Mechanism Involved in Pathogenesis and Biocontrol of Plant Diseases: An Overview., 2012,, 3-22.		3
1567	Endogenous Small RNAs and Antibacterial Resistance in Plants. Signaling and Communication in Plants, 2012, , 233-259.	0.7	0
1568	A mutagenesis-derived broad-spectrum disease resistance locus in wheat. Theoretical and Applied Genetics, 2012, 125, 391-404.	3.6	25
1569	Characterization of the Fusarium wilt resistance Fom-2 gene in melon. Molecular Breeding, 2012, 30, 325-334.	2.1	19
1570	Ptcorp gene induced by cold stress was identified by proteomic analysis in leaves of Poncirus trifoliata (L.) Raf Molecular Biology Reports, 2012, 39, 5859-5866.	2.3	20
1571	Genome of papaya, a fast growing tropical fruit tree. Tree Genetics and Genomes, 2012, 8, 445-462.	1.6	21
1572	A proteomic approach analysing the Arabidopsis thaliana response to virulent and avirulent Pseudomonas syringae strains. Acta Physiologiae Plantarum, 2012, 34, 905-922.	2.1	8

#	Article	IF	CITATIONS
1573	dHPLC efficiency for semi-automated cDNA-AFLP analyses and fragment collection in the apple scab-resistance gene model. Planta, 2012, 235, 1065-1080.	3.2	11
1574	A Genome-Wide Comparison of NB-LRR Type of Resistance Gene Analogs (RGA) in the Plant Kingdom. Molecules and Cells, 2012, 33, 385-392.	2.6	46
1575	A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Functional and Integrative Genomics, 2012, 12, 215-228.	3.5	130
1576	Prokaryotic expression of pathogenesis related protein 1 gene from Nicotiana benthamiana: antifungal activity and preparation of its polyclonal antibody. Biotechnology Letters, 2012, 34, 919-924.	2.2	41
1577	Cysteine homeostasis plays an essential role in plant immunity. New Phytologist, 2012, 193, 165-177.	7.3	153
1578	Tracing the origin and evolutionary history of plant nucleotideâ€binding site–leucineâ€rich repeat (<i>NBSâ€LRR</i>) genes. New Phytologist, 2012, 193, 1049-1063.	7.3	198
1579	The tomato UVâ€damaged DNAâ€binding proteinâ€1 (DDB1) is implicated in pathogenesisâ€related (<i>PR</i>gene expression and resistance to <i>Agrobacterium tumefaciens</i> . Molecular Plant Pathology, 2012, 13, 123-134.	/i>) 4.2	31
1580	Characterization of polygenic resistance to powdery mildew in tomato at cytological, biochemical and gene expression level. Molecular Plant Pathology, 2012, 13, 148-159.	4.2	20
1581	Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nature Reviews Immunology, 2012, 12, 215-225.	22.7	229
1582	Transcriptome analysis of tobacco BY-2 cells elicited by cryptogein reveals new potential actors of calcium-dependent and calcium-independent plant defense pathways. Cell Calcium, 2012, 51, 117-130.	2.4	17
1583	Systematic analysis and comparison of nucleotideâ€binding site disease resistance genes in maize. FEBS Journal, 2012, 279, 2431-2443.	4.7	86
1584	Disease Resistance in Maize and the Role of Molecular Breeding in Defending Against Global Threat. Journal of Integrative Plant Biology, 2012, 54, 134-151.	8.5	68
1585	Evolution of the life cycle in land plants. Journal of Systematics and Evolution, 2012, 50, 171-194.	3.1	54
1586	The evolution of plant pathogens in response to host resistance: Factors affecting the gain from deployment of qualitative and quantitative resistance. Journal of Theoretical Biology, 2012, 304, 152-163.	1.7	34
1587	Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (<i>Triticum) Tj ETQq0 0 0 rgBT / Pathology, 2012, 13, 276-287.</i>	/Overlock : 4.2	10 Tf 50 18: 45
1588	HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acidâ€mediated defense responses in Arabidopsis. Plant Journal, 2012, 71, 135-146.	5.7	154
1589	Comparative Proteomic Analysis of Wheat Response to Powdery Mildew Infection in Wheat <i>Pm30</i> Nearâ€Isogenic Lines. Journal of Phytopathology, 2012, 160, 229-236.	1.0	10
1590	454 Sequencing for the Identification of Genes Differentially Expressed in Avocado Fruit (cv. Fuerte) Infected by <i>Colletotrichum gloeosporioides</i>). Journal of Phytopathology, 2012, 160, 449-460.	1.0	17

#	Article	IF	CITATIONS
1591	Quantitative Interactor Screening with next-generation Sequencing (QIS-Seq) identifies Arabidopsis thaliana MLO2 as a target of the Pseudomonas syringae type III effector HopZ2. BMC Genomics, 2012, 13, 8.	2.8	85
1592	Plant–Pathogen Interactions: What Microarray Tells About It?. Molecular Biotechnology, 2012, 50, 87-97.	2.4	38
1593	Herbivore-induced resistance in different groundnut germplasm lines to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Acta Physiologiae Plantarum, 2012, 34, 343-352.	2.1	20
1594	Differential gene induction in resistant and susceptible potato cultivars at early stages of infection by Phytophthora infestans. Plant Cell Reports, 2012, 31, 187-203.	5.6	47
1595	Genome-scale identification of resistance gene analogs and the development of their intron length polymorphism markers in maize. Molecular Breeding, 2012, 29, 437-447.	2.1	23
1596	Molecular cloning and expression analysis of CmMlo1 in melon. Molecular Biology Reports, 2012, 39, 1903-1907.	2.3	27
1597	A potato pathogenesis-related protein gene, StPRp27, contributes to race-nonspecific resistance against Phytophthora infestans. Molecular Biology Reports, 2012, 39, 1909-1916.	2.3	15
1598	Recent advances in plant immunity: recognition, signaling, response, and evolution. Biologia Plantarum, 2013, 57, 11-25.	1.9	10
1599	Nematode-induced galls in Miconia albicans: effect of host plant density and correlations with performance. Plant Species Biology, 2013, 28, 63-69.	1.0	19
1600	Advances in plant gene-targeted and functional markers: a review. Plant Methods, 2013, 9, 6.	4.3	238
1601	Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome. Genome Biology, 2013, 14, R58.	8.8	125
1602	Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts. Symbiosis, 2013, 60, 155-167.	2.3	26
1603	R gene expression changes related to Cercospora hydrangeae L Molecular Biology Reports, 2013, 40, 4173-4180.	2.3	1
1604	Identification, Phylogeny, and Expression Analysis of Pto-like Genes in Pepper. Plant Molecular Biology Reporter, 2013, 31, 901-916.	1.8	2
1605	Characterization of a Hypersensitive Response-Induced Gene TaHIR3 from Wheat Leaves Infected with Leaf Rust. Plant Molecular Biology Reporter, 2013, 31, 314-322.	1.8	12
1606	SALICYLIC ACID., 2013,,.		25
1607	Crop Improvement Under Adverse Conditions. , 2013, , .		12
1608	Functional markers for bacterial blight resistance gene Xa3 in rice. Molecular Breeding, 2013, 31, 981-985.	2.1	16

#	Article	IF	CITATIONS
1609	Modulation of plant immunity by light, circadian rhythm, and temperature. Current Opinion in Plant Biology, 2013, 16, 406-413.	7.1	151
1610	A Simple and Powerful Approach for Isolation of Arabidopsis Mutants with Increased Tolerance to H2O2-Induced Cell Death. Methods in Enzymology, 2013, 527, 203-220.	1.0	18
1611	Identification and Phylogenetic Analysis of a CC-NBS-LRR Encoding Gene Assigned on Chromosome 7B of Wheat. International Journal of Molecular Sciences, 2013, 14, 15330-15347.	4.1	10
1612	Identification of Lens culinaris defense genes responsive to the anthracnose pathogen Colletotrichum truncatum. BMC Genetics, 2013, 14, 31.	2.7	27
1613	Mobilization of lipids and fortification of cell wall and cuticle are important in host defense against Hessian fly. BMC Genomics, 2013, 14, 423.	2.8	26
1614	Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativusand phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genomics, 2013, 14, 109.	2.8	98
1615	Specific In Planta Recognition of Two GKLR Proteins of the Downy Mildew <i>Bremia lactucae</i> Revealed in a Large Effector Screen in Lettuce. Molecular Plant-Microbe Interactions, 2013, 26, 1259-1270.	2.6	52
1616	Genetic mapping of two genes conferring resistance to powdery mildew in common bean (Phaseolus) Tj ETQq1	1 037,84314	ł rgBT /Over
1617	Resistance gene enrichment sequencing (<scp>R</scp> en <scp>S</scp> eq) enables reannotation of the <scp>NB</scp> â€∢scp>LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant Journal, 2013, 76, 530-544.	5.7	367
1618	Insights into the structure–function relationship of disease resistance protein HCTR in maize (Zea) Tj ETQq1 1 2013, 45, 50-64.	0.784314 2.4	rgBT /Overlo
1619	Overexpression of a wheat stearoyl-ACP desaturase (SACPD) gene TaSSI2 in Arabidopsis ssi2 mutant compromise its resistance to powdery mildew. Gene, 2013, 524, 220-227.	2.2	25
1620	N-Hydroxycinnamoyl amides of fluorinated amino acids: Synthesis, anti-tyrosinase and DPPH scavenging activities. Journal of Fluorine Chemistry, 2013, 156, 203-208.	1.7	11
1621	Molecular characterization and functional analysis of CzR1, a coiled-coil-nucleotide-binding-site-leucine-rich repeat R-gene from Curcuma zedoaria Loeb. that confers resistance to Pythium aphanidermatum. Physiological and Molecular Plant Pathology, 2013, 83, 59-68.	2.5	16
1622	Simultaneous Application of Heat, Drought, and Virus to Arabidopsis Plants Reveals Significant Shifts in Signaling Networks. Plant Physiology, 2013, 162, 1849-1866.	4.8	446
1623	Pathogenesis of acute stroke and the role of inflammasomes. Ageing Research Reviews, 2013, 12, 941-966.	10.9	275
1624	Cloning and characterization of NBS-LRR encoding resistance gene candidates from Tomato Leaf Curl New Delhi Virus resistant genotype of Luffa cylindrica Roem. Physiological and Molecular Plant Pathology, 2013, 81, 107-117.	2.5	16
1628	12 Rust Fungi: Achievements and Future Challenges on Genomics and Host–Parasite Interactions. , 2013, , 315-341.		1
1629	Morphological and biochemical characterization of Erwinia amylovora-induced hypersensitive cell death in apple leaves. Plant Physiology and Biochemistry, 2013, 63, 292-305.	5 . 8	36

#	Article	IF	CITATIONS
1630	Pepper osmotin-like protein 1 (CaOSM1) is an essential component for defense response, cell death, and oxidative burst in plants. Planta, 2013, 238, 1113-1124.	3.2	43
1631	Mitochondrial AtPAM16 is required for plant survival and the negative regulation of plant immunity. Nature Communications, 2013, 4, 2558.	12.8	64
1632	Nonlegumes Respond to Rhizobial Nod Factors by Suppressing the Innate Immune Response. Science, 2013, 341, 1384-1387.	12.6	216
1633	Expression of defence-related genes in avocado fruit (cv. Fuerte) infected with Colletotrichum gloeosporioides. South African Journal of Botany, 2013, 86, 92-100.	2.5	8
1634	Pivoting the Plant Immune System from Dissection to Deployment. Science, 2013, 341, 746-751.	12.6	1,008
1635	Analysis of differentially expressed genes in Curcuma amada and Zingiber officinale upon infection with Ralstonia solanacearum by suppression subtractive hybridization. Acta Physiologiae Plantarum, 2013, 35, 3293-3301.	2.1	10
1636	The expanding role of <scp>NLR</scp> s in antiviral immunity. Immunological Reviews, 2013, 255, 13-24.	6.0	133
1638	Mechanism of disease development caused by a multihost plant bacterium, Pseudomonas cichorii, and its virulence diversity. Journal of General Plant Pathology, 2013, 79, 379-389.	1.0	15
1639	Structure of the CCR5 Chemokine Receptorâ€"HIV Entry Inhibitor Maraviroc Complex. Science, 2013, 341, 1387-1390.	12.6	606
1640	Genome-wide identification and characterization of nucleotide binding site leucine-rich repeat genes in linseed reveal distinct patterns of gene structure. Genome, 2013, 56, 91-99.	2.0	10
1641	Genetic diversity of resistance to Phytophthora infestans derived from Solanum venturii. Horticulture Environment and Biotechnology, 2013, 54, 422-429.	2.1	0
1642	Geneâ€forâ€gene relationship in the host–pathogen system <i><scp>M</scp>alusÂ</i> ×Â <i>robusta</i> 5– <i><scp>E</scp>rwinia amylovora</i> . New Phytologist, 2013, 197, 1262-1275.	7. 3	88
1643	Epidemiological and evolutionary consequences of lifeâ€history tradeâ€offs in pathogens. Plant Pathology, 2013, 62, 96-105.	2.4	80
1644	Induction of Plant Defense Response and Its Impact on Productivity. , 2013, , 309-327.		1
1645	Fine Mapping of <i>RppP25</i> , a Southern Rust Resistance Gene in Maize. Journal of Integrative Plant Biology, 2013, 55, 462-472.	8.5	31
1646	Wheat hypersensitive-induced reaction genes TaHIR1 and TaHIR3 are involved in response to stripe rust fungus infection and abiotic stresses. Plant Cell Reports, 2013, 32, 273-283.	5.6	40
1647	Molecular Strategies to Improve Rice Disease Resistance. Methods in Molecular Biology, 2013, 956, 285-309.	0.9	18
1648	Molecular characterization of ZzR1 resistance gene from Zingiber zerumbet with potential for imparting Pythium aphanidermatum resistance in ginger. Gene, 2013, 516, 58-65.	2.2	12

#	Article	IF	CITATIONS
1649	Isolation and Characterization of Nucleotide-Binding Site Resistance Gene Homologues in Common Bean (<i>Phaseolus vulgaris</i>). Phytopathology, 2013, 103, 156-168.	2.2	9
1650	Cytological and molecular characterization of non-host resistance in Arabidopsis thaliana against wheat stripe rust. Plant Physiology and Biochemistry, 2013, 62, 11-18.	5.8	22
1651	Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napusÂ×ÂB. rapa subsp. sylvestris. Theoretical and Applied Genetics, 2013, 126, 307-315.	3.6	70
1652	Positional cloning of a candidate gene for resistance to the sunflower downy mildew, Plasmopara halstedii race 300. Theoretical and Applied Genetics, 2013, 126, 359-367.	3.6	15
1653	Alpha-momorcharin, a RIP produced by bitter melon, enhances defense response in tobacco plants against diverse plant viruses and shows antifungal activity in vitro. Planta, 2013, 237, 77-88.	3.2	81
1654	A core functional region of the RFP1 promoter from Chinese wild grapevine is activated by powdery mildew pathogen and heat stress. Planta, 2013, 237, 293-303.	3.2	37
1655	The Medicago truncatula–Mycosphaerella pinodes interaction: a new pathosystem for dissecting fungal-suppressor-mediated disease susceptibility in plants. Journal of General Plant Pathology, 2013, 79, 1-11.	1.0	10
1656	How to effectively deploy plant resistances to pests and pathogens in crop breeding. Euphytica, 2013, 190, 321-334.	1.2	39
1657	Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nature Reviews Immunology, 2013, 13, 199-206.	22.7	133
1658	Light acclimation, retrograde signalling, cell death and immune defences in plants. Plant, Cell and Environment, 2013, 36, 736-744.	5.7	162
1659	Differentially expressed wheat genes in response to powdery mildew infection. Annals of Applied Biology, 2013, 163, 209-217.	2.5	4
1660	Plant Immune Responses Against Viruses: How Does a Virus Cause Disease?. Plant Cell, 2013, 25, 1489-1505.	6.6	310
1661	Stomatal lockâ€up following pathogenic challenge: source or symptom of costs of resistance in crops?. Plant Pathology, 2013, 62, 72-82.	2.4	13
1662	Activation of <i><scp>R</scp></i> â€mediated innate immunity and disease susceptibility is affected by mutations in a cytosolic <i><scp>O</scp></i> â€acetylserine (thiol) lyase in <scp>A</scp> rabidopsis. Plant Journal, 2013, 73, 118-130.	5.7	36
1663	Beyond pattern recognition: NOD-like receptors in dendritic cells. Trends in Immunology, 2013, 34, 224-233.	6.8	69
1664	Glutamate Metabolism in Plant Disease and Defense: Friend or Foe?. Molecular Plant-Microbe Interactions, 2013, 26, 475-485.	2.6	150
1665	Global Small RNA Chaperone Hfq and Regulatory Small RNAs Are Important Virulence Regulators in Erwinia amylovora. Journal of Bacteriology, 2013, 195, 1706-1717.	2.2	83
1666	Identification of resistance gene analogs in Korean wild apple germplasm collections. Genetics and Molecular Research, 2013, 12, 483-493.	0.2	2

#	Article	IF	CITATIONS
1667	Plant innate immunity: An updated insight into defense mechanism. Journal of Biosciences, 2013, 38, 433-449.	1.1	215
1668	Isolation and characterization of a wheat IF2 homolog required for innate immunity to stripe rust. Plant Cell Reports, 2013, 32, 591-600.	5.6	10
1669	Overlapping Horizons of Salicylic Acid under Different Stresses., 2013, , 137-152.		1
1670	Evolution and variability of Solanum RanGAP2, a cofactor in the incompatible interaction between the resistance protein GPA2 and the Globodera pallida effector Gp-RBP-1. BMC Evolutionary Biology, 2013, 13, 87.	3.2	6
1671	Mechanism of plant–microbe interaction and its utilization in disease-resistance breeding for modern agriculture. Physiological and Molecular Plant Pathology, 2013, 83, 51-58.	2.5	32
1673	The potato <i>R10</i> resistance specificity to late blight is conferred by both a single dominant <i><scp>R</scp></i> gene and quantitative trait loci. Plant Breeding, 2013, 132, 407-412.	1.9	7
1674	Riboflavin (Vitamin B2) induces defence responses and resistance to Plasmopara viticola in grapevine. European Journal of Plant Pathology, 2013, 136, 837-855.	1.7	30
1675	Plant Defense against Insect Herbivores. International Journal of Molecular Sciences, 2013, 14, 10242-10297.	4.1	626
1676	Big Roles of Small Kinases: The Complex Functions of Receptorâ€Like Cytoplasmic Kinases in Plant Immunity and Development. Journal of Integrative Plant Biology, 2013, 55, 1188-1197.	8.5	108
1678	<i><scp>S</scp>olanum</i> resistance genes against <i><scp>P</scp>hytophthora infestans</i> and their corresponding avirulence genes. Molecular Plant Pathology, 2013, 14, 740-757.	4.2	93
1679	The necrotrophic effector S $$ n T $$ ox A induces the synthesis of a novel phytoalexin in wheat. New Phytologist, 2013, 200, 185-200.	7.3	34
1681	<i><scp>P</scp>epino mosaic virus</i> triple gene block protein 1 (<scp>TGBp1</scp>) interacts with and increases tomato catalase 1 activity to enhance virus accumulation. Molecular Plant Pathology, 2013, 14, 589-601.	4.2	58
1682	Short and Long Term Effects of Salicylic Acid on Protection to Phytoplasma Associated Stress in Potato Plants., 2013,, 315-337.		2
1683	The HC-Pro and P3 Cistrons of an Avirulent <i>Soybean mosaic virus</i> Are Recognized by Different Resistance Genes at the Complex <i>Rsv1</i> Locus. Molecular Plant-Microbe Interactions, 2013, 26, 203-215.	2.6	63
1684	Synthesis of Redox-Active Molecules and Their Signaling Functions During the Expression of Plant Disease Resistance. Antioxidants and Redox Signaling, 2013, 19, 990-997.	5.4	34
1685	The Rice Resistance Protein Pair RGA4/RGA5 Recognizes the <i>Magnaporthe oryzae</i> Effectors AVR-Pia and AVR1-CO39 by Direct Binding Â. Plant Cell, 2013, 25, 1463-1481.	6.6	466
1686	Molecular sensors for plant immunity; pattern recognition receptors and race-specific resistance proteins. Journal of Plant Biology, 2013, 56, 357-366.	2.1	9
1687	CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to <i>Ralstonia solanacearum</i> infection. Plant, Cell and Environment, 2013, 36, 757-774.	5.7	259

#	Article	IF	CITATIONS
1688	LESION SIMULATING DISEASE1 Interacts with Catalases to Regulate Hypersensitive Cell Death in Arabidopsis Â. Plant Physiology, 2013, 163, 1059-1070.	4.8	98
1689	Isolation and Diversity Analysis of Resistance Gene Homologues from Switchgrass. G3: Genes, Genomes, Genetics, 2013, 3, 1031-1042.	1.8	8
1690	Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences. Frontiers in Plant Science, 2013, 4, 343.	3.6	67
1691	Plant Nucleotide Binding Site–Leucine-Rich Repeat (NBS-LRR) Genes: Active Guardians in Host Defense Responses. International Journal of Molecular Sciences, 2013, 14, 7302-7326.	4.1	279
1692	Type I J-Domain NbMIP1 Proteins Are Required for Both Tobacco Mosaic Virus Infection and Plant Innate Immunity. PLoS Pathogens, 2013, 9, e1003659.	4.7	46
1693	A Downy Mildew Effector Attenuates Salicylic Acid–Triggered Immunity in Arabidopsis by Interacting with the Host Mediator Complex. PLoS Biology, 2013, 11, e1001732.	5.6	167
1694	New clues in the nucleus: transcriptional reprogramming in effector-triggered immunity. Frontiers in Plant Science, 2013, 4, 364.	3.6	35
1695	Characteristic of the Pepper CaRGA2 Gene in Defense Responses against Phytophthora capsici Leonian. International Journal of Molecular Sciences, 2013, 14, 8985-9004.	4.1	42
1696	An RxLR Effector from Phytophthora infestans Prevents Re-localisation of Two Plant NAC Transcription Factors from the Endoplasmic Reticulum to the Nucleus. PLoS Pathogens, 2013, 9, e1003670.	4.7	210
1697	Silicon Era of Carbon-Based Life: Application of Genomics and Bioinformatics in Crop Stress Research. International Journal of Molecular Sciences, 2013, 14, 11444-11483.	4.1	8
1698	Phased, Secondary, Small Interfering RNAs in Posttranscriptional Regulatory Networks. Plant Cell, 2013, 25, 2400-2415.	6.6	543
1699	Recent Advances in Plant NLR Structure, Function, Localization, and Signaling. Frontiers in Immunology, 2013, 4, 348.	4.8	156
1700	Discovery of Plant Phenolic Compounds That Act as Type III Secretion System Inhibitors or Inducers of the Fire Blight Pathogen, Erwinia amylovora. Applied and Environmental Microbiology, 2013, 79, 5424-5436.	3.1	71
1701	Effect of external and internal factors on the expression of reporter genes driven by the Nresistance gene promoter. Plant Signaling and Behavior, 2013, 8, e24760.	2.4	4
1702	Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?. New Phytologist, 2013, 198, 252-263.	7.3	124
1703	The emerging role of photorespiration and nonâ€photorespiratory peroxisomal metabolism in pathogen defence. Plant Biology, 2013, 15, 723-736.	3.8	62
1704	Genetic variation for resistance to herbivores and plant pathogens: hypotheses, mechanisms and evolutionary implications. Plant Pathology, 2013, 62, 122-132.	2.4	36
1705	Exclusionary interactions among diverse fungi infecting developing seeds of <i>Centaurea stoebe </i> FEMS Microbiology Ecology, 2013, 84, 143-153.	2.7	20

#	Article	IF	CITATIONS
1706	A missense mutation in <scp>CHS</scp> 1, a <scp>TIR</scp> â€ <scp>NB</scp> protein, induces chilling sensitivity in <scp>A</scp> rabidopsis. Plant Journal, 2013, 75, 553-565.	5.7	59
1707	Effects of the leaf rust pathogen on expression of TaHIR4 at the gene and protein levels in wheat. Journal of Plant Interactions, 2013, 8, 304-311.	2.1	1
1708	Chromosomal Mapping and QTL Analysis of Resistance to Downy Mildew in <i>Cucumis sativus</i> Plant Disease, 2013, 97, 245-251.	1.4	67
1709	Characterization of the <i>LOV1</i> -Mediated, Victorin-Induced, Cell-Death Response with Virus-Induced Gene Silencing. Molecular Plant-Microbe Interactions, 2013, 26, 903-917.	2.6	30
1711	Hypersensitive response — A biophysical phenomenon of producers. European Journal of Microbiology and Immunology, 2013, 3, 105-110.	2.8	15
1712	Resistance protein-mediated defense signalling in response to Turnip Crinkle Virus in Arabidopsis: recent advances. Journal of Plant Diseases and Protection, 2013, 120, 97-104.	2.9	1
1713	Resistance gene analogues in mango against mango malformation. Acta Phytopathologica Et Entomologica Hungarica, 2013, 48, 39-52.	0.2	0
1714	UNDERSTANDING PLANT IMMUNITY: TRANSCRIPTOME PROFILING IN MUSA-PATHOGEN INTERACTIONS USING NEXT GENERATION SEQUENCING. Acta Horticulturae, 2013, , 227-240.	0.2	1
1715	Cell Death in Plant Immune Response to Necrotrophs. Journal of Plant Biochemistry & Physiology, 2013, 1, .	0.5	12
1716	A survey of genes involved in Arachis stenosperma resistance to Meloidogyne arenaria race 1. Functional Plant Biology, 2013, 40, 1298.	2.1	30
1717	Overexpression of DWARF AND LESION FORMATION 1 (DLE1) causes altered activation of plant defense system in Arabidopsis thaliana. Plant Biotechnology, 2013, 30, 385-392.	1.0	5
1718	Phylogeny of Toll-Like Receptor Signaling: Adapting the Innate Response. PLoS ONE, 2013, 8, e54156.	2.5	27
1719	Identification and Characterization of Crr1a, a Gene for Resistance to Clubroot Disease (Plasmodiophora brassicae Woronin) in Brassica rapa L PLoS ONE, 2013, 8, e54745.	2.5	191
1720	Volatile Exchange between Undamaged Plants - a New Mechanism Affecting Insect Orientation in Intercropping. PLoS ONE, 2013, 8, e69431.	2.5	71
1721	The Role of Phospholipase D in Plant. Oleoscience, 2013, 13, 471-476.	0.0	2
1722	Genetically Based Location from Triploid Populations and Gene Ontology of a 3.3-Mb Genome Region Linked to Alternaria Brown Spot Resistance in Citrus Reveal Clusters of Resistance Genes. PLoS ONE, 2013, 8, e76755.	2.5	40
1724	Genetic Dissection of Blackleg Resistance Loci in Rapeseed (Brassica napus L.)., 0,,.		34
1725	An insight into the basis of resistance in Sorghum bicolor against Colletotrichum sublineolum. African Journal of Microbiology Research, 2013, 7, 1397-1408.	0.4	3

#	Article	IF	CITATIONS
1726	Avirulence Effector Discovery in a Plant Galling and Plant Parasitic Arthropod, the Hessian Fly (Mayetiola destructor). PLoS ONE, 2014, 9, e100958.	2.5	54
1727	Investigation of Intercellular Salicylic Acid Accumulation during Compatible and Incompatible Arabidopsis-Pseudomonas syringae Interactions Using a Fast Neutron-Generated Mutant Allele of EDS5 Identified by Genetic Mapping and Whole-Genome Sequencing. PLoS ONE, 2014, 9, e88608.	2.5	28
1728	Physcomitrella patens Has Kinase-LRR R Gene Homologs and Interacting Proteins. PLoS ONE, 2014, 9, e95118.	2.5	11
1729	The Blast Resistance Gene Pi54of Cloned from Oryza officinalis Interacts with Avr-Pi54 through Its Novel Non-LRR Domains. PLoS ONE, 2014, 9, e104840.	2.5	80
1730	Differential expression of resistance to powdery mildew at the early stage of development in wheat line NO308. Genetics and Molecular Research, 2014, 13, 4289-4301.	0.2	5
1731	Resistance-related gene transcription and antioxidant enzyme activity in Nicotiana spp. resistant to anthracnose. African Journal of Biotechnology, 2014, 13, 778-785.	0.6	0
1733	Antimicrobial Peptides: Effectors of Innate Immunity. , 2014, , 313-343.		2
1736	Positive selection in the leucine-rich repeat domain of Gro1 genes in Solanum species. Journal of Genetics, 2014, 93, 755-765.	0.7	7
1737	Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. BMC Genomics, 2014, 15, 1078.	2.8	46
1738	A novel approach for multi-domain and multi-gene family identification provides insights into evolutionary dynamics of disease resistance genes in core eudicot plants. BMC Genomics, 2014, 15, 966.	2.8	29
1739	Natural Variation of Heterokaryon Incompatibility Gene het-c in Podospora anserina Reveals Diversifying Selection. Molecular Biology and Evolution, 2014, 31, 962-974.	8.9	30
1740	Plant cell death caused by fungal, bacterial, and viral elicitors: protective effect of mitochondria-targeted quinones. Biochemistry (Moscow), 2014, 79, 1322-1332.	1.5	9
1741	Sucrose and invertases, a part of the plant defense response to the biotic stresses. Frontiers in Plant Science, 2014, 5, 293.	3.6	276
1742	High-Level Antimicrobial Efficacy of Representative Mediterranean Natural Plant Extracts against Oral Microorganisms. BioMed Research International, 2014, 2014, 1-8.	1.9	61
1743	Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Frontiers in Plant Science, 2014, 5, 168.	3.6	193
1744	The Frustrated Host Response to Legionella pneumophila Is Bypassed by MyD88-Dependent Translation of Pro-inflammatory Cytokines. PLoS Pathogens, 2014, 10, e1004229.	4.7	52
1745	An Immunity-Triggering Effector from the Barley Smut Fungus Ustilago hordei Resides in an Ustilaginaceae-Specific Cluster Bearing Signs of Transposable Element-Assisted Evolution. PLoS Pathogens, 2014, 10, e1004223.	4.7	64
1746	The Arabidopsis miR472-RDR6 Silencing Pathway Modulates PAMP- and Effector-Triggered Immunity through the Post-transcriptional Control of Disease Resistance Genes. PLoS Pathogens, 2014, 10, e1003883.	4.7	233

#	ARTICLE	IF	Citations
1747	Large scale germplasm screening for identification of novel rice blast resistance sources. Frontiers in Plant Science, 2014, 5, 505.	3.6	62
1748	Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genomics, 2014, 15, 3.	2.8	147
1749	Experimental approaches to study plant cell walls during plant-microbe interactions. Frontiers in Plant Science, 2014, 5, 540.	3.6	21
1750	A novel conserved mechanism for plant NLR protein pairs: the ââ,¬Å"integrated decoyââ,¬Â•hypothesis. Frontiers in Plant Science, 2014, 5, 606.	3.6	324
1751	Near-isogenic lines of <i>Triticum aestivum</i> with distinct modes of resistance exhibit dissimilar transcriptional regulation during <i>Diuraphis noxia</i> feeding. Biology Open, 2014, 3, 1116-1126.	1.2	35
1752	Monoubiquitination of Histone 2B at the Disease Resistance Gene Locus Regulates Its Expression and Impacts Immune Responses in Arabidopsis Â. Plant Physiology, 2014, 165, 309-318.	4.8	96
1753	Proteomics of effector-triggered immunity (ETI) in plants. Virulence, 2014, 5, 752-760.	4.4	28
1754	Analysis of gene expression profiles in response to Sporisorium reilianum f. sp. zeae in maize (Zea mays) Tj ETQq1	1 _{2.2} 78431	.4grgBT/O√
1755	An Atlas of Soybean Small RNAs Identifies Phased siRNAs from Hundreds of Coding Genes. Plant Cell, 2014, 26, 4584-4601.	6.6	163
1756	Doâ€orâ€die life cycles and diverse postâ€infection resistance mechanisms limit the evolution of parasite host ranges. Ecology Letters, 2014, 17, 491-498.	6.4	17
1757	Guiding deployment of resistance in cereals using evolutionary principles. Evolutionary Applications, 2014, 7, 609-624.	3.1	171
1758	Three-Dimensional Modeling and Diversity Analysis Reveals Distinct AVR Recognition Sites and Evolutionary Pathways in Wild and Domesticated Wheat Pm3 R Genes. Molecular Plant-Microbe Interactions, 2014, 27, 835-845.	2.6	19
1759	Disease and Frost Damage of Woody Plants Caused by Pseudomonas syringae. Advances in Agronomy, 2014, , 235-295.	5.2	63
1760	Improving crop disease resistance: lessons from research on Arabidopsis and tomato. Frontiers in Plant Science, 2014, 5, 671.	3.6	77
1761	The role of effectors and host immunity in plant–necrotrophic fungal interactions. Virulence, 2014, 5, 722-732.	4.4	157
1762	Histone H2B Monoubiquitination Is Involved in Regulating the Dynamics of Microtubules during the Defense Response to <i>Verticillium dahliae</i> Toxins in Arabidopsis Â. Plant Physiology, 2014, 164, 1857-1865.	4.8	48
1763	Evolution and Management of the Irish Potato Famine Pathogen Phytophthora Infestans in Canada and the United States. American Journal of Potato Research, 2014, 91, 579-593.	0.9	21
1764	Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea. BMC Genomics, 2014, 15, 1094.	2.8	74

#	Article	IF	Citations
1765	Divergent evolution of potato immune receptor CC domain interactions with the Ran GTPase-activating protein 2. Plant Signaling and Behavior, 2014, 9, e29772.	2.4	1
1766	Virus-Resistant Crops and Trees. , 2014, , 155-168.		0
1767	Secondary Metabolites and Environmental Stress in Plants: Biosynthesis, Regulation, and Function., 2014, , 55-85.		4
1768	Genomics of Papaya Disease Resistance. , 2014, , 277-307.		3
1769	Identification of Post-translational Modifications of Plant Protein Complexes. Journal of Visualized Experiments, 2014, , e51095.	0.3	5
1770	Allelopathy for Pest Control. Sustainable Agriculture Reviews, 2014, , 109-131.	1.1	1
1771	The YscU/FlhB homologue HrcU from Xanthomonas controls type III secretion and translocation of early and late substrates. Microbiology (United Kingdom), 2014, 160, 576-588.	1.8	9
1772	The WRKY Transcription Factor Genes in <i>Lotus japonicus</i> lnternational Journal of Genomics, 2014, 2014, 1-15.	1.6	30
1773	Isolation and characterization of Resistance Gene Analogue (RGA) from Fusarium resistant banana cultivars. Emirates Journal of Food and Agriculture, 2014, 26, 508.	1.0	15
1774	Combating Pathogenic Microorganisms Using Plant-Derived Antimicrobials: A Minireview of the Mechanistic Basis. BioMed Research International, 2014, 2014, 1-18.	1.9	142
1775	The I2 resistance gene homologues in Solanum have complex evolutionary patterns and are targeted by miRNAs. BMC Genomics, 2014, 15, 743.	2.8	33
1776	Tracing the origin and evolution of plant TIR-encoding genes. Gene, 2014, 546, 408-416.	2.2	11
1777	Advances in Computational Biology. Advances in Intelligent Systems and Computing, 2014, , .	0.6	1
1779	Genetics and Genomics of Papaya. , 2014, , .		6
1780	Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Theoretical and Applied Genetics, 2014, 127, 913-919.	3.6	83
1781	Resistance gene analogs in walnut (Juglans regia) conferring resistance to Colletotrichum gloeosporioides. Euphytica, 2014, 197, 175-190.	1.2	15
1782	Induced Defense in Plants: A Short Overview. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2014, 84, 669-679.	1.0	9
1783	Trehalose metabolism in plants. Plant Journal, 2014, 79, 544-567.	5.7	464

#	Article	IF	CITATIONS
1784	Plant mitochondria under pathogen attack: A sigh of relief or a last breath?. Mitochondrion, 2014, 19, 238-244.	3.4	64
1785	Quasi-species model for host-parasite coevolution with a frequency-dependent fitness landscape. Journal of the Korean Physical Society, 2014, 64, 322-327.	0.7	1
1786	Genetics and molecular mechanisms of resistance to powdery mildews in tomato (Solanum) Tj ETQq0 0 0 rgBT /C)verlock 10 1.7	O Tf 50 662 T
1787	The Chilli Veinal Mottle Virus Regulates Expression of the Tobacco Mosaic Virus Resistance Gene N and Jasmonic Acid/Ethylene Signaling Is Essential for Systemic Resistance Against Chilli Veinal Mottle Virus in Tobacco. Plant Molecular Biology Reporter, 2014, 32, 382-394.	1.8	35
1788	A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton. Plant Cell Reports, 2014, 33, 461-470.	5.6	67
1789	Epigenetic control of heavy metal stress response in mycorrhizal versus non-mycorrhizal poplar plants. Environmental Science and Pollution Research, 2014, 21, 1723-1737.	5.3	51
1790	Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics. BMC Genomics, 2014, 15, 18.	2.8	67
1791	Structural insights into the MDP binding and CARD-CARD interaction in zebrafish (<i>Danio rerio</i>) NOD2: a molecular dynamics approach. Journal of Molecular Recognition, 2014, 27, 260-275.	2.1	38
1792	The <i><scp>T</scp>omato spotted wilt virus</i> cellâ€toâ€cell movement protein (<scp>NS_M</scp>) triggers a hypersensitive response in <i><scp>S</scp>wâ€5</i> â€containing resistant tomato lines and in <i><scp>N</scp>icotiana benthamiana</i> transformed with the functional <i><scp>S</scp>wâ€5b</i> resistance gene copy. Molecular Plant Pathology, 2014, 15, 871-880.	4.2	72
1793	Identification of candidate genes for fusarium yellows resistance in Chinese cabbage by differential expression analysis. Plant Molecular Biology, 2014, 85, 247-257.	3.9	57
1794	A chemical genetic approach demonstrates that <scp>MPK</scp> 3/ <scp>MPK</scp> 6 activation and <scp>NADPH</scp> oxidaseâ€mediated oxidative burst are two independent signaling events in plant immunity. Plant Journal, 2014, 77, 222-234.	5.7	166
1795	Histochemical visualization of ROS and antioxidant response to viral infections of vegetable crops grown in Azerbaijan. Plant Physiology and Biochemistry, 2014, 81, 26-35.	5.8	11
1796	Fineâ€ŧuning of defences and counterâ€defences in a specialised plant–herbivore system. Ecological Entomology, 2014, 39, 382-390.	2.2	4
1797	Disease resistance in rice and the role of molecular breeding in protecting rice crops against diseases. Biotechnology Letters, 2014, 36, 1407-1420.	2.2	25
1798	Characterization of the small RNA transcriptome in plant–microbe (Brassica/Erwinia) interactions by high-throughput sequencing. Biotechnology Letters, 2014, 36, 371-381.	2.2	5
1799	Inhibition of cereal rust fungi by both class <scp>I</scp> and <scp>II</scp> defensins derived from the flowers of <i><scp>N</scp>icotiana alata</i> . Molecular Plant Pathology, 2014, 15, 67-79.	4.2	48
1801	Molecular modeling of protein–protein interaction to decipher the structural mechanism of nonhost resistance in rice. Journal of Biomolecular Structure and Dynamics, 2014, 32, 669-681.	3.5	5
1802	Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta, 2014, 239, 735-751.	3.2	83

#	Article	IF	CITATIONS
1804	Phytophthora infestans: a review of past and current studies on potato late blight. Journal of General Plant Pathology, 2014, 80, 24-37.	1.0	41
1805	Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. , 2014, , .		13
1806	Transgenic Resistance. Advances in Virus Research, 2014, 90, 35-146.	2.1	46
1807	Combined use of bulked segregant analysis and microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper. Theoretical and Applied Genetics, 2014, 127, 2503-2513.	3.6	61
1808	A novel macromolecular extract screened from satsuma with pro-inflammatory effect. Food and Function, 2014, 5, 295-302.	4.6	12
1810	Ectopic Expression of RESISTANCE TO POWDERY MILDEW8.1 Confers Resistance to Fungal and Oomycete Pathogens in Arabidopsis. Plant and Cell Physiology, 2014, 55, 1484-1496.	3.1	29
1811	Reaction of N-propargylic \hat{l}^2 -enaminones with acetylene dicarboxylates: catalyst-free synthesis of 3-azabicyclo [4.1.0]hepta-2,4-dienes. RSC Advances, 2014, 4, 21054-21059.	3.6	22
1812	Functional Soil Microbiome: Belowground Solutions to an Aboveground Problem Â. Plant Physiology, 2014, 166, 689-700.	4.8	299
1813	Salicylic Acid and Jasmonic Acid Are Essential for Systemic Resistance Against <i>Tobacco mosaic virus</i> in <i>Nicotiana benthamiana</i> Molecular Plant-Microbe Interactions, 2014, 27, 567-577.	2.6	173
1814	RoGFP1 is a quantitative biosensor in maize cells for cellular redox changes caused by environmental and endogenous stimuli. Biochemical and Biophysical Research Communications, 2014, 452, 503-508.	2.1	7
1815	Recessive Mutation Identifies Auxin-Repressed Protein ARP1, Which Regulates Growth and Disease Resistance in Tobacco. Molecular Plant-Microbe Interactions, 2014, 27, 638-654.	2.6	25
1816	A novel elicitor identified from Magnaporthe oryzae triggers defense responses in tobacco and rice. Plant Cell Reports, 2014, 33, 1865-1879.	5. 6	47
1817	Plant Biotechnology. , 2014, , .		11
1818	Receptor like proteins associate with SOBIR1-type of adaptors to form bimolecular receptor kinases. Current Opinion in Plant Biology, 2014, 21, 104-111.	7.1	128
1819	The <scp>NB</scp> â€ <scp>LRR</scp> proteins <scp>RGA</scp> 4 and <scp>RGA</scp> 5 interact functionally and physically to confer disease resistance. EMBO Journal, 2014, 33, 1941-1959.	7.8	310
1820	Immunosuppressive Diterpenes from <i>Phomopsis</i> sp. S12. European Journal of Organic Chemistry, 2014, 2014, 5728-5734.	2.4	19
1821	Mining whole genomes and transcriptomes of Jatropha (Jatropha curcas) and Castor bean (Ricinus) Tj ETQq0 0 0 Biology Reports, 2014, 41, 7683-7695.	rgBT /Over 2.3	rlock 10 Tf 50 16
1822	Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions. BMC Genomics, 2014, 15, 497.	2.8	77

#	Article	IF	CITATIONS
1823	Genome sequence and virulence variation-related transcriptome profiles of Curvularia lunata, an important maize pathogenic fungus. BMC Genomics, 2014, 15, 627.	2.8	58
1825	Genetic mapping of polygenic scab (Venturia pirina) resistance in an interspecific pear family. Molecular Breeding, 2014, 34, 2179-2189.	2.1	24
1826	Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm. Theoretical and Applied Genetics, 2014, 127, 1293-1304.	3.6	31
1827	Fine mapping of Co-x, an anthracnose resistance gene to a highly virulent strain of Colletotrichum lindemuthianum in common bean. Theoretical and Applied Genetics, 2014, 127, 1653-1666.	3.6	59
1828	Breakdown of plant virus resistance: can we predict and extend the durability of virus resistance?. Journal of General Plant Pathology, 2014, 80, 327-336.	1.0	34
1829	Characterization of the defence response to Venturia inaequalis in â€~Honeycrisp' apple, its ancestors, and progeny. European Journal of Plant Pathology, 2014, 140, 69-81.	1.7	10
1830	Lr1-mediated leaf rust resistance pathways of transgenic wheat lines revealed by a gene expression study using the Affymetrix GeneChip® Wheat Genome Array. Molecular Breeding, 2014, 34, 127-141.	2.1	21
1831	Genome-wide analysis of nucleotide-binding site disease resistance genes in Medicago truncatula. Science Bulletin, 2014, 59, 1129-1138.	1.7	16
1832	Expression-based network biology identifies immune-related functional modules involved in plant defense. BMC Genomics, 2014, 15, 421.	2.8	36
1833	Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biology, 2014, 14, 120.	3.6	161
1834	White Rust of Crucifers: Biology, Ecology and Management. , 2014, , .		31
1835	Recognition of an Avr3a Homologue Plays a Major Role in Mediating Nonhost Resistance to <i>Phytophthora capsici</i> in <i>Nicotiana</i> Species. Molecular Plant-Microbe Interactions, 2014, 27, 770-780.	2.6	53
1836	Tissue damage control in disease tolerance. Trends in Immunology, 2014, 35, 483-494.	6.8	147
1837	Future Challenges in Crop Protection Against Fungal Pathogens. Fungal Biology, 2014, , .	0.6	12
1838	Common mechanisms activate plant guard receptors and TLR4. Trends in Immunology, 2014, 35, 454-456.	6.8	5
1839	Loss/retention and evolution of NBS-encoding genes upon whole genome triplication of Brassica rapa. Gene, 2014, 540, 54-61.	2.2	45
1840	Redox Regulation in Plant Immune Function. Antioxidants and Redox Signaling, 2014, 21, 1373-1388.	5.4	129
1841	Prokaryotic Ancestry of Eukaryotic Protein Networks Mediating Innate Immunity and Apoptosis. Journal of Molecular Biology, 2014, 426, 1568-1582.	4.2	23

#	Article	IF	CITATIONS
1842	The dihydrolipoyl acyltransferase gene BCE2 participates in basal resistance against Phytophthora infestans in potato and Nicotiana benthamiana. Journal of Plant Physiology, 2014, 171, 907-914.	3.5	3
1843	Allele-mining of rice blast resistance genes at AC134922 locus. Biochemical and Biophysical Research Communications, 2014, 446, 1085-1090.	2.1	14
1844	Use of phenyl isothiocyanate for biofilm prevention and control. International Biodeterioration and Biodegradation, 2014, 86, 34-41.	3.9	23
1845	WRKY70 interacting with RCY1 disease resistance protein is required for resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiological and Molecular Plant Pathology, 2014, 85, 8-14.	2.5	27
1846	Plant paleopathology and the roles of pathogens and insects. International Journal of Paleopathology, 2014, 4, 1-16.	1.4	45
1847	Evaluation of in vitro cytotoxic activity of mono-PEGylated StAP3 (Solanum tuberosum aspartic) Tj ETQq1 1 0.78	4314 rgBT 4.4	/Qverlock 1
1848	Autoinducer-2 associated inhibition by Lactobacillus sakei NR28 reduces virulence of enterohaemorrhagic Escherichia coli O157:H7. Food Control, 2014, 45, 62-69.	5.5	36
1849	The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition. Current Opinion in Plant Biology, 2014, 20, 69-74.	7.1	68
1850	EXPERIENCES IN MANAGING BACTERIAL DIEBACK DISEASE OF PAPAYA IN MALAYSIA. Acta Horticulturae, 2014, , 125-132.	0.2	2
1851	Splicing of Receptor-Like Kinase-Encoding SNC4 and CERK1 is Regulated by Two Conserved Splicing Factors that Are Required for Plant Immunity. Molecular Plant, 2014, 7, 1766-1775.	8.3	47
1852	Agroinfiltration and PVX Agroinfection in Potato and Nicotiana benthamiana . Journal of Visualized Experiments, 2014, , e50971.	0.3	46
1854	<i>Yr36</i> Confers Partial Resistance at Temperatures Below 18°C to U.K. Isolates of <i>Puccinia striiformis</i> Phytopathology, 2014, 104, 871-878.	2.2	11
1855	Genomic variants of genes associated with three horticultural traits in apple revealed by genome re-sequencing. Horticulture Research, 2014, 1, 14045.	6.3	36
1856	Phytophthora infestans: a review of past and current studies on potato late blight Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 2014, 80, S8-S15.	0.1	0
1857	Breakdown of plant virus resistance: can we predict and extend the durability of virus resistance?. Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 2014, 80, S165-S171.	0.1	0
1858	Jasmonate signalling drives timeâ€ofâ€day differences in susceptibility of Arabidopsis to the fungal pathogen <i>Botrytis cinerea</i>). Plant Journal, 2015, 84, 937-948.	5.7	81
1859	Genome-Wide Association of Rice Blast Disease Resistance and Yield-Related Components of Rice. Molecular Plant-Microbe Interactions, 2015, 28, 1383-1392.	2.6	68
1860	A vesicle-trafficking protein commandeers Kv channel voltage sensors for voltage-dependent secretion. Nature Plants, 2015, 1, 15108.	9.3	53

#	Article	IF	CITATIONS
1862	Large scale transcriptome analysis reveals interplay between development of forest trees and a beneficial mycorrhiza helper bacterium. BMC Genomics, 2015, 16, 658.	2.8	28
1864	Cytoplasmic and Nuclear Localizations Are Important for the Hypersensitive Response Conferred by Maize Autoactive Rp1-D21 Protein. Molecular Plant-Microbe Interactions, 2015, 28, 1023-1031.	2.6	28
1865	Enhancement of robustness by mutation in the host-parasite coevolution. Journal of the Korean Physical Society, 2015, 67, 2154-2162.	0.7	0
1866	Species-specific duplications of NBS-encoding genes in Chinese chestnut (Castanea mollissima). Scientific Reports, 2015, 5, 16638.	3.3	12
1867	Proper expression of AS1 is required for RPW8.1-mediated defense against powdery mildew in Arabidopsis. Physiological and Molecular Plant Pathology, 2015, 92, 101-111.	2.5	4
1868	High genetic abundance of Rpi-blb2/Mi-1.2/Cami gene family in Solanaceae. BMC Evolutionary Biology, 2015, 15, 215.	3.2	1
1869	The distribution and impact of common copy-number variation in the genome of the domesticated apple, Malus x domestica Borkh. BMC Genomics, 2015, 16, 848.	2.8	21
1870	Genetic Analysis of Resistance Gene Analogues from a Sugarcane Cultivar Resistant to Red Rot Disease. Journal of Phytopathology, 2015, 163, 755-763.	1.0	10
1871	A host plant genome (<i>Zizania latifolia</i>) after a centuryâ€long endophyte infection. Plant Journal, 2015, 83, 600-609.	5.7	67
1872	Rice Exo70 interacts with a fungal effector <i>>, </i> > <scp>AVR</scp> â€Pii, and is required for <scp>AVR</scp> â€Piiâ€triggered immunity. Plant Journal, 2015, 83, 875-887.	5.7	128
1873	Antimicrobial activity of Stomoxys calcitransagainst Beauveria bassiana sensu lato isolates. Brazilian Journal of Veterinary Parasitology, 2015, 24, 331-339.	0.7	4
1874	The Binding of Ca2+-Dependent Protein Kinase to the Suppressor of Potato Late Blight Pathogen		

#	ARTICLE	IF	CITATIONS
1881	The rice <i>GRH2</i> and <i>GRH4</i> activate various defense responses to the green rice leafhopper and confer strong insect resistance. Plant Biotechnology, 2015, 32, 215-224.	1.0	7
1882	Constitutive Expresser of Pathogenesis Related Genes 1 Is Required for Pavement Cell Morphogenesis in Arabidopsis. PLoS ONE, 2015, 10, e0133249.	2.5	9
1883	Large-Scale Transcriptome Analysis in Faba Bean (Vicia faba L.) under Ascochyta fabae Infection. PLoS ONE, 2015, 10, e0135143.	2.5	43
1884	Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean. PLoS ONE, 2015, 10, e0139450.	2.5	30
1885	Vacuolar processing enzyme in plant programmed cell death. Frontiers in Plant Science, 2015, 6, 234.	3.6	182
1886	Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection. Frontiers in Plant Science, 2015, 6, 517.	3.6	10
1887	Pushing the boundaries of resistance: insights from Brachypodium-rust interactions. Frontiers in Plant Science, 2015, 6, 558.	3.6	11
1888	Optimal level of purple acid phosphatase5 is required for maintaining complete resistance to Pseudomonas syringae. Frontiers in Plant Science, 2015, 6, 568.	3.6	19
1889	The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid. Frontiers in Plant Science, 2015, 6, 599.	3.6	7
1890	Inter-organismal signaling and management of the phytomicrobiome. Frontiers in Plant Science, 2015, 6, 722.	3.6	72
1891	Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea. Frontiers in Plant Science, 2015, 6, 859.	3.6	42
1892	Identification of Immune Related LRR-Containing Genes in Maize (<i>Zea mays</i> L.) by Genome-Wide Sequence Analysis. International Journal of Genomics, 2015, 2015, 1-11.	1.6	47
1894	Radicinin from Cochliobolus sp. inhibits Xylella fastidiosa , the causal agent of Pierce's Disease of grapevine. Phytochemistry, 2015, 116, 130-137.	2.9	36
1895	Resistance genes against plant-parasitic nematodes: a durable control strategy?. Nematology, 2015, 17, 249-263.	0.6	39
1896	A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors. Cell, 2015, 161, 1089-1100.	28.9	454
1897	Biotechnological strategies and tools for Plum pox virus resistance: trans-, intra-, cis-genesis, and beyond. Frontiers in Plant Science, 2015, 6, 379.	3.6	59
1898	Deamidase toxins. , 2015, , 499-514.		1
1899	Bioinformatics and Biomedical Engineering. Lecture Notes in Computer Science, 2015, , .	1.3	3

#	Article	IF	CITATIONS
1900	The N-Terminal Domain of the Tomato Immune Protein Prf Contains Multiple Homotypic and Pto Kinase Interaction Sites. Journal of Biological Chemistry, 2015, 290, 11258-11267.	3.4	34
1901	Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. Journal of Food Science and Technology, 2015, 52, 4737-4748.	2.8	91
1902	Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Annals of Botany, 2015, 115, 1015-1051.	2.9	244
1903	Identification and in silico Analysis of NADPH Oxidase Homologues Involved in Allergy from an Olive Pollen Transcriptome. Lecture Notes in Computer Science, 2015, , 450-459.	1.3	1
1904	Evolutionary analysis of RB/Rpi-blb1 locus in the Solanaceae family. Molecular Genetics and Genomics, 2015, 290, 2173-2186.	2.1	3
1905	The Chromatin Remodeler SPLAYED Negatively Regulates SNC1-Mediated Immunity. Plant and Cell Physiology, 2015, 56, 1616-1623.	3.1	35
1906	Quantitative Resistance to Biotrophic Filamentous Plant Pathogens: Concepts, Misconceptions, and Mechanisms. Annual Review of Phytopathology, 2015, 53, 445-470.	7.8	201
1907	Differentially Expressed Genes in Resistant and Susceptible Common Bean (Phaseolus vulgaris L.) Genotypes in Response to Fusarium oxysporum f. sp. phaseoli. PLoS ONE, 2015, 10, e0127698.	2.5	51
1908	Tracking changes in lifeâ€history traits related to unnecessary virulence in a plantâ€parasitic nematode. Ecology and Evolution, 2015, 5, 3677-3686.	1.9	8
1909	The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein. Journal of Biological Chemistry, 2015, 290, 24945-24960.	3.4	36
1910	The pepper GNA-related lectin and PAN domain protein gene, CaGLP1, is required for plant cell death and defense signaling during bacterial infection. Plant Science, 2015, 241, 307-315.	3.6	13
1911	Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Functional Plant Biology, 2015, 42, 1129.	2.1	48
1912	Calcium is involved in the R Mc1 (blb)-mediated hypersensitive response against Meloidogyne chitwoodi in potato. Plant Cell Reports, 2015, 34, 167-177.	5.6	21
1913	ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in <i>Arabidopsis</i> Molecular Plant-Microbe Interactions, 2015, 28, 455-466.	2.6	56
1914	The <scp>AvrE</scp> superfamily: ancestral type <scp>III</scp> effectors involved in suppression of pathogenâ€associated molecular patternâ€triggered immunity. Molecular Plant Pathology, 2015, 16, 899-905.	4.2	33
1915	Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice. Journal of Experimental Botany, 2015, 66, 973-987.	4.8	85
1916	Genetic analysis and molecular mapping of resistance gene to Phakopsora pachyrhizi in soybean germplasm SX6907. Theoretical and Applied Genetics, 2015, 128, 733-743.	3.6	15
1917	Determination of the population structure of common bean (Phaseolus vulgaris L.) accessions using lipoxygenase and resistance gene analog markers. Biochemical Systematics and Ecology, 2015, 59, 107-115.	1.3	0

#	ARTICLE	IF	CITATIONS
1918	Molecular cloning and characterization of disease-resistance gene candidates of the nucleotide binding site (NBS) type from Cocos nucifera L. Physiological and Molecular Plant Pathology, 2015, 89, 87-96.	2.5	20
1919	NLRs in plants. Current Opinion in Immunology, 2015, 32, 114-121.	5.5	146
1920	The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling. Journal of Experimental Botany, 2015, 66, 559-570.	4.8	34
1921	Host Versus Nonhost Resistance: Distinct Wars with Similar Arsenals. Phytopathology, 2015, 105, 580-587.	2.2	118
1922	<i>HYPERSENSITIVE RESPONSE-LIKE LESIONS 1</i> and Defense Against Bacterial Pathogen <i>Pseudomonas syringae</i> in <i>Arabidopsis thaliana</i> Antioxidants and Redox Signaling, 2015, 22, 785-796.	5 . 4	17
1923	Reaction of \hat{i}^2 -enaminones and acetylene dicarboxylates: synthesis of substituted 1,2-dihydropyridinones. Organic and Biomolecular Chemistry, 2015, 13, 3011-3023.	2.8	18
1924	GLYCINEâ€RICH RNAâ€BINDING PROTEIN1 interacts with RECEPTOR‣IKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (⟨i⟩Capsicum annuum⟨/i⟩). New Phytologist, 2015, 205, 786-800.	7.3	28
1925	Proteomic dissection of plant responses to various pathogens. Proteomics, 2015, 15, 1525-1543.	2.2	33
1926	Species-specific duplications driving the recent expansion of NBS-LRR genes in five Rosaceae species. BMC Genomics, $2015, 16, 77$.	2.8	39
1927	TaRAR1 and TaSGT1 associate with TaHsp90 to function in bread wheat (Triticum aestivum L.) seedling growth and stripe rust resistance. Plant Molecular Biology, 2015, 87, 577-589.	3.9	33
1928	The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses. Journal of Experimental Botany, 2015, 66, 1987-1999.	4.8	23
1929	Introductory Chapter on the Basic Biology of Cyst Nematodes. Advances in Botanical Research, 2015, 73, 33-59.	1.1	21
1930	Effector discovery in the fungal wheat pathogen <i><scp>Z</scp>ymoseptoria tritici</i> . Molecular Plant Pathology, 2015, 16, 931-945.	4.2	76
1931	Putative Serine Protease Effectors of <i>Clavibacter michiganensis</i> Induce a Hypersensitive Response in the Apoplast of <i>Nicotiana</i> Species. Molecular Plant-Microbe Interactions, 2015, 28, 1216-1226.	2.6	32
1932	Isolation of NBS-LRR RGAs from invasive Wedelia trilobata and the calculation of evolutionary rates to understand bioinvasion from a molecular evolution perspective. Biochemical Systematics and Ecology, 2015, 61, 19-27.	1.3	9
1933	Insights into peptidyl-prolyl cis–trans isomerase structure and function in immunocytes. Immunology Letters, 2015, 163, 120-131.	2.5	37
1934	An Arabidopsis Plasma Membrane Proton ATPase Modulates JA Signaling and Is Exploited by the <i>Pseudomonas syringae</i> Effector Protein AvrB for Stomatal Invasion. Plant Cell, 2015, 27, 2032-2041.	6.6	95
1935	Metabolite profiling of Mexican lime (Citrus aurantifolia) leaves during the progression of witches' broom disease. Phytochemistry Letters, 2015, 13, 290-296.	1.2	10

#	ARTICLE	IF	CITATIONS
1936	Map-based cloning and characterization of <i>BPH29 < /i>, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. Journal of Experimental Botany, 2015, 66, 6035-6045.</i>	4.8	148
1937	Effects of light intensity on the susceptibility of Nicotiana tabacum to cucumber mosaic virus. Journal of General Plant Pathology, 2015, 81, 399-408.	1.0	9
1938	New roles for the Arabidopsis TAO1 gene besides disease resistance. Russian Journal of Plant Physiology, 2015, 62, 542-550.	1.1	2
1939	Mitochondrial alternative oxidase is involved in both compatible and incompatible host-virus combinations in Nicotiana benthamiana. Plant Science, 2015, 239, 26-35.	3.6	14
1940	Metabolic response of narrow leaf lupine (Lupinus angustifolius) plants to elicitation and infection with Colletotrichum lupini under field conditions. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	8
1941	A novel antifungal peptide from leaves of the weed Stellaria media L. Biochimie, 2015, 116, 125-132.	2.6	41
1942	Innate immunity at mucosal surfaces: the IRE1-RIDD-RIG-I pathway. Trends in Immunology, 2015, 36, 401-409.	6.8	41
1943	Genome-wide identification of turnip mosaic virus-responsive microRNAs in non-heading Chinese cabbage by high-throughput sequencing. Gene, 2015, 571, 178-187.	2.2	26
1944	Molecular and Functional Analyses of a Maize Autoactive NB-LRR Protein Identify Precise Structural Requirements for Activity. PLoS Pathogens, 2015, 11, e1004674.	4.7	110
1945	Interactions of Salmonella with animals and plants. Frontiers in Microbiology, 2014, 5, 791.	3.5	82
1946	Evolutionary Patterns and Coevolutionary Consequences of <i>MIRNA</i> Genes and MicroRNA Targets Triggered by Multiple Mechanisms of Genomic Duplications in Soybean. Plant Cell, 2015, 27, 546-562.	6.6	89
1947	Genome-wide analysis and identification of TIR-NBS-LRR genes in Chinese cabbage (Brassica rapa ssp.) Tj ETQq1 I Pathology, 2015, 90, 89-97.	0.784314 2.5	1 rgBT /Over 25
1948	Diversity and evolution of Rp1 rust resistance genes in four maize lines. Theoretical and Applied Genetics, 2015, 128, 985-998.	3.6	21
1949	ATG5 is required to limit cell death induced by Pseudomonas syringae in Arabidopsis and may be mediated by the salicylic acid pathway. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	3
1950	Small-Scale duplication as a genomic signature for crop improvement. Journal of Crop Science and Biotechnology, 2015, 18, 45-51.	1.5	2
1951	Cross-talk in host–parasite associations: What do past and recent proteomics approaches tell us?. Infection, Genetics and Evolution, 2015, 33, 84-94.	2.3	10
1952	RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants. BMC Genomics, 2015, 16, 120.	2.8	82
1953	Transcriptome characterization of three wild Chinese Vitis uncovers a large number of distinct disease related genes. BMC Genomics, 2015, 16, 223.	2.8	23

#	Article	IF	CITATIONS
1954	Control of adaptive immunity by the innate immune system. Nature Immunology, 2015, 16, 343-353.	14.5	1,481
1955	The advance of tomato disease-related microRNAs. Plant Cell Reports, 2015, 34, 1089-1097.	5.6	19
1956	Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species. Cell Research, 2015, 25, 621-633.	12.0	80
1958	Extreme expansion of NBS-encoding genes in Rosaceae. BMC Genetics, 2015, 16, 48.	2.7	84
1959	Molecular characterization of Pvr9 that confers a hypersensitive response to Pepper mottle virus (a) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
1960	Plant NB-LRR proteins: tightly regulated sensors in a complex manner. Briefings in Functional Genomics, 2015, 14, 233-242.	2.7	80
1961	Improving resistance of different apple cultivars using the Rvi6 scab resistance gene in a cisgenic approach based on the Flp/FRT recombinase system. Molecular Breeding, 2015, 35, 1.	2.1	44
1962	Opposing effects on two phases of defense responses from concerted actions of HSC70 and BON1 in Arabidopsis. Plant Physiology, 2015, 169, pp.00970.2015.	4.8	26
1964	Molecular cloning and characterization of a pathogenesis-related protein SmPR10-1 from Salvia miltiorrhiza. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	3
1965	Regulators and Pathway Enzymes That Contribute to Chemical Diversity in Phenylpropanoid and Aromatic Alkaloid Metabolism in Plant Immunity. , 2015, , 137-162.		1
1966	Inbred Development., 2015,, 41-60.		0
1967	EDS1-mediated basal defense and SA-signaling contribute to post-invasion resistance against tobacco powdery mildew in Arabidopsis. Physiological and Molecular Plant Pathology, 2015, 91, 120-130.	2.5	14
1968	Biological activities of ribosome-inactivating proteins and their possible applications as antimicrobial, anticancer, and anti-pest agents and in neuroscience research. Applied Microbiology and Biotechnology, 2015, 99, 9847-9863.	3.6	28
1969	CDPK1, an Arabidopsis thaliana calcium-dependent protein kinase, is involved in plant defense response. Russian Journal of Plant Physiology, 2015, 62, 866-874.	1.1	7
1970	Sustainable deployment of QTLs conferring quantitative resistance to crops: first lessons from a stochastic model. New Phytologist, 2015, 206, 1163-1171.	7.3	17
1971	The use of ECAS in plant protection: a green and efficient antimicrobial approach that primes selected defense genes. Ecotoxicology, 2015, 24, 1996-2008.	2.4	10
1972	ROS Signaling: Relevance with Site of Production and Metabolism of ROS., 2015, , 115-125.		4
1973	Plant Programmed Cell Death. , 2015, , .		8

#	Article	IF	CITATIONS
1974	Molecular cloning and characterization of two manganese superoxide dismutases from MiscanthusÂ×Âgiganteus. Plant Cell Reports, 2015, 34, 2137-2149.	5.6	9
1975	The Hypersensitive Response in PAMP- and Effector-Triggered Immune Responses. , 2015, , 235-268.		4
1976	Out for a Walk Along the Secretory Pathway During Programmed Cell Death. , 2015, , 123-161.		5
1977	Genome-wide analysis of the gene families of resistance gene analogues in cotton and their response to Verticillium wilt. BMC Plant Biology, 2015, 15, 148.	3.6	64
1978	Extensive Families of miRNAs and <i>PHAS </i> Loci in Norway Spruce Demonstrate the Origins of Complex phasiRNA Networks in Seed Plants. Molecular Biology and Evolution, 2015, 32, 2905-2918.	8.9	141
1979	Maize Homologs of HCT, a Key Enzyme in Lignin Biosynthesis, Bind the NLR Rp1 Proteins to Modulate the Defense Response. Plant Physiology, 2015, 169, pp.00703.2015.	4.8	48
1980	Cell-Cycle Regulators and Cell Death in Immunity. Cell Host and Microbe, 2015, 18, 402-407.	11.0	42
1981	Functional Divergence of Two Secreted Immune Proteases of Tomato. Current Biology, 2015, 25, 2300-2306.	3.9	72
1982	Induction of systemic resistance against <i>Papaya ring spot virus</i> (PRSV) and its vector <i>Myzus persicae</i> by <i>Penicillium simplicissimum</i> GP17-2 and silica (Sio ₂) nanopowder. International Journal of Pest Management, 2015, 61, 353-358.	1.8	48
1983	Molecular–genetic aspects of plant immunity to phytopathogenic bacteria and fungi. Russian Journal of Plant Physiology, 2015, 62, 571-585.	1.1	19
1984	Reactive Oxygen Species and Oxidative Damage in Plants Under Stress., 2015,,.		45
1985	Dynamic and Coordinated Expression Changes of Rice Small RNAs in Response to Xanthomonas oryzae pv. oryzae. Journal of Genetics and Genomics, 2015, 42, 625-637.	3.9	16
1986	Systemic above- and belowground cross talk: hormone-based responses triggered by <i>Heterodera schachtii </i> and shoot herbivores in <i> Arabidopsis thaliana </i> burnal of Experimental Botany, 2015, 66, 7005-7017.	4.8	15
1987	Responsiveness of different citrus genotypes to the <i><scp>X</scp>anthomonas citri</i> ssp. <i>citri</i> â€derived pathogenâ€associated molecular pattern (<scp>PAMP</scp>) flg22 correlates with resistance to citrus canker. Molecular Plant Pathology, 2015, 16, 507-520.	4.2	43
1988	Identification of Cephalosporium stripe resistance quantitative trait loci in two recombinant inbred line populations of winter wheat. Theoretical and Applied Genetics, 2015, 128, 329-341.	3.6	9
1989	Phenyl Derivative of Pyranocoumarin Precludes Fusarium oxysporum f.sp. lycopersici Infection in Lycopersicon esculentum via Induction of Enzymes of the Phenylpropanoid Pathway. Applied Biochemistry and Biotechnology, 2015, 175, 1168-1180.	2.9	8
1990	Searching ISR determinant/s from Bacillus subtilis IAGS174 against Fusarium wilt of tomato. BioControl, 2015, 60, 271-280.	2.0	24
1991	Amino acid substitution in <scp>P</scp> 3 of <i>>scp>Soybean mosaic virus</i> to convert avirulence to virulence on <i><scp>R</scp>sv4</i> â€genotype soybean is influenced by the genetic composition of <scp>P</scp> 3. Molecular Plant Pathology, 2015, 16, 301-307.	4.2	25

#	Article	IF	CITATIONS
1992	Subcellular localization of calcium in the incompatible and compatible interactions of wheat and Puccinia striiformis f. sp. tritici. Protoplasma, 2015, 252, 103-116.	2.1	8
1993	Molecular Insights into Plant-Phytopathogenic Bacteria Interactions. Plant Molecular Biology Reporter, 2015, 33, 1116-1130.	1.8	1
1994	Response of NBS encoding resistance genes linked to both heat and fungal stress in Brassica oleracea. Plant Physiology and Biochemistry, 2015, 86, 130-136.	5.8	21
1995	<i>Xa39</i> , a novel dominant gene conferring broadâ€spectrum resistance to <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> pv. <i>oryzae</i>	2.4	61
1996	A phcAâ^ marker-free mutant of Ralstonia solanacearum as potential biocontrol agent of tomato bacterial wilt. Biological Control, 2015, 80, 96-102.	3.0	11
1997	Pathogenâ€induced <scp>SGT</scp> 1 of <i>Arachis diogoi</i> induces cell death and enhanced disease resistance in tobacco and peanut. Plant Biotechnology Journal, 2015, 13, 73-84.	8.3	30
1998	Transcript profiling analysis of Rhodosporidium paludigenum-mediated signalling pathways and defense responses in mandarin orange. Food Chemistry, 2015, 172, 603-612.	8.2	32
1999	Toward understanding of rice innate immunity against <i>Magnaporthe oryzae</i> . Critical Reviews in Biotechnology, 2016, 36, 165-174.	9.0	24
2000	Early Response of Defense Related Genes to Secondary Downy Mildew Infection in Sunflower Line with Pl6 Gene. Helia, 2016, 39, .	0.4	0
2001	The Role of Polyamines in Plant Disease Resistance. Environmental Control in Biology, 2016, 54, 17-21.	0.7	23
2002	BioArena system for studying key molecules as well as ingredients in biological samples. , 2016, , 397-485.		1
2003	Genomic Instability and Shared Mechanisms for Gene Diversification in Two Distant Immune Gene Families: The Plant NBS-LRR Genes and the Echinoid 185/333 Genes. , 2016, , 295-310.		15
2004	Burkholderia phytofirmans PsJN Confers Grapevine Resistance against Botrytis cinerea via a Direct Antimicrobial Effect Combined with a Better Resource Mobilization. Frontiers in Plant Science, 2016, 7, 1236.	3.6	86
2005	Host Manipulation by Parasites: Cases, Patterns, and Remaining Doubts. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	90
2006	Transcription Profiling Analysis of Mango–Fusarium mangiferae Interaction. Frontiers in Microbiology, 2016, 7, 1443.	3.5	19
2007	Plant Microbe Interactions in Post Genomic Era: Perspectives and Applications. Frontiers in Microbiology, 2016, 7, 1488.	3.5	79
2008	Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding. International Journal of Molecular Sciences, 2016, 17, 1444.	4.1	8
2009	New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms. Molecules, 2016, 21, 877.	3.8	172

#	ARTICLE	IF	CITATIONS
2010	The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics. PLoS Genetics, 2016, 12, e1005789.	3.5	83
2011	Physiological and Transcriptome Responses to Combinations of Elevated CO2 and Magnesium in Arabidopsis thaliana. PLoS ONE, 2016, 11, e0149301.	2.5	19
2012	Whole-Genome Resequencing of a Cucumber Chromosome Segment Substitution Line and Its Recurrent Parent to Identify Candidate Genes Governing Powdery Mildew Resistance. PLoS ONE, 2016, 11, e0164469.	2.5	21
2013	Biotechnological Approaches., 2016,, 685-701.		1
2014	Epidemiological and Evolutionary Outcomes in Gene-for-Gene and Matching Allele Models. Frontiers in Plant Science, 2015, 6, 1084.	3.6	62
2015	A New Ethylene-Responsive Factor CaPTI1 Gene of Pepper (Capsicum annuum L.) Involved in the Regulation of Defense Response to Phytophthora capsici. Frontiers in Plant Science, 2016, 6, 1217.	3.6	51
2016	Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road. Frontiers in Plant Science, 2016, 7, 187.	3.6	493
2017	Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici. Frontiers in Plant Science, 2016, 7, 205.	3.6	45
2018	NADPH Oxidase-Dependent Superoxide Production in Plant Reproductive Tissues. Frontiers in Plant Science, 2016, 7, 359.	3.6	61
2019	Over-Expression of the Pikh Gene with a CaMV 35S Promoter Leads to Improved Blast Disease (Magnaporthe oryzae) Tolerance in Rice. Frontiers in Plant Science, 2016, 7, 773.	3.6	10
2020	The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway. Frontiers in Plant Science, 2016, 7, 774.	3.6	56
2021	De novo Transcriptome Sequencing to Dissect Candidate Genes Associated with Pearl Millet-Downy Mildew (Sclerospora graminicola Sacc.) Interaction. Frontiers in Plant Science, 2016, 7, 847.	3.6	39
2022	Understanding the Impact of Drought on Foliar and Xylem Invading Bacterial Pathogen Stress in Chickpea. Frontiers in Plant Science, 2016, 7, 902.	3.6	53
2023	Transient Expression of Candidatus Liberibacter Asiaticus Effector Induces Cell Death in Nicotiana benthamiana. Frontiers in Plant Science, 2016, 7, 982.	3.6	93
2024	Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus. Frontiers in Plant Science, 2016, 7, 1065.	3.6	7
2025	Analysis of Magnaporthe oryzae Genome Reveals a Fungal Effector, Which Is Able to Induce Resistance Response in Transgenic Rice Line Containing Resistance Gene, Pi54. Frontiers in Plant Science, 2016, 7, 1140.	3.6	90
2026	Isolation and Characterization of ScGluD2, a New Sugarcane beta-1,3-Glucanase D Family Gene Induced by Sporisorium scitamineum, ABA, H2O2, NaCl, and CdCl2 Stresses. Frontiers in Plant Science, 2016, 7, 1348.	3.6	51
2027	Comparative Analysis of miRNAs and Their Target Transcripts between a Spontaneous Late-Ripening Sweet Orange Mutant and Its Wild-Type Using Small RNA and Degradome Sequencing. Frontiers in Plant Science, 2016, 7, 1416.	3.6	23

#	Article	IF	CITATIONS
2028	Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola. Frontiers in Plant Science, 2016, 7, 1513.	3.6	73
2029	The Contrasting Effects of Elevated CO2 on TYLCV Infection of Tomato Genotypes with and without the Resistance Gene, Mi-1.2. Frontiers in Plant Science, 2016, 7, 1680.	3.6	23
2030	RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. Frontiers in Plant Science, 2016, 7, 1766.	3.6	67
2031	The Propensity of Pentatricopeptide Repeat Genes to Evolve into Restorers of Cytoplasmic Male Sterility. Frontiers in Plant Science, 2016, 7, 1816.	3.6	83
2032	Bio-efficacy of a chitosan based elicitor on <i>Alternaria solani</i> vesicatoriairinfections in tomato under tropical conditions. Annals of Applied Biology, 2016, 169, 274-283.	2.5	19
2033	Cell death triggering and effector recognition by Swâ€5 SDâ€CNL proteins from resistant and susceptible tomato isolines to <i>Tomato spotted wilt virus</i> i>Nolecular Plant Pathology, 2016, 17, 1442-1454.	4.2	42
2034	<scp>TNL</scp> â€mediated immunity in <i><scp>A</scp>rabidopsis</i> requires complex regulation of the redundant <i><scp>ADR</scp>1</i> gene family. New Phytologist, 2016, 210, 960-973.	7.3	98
2035	Maize Homologs of CCoAOMT and HCT, Two Key Enzymes in Lignin Biosynthesis, Form Complexes with the NLR Rp1 Protein to Modulate the Defense Response. Plant Physiology, 2016, 171, 2166-2177.	4.8	80
2036	Pathogen perception by NLRs in plants and animals: Parallel worlds. BioEssays, 2016, 38, 769-781.	2.5	81
2037	Nitric oxide and <i>S</i> à€nitrosoglutathione function additively during plant immunity. New Phytologist, 2016, 211, 516-526.	7.3	117
2038	<i><scp>TaMDAR6</scp></i> acts as a negative regulator of plant cell death and participates indirectly in stomatal regulation during the wheat stripe rust–fungus interaction. Physiologia Plantarum, 2016, 156, 262-277.	5 . 2	15
2039	Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in <i>Sorghum bicolor</i> . G3: Genes, Genomes, Genetics, 2016, 6, 1935-1946.	1.8	29
2040	Intracellular innate immune surveillance devices in plants and animals. Science, 2016, 354, .	12.6	834
2041	Differential response of tomato genotypes to Xanthomonas-specific pathogen-associated molecular patterns and correlation with bacterial spot (Xanthomonas perforans) resistance. Horticulture Research, 2016, 3, 16035.	6.3	29
2042	Genomewide analysis of NBS-encoding genes in kiwi fruit (Actinidia chinensis). Journal of Genetics, 2016, 95, 997-1001.	0.7	17
2043	The isolation and characterization of resident yeasts from the phylloplane of Arabidopsis thaliana. Scientific Reports, 2016, 6, 39403.	3.3	38
2044	Genome analysis of <i>Hibiscus syriacus </i> provides insights of polyploidization and indeterminate flowering in woody plants. DNA Research, 2017, 24, dsw049.	3.4	38
2045	Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi. BMC Genomics, 2016, 17, 608.	2.8	99

#	Article	IF	CITATIONS
2046	3′-NADP and 3′-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1. Journal of Biological Chemistry, 2016, 291, 22868-22880.	3.4	16
2047	Cloning and Expression Analysis of Citrus Genes CsGH3.1 and CsGH3.6 Responding to Xanthomonas axonopodis pv. citri Infection. Horticultural Plant Journal, 2016, 2, 193-202.	5.0	7
2048	Priming of Plant Defense and Plant Growth in Disease-Challenged Crops Using Microbial Consortia. , 2016, , 39-56.		3
2049	50Âyears of Arabidopsis research: highlights and future directions. New Phytologist, 2016, 209, 921-944.	7. 3	186
2050	Genomeâ€wide transcriptomic and proteomic analyses of bollwormâ€infested developing cotton bolls revealed the genes and pathways involved in the insect pest defence mechanism. Plant Biotechnology Journal, 2016, 14, 1438-1455.	8.3	18
2051	Comparative genomics of <i>Fusarium oxysporum</i> f. sp.Â <i>melonis</i> reveals the secreted protein recognized by the <i>Fomâ€2</i> resistance gene in melon. New Phytologist, 2016, 209, 307-318.	7.3	87
2052	Molecular phylogeny and dynamic evolution of disease resistance genes in the legume family. BMC Genomics, 2016, 17, 402.	2.8	47
2053	EDS1-mediated activation of autophagy regulates Pst DC3000 (AvrRps4)-induced programmed cell death in Arabidopsis. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	5
2054	Histo-chemical and biochemical analysis reveals association of er1 mediated powdery mildew resistance and redox balance in pea. Plant Physiology and Biochemistry, 2016, 106, 54-63.	5.8	25
2055	Die another day: Molecular mechanisms of effector-triggered immunity elicited by type III secreted effector proteins. Seminars in Cell and Developmental Biology, 2016, 56, 124-133.	5.0	26
2056	Response of TaFLR MAPKKK to wheat leaf rust and Fusarium head blight and the activation of downstream components. Tropical Plant Pathology, 2016, 41, 15-23.	1.5	7
2057	Efficient In Planta Detection and Dissection of De Novo Mutation Events in the <i>Arabidopsis thaliana </i> Disease Resistance Gene <i>UNI </i>). Plant and Cell Physiology, 2016, 57, 1123-1132.	3.1	3
2058	Evidence for different QTL underlying the immune and hypersensitive responses of Eucalyptus globulus to the rust pathogen Puccinia psidii. Tree Genetics and Genomes, 2016, 12, 1.	1.6	50
2059	Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Molecular Genetics and Genomics, 2016, 291, 1573-1594.	2.1	124
2060	Pokeweed antiviral protein (PAP) increases plant systemic resistance to Tobacco mosaic virus infection in Nicotiana benthamiana. European Journal of Plant Pathology, 2016, 146, 541-549.	1.7	24
2061	Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biology, 2016, 14, 8.	3.8	293
2062	New insights into the evolutionary history of resistance gene candidates in coconut palms and their expression profiles in palms affected by lethal yellowing disease. Genes and Genomics, 2016, 38, 793-807.	1.4	7
2063	Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing. Nature Biotechnology, 2016, 34, 656-660.	17.5	248

#	Article	IF	CITATIONS
2064	Plant Innate Immune Response: Qualitative and Quantitative Resistance. Critical Reviews in Plant Sciences, 2016, 35, 38-55.	5.7	137
2065	A Genome-Wide Association Study of Field Resistance to Magnaporthe Oryzae in Rice. Rice, 2016, 9, 44.	4.0	55
2066	Theobroma cacao L. pathogenesis-related gene tandem array members show diverse expression dynamics in response to pathogen colonization. BMC Genomics, 2016, 17, 363.	2.8	45
2067	Expression of phenylpropanoid and flavonoid pathway genes in oil palm roots during infection by Ganoderma boninense. Plant Gene, 2016, 7, 11-20.	2.3	13
2068	Microarray analyses for identifying genes conferring resistance to pepper leaf curl virus in chilli pepper (Capsicum spp.). Genomics Data, 2016, 9, 140-142.	1.3	4
2069	Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 2016, 16, 537-552.	22.7	1,031
2070	Nitrate Protects Cucumber Plants Against <i>Fusarium oxysporum</i> by Regulating Citrate Exudation. Plant and Cell Physiology, 2016, 57, 2001-2012.	3.1	37
2071	Mechanistic insights into mode of action of rice allene oxide synthase on hydroxyperoxides: An intermediate step in herbivory-induced jasmonate pathway. Computational Biology and Chemistry, 2016, 64, 227-236.	2.3	2
2073	Biotrophy at Its Best: Novel Findings and Unsolved Mysteries of the Arabidopsis-Powdery Mildew Pathosystem. The Arabidopsis Book, 2016, 14, e0184.	0.5	56
2074	<i>Bacillus cereus</i> AR156 primes induced systemic resistance by suppressing miR825/825* and activating defenseâ€related genes in <i>Arabidopsis</i> Journal of Integrative Plant Biology, 2016, 58, 426-439.	8.5	53
2075	Evidence for different, hostâ€dependent functioning of <i>Rx</i> against both wildâ€type and recombinant <i>Pepino mosaic virus</i> Molecular Plant Pathology, 2016, 17, 120-126.	4.2	8
2076	Animal NLRs provide structural insights into plant NLR function. Annals of Botany, 2017, 119, mcw171.	2.9	62
2077	Virulence of <i>Erwinia amylovora </i> , a prevalent apple pathogen: Outer membrane proteins and type III secreted effectors increase fitness and compromise plant defenses. Proteomics, 2016, 16, 2377-2390.	2.2	10
2078	Effector-Triggered Immune Response in <i>Arabidopsis thaliana</i> Is a Quantitative Trait. Genetics, 2016, 204, 337-353.	2.9	38
2079	A unique RPW8-encoding class of genes that originated in early land plants and evolved through domain fission, fusion, and duplication. Scientific Reports, 2016, 6, 32923.	3.3	54
2080	Linear Correlation Analysis of <i>Zymoseptoria tritici</i> Aggressiveness with In Vitro Growth Rate. Phytopathology, 2016, 106, 1255-1261.	2.2	14
2081	The ν Subunit of <i>Arabidopsis</i> Adaptor Protein-2 Is Involved in Effector-Triggered Immunity Mediated by Membrane-Localized Resistance Proteins. Molecular Plant-Microbe Interactions, 2016, 29, 345-351.	2.6	24
2082	DRPPP: A machine learning based tool for prediction of disease resistance proteins in plants. Computers in Biology and Medicine, 2016, 78, 42-48.	7.0	51

#	ARTICLE	IF	CITATIONS
2083	Fine-Scale Spatial Covariation between Infection Prevalence and Susceptibility in a Natural Population. American Naturalist, 2016, 188, 1-14.	2.1	31
2084	Expression of resistance gene analogs in woodland strawberry (Fragaria vesca) during infection with Phytophthora cactorum. Molecular Genetics and Genomics, 2016, 291, 1967-1978.	2.1	23
2085	New <scp>BAR</scp> tools for mining expression data and exploring <i>Cis</i> â€elements in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 490-504.	5.7	75
2086	- Strategies of Nitrosomonas europaea 19718 to Counter Low Dissolved Oxygen and High Nitrite Concentrations. , 2016, , 89-107.		0
2087	Plant immunity. Seminars in Cell and Developmental Biology, 2016, 56, 122-123.	5.0	1
2088	Tobacco methyl salicylate esterase mediates nonhost resistance. Current Plant Biology, 2016, 6, 48-55.	4.7	0
2089	Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection. BMC Genomics, 2016, 17, 919.	2.8	26
2090	A survey of FLS2 genes from multiple citrus species identifies candidates for enhancing disease resistance to Xanthomonas citri ssp. citri Horticulture Research, 2016, 3, 16022.	6.3	31
2091	Flotillins, Erlins, and HIRs: From Animal Base Camp to Plant New Horizons. Critical Reviews in Plant Sciences, 2016, 35, 191-214.	5.7	20
2092	Plant immunity against viruses: antiviral immune receptors in focus. Annals of Botany, 2017, 119, mcw200.	2.9	138
2093	Genetics and molecular mapping of resistance to <i>Plasmodiophora brassicae</i> pathotypes 2, 3, 5, 6, and 8 in rutabaga (<i>Brassica napus</i> napobrassica). Genome, 2016, 59, 805-815.	2.0	59
2094	Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton. Scientific Reports, 2016, 6, 29022.	3.3	41
2095	Characterization of nine Mlo family genes and analysis of their expression against pathogen infections in Vitis flexuosa. Euphytica, 2016, 211, 379-394.	1.2	10
2096	Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Science Translational Medicine, 2016, 8, 332ra45.	12.4	241
2097	Genomeâ€Wide Association Study of Brown Stem Rot Resistance in Soybean across Multiple Populations. Plant Genome, 2016, 9, plantgenome2015.08.0064.	2.8	25
2098	NBS-LRR-mediated resistance triggered by aphids: viruses do not adapt; aphids adapt via different mechanisms. BMC Plant Biology, 2016, 16, 25.	3.6	28
2099	Multiple Disease Resistance in Plants. Annual Review of Phytopathology, 2016, 54, 229-252.	7.8	140
2100	R-gene variation across Arabidopsis lyrata subspecies: effects of population structure, selection and mating system. BMC Evolutionary Biology, 2016, 16, 93.	3.2	23

#	Article	IF	CITATIONS
2101	Divergent and Convergent Evolution of Fungal Pathogenicity. Genome Biology and Evolution, 2016, 8, 1374-1387.	2.5	157
2102	Plant, Soil and Microbes., 2016,,.		5
2103	Evolution of Gene Duplication in Plants. Plant Physiology, 2016, 171, 2294-2316.	4.8	1,094
2104	Victoria Blight, defense turned upside down. Physiological and Molecular Plant Pathology, 2016, 95, 8-13.	2.5	20
2105	Identification and characterization of a serine protease from wheat leaves. European Journal of Plant Pathology, 2016, 146, 293-304.	1.7	7
2106	Current advances and prospectus of viral resistance in horticultural crops. Horticulture Environment and Biotechnology, 2016, 57, 113-122.	2.1	12
2107	Evolutionary history shapes the susceptibility of an island tree flora to an exotic pathogen. Forest Ecology and Management, 2016, 368, 183-193.	3.2	41
2108	Manipulation of Programmed Cell Death Pathways Enhances Osmotic Stress Tolerance in Plants: Physiological and Molecular Insights. , 2016, , 439-464.		3
2109	MicroRNA-mediated susceptible poplar gene expression regulation associated with the infection of virulent Melampsora larici-populina. BMC Genomics, 2016, 17, 59.	2.8	29
2110	Genomic profiling of exogenous abscisic acid-responsive microRNAs in tomato (Solanum) Tj ETQq1 1 0.784314 r	gBT/Overl	lock 10 Tf 5
2111	TNL genes in peach: insights into the post-LRR domain. BMC Genomics, 2016, 17, 317.	2.8	37
2112	Aphid performance changes with plant defense mediated by Cucumber mosaic virus titer. Virology Journal, 2016, 13, 70.	3.4	21
2113	NB-LRR gene family required for Rsc4-mediated resistance to Soybean mosaic virus. Crop and Pasture Science, 2016, 67, 541.	1.5	15
2114	The effects of cold-hardening and Microdochium nivale infection on oxidative stress and antioxidative protection of the two contrasting genotypes of winter triticale. European Food Research and Technology, 2016, 242, 1267-1276.	3.3	7
2115	A Proteomic Approach to Understand the Tripartite Interactions Between Plant-Trichoderma-Pathogen: Investigating the Potential for Efficient Biological Control., 2016,, 79-93.		16
2116	Mycorrhizal Association and Their Role in Plant Disease Protection. , 2016, , 95-143.		5
2117	Comparative analysis of resistance gene analogues encoding <scp>NBS‣RR</scp> domains in cotton. Journal of the Science of Food and Agriculture, 2016, 96, 530-538.	3.5	19
2118	De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.). BMC Genomics, 2016, 17, 66.	2.8	67

#	Article	IF	CITATIONS
2119	Staying alive – is cell death dispensable for plant disease resistance during the hypersensitive response?. Physiological and Molecular Plant Pathology, 2016, 93, 75-84.	2.5	71
2120	IREN, a novel EF-hand motif-containing nuclease, functions in the degradation of nuclear DNA during the hypersensitive response cell death in rice. Bioscience, Biotechnology and Biochemistry, 2016, 80, 748-760.	1.3	7
2121	Antifungal Signature: Physicochemical and Structural In Silico Analysis of Some Antifungal Peptides. International Journal of Peptide Research and Therapeutics, 2016, 22, 163-169.	1.9	2
2122	Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Molecular Biology, 2016, 90, 657-664.	3.9	134
2123	Bioinformatics Analysis of NBS-LRR Encoding Resistance Genes in Setaria italica. Biochemical Genetics, 2016, 54, 232-248.	1.7	18
2124	Metabolic Response of Strawberry (Fragaria x ananassa) Leaves Exposed to the Angular Leaf Spot Bacterium (Xanthomonas fragariae). Journal of Agricultural and Food Chemistry, 2016, 64, 1889-1898.	5.2	30
2125	Plant pathogenic oomycetes: counterbalancing resistance, susceptibility and adaptation. Canadian Journal of Plant Pathology, 2016, 38, 31-40.	1.4	19
2126	Distribution and haplotype diversity of WKS resistance genes in wild emmer wheat natural populations. Theoretical and Applied Genetics, 2016, 129, 921-934.	3.6	24
2127	The wheat homolog of putative nucleotide-binding site–leucine-rich repeat resistance gene TaRGA contributes to resistance against powdery mildew. Functional and Integrative Genomics, 2016, 16, 115-126.	3.5	14
2128	Breeding for Disease Resistance in Cacao. , 2016, , 567-609.		17
2129	Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to <i>Pieris brassicae</i> Egg Extract. Plant Physiology, 2016, 170, 2432-2443.	4.8	71
2130	The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange. Journal of Biological Chemistry, 2016, 291, 1137-1147.	3.4	17
2131	Comparative Analysis of the Flax Immune Receptors L6 and L7 Suggests an Equilibrium-Based Switch Activation Model. Plant Cell, 2016, 28, 146-159.	6.6	110
2133	Insect Resistance in Melon and Its Modification by Molecular Breeding. Biotechnology in Agriculture and Forestry, 2016, , 199-219.	0.2	3
2134	Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Genetics and Biology, 2016, 90, 61-68.	2.1	76
2135	Of guards, decoys, baits and traps: pathogen perception in plants by type III effector sensors. Current Opinion in Microbiology, 2016, 29, 49-55.	5.1	129
2136	Cloning of novel rice blast resistance genes from two rapidly evolving NBS-LRR gene families in rice. Plant Molecular Biology, 2016, 90, 95-105.	3.9	19
2137	The right motifs for plant cell adhesion: what makes an adhesive site?. Protoplasma, 2017, 254, 95-108.	2.1	6

#	Article	IF	CITATIONS
2138	The HopF family of <i>Pseudomonas syringae</i> type III secreted effectors. Molecular Plant Pathology, 2017, 18, 457-468.	4.2	26
2139	Diacylglycerol kinases activate tobacco NADPH oxidaseâ€dependent oxidative burst in response to cryptogein. Plant, Cell and Environment, 2017, 40, 585-598.	5.7	29
2140	Evaluation of RNA extraction methods in rice and their application in expression analysis of resistance genes against <i>Magnaporthe oryzae</i> . Biotechnology and Biotechnological Equipment, 2017, 31, 75-84.	1.3	6
2141	PAMPs, PRRs, effectors and R-genes associated with citrus–pathogen interactions. Annals of Botany, 2017, 119, mcw238.	2.9	48
2142	Programmed cell death as a defence against infection. Nature Reviews Immunology, 2017, 17, 151-164.	22.7	752
2143	The Role of Plant Innate Immunity in the Legume-Rhizobium Symbiosis. Annual Review of Plant Biology, 2017, 68, 535-561.	18.7	157
2144	Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabidopsis and tobacco enhances resistance to phytopathogenic fungi and bacteria. Plant Physiology and Biochemistry, 2017, 112, 346-361.	5.8	25
2146	The Nup98 Homolog APIP12 Targeted by the Effector AvrPiz-t is Involved in Rice Basal Resistance Against Magnaporthe oryzae. Rice, 2017, 10, 5.	4.0	52
2147	Gene coding for an elongation factor is involved in resistance against powdery mildew in common bean. Theoretical and Applied Genetics, 2017, 130, 849-860.	3.6	10
2148	The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways. Molecular Immunology, 2017, 86, 23-37.	2.2	95
2149	Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice. Scientific Reports, 2017, 7, 41846.	3.3	37
2150	Gene expression analysis of host–pathogen interaction between wheat and Fusarium graminearum. European Journal of Plant Pathology, 2017, 148, 617-629.	1.7	2
2151	Activation of a Plant NLR Complex through Heteromeric Association with an Autoimmune Risk Variant of Another NLR. Current Biology, 2017, 27, 1148-1160.	3.9	73
2153	The early response during the interaction of fungal phytopathogen and host plant. Open Biology, 2017, 7, 170057.	3.6	60
2154	Breeding for mycorrhizal symbiosis: focus on disease resistance. Euphytica, 2017, 213, 1.	1.2	62
2155	Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition. Physiological Reviews, 2017, 97, 1165-1209.	28.8	63
2156	MdHIR proteins repress anthocyanin accumulation by interacting with the MdJAZ2 protein to inhibit its degradation in apples. Scientific Reports, 2017, 7, 44484.	3.3	10
2157	Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity. Planta, 2017, 246, 351-364.	3.2	15

#	Article	IF	CITATIONS
2158	Evolution and structural diversification of <i>Nictaba </i> -like lectin genes in food crops with a focus on soybean (<i>Glycine max </i>). Annals of Botany, 2017, 119, mcw259.	2.9	9
2159	A Rapid Seedling Resistance Assay Identifies Wild Tomato Lines That Are Resistant to <i>Pseudomonas syringae</i> pv. <i>tomato</i> Race 1. Molecular Plant-Microbe Interactions, 2017, 30, 701-709.	2.6	13
2160	What Do We Know About NOD-Like Receptors in Plant Immunity?. Annual Review of Phytopathology, 2017, 55, 205-229.	7.8	106
2161	Phytoelicitor activity of three Caribbean seaweed species on suppression of pathogenic infections in tomato plants. Journal of Applied Phycology, 2017, 29, 3235-3244.	2.8	39
2162	Genetic Analysis and QTL Mapping of Resistance to Gummy Stem Blight in <i>Cucumis sativus</i> Seedling Stage. Plant Disease, 2017, 101, 1145-1152.	1.4	22
2163	Epistatic influence in tomato Ve1â€mediated resistance. Plant Biology, 2017, 19, 843-847.	3.8	5
2164	Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications, 2017, 8, 15275.	12.8	156
2165	Malus hupehensis miR168 Targets to ARGONAUTE1 and Contributes to the Resistance against Botryosphaeria dothidea Infection by Altering Defense Responses. Plant and Cell Physiology, 2017, 58, 1541-1557.	3.1	30
2166	Inheritance and QTL mapping of resistance to gummy stem blight in cucumber stem. Molecular Breeding, 2017, 37, 1.	2.1	22
2168	Plant immunity: unravelling the complexity of plant responses to biotic stresses. Annals of Botany, 2017, 119, 681-687.	2.9	116
2169	The Bacterial Effector AvrB-Induced RIN4 Hyperphosphorylation Is Mediated by a Receptor-Like Cytoplasmic Kinase Complex in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2017, 30, 502-512.	2.6	34
2170	Quantitative Resistance: More Than Just Perception of a Pathogen. Plant Cell, 2017, 29, 655-665.	6.6	179
2171	Mechanisms to Mitigate the Trade-Off between Growth and Defense. Plant Cell, 2017, 29, 666-680.	6.6	436
2172	Multiple Evolutionary Trajectories Have Led to the Emergence of Races in Fusarium oxysporum f. sp. lycopersici. Applied and Environmental Microbiology, 2017, 83, .	3.1	36
2173	The tandem repeated organization of NB-LRR genes in the clubroot-resistant CRb locus in Brassica rapa L Molecular Genetics and Genomics, 2017, 292, 397-405.	2.1	82
2174	Modelling the effect of gene deployment strategies on durability of plant resistance under selection. Crop Protection, 2017, 97, 10-17.	2.1	18
2175	Mechanisms and strategies of plant defense against <i>Botrytis cinerea</i> . Critical Reviews in Biotechnology, 2017, 37, 262-274.	9.0	160
2176	Two novel LRR and Ig domain-containing proteins from oyster Crassostrea gigas function as pattern recognition receptors and induce expression of cytokines. Fish and Shellfish Immunology, 2017, 70, 308-318.	3.6	13

#	Article	IF	CITATIONS
2177	Genetic resistance against viruses in Phaseolus vulgaris L.: State of the art and future prospects. Plant Science, 2017, 265, 39-50.	3.6	25
2178	Medicinal Plants and Environmental Challenges. , 2017, , .		37
2179	Genetic approaches in research on the role of trehalose in plants. Cytology and Genetics, 2017, 51, 371-383.	0.5	14
2180	Increased cytosine methylation at promoter of the NB-LRR class R gene RCY1 correlated with compromised resistance to cucumber mosaic virus in EMS-generated src mutants of Arabidopsis thaliana. Physiological and Molecular Plant Pathology, 2017, 100, 151-162.	2.5	5
2181	Structural Variation and the Soybean Genome. Compendium of Plant Genomes, 2017, , 57-72.	0.5	0
2182	MicroRNA-like RNAs in plant pathogenic fungus Fusarium oxysporum f. sp. niveum are involved in toxin gene expression fine tuning. 3 Biotech, 2017, 7, 354.	2.2	16
2183	Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/ <i>Botrytis</i> Pathosystem. Plant Cell, 2017, 29, 2727-2752.	6.6	84
2184	Advances in Breeding for Resistance to Insects. , 2017, , 67-99.		5
2185	Benzoylsalicylic acid derivatives as defense activators in tobacco and Arabidopsis. Phytochemistry, 2017, 143, 160-169.	2.9	5
2186	Differential expression of 12 NBS-encoding genes in two apple cultivars in response to Alternaria alternata f. sp. mali infection. Canadian Journal of Plant Science, 2017, , .	0.9	3
2187	Tunicamycin-induced endoplasmic reticulum stress suppresses plant immunity. Applied Biological Chemistry, 2017, 60, 623-630.	1.9	4
2188	Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1. Plant Journal, 2017, 92, 787-795.	5.7	136
2189	Protocol for Identifying Natural Agents That Selectively Affect Adhesion, Thickness, Architecture, Cellular Phenotypes, Extracellular Matrix, and Human White Blood Cell Impenetrability of Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	8
2190	Insights into the red algae and eukaryotic evolution from the genome of <i>Porphyra umbilicalis</i> (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6361-E6370.	7.1	233
2191	A simple and rapid in vitro test for large-scale screening of fungal endophytes from drought-adapted Australian wild plants for conferring water deprivation tolerance and growth promotion in Nicotiana benthamiana seedlings. Archives of Microbiology, 2017, 199, 1357-1370.	2.2	10
2192	Wheat-Puccinia striiformis Interactions. , 2017, , 155-282.		7
2193	Evolution of defence cocktails: Antimicrobial peptide combinations reduce mortality and persistent infection. Molecular Ecology, 2017, 26, 5334-5343.	3.9	40
2194	Populus simonii × Populus nigra WRKY70 is involved in salt stress and leaf blight disease responses. Tree Physiology, 2017, 37, 827-844.	3.1	54

#	Article	IF	CITATIONS
2195	Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant and susceptible lines in Brassica rapa L Plant Cell Reports, 2017, 36, 1841-1854.	5.6	20
2196	An Introduction to Reactive Oxygen Species Metabolism Under Changing Climate in Plants. , 2017, , 25-52.		10
2197	An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nature Communications, 2017, 8, 2051.	12.8	84
2198	Nanomaterial Fungicides: In Vitro and In Vivo Antimycotic Activity of Cobalt and Nickel Nanoferrites on Phytopathogenic Fungi. Global Challenges, 2017, 1, 1700041.	3.6	57
2199	Overexpression of the receptor-like cytoplasmic kinase gene XCRK enhances Xoc and oxidative stress tolerance in rice. Journal of Plant Biology, 2017, 60, 523-532.	2.1	3
2200	Adaptation Strategies and Defence Mechanisms of Plants During Environmental Stress., 2017,, 359-413.		35
2201	Genome-wide analysis of the PHB gene family in Glycine max (L.) Merr Genes and Genomics, 2017, 39, 1095-1106.	1.4	3
2202	UBIQUITIN-SPECIFIC PROTEASES function in plant development and stress responses. Plant Molecular Biology, 2017, 94, 565-576.	3.9	55
2203	Structural disorder in plant proteins: where plasticity meets sessility. Cellular and Molecular Life Sciences, 2017, 74, 3119-3147.	5.4	44
2204	Danger of frustrated sensors: Role of Toll-like receptors and NOD-like receptors in aseptic and septic inflammations around total hip replacements. Journal of Orthopaedic Translation, 2017, 10, 68-85.	3.9	21
2205	Distinct Patterns of Gene Gain and Loss: Diverse Evolutionary Modes of NBS-Encoding Genes in Three Solanaceae Crop Species. G3: Genes, Genomes, Genetics, 2017, 7, 1577-1585.	1.8	61
2206	Characterization and evaluation of rice blast resistance of Chinese indica hybrid rice parental lines. Crop Journal, 2017, 5, 509-517.	5. 2	12
2207	Analysis of the ZAR1 Immune Complex Reveals Determinants for Immunity and Molecular Interactions. Plant Physiology, 2017, 174, 2038-2053.	4.8	74
2208	Candidate gene based association mapping in Fusarium culmorum for field quantitative pathogenicity and mycotoxin production in wheat. BMC Genetics, 2017, 18, 49.	2.7	14
2209	A candidate RxLR effector from Plasmopara viticola can elicit immune responses in Nicotiana benthamiana. BMC Plant Biology, 2017, 17, 75.	3.6	43
2210	Spectral Patterns Reveal Early Resistance Reactions of Barley Against <i>Blumeria graminis</i> f. sp. <i>hordei</i> . Phytopathology, 2017, 107, 1388-1398.	2.2	30
2211	Evolution, genomics and epidemiology of <i>Pseudomonas syringae</i> . Molecular Plant Pathology, 2017, 18, 152-168.	4.2	130
2212	Rapid transgenerational effects in <i>Knautia arvensis</i> in response to plant community diversity. Journal of Ecology, 2017, 105, 714-725.	4.0	19

#	ARTICLE	IF	CITATIONS
2213	RNA-seq analysis of Brachypodium distachyon responses to Barley stripe mosaic virus infection. Crop Journal, 2017, 5, 1-10.	5.2	4
2214	Analysis of Clonostachys rosea -induced resistance to grey mould disease and identification of the key proteins induced in tomato fruit. Postharvest Biology and Technology, 2017, 123, 83-93.	6.0	29
2215	Advances on plant–pathogen interactions from molecular toward systems biology perspectives. Plant Journal, 2017, 90, 720-737.	5.7	81
2216	ROS generation, oxidative burst and dynamic expression profiles of ROS-scavenging enzymes of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in response to Erwinia amylovora in pear (Pyrus communis L). European Journal of Plant Pathology, 2017, 147, 279-294.	1.7	81
2217	Divergent evolution of multiple virusâ€resistance genes from a progenitor in <i>Capsicum</i> spp New Phytologist, 2017, 213, 886-899.	7.3	81
2218	Downy Mildew Disease of Crucifers: Biology, Ecology and Disease Management. , 2017, , .		23
2219	Structural Analysis of Resistance (R) Genes in Potato (Solanum Species) Genome. Compendium of Plant Genomes, 2017, , 269-281.	0.5	0
2220	Overexpression of BAS1 in rice blast fungus can promote blast fungus growth, sporulation and virulence in planta. Saudi Journal of Biological Sciences, 2017, 24, 1884-1893.	3.8	7
2221	Fusarium oxysporum: Genomics, Diversity and Plant–Host Interaction. , 2017, , 159-199.		22
2222	Complementary DNA (cDNA) cloning and functional verification of resistance to head smut disease (Sphacelotheca reiliana) of an NBS–LRR gene ZmNL in maize (Zea mays). Euphytica, 2017, 213, 1.	1.2	4
2224	The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes. Journal of Integrative Agriculture, 2017, 16, 2746-2760.	3.5	119
2225	The Arabidopsis Chromatin-Remodeling Factor CHR5 Regulates Plant Immune Responses and Nucleosome Occupancy. Plant and Cell Physiology, 2017, 58, 2202-2216.	3.1	40
2226	In situ conservationâ€"harnessing natural and humanâ€derived evolutionary forces to ensure future crop adaptation. Evolutionary Applications, 2017, 10, 965-977.	3.1	91
2227	ghr-miR5272a-mediated regulation of GhMKK6 gene transcription contributes to the immune response in cotton. Journal of Experimental Botany, 2017, 68, 5895-5906.	4.8	45
2228	Genetically Engineered Crops Against Bacterial and Fungal Diseases. , 2017, , 125-147.		1
2229	In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce. Frontiers in Physiology, 2017, 8, 674.	2.8	46
2230	Electrical Signaling, Photosynthesis and Systemic Acquired Acclimation. Frontiers in Physiology, 2017, 8, 684.	2.8	80
2231	Ectopic Expression of the Wild Grape WRKY Transcription Factor VqWRKY52 in Arabidopsis thaliana Enhances Resistance to the Biotrophic Pathogen Powdery Mildew But Not to the Necrotrophic Pathogen Botrytis cinerea. Frontiers in Plant Science, 2017, 8, 97.	3.6	45

#	Article	IF	Citations
2232	Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp Frontiers in Plant Science, 2017, 8, 205.	3.6	8
2233	Genetic Interaction between Arabidopsis Qpm3.1 Locus and Bacterial Effector Gene hopW1-1 Underlies Natural Variation in Quantitative Disease Resistance to Pseudomonas Infection. Frontiers in Plant Science, 2017, 8, 695.	3.6	6
2234	Genetic Analysis of NBS-LRR Gene Family in Chickpea and Their Expression Profiles in Response to Ascochyta Blight Infection. Frontiers in Plant Science, 2017, 8, 838.	3.6	60
2235	Complex Interactions between Fungal Avirulence Genes and Their Corresponding Plant Resistance Genes and Consequences for Disease Resistance Management. Frontiers in Plant Science, 2017, 8, 1072.	3.6	87
2236	Genome-Wide Linkage and Association Mapping of Halo Blight Resistance in Common Bean to Race 6 of the Globally Important Bacterial Pathogen. Frontiers in Plant Science, 2017, 8, 1170.	3.6	57
2237	A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. Frontiers in Plant Science, 2017, 8, 1188.	3.6	35
2238	Transcriptome Analysis of the Sm-Mediated Hypersensitive Response to Stemphylium lycopersici in Tomato. Frontiers in Plant Science, 2017, 8, 1257.	3.6	18
2239	Nicotiana benthamiana Elicitor-Inducible Leucine-Rich Repeat Receptor-Like Protein Assists Bamboo Mosaic Virus Cell-to-Cell Movement. Frontiers in Plant Science, 2017, 8, 1736.	3.6	5
2240	Hop/Sti1 – A Two-Faced Cochaperone Involved in Pattern Recognition Receptor Maturation and Viral Infection. Frontiers in Plant Science, 2017, 8, 1754.	3.6	25
2241	Host–Multi-Pathogen Warfare: Pathogen Interactions in Co-infected Plants. Frontiers in Plant Science, 2017, 8, 1806.	3.6	149
2242	XAP5 CIRCADIAN TIMEKEEPER Positively Regulates RESISTANCE TO POWDERY MILDEW8.1–Mediated Immunity in Arabidopsis. Frontiers in Plant Science, 2017, 8, 2044.	3.6	8
2243	Which Plant Proteins Are Involved in Antiviral Defense? Review on In Vivo and In Vitro Activities of Selected Plant Proteins against Viruses. International Journal of Molecular Sciences, 2017, 18, 2300.	4.1	49
2244	GhMAP3K65, a Cotton Raf-Like MAP3K Gene, Enhances Susceptibility to Pathogen Infection and Heat Stress by Negatively Modulating Growth and Development in Transgenic Nicotiana benthamiana. International Journal of Molecular Sciences, 2017, 18, 2462.	4.1	26
2245	Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants. Frontiers in Microbiology, 2016, 7, 2139.	3.5	128
2246	The Cell Death Triggered by the Nuclear Localized RxLR Effector PITG_22798 from Phytophthora infestans Is Suppressed by the Effector AVR3b. International Journal of Molecular Sciences, 2017, 18, 409.	4.1	32
2247	Marker-Assisted Molecular Profiling, Deletion Mutant Analysis, and RNA-Seq Reveal a Disease Resistance Cluster Associated with Uromyces appendiculatus Infection in Common Bean Phaseolus vulgaris L International Journal of Molecular Sciences, 2017, 18, 1109.	4.1	3
2248	Molecular Cloning, Characterization, and Anti-avian Pathogenic Escherichia coli Innate Immune Response of the Cherry Valley Duck CIITA Gene. Frontiers in Microbiology, 2017, 8, 1629.	3.5	4
2249	Phytochemistry and Pharmacological Studies of <i>Citrus macroptera < /i>: A Medicinal Plant Review. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-7.</i>	1.2	16

#	Article	IF	CITATIONS
2250	Comparative Transcriptome Analysis Reveals a Preformed Defense System in Apple Root of a Resistant Genotype of G.935 in the Absence of Pathogen. International Journal of Plant Genomics, 2017, 2017, 1-14.	2.2	17
2251	Comparative Genomics of Non-TNL Disease Resistance Genes from Six Plant Species. Genes, 2017, 8, 249.	2.4	34
2252	A transcriptomics approach uncovers novel roles for poly(ADP-ribosyl)ation in the basal defense response in Arabidopsis thaliana. PLoS ONE, 2017, 12, e0190268.	2.5	16
2253	RNA-Seq analysis of resistant and susceptible sub-tropical maize lines reveals a role for kauralexins in resistance to grey leaf spot disease, caused by Cercospora zeina. BMC Plant Biology, 2017, 17, 197.	3.6	43
2254	Mapping and screening of the tomato Stemphylium lycopersici resistance gene, Sm, based on bulked segregant analysis in combination with genome resequencing. BMC Plant Biology, 2017, 17, 266.	3.6	24
2255	Comparative analysis of targeted long read sequencing approaches for characterization of a plantâ∈™s immune receptor repertoire. BMC Genomics, 2017, 18, 564.	2.8	51
2256	Distribution of fungi in a Triassic fern stem. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2017, 108, 387-398.	0.3	4
2257	The Impact of Plant-Parasitic Nematodes on Agriculture and Methods of Control. , 0, , .		68
2258	Comparative transcriptome analysis of a lowly virulent strain of Erwinia amylovora in shoots of two apple cultivars $\hat{a} \in \text{``susceptible and resistant to fire blight. BMC Genomics, 2017, 18, 868.}$	2.8	28
2259	Highâ∈Resolution Genetic and Physical Mapping of the Eastern Filbert Blight Resistance Region in †Jefferson' Hazelnut (<i>Corylus avellana</i> L.). Plant Genome, 2017, 10, plantgenome2016.12.0123.	2.8	38
2260	Characterization of Mi1.2 Whitefly (Bemisia tabaci) Resistance Gene. OnLine Journal of Biological Sciences, 2017, 17, 323-334.	0.4	1
2261	NLRs as Helpline in the Brain: Mechanisms and Therapeutic Implications. Molecular Neurobiology, 2018, 55, 8154-8178.	4.0	14
2262	Genome-scale examination of NBS-encoding genes in blueberry. Scientific Reports, 2018, 8, 3429.	3.3	18
2263	Signaling through plant lectins: modulation of plant immunity and beyond. Biochemical Society Transactions, 2018, 46, 217-233.	3.4	69
2264	Evolutionary Divergence of TNL Disease-Resistant Proteins in Soybean (Glycine max) and Common Bean (Phaseolus vulgaris). Biochemical Genetics, 2018, 56, 397-422.	1.7	17
2265	Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Science, 2018, 270, 72-84.	3.6	52
2266	The energy sensor OsSnRK1a confers broad-spectrum disease resistance in rice. Scientific Reports, 2018, 8, 3864.	3.3	63
2267	The Coiled-Coil and Leucine-Rich Repeat Domain of the Potyvirus Resistance Protein Pvr4 Has a Distinct Role in Signaling and Pathogen Recognition. Molecular Plant-Microbe Interactions, 2018, 31, 906-913.	2.6	30

#	Article	IF	CITATIONS
2268	NPR1 as a transgenic crop protection strategy in horticultural species. Horticulture Research, 2018, 5, 15.	6.3	43
2269	Scale and direction of adaptive introgression between black cottonwood (<i>Populus) Tj ETQq1 1 0.784314 rgBT</i>	/9.yerlock	10 Tf 50 70
2270	Arabidopsis thaliana as a Model Organism to Study Plant-Pathogen Interactions. , 2018, , 1-20.		1
2271	Functional diversification of structurally alike NLR proteins in plants. Plant Science, 2018, 269, 85-93.	3.6	11
2272	Identification of candidate genes at the Dp-fl locus conferring resistance against the rosy apple aphid Dysaphis plantaginea. Tree Genetics and Genomes, 2018, 14, 1.	1.6	3
2273	Balancing selection at nonself recognition loci in the chestnut blight fungus, Cryphonectria parasitica, demonstrated by trans-species polymorphisms, positive selection, and even allele frequencies. Heredity, 2018, 121, 511-523.	2.6	14
2274	AV2 protein of tomato leaf curl Palampur virus promotes systemic necrosis in Nicotiana benthamiana and interacts with host Catalase2. Scientific Reports, 2018, 8, 1273.	3.3	37
2275	Transcriptome analysis identifies candidate genes associated with melanin and toxin biosynthesis and pathogenicity of the maize pathogen, <i>Curvularia lunata</i> . Journal of Phytopathology, 2018, 166, 233-241.	1.0	9
2276	Rice copine genes <i>Os<scp>BON</scp>1</i> and <i>Os<scp>BON</scp>3</i> function as suppressors of broadâ€spectrum disease resistance. Plant Biotechnology Journal, 2018, 16, 1476-1487.	8.3	27
2278	Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 2018, 212-213, 29-37.	5.3	433
2279	Lineage-specific duplications of NBS-LRR genes occurring before the divergence of six Fragaria species. BMC Genomics, 2018, 19, 128.	2.8	27
2280	Phytochemical investigation and antimicrobial appraisal of Parrotiopsis jacquemontiana (Decne) Rehder. BMC Complementary and Alternative Medicine, 2018, 18, 43.	3.7	44
2281	PCR amplification of DNA sequence related to thehrpDgene ofXanthomonas cucurbitaein leaf spot disease of pumpkin and their antagonism by soil bacteria. Archives of Phytopathology and Plant Protection, 2018, 51, 252-266.	1.3	6
2282	Increased experimental conditions and marker densities identified more genetic loci associated with southern and northern leaf blight resistance in maize. Scientific Reports, 2018, 8, 6848.	3.3	16
2283	An R2R3-MYB transcription factor, SlMYB28, involved in the regulation of TYLCV infection in tomato. Scientia Horticulturae, 2018, 237, 192-200.	3.6	20
2284	Postâ€translational modifications in priming the plant immune system: ripe for exploitation?. FEBS Letters, 2018, 592, 1929-1936.	2.8	31
2285	A Tomato Nucleotide Binding Sitesâ^'Leucine-Rich Repeat Gene Is Positively Involved in Plant Resistance to <i>Phytophthora infestans</i>). Phytopathology, 2018, 108, 980-987.	2.2	30
2286	TaEDS1 genes positively regulate resistance to powdery mildew in wheat. Plant Molecular Biology, 2018, 96, 607-625.	3.9	21

#	Article	IF	Citations
2287	Out of Water: The Origin and Early Diversification of Plant <i>R</i> -Genes. Plant Physiology, 2018, 177, 82-89.	4.8	117
2288	Identification and Characterization of microRNA during Bemisia tabaci Infestations in Solanum lycopersicum and Solanum habrochaites. Horticultural Plant Journal, 2018, 4, 62-72.	5.0	18
2289	Analysis of the DNA methylation patterns and transcriptional regulation of the NB-LRR-encoding gene family in Arabidopsis thaliana. Plant Molecular Biology, 2018, 96, 563-575.	3.9	25
2290	Infection assays in <i>Arabidopsis</i> reveal candidate effectors from the poplar rust fungus that promote susceptibility to bacteria and oomycete pathogens. Molecular Plant Pathology, 2018, 19, 191-200.	4.2	84
2291	The 50 distal amino acids of the 2A ^{HP} homing protein of <i>Grapevine fanleaf virus</i> elicit a hypersensitive reaction on <i>Nicotiana occidentalis</i> Molecular Plant Pathology, 2018, 19, 731-743.	4.2	15
2292	Alpha-momorcharin enhances Tobacco mosaic virus resistance in tobacco NN by manipulating jasmonic acid-salicylic acid crosstalk. Journal of Plant Physiology, 2018, 223, 116-126.	3.5	26
2293	<i><scp>RESISTANCE TO POWDERY MILDEW</scp>8.1</i> boosts patternâ€triggered immunity against multiple pathogens in Arabidopsis and rice. Plant Biotechnology Journal, 2018, 16, 428-441.	8.3	39
2294	Overexpression of persimmon 9-lipoxygenase DkLOX3 confers resistance to Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea in Arabidopsis. Plant Growth Regulation, 2018, 84, 179-189.	3.4	14
2295	Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function. Molecular Genetics and Genomics, 2018, 293, 17-31.	2.1	16
2296	Wheat blast disease management: cues from the advancements in molecular biology of rice-Magnaporthe pathosystem. Journal of Plant Biochemistry and Biotechnology, 2018, 27, 249-259.	1.7	16
2297	UPR mt coordinates immunity to maintain mitochondrial homeostasis and animal fitness. Mitochondrion, 2018, 41, 9-13.	3.4	17
2298	Involvement of Adapter Protein Complex 4 in Hypersensitive Cell Death Induced by Avirulent Bacteria. Plant Physiology, 2018, 176, 1824-1834.	4.8	25
2299	Another Look at the "Dismal Science―and Jenner's Experiment. Veterinary Clinics of North America - Small Animal Practice, 2018, 48, 243-255.	1.5	2
2300	The physiological characteristics and associated gene expression of sugar cane inoculated with <i>Leifsonia xyli</i> subsp.Â <i>xyli</i> Journal of Phytopathology, 2018, 166, 44-52.	1.0	13
2301	Ectopic expression of Arabidopsis broad-spectrum resistance gene RPW8.2 improves the resistance to powdery mildew in grapevine (Vitis vinifera). Plant Science, 2018, 267, 20-31.	3.6	28
2302	Oh, the places they'll go! A survey of phytopathogen effectors and their host targets. Plant Journal, 2018, 93, 651-663.	5.7	139
2303	Isolation and validation of a candidate Rsv3 gene from a soybean genotype that confers strain-specific resistance to soybean mosaic virus. Virology, 2018, 513, 153-159.	2.4	31
2304	Multiple strategies for pathogen perception by plant immune receptors. New Phytologist, 2018, 219, 17-24.	7.3	189

#	Article	IF	CITATIONS
2305	Increases in the source to sink ratio related to a higher carbohydrate concentration reduce phoma black stem in sunflower. European Journal of Plant Pathology, 2018, 150, 623-637.	1.7	3
2306	The TNL gene <i>Rdr1</i> confers broadâ€spectrum resistance to <i>Diplocarpon rosae</i> Molecular Plant Pathology, 2018, 19, 1104-1113.	4.2	17
2307	The Type III Secretion Chaperone HpaB Controls the Translocation of Effector and Noneffector Proteins From Xanthomonas campestris pv. vesicatoria. Molecular Plant-Microbe Interactions, 2018, 31, 61-74.	2.6	10
2308	Antioxidants elevates the resistance to Cercospora canescens in interspecific cross of Vigna radiata (Kopergaon) × Vigna mungo (Pant Urd 31). Indian Phytopathology, 2018, 71, 519-528.	1.2	6
2309	A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism. BMC Genomics, 2018, 19, 863.	2.8	24
2310	Transcriptome Analysis and Functional Identification of Xa13 and Piâ€ŧa Orthologs in Oryza granulata. Plant Genome, 2018, 11, 170097.	2.8	2
2315	An integrated analysis of mRNA and sRNA transcriptional profiles in tomato root: Insights on tomato wilt disease. PLoS ONE, 2018, 13, e0206765.	2.5	16
2316	Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis. Journal of Genetics and Genomics, 2018, 45, 663-672.	3.9	22
2317	A New Role For Green Leaf Volatile Esters in Tomato Stomatal Defense Against Pseudomonas syringe pv. tomato. Frontiers in Plant Science, 2018, 9, 1855.	3.6	43
2318	Segmental and Tandem Duplications Driving the Recent NBS-LRR Gene Expansion in the Asparagus Genome. Genes, 2018, 9, 568.	2.4	18
2319	The relationship between transgenerational acquired resistance and global DNA methylation in Arabidopsis. Scientific Reports, 2018, 8, 14761.	3.3	55
2320	Genetic resistance of local upland rice populations from East and North Kalimantan, Indonesia against some important diseases. Australian Journal of Crop Science, 2018, 12, 326-334.	0.3	0
2321	Identification of a Spotted Leaf Sheath Gene Involved in Early Senescence and Defense Response in Rice. Frontiers in Plant Science, 2018, 9, 1274.	3.6	20
2322	Fine mapping and candidate gene screening of the downy mildew resistance gene RPF1 in Spinach. Theoretical and Applied Genetics, 2018, 131, 2529-2541.	3.6	35
2323	Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Molecular Biology, 2018, 98, 249-260.	3.9	75
2324	Profile of Jonathan D. G. Jones. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10191-10194.	7.1	0
2325	Detection of large sequence insertions by a hybrid approach that combine de novo assembly and resequencing of medium-coverage genome sequences. Genome, 2018, 61, 745-754.	2.0	2
2326	Distinct modes of derepression of an <i>Arabidopsis</i> immune receptor complex by two different bacterial effectors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10218-10227.	7.1	83

#	Article	IF	CITATIONS
2327	Transcriptome analysis reveals the molecular mechanisms of the defense response to gray leaf spot disease in maize. BMC Genomics, 2018, 19, 742.	2.8	29
2328	Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11637-11642.	7.1	94
2329	Case Study for Trait-Related Gene Evolution: Disease Resistance Genes in Brassica napus. Compendium of Plant Genomes, 2018, , 223-232.	0.5	0
2330	Exploration of Cotton Leaf Curl Virus (CLCuV) resistance genes and their screening in Gossypium arboreum by targeting resistance gene analogues. AoB PLANTS, 2018, 10, ply067.	2.3	4
2331	Genetic signatures of plant resistance genes with known function within and between species. Genetica, 2018, 146, 517-528.	1.1	3
2332	Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley. 3 Biotech, 2018, 8, 453.	2.2	9
2333	Wheat microRNA1023 suppresses invasion of <i>Fusarium graminearum</i> via targeting and silencing <i>FGSG_03101</i> . Journal of Plant Interactions, 2018, 13, 514-521.	2.1	48
2334	Transcriptome analysis of an incompatible Persea americana-Phytophthora cinnamomi interaction reveals the involvement of SA- and JA-pathways in a successful defense response. PLoS ONE, 2018, 13, e0205705.	2.5	30
2335	Genomic and epigenomic immunity in common bean: the unusual features of NB-LRR gene family. DNA Research, 2018, 25, 161-172.	3.4	71
2336	Variability in eukaryotic initiation factor iso4E in Brassica rapa influences interactions with the viral protein linked to the genome of Turnip mosaic virus. Scientific Reports, 2018, 8, 13588.	3.3	20
2337	A Single Effector Protein, AvrRpt2 _{EA} , from <i>Erwinia amylovora</i> Can Cause Fire Blight Disease Symptoms and Induces a Salicylic Acidâ€"Dependent Defense Response. Molecular Plant-Microbe Interactions, 2018, 31, 1179-1191.	2.6	19
2338	Uncoiling CNLs: Structure/function approaches to understanding CC domain function in plant NLRs. Plant and Cell Physiology, 2018, 59, 2398-2408.	3.1	59
2339	New insights into Phakopsora pachyrhizi infection based on transcriptome analysis in planta. Genetics and Molecular Biology, 2018, 41, 671-691.	1.3	4
2340	The Sw-5 Gene Cluster: Tomato Breeding and Research Toward Orthotospovirus Disease Control. Frontiers in Plant Science, 2018, 9, 1055.	3.6	35
2341	The Potential Role of Powdery Mildew-Resistance Gene Pm40 in Chinese Wheat-Breeding Programs in the Post-Pm21 Era. Engineering, 2018, 4, 500-506.	6.7	31
2342	Soil mixture composition alters Arabidopsis susceptibility to <i>Pseudomonas syringae</i> infection. Plant Direct, 2018, 2, e00044.	1.9	9
2343	SCF ^{SNIPER4} controls the turnover of two redundant <scp>TRAF</scp> proteins in plant immunity. Plant Journal, 2018, 95, 504-515.	5.7	21
2344	Osaâ€miR164a targets <i>Os<scp>NAC</scp>60</i> and negatively regulates rice immunity against the blast fungus <i>Magnaporthe oryzae</i> . Plant Journal, 2018, 95, 584-597.	5.7	103

#	Article	IF	CITATIONS
2345	In vitro screening for Botrytis leaf blight resistance in Lilium species. Scientia Horticulturae, 2018, 239, 133-140.	3.6	4
2346	Enhanced plant growth promoting role of mPEGâ€PLGAâ€based nanoparticles as an activator protein PeaT1 carrier in wheat (<i>Triticum aestivum L</i>). Journal of Chemical Technology and Biotechnology, 2018, 93, 3143-3151.	3.2	12
2348	An Update on Genetic Modification of Chickpea for Increased Yield and Stress Tolerance. Molecular Biotechnology, 2018, 60, 651-663.	2.4	26
2349	Structural, Functional, and Genomic Diversity of Plant NLR Proteins: An Evolved Resource for Rational Engineering of Plant Immunity. Annual Review of Phytopathology, 2018, 56, 243-267.	7.8	152
2350	MoYvh1 subverts rice defense through functions of ribosomal protein MoMrt4 in Magnaporthe oryzae. PLoS Pathogens, 2018, 14, e1007016.	4.7	32
2351	A Single-Nucleotide Polymorphism in the Promoter of a Hairpin RNA Contributes to <i>Alternaria alternata</i> Leaf Spot Resistance in Apple (<i>Malus</i> \tilde{A} — <i>domestica</i>). Plant Cell, 2018, 30, 1924-1942.	6.6	54
2352	OsWRKY67 Plays a Positive Role in Basal and XA21-Mediated Resistance in Rice. Frontiers in Plant Science, 2017, 8, 2220.	3.6	49
2353	An Asparagine-Rich Protein Nbnrp1 Modulate Verticillium dahliae Protein PevD1-Induced Cell Death and Disease Resistance in Nicotiana benthamiana. Frontiers in Plant Science, 2018, 9, 303.	3.6	14
2354	Hsp90 Interacts With Tm-22 and Is Essential for Tm-22-Mediated Resistance to Tobacco mosaic virus. Frontiers in Plant Science, 2018, 9, 411.	3.6	25
2355	Natural Variation in Elicitation of Defense-Signaling Associates to Field Resistance Against the Spot Blotch Disease in Bread Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2018, 9, 636.	3.6	25
2356	A Pathogen-Responsive Leucine Rich Receptor Like Kinase Contributes to Fusarium Resistance in Cereals. Frontiers in Plant Science, 2018, 9, 867.	3.6	42
2357	Genome-Wide Association Study for Spot Blotch Resistance in Hard Winter Wheat. Frontiers in Plant Science, 2018, 9, 926.	3.6	77
2358	Autoimmunity in plants. Planta, 2018, 248, 751-767.	3.2	39
2359	Different clonal responses to cypress canker disease based on transcription of suberin-related genes and bark carbohydrates' content. Trees - Structure and Function, 2018, 32, 1707-1722.	1.9	7
2360	Rhizobium sp. IRBG74 Alters Arabidopsis Root Development by Affecting Auxin Signaling. Frontiers in Microbiology, 2017, 8, 2556.	3.5	19
2361	Identification of FaNBS-encoding genes responsive to Colletotrichum fructicola infection in strawberry (Fragaria ×ananassa Duchase). Australasian Plant Pathology, 2018, 47, 499-510.	1.0	6
2362	Prospects of Understanding the Molecular Biology of Disease Resistance in Rice. International Journal of Molecular Sciences, 2018, 19, 1141.	4.1	38
2363	Novel Strategies for Engineering Resistance to Plant Viral Diseases. , 2018, , 145-174.		2

#	Article	IF	CITATIONS
2364	Disease Resistance Mechanisms in Plants. Genes, 2018, 9, 339.	2.4	290
2365	Indispensable Role of Proteases in Plant Innate Immunity. International Journal of Molecular Sciences, 2018, 19, 629.	4.1	88
2366	Innate Immunity Engaged or Disengaged in Plant-Microbe Interactions â~†., 2018, , 107-144.		0
2367	Diversity of <i>Avrâ€vnt1</i> and <i>AvrSmira1</i> effector genes in Polish and Norwegian populations of <i>Phytophthora infestans</i> Plant Pathology, 2018, 67, 1792-1802.	2.4	9
2368	Promises and challenges in insect–plant interactions. Entomologia Experimentalis Et Applicata, 2018, 166, 319-343.	1.4	66
2369	Characterization and mapping of leaf rust resistance in four durum wheat cultivars. PLoS ONE, 2018, 13, e0197317.	2.5	23
2370	Defence transcriptome assembly and pathogenesis related gene family analysis in Pinus tecunumanii (low elevation). BMC Genomics, 2018, 19, 632.	2.8	32
2371	A Polysaccharide Derived from a <i>Trichosporon</i> sp. Culture Strongly Primes Plant Resistance to Viruses. Molecular Plant-Microbe Interactions, 2018, 31, 1257-1270.	2.6	11
2372	Resistance to Cypress Canker Disease in Italian cypress has desirable effects on disease epidemiology, but may fail against novel genotypes of the pathogen Seiridium cardinale. Forest Ecology and Management, 2018, 424, 259-266.	3.2	3
2373	Novel Perspectives of Biotic and Abiotic Stress Tolerance Mechanism in Actinobacteria. , 2018, , 235-244.		7
2374	Metabolic Responses of Plants Upon Different Plant–Pathogen Interactions. , 2018, , 195-214.		4
2375	Identification of NBS-encoding genes linked to black rot resistance in cabbage (Brassica oleracea var.) Tj ETQq $1\ 1$	0 _{2.3} 784314	rgBT /Over
2376	Friend or foe? The role of leaf-inhabiting fungal pathogens and endophytes in tree-insect interactions. Fungal Ecology, 2019, 38, 104-112.	1.6	25
2377	Genome sequence and genetic transformation of a widely distributed and cultivated poplar. Plant Biotechnology Journal, 2019, 17, 451-460.	8.3	89
2378	Distinct branches of the Nâ€end rule pathway modulate the plant immune response. New Phytologist, 2019, 221, 988-1000.	7.3	59
2379	Semiâ€dominant mutation in the cysteineâ€rich receptorâ€like kinase gene, <i><scp>ALS</scp>1</i> , conducts constitutive defence response in rice. Plant Biology, 2019, 21, 25-34.	3.8	17
2380	Genomic regions on chromosome 5H containing a novel QTL conferring barley yellow dwarf virus-PAV (BYDV-PAV) tolerance in barley. Scientific Reports, 2019, 9, 11298.	3.3	11
2381	Quantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: seamless interlocking of phytopathology, sensors, and machine learning is needed!. Current Opinion in Plant Biology, 2019, 50, 156-162.	7.1	66

#	Article	IF	CITATIONS
2382	Isolation and identification of a novel protein elicitor from a Bacillus subtilis strain BU412. AMB Express, 2019, 9, 117.	3.0	19
2383	A maize polygalacturonase functions as a suppressor of programmed cell death in plants. BMC Plant Biology, 2019, 19, 310.	3.6	17
2384	Genome-wide in silico identification of LysM-RLK genes in potato (Solanum tuberosum L.). Molecular Biology Reports, 2019, 46, 5005-5017.	2.3	12
2385	Comparative Genomics Analysis in Grass Species Reveals Two Distinct Evolutionary Strategies Adopted by R Genes. Scientific Reports, 2019, 9, 10735.	3.3	1
2386	An engineered mutant of a host phospholipid synthesis gene inhibits viral replication without compromising host fitness. Journal of Biological Chemistry, 2019, 294, 13973-13982.	3.4	6
2387	Stronger When Together: Clustering of Plant NLR Disease resistance Genes. Trends in Plant Science, 2019, 24, 688-699.	8.8	81
2388	Diagnosis and management of halo blight in Australian mungbeans: a review. Crop and Pasture Science, 2019, 70, 195.	1.5	21
2389	Analysis of Cytology and Expression of Resistance Genes in Maize Infected with Sporisorium reilianum. Plant Disease, 2019, 103, 2100-2107.	1.4	3
2390	Systems Genetics for Evolutionary Studies. Methods in Molecular Biology, 2019, 1910, 635-652.	0.9	1
2391	Generation of Superoxide by OeRbohH, a NADPH Oxidase Activity During Olive (Olea europaea L.) Pollen Development and Germination. Frontiers in Plant Science, 2019, 10, 1149.	3.6	28
2392	One Small RNA of Fusarium graminearum Targets and Silences CEBiP Gene in Common Wheat. Microorganisms, 2019, 7, 425.	3.6	25
2393	Stripe Rust Effector PstGSRE1 Disrupts Nuclear Localization of ROS-Promoting Transcription Factor TaLOL2 to Defeat ROS-Induced Defense in Wheat. Molecular Plant, 2019, 12, 1624-1638.	8.3	98
2395	Variation in the LRR region of Pi54 protein alters its interaction with the AvrPi54 protein revealed by in silico analysis. PLoS ONE, 2019, 14, e0224088.	2.5	9
2396	Strengthening Grapevine Resistance by Pseudomonas fluorescens PTA-CT2 Relies on Distinct Defense Pathways in Susceptible and Partially Resistant Genotypes to Downy Mildew and Gray Mold Diseases. Frontiers in Plant Science, 2019, 10, 1112.	3.6	43
2397	Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants. , 2019, , .		28
2398	QTL Mapping and Transcriptome Analysis to Identify Differentially Expressed Genes Induced by Septoria Tritici Blotch Disease of Wheat. Agronomy, 2019, 9, 510.	3.0	23
2399	Consumable friction plug welding of TC4 plate: parameters, microstructures, and mechanical properties. Materials Research Express, 2019, 6, 116520.	1.6	1
2400	Negative regulators of plant immunity derived from cinnamyl alcohol dehydrogenases are targeted by multiple <i>Phytophthora</i> Avr3aâ€ike effectors. New Phytologist, 2019, , .	7.3	46

#	Article	IF	CITATIONS
2401	Independent QTL underlie resistance to the native pathogen Quambalaria pitereka and the exotic pathogen Austropuccinia psidii in Corymbia. Tree Genetics and Genomes, 2019, 15, 1.	1.6	11
2402	Guardians of the Cell: Effector-Triggered Immunity Steers Mammalian Immune Defense. Trends in Immunology, 2019, 40, 939-951.	6.8	13
2403	Molecular basis for functional diversity among microbial Nep1-like proteins. PLoS Pathogens, 2019, 15, e1007951.	4.7	39
2404	A maize stress-responsive Di19 transcription factor, ZmDi19-1, confers enhanced tolerance to salt in transgenic Arabidopsis. Plant Cell Reports, 2019, 38, 1563-1578.	5.6	14
2405	Bioactive Molecules in Plant Defense. , 2019, , .		9
2406	Sodium alginate potentiates antioxidant defense and PR proteins against early blight disease caused by Alternaria solani in Solanum lycopersicum Linn PLoS ONE, 2019, 14, e0223216.	2.5	39
2407	Changes in pathogenesis-related gene expression in response to bioformulations in the apoplast of maize leaves against <i>Fusarium oxysporum</i> Journal of Plant Interactions, 2019, 14, 61-72.	2.1	21
2408	A <i>Magnaporthe</i> Chitinase Interacts with a Rice Jacalin-Related Lectin to Promote Host Colonization. Plant Physiology, 2019, 179, 1416-1430.	4.8	47
2409	NBS-Encoding Genes in Brassica napus Evolved Rapidly After Allopolyploidization and Co-localize With Known Disease Resistance Loci. Frontiers in Plant Science, 2019, 10, 26.	3.6	27
2410	A maize cytochrome b–c1 complex subunit protein ZmQCR7 controls variation in the hypersensitive response. Planta, 2019, 249, 1477-1485.	3.2	10
2411	Transgressive segregation reveals mechanisms of <i>Arabidopsis </i> inmunity to <ibrassica <="" i="">infecting races of white rust (<i <="" albugo="" candida="" i="">). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2767-2773.</i></ibrassica>	7.1	57
2412	Simultaneous silencing of two target genes using virus-induced gene silencing technology in <i>Nicotiana benthamiana</i> . Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2019, 74, 151-159.	1.4	3
2413	Quantitative trait loci controlling Phytophthora cactorum resistance in the cultivated octoploid strawberry (Fragaria × ananassa). Horticulture Research, 2019, 6, 60.	6.3	27
2414	Comparative transcriptome analysis reveals resistance-related genes and pathways in Musa acuminata banana 'Guijiao 9' in response to Fusarium wilt. Plant Physiology and Biochemistry, 2019, 141, 83-94.	5.8	44
2415	The Impact of Protein Architecture on Adaptive Evolution. Molecular Biology and Evolution, 2019, 36, 2013-2028.	8.9	42
2416	Not Just a Pathogen? Description of a Plant-Beneficial Pseudomonas syringae Strain. Frontiers in Microbiology, 2019, 10, 1409.	3 . 5	55
2417	Germplasm Screening and Evaluation Techniques Against Insect Pests., 2019,, 195-229.		1
2418	The immune repressor BIR1 contributes to antiviral defense and undergoes transcriptional and postâ€transcriptional regulation during viral infections. New Phytologist, 2019, 224, 421-438.	7.3	16

#	Article	IF	CITATIONS
2419	Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiology and Biochemistry, 2019, 141, 353-369.	5.8	246
2420	Animal NLRs continue to inform plant NLR structure and function. Archives of Biochemistry and Biophysics, 2019, 670, 58-68.	3.0	23
2421	All in the Family: The First Whole-Genome Survey of NLR Genes. Plant Cell, 2019, 31, 1212-1213.	6.6	0
2422	BvcZR3 and BvHs1pro-1 Genes Pyramiding Enhanced Beet Cyst Nematode (Heterodera schachtii Schm.) Resistance in Oilseed Rape (Brassica napus L.). International Journal of Molecular Sciences, 2019, 20, 1740.	4.1	22
2423	Food security in 2044: How do we control the fungal threat?. Fungal Biology, 2019, 123, 558-564.	2.5	17
2424	Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops. Critical Reviews in Biotechnology, 2019, 39, 680-692.	9.0	32
2425	Signal Transduction Pathways in Plants for Resistance against Pathogens. International Journal of Molecular Sciences, 2019, 20, 2335.	4.1	10
2426	Molecular Basis of Disease Resistance in Banana Progenitor Musa balbisiana against Xanthomonas campestris pv. musacearum. Scientific Reports, 2019, 9, 7007.	3.3	24
2427	Biotechnological potential of engineering pathogen effector proteins for use in plant disease management. Biotechnology Advances, 2019, 37, 107387.	11.7	26
2428	A gammaâ€thionin protein from apple, MdD1, is required for defence against <i>S</i> àâ€RNaseâ€induced inhibition of pollen tube prior to self/nonâ€self recognition. Plant Biotechnology Journal, 2019, 17, 2184-2198.	8.3	18
2429	Identification and expression profiling analysis of NBS–LRR genes involved in Fusarium oxysporum f.sp. conglutinans resistance in cabbage. 3 Biotech, 2019, 9, 202.	2.2	23
2430	Assessing Variations in Host Resistance to Fusarium oxysporum f sp. cubense Race 4 in Musa Species, With a Focus on the Subtropical Race 4. Frontiers in Microbiology, 2019, 10, 1062.	3.5	30
2431	Reactive Oxygen Species Production and Scavenging During Seed Germination of Halophytes. , 2019, , 63-81.		4
2432	Potential roles of volatile organic compounds in plant competition. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 38, 58-63.	2.7	46
2433	Two Arabidopsis Receptor-like Cytoplasmic Kinases SZE1 and SZE2 Associate with the ZAR1–ZED1 Complex and Are Required for Effector-Triggered Immunity. Molecular Plant, 2019, 12, 967-983.	8.3	55
2434	The protein elicitor Hrip1 enhances resistance to insects and early bolting and flowering in Arabidopsis thaliana. PLoS ONE, 2019, 14, e0216082.	2.5	7
2435	Nodulation Induces Systemic Resistance of <i>Medicago truncatula</i> and <i>Pisum sativum</i> Against <i>Erysiphe pisi</i> and Primes for Powdery Mildew-Triggered Salicylic Acid Accumulation. Molecular Plant-Microbe Interactions, 2019, 32, 1243-1255.	2.6	25
2437	The Diverse and Ubiquitous Nature of Pathogens. , 2019, , 1-28.		1

#	Article	IF	CITATIONS
2438	Environment as a Determinant of Pathogen Incidence, Abundance and Evolution. , 2019, , 29-47.		1
2439	Genetics of Host Plant Resistance and Pathogen Infectivity and Aggressiveness. , 2019, , 48-90.		0
2440	Sources and Patterns of Variation in Plant Pathogens. , 2019, , 91-122.		0
2441	Demographic and Genetic Processes in Host and Pathogen Populations. , 2019, , 123-167.		0
2442	Coevolutionary Dynamics in a Metapopulation Context., 2019,, 168-218.		1
2443	Coevolution and Host and Pathogen Life-Histories. , 2019, , 219-242.		1
2449	Compounds from Olea europaea and Pistacia lentiscus inhibit oral microbial growth. BMC Complementary and Alternative Medicine, 2019, 19, 51.	3.7	31
2450	Redox Proteome Perturbation in Arabidopsis upon Pseudomonas syringae Infection. Journal of Proteomics and Bioinformatics, 2019, 12, .	0.4	0
2451	TuMV management for brassica crops through host resistance: retrospect and prospects. Plant Pathology, 2019, 68, 1035-1044.	2.4	39
2452	NPR1 and Redox Rhythmx: Connections, between Circadian Clock and Plant Immunity. International Journal of Molecular Sciences, 2019, 20, 1211.	4.1	15
2453	Effect of Pathogens on Plant Community Dynamics. , 2019, , 243-292.		0
2454	The <i>Gossypium hirsutum</i> TIRâ€NBS‣RR gene <i>GhDSC1 </i> mediates resistance against Verticillium wilt. Molecular Plant Pathology, 2019, 20, 857-876.	4.2	46
2455	Systemic necrosis in tomato induced by a Japanese isolate of rehmannia mosaic virus in a temperatureâ€sensitive manner. Plant Pathology, 2019, 68, 1025-1032.	2.4	4
2456	A Plant Immune Receptor Adopts a Two-Step Recognition Mechanism to Enhance Viral EffectorÂPerception. Molecular Plant, 2019, 12, 248-262.	8.3	56
2457	The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. Frontiers in Plant Science, 2019, 10, 102.	3.6	209
2458	Induced, Imprinted, and Primed Responses to Changing Environments: Does Metabolism Store and Process Information?. Frontiers in Plant Science, 2019, 10, 106.	3.6	63
2459	The Mediator kinase module serves as a positive regulator of salicylic acid accumulation and systemic acquired resistance. Plant Journal, 2019, 98, 842-852.	5.7	31
2460	Manipulating Cellular Factors to Combat Viruses: A Case Study From the Plant Eukaryotic Translation Initiation Factors eIF4. Frontiers in Microbiology, 2019, 10, 17.	3.5	37

#	Article	IF	CITATIONS
2461	Transcriptome analysis of early downy mildew (Plasmopara viticola) defense in grapevines carrying the Asian resistance locus Rpv10. Euphytica, 2019, 215, 1.	1.2	20
2462	Identification and characterization of a spotted-leaf mutant spl40 with enhanced bacterial blight resistance in rice. Rice, 2019, 12, 68.	4.0	28
2463	Plant NLR receptor proteins and their potential in the development of durable genetic resistance to biotic stresses. Biotechnology Research and Innovation, 2019, 3, 80-94.	0.9	28
2464	Evolutionary balance between LRR domain loss and young NBS–LRR genes production governs disease resistance in Arachis hypogaea cv. Tifrunner. BMC Genomics, 2019, 20, 844.	2.8	30
2465	Tomato Natural Resistance Genes in Controlling the Root-Knot Nematode. Genes, 2019, 10, 925.	2.4	60
2466	The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biology, 2019, 17, e3000534.	5.6	126
2467	Alien domains shaped the modular structure of plant NLR proteins. Genome Biology and Evolution, 2019, 11, 3466-3477.	2.5	21
2468	The Ecology of Salicylic Acid Signaling: Primary, Secondary and Tertiary Effects with Applications in Agriculture. International Journal of Molecular Sciences, 2019, 20, 5851.	4.1	47
2469	Transcriptome profiling of resistance response to Meloidogyne chitwoodi introgressed from wild species Solanum bulbocastanum into cultivated potato. BMC Genomics, 2019, 20, 907.	2.8	18
2470	Integrating long noncoding RNAs and mRNAs expression profiles of response to Plasmodiophora brassicae infection in Pakchoi (Brassica campestris ssp. chinensis Makino). PLoS ONE, 2019, 14, e0224927.	2.5	5
2471	Challenges and Perspectives in Homology-Directed Gene Targeting in Monocot Plants. Rice, 2019, 12, 95.	4.0	53
2472	Arabidopsis exhibits differential response in basal immunity and proline metabolism during defense against host and nonhost pathogen infection. Plant Physiology Reports, 2019, 24, 496-506.	1.5	1
2473	Comparative Transcriptome Profiling of Resistant and Susceptible Sugarcane Cultivars in Response to Infection by Xanthomonas albilineans. International Journal of Molecular Sciences, 2019, 20, 6138.	4.1	26
2474	Variation in abundance of predicted resistance genes in the <i>Brassica oleracea</i> pangenome. Plant Biotechnology Journal, 2019, 17, 789-800.	8.3	92
2475	An evolutionarily conserved non-synonymous SNP in a leucine-rich repeat domain determines anthracnose resistance in watermelon. Theoretical and Applied Genetics, 2019, 132, 473-488.	3.6	17
2476	Necrotrophic Exploitation and Subversion of Plant Defense: A Lifestyle or Just a Phase, and Implications in Breeding Resistance. Phytopathology, 2019, 109, 332-346.	2.2	35
2477	Postâ€translational modifications in effectors and plant proteins involved in hostâ€"pathogen conflicts. Plant Pathology, 2019, 68, 628-644.	2.4	10
2478	Transcriptome-wide identification and characterization of resistant gene analogs (RGAs) of ginger (Zingiber officinale Rosc.) and mango ginger (Curcuma amada Roxb.) under stress induced by pathogen. Scientia Horticulturae, 2019, 248, 81-88.	3.6	5

#	Article	IF	CITATIONS
2479	Interactions of Tomato and <i>Botrytis cinerea</i> Genetic Diversity: Parsing the Contributions of Host Differentiation, Domestication, and Pathogen Variation. Plant Cell, 2019, 31, 502-519.	6.6	49
2480	Towards a preventive and/or curative treatment of esca in grapevine trunk disease: General basis in the elaboration of treatments to control plant pathogen attacks. Crop Protection, 2019, 116, 156-169.	2.1	13
2481	Plant Primary Metabolism Regulated by Nitrogen Contributes to Plant–Pathogen Interactions. Plant and Cell Physiology, 2019, 60, 329-342.	3.1	45
2482	Differential root and shoot responses in the metabolism of tomato plants exhibiting reduced levels of gibberellin. Environmental and Experimental Botany, 2019, 157, 331-343.	4.2	16
2483	Salicylic acid functionalized chitosan nanoparticle: A sustainable biostimulant for plant. International Journal of Biological Macromolecules, 2019, 123, 59-69.	7.5	106
2484	<pre><scp>TIR</scp>â€<scp>NB</scp>â€<scp>LRR</scp> immune receptor <scp>SOC</scp>3 pairs with truncated <scp>TIR</scp>â€<scp>NB</scp> protein <scp>CHS</scp>1 or <scp>TN</scp>2 to monitor the homeostasis of E3 ligase <scp>SAUL</scp>1. New Phytologist, 2019, 221, 2054-2066.</pre>	7.3	43
2485	Comparison of the penetration, development and reproduction of Meloidogyne graminicola, and analysis of lignin and total phenolic content in partially resistant and resistant recombinant inbred lines of Oryza sativa. Tropical Plant Pathology, 2019, 44, 171-182.	1.5	9
2486	<i>Rpp1</i> Encodes a ULP1-NBS-LRR Protein That Controls Immunity to <i>Phakopsora pachyrhizi</i> in Soybean. Molecular Plant-Microbe Interactions, 2019, 32, 120-133.	2.6	26
2487	Regulation of Plant Immunity by the Proteasome. International Review of Cell and Molecular Biology, 2019, 343, 37-63.	3.2	22
2488	Recognition of lettuce downy mildew effector BLR38 in <i>Lactuca serriola</i> LS102 requires two unlinked loci. Molecular Plant Pathology, 2019, 20, 240-253.	4.2	13
2489	Insights into the structure–function relationship of brown plant hopper resistance protein, Bph14 of rice plant: a computational structural biology approach. Journal of Biomolecular Structure and Dynamics, 2019, 37, 1649-1665.	3.5	16
2490	Herbivore performance and plant defense after sequential attacks by inducing and suppressing herbivores. Insect Science, 2019, 26, 108-118.	3.0	12
2491	Comparative study on the mRNA expression of Pinus massoniana infected by Bursaphelenchus xylophilus. Journal of Forestry Research, 2020, 31, 75-86.	3.6	9
2492	Type one protein phosphatases (TOPPs) contribute to the plant defense response in <i>Arabidopsis</i> Journal of Integrative Plant Biology, 2020, 62, 360-377.	8.5	27
2493	Genome-wide transcriptome profiling provides insights into the responses of maize (Zea mays L.) to diazotrophic bacteria. Plant and Soil, 2020, 451, 121-143.	3.7	14
2494	Structure–function analysis of ZAR1 immune receptor reveals key molecular interactions for activity. Plant Journal, 2020, 101, 352-370.	5.7	18
2495	H2Bub1 Regulates <i>RbohD</i> -Dependent Hydrogen Peroxide Signal Pathway in the Defense Responses to <i>Verticillium dahliae</i> -Toxins. Plant Physiology, 2020, 182, 640-657.	4.8	49
2496	NBS-LRR genesâ€"Plant health sentinels: Structure, roles, evolution and biotechnological applications., 2020, , 63-120.		9

#	Article	IF	CITATIONS
2497	Stress signalling dynamics of the mitochondrial electron transport chain and oxidative phosphorylation system in higher plants. Annals of Botany, 2020, 125, 721-736.	2.9	33
2498	A revised model for the role of GacS/GacA in regulating type III secretion by <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000. Molecular Plant Pathology, 2020, 21, 139-144.	4.2	23
2499	Why do entomologists and plant pathologists approach trophic relationships so differently? Identifying biological distinctions to foster synthesis. New Phytologist, 2020, 225, 609-620.	7.3	14
2500	Geminivirus C4 antagonizes the HIR1â€mediated hypersensitive response by inhibiting the HIR1 selfâ€nteraction and promoting degradation of the protein. New Phytologist, 2020, 225, 1311-1326.	7.3	40
2501	Characterization of disease resistance genes in the <i>Brassica napus</i> pangenome reveals significant structural variation. Plant Biotechnology Journal, 2020, 18, 969-982.	8.3	83
2502	Genomic analysis of powdery mildew resistance in a hop (Humulus lupulus L.) bi-parental population segregating for "R6-locus― Euphytica, 2020, 216, 1.	1.2	10
2503	Structures of plant resistosome reveal how NLR immune receptors are activated. ABIOTECH, 2020, 1, 147-150.	3.9	5
2504	Plant NLRs: The Whistleblowers of Plant Immunity. Plant Communications, 2020, 1, 100016.	7.7	126
2505	<i>Rpa1</i> mediates an immune response to <i>avrRpm1_{Psa}</i> and confers resistance against <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> . Plant Journal, 2020, 102, 688-702.	5.7	22
2507	Using genomics tools to understand plant resistance against pathogens: A case study of Magnaporthe-rice interactions. , 2020, , 181-188.		2
2508	Effector-triggered immunity and pathogen sensing in metazoans. Nature Microbiology, 2020, 5, 14-26.	13.3	79
2509	A Brassica miRNA Regulates Plant Growth and Immunity through Distinct Modes of Action. Molecular Plant, 2020, 13, 231-245.	8.3	90
2510	Cottage Industry of Biocontrol Agents and Their Applications. , 2020, , .		8
2511	The Role of Plant-Associated Microbes in Mediating Host-Plant Selection by Insect Herbivores. Plants, 2020, 9, 6.	3.5	35
2512	p24G1 Encoded by Grapevine Leafroll-Associated Virus 1 Suppresses RNA Silencing and Elicits Hypersensitive Response-Like Necrosis in Nicotiana Species. Viruses, 2020, 12, 1111.	3.3	7
2513	The Antifungal Activity of Gallic Acid and Its Derivatives against Alternaria solani, the Causal Agent of Tomato Early Blight. Agronomy, 2020, 10, 1402.	3.0	43
2514	Development of PCR-based markers and whole-genome selection model for anthracnose resistance in white lupin (Lupinus albus L.). Journal of Applied Genetics, 2020, 61, 531-545.	1.9	8
2515	Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiological Research, 2020, 241, 126567.	5.3	46

#	Article	IF	CITATIONS
2516	A Rice NBS-ARC Gene Conferring Quantitative Resistance to Bacterial Blight Is Regulated by a Pathogen Effector-Inducible miRNA. Molecular Plant, 2020, 13, 1752-1767.	8.3	20
2517	Identification of Fusarium solani f. sp. pisi (Fsp) Responsive Genes in Pisum sativum. Frontiers in Genetics, 2020, 11, 950.	2.3	9
2518	Metabolic disturbances in sugar beet (Beta vulgaris) during infection with Beet necrotic yellow vein virus. Physiological and Molecular Plant Pathology, 2020, 112, 101520.	2.5	4
2519	Control of stem-rot disease of rice caused by Sclerotium oryzae catt and its cellular defense mechanism – A review. Physiological and Molecular Plant Pathology, 2020, 112, 101536.	2.5	7
2520	Distinct Evolutionary Patterns of NBS-Encoding Genes in Three Soapberry Family (Sapindaceae) Species. Frontiers in Genetics, 2020, 11, 737.	2.3	9
2521	Genetic Diversity, Population Structure, and Andean Introgression in Brazilian Common Bean Cultivars after Half a Century of Genetic Breeding. Genes, 2020, 11, 1298.	2.4	20
2522	Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence. International Journal of Molecular Sciences, 2020, 21, 8695.	4.1	202
2524	Regulation of Capsicum immunity against microbial pathogens: Transcription factors in focus. Physiological and Molecular Plant Pathology, 2020, 112, 101548.	2.5	3
2525	Comparison of the penetration, development and reproduction of Meloidogyne javanica and M. graminicola on partially resistant Oryza sativa cultivars from East Africa. Nematology, 2020, 22, 381-399.	0.6	3
2526	HOS15 is a transcriptional corepressor of NPR1-mediated gene activation of plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30805-30815.	7.1	21
2527	Identification and Fine Mapping of Pi69(t), a New Gene Conferring Broad-Spectrum Resistance Against Magnaporthe oryzae From Oryza glaberrima Steud. Frontiers in Plant Science, 2020, 11, 1190.	3.6	12
2528	In silico characterization and expression of disease-resistance-related genes within the collinear region of Brassica napus blackleg resistant locus LepR1 \hat{a} in B. oleracea. Journal of General Plant Pathology, 2020, 86, 442-456.	1.0	4
2529	Precision Breeding Made Real with CRISPR: Illustration through Genetic Resistance to Pathogens. Plant Communications, 2020, 1, 100102.	7.7	32
2530	Characterization, identification and expression profiling of genome-wide R-genes in melon and their putative roles in bacterial fruit blotch resistance. BMC Genetics, 2020, 21, 80.	2.7	7
2531	CRISPR/Cas9 Gene Editing: An Unexplored Frontier for Forest Pathology. Frontiers in Plant Science, 2020, 11, 1126.	3.6	31
2532	Early Pathogen Recognition and Antioxidant System Activation Contributes to Actinidia arguta Tolerance Against Pseudomonas syringae Pathovars actinidiae and actinidifoliorum. Frontiers in Plant Science, 2020, 11, 1022.	3.6	10
2533	Genome-wide identification and comparative analysis of resistance genes in Brassica juncea. Molecular Breeding, 2020, 40, 1.	2.1	17
2534	Variation Patterns of NLR Clusters in Arabidopsis thaliana Genomes. Plant Communications, 2020, 1, 100089.	7.7	36

#	ARTICLE	IF	CITATIONS
2535	CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Horticulture Research, 2020, 7, 116.	6.3	113
2536	Unraveling the mechanisms of resistance toÂSclerotium rolfsiiÂin peanut (Arachis hypogaeaÂL.) using comparative RNA-Seq analysis of resistant and susceptible genotypes. PLoS ONE, 2020, 15, e0236823.	2.5	30
2537	Mapping and candidate gene screening ofCladosporium fulvumresistance geneCfâ€12in tomato (Solanum) Tj ET	Qq0,000 rş	gBŢ /Overlock
2538	Mapping Powdery Mildew (Blumeria graminis f. sp. tritici) Resistance in Wild and Cultivated Tetraploid Wheats. International Journal of Molecular Sciences, 2020, 21, 7910.	4.1	15
2539	Identification and Analysis of NBS-LRR Genes in Actinidia chinensis Genome. Plants, 2020, 9, 1350.	3.5	20
2540	Identification of Robinia pseudoacacia target proteins responsive to Mesorhizobium amphore CCNWGS0123 effector protein NopT. Journal of Experimental Botany, 2020, 71, 7347-7363.	4.8	10
2541	Cognitive and Memory Functions in Plant Immunity. Vaccines, 2020, 8, 541.	4.4	11
2542	Genome-wide identification and classification of resistance genes predicted several decoy domains in Gossypium sp Plant Gene, 2020, 24, 100250.	2.3	7
2543	Near-isogenic soybean lines carrying Asian soybean rust resistance genes for practical pathogenicity validation. Scientific Reports, 2020, 10, 13270.	3.3	13
2544	Host–Pathogen Interactions between Xanthomonas fragariae and Its Host Fragaria × ananassa Investigated with a Dual RNA-Seq Analysis. Microorganisms, 2020, 8, 1253.	3.6	11
2545	Two unequally redundant "helper" immune receptor families mediate Arabidopsis thaliana intracellular "sensor"Âimmune receptor functions. PLoS Biology, 2020, 18, e3000783.	5.6	125
2546	Regulation and Functions of ROP GTPases in Plant–Microbe Interactions. Cells, 2020, 9, 2016.	4.1	13
2547	A molecular roadmap to the plant immune system. Journal of Biological Chemistry, 2020, 295, 14916-14935.	3.4	86
2548	Transcriptome analysis of wheat spikes in response to Tilletia controversa Kühn which cause wheat dwarf bunt. Scientific Reports, 2020, 10, 21567.	3.3	14
2549	Sequence Composition of Bacterial Chromosome Clones in a Transgressive Root-Knot Nematode Resistance Chromosome Region in Tetraploid Cotton. Frontiers in Plant Science, 2020, 11, 574486.	3.6	3
2550	Bacterial Retrons Function In Anti-Phage Defense. Cell, 2020, 183, 1551-1561.e12.	28.9	208
2551	Fine mapping of the major anthracnose resistance QTL AnRGO5 in Capsicum chinense â€~PBC932'. BMC Plant Biology, 2020, 20, 189.	3.6	15
2552	Genetic Mapping of a Light-Dependent Lesion Mimic Mutant Reveals the Function of Coproporphyrinogen III Oxidase Homolog in Soybean. Frontiers in Plant Science, 2020, 11, 557.	3.6	12

#	Article	IF	Citations
2553	Utilization of microRNAs and their regulatory functions for improving biotic stress tolerance in tea plant [Camellia sinensis (L.) O. Kuntze]. RNA Biology, 2020, 17, 1365-1382.	3.1	14
2554	Multiâ€seasonal modelling of plantâ€nematode interactions reveals efficient plant resistance deployment strategies. Evolutionary Applications, 2020, 13, 2206-2221.	3.1	15
2555	Fine mapping QSc.VR4, an effective and stable scald resistance locus in barley (Hordeum vulgare L.), to a 0.38-Mb region enriched with LRR-RLK and GLP genes. Theoretical and Applied Genetics, 2020, 133, 2307-2321.	3.6	1
2556	Hormonal seed-priming improves tomato resistance against broomrape infection. Journal of Plant Physiology, 2020, 250, 153184.	3 . 5	14
2557	The human genetic determinism of life-threatening infectious diseases: genetic heterogeneity and physiological homogeneity?. Human Genetics, 2020, 139, 681-694.	3.8	49
2558	An integrated approach to improve plant protection against olive anthracnose caused by the Colletotrichum acutatumÂspecies complex. PLoS ONE, 2020, 15, e0233916.	2.5	13
2559	Plant NLRs get by with a little help from their friends. Current Opinion in Plant Biology, 2020, 56, 99-108.	7.1	70
2560	Small RNAs as Fundamental Players in the Transference of Information During Bacterial Infectious Diseases. Frontiers in Molecular Biosciences, 2020, 7, 101.	3.5	22
2561	Transcriptome-Based Analysis of Tomato Genotypes Resistant to Bacterial Spot (Xanthomonas) Tj ETQq0 0 0 rgE	BT Overloo	ck 10 Tf 50 4
2562	Identification and Distribution of NBS-Encoding Resistance Genes of Dactylis glomerata L. and Its Expression Under Abiotic and Biotic Stress. Biochemical Genetics, 2020, 58, 824-847.	1.7	7
2563	Biomechanics of vascular plant as template for engineering design. Materialia, 2020, 12, 100747.	2.7	7
2564	Impact of DNA Demethylases on the DNA Methylation and Transcription of Arabidopsis NLR Genes. Frontiers in Genetics, 2020, 11, 460.	2.3	11
2565	The Citrus Genome. Compendium of Plant Genomes, 2020, , .	0.5	16
2566	Distribution and Nucleotide Diversity of Yr15 in Wild Emmer Populations and Chinese Wheat Germplasm. Pathogens, 2020, 9, 212.	2.8	13
2567	Brassica Improvement. , 2020, , .		4
2568	Screening of Secreted Proteins of Sporisorium reilianum f. sp. zeae for Cell Death Suppression in Nicotiana benthamiana. Frontiers in Plant Science, 2020, 11, 95.	3.6	8
2570	An update on the arsenal: mining resistance genes for disease management of Brassica crops in the genomic era. Horticulture Research, 2020, 7, 34.	6.3	46
2571	Biotic stress-tolerant plants through small RNA technology. , 2020, , 435-468.		4

#	Article	IF	CITATIONS
2572	Role of fungal elicitors in plant defense mechanism., 2020, , 143-158.		10
2573	Novel Aspects on The Interaction Between Grapevine and Plasmopara viticola: Dual-RNA-Seq Analysis Highlights Gene Expression Dynamics in The Pathogen and The Plant During The Battle For Infection. Genes, 2020, 11, 261.	2.4	37
2574	Identification of tRFs and phasiRNAs in tomato (Solanum lycopersicum) and their responses to exogenous abscisic acid. BMC Plant Biology, 2020, 20, 320.	3.6	7
2575	Genetics of Clubroot and Fusarium Wilt Disease Resistance in Brassica Vegetables: The Application of Marker Assisted Breeding for Disease Resistance. Plants, 2020, 9, 726.	3.5	36
2576	NBS-LRR gene family in banana (Musa acuminata): genome-wide identification and responses to Fusarium oxysporum f. sp. cubense race 1 and tropical race 4. European Journal of Plant Pathology, 2020, 157, 549-563.	1.7	7
2577	Modulation of Plant Defense System in Response to Microbial Interactions. Frontiers in Microbiology, 2020, 11, 1298.	3.5	131
2578	Identification and expression analysis of candidate genes associated with stem gall disease in Coriander (Coriandrum sativum L.) cultivars. Molecular Biology Reports, 2020, 47, 5403-5409.	2.3	3
2579	Transcriptome analysis of Eucalyptus grandis genotypes reveals constitutive overexpression of genes related to rust (Austropuccinia psidii) resistance. Plant Molecular Biology, 2020, 104, 339-357.	3.9	29
2580	TaRPM1 Positively Regulates Wheat High-Temperature Seedling-Plant Resistance to Puccinia striiformis f. sp. tritici. Frontiers in Plant Science, 2019, 10, 1679.	3.6	25
2581	Ubiquitylome study highlights ubiquitination of primary metabolism related proteins in fruit response to postharvest pathogen infection. Postharvest Biology and Technology, 2020, 163, 111142.	6.0	7
2582	Ectopic Expression of Grapevine Gene VaRGA1 in Arabidopsis Improves Resistance to Downy Mildew and Pseudomonas syringae pv. tomato DC3000 But Increases Susceptibility to Botrytis cinerea. International Journal of Molecular Sciences, 2020, 21, 193.	4.1	11
2583	Putative Role of a Yet Uncharacterized Protein Elicitor PeBb1 Derived from Beauveria bassiana ARSEF 2860 Strain against Myzus persicae (Homoptera: Aphididae) in Brassica rapa ssp. pekinensis. Pathogens, 2020, 9, 111.	2.8	6
2584	Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics. Nature Communications, 2020, 11, 989.	12.8	162
2585	Mechanisms of powdery mildew resistance of wheat – a review of molecular breeding. Plant Pathology, 2020, 69, 601-617.	2.4	47
2586	Identification and Validation of Candidate Genes Conferring Resistance to Downy Mildew in Maize (Zea mays L.). Genes, 2020, 11, 191.	2.4	11
2587	The RNA-Dependent RNA Polymerase NIb of Potyviruses Plays Multifunctional, Contrasting Roles during Viral Infection. Viruses, 2020, 12, 77.	3.3	41
2588	Genome-wide analysis of NBS-encoding resistance genes in the Mediterranean olive tree (Olea) Tj ETQq $0\ 0\ 0$ rgBT function. Tree Genetics and Genomes, 2020, 16, 1.	「/Overlock 1.6	₹ 10 Tf 50 10 8
2589	Libertellenone M, a diterpene derived from an endophytic fungus Phomopsis sp. S12, protects against DSS-induced colitis via inhibiting both nuclear translocation of NF-κB and NLRP3 inflammasome activation. International Immunopharmacology, 2020, 80, 106144.	3.8	19

#	Article	IF	Citations
2590	Molecular mapping and identification of candidate gene conferring organophosphateâ€sensitive reaction in sorghum (Sorghum bicolor). Plant Breeding, 2020, 139, 600-607.	1.9	2
2591	Toxicological responses, bioaccumulation, and metabolic fate of triclosan in Chlamydomonas reinhardtii. Environmental Science and Pollution Research, 2020, 27, 11246-11259.	5.3	23
2592	In-silico identification and differential expressions of LepR4-syntenic disease resistance related domain containing genes against blackleg causal fungus Leptosphaeria maculans in Brassica oleracea. Gene Reports, 2020, 19, 100598.	0.8	9
2593	Nitric oxide regulates multiple defense signaling pathways in peach fruit response to Monilinia fructicola invasion. Scientia Horticulturae, 2020, 264, 109163.	3.6	13
2594	Whole-genome and time-course dual RNA-Seq analyses reveal chronic pathogenicity-related gene dynamics in the ginseng rusty root rot pathogen llyonectria robusta. Scientific Reports, 2020, 10, 1586.	3.3	18
2595	Modulation of (Homo)Glutathione Metabolism and H2O2 Accumulation during Soybean Cyst Nematode Infections in Susceptible and Resistant Soybean Cultivars. International Journal of Molecular Sciences, 2020, 21, 388.	4.1	14
2596	Plant hypersensitive response vs pathogen ingression: Death of few gives life to others. Microbial Pathogenesis, 2020, 145, 104224.	2.9	36
2597	Molecular Mechanisms of Brassinosteroid-Mediated Responses to Changing Environments in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 2737.	4.1	36
2598	Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 2020, 10, 237.	3.9	235
2599	Insight Into Function and Subcellular Localization of Plasmopara viticola Putative RxLR Effectors. Frontiers in Microbiology, 2020, $11,692$.	3.5	16
2600	Expression of PAL and PR2 pathogenesis related genes in barley plants challenged with closely related Pyrenophora species. Cereal Research Communications, 2020, 48, 211-216.	1.6	5
2601	Transcriptomic analysis of pepper plants provides insights into host responses to Fusarium solani infestation. Journal of Biotechnology, 2020, 314-315, 53-62.	3.8	9
2602	<i>Bacillus cereus</i> AR156 triggers induced systemic resistance against <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000 by suppressing miR472 and activating CNLsâ€mediated basal immunity in <i>Arabidopsis</i> Molecular Plant Pathology, 2020, 21, 854-870.	4.2	37
2603	RPS5-Mediated Disease Resistance: Fundamental Insights and Translational Applications. Annual Review of Phytopathology, 2020, 58, 139-160.	7.8	28
2604	Genomic Organization and Comparative Phylogenic Analysis of NBS-LRR Resistance Gene Family in (i) Solanum pimpinellifolium (i) and (i) Arabidopsis thaliana (i). Evolutionary Bioinformatics, 2020, 16, 117693432091105.	1.2	14
2605	Molecular characterization and expression analysis of pitaya (Hylocereus polyrhizus) HpLRR genes in response to Neoscytalidium dimidiatum infection. BMC Plant Biology, 2020, 20, 160.	3.6	8
2606	Maize ZmFNSI Homologs Interact with an NLR Protein to Modulate Hypersensitive Response. International Journal of Molecular Sciences, 2020, 21, 2529.	4.1	10
2607	Regulation of phytoalexin biosynthesis for agriculture and human health. Phytochemistry Reviews, 2021, 20, 483-505.	6.5	18

#	Article	IF	CITATIONS
2608	Fungal effectors, the double edge sword of phytopathogens. Current Genetics, 2021, 67, 27-40.	1.7	41
2609	Transcriptome analysis provides insights into the mechanisms underlying wheat cultivar Shumai126 responding to stripe rust. Gene, 2021, 768, 145290.	2.2	16
2610	Identification and fineâ€mapping of <i>RppCML496</i> , a major QTL for resistance to <i>Puccinia polysora</i> in maize. Plant Genome, 2021, 14, e20062.	2.8	17
2611	Microbiome Engineering: Synthetic Biology of Plant-Associated Microbiomes in Sustainable Agriculture. Trends in Biotechnology, 2021, 39, 244-261.	9.3	166
2612	Transcriptome analysis of two lines of <i>Brassica oleracea</i> in response to early infection with <i>Xanthomonas campestris</i> pv. <i>campestris</i> . Canadian Journal of Plant Pathology, 2021, 43, 127-139.	1.4	14
2613	Genetics of autoimmunity in plants: an evolutionary genetics perspective. New Phytologist, 2021, 229, 1215-1233.	7.3	32
2614	Potential of microbial endophytes to enhance the resistance to postharvest diseases of fruit and vegetables. Journal of the Science of Food and Agriculture, 2021, 101, 1744-1757.	3 . 5	51
2615	Hypersensitive response: From <scp>NLR</scp> pathogen recognition to cell death response. Annals of Applied Biology, 2021, 178, 268-280.	2.5	28
2616	Diversity, structure and function of the coiledâ€coil domains of plant NLR immune receptors. Journal of Integrative Plant Biology, 2021, 63, 283-296.	8.5	15
2617	Comparative genomics reveals the <i>in plantaâ€</i> secreted <i>Verticillium dahliae</i> Av2 effector protein recognized in tomato plants that carry the <scp><i>V2</i>Environmental Microbiology, 2021, 23, 1941-1958.</scp>	3.8	32
2618	Genomic regions associated with resistance to anthracnose in the Guatemalan climbing bean (Phaseolus vulgaris L.) germplasm collection. Genetic Resources and Crop Evolution, 2021, 68, 1073-1083.	1.6	6
2619	NOD-like receptor-mediated plant immunity: from structure to cell death. Nature Reviews Immunology, 2021, 21, 305-318.	22.7	103
2620	The measure mix matters: multiple-component plant protection is indispensable for coping with the enormous genome plasticity and mutation rates in pathogenic microorganisms. Journal of Plant Diseases and Protection, 2021, 128, 3-6.	2.9	5
2621	Maize metacaspases modulate the defense response mediated by the NLR protein Rp1â€D21 likely by affecting its subcellular localization. Plant Journal, 2021, 105, 151-166.	5.7	15
2622	Characterizing the Genetic Architecture of Nonhost Resistance in Barley Using Pathogenically Diverse <i>Puccinia</i> Isolates. Phytopathology, 2021, 111, 684-694.	2.2	3
2623	Botrytis cinerea management in ornamental production: a continuous battle. Canadian Journal of Plant Pathology, 2021, 43, 345-365.	1.4	28
2624	Biological activities of essential oils and lipopeptides applied to control plant pests and diseases: a review. International Journal of Pest Management, 2021, 67, 155-177.	1.8	39
2625	Actinobacteria: Potential Candidate as Plant Growth Promoters. , 0, , .		3

#	Article	IF	Citations
2626	The Apple Microbiome: Structure, Function, and Manipulation for Improved Plant Health. Compendium of Plant Genomes, 2021, , 341-382.	0.5	8
2627	The Ubiquitin Switch in Plant Stress Response. Plants, 2021, 10, 246.	3.5	35
2628	Transcription Factors as the "Blitzkrieg―of Plant Defense: A Pragmatic View of Nitric Oxide's Role in Gene Regulation. International Journal of Molecular Sciences, 2021, 22, 522.	4.1	27
2629	Exploring the molecular signatures of host–pathogen interactions in plant diseases: conflict and cooperation., 2021,, 63-74.		1
2630	Multiple variants of the fungal effector AVR-Pik bind the HMA domain of the rice protein OsHIPP19, providing a foundation to engineer plant defense. Journal of Biological Chemistry, 2021, 296, 100371.	3.4	57
2631	Overproduction of ROS: underlying molecular mechanism of scavenging and redox signaling. , 2021, , 347-382.		5
2632	Host-encoded miRNAs in plant-virus interactionsâ€"What's new. , 2021, , 3-43.		3
2634	ANALYSIS OF THE PHYTOCHEMICALS, ANTIOXIDANTS, AND ANTIMICROBIAL ACTIVITY OF FICUS TSJAHELA BURM. F LEAF, BARK, AND FRUIT EXTRACTS. Asian Journal of Pharmaceutical and Clinical Research, 0, , 54-59.	0.3	0
2635	Proteasome-Dependent Degradation of RPM1 Desensitizes the RPM1-Mediated Hypersensitive Response. Journal of Plant Biology, 2021, 64, 217-225.	2.1	3
2636	The Coxiella burnetii effector protein CaeB modulates endoplasmatic reticulum (ER) stress signalling and is required for efficient replication in Galleria mellonella. Cellular Microbiology, 2021, 23, e13305.	2.1	12
2637	Role of Functional Defence Signalling Molecules in Plant–Microbe Interactions. , 2021, , 199-218.		1
2638	Gene expression studies in crop plants for diseases management. , 2021, , 437-452.		1
2639	Genome-wide identification and characterization of NBS-encoding genes in Raphanus sativus L. and their roles related to Fusarium oxysporum resistance. BMC Plant Biology, 2021, 21, 47.	3.6	18
2640	Comprehensive analysis of coding sequence architecture features and gene expression in Arachis duranensis. Physiology and Molecular Biology of Plants, 2021, 27, 213-222.	3.1	1
2641	Classification of Plant Electrophysiology Signals for Detection of Spider Mites Infestation in Tomatoes. Applied Sciences (Switzerland), 2021, 11, 1414.	2.5	17
2642	Tillage shapes the soil and rhizosphere microbiome of barleyâ€"but not its susceptibility towards ⟨i⟩ Blumeria graminis⟨ i⟩ f. sp. ⟨i⟩ hordei⟨ i⟩. FEMS Microbiology Ecology, 2021, 97, .	2.7	23
2643	Plant NLR diversity: the known unknowns of pan-NLRomes. Plant Cell, 2021, 33, 814-831.	6.6	99
2644	The Bacillus zanthoxyli HS1 Strain Renders Vegetable Plants Resistant and Tolerant against Pathogen Infection and High Salinity Stress. Plant Pathology Journal, 2021, 37, 72-78.	1.7	6

#	Article	IF	Citations
2645	Mechanisms of Effector-Mediated Immunity Revealed by the Accidental Human Pathogen Legionella pneumophila. Frontiers in Cellular and Infection Microbiology, 2020, 10, 593823.	3.9	9
2646	Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. Frontiers in Plant Science, 2020, 11, 576796.	3.6	19
2647	The COMPASSâ€like complex modulates fungal development and pathogenesis by regulating H3K4me3â€mediated targeted gene expression in <i>Magnaporthe oryzae</i> . Molecular Plant Pathology, 2021, 22, 422-439.	4.2	18
2648	Advances in Understanding Defense Mechanisms in Persea americana Against Phytophthora cinnamomi. Frontiers in Plant Science, 2021, 12, 636339.	3.6	14
2649	Genome-Wide Association Study of Brown Rot (Monilinia spp.) Tolerance in Peach. Frontiers in Plant Science, 2021, 12, 635914.	3.6	17
2650	Antimicrobial Activity of Necklace Orchids is Phylogenetically Clustered and can be Predicted With a Biological Response Method. Frontiers in Pharmacology, 2020, 11, 586345.	3.5	8
2652	GmBTB/POZ promotes the ubiquitination and degradation of LHP1 to regulate the response of soybean to Phytophthora sojae. Communications Biology, 2021, 4, 372.	4.4	30
2654	The <i>Corylus mandshurica</i> genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding. Horticulture Research, 2021, 8, 54.	6.3	20
2655	Candidate Rlm6 resistance genes against Leptosphaeria. maculans identified through a genome-wide association study in Brassica juncea (L.) Czern. Theoretical and Applied Genetics, 2021, 134, 2035-2050.	3.6	5
2656	Systemic reprogramming of phytohormone profiles and metabolic traits by virulent <i>Diplodia</i> infection in its pine (<scp><i>Pinus sylvestris</i></scp> L.) host. Plant, Cell and Environment, 2021, 44, 2744-2764.	5.7	5
2657	Differential Responses of Cucurbita pepo to Podosphaera xanthii Reveal the Mechanism of Powdery Mildew Disease Resistance in Pumpkin. Frontiers in Plant Science, 2021, 12, 633221.	3.6	17
2658	Need for speed: bacterial effector <scp>XopJ2</scp> is associated with increased dispersal velocity of <i>Xanthomonas perforans</i> . Environmental Microbiology, 2021, 23, 5850-5865.	3.8	5
2659	Secreted in Xylem Genes: Drivers of Host Adaptation in Fusarium oxysporum. Frontiers in Plant Science, 2021, 12, 628611.	3.6	26
2660	Tenuazonic Acid-Triggered Cell Death Is the Essential Prerequisite for Alternaria alternata (Fr.) Keissler to Infect Successfully Host Ageratina adenophora. Cells, 2021, 10, 1010.	4.1	15
2661	Unraveling the role of nitric oxide in regulation of defense responses in chilli against Alternaria leaf spot disease. Physiological and Molecular Plant Pathology, 2021, 114, 101621.	2.5	12
2662	Nucleotide-Binding Leucine-Rich Repeat Genes CsRSF1 and CsRSF2 Are Positive Modulators in the Cucumis sativus Defense Response to Sphaerotheca fuliginea. International Journal of Molecular Sciences, 2021, 22, 3986.	4.1	15
2663	Engineering Resistance Against Viruses in Field Crops Using CRISPR-Cas9. Current Genomics, 2021, 22, 214-231.	1.6	17
2664	Widespread mortality of trembling aspen (Populus tremuloides) throughout interior Alaskan boreal forests resulting from a novel canker disease. PLoS ONE, 2021, 16, e0250078.	2.5	8

#	Article	IF	Citations
2665	CROSS APPLICATION OF ENTOMOPATHOGENIC FUNGI RAW SECONDARY METABOLITES FOR CONTROLLING FUSARIUM WILT OF CHILI SEEDLINGS. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 2021, 21, 82-90.	0.2	1
2667	Transcriptome profiling reveals response genes for downy mildew resistance in cucumber. Planta, 2021, 253, 112.	3.2	13
2668	Comparative transcriptome profiling identifies maize line specificity of fungal effectors in the maize– <i>Ustilago maydis</i> interaction. Plant Journal, 2021, 106, 733-752.	5.7	12
2669	Chromosome-scale assembly and analysis of biomass crop Miscanthus lutarioriparius genome. Nature Communications, 2021, 12, 2458.	12.8	25
2670	Nuclear Localization of HopA1Pss61 Is Required for Effector-Triggered Immunity. Plants, 2021, 10, 888.	3.5	11
2671	Recent Advances in Effector-Triggered Immunity in Plants: New Pieces in the Puzzle Create a Different Paradigm. International Journal of Molecular Sciences, 2021, 22, 4709.	4.1	61
2672	Genetic Improvement for Resistance to Black Sigatoka in Bananas: A Systematic Review. Frontiers in Plant Science, 2021, 12, 657916.	3.6	15
2673	Identification of three closely linked loci conferring broad-spectrum Phytophthora sojae resistance in soybean variety Tosan-231. Theoretical and Applied Genetics, 2021, 134, 2151-2165.	3.6	3
2674	An efficient direct screening system for microorganisms that activate plant immune responses based on plant–microbe interactions using cultured plant cells. Scientific Reports, 2021, 11, 7396.	3.3	13
2675	Defeated by the nines: nine extracellular strategies to avoid microbe-associated molecular patterns recognition in plants. Plant Cell, 2021, 33, 2116-2130.	6.6	35
2676	Expression of a Fungal Lectin in Arabidopsis Enhances Plant Growth and Resistance Toward Microbial Pathogens and a Plant-Parasitic Nematode. Frontiers in Plant Science, 2021, 12, 657451.	3.6	13
2677	Differential Regulation of Maize and Sorghum Orthologs in Response to the Fungal Pathogen Exserohilum turcicum. Frontiers in Plant Science, 2021, 12, 675208.	3.6	6
2678	Growthâ€defense tradeâ€offs masked in unadmixed populations are revealed by hybridization. Evolution; International Journal of Organic Evolution, 2021, 75, 1450-1465.	2.3	3
2679	Highâ€quality chromosomeâ€level genomes of <i>Cucumis metuliferus</i> and <i>Cucumis melo</i> provide insight into <i>Cucumis</i> genome evolution. Plant Journal, 2021, 107, 136-148.	5.7	20
2680	Transient silencing of VvCSN5 enhances powdery mildew resistance in grapevine (Vitis vinifera). Plant Cell, Tissue and Organ Culture, 2021, 146, 621-633.	2.3	6
2681	<scp>SLI1</scp> confers broadâ€spectrum resistance to phloemâ€feeding insects. Plant, Cell and Environment, 2021, 44, 2765-2776.	5.7	13
2682	Genetic Analysis of a Horizontal Resistance Locus BLMR2 in Brassica napus. Frontiers in Plant Science, 2021, 12, 663868.	3.6	2
2683	Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications. Frontiers in Chemistry, 2021, 9, 613343.	3.6	35

#	Article	IF	CITATIONS
2684	Late blight in tomato: insights into the pathogenesis of the aggressive pathogen Phytophthora infestans and future research priorities. Planta, 2021, 253, 119.	3.2	25
2685	An accumulation of genetic variation and selection across the disease-related genes during apple domestication. Tree Genetics and Genomes, 2021, 17, 1.	1.6	10
2686	Defining the combined stress response in wild Arachis. Scientific Reports, 2021, 11, 11097.	3.3	13
2687	Integrating Transcriptome and Coexpression Network Analyses to Characterize Salicylic Acid- and Jasmonic Acid-Related Genes in Tolerant Poplars Infected with Rust. International Journal of Molecular Sciences, 2021, 22, 5001.	4.1	12
2688	Endophytic fungi stimulate the concentration of medicinal secondary metabolites in <i>houttuynia cordata</i> thunb. Plant Signaling and Behavior, 2021, 16, 1929731.	2.4	16
2689	Outbreaks of Root Rot Disease in Different Aged American Ginseng Plants Are Associated With Field Microbial Dynamics. Frontiers in Microbiology, 2021, 12, 676880.	3.5	19
2690	Disentangling transcriptional responses in plant defense against arthropod herbivores. Scientific Reports, 2021, 11, 12996.	3.3	9
2691	Major QTL confer race-nonspecific resistance in the co-evolved Cronartium quercuum f. sp. fusiforme–Pinus taeda pathosystem. Heredity, 2021, 127, 288-299.	2.6	8
2692	Programmed Cell Death (PCD) in Plant: Molecular Mechanism, Regulation, and Cellular Dysfunction in Response to Development and Stress., 0, , .		7
2693	Functional Characterization of VDACs in Grape and Its Putative Role in Response to Pathogen Stress. Frontiers in Plant Science, 2021, 12, 670505.	3.6	3
2694	Pathogenesis-Related Genes of PR1, PR2, PR4, and PR5 Families Are Involved in the Response to Fusarium Infection in Garlic (Allium sativum L.). International Journal of Molecular Sciences, 2021, 22, 6688.	4.1	49
2695	Direct and insectâ€mediated effects of pathogens on plant growth and fitness. Journal of Ecology, 2021, 109, 2769-2779.	4.0	9
2696	Function, transport, and regulation of amino acids: What is missing in rice?. Crop Journal, 2021, 9, 530-542.	5.2	43
2697	A Genome-Wide Analysis of Pathogenesis-Related Protein-1 (PR-1) Genes from Piper nigrum Reveals Its Critical Role during Phytophthora capsici Infection. Genes, 2021, 12, 1007.	2.4	23
2698	Identification of Resistant Germplasm and Detection of Genes for Resistance to Powdery Mildew and Leaf Rust from 2,978 Wheat Accessions. Plant Disease, 2021, 105, 3900-3908.	1.4	21
2699	A Comparative Overview of the Intracellular Guardians of Plants and Animals: NLRs in Innate Immunity and Beyond. Annual Review of Plant Biology, 2021, 72, 155-184.	18.7	56
2700	Late Blight Resistance Profiles of Elite Potato Germplasm in the United States. American Journal of Potato Research, 2021, 98, 232-245.	0.9	4
2701	The Pepper Mitogen-Activated Protein Kinase CaMAPK7 Acts as a Positive Regulator in Response to Ralstonia solanacearum Infection. Frontiers in Microbiology, 2021, 12, 664926.	3.5	2

#	Article	IF	CITATIONS
2702	HSPs under Abiotic Stresses. , 0, , .		1
2703	Characterization of Nucleotide Binding ÂSite-Encoding Genes in Sweetpotato, <i>lpomoea batatas</i> (L.) Lam., and Their Response to Biotic and Abiotic Stresses. Cytogenetic and Genome Research, 2021, 161, 257-271.	1.1	7
2706	Lr21 diversity unveils footprints of wheat evolution and its new role in broadâ€spectrum leaf rust resistance. Plant, Cell and Environment, 2021, 44, 3445-3458.	5.7	4
2707	Post-harvest Management of Alternaria Induced Rot in Tomato Fruits With Essential Oil of Zanthoxylum armatum DC. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	5
2709	Clubroot in <i>Brassica</i> : recent advances in genomics, breeding, and disease management. Genome, 2021, 64, 735-760.	2.0	22
2710	Comparative methylome reveals regulatory roles of DNA methylation in melon resistance to Podosphaera xanthii. Plant Science, 2021, 309, 110954.	3.6	11
2711	Cotton Bsr-k1 modulates lignin deposition participating in plant resistance against Verticillium dahliae and Fusarium oxysporum. Plant Growth Regulation, 2021, 95, 283-292.	3.4	6
2712	Arabidopsis-Based Dual-Layered Biological Network Analysis Elucidates Fully Modulated Pathways Related to Sugarcane Resistance on Biotrophic Pathogen Infection. Frontiers in Plant Science, 2021, 12, 707904.	3.6	0
2713	The ETS-ETI cycle: evolutionary processes and metapopulation dynamics driving the diversification of pathogen effectors and host immune factors. Current Opinion in Plant Biology, 2021, 62, 102011.	7.1	26
2714	Piriformospora indica Primes Onion Response against Stemphylium Leaf Blight Disease. Pathogens, 2021, 10, 1085.	2.8	22
2715	Arabidopsis nonâ€host resistance <i>PSS30</i> gene enhances broadâ€spectrum disease resistance in the soybean cultivar Williams 82. Plant Journal, 2021, 107, 1432-1446.	5.7	8
2716	Mechanisms in plant–microbiome interactions: lessons from model systems. Current Opinion in Plant Biology, 2021, 62, 102003.	7.1	20
2717	Mapping clubroot resistance of <i>Brassica rapa</i> introgressed into <i>Brassica napus</i> and development of molecular markers for the resistance. Crop Science, 2021, 61, 4112-4127.	1.8	11
2718	Gene selection for studying frugivore-plant interactions: a review and an example using Queensland fruit fly in tomato. Peerl, 2021, 9, e11762.	2.0	2
2719	One Hundred Years of Hybrid Necrosis: Hybrid Autoimmunity as a Window into the Mechanisms and Evolution of Plant–Pathogen Interactions. Annual Review of Phytopathology, 2021, 59, 213-237.	7.8	23
2720	Hypersensitivity to triforine in lettuce is triggered by a TNL gene through the diseaseâ€resistance pathway. Plant Biotechnology Journal, 2021, 19, 2144-2146.	8.3	1
2721	AtLRRop2, an leucine-rich repeat-only protein, mediates cold stress response in Arabidopsis thaliana. Plant Biotechnology Reports, 2021, 15, 641-649.	1.5	3
2722	Resistance induction based on the understanding of molecular interactions between plant viruses and host plants. Virology Journal, 2021, 18, 176.	3.4	18

#	Article	IF	CITATIONS
2724	N-hydroxypipecolic acid-induced transcription requires the salicylic acid signaling pathway at basal SA levels. Plant Physiology, 2021, 187, 2803-2819.	4.8	12
2725	Inheritance of Black Rot Resistance and Development of Molecular Marker Linked to Xcc Races 6 and 7 Resistance in Cabbage. Plants, 2021, 10, 1940.	3.5	3
2726	Future climate CO2 can harness ROS homeostasis and improve cell wall fortification to alleviate the hazardous effect of Phelipanche infection in pea seedlings. Plant Physiology and Biochemistry, 2021, 166, 1131-1141.	5.8	7
2727	Cyclophilins and Their Functions in Abiotic Stress and Plant–Microbe Interactions. Biomolecules, 2021, 11, 1390.	4.0	12
2728	Therapeutic Targeting of Inflammatory Pathways with Emphasis on NLRP3 Inflammasomes by Natural Products: A Novel Approach for the Treatment of Inflammatory Eye Diseases. Current Medicinal Chemistry, 2022, 29, 2891-2912.	2.4	3
2729	Genome-Wide Characterization of the MLO Gene Family in Cannabis sativa Reveals Two Genes as Strong Candidates for Powdery Mildew Susceptibility. Frontiers in Plant Science, 2021, 12, 729261.	3.6	14
2730	Comparative Transcriptome Analysis of Wheat Lines in the Field Reveals Multiple Essential Biochemical Pathways Suppressed by Obligate Pathogens. Frontiers in Plant Science, 2021, 12, 720462.	3.6	14
2731	Leaf Transcriptome Analysis of Broomcorn Millet Uncovers Key Genes and Pathways in Response to Sporisorium destruens. International Journal of Molecular Sciences, 2021, 22, 9542.	4.1	7
2733	Overexpression of PsoRPM3, an NBS-LRR gene isolated from myrobalan plum, confers resistance to Meloidogyne incognita in tobacco. Plant Molecular Biology, 2021, 107, 129-146.	3.9	2
2734	The long road to engineering durable disease resistance in wheat. Current Opinion in Biotechnology, 2022, 73, 270-275.	6.6	14
2735	Pathogenesis-related proteins: Role in plant defense. , 2021, , 573-590.		5
2736	Lignin Synthesis Related Genes with Potential Significance in the Response of Upland Cotton to Fusarium Wilt Identified by Transcriptome Profiling. Tropical Plant Biology, 2021, 14, 106-119.	1.9	5
2737	RNA interference-mediated viral disease resistance in crop plants., 2021,, 597-618.		0
2738	Transcriptional responses of Hypericum perforatum cells to Agrobacterium tumefaciens and differential gene expression in dark glands. Functional Plant Biology, 2021, 48, 936.	2.1	3
2742	Virus-Resistant Crops and Trees. , 2021, , 145-160.		0
2743	Chrysanthemum WRKY15-1 promotes resistance to Puccinia horiana Henn. via the salicylic acid signaling pathway. Horticulture Research, 2021, 8, 6.	6.3	25
2744	Antioxidants in Plant–Microbe Interaction. , 2021, , 3-20.		3
2747	Types and Mechanisms of Rapidly Induced Plant Resistance to Herbivorous Arthropods., 0,, 89-107.		12

#	ARTICLE	IF	CITATIONS
2748	Digesting Oneself and Digesting Microbes. , 2005, , 245-279.		4
2749	Induced Resistance Mechanisms. , 2006, , 125-145.		3
2750	Surveys of variation in virulence and fungicide resistance and their application to disease control., $2006, 81-115.$		9
2751	Proton Channelling b-Type Cytochromes in Plant Plasma Membranes?., 2005, , 187-217.		1
2752	Molecular Genetics of Mosquito Resistance to Malaria Parasites. , 2005, 295, 383-415.		22
2753	Resistant Plant Responses. Plant Cell Monographs, 2008, , 83.	0.4	8
2754	Genome-Wide Mining of Disease Resistance Gene Analogs Using Conserved Domains. Methods in Molecular Biology, 2020, 2107, 365-375.	0.9	1
2755	Sulfur in biotic interactions of plants. Plant Ecophysiology, 2007, , 197-224.	1.5	9
2756	Chlorophyll Fluorescence Imaging for Detection of Bean Response to Pseudomonas syringae in Asymptomatic Leaf Areas. , 2008, , 37-44.		1
2757	The Present and Future Role of Insect-Resistant Genetically Modified Potato Cultivars in IPM., 2008,, 195-221.		33
2758	Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae., 2008,, 41-55.		3
2759	ARCHIPELAGO: Towards Bridging the Gap Between Molecular and Genetic Information in Rice Blast Disease Resistance., 2009,, 417-425.		3
2760	The Pathogenic Lifestyle of Pseudomonas aeruginosa in Model Systems of Virulence., 2004,, 477-503.		7
2761	Arbuscular Mycorrhizal Symbiosis and Other Plant–Soil Interactions in Relation to Environmental Stress. , 2012, , 233-264.		10
2762	Purification of Resistance Protein Complexes Using a Biotinylated Affinity (HPB) Tag. Methods in Molecular Biology, 2011, 712, 21-30.	0.9	3
2763	Proteoinformatics and Agricultural Biotechnology Research: Applications and Challenges. , 2019, , 1-27.		1
2764	Functions of SGT1, a Co-chaperone. Heat Shock Proteins, 2019, , 317-370.	0.2	3
2765	Biocontrol Agents for Fungal Plant Diseases Management. , 2020, , 337-363.		12

#	Article	IF	CITATIONS
2766	Pillars of Integrated Disease Management. , 2014, , 17-63.		7
2767	Defence, Symbiosis and ABCG Transporters. Signaling and Communication in Plants, 2014, , 163-184.	0.7	11
2768	Biological Inspiration for Artificial Immune Systems. Lecture Notes in Computer Science, 2007, , 300-311.	1.3	12
2769	Evolution of Resistance Genes in Plants. Nucleic Acids and Molecular Biology, 2008, , 1-25.	0.2	8
2770	Resistant Plant Responses. Plant Cell Monographs, 2009, , 83-113.	0.4	6
2771	Plant Innate Immunity. Signaling and Communication in Plants, 2009, , 119-136.	0.7	7
2772	Something Old, Something New: Plant Innate Immunity and Autophagy. Current Topics in Microbiology and Immunology, 2009, 335, 287-306.	1.1	26
2773	Systemic Resistance Induction by Vascular and Airborne Signaling. Progress in Botany Fortschritte Der Botanik, 2010, , 279-306.	0.3	3
2774	G Proteins and Plant Innate Immunity. Signaling and Communication in Plants, 2010, , 221-250.	0.7	19
2775	Signal Transduction in Plant–Insect Interactions: From Membrane Potential Variations to Metabolomics. , 2012, , 143-172.		8
2776	Virulence Strategies of Plant Pathogenic Bacteria., 2013,, 61-82.		15
2777	The Effects of Volatile Metabolites from Rhizobacteria on Arabidopsis thaliana. , 2013, , 379-400.		3
2778	Plant Disease Resistance: Commonality and Novelty in Multicellular Innate Immunity. Current Topics in Microbiology and Immunology, 2002, 270, 23-46.	1.1	17
2779	Toll-Like Receptor-5 and the Innate Immune Response to Bacterial Flagellin. Current Topics in Microbiology and Immunology, 2002, 270, 93-108.	1.1	58
2780	Disease Resistance. Biotechnology in Agriculture and Forestry, 2004, , 253-271.	0.2	3
2781	Ethylene and Jasmonate as Regulators of Cell Death in Disease Resistance. Ecological Studies, 2004, , 75-109.	1.2	17
2782	Hormonal Signaling by PGPR Improves Plant Health Under Stress Conditions. , 2012, , 119-140.		3
2783	Plant Disease Resistance Genes: From Perception to Signal Transduction. , 2014, , 345-354.		3

#	Article	IF	CITATIONS
2784	Fungal Disease Management in Plants. , 2014, , 339-352.		1
2786	Parallels Between Plant and Animal Parasitic Nematodes. , 2011, , 221-251.		10
2788	Disease Resistance-Genes and Defense Responses During Incompatible Interactions. , 2011, , 309-324.		21
2789	Breeding for Biotic Stress Resistance/Tolerance in Plants. , 2012, , 57-114.		17
2790	Regulation and Detection of Effectors Translocated by Pseudomonas syringae., 2003,, 147-156.		2
2791	How Plants Respond to Pathogen Attack: Interaction and Communication. , 2019, , 537-568.		9
2792	Host Resistance., 2019, , 177-295.		2
2793	Transgenic Technology for Disease Resistance in Crop Plants. , 2021, , 499-560.		3
2794	Spodoptera frugiperda Caterpillars Suppress Herbivore-Induced Volatile Emissions in Maize. Journal of Chemical Ecology, 2020, 46, 344-360.	1.8	57
2795	Defense signaling in plants against micro-creatures: do or die. Indian Phytopathology, 2020, 73, 605-613.	1.2	8
2796	Tolerance mechanisms of medicinal plants to abiotic stresses. , 2020, , 663-679.		9
2797	Molecular Biology of the Host-Microbe Interaction in Periodontal Diseases. , 2012, , 285-293.		3
2798	Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. Molecular Plant, 2020, 13, 1402-1419.	8.3	59
2799	Characterization and genetic analysis of the oshpl3 rice lesion mimic mutant showing spontaneous cell death and enhanced bacterial blight resistance. Plant Physiology and Biochemistry, 2020, 154, 94-104.	5.8	14
2801	Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nature Biotechnology, 2019, 37, 139-143.	17.5	280
2802	Deciphering the mode of action and host recognition of bacterial type III effectors. Functional Plant Biology, 2010, 37, 926.	2.1	3
2803	Disease resistance genes: form and function , 2009, , 94-141.		9
2804	Involvement of programmed cell death in suppression of the number of root nodules formed in soybean induced by Bradyrhizobium infection. Soil Science and Plant Nutrition, 2017, 63, 561-577.	1.9	5

#	Article	IF	CITATIONS
2805	Role of Salicylic Acid and NIM1/NPR1 in Race-Specific Resistance in Arabidopsis. Genetics, 2002, 161, 803-811.	2.9	88
2806	Genetic Architecture of Plastic Methyl Jasmonate Responses in <i>Arabidopsis thaliana</i> . Genetics, 2002, 161, 1685-1696.	2.9	149
2807	Organization, Expression and Evolution of a Disease Resistance Gene Cluster in Soybean. Genetics, 2002, 162, 1961-1977.	2.9	94
2808	Map-Based Cloning of Leaf Rust Resistance Gene <i>Lr21</i> From the Large and Polyploid Genome of Bread Wheat. Genetics, 2003, 164, 655-664.	2.9	468
2809	Effector Genes of <i>Xanthamonas axonopodis</i> pv. <i>vesicatoria</i> Promote Transmission and Enhance Other Fitness Traits in the Field. Genetics, 2004, 166, 693-706.	2.9	17
2827	Chemical Composition and Antimicrobial Activity of Cinnamon, Thyme, Oregano and Clove Essential Oils Against Plant Pathogenic Bacteria. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2017, 65, 1129-1134.	0.4	27
2828	Signal Transduction Elements. , 2002, , .		5
2829	Utilization of Arabidopsis and Brassica Genomic Resources to Underpin Genetic Analysis and Improvement of Brassica Crops., 2006,, 33-69.		1
2830	Gene Cloning and Characterization. , 2010, , 173-219.		4
2831	Map-based Cloning of Single Gene Traits and Quantitative Traits. , 2012, , 212-243.		1
2831	Map-based Cloning of Single Gene Traits and Quantitative Traits., 2012, , 212-243. Importance of proteomics approach on identifying defense protein in response to biotic stresses in rice (Oryza sativa L.). International Journal of Biosciences, 2013, 3, 221-232.	0.1	2
	Importance of proteomics approach on identifying defense protein in response to biotic stresses in	0.1	
2832	Importance of proteomics approach on identifying defense protein in response to biotic stresses in rice (Oryza sativa L.). International Journal of Biosciences, 2013, 3, 221-232. A Bacterial Artificial Chromosome (BAC) Library for Potato and Identification of Clones Related to		2
2832 2833	Importance of proteomics approach on identifying defense protein in response to biotic stresses in rice (Oryza sativa L.). International Journal of Biosciences, 2013, 3, 221-232. A Bacterial Artificial Chromosome (BAC) Library for Potato and Identification of Clones Related to the Potato Y Potyvirus Resistance Gene Ryadg. Breeding Science, 2003, 53, 155-161.	1.9	2
2832 2833 2834	Importance of proteomics approach on identifying defense protein in response to biotic stresses in rice (Oryza sativa L.). International Journal of Biosciences, 2013, 3, 221-232. A Bacterial Artificial Chromosome (BAC) Library for Potato and Identification of Clones Related to the Potato Y Potyvirus Resistance Gene Ryadg. Breeding Science, 2003, 53, 155-161. Leveraging Hierarchical Population Structure in Discrete Association Studies. PLoS ONE, 2007, 2, e591. Purification and Characterization of a Novel Hypersensitive Response-Inducing Elicitor from	1.9 2.5	2 2 33
2832 2833 2834 2835	Importance of proteomics approach on identifying defense protein in response to biotic stresses in rice (Oryza sativa L.). International Journal of Biosciences, 2013, 3, 221-232. A Bacterial Artificial Chromosome (BAC) Library for Potato and Identification of Clones Related to the Potato Y Potyvirus Resistance Gene Ryadg. Breeding Science, 2003, 53, 155-161. Leveraging Hierarchical Population Structure in Discrete Association Studies. PLoS ONE, 2007, 2, e591. Purification and Characterization of a Novel Hypersensitive Response-Inducing Elicitor from Magnaporthe oryzae that Triggers Defense Response in Rice. PLoS ONE, 2012, 7, e37654. Towards Positional Isolation of Three Quantitative Trait Loci Conferring Resistance to Powdery	1.9 2.5 2.5	2 2 33 87
2832 2833 2834 2835 2836	Importance of proteomics approach on identifying defense protein in response to biotic stresses in rice (Oryza sativa L.). International Journal of Biosciences, 2013, 3, 221-232. A Bacterial Artificial Chromosome (BAC) Library for Potato and Identification of Clones Related to the Potato Y Potyvirus Resistance Gene Ryadg. Breeding Science, 2003, 53, 155-161. Leveraging Hierarchical Population Structure in Discrete Association Studies. PLoS ONE, 2007, 2, e591. Purification and Characterization of a Novel Hypersensitive Response-Inducing Elicitor from Magnaporthe oryzae that Triggers Defense Response in Rice. PLoS ONE, 2012, 7, e37654. Towards Positional Isolation of Three Quantitative Trait Loci Conferring Resistance to Powdery Mildew in Two Spanish Barley Landraces. PLoS ONE, 2013, 8, e67336.	1.9 2.5 2.5 2.5	2 2 33 87

#	ARTICLE	IF	CITATIONS
2840	Characterization of Resistance Gene Analogues (RGAs) in Apple (Malus × domestica Borkh.) and Their Evolutionary History of the Rosaceae Family. PLoS ONE, 2014, 9, e83844.	2.5	71
2841	Analyses of Hypomethylated Oil Palm Gene Space. PLoS ONE, 2014, 9, e86728.	2.5	26
2842	Structure-Based Computational Study of Two Disease Resistance Gene Homologues (Hm1 and Hm2) in Maize (Zea mays L.) with Implications in Plant-Pathogen Interactions. PLoS ONE, 2014, 9, e97852.	2.5	28
2843	Function and Interaction of the Coupled Genes Responsible for Pik-h Encoded Rice Blast Resistance. PLoS ONE, 2014, 9, e98067.	2.5	88
2844	Role of Intron-Mediated Enhancement on Accumulation of an Arabidopsis NB-LRR Class R-protein that Confers Resistance to Cucumber mosaic virus. PLoS ONE, 2014, 9, e99041.	2.5	15
2845	Genome-Wide Identification and Expression Analysis of NBS-Encoding Genes in Malus x domestica and Expansion of NBS Genes Family in Rosaceae. PLoS ONE, 2014, 9, e107987.	2.5	80
2846	Determining the GmRIN4 Requirements of the Soybean Disease Resistance Proteins Rpg1b and Rpg1r Using a Nicotiana glutinosa-Based Agroinfiltration System. PLoS ONE, 2014, 9, e108159.	2.5	21
2847	Transcriptome Analysis Provides Insights into the Mechanisms Underlying Wheat Plant Resistance to Stripe Rust at the Adult Plant Stage. PLoS ONE, 2016, 11, e0150717.	2.5	61
2848	Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. PLoS ONE, 2016, 11, e0166938.	2.5	50
2849	Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern. PLoS ONE, 2017, 12, e0185925.	2.5	9
2850	Fine mapping of Pi57(t) conferring broad spectrum resistance against Magnaporthe oryzae in introgression line IL-E1454 derived from Oryza longistaminata. PLoS ONE, 2017, 12, e0186201.	2.5	20
2851	PLANTS' INNATE DEFENCE MECHANISMS AGAINST PHYTOPATHOGENS. Journal of Microbiology, Biotechnology and Food Sciences, 2019, 9, 314-319.	0.8	5
2852	Effect of Reactive Oxygen Species on Plant Pathogens in planta and on Disease Symptoms. Acta Phytopathologica Et Entomologica Hungarica, 2004, 39, 325-345.	0.2	21
2853	To Die or Not to Die - Is Cell Death Dispensable for Resistance during the Plant Hypersensitive Response?. Acta Phytopathologica Et Entomologica Hungarica, 2006, 41, 11-21.	0.2	11
2854	A homolog of the RPS2 disease resistance gene is constitutively expressed in Brassica oleracea. Genetics and Molecular Biology, 2003, 26, 511-516.	1.3	3
2855	Coffee resistance to the main diseases: leaf rust and coffee berry disease. Brazilian Journal of Plant Physiology, 2006, 18, 119-147.	0.5	179
2856	Nitrate reductase-dependent nitric oxide synthesis in the defense response of Arabidopsis thaliana against Pseudomonas syringae. Tropical Plant Pathology, 2010, 35, 104-107.	1.5	21
2857	Characterization and induction kinetics of a putative candidate gene associated with downy mildew resistance in grapevine. European Journal of Horticultural Science, 2015, 80, 216-224.	0.7	4

#	Article	IF	Citations
2858	Construction of a Linkage Map and Identification of Resistance Gene Analog Markers for Root-knot Nematodes in Wild Peach, Prunus kansuensis. Journal of the American Society for Horticultural Science, 2011, 136, 190-197.	1.0	17
2859	A Model for Evolutionary Ecology of Disease: The Case for <i>Caenorhabditis</i> Nematodes and Their Natural Parasites. Journal of Nematology, 2017, 49, 357-372.	0.9	7
2860	Antibacterial Activity of Phenyl Isothiocyanate on Escherichia coli and Staphylococcus aureus. Medicinal Chemistry, 2013, 9, 756-761.	1.5	38
2861	Induction of Bacterial Canker Resistance in Tomato Plants Using Plant Growth Promoting Rhizobacteria. Open Agriculture Journal, 2019, 13, 215-222.	0.8	10
2862	Changes in salicylic acid content and pathogenesis - related (PR2) gene expression during barley - Pyrenophora teres interaction. Hellenic Plant Protection Journal, 2018, 11, 71-77.	0.4	3
2864	The <i>Arabidopsis</i> homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity. Life Science Alliance, 2018, 1, e201800046.	2.8	16
2865	Progress and prospects of glucosinolate pathogen resistance in some brassica plants. Journal of Applied and Natural Science, 2019, 11, 556-567.	0.4	18
2866	Infectious plant diseases: etiology, current status, problems and prospects in plant protection. Acta Naturae, 2020, 12, 46-59.	1.7	129
2867	Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science, 2013, 4, 451.	3.6	251
2869	Mining and characterization of miRNAs closely associated with the pathogenicity in tomato. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2014, 36, 69-76.	0.2	5
2870	Functional Analysis of <i>TNBL1</i> Gene in Wheat Defense Response to <i>Barley ye- llow dwarf virus</i> Using BSMV-VIGS Technique. Acta Agronomica Sinica(China), 2012, 37, 2106-2110.	0.3	4
2871	Herbal Plants as New Immuno-stimulator in Poultry Industry: A Review. Asian Journal of Animal and Veterinary Advances, 2012, 7, 105-116.	0.0	58
2872	Specific Maceration and Induction of PR-3 Gene in Potato Tuber Tissue by Pectobacterium carotovorum subsp. Atrosepticum Type III Secretion System Mutants. Pakistan Journal of Biological Sciences, 2009, 12, 1576-1580.	0.5	1
2873	Detection of Reactive Oxygen Species Can Be Used to Distinguish ToxA-induced Cell Death from the Hypersensitive Response. Journal of Botany (Faisalabad), 2007, 2, 1-12.	0.8	4
2874	Solanaceae Evolutionary Dynamics of the & https://www.gt;l2-NBS Domain. American Journal of Plant Sciences, 2012, 03, 283-294.	0.8	5
2875	Gene Expression: A Review on Methods for the Study of Defense-Related Gene Differential Expression in Plants. American Journal of Plant Sciences, 2013, 04, 64-73.	0.8	19
2876	Proteomics: A Successful Approach to Understand the Molecular Mechanism of Plant-Pathogen Interaction. American Journal of Plant Sciences, 2013, 04, 1212-1226.	0.8	34
2877	The Toxicity, Persistence and Mode of Actions of Selected Botanical Pesticides in Africa against Insect Pests in Common Beans, & Dirich amp;gt;P. vulgaris: A Review. American Journal of Plant Sciences, 2016, 07, 138-151.	0.8	21

#	ARTICLE	IF	Citations
2878	An Integrated Approach to Comprehend MYMIV-Susceptibility of Blackgram Cv. T9 Possessing Allele of & Lamp; amp; amp; amp; amp; amp; amp; amp;	0.8	3
2879	Genome-wide identification and evolutionary analysis of nucleotide-binding site-encoding resistance genes in Lotus japonicus (Fabaceae). Genetics and Molecular Research, 2015, 14, 16024-16040.	0.2	10
2880	Characterization of a TIR-NBS-LRR gene associated with downy mildew resistance in grape. Genetics and Molecular Research, 2015, 14, 7964-7975.	0.2	12
2882	Three transcripts of EDS1-like genes respond differently to <i>Vitis flexuosa</i> infection. Journal of Plant Biotechnology, 2017, 44, 125-134.	0.4	9
2883	Subcellular Responses in Nonhost Plant Infected with Pathogenic and Non-pathogenic Strains of Xanthomonas axonopodis pv. glycines. Plant Pathology Journal, 2002, 18, 115-120.	1.7	2
2884	Molecular Mechanisms Involved in Bacterial Speck Disease Resistance of Tomato. Plant Pathology Journal, 2004, 20, 7-12.	1.7	17
2885	Relationship Between Plant Viral Encoded Suppressor to Post-transcriptional Gene Silencing and Elicitor to R Gene-specific Host Resistance. Plant Pathology Journal, 2004, 20, 22-29.	1.7	1
2886	Platform of Hot Pepper Defense Genomics: Isolation of Pathogen Responsive Genes in Hot Pepper (Capsicum annuum L.) Non-Host Resistance Against Soybean Pustule Pathogen (Xanthomonas) Tj ETQq1 1 0.75	843 1.4 rgB	T /③ verlock 1
2887	Antimicrobial and Antioxidant Properties of Secondary Metabolites from White Rose Flower. Plant Pathology Journal, 2010, 26, 57-62.	1.7	33
2888	Functions of MAPK Cascade Pathways in Plant Defense Signaling. Plant Pathology Journal, 2010, 26, 101-109.	1.7	16
2889	Oomycetes RXLR Effectors Function as Both Activator and Suppressor of Plant Immunity. Plant Pathology Journal, 2010, 26, 209-215.	1.7	10
2890	Suppression of UDP-glycosyltransferase-coding Arabidopsis thaliana UGT74E2 Gene Expression Leads to Increased Resistance to Psuedomonas syringae pv. tomato DC3000 Infection. Plant Pathology Journal, 2011, 27, 170-182.	1.7	14
2891	Comparative Analysis of Defense Responses in Chocolate Spot-Resistant and -Susceptible Faba Bean (Vicia faba) Cultivars Following Infection by the Necrotrophic Fungus Botrytis fabae. Plant Pathology Journal, 2014, 30, 355-366.	1.7	27
2892	Characterization of a Salicylic Acid- and Pathogen-induced Lipase-like Gene in Chinese Cabbage. BMB Reports, 2003, 36, 433-441.	2.4	21
2893	Molecular Characterization of a thiJ-like Gene in Chinese Cabbage. BMB Reports, 2004, 37, 343-350.	2.4	10
2894	Identification and Characterization of Genes Differentially Expressed in the Resistance Reaction in Wheat Infected with Tilletia tritici, the Common Bunt Pathogen. BMB Reports, 2005, 38, 420-431.	2.4	37
2895	Activation of Defense Responses in Chinese Cabbage by a Nonhost Pathogen, Pseudomonas syringae pv. tomato. BMB Reports, 2005, 38, 748-754.	2.4	19
2896	Characterization of a Stress-Responsive Ankyrin Repeat-Containing Zinc Finger Protein of Capsicum annuum (CaKR1). BMB Reports, 2007, 40, 952-958.	2.4	41

#	ARTICLE	IF	CITATIONS
2897	Identification of genes involved in induction of plant hypersensitive cell death. Plant Biotechnology, 2007, 24, 191-200.	1.0	7
2898	Polymorphism at selected defence gene analogs (DGAs) of Musa accessions in Mauritius. African Journal of Biotechnology, 2012, 11, .	0.6	2
2899	Annotation of gene sequence and protein structure of brinjal EDS1. Bioinformation, 2017, 13, 54-59.	0.5	2
2900	Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. ELife, 2015, 4, .	6.0	246
2901	INAVA-ARNO complexes bridge mucosal barrier function with inflammatory signaling. ELife, 2018, 7, .	6.0	17
2902	Plant–necrotroph co-transcriptome networks illuminate a metabolic battlefield. ELife, 2019, 8, .	6.0	46
2903	Molecular characterization of bacterial leaf streak resistance in hard winter wheat. PeerJ, 2019, 7, e7276.	2.0	19
2904	Differential expression of <i>AtWAKL10</i> in response to nitric oxide suggests a putative role in biotic and abiotic stress responses. Peerl, 2019, 7, e7383.	2.0	21
2905	Genome-wide analysis of lectin receptor-like kinases family from potato (<i>Solanum tuberosum</i>) Tj ETQq0 0	0 rgBT /O	verlock 10 T
2906	Response of Scutellarin Content to Heavy Metals in Erigeron Breviscapus. International Journal of Environmental Science and Development, 2013, , 277-281.	0.6	7
2907	Key Roles of Cysteine Protease in Different Plant Pathosystem. Plant Breeding and Biotechnology, 2014, 2, 97-109.	0.9	8
2908	Characterization and Expression Analysis of Peroxidases and Glucan Synthase Like Genes in Cucumis melo L. Plant Breeding and Biotechnology, 2016, 4, 212-224.	0.9	1
2909	How Durable is Root Knot Nematode Resistance in Tomato?. Plant Breeding and Biotechnology, 2017, 5, 143-162.	0.9	5
2910	Screening of Cabbage (<i>Brassica oleracea</i> L.) Germplasm for Resistance to Black Rot. Plant Breeding and Biotechnology, 2018, 6, 30-43.	0.9	14
2911	Characterization and Genetic Mapping of White-Spotted Leaf (wspl) Mutant in Rice. Plant Breeding and Biotechnology, 2019, 7, 340-349.	0.9	1
2912	Molecular Marker Development and Gene Cloning for Diverse Disease Resistance in Pepper (<i>Capsicum annuum</i> L.): Current Status and Prospects. Plant Breeding and Biotechnology, 2020, 8, 89-113.	0.9	11
2913	How activated NLRs induce anti-microbial defenses in plants. Biochemical Society Transactions, 2021, 49, 2177-2188.	3.4	14
2914	CC _R â€NB‣RR proteins MdRNL2 and MdRNL6 interact physically to confer broadâ€spectrum fungal resistance in apple (<i>Malus × domestica</i>). Plant Journal, 2021, 108, 1522-1538.	5.7	4

#	Article	IF	CITATIONS
2915	The fungal root endophyte <i>Serendipita vermifera</i> displays inter-kingdom synergistic beneficial effects with the microbiota in <i>Arabidopsis thaliana</i> and barley. ISME Journal, 2022, 16, 876-889.	9.8	22
2917	Grapevine Rpv3-, Rpv10- and Rpv12-mediated defense responses against Plasmopara viticola and the impact of their deployment on fungicide use in viticulture. BMC Plant Biology, 2021, 21, 470.	3.6	21
2918	NB-LRR genes: characteristics in three Solanum species and transcriptional response to Ralstonia solanacearum in tomato. Planta, 2021, 254, 96.	3.2	3
2919	Rapid Mining of Candidate Genes for Verticillium Wilt Resistance in Cotton Based on BSA-Seq Analysis. Frontiers in Plant Science, 2021, 12, 703011.	3.6	8
2920	Review: The multiple roles of plant lectins. Plant Science, 2021, 313, 111096.	3.6	22
2921	Biochemical Defense Mechanisms. , 2001, , 1831-1877.		1
2922	NF-κB Activation by Card Proteins. , 2003, , 69-88.		0
2924	Pseudomonas syringae Pathogenesis in Arabidopsis. , 2003, , 293-300.		0
2925	Putting Plant Disease Resistance Genes to Work. , 2003, , 10-17.		1
2926	The Leucine-Rich Repeat Receptor Protein Kinases of Arabidopsis thaliana: A Paradigm for Plant LRR Receptors. , 2003, , 579-582.		0
2927	WRKY Transcription Factor Family in Plant Defense Mechanism. Plant Pathology Journal, 2003, 19, 9-12.	1.7	1
2928	Genetic Engineering for Blast Disease Resistance in Rice, Using a Plant Defensin Gene from Brassica Species. , 2004, , 173-178.		0
2929	The Path in Fungal Plant Pathogenicity: Many Opportunities to Outwit the Intruders?. , 2004, 26, 175-223.		0
2930	Fine Genetic Mapping and Physical Delimitation of the Rice Blast Resistance Gene Pi5(t) to a 170-kb DNA Segment of the Rice Genome., 2004,, 87-106.		0
2934	Extraction of intercellular glycobiopolymers from leaves of hypersensitive tobacco plants infected by tobacco mosaic virus. Biopolymers and Cell, 2005, 21, 258-263.	0.4	0
2936	Molecular Mechanism of Plant Immune Response. Journal of Plant Biotechnology, 2005, 32, 73-83.	0.4	0
2938	Transcription Factors Regulating Plant Defense Responses. , 2006, , 159-205.		0
2940	Plant Proteomics Upon Fungal Attack. , 2007, , 283-309.		2

#	Article	IF	CITATIONS
2941	Biological Inspiration for Artificial Immune Systems. SSRN Electronic Journal, 0, , .	0.4	1
2942	Identification of the Putative Class 3 R Genes in Coffea arabica from CafEST Database. Lecture Notes in Computer Science, 2007, , 171-175.	1.3	O
2943	Vertical pathosystem: resistance genes and their products. Signal transduction. , 2007, , 217-246.		1
2945	Function of Genetic Material: Progressive Insight into Antimicrobial Peptides and their Transcriptional Regulation. Progress in Botany Fortschritte Der Botanik, 2007, , 35-56.	0.3	0
2946	AtERF11 is a positive regulator for disease resistance against a bacterial pathogen, Pseudomonas syringae, in Arabidopsis thaliana. Journal of Life Science, 2007, 17, 235-240.	0.2	0
2948	Perception and Transduction of Pathogen Signals in Plants. Books in Soils, Plants, and the Environment, 2007, , .	0.1	0
2949	Disease Resistance and Susceptibility Genes in Signal Perception and Emission. Books in Soils, Plants, and the Environment, 2007, , .	0.1	0
2950	Amélioration génétique de la pomme de terre et résistance aux puceronsÂ: du terrain à la réponse moléculaire de la plante. Cahiers Agricultures, 2008, 17, 401-406.	0.9	1
2951	Molecular Aspects of Rice Blast Disease Resistance. , 2008, , 207-236.		1
2953	Resistance Gene Analogs (RGA) as a tool in fruit tree's breeding. International Journal of Horticultural Science, 2009, 15, .	0.2	0
2954	Genetic Mapping of <i>R11</i> Gene Conferring Resistance to Late Blight in Potato (<i>Solanum) Tj ETQq0 0 0 rg</i>	gBT /Overl	ock 10 Tf 50
2955	The Plant – Pathogen Interactions. Microbiology Indonesia, 2009, 3, 99-108.	0.3	0
2956	Isolation and Characterization of Disease Resistance Gene Analogs from <i>Erianthus arundinaceus</i> cDNA. Acta Agronomica Sinica(China), 2009, 35, 2022-2028.	0.3	0
2958	Plants and oomycetes, an intimate relationship: co-evolutionary principles and impact on agricultural practice CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-17.	1.0	1
2959	Induced Resistance in Plants and the Role of Arbuscular Mycorrhizal Fungi. , 2010, , .		1
2960	The Roles of Protein Degradation During Fungal-plant Interactions. Korean Journal of Mycology, 2010, 38, 89-94.	0.3	0
2961	Physiological Characterization of an AtPGR from Arabidopsis Involved in Pathogen Resistance. Journal of Life Science, 2011, 21, 1295-1300.	0.2	0
2962	Fungal pathogen protection in transgenic lettuce by expression of a apoptosis related Bcl-2 gene. Journal of Plant Biotechnology, 2011, 38, 209-214.	0.4	0

#	Article	IF	CITATIONS
2963	The LRR and TM Containing Multi-Domain Proteins in Arabidopsis. , 0, , .		0
2964	Recent Findings in Plant Innate Immunity and Possible Impacts on Crop Dis-ease-resistance Breeding. Acta Agronomica Sinica(China), 2011, 37, 935-942.	0.3	1
2965	Glycoconjugates., 2011,,.		0
2966	Isolation of NBS-LRR Late Blight Resistance Genes from Potato BAC Library by System of Magnetic Separation. Acta Agronomica Sinica (China), 2011, 37, 764-771.	0.3	0
2967	Map-Based Cloning in Musa spp , 2012, , 124-155.		0
2968	Modification of membrane lipid peroxidation and antioxidant enzymes activation in transgenic rice resistant to Rhizoctonia solani. African Journal of Biotechnology, 2012, 11, .	0.6	O
2969	Disease Resistance-Related Genes in Banana. , 2012, , 258-280.		0
2970	Genomics of Fusarium oxysporum f. sp. cubense Causing Wilt Disease in Banana (Musa spp.). , 2012, , 231-257.		1
2971	Evidence for the Production and Accumulation of Phytoalexins in the Cotyledons of Selected Legumes Following Treatments with Biotic Elicitors. International Journal of Plant Pathology, 2012, 4, 9-22.	0.2	1
2972	Cross-Talk of Mitochondria and Chloroplasts. Advances in Photosynthesis and Respiration, 2013, , 481-502.	1.0	1
2973	YopT Protease and its Homologs. , 2013, , 2170-2174.		0
2974	Virulence Function of Pectobacterium atrosepticum Secretion System Mutants on Evaluation of Some Solanum tuberosum Resistance Genes. Iranian Journal of Biotechnology, 2013, 11, x-x.	0.3	0
2975	The Genetics of Host–Parasite Interaction. , 2014, , 151-179.		0
2976	Papaver rhoeas S-Determinants and the Signaling Networks They Trigger. , 2014, , 273-287.		0
2977	Application of Genome Studies of Coffee Rust. Advances in Intelligent Systems and Computing, 2014, , 133-139.	0.6	1
2978	Host–Pathogen Interaction, Plant Diseases, Disease Management Strategies, and Future Challenges. Fungal Biology, 2014, , 185-229.	0.6	5
2979	Application of Chitosan Coating on Alginate Beads for Cryopreservation Uses. Journal of Chitin and Chitosan Science, 2014, 2, 46-54.	0.3	2
2980	Microbial Interference with Host Inflammatory Responses. , 0, , 175-190.		2

#	Article	IF	Citations
2981	Pathogen-Initiated Inflammatory Response in Intestinal Epithelial Cells: Cross Talk with Neutrophils. , 0 , , $141-154$.		1
2983	Efecto de antioxidantes y señalizadores en plantas de papa (Solanum tuberosum L.) infectadas con Candidatus Liberibacter solanacearum bajo condiciones de invernadero. Revista Colombiana De BiotecnologÃa, 2014, 16, 114-121.	0.2	0
2984	Identification of expressed resistance gene analogs (RGA) and development of RGA-SSR markers in tobacco. Archives of Biological Sciences, 2015, 67, 467-481.	0.5	4
2985	Agricultural Soil Health and Pea Footrot Disease Suppressiveness. Soil Biology, 2015, , 125-145.	0.8	O
2986	Molecular Cloning, Characterization and Expression Analysis of MhRAR1 Gene from Malus Hupehensis. Journal of Plant Sciences (Science Publishing Group), 2015, 3, 85.	0.4	0
2987	Virulence Dynamics and Regional Structuring of <i>Puccinia striiformis</i> f. sp. <i>tritici</i> in France Between 1984 and 2009. Plant Disease, 2015, 4015, 110-119.	1.4	O
2988	Induction of oxidative stress in wheat (Triticum aestivum L) following infection by the pathogen of task halo (Pyrenophora trirtici-repentis). International Journal of Biosciences, 2015, 6, 77-88.	0.1	0
2990	Virulence Dynamics and Regional Structuring of <i>Puccinia striiformis </i> f. sp. <i>tritici </i> in France Between 1984 and 2009. Plant Disease, 0, , PDIS-02-11-0078.	1.4	0
2991	Silicon Era of Carbon-Based Life: Application of Genomics and Bioinformatics in Crop Stress Research. , 2016, , 137-165.		0
2992	Banded leaf and sheath blight: A menacing disease of maize (Zea mays L.) and its management. Journal of Applied and Natural Science, 2016, 8, 1720-1730.	0.4	4
2993	The effect of Cuscuta babylonica Aucher (Cuscuta) parasitism on the phenolic contents of Carthamus glaucus Bieb.subsp. glaucus. Journal of the Institute of Science and Technology, 2016, 4, 31-31.	0.9	2
2995	ì‹ë¬¹⁄4ë³°òìkœìФœì¸Turnip crinkle virus와 ì•기장대 ìƒデ¸ìž°ìš© ìµœì‹ ì—°êµ¬ë™í–¥ 리뷰. Trends in Agricultu	ıre0&1Life S	ci ø nces, 201
2996	Anti-oxidative response in susceptible and resistant cultivars of Oryza sativa L. in response to infection by Rhizoctonia solani. South Asian Journal of Food Technology and Environment, 2017, 03, 507-515.	0.1	0
2997	Molecular genetic analysis of some North African barley germplasms. Acta Agriculturae Slovenica, 2017, 109, .	0.3	1
2999	O vlogi trehaloze v rastlinah. Acta Agriculturae Slovenica, 2018, 111, 219.	0.3	3
3000	Effect of Foliar Application with Salicylic Acid (Potasal), Mineral Phosphorus Levels and Inoculation Tomato Plant with Soluble Phosphorus Bacteria on Growth, Productivity and Reducing Disease Infect with Tomato Curly Top Virus (TCTV). Journal of Plant Production, 2018, 9, 671-681.	0.1	0
3002	Cloning and Molecular Evolution Analysis of NBS Class Resistance Gene Analogs in Black Bamboo (Phyllostachys nigra). Silvae Genetica, 2018, 67, 117-123.	0.8	0
3003	Plant–Microbe Interaction: Gene-to-Metabolite Network. , 2019, , 75-100.		4

#	Article	IF	CITATIONS
3004	Antibody-based Sensors for the Detection of Pathogens of Potato and Barley. Food Chemistry, Function and Analysis, 2019, , 282-307.	0.2	0
3005	Expression Analysis of Pyrenophora teres f. maculata-Responsive Loci in Hordeum vulgare. Brazilian Archives of Biology and Technology, 0, 62, .	0.5	O
3006	Biosynthesis and Degradation of Trehalose and Its Potential to Control Plant Growth, Development, and (A)biotic Stress Tolerance., 2019, , 175-199.		3
3007	Plant Growth-Promoting Endophytic Bacteria and Their Potential to Improve Agricultural Crop Yields. , 2019, , 143-169.		1
3009	Interactive Impacts of Rice Water Weevil 1 and Sheath Blight Pathogen on Rice Yield. Southwestern Entomologist, 2019, 44, 363.	0.2	0
3010	Resistance mechanisms involved in complex immunity of wheat against rust diseases. Vavilovskii Zhurnal Genetiki I Selektsii, 2019, 23, 542-550.	1.1	2
3014	Nano-agrochemicals: Economic Potential and Future Trends. Nanotechnology in the Life Sciences, 2020, , 185-193.	0.6	8
3016	Comparison of two different host plant genera responding to grapevine leafroll-associated virus 3 infection. Scientific Reports, 2020, 10, 8505.	3.3	6
3018	Variability and evolution of NBS-LRR genes in Agave tequilana and their differential response to Lasiodiplodia infection. European Journal of Plant Pathology, $0, 1$.	1.7	1
3020	The synthetic elicitors 2,6-dichloro-isonicotinic acid (INA) and 2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol (DPMP) enhances tomato resistance against bacterial canker disease with different molecular mechanisms. Physiological and Molecular Plant Pathology, 2021, 116, 101740.	2.5	5
3021	Clubroot Symptoms and Resting Spore Production in a Doubled Haploid Population of Oilseed Rape (Brassica napus) Are Controlled by Four Main QTLs. Frontiers in Plant Science, 2020, 11, 604527.	3.6	9
3022	Recent Findings Unravel Genes and Genetic Factors Underlying Leptosphaeria maculans Resistance in Brassica napus and Its Relatives. International Journal of Molecular Sciences, 2021, 22, 313.	4.1	11
3023	microRNAs in the Formation of Epigenetic Memory in Plants: The Case of Norway Spruce Embryos. Concepts and Strategies in Plant Sciences, 2020, , 57-72.	0.5	1
3024	Genetics and Genomic Approaches for Disease Resistance in Brassicas. , 2020, , 147-157.		0
3025	Genetic Basis of Resistance to Citrus Canker Disease. Compendium of Plant Genomes, 2020, , 259-279.	0.5	0
3026	Transgenic Approaches in Plants: Strategic Control for Disease Management. Sustainability in Plant and Crop Protection, 2020, , 187-215.	0.4	2
3027	Host-Parasite Interaction during Development of Major Seed-Borne Bacterial Diseases. , 2020, , 245-264.		0
3028	Host Plant Resistance to Pests and Pathogens, the Genetic Leverage in Integrated Pest and Disease Management. , 2020, , 259-283.		3

#	Article	IF	CITATIONS
3029	Climatic Change and Chicken Immunity. Springer Water, 2020, , 499-521.	0.3	0
3031	Photosystem II Repair Cycle in Faba Bean May Play a Role in Its Resistance to Botrytis fabae Infection. Agronomy, 2021, 11, 2247.	3.0	3
3037	Gastroenterologic and Hepatic Diseases. , 2006, , 92-118.		0
3038	Xanthomonas oryzae pv. oryzae AvrXA21 Activity Is Dependent on a Type One Secretion System, Is Regulated by a Two-Component Regulatory System that Responds to Cell Population Density, and Is Conserved in Other Xanthomonas spp , 2008, , 25-40.		O
3040	Hormonal Signaling by PGPR Improves Plant Health Under Stress Conditions. , 2012, , 119-140.		1
3042	Evolution of views on plant immunity: from Flor's "gene-for-gene―theory to the "zig-zag model― developed by Jones and Dangl. Izvestiâ Vuzov: Prikladnaâ Himiâ I Biotehnologiâ, 2020, 10, 424-438.	0.3	0
3045	In silico modelling and characterization of eight blast resistance proteins in resistant and susceptible rice cultivars. Journal of Genetic Engineering and Biotechnology, 2020, 18, 75.	3.3	1
3046	Use of chitosan-polyacrylic acid (CS-PAA) complex, chitosan-polyvinyl alcohol (CS-PVA) and chitosan hydrogels in greenhouses as a carrier for beneficial elements, nanoparticles, and microorganisms. Acta Horticulturae, 2020, , 1153-1160.	0.2	1
3050	The effects of root-knot nematode infection and mi-mediated nematode resistance in tomato on plant fitness. Journal of Nematology, 2011, 43, 82-9.	0.9	6
3051	Pseudomoniasis phytotherapy: a review on most important Iranian medicinal plants effective on. Iranian Journal of Microbiology, 2016, 8, 347-350.	0.8	2
3052	A Model for Evolutionary Ecology of Disease: The Case for Nematodes and Their Natural Parasites. Journal of Nematology, 2017, 49, 357-372.	0.9	3
3053	Biotic Stress Management by Microbial Interactions in Soils. , 2021, , 315-329.		0
3055	In silico analysis and expression profiling revealed Rlm1′ blackleg disease-resistant genes in Chromosome 6 of Brassica oleracea. Horticulture Environment and Biotechnology, 2021, 62, 969-983.	2.1	1
3056	Closer vein spacing by ectopic expression of nucleotide-binding and leucine-rich repeat proteins in rice leaves. Plant Cell Reports, 2022, 41, 319-335.	5.6	1
3057	Mechanisms of viral inflammation and disease in humans. Science, 2021, 374, 1080-1086.	12.6	72
3058	Non-Chemical Treatments for the Pre- and Post-Harvest Elicitation of Defense Mechanisms in the Fungi–Avocado Pathosystem. Molecules, 2021, 26, 6819.	3.8	5
3059	Endophytic Bacteria Pseudomonas aeruginosa PM389 Subsists Host's (Triticum aestivum) Immune Response for Gaining Entry Inside the Host. Journal of Pure and Applied Microbiology, 2021, 15, 2486-2497.	0.9	2
3060	Research Progress of ATGs Involved in Plant Immunity and NPR1 Metabolism. International Journal of Molecular Sciences, 2021, 22, 12093.	4.1	5

#	ARTICLE	IF	CITATIONS
3062	Differential Responses of Leaf Photosynthesis to Insects and Pathogens Outbreaks: A Global Synthesis. SSRN Electronic Journal, 0, , .	0.4	0
3064	Genome-wide identification and expression analysis of CC-NB-ARC-LRR (NB-ARC) disease-resistant family members from soybean (Glycine max L.) reveal their response to biotic stress. Journal of King Saud University - Science, 2022, 34, 101758.	3.5	8
3065	Genome-wide identification and expression analysis of GDSL esterase/lipase genes in tomato. Journal of Integrative Agriculture, 2022, 21, 389-406.	3.5	7
3066	Avirulence gene based RFLP and rep-PCR distinguish the genetic variation of Xanthomonas oryzae pv. oryzae pathotypes in Bangladesh. Plant Science Today, 2022, 9, 29-40.	0.7	2
3067	Dynamic Transcriptome Profiling of Mungbean Genotypes Unveil the Genes Respond to the Infection of Mungbean Yellow Mosaic Virus. Pathogens, 2022, 11, 190.	2.8	6
3068	Identification and characterization of plant resistance genes (R genes) in sorghum and their involvement in plant defense against aphids. Plant Growth Regulation, 2022, 96, 443-461.	3.4	5
3069	Investigation of natural <scp>RIN4</scp> variants reveals a motif crucial for function and provides an opportunity to broaden <scp>NLR</scp> regulation specificity. Plant Journal, 2022, 110, 58-70.	5.7	5
3070	Salicylic acid mediated immune response of Citrus sinensis to varying frequencies of herbivory and pathogen inoculation. BMC Plant Biology, 2022, 22, 7.	3.6	5
3071	Different scales of gene duplications occurring at different times have jointly shaped the NBS-LRR genes in Prunus species. Molecular Genetics and Genomics, 2022, 297, 263-276.	2.1	3
3072	Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell, 2022, 34, 1447-1478.	6.6	318
3073	Genetic resistance derived from Solanum pimpinellifolium AAU2019 is monogenic recessive to the Tomato leaf curl virus. Plant Pathology, 0, , .	2.4	0
3074	Genome-edited powdery mildew resistance in wheat without growth penalties. Nature, 2022, 602, 455-460.	27.8	181
3075	Unravelling the complexity of maize resistance to bacterial and fungal diseases: an integrative perspective. Tropical Plant Pathology, 2022, 47, 332-352.	1.5	1
3076	Depletion of the apical endosome in response to viruses and bacterial toxins provides cell-autonomous host defense at mucosal surfaces. Cell Host and Microbe, 2022, 30, 216-231.e5.	11.0	6
3077	Tomato SIPti5 plays a regulative role in the plant immune response against Botrytis cinerea through modulation of ROS system and hormone pathways. Journal of Integrative Agriculture, 2022, 21, 697-709.	3.5	9
3079	BnaA03.MKK5-BnaA06.MPK3/BnaC03.MPK3 Module Positively Contributes to Sclerotinia sclerotiorum Resistance in Brassica napus. Plants, 2022, 11, 609.	3.5	10
3080	Sweet Immunity Aspects during Levan Oligosaccharide-Mediated Priming in Rocket against BotrytisÂcinerea. Biomolecules, 2022, 12, 370.	4.0	6
3081	The Pseudomonas syringae type III effector HopG1 triggers necrotic cell death that is attenuated by AtNHR2B. Scientific Reports, 2022, 12, 5388.	3.3	7

#	ARTICLE	IF	CITATIONS
3082	Foliar Silicon Spray before Summer Cutting Propagation Enhances Resistance to Powdery Mildew of Daughter Plants. International Journal of Molecular Sciences, 2022, 23, 3803.	4.1	4
3083	Partially Resistant Avocado Rootstock Dusa® Shows Prolonged Upregulation of Nucleotide Binding-Leucine Rich Repeat Genes in Response to Phytophthora cinnamomi Infection. Frontiers in Plant Science, 2022, 13, 793644.	3.6	6
3084	The novel avirulence effector AlAvr1 from <i>Ascochyta lentis</i> mediates host cultivar specificity of ascochyta blight in lentil. Molecular Plant Pathology, 2022, , .	4.2	5
3085	The Pathogen-Induced MATE Gene TaPIMA1 Is Required for Defense Responses to Rhizoctonia cerealis in Wheat. International Journal of Molecular Sciences, 2022, 23, 3377.	4.1	4
3086	Fusarium wilt of banana: sustainable management through deployment of antiapoptotic genes into the susceptible genomes. Tropical Plant Pathology, 2022, 47, 470-484.	1.5	1
3088	Pto Interaction Proteins: Critical Regulators in Plant Development and Stress Response. Frontiers in Plant Science, 2022, 13, 774229.	3.6	6
3089	Genomic Variations and Mutational Events Associated with Plant–Pathogen Interactions. Biology, 2022, 11, 421.	2.8	5
3090	Ethylene-Inducible AP2/ERF Transcription Factor Involved in the Capsaicinoid Biosynthesis in Capsicum. Frontiers in Plant Science, 2022, 13, 832669.	3.6	7
3091	Phosphorylated viral protein evades plant immunity through interfering the function of RNA-binding protein. PLoS Pathogens, 2022, 18, e1010412.	4.7	12
3092	A Case Study in Saudi Arabia: Biodiversity of Maize Seed-Borne Pathogenic Fungi in Relation to Biochemical, Physiological, and Molecular Characteristics. Plants, 2022, 11, 829.	3.5	5
3093	The Impact of Microbes in Plant Immunity and Priming Induced Inheritance: A Sustainable Approach for Crop protection. Plant Stress, 2022, 4, 100072.	5.5	25
3094	Differential responses of leaf photosynthesis to insect and pathogen outbreaks: A global synthesis. Science of the Total Environment, 2022, 832, 155052.	8.0	4
3095	Plant physiology, microbial community, and risks of multiple fungal diseases along a soil nitrogen gradient. Applied Soil Ecology, 2022, 175, 104445.	4.3	5
3096	Human NLRP1: From the shadows to center stage. Journal of Experimental Medicine, 2022, 219, .	8.5	22
3097	Advances in Multi-Omics Approaches for Molecular Breeding of Black Rot Resistance in Brassica oleracea L Frontiers in Plant Science, 2021, 12, 742553.	3.6	7
3098	Suppression of MYC transcription activators by the immune cofactor NPR1 fine-tunes plant immune responses. Cell Reports, 2021, 37, 110125.	6.4	41
3099	Expression profiling of pathogenesis-related Protein-1 (PR-1) genes from Solanum tuberosum reveals its critical role in phytophthora infestans infection. Microbial Pathogenesis, 2021, 161, 105290.	2.9	9
3100	Inhibitory pattern recognition receptors. Journal of Experimental Medicine, 2022, 219, .	8.5	14

#	ARTICLE	IF	Citations
3102	Stress-Tolerant Species of Medicinal Plants and Phytoremediation Potential. Environmental Challenges and Solutions, 2022, , 433-448.	0.9	1
3103	An Aminobutyric Acid Transaminase in Zea mays Interacts With Rhizoctonia solani Cellulase to Participate in Disease Resistance. Frontiers in Plant Science, 2022, 13, 860170.	3.6	2
3104	Comparative Genomic Analysis of the Lettuce Bacterial Leaf Spot Pathogen, Xanthomonas hortorum pv. vitians, to Investigate Race Specificity. Frontiers in Microbiology, 2022, 13, 840311.	3.5	3
3105	The responses of soil bacterial and archaeal communities to coastal embankments in three typical salt marshes of Eastern China. Plant and Soil, 0 , , .	3.7	1
3106	Comprehensive analysis ofÂcodon usage pattern in Withania somnifera and its associated pathogens: Meloidogyne incognita and Alternaria alternata. Genetica, 2022, 150, 129-144.	1.1	8
3107	Signal Perception and Transduction in Plant Innate Immunity. , 0, , 95-109.		0
3215	Reprogramming of Cell Death Pathways by Bacterial Effectors as a Widespread Virulence Strategy. Infection and Immunity, 2022, 90, e0061421.	2.2	10
3217	Inflammation in the long arc of history. , 2022, , 1-37.		0
3219	Microbial elicitors: Positive and negative modulators of plant defense., 2022,, 77-102.		0
3220	Research on the Molecular Interaction Mechanism between Plants and Pathogenic Fungi. International Journal of Molecular Sciences, 2022, 23, 4658.	4.1	19
3221	Lipids associated with plant-bacteria interaction identified using a metabolomics approach in an <i>Arabidopsis thaliana</i>	2.0	3
3222	Specific Bacterial Pathogen Phytosensing Is Enabled by a Synthetic Promoter-Transcription Factor System in Potato. Frontiers in Plant Science, 2022, 13, 873480.	3.6	5
3223	Insights into the Genetic Architecture and Genomic Prediction of Powdery Mildew Resistance in Flax (Linum usitatissimum L.). International Journal of Molecular Sciences, 2022, 23, 4960.	4.1	12
3224	Role of Promising Secondary Metabolites to Confer Resistance Against Environmental Stresses in Crop Plants: Current Scenario and Future Perspectives. Frontiers in Plant Science, 2022, 13, .	3.6	28
3225	Indirect recognition of pathogen effectors by NLRs. Essays in Biochemistry, 2022, 66, 485-500.	4.7	4
3226	The Sporisorium reilianum Effector Vag2 Promotes Head Smut Disease via Suppression of Plant Defense Responses. Journal of Fungi (Basel, Switzerland), 2022, 8, 498.	3.5	1
3227	Two Liberibacter Proteins Combine to Suppress Critical Innate Immune Defenses in Citrus. Frontiers in Plant Science, 2022, 13, 869178.	3.6	1
3228	Network for network concept offers new insights into host- SARS-CoV-2 protein interactions and potential novel targets for developing antiviral drugs. Computers in Biology and Medicine, 2022, 146, 105575.	7.0	12

#	Article	IF	CITATIONS
3229	Activation of NLR-Mediated Autoimmunity in Arabidopsis Early in Short Days 4 Mutant. Frontiers in Plant Science, 2022, 13 , .	3.6	1
3230	Full-Length Transcriptional Analysis of the Same Soybean Genotype With Compatible and Incompatible Reactions to Heterodera glycines Reveals Nematode Infection Activating Plant Defense Response. Frontiers in Plant Science, 2022, 13, .	3.6	4
3231	Ti3c2tx Mxene Nanosheets Enhance Systemic Plant Disease Resistance. SSRN Electronic Journal, 0, , .	0.4	1
3232	Sustainable and eco-friendly alternatives to reduce the use of pesticides. , 2022, , 329-364.		2
3233	Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. Journal of Fungi (Basel, Switzerland), 2022, 8, 584.	3.5	32
3235	Molecular Genetics of Anthracnose Resistance in Maize. Journal of Fungi (Basel, Switzerland), 2022, 8, 540.	3.5	4
3236	Infection Strategies and Pathogenicity of Biotrophic Plant Fungal Pathogens. Frontiers in Microbiology, 2022, 13, .	3.5	17
3240	2000-2019: Twenty Years of Highly Influential Publications in Molecular Plant Immunity. Molecular Plant-Microbe Interactions, 2022, 35, 748-754.	2.6	3
3241	Preinoculation with Endophytic fungus Phomopsis liquidambaris reduced rice bakanae disease caused by Fusarium proliferatum via enhanced plant resistance. Journal of Applied Microbiology, 2022, 133, 1566-1580.	3.1	5
3242	Prediction and expression analysis of deleterious nonsynonymous SNPs of Arabidopsis ACD11 gene by combining computational algorithms and molecular docking approach. PLoS Computational Biology, 2022, 18, e1009539.	3.2	0
3243	Action Mechanisms of Effectors in Plant-Pathogen Interaction. International Journal of Molecular Sciences, 2022, 23, 6758.	4.1	53
3244	The plant host environment influences competitive interactions between bacterial pathogens. Environmental Microbiology Reports, 0, , .	2.4	5
3245	Genomic Designing for Breeding Biotic Stress Resistant Pepper Crop. , 2022, , 65-145.		1
3248	Expression Profiling and PTI Related Pathway Analysis of Field Soybean Sprayed with ELICE16INDURES® Plant Conditioner. SSRN Electronic Journal, 0, , .	0.4	O
3249	Overview of host factors and geminivirus proteins involved in virus pathogenesis and resistance., 2022, , 575-587.		0
3250	Genetic Analysis of Plant Pathogens Natural Populations. Methods in Molecular Biology, 2022, , 405-422.	0.9	1
3251	C. elegans monitor energy status via the AMPK pathway to trigger innate immune responses against bacterial pathogens. Communications Biology, 2022, 5, .	4.4	1
3252	Longâ€readâ€based draft genome sequence of Indian black gram IPUâ€94â€1 †Uttara': Insights into diseas resistance and seed storage protein genes. Plant Genome, 2022, 15, .	se 2.8	3

#	Article	IF	CITATIONS
3253	Identification and characterization of long-InDels through whole genome resequencing to facilitate fine-mapping of a QTL for plant height in soybean (Glycine max L. Merr.). Journal of Integrative Agriculture, 2022, 21, 1903-1912.	3.5	3
3254	Involvement of the autophagy-related gene BdATG8 in development and pathogenicity in Botryosphaeria dothidea. Journal of Integrative Agriculture, 2022, 21, 2319-2328.	3.5	2
3256	BcOPR3 mediates defense responses to biotrophic and necrotrophic pathogens in Arabidopsis and non-heading Chinese cabbage. Phytopathology, 0, , .	2.2	0
3257	Ganoderma lucidum mycelial growth filtrate and the mycelial extract increase defense responses against Septoria leaf spot in tomato. Biological Control, 2022, 173, 105002.	3.0	2
3259	Role of chitosan and chitosan-based nanoparticles in pesticide delivery: avenues and applications., 2022,, 401-434.		0
3260	Genome-wide identification and expression analysis of the SINAC gene family in tomato based on a high-quality genome. Horticulture Environment and Biotechnology, 0, , .	2.1	0
3261	Differential Expression of Genes between a Tolerant and a Susceptible Maize Line in Response to a SugarcaneÂMosaic Virus Infection. Viruses, 2022, 14, 1803.	3.3	1
3263	Proteomic analysis of Masson pine with high resistance to pine wood nematodes. PLoS ONE, 2022, 17, e0273010.	2.5	3
3265	From rare disorders of immunity to common determinants of infection: Following the mechanistic thread. Cell, 2022, 185, 3086-3103.	28.9	57
3266	Understanding Molecular Plant–Nematode Interactions to Develop Alternative Approaches for Nematode Control. Plants, 2022, 11, 2141.	3.5	18
3267	Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L International Journal of Molecular Sciences, 2022, 23, 9280.	4.1	4
3268	Crosstalk of nitro-oxidative stress and iron in plant immunity. Free Radical Biology and Medicine, 2022, 191, 137-149.	2.9	8
3269	Role of pathogen's effectors in understanding host-pathogen interaction. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119347.	4.1	6
3270	12-The role of autophagy in plants protection against pathogens. Plant Pathology Science, 2022, 11, 133-145.	0.2	0
3271	The role of receptor-like kinases in fungal/microbial resistance in plants. , 2023, , 63-85.		2
3272	Structural and functional analysis of lysin motif receptor-like kinases in plants., 2023,, 167-178.		0
3273	Soil pH indirectly determines Ralstonia solanacearum colonization through its impacts on microbial networks and specific microbial groups. Plant and Soil, 2023, 482, 73-88.	3.7	5
3274	Predicci $ ilde{A}^3$ n bioinform $ ilde{A}_i$ tica de prote $ ilde{A}$ nas NBS-LRR en el genoma de Coffea arabica. Revista Bionatura, 2022, 7, 1-11.	0.4	O

#	Article	IF	CITATIONS
3275	Elicitor-Induced VOC Emission by Grapevine Leaves: Characterisation in the Vineyard. Molecules, 2022, 27, 6028.	3.8	0
3276	Identification of the interacting proteins of Bambusa pervariabilis $\hat{a} \in \mathbb{A} - \hat{a} \in \mathbb{A}$ Dendrocalamops is grand in response to the transcription factor ApCtf1 \hat{l}^2 in Arthrinium phaeospermum. Frontiers in Plant Science, 0, 13, .	3.6	5
3277	Identification and characterization of putative effectors from Plasmodiophora brassicae that suppress or induce cell death in Nicotiana benthamiana. Frontiers in Plant Science, 0, 13, .	3.6	2
3279	Fungal diseases of eggplant (<i>Solanum melongena</i> L.) and components of the disease triangle: A review. Journal of Crop Improvement, 2023, 37, 543-594.	1.7	3
3280	Identification of genes controlling compatible and incompatible reactions of pearl millet (Pennisetum) Tj ETQq0 (0 rgBT /C 3.6	Overlock 10 T O
3281	A conserved glutamate residue in RPM1-INTERACTING PROTEIN4 is ADP-ribosylated by the <i>Pseudomonas</i> effector AvrRpm2 to activate RPM1-mediated plant resistance. Plant Cell, 2022, 34, 4950-4972.	6.6	3
3282	Functional characterization of a new ORF \hat{l}^2V1 encoded by radish leaf curl betasatellite. Frontiers in Plant Science, 0, 13, .	3.6	6
3284	A novel locus conferring resistance to Puccinia hordei maps to the genomic region corresponding to Rph14 on barley chromosome 2HS. Frontiers in Plant Science, 0, 13, .	3.6	3
3285	Identification of resistance gene analogs of the NBS-LRR family through transcriptome probing and in silico prediction of the expressome of Dalbergia sissoo under dieback disease stress. Frontiers in Genetics, $0, 13, \ldots$	2.3	5
3287	Multiple scenarios for sexual crosses in the fungal pathogen Zymoseptoria tritici on wheat residues: Potential consequences for virulence gene transmission. Fungal Genetics and Biology, 2022, 163, 103744.	2.1	8
3288	Designing Tobacco Genomes for Resistance to Biotic Stresses. , 2022, , 441-581.		1
3289	Abiotic Stress Resistance in Tobacco: Advances and Strategies. , 2022, , 329-427.		0
3290	Resistance genes to Blumeria graminis and their products in cereals. NaUKMA Research Papers Biology and Ecology, 0, 5, 14-24.	0.1	0
3291	Multilevel evolution shapes the function of NB-LRR encoding genes in plant innate immunity. Frontiers in Plant Science, $0,13,.$	3.6	2
3293	Defensive patterns of chestnut genotypes (Castanea spp.) against the gall wasp, Dryocosmus kuriphilus. Frontiers in Forests and Global Change, 0, 5, .	2.3	1
3296	Transcriptome analysis of sugarcane reveals differential switching of major defense signaling pathways in response to Sporisorium scitamineum isolates with varying virulent attributes. Frontiers in Plant Science, $0,13,1$	3.6	2
3297	Fungal Effectoromics: A World in Constant Evolution. International Journal of Molecular Sciences, 2022, 23, 13433.	4.1	9
3298	SH3P2, an SH3 domain-containing protein that interacts with both Pib and AvrPib, suppresses effector-triggered, Pib-mediated immunity in rice. Molecular Plant, 2022, 15, 1931-1946.	8.3	8

#	ARTICLE	IF	CITATIONS
3299	A small secreted protein, RsMf8HN, in Rhizoctonia solani triggers plant immune response, which interacts with rice OsHIPP28. Microbiological Research, 2023, 266, 127219.	5.3	5
3300	Genome-wide identification of the CsPAL gene family and functional analysis for strengthening green mold resistance in citrus fruit. Postharvest Biology and Technology, 2023, 196, 112178.	6.0	8
3301	Resistance Gene Analogs from <i>Vitis cinerea </i> , <i>Vitis rupestris </i> , and <i>Vitis </i> Hybrid Horizon. American Journal of Enology and Viticulture, 2007, 58, 484-493.	1.7	14
3302	Fine Mapping and Candidate Gene Analysis of Pm36, a Wild Emmer-Derived Powdery Mildew Resistance Locus in Durum Wheat. International Journal of Molecular Sciences, 2022, 23, 13659.	4.1	4
3303	A New Classification of Lysin Motif Receptor-Like Kinases in <i>Lotus japonicus</i> . Plant and Cell Physiology, 2023, 64, 176-190.	3.1	1
3304	Evolution patterns of NBS genes in the genus Dendrobium and NBS-LRR gene expression in D. officinale by salicylic acid treatment. BMC Plant Biology, 2022, 22, .	3.6	2
3305	Analysis of R Genes Related to Blackcurrant Reversion Virus Resistance in the Comparative Transcriptome of Ribes nigrum cv. Aldoniai. Plants, 2022, 11, 3137.	3.5	2
3306	Effector-Dependent and -Independent Molecular Mechanisms of Soybean–Microbe Interaction. International Journal of Molecular Sciences, 2022, 23, 14184.	4.1	0
3307	Genome-wide analysis of NBS-LRR genes in Rosaceae species reveals distinct evolutionary patterns. Frontiers in Genetics, 0, 13, .	2.3	2
3308	Research Progress on the Effects of Nitrogen Deposition on Plant Pathogens. International Journal of Ecology, 2022, 11, 510-519.	0.1	0
3309	Genome-wide identification, characterization, and expression profile of NBS-LRRgene family in sweet orange (Citrussinensis). Gene, 2023, 854, 147117.	2.2	10
3310	Cloning and Characterization of Two Novel PR4 Genes from Picea asperata. International Journal of Molecular Sciences, 2022, 23, 14906.	4.1	1
3311	Fine Mapping and Identification of a Candidate Gene of Downy Mildew Resistance, RPF2, in Spinach (Spinacia oleracea L.). International Journal of Molecular Sciences, 2022, 23, 14872.	4.1	2
3312	Cyclitol metabolism is a central feature of <scp><i>Burkholderia</i></scp> leaf symbionts. Environmental Microbiology, 2023, 25, 454-472.	3.8	5
3313	Multiple infections influence the resistance of potato cultivars to late blight and potato cyst nematodes. Plant Pathology, 2023, 72, 667-676.	2.4	0
3314	Cucumber Mosaic Virus-Induced Systemic Necrosis in Arabidopsis thaliana: Determinants and Role in Plant Defense. Viruses, 2022, 14, 2790.	3.3	3
3315	Plant–Pathogen Interaction: New Era of Plant–Pathogen Interaction Studies: "Omics―Perspectives. , 2022, , 172-180.		0
3316	Integrative analysis of the transcriptome and metabolome reveals the response mechanism to tomato spotted wilt virus. Horticultural Plant Journal, 2023, 9, 958-970.	5.0	3

#	Article	IF	CITATIONS
3317	Genome-wide identification, characterization, and evolutionary analysis of NBS genes and their association with disease resistance in Musa spp Functional and Integrative Genomics, 2023, 23, .	3.5	2
3318	Mitigation of Powdery Mildew Disease by Integrating Biocontrol Agents and Shikimic Acid with Modulation of Antioxidant Defense System, Anatomical Characterization, and Improvement of Squash Plant Productivity. Horticulturae, 2022, 8, 1145.	2.8	2
3319	Transcriptome sequencing analysis and WGCNA reveal the internal molecular mechanism that triggers programmed cell death in rice mutant zj-lm. Plant Growth Regulation, 0, , .	3.4	0
3320	RNA-seq Gene Profiling Reveals Transcriptional Changes in the Late Phase during Compatible Interaction between a Korean Soybean Cultivar (Glycine max cv. Kwangan) and Pseudomonas syringae pv. syringae B728a. Plant Pathology Journal, 2022, 38, 603-615.	1.7	1
3321	The AP2/ERF transcription factor ORA59 regulates ethyleneâ€induced phytoalexin synthesis through modulation of an acyltransferase gene expression. Journal of Cellular Physiology, 0, , .	4.1	6
3322	Plant lectins: Handymen at the cell surface. Cell Surface, 2022, 8, 100091.	3.0	3
3323	Genetic Diversity of <i>Epicoccum nigrum</i> and its Effects on <i>Fusarium graminearum</i> Mycobiology, 2022, 50, 457-466.	1.7	2
3324	Emerging Techniques to Develop Biotic Stress Resistance in Fruits and Vegetables. , 2023, , 269-296.		0
3325	Geminiviral C4/AC4 proteins: An emerging component of the viral arsenal against plant defence. Virology, 2023, 579, 156-168.	2.4	5
3326	Cloning and Disease Resistance Analysis of the Maize ZmBON3 Gene. Agronomy, 2023, 13, 152.	3.0	2
3327	Initiation of type 2 immunity at barrier surfaces. Mucosal Immunology, 2023, 16, 86-97.	6.0	2
3328	Ameliorative Effects of Phenolics in Oxidative Stress Management in Plants. , 2023, , 369-390.		2
3330	Assassination tango: an <scp>NLR</scp> / <scp>NLRâ€ID</scp> immune receptors pair of rapeseed coâ€operates inside the nucleus to activate cell death. Plant Journal, 2023, 113, 1211-1222.	5.7	1
3331	MAP30 and luffin-α: Novel ribosome-inactivating proteins induce plant systemic resistance against plant viruses. Pesticide Biochemistry and Physiology, 2023, 191, 105342.	3.6	0
3332	Assembly and Architecture of NLR Resistosomes and Inflammasomes. Annual Review of Biophysics, 2023, 52, 207-228.	10.0	11
3334	Galactosyltransferase GhRFS6 interacting with GhOPR9 involved in defense against Verticillium wilt in cotton. Plant Science, 2023, 328, 111582.	3.6	3
3335	Coumarins as a base for the drug development: yes or no?. Meditsinskii Akademicheskii Zhurnal, 2022, 22, 27-36.	0.2	0
3336	Regulating Death and Disease: Exploring the Roles of Metacaspases in Plants and Fungi. International Journal of Molecular Sciences, 2023, 24, 312.	4.1	6

#	Article	IF	CITATIONS
3337	Microbiome Role in Control of Sustenance of Rice Health and Production., 2021,, 335-393.		1
3338	Host Plant Resistance: An Eco-Friendly Approach for Crop Disease Management. , 2021, , 395-449.		O
3339	Activity of Essential Oils and Plant Extracts as Biofungicides for Suppression of Soil-Borne Fungi Associated with Root Rot and Wilt of Marigold (Calendula officinalis L.). Horticulturae, 2023, 9, 222.	2.8	11
3340	Genome-Wide Prediction of Disease Resistance Gene Analogs in Flax. Compendium of Plant Genomes, 2023, , 217-233.	0.5	0
3341	Glucosinolates, a natural chemical arsenal: More to tell than the myrosinase story. Frontiers in Microbiology, 0, 14 , .	3.5	8
3342	An overview of plant resistance to plant-pathogenic bacteria. Tropical Plant Pathology, 2023, 48, 243-259.	1.5	2
3343	Transcriptome analysis reveals different mechanisms of selenite and selenate regulation of cadmium translocation in Brassica rapa. Journal of Hazardous Materials, 2023, 452, 131218.	12.4	8
3346	The Effects of Epicuticular Wax on Anthracnose Resistance of Sorghum bicolor. International Journal of Molecular Sciences, 2023, 24, 3070.	4.1	4
3347	Systemically induced resistance against disease of wheat caused by <i>Fusarium graminearum</i> Canadian Journal of Plant Pathology, 2023, 45, 320-329.	1.4	0
3348	Beyond the genomes of <i>Fulvia fulva</i> (syn. <i>Cladosporium fulvum</i>) and <i>Dothistroma septosporum</i> : New insights into how these fungal pathogens interact with their host plants. Molecular Plant Pathology, 2023, 24, 474-494.	4.2	2
3349	MAPKKKs in Plants: Multidimensional Regulators of Plant Growth and Stress Responses. International Journal of Molecular Sciences, 2023, 24, 4117.	4.1	2
3350	Soybean transporter AAT <i>Rhg1</i> abundance increases along the nematode migration path and impacts vesiculation and ROS. Plant Physiology, 2023, 192, 133-153.	4.8	2
3351	Microbial Elicitors for Priming Plant Defense Mechanisms. Sustainable Agriculture Reviews, 2023, , 175-196.	1.1	2
3352	Comparative Transcriptomic Analysis Reveals the Molecular Responses in Two Contrasting Hazelnut Varieties against Botrytis cinerea Infection. Forests, 2023, 14, 493.	2.1	0
3353	Elucidation of Physio-Biochemical Changes in Citrus spp. Incited by Xanthomonas citri pv. citri. Horticulturae, 2023, 9, 324.	2.8	3
3354	The maize ZmVPS23-like protein relocates the nucleotide-binding leucine-rich repeat protein Rp1-D21 to endosomes and suppresses the defense response. Plant Cell, 0, , .	6.6	2
3355	The ANIP1-OsWRKY62 module regulates both basal defense and Pi9-mediated immunity against Magnaporthe oryzae in rice. Molecular Plant, 2023, 16, 739-755.	8.3	8
3356	Genome-wide association studies reveal novel loci for resistance to groundnut rosette disease in the African core groundnut collection. Theoretical and Applied Genetics, 2023, 136, .	3.6	3

#	Article	IF	CITATIONS
3357	Epigenetic regulation of plant immunity: from chromatin codes to plant disease resistance. ABIOTECH, 2023, 4, 124-139.	3.9	8
3358	In silico characterization of differentially expressed short-read nucleotide sequences identified in dieback stress-induced transcriptomic analysis reveals their role as antimicrobial peptides. Frontiers in Plant Science, 0, 14, .	3.6	0
3359	Evolutionary history of two evergreen Rhododendron species as revealed by chromosome-level genome assembly. Frontiers in Plant Science, $0,14,.$	3.6	2
3361	Season, storage and extraction method impact on the phytochemical profile of Terminalia ivorensis. BMC Plant Biology, 2023, 23, .	3.6	4
3362	An In Silico Outlook for the Detection and Surveillance of Evolving and Persistent Plant Pathogens. , 2023, , 17-40.		0
3363	Enhanced Valsa canker resistance conferred by expression of <i>MdLecRK-S.4.3</i> in <i>Pyrus betulifolia</i> is largely suppressed by <i>PbePUB36</i> Journal of Experimental Botany, 2023, 74, 3998-4013.	4.8	2
3364	Chromosome-scale genome assembly of <i>Prunus pusilliflora</i> provides novel insights into genome evolution, disease resistance, and dormancy release in <i>Cerasus</i> L <i>.</i> Horticulture Research, 0, , .	6.3	1
3365	QTL detection and candidate gene analysis of grape white rot resistance by interspecific grape (<i>V.) Tj ETQq1 1</i>	0,784314	l rgBT /Over
3366	Advances in plant-pathogen interactions in terms of biochemical and molecular aspects., 2023, , 111-122.		0
3367	Immune signaling networks in plant-pathogen interactions. , 2023, , 137-147.		1
3368	Medicago truncatula-Sinorhizobium meliloti-Fusarium oxysporum Tripartite Interaction Alters Nodulation and Nitrogen Fixation. Journal of Plant Growth Regulation, 2023, 42, 7151-7163.	5.1	0
3369	Analysis of defense-related gene expression and leaf metabolome in wheat during the early infection stages of Blumeria graminis f.sp. tritici. Phytopathology, 0, , .	2.2	O
3370	The devastating oomycete phytopathogen <i>Phytophthora cactorum</i> : Insights into its biology and molecular features. Molecular Plant Pathology, 2023, 24, 1017-1032.	4.2	5
3372	LncRNA109897-JrCCR4-JrTLP1b forms a positive feedback loop to regulate walnut resistance against anthracnose caused by <i>Colletotrichum gloeosporioides</i> . Horticulture Research, 2023, 10, .	6.3	2
3373	Effect of Temperature and Defense Response on the Severity of Dry Root Rot Disease in Chickpea Caused by Macrophomina phaseolina. Rhizosphere Biology, 2023, , 367-395.	0.6	0
3374	Emergence of the fungal immune system. IScience, 2023, 26, 106793.	4.1	8
3375	Ferrite nanoparticles for agriculture-related activity. , 2023, , 315-330.		4
3376	Phased grapevine genome sequence of an Rpv12 carrier for biotechnological exploration of resistance to Plasmopara viticola. Frontiers in Plant Science, 0 , 14 , .	3.6	1

#	Article	IF	CITATIONS
3377	The Antibacterial and Wound Healing Properties of Natural Products: A Review on Plant Species with Therapeutic Potential against Staphylococcus aureus Wound Infections. Plants, 2023, 12, 2147.	3.5	2
3378	Transcriptomics reveal the genetic coordination of early defense to Armillaria root rot (ARR) in Prunus spp. Frontiers in Plant Science, $0,14,.$	3.6	1
3379	Genome-wide identification and expression analyses of phenylalanine ammonia-lyase gene family members from tomato (Solanum lycopersicum) reveal their role in root-knot nematode infection. Frontiers in Plant Science, $0,14,.$	3.6	1
3380	Diversified host target families mediate convergently evolved effector recognition across plant species. Current Opinion in Plant Biology, 2023, 74, 102398.	7.1	3
3382	Comparative Transcriptome Analysis Reveals Key Genes and Pathways Associated with Phosphate-Sensitive Behaviors in Cunninghamia lanceolata (Lamb.) Hook Forests, 2023, 14, 1203.	2.1	0
3383	Graphene–Cu Nanocomposites Induce Tolerance against Fusarium oxysporum, Increase Antioxidant Activity, and Decrease Stress in Tomato Plants. Plants, 2023, 12, 2270.	3.5	1
3385	Folate-mediated one-carbon metabolism as a potential antifungal target for the sustainable cultivation of microalga Haematococcus pluvialis. , 2023, 16 , .		2
3386	DSP: database of disease susceptibility genes in plants. Functional and Integrative Genomics, 2023, 23, .	3.5	0
3387	Ptr1 and <scp>ZAR1</scp> immune receptors confer overlapping and distinct bacterial pathogen effector specificities. New Phytologist, 2023, 239, 1935-1953.	7.3	7
3388	Identification, characterization, and validation of NBS-encoding genes in grass pea. Frontiers in Genetics, $0,14,.$	2.3	0
3389	Genome engineering of disease susceptibility genes for enhancing resistance in plants. Functional and Integrative Genomics, 2023, 23, .	3.5	1
3390	Genome-wide identification of the mango pathogenesis-related 1 (PR1) gene family and functional analysis of MiPR1A genes in transgenic Arabidopsis. Scientia Horticulturae, 2023, 321, 112254.	3.6	1
3391	Structural mechanism of heavy metal-associated integrated domain engineering of paired nucleotide-binding and leucine-rich repeat proteins in rice. Frontiers in Plant Science, 0, 14, .	3.6	0
3392	Phytophthora sojae boosts host trehalose accumulation to acquire carbon and initiate infection. Nature Microbiology, 2023, 8, 1561-1573.	13.3	7
3393	Geminiviral betasatellites: critical viral ammunition to conquer plant immunity. Archives of Virology, 2023, 168, .	2.1	1
3394	Molecular Cloning and Characterization of WRKY12, A Pathogen Induced WRKY Transcription Factor from Akebia trifoliata. Genes, 2023, 14, 1015.	2.4	3
3395	The <scp>m⁶A</scp> reader <scp>MhYTP2</scp> negatively modulates apple Glomerella leaf spot resistance by binding to and degrading <i>MdRGA2L</i> <scp>mRNA</scp> . Molecular Plant Pathology, 0, , .	4.2	0
3396	The glycoside hydrolase 28 member VdEPG1 is a virulence factor of <i>Verticillium dahliae</i> and interacts with the jasmonic acid pathwayâ€related gene <i>GhOPR9</i> . Molecular Plant Pathology, 2023, 24, 1238-1255.	4.2	2

#	Article	IF	CITATIONS
3397	Diversity and characteristics of plant immunity–activating bacteria from Brassicaceae plants. BMC Microbiology, 2023, 23, .	3.3	0
3398	TIR Domains in Arabidopsis thaliana Suppressor of npr1-1, Constitutive 1 and Its Closely Related Disease Resistance Proteins Form Intricate Interaction Networks. Journal of Plant Biology, 0, , .	2.1	0
3399	Comparative pangenome analyses provide insights into the evolution of <i>Brassica rapa</i> resistance gene analogues (RGAs). Plant Biotechnology Journal, 2023, 21, 2100-2112.	8.3	0
3400	A novel secreted protein FgHrip1 from Fusarium graminearum triggers immune responses in plants1. Journal of Integrative Agriculture, 2023, , .	3.5	0
3401	Mobile Signaling Peptides: Secret Molecular Messengers with a Mighty Role in Plant Life. Journal of Plant Growth Regulation, 2023, 42, 6801-6834.	5.1	0
3403	Elucidating the zinc-binding proteome of Fusarium oxysporum f. sp. lycopersici with particular emphasis on zinc-binding effector proteins. Archives of Microbiology, 2023, 205, .	2.2	1
3404	Multiomics analysis reveals a link between Brassicaâ€specific miR1885 and rapeseed tolerance to low temperature. Plant, Cell and Environment, 2023, 46, 3405-3419.	5.7	1
3405	A novel secreted protein FgHrip1 from Fusarium graminearum triggers immune responses in plants1. Journal of Integrative Agriculture, 2023, , .	3.5	0
3406	Genome-wide identification and characterization of Puccinia striiformis-responsive lncRNAs in Triticum aestivum. Frontiers in Plant Science, $0,14,.$	3.6	1
3408	The NLR Family of Disease Resistance Genes in Cultivated Watermelon and Other Cucurbits: Opportunities and Challenges. Compendium of Plant Genomes, 2023, , 37-67.	0.5	0
3409	Melatonin in Plants Under UV Stress Conditions. Plant in Challenging Environments, 2023, , 263-277.	0.4	0
3410	Membrane vesicle engineering with " <i>à la carte</i> òâ€bacterialâ€immunogenic molecules for organismâ€free plant vaccination. Microbial Biotechnology, 0, , .	4.2	0
3411	Molecular interactions between the soilborne pathogenic fungus Macrophomina phaseolina and its host plants. Frontiers in Plant Science, 0, 14 , .	3.6	1
3412	Genome-wide association analysis of Monilinia fructicola lesion in a collection of Spanish peach landraces. Frontiers in Plant Science, 0, 14, .	3.6	1
3413	Characterizing nucleotide binding site domain (NBD) of <i>ZzR</i> 1 resistance gene from <i>Zingiber zerumbet</i> : <i>in silico</i> ligand docking and optimizing heterologous expression. Archives of Phytopathology and Plant Protection, 2023, 56, 991-1002.	1.3	0
3414	The secret password: Cell death-inducing proteins in filamentous phytopathogens - As versatile tools to develop disease-resistant crops. Microbial Pathogenesis, 2023, 183, 106276.	2.9	0
3416	Specificity and breadth of plant specialized metabolite–microbe interactions. Current Opinion in Plant Biology, 2023, , 102459.	7.1	2
3418	Genome-Wide Analysis Revealed NBS-LRR Gene Candidates Associated with Bacterial Wilt Resistance in Eggplant (Solanum melongena L.). Agronomy, 2023, 13, 2583.	3.0	2

#	Article	IF	CITATIONS
3419	Bark transcriptome analyses reveals molecular mechanisms involved in tapping panel dryness occurrence and development in rubber tree (Hevea brasiliensis). Gene, 2024, 892, 147894.	2.2	1
3420	Barley MLA3 recognizes the host-specificity effector Pwl2 from <i>Magnaporthe oryzae</i> . Plant Cell, 0, , .	6.6	4
3421	Comparative RNA-seq analysis of resistant and susceptible banana genotypes reveals molecular mechanisms in response to banana bunchy top virus (BBTV) infection. Scientific Reports, 2023, 13, .	3.3	3
3422	The dynamic arms race during the early invasion of woodland strawberry by <i>Botrytis cinerea</i> revealed by dual dense high-resolution RNA-seq analyses. Horticulture Research, 0, , .	6.3	0
3423	Cloning and expression analysis of Mildew Locus O <i>(MLO)</i> genes related to powdery mildew resistance in <i>Vitis pseudoreticulata</i> , and functional characterisation of <i>VpMLO13</i> . New Zealand Journal of Crop and Horticultural Science, O, , 1-17.	1.3	O
3426	The Rpf107 gene, a homolog of LOR, is required for the symbiotic nodulation of Robinia pseudoacacia. Planta, 2024, 259, .	3.2	0
3427	Engineering Phenothiazine-Based Functional Mimics of Host Defense Peptides as New Agrochemical Candidates: Design, Synthesis, and Antibacterial Evaluation. Journal of Agricultural and Food Chemistry, 0, , .	5.2	0
3430	NPR1, a key immune regulator for plant survival under biotic and abiotic stresses. Molecular Cell, 2024, 84, 131-141.	9.7	2
3431	Assay for transposase accessible-chromatin with high throughput sequencing (ATAC-seq) analysis the molecular responses of postharvest pear during Penicillium expansum infection. Postharvest Biology and Technology, 2024, 209, 112733.	6.0	0
3432	The CATERPILLERS. Journal of Immunology, 2024, 212, 5-6.	0.8	0
3433	1H NMR-Based Metabolomics Profile of Green and Red Amaranthus Grown in Open Field versus Greenhouse Cultivation System. Metabolites, 2024, 14, 21.	2.9	0
3434	Unveiling the complex molecular dynamics of arbuscular mycorrhizae: A comprehensive exploration and future perspectives in harnessing phosphate-solubilizing microorganisms for sustainable progress. Environmental and Experimental Botany, 2024, 219, 105633.	4.2	0
3435	Adaptation of Fusarium Species causing Head Blight to Quantitative Resistance in Wheat: Field Evidence for Increased Aggressiveness in a New Pathogen Population. International Journal of Phytopathology, 2023, 12, 273-281.	0.5	0
3436	Responses of Arabidopsis thaliana to Challenge by Pseudomonas syringae. Molecules and Cells, 2008, 25, 323-332.	2.6	4
3437	Characterization of Rice Mutants with Enhanced Susceptibility to Rice Blast. Molecules and Cells, 2005, 20, 385-391.	2.6	0
3438	Advances in Genetic Engineering for Pathogen Resistance in Capsicum annuum L, 2023, , 169-197.		0
3439	Polygalacturonase inhibiting protein enhances cell wall strength of strawberry fruit for resistance to Botrytis cinerea infection. Scientia Horticulturae, 2024, 327, 112850.	3.6	0
3441	Physiological Mechanisms Underlying Tassel Symptom Formation in Maize Infected with Sporisorium reilianum. Plants, 2024, 13, 238.	3.5	0

#	Article	IF	CITATIONS
3442	Conserved Role of Heterotrimeric G Proteins in Plant Defense and Cell Death Progression. Genes, 2024, 15, 115.	2.4	0
3443	Antidotes to aflatoxicosis in humans. , 2024, , 167-193.		0
3445	BRASSINOSTEROID-SIGNALING KINASE1 associates with and is required for cysteine protease RESPONSE TO DEHYDRATION 19-mediated disease resistance in Arabidopsis. Plant Science, 2024, 342, 112033.	3.6	0
3447	Pathogenic Factors and Mechanisms of the Alternaria Leaf Spot Pathogen in Apple. Horticulturae, 2024, 10, 212.	2.8	0
3448	Screening and Expression Analysis of POD Gene in POD-H2O2 Pathway on Bud Dormancy of Pear (Pyrus) Tj ETQo	70 0 0 rgB	Г/8verlock 1
3449	From molecule to cell: the expanding frontiers of plant immunity. Journal of Genetics and Genomics, 2024, , .	3.9	0
3450	The <i>Ralstonia solanacearum</i> effector <scp>RipV1</scp> acts as a novel <scp>E3</scp> ubiquitin ligase to suppress plant <scp>PAMP</scp> â€triggered immunity responses and promote susceptibility in potato. Plant Pathology, 2024, 73, 1276-1288.	2.4	0
3451	Unlocking Nature's Defense: Plant Pattern Recognition Receptors as Guardians Against Pathogenic Threats. Molecular Plant-Microbe Interactions, 2024, 37, 73-83.	2.6	0
3452	Identification of novel QTLs for resistance to late leaf spot in peanut by SNP array and QTL-seq. Journal of Integrative Agriculture, 2024, , .	3.5	0
3453	Epigenetic weapons of plants against fungal pathogens. BMC Plant Biology, 2024, 24, .	3.6	0
3454	Rice-Magnaporthe oryzae interactions in resistant and susceptible rice cultivars under panicle blast infection based on defense-related enzyme activities and metabolomics. PLoS ONE, 2024, 19, e0299999.	2.5	0
3455	Apoptosis-inducing factor 1 mediates Vibrio splendidus-induced coelomocyte apoptosis via importin \hat{l}^2 dependent nuclear translocation in Apostichopus japonicus. Fish and Shellfish Immunology, 2024, 148, 109491.	3.6	0
3457	The Vitis yeshanensis U-box E3 ubiquitin ligase VyPUB21 enhances resistance to powdery mildew by targeting degradation of NIM1-interacting (NIMIN) protein. Plant Cell Reports, 2024, 43, .	5.6	0
3458	Effector-Mediated Pathogenicity. , 2024, , 139-166.		0
3459	Resistance gene analogs (RGAs) of coconut respond differentially to Phytophthora palmivora and exogenous salicylic acid and methyl jasmonate. Plant Physiology Reports, 0, , .	1.5	0
3460	Physiologic disruption and metabolic reprogramming in infection and sepsis. Cell Metabolism, 2024, 36, 927-946.	16.2	0