Tbx1 haploinsufficiency in the DiGeorge syndrome regimice

Nature 410, 97-101 DOI: 10.1038/35065105

Citation Report

#	Article	IF	CITATIONS
1	Isolation and Characterization of a Novel Gene from the DiGeorge Chromosomal Region That Encodes for a Mediator Subunit. Genomics, 2001, 74, 320-332.	1.3	33
2	Introducing Defined Chromosomal Rearrangements into the Mouse Genome. Methods, 2001, 24, 81-94.	1.9	30
3	A common cis-acting sequence in the DiGeorge critical region regulates bi-directional transcription of UFD1L and CDC45L. Mechanisms of Development, 2001, 108, 81-92.	1.7	9
4	Cloning and characterization of the gene encoding human NPL4, a protein interacting with the ubiquitin fusion-degradation protein (UFD1L). Gene, 2001, 275, 39-46.	1.0	11
6	Subnuclear localization and mitotic phosphorylation of HIRA, the human homologue of Saccharomyces cerevisiae transcriptional regulators Hir1p/Hir2p. Biochemical Journal, 2001, 358, 447.	1.7	14
7	Subnuclear localization and mitotic phosphorylation of HIRA, the human homologue of Saccharomyces cerevisiae transcriptional regulators Hir1p/Hir2p. Biochemical Journal, 2001, 358, 447-455.	1.7	18
8	Benign idiopathic partial seizures in the velocardiofacial syndrome: Report of two cases. American Journal of Medical Genetics Part A, 2001, 103, 172-175.	2.4	13
9	The T-box transcription factor gene TBX22 is mutated in X-linked cleft palate and ankyloglossia. Nature Genetics, 2001, 29, 179-183.	9.4	245
10	Getting the T-box dose right. Nature Medicine, 2001, 7, 1185-1186.	15.2	20
11	Genomic organisation of the â^¼1.5 Mb Smith-Magenis syndrome critical interval: Transcription map, genomic contig, and candidate gene analysis. European Journal of Human Genetics, 2001, 9, 892-902.	1.4	30
13	Genetics of craniofacial development and malformation. Nature Reviews Genetics, 2001, 2, 458-468.	7.7	380
14	Engineering chromosomal rearrangements in mice. Nature Reviews Genetics, 2001, 2, 780-790.	7.7	229
15	Chromosomal microdeletions: dissecting del22q11 syndrome. Nature Reviews Genetics, 2001, 2, 858-868.	7.7	232
16	From mouse to man: generating megabase chromosome rearrangements. Trends in Genetics, 2001, 17, 331-339.	2.9	88
17	Causes of the phenotype–genotype dissociation in DiGeorge syndrome: clues from mouse models. Trends in Genetics, 2001, 17, 551-554.	2.9	8
18	Developing models of DiGeorge syndrome. Trends in Genetics, 2001, 17, S13-S17.	2.9	61
19	A region of homozygosity within 22q11.2 associated with congenital heart disease: recessive DiGeorge/velocardiofacial syndrome?. Journal of Medical Genetics, 2001, 38, 533-536.	1.5	8
20	High frequency of the ApoB-100 R3500Q mutation in Bulgarian hypercholesterolaemic subjects. Journal of Medical Genetics, 2001, 38, 536-540.	1.5	12

#	Article	IF	CITATIONS
21	Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. Journal of Medical Genetics, 2001, 38, 45e-45.	1.5	135
22	Mice deleted for the DiGeorge/velocardiofacial syndrome region show abnormal sensorimotor gating and learning and memory impairments. Human Molecular Genetics, 2001, 10, 2645-2650.	1.4	140
23	Genetic factors are major determinants of phenotypic variability in a mouse model of the DiGeorge/del22q11 syndromes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11428-11431.	3.3	105
24	Requirement of CDC45 for Postimplantation Mouse Development. Molecular and Cellular Biology, 2001, 21, 4598-4603.	1.1	36
25	Mice overexpressing genes from the 22q11 region deleted in velo-cardio-facial syndrome/DiGeorge syndrome have middle and inner ear defects. Human Molecular Genetics, 2001, 10, 2549-2556.	1.4	75
26	Wrapping Up DiGeorge Syndrome in a T-box?. Pediatric Research, 2001, 50, 307-308.	1.1	4
27	The essential role of Cited2, a negative regulator for HIF-1Â, in heart development and neurulation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10488-10493.	3.3	184
28	Targeted Mutagenesis of the Hira Gene Results in Gastrulation Defects and Patterning Abnormalities of Mesoendodermal Derivatives Prior to Early Embryonic Lethality. Molecular and Cellular Biology, 2002, 22, 2318-2328.	1.1	126
29	Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Human Molecular Genetics, 2002, 11, 915-922.	1.4	305
30	Craniofacial expression of human and murine TBX22 correlates with the cleft palate and ankyloglossia phenotype observed in CPX patients. Human Molecular Genetics, 2002, 11, 2793-2804.	1.4	87
31	M <scp>olecular</scp> D <scp>issection of</scp> C <scp>raniofacial</scp> D <scp>evelopment</scp> U <scp>sing</scp> Z <scp>ebrafish</scp> . Critical Reviews in Oral Biology and Medicine, 2002, 13, 308-322.	4.4	118
32	Perspective: Cardiovascular Disease in the Postgenomic Era—Lessons Learned and Challenges Ahead. Endocrinology, 2002, 143, 2045-2050.	1.4	16
33	Tools for targeted manipulation of the mouse genome. Physiological Genomics, 2002, 11, 133-164.	1.0	180
34	DiGeorge syndrome: the use of model organisms to dissect complex genetics. Human Molecular Genetics, 2002, 11, 2363-2369.	1.4	63
35	Early Signals in Cardiac Development. Circulation Research, 2002, 91, 457-469.	2.0	272
36	Chromosome 10p13-14 and 22q11 deletion screening in 100 patients with isolated and syndromic conotruncal heart defects. Journal of Medical Genetics, 2002, 39, 16e-16.	1.5	18
37	The Septin CDCrel-1 Is Dispensable for Normal Development and Neurotransmitter Release. Molecular and Cellular Biology, 2002, 22, 378-387.	1.1	120
38	The T-box factor MLS-1 acts as a molecular switch during specification of nonstriated muscle in C. elegans. Genes and Development, 2002, 16, 257-269.	2.7	50

	СІТАТІ	CITATION REPORT	
#	Article	IF	CITATIONS
39	New frontiers in molecular pediatric cardiology. Current Opinion in Pediatrics, 2002, 14, 627-633.	1.0	14
40	Craniofacial Embryogenesis: Abnormal Developmental Mechanisms. , 0, , 61-124.		7
41	Chromosome 22q11.2 deletion syndrome (DiGeorge and velocardiofacial syndromes). Current Opinion in Pediatrics, 2002, 14, 678-683.	1.0	122
42	Narrowing the Critical Region within 11q24–qter for Hypoplastic Left Heart and Identification of a Candidate Gene, JAM3, Expressed during Cardiogenesis. Genomics, 2002, 79, 475-478.	1.3	50
43	Genetic and Comparative Mapping of Genes Dysregulated in Mouse Hearts Lacking the Hand2 Transcription Factor Gene. Genomics, 2002, 80, 593-600.	1.3	23
44	The Role of Neural Crest during Cardiac Development in a Mouse Model of DiGeorge Syndrome. Developmental Biology, 2002, 251, 157-166.	0.9	85
45	MOLECULARMECHANISMS FORGENOMICDISORDERS. Annual Review of Genomics and Human Genetics, 2002, 3, 199-242.	2.5	280
46	The T-box family. Genome Biology, 2002, 3, reviews3008.1.	13.9	132
48	Schizophrenia and velo-cardio-facial syndrome. Lancet, The, 2002, 359, 426-430.	6.3	264
49	Aortic arch and pharyngeal phenotype in the absence of BMP-dependent neural crest in the mouse. Mechanisms of Development, 2002, 119, 127-135.	1.7	46
50	Genomic Disorders on 22q11. American Journal of Human Genetics, 2002, 70, 1077-1088.	2.6	228
51	Familial Deafness, Congenital Heart Defects, and Posterior Embryotoxon Caused by Cysteine Substitution in the First Epidermal-Growth-Factor–Like Domain of Jagged 1. American Journal of Human Genetics, 2002, 71, 180-186.	2.6	63
52	22q11 DS: genomic mechanisms and gene function in DiGeorge/velocardiofacial syndrome. International Journal of Developmental Neuroscience, 2002, 20, 407-419.	0.7	41
53	Heart development: learning from mistakes. Current Opinion in Genetics and Development, 2002, 12, 328-335.	1.5	43
54	Genetic syndromes associated with immunodeficiency. Immunology and Allergy Clinics of North America, 2002, 22, 261-280.	0.7	3
55	The 22q11.2 deletion syndrome Keio Journal of Medicine, 2002, 51, 77-88.	0.5	83
56	The anterior heart-forming field: voyage to the arterial pole of the heart. Trends in Genetics, 2002, 18, 210-216.	2.9	260
57	Mouse models of cardiac chamber formation and congenital heart disease. Trends in Genetics, 2002, 18, S15-S20.	2.9	7

#	Article	IF	CITATIONS
58	Structure of the DNA-Bound T-Box Domain of Human TBX3, a Transcription Factor Responsible for Ulnar-Mammary Syndrome. Structure, 2002, 10, 343-356.	1.6	105
59	The embryology of the common arterial trunk. Progress in Pediatric Cardiology, 2002, 15, 1-8.	0.2	17
60	Embryonic expression of Tbx1, a DiGeorge syndrome candidate gene, in the lamprey Lampetrafluviatilis. Gene Expression Patterns, 2002, 2, 99-103.	0.3	37
61	Isolation and developmental expression analysis ofTbx22, the mouse homolog of the human X-linked cleft palate gene. Developmental Dynamics, 2002, 225, 322-326.	0.8	56
62	Expression and mutation analysis of BRUNOL3, a candidate gene for heart and thymus developmental defects associated with partial monosomy 10p. Journal of Molecular Medicine, 2002, 80, 431-442.	1.7	42
63	Molecular Embryogenesis of the Heart. Pediatric and Developmental Pathology, 2002, 5, 516-543.	0.5	67
64	Bronchomalacia associated with pulmonary atresia, ventricular septal defect and major aortopulmonary collateral arteries, and chromosome 22q11.2 deletion. Clinical Genetics, 2002, 62, 214-219.	1.0	27
65	MID1 and MID2 homo- and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders. BMC Cell Biology, 2002, 3, 1.	3.0	109
66	The genetics of congenital heart disease. Journal of Nuclear Cardiology, 2003, 10, 71-76.	1.4	14
67	Building a heart: Implications for congenital heart disease. Journal of Nuclear Cardiology, 2003, 10, 63-70.	1.4	8
68	Developmental expression of the Xenopus laevis Tbx20 orthologue. Development Genes and Evolution, 2003, 212, 604-607.	0.4	36
69	The T-box gene Tbx10 exhibits a uniquely restricted expression pattern during mouse embryogenesis. Gene Expression Patterns, 2003, 3, 533-538.	0.3	14
70	Cloning and characterization of zebrafish tbx1. Gene Expression Patterns, 2003, 3, 645-651.	0.3	21
71	Generating and modifying DiGeorge syndrome-like phenotypes in model organisms: is there a common genetic pathway?. Trends in Genetics, 2003, 19, 588-593.	2.9	17
72	Overlapping deletions define novel embryonic lethal loci in the mouset complex. Genesis, 2003, 35, 133-142.	0.8	3
73	T-box gene products are required for mesenchymal induction of epithelial branching in the embryonic mouse lung. Developmental Dynamics, 2003, 226, 82-90.	0.8	71
74	Ece1 andTbx1 define distinct pathways to aortic arch morphogenesis. Developmental Dynamics, 2003, 228, 95-104.	0.8	17
75	T cell development and function in CrkL-deficient mice. European Journal of Immunology, 2003, 33, 2687-2695.	1.6	15

#	Article	IF	CITATIONS
76	DiGeorge/velocardiofacial syndrome: FISH studies of chromosomes 22q11 and 10p14, and clinical reports on the proximal 22q11 deletion. , 2003, 117A, 1-5.		47
77	Generalized skeletal dysplasia in mother and daughter with 22q11 deletion syndrome. American Journal of Medical Genetics Part A, 2003, 117A, 295-298.	2.4	4
78	Development of the pharyngeal arches. American Journal of Medical Genetics Part A, 2003, 119A, 251-256.	2.4	117
79	Vasomotor instability in neonates with chromosome 22q11 deletion syndrome. American Journal of Medical Genetics Part A, 2003, 121A, 231-234.	2.4	15
80	T-box genes and cardiac development. Birth Defects Research Part C: Embryo Today Reviews, 2003, 69, 25-37.	3.6	32
81	About face: Signals and genes controlling jaw patterning and identity in vertebrates. BioEssays, 2003, 25, 554-568.	1.2	80
82	The developing heart and congenital heart defects: a make or break situation. Clinical Genetics, 2003, 63, 252-261.	1.0	48
83	Thymic generation and regeneration. Immunological Reviews, 2003, 195, 28-50.	2.8	129
84	DiGeorge subtypes of nonsyndromic conotruncal defects: evidence against a major role of TBX1 Gene. European Journal of Human Genetics, 2003, 11, 349-351.	1.4	48
85	VEGF: A modifier of the del22q11 (DiGeorge) syndrome?. Nature Medicine, 2003, 9, 173-182.	15.2	288
86			
	12. Primary immunodeficiency diseases. Journal of Allergy and Clinical Immunology, 2003, 111, S571-S581.	1.5	103
87	12. Primary immunodeficiency diseases. Journal of Allergy and Clinical Immunology, 2003, 111, S571-S581. Interaction makes the heart grow stronger. Trends in Molecular Medicine, 2003, 9, 407-409.	1.5 3.5	103 5
87			
	Interaction makes the heart grow stronger. Trends in Molecular Medicine, 2003, 9, 407-409. Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral–aboral axis of the embryo and is involved in skeletogenesis. Mechanisms of Development, 2003,	3.5	5
88	Interaction makes the heart grow stronger. Trends in Molecular Medicine, 2003, 9, 407-409. Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral–aboral axis of the embryo and is involved in skeletogenesis. Mechanisms of Development, 2003, 120, 561-572. Critical role for Tbx6 in mesoderm specification in the mouse embryo. Mechanisms of Development,	3.5 1.7	5 42
88 89	Interaction makes the heart grow stronger. Trends in Molecular Medicine, 2003, 9, 407-409. Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral–aboral axis of the embryo and is involved in skeletogenesis. Mechanisms of Development, 2003, 120, 561-572. Critical role for Tbx6 in mesoderm specification in the mouse embryo. Mechanisms of Development, 2003, 120, 837-847.	3.5 1.7 1.7	5 42 57
88 89 90	 Interaction makes the heart grow stronger. Trends in Molecular Medicine, 2003, 9, 407-409. Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral–aboral axis of the embryo and is involved in skeletogenesis. Mechanisms of Development, 2003, 120, 561-572. Critical role for Tbx6 in mesoderm specification in the mouse embryo. Mechanisms of Development, 2003, 120, 837-847. Congenital abnormalities of body patterning: embryology revisited. Lancet, The, 2003, 362, 651-662. Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome 	3.5 1.7 1.7 6.3	5 42 57 64

#	Article	IF	CITATIONS
94	Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Developmental Biology, 2003, 262, 206-224.	0.9	260
95	Role of TBX1 in human del22q11.2 syndrome. Lancet, The, 2003, 362, 1366-1373.	6.3	776
96	DiGeorge's syndrome: a gene at last. Lancet, The, 2003, 362, 1342-1343.	6.3	35
97	Immunotherapy of cytomegalovirus infection after stem-cell transplantation: a new option?. Lancet, The, 2003, 362, 1343-1344.	6.3	17
98	Vascular ring abnormalities: A retrospective study of 62 cases. Journal of Pediatric Surgery, 2003, 38, 539-543.	0.8	105
99	Thrombocytopenia in patients with chromosome 22q11.2 deletion syndrome. Journal of Pediatrics, 2003, 143, 277-278.	0.9	74
100	Transforming growth factor beta in cardiovascular development and function. Cytokine and Growth Factor Reviews, 2003, 14, 391-407.	3.2	214
101	Unraveling the genetic and developmental mysteries of 22q11 deletion syndrome. Trends in Molecular Medicine, 2003, 9, 383-389.	3.5	124
102	Long-term assessment of T-cell populations in DiGeorge syndrome. Journal of Allergy and Clinical Immunology, 2003, 111, 573-579.	1.5	88
103	Craniofacial Development The Tissue and Molecular Interactions That Control Development of the Head. Advances in Anatomy, Embryology and Cell Biology, 2003, 169, III-VI, 1-138.	1.0	72
104	Syndromic Immunodeficiencies: Genetic Syndromes Associated with Immune Abnormalities. Critical Reviews in Clinical Laboratory Sciences, 2003, 40, 587-642.	2.7	35
105	T-box genes in human disorders. Human Molecular Genetics, 2003, 12, 37R-44.	1.4	182
106	Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo. Development (Cambridge), 2003, 130, 623-633.	1.2	253
107	Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) Contiguous Gene Syndromes by Chromosome Engineering in Mice: Phenotypic Consequences of Gene Dosage Imbalance. Molecular and Cellular Biology, 2003, 23, 3646-3655.	1.1	100
108	Mammary gland, limb and yolk sac defects in mice lackingTbx3,the gene mutated in human ulnar mammary syndrome. Development (Cambridge), 2003, 130, 2263-2273.	1.2	252
109	Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development (Cambridge), 2003, 130, 5953-5964.	1.2	164
110	Ablation of specific expression domains reveals discrete functions of ectoderm- and endoderm-derived FGF8 during cardiovascular and pharyngeal development. Development (Cambridge), 2003, 130, 6361-6374.	1.2	216
111	Tbx1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer. Genes and Development, 2003, 17, 269-281.	2.7	232

#	Article	IF	CITATIONS
112	Williams-Beuren syndrome: a challenge for genotype-phenotype correlations. Human Molecular Genetics, 2003, 12, R229-R237.	1.4	152
113	Functional Analysis of TBX5 Missense Mutations Associated with Holt-Oram Syndrome. Journal of Biological Chemistry, 2003, 278, 8780-8785.	1.6	95
114	The comparative genomics of T-box genes. Briefings in Functional Genomics & Proteomics, 2003, 2, 224-233.	3.8	28
115	The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans. Development (Cambridge), 2003, 130, 5043-5052.	1.2	198
116	The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome. Development (Cambridge), 2003, 130, 3567-3578.	1.2	154
117	TBX1 is required for inner ear morphogenesis. Human Molecular Genetics, 2003, 12, 2041-2048.	1.4	110
118	Decreased embryonic retinoic acid synthesis results in a DiGeorge syndrome phenotype in newborn mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1763-1768.	3.3	143
119	Cell autonomous requirement for PDGFRα in populations of cranial and cardiac neural crest cells. Development (Cambridge), 2003, 130, 507-518.	1.2	234
120	The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development (Cambridge), 2003, 130, 2525-2534.	1.2	200
121	A comprehensive analysis of 22q11 gene expression in the developing and adult brain. Proceedings of the United States of America, 2003, 100, 14433-14438.	3.3	137
122	Invited Review: Functional genomics in the mouse: powerful techniques for unraveling the basis of human development and disease. Journal of Applied Physiology, 2003, 94, 2502-2509.	1.2	19
123	Functional Attenuation of Ufd1l, a 22q11.2 Deletion Syndrome Candidate Gene, Leads to Cardiac Outflow Septation Defects in Chicken Embryos. Pediatric Research, 2003, 53, 546-553.	1.1	25
124	The quintessence of the making of the heart. Cardiology in the Young, 2003, 13, 175-183.	0.4	13
125	Genes and behaviour: finding a genetic substrate for cognitive neuropsychiatry. , 2003, , 30-56.		0
126	High specificity PCR screening for 22q11.2 microdeletion in three different ethnic groups. Brazilian Journal of Medical and Biological Research, 2003, 36, 1359-1365.	0.7	12
127	Apports de la biologie moléculaire à la compréhension de la formation des cardiopathies congénitales chez l'Homme. Société De Biologie Journal, 2003, 197, 195-199.	0.3	Ο
128	Animal models for human contiguous gene syndromes and other genomic disorders. Genetics and Molecular Biology, 2004, 27, 305-320.	0.6	5
129	Full spectrum of malformations in velo-cardio-facial syndrome/DiGeorge syndrome mouse models by altering Tbx1 dosage. Human Molecular Genetics, 2004, 13, 1577-1585.	1.4	214

#	Article	IF	CITATIONS
130	Assessment of association between variants and haplotypes of the remaining TBX1 gene and manifestations of congenital heart defects in 22q11.2 deletion patients. Journal of Medical Genetics, 2004, 41, e40-e40.	1.5	22
131	Development Gone Awry. Circulation Research, 2004, 94, 273-283.	2.0	129
132	Essential Role for ADAM19 in Cardiovascular Morphogenesis. Molecular and Cellular Biology, 2004, 24, 96-104.	1.1	118
133	The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. Human Molecular Genetics, 2004, 13, 2829-2840.	1.4	230
134	Tbx2 Directly Represses the Expression of the p21WAF1 Cyclin-Dependent Kinase Inhibitor. Cancer Research, 2004, 64, 1669-1674.	0.4	140
135	Reduced penetrance of craniofacial anomalies as a function of deletion size and genetic background in a chromosome engineered partial mouse model for Smith–Magenis syndrome. Human Molecular Genetics, 2004, 13, 2613-2624.	1.4	39
136	TBX3 and Its Isoform TBX3+2a Are Functionally Distinctive in Inhibition of Senescence and Are Overexpressed in a Subset of Breast Cancer Cell Lines. Cancer Research, 2004, 64, 5132-5139.	0.4	120
137	ENU induced mutations causing congenital cardiovascular anomalies. Development (Cambridge), 2004, 131, 6211-6223.	1.2	89
138	Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development (Cambridge), 2004, 131, 5491-5502.	1.2	222
139	Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development (Cambridge), 2004, 131, 1801-1812.	1.2	150
140	Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development (Cambridge), 2004, 131, 3217-3227.	1.2	348
141	Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells. Development (Cambridge), 2004, 131, 3481-3490.	1.2	171
142	The complex genetics of cleft lip and palate. European Journal of Orthodontics, 2004, 26, 7-16.	1.1	197
143	Genetics in Zebrafish, Mice, and Humans to Dissect Congenital Heart Disease: Insights in the Role of VEGF. Current Topics in Developmental Biology, 2004, 62, 189-224.	1.0	34
144	DNA copy-number analysis of the 22q11 deletion-syndrome region using array-CGH with genomic and PCR-based targets. International Journal of Molecular Medicine, 2004, 13, 273.	1.8	15
145	A Chicken Model for DGCR6 as a Modifier Gene in the DiGeorge Critical Region. Pediatric Research, 2004, 56, 440-448.	1.1	33
146	The Schizosaccharomyces pombe HIRA-Like Protein Hip1 Is Required for the Periodic Expression of Histone Genes and Contributes to the Function of Complex Centromeres. Molecular and Cellular Biology, 2004, 24, 4309-4320.	1.1	71
147	Essential Role for Mitochondrial Thioredoxin Reductase in Hematopoiesis, Heart Development, and Heart Function. Molecular and Cellular Biology, 2004, 24, 9414-9423.	1.1	428

#	Article	IF	CITATIONS
148	Expression analysis of the human testis-specific serine/threonine kinase (TSSK) homologues. A TSSK member is present in the equatorial segment of human sperm. Molecular Human Reproduction, 2004, 10, 433-444.	1.3	79
149	T-box genes and congenital heart/limb malformations. Clinical Genetics, 2004, 66, no-no.	1.0	15
150	Allelic variations at the haploid TBX1 locus do not influence the cardiac phenotype in cases of 22q11 microdeletion. Annales De Génétique, 2004, 47, 235-240.	0.4	8
151	Developmental expression of the amphioxus Tbx1/10 gene illuminates the evolution of vertebrate branchial arches and sclerotome. Development Genes and Evolution, 2004, 214, 559-566.	0.4	50
152	Tbx2 Represses Expression of Connexin43 in Osteoblastic-like Cells. Calcified Tissue International, 2004, 74, 561-573.	1.5	35
153	Genetic abnormalities of chromosome 22 and the development of psychosis. Current Psychiatry Reports, 2004, 6, 176-182.	2.1	34
154	Smooth muscle stem cells. The Anatomical Record, 2004, 276A, 22-33.	2.3	91
155	Making the mouse embryo transparent: Identifying developmental malformations using magnetic resonance imaging. Birth Defects Research Part C: Embryo Today Reviews, 2004, 72, 241-249.	3.6	41
156	TheTbx-files: The truth is out there. Developmental Dynamics, 2004, 231, 232-236.	0.8	7
157	Modulation of Eomes Activity Alters the Size of the Developing Heart: Implications for In Utero Cardiac Gene Therapy. Human Gene Therapy, 2004, 15, 842-855.	1.4	13
158	Genetics of cleft lip and palate: syndromic genes contribute to the incidence of non-syndromic clefts. Human Molecular Genetics, 2004, 13, 73R-81.	1.4	303
159	Allelic variations at the haploid TBX1 locus do not influence the cardiac phenotype in cases of 22q11 microdeletion. Annales De Génétique, 2004, , .	0.4	0
160	Thyroid Development and Its Disorders: Genetics and Molecular Mechanisms. Endocrine Reviews, 2004, 25, 722-746.	8.9	552
161	Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development (Cambridge), 2004, 131, 5041-5052.	1.2	258
162	Altered replication timing of the HIRA/Tuple1 locus in the DiGeorge and Velocardiofacial syndromes. Gene, 2004, 333, 111-119.	1.0	31
163	Drosophila, an emerging model for cardiac disease. Gene, 2004, 342, 1-11.	1.0	155
164	Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse. Developmental Biology, 2004, 267, 190-202.	0.9	129
165	DiGeorge syndrome: an update. Current Opinion in Cardiology, 2004, 19, 201-204.	0.8	66

	CITATION	N REPORT	
#	ARTICLE	IF	Citations
166	The clinical, immunological, and molecular spectrum of chromosome 22q11.2 deletion syndrome and DiGeorge syndrome. Current Opinion in Allergy and Clinical Immunology, 2004, 4, 505-512.	1.1	81
167	A role for Tbx5 in proepicardial cell migration during cardiogenesis. Physiological Genomics, 2004, 18, 129-140.	1.0	88
168	A Perspective on the Value of Aquatic Models in Biomedical Research. Experimental Biology and Medicine, 2005, 230, 1-7.	1.1	21
169	Molecular genetics of velo-cardio-facial syndrome. , 2005, , 19-46.		2
171	T-Box Genes in Vertebrate Development. Annual Review of Genetics, 2005, 39, 219-239.	3.2	370
172	The role of the endoderm in the development and evolution of the pharyngeal arches. Journal of Anatomy, 2005, 207, 479-487.	0.9	107
173	Endoderm development in vertebrates: fate mapping, induction and regional specification. Development Growth and Differentiation, 2005, 47, 343-355.	0.6	54
174	Building the mammalian heart from two sources of myocardial cells. Nature Reviews Genetics, 2005, 6, 826-835.	7.7	1,051
175	The zebrafish: a new model of T-cell and thymic development. Nature Reviews Immunology, 2005, 5, 307-317.	10.6	159
176	Congenital heart disease: Genetic causes and developmental insights. Progress in Pediatric Cardiology, 2005, 20, 101-111.	0.2	17
177	A method for accurate detection of genomic microdeletions using real-time quantitative PCR. BMC Genomics, 2005, 6, 180.	1.2	89
178	Fgf15 is required for proper morphogenesis of the mouse cardiac outflow tract. Genesis, 2005, 41, 192-201.	0.8	59
179	T-box genes and heart development: Putting the ?T? in heart. Developmental Dynamics, 2005, 232, 11-20.	0.8	148
180	Retinoic acid down-regulatesTbx1 expression in vivo and in vitro. Developmental Dynamics, 2005, 232, 928-938.	0.8	99
181	The MLC1v gene provides a transgenic marker of myocardium formation within developing chambers of theXenopusheart. Developmental Dynamics, 2005, 232, 1003-1012.	0.8	31
182	XTbx1 is a transcriptional activator involved in head and pharyngeal arch development inXenopus laevis. Developmental Dynamics, 2005, 232, 979-991.	0.8	49
183	The genetics of tethered cord syndrome. American Journal of Medical Genetics, Part A, 2005, 132A, 450-453.	0.7	11
184	Autosomal dominant inheritance of left ventricular outflow tract obstruction. American Journal of Medical Genetics, Part A, 2005, 134A, 171-179.	0.7	71

#	Article	IF	CITATIONS
185	Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005, 304B, 347-399.	0.6	120
186	Microarray analysis of the Df1 mouse model of the 22q11 deletion syndrome. Human Genetics, 2005, 116, 486-496.	1.8	27
187	Embryology and Development of the Cardiovascular System. , 2005, , 790-801.		0
189	The Dorsocross T-box genes are key components of the regulatory network controlling early cardiogenesis in Drosophila. Development (Cambridge), 2005, 132, 4911-4925.	1.2	96
190	Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis. Development (Cambridge), 2005, 132, 553-563.	1.2	126
191	Low expression VEGF haplotype increases the risk for tetralogy of Fallot: a family based association study. Journal of Medical Genetics, 2005, 42, 519-522.	1.5	59
192	Tbx1 expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development (Cambridge), 2005, 132, 5307-5315.	1.2	116
193	Identification of a novel nuclear localization signal in Tbx1 that is deleted in DiGeorge syndrome patients harboring the 1223delC mutation. Human Molecular Genetics, 2005, 14, 885-892.	1.4	68
194	Combined deficiencies of Msx1 and Msx2 cause impaired patterning and survival of the cranial neural crest. Development (Cambridge), 2005, 132, 4937-4950.	1.2	164
195	Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development (Cambridge), 2005, 132, 2451-2462.	1.2	218
196	T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development (Cambridge), 2005, 132, 4897-4910.	1.2	142
197	Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development (Cambridge), 2005, 132, 2463-2474.	1.2	205
198	Timed mutation and cell-fate mapping reveal reiterated roles of Tbx1 during embryogenesis, and a crucial function during segmentation of the pharyngeal system via regulation of endoderm expansion. Development (Cambridge), 2005, 132, 4387-4395.	1.2	131
199	Recent Advances in Cardiac Development With Therapeutic Implications for Adult Cardiovascular Disease. Circulation, 2005, 112, 592-597.	1.6	37
200	Inactivation of TGFÂ signaling in neural crest stem cells leads to multiple defects reminiscent of DiGeorge syndrome. Genes and Development, 2005, 19, 530-535.	2.7	134
201	Mutations of Transcription Factors in Human with Heart Disease for Understanding the Development and Mechanisms of Congenital Cardiovascular Heart Disease. , 2005, 565, 349-357.		2
202	A 200-kb region of human chromosome 22q11.2 confers antipsychotic-responsive behavioral abnormalities in mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19132-19137.	3.3	44
203	Basics of Cardiac Development for the Understanding of Congenital Heart Malformations. Pediatric Research, 2005, 57, 169-176.	1.1	251

#	Article	IF	CITATIONS
204	Cardiac Development: New concepts. Clinics in Perinatology, 2005, 32, 845-855.	0.8	17
206	Identification of disease genes by whole genome CGH arrays. Human Molecular Genetics, 2005, 14, R215-R223.	1.4	140
207	The CFTR Associated Protein CAP70 Interacts with the Apical Cl-/HCO3-Exchanger DRA in Rabbit Small Intestinal Mucosa. Biochemistry, 2005, 44, 4477-4487.	1.2	47
208	Dissecting contiguous gene defects: TBX1. Current Opinion in Genetics and Development, 2005, 15, 279-284.	1.5	127
209	Regulation of histone synthesis and nucleosome assembly. Biochimie, 2005, 87, 625-635.	1.3	109
210	Tbx3 expression is related to apoptosis and cell proliferation in rat bladder both hyperplastic epithelial cells and carcinoma cells. Cancer Letters, 2005, 219, 105-112.	3.2	45
211	Neuromancer Tbx20-related genes (H15/midline) promote cell fate specification and morphogenesis of the Drosophila heart. Developmental Biology, 2005, 279, 509-524.	0.9	77
212	Dosage-dependent requirement for mouse Vezf1 in vascular system development. Developmental Biology, 2005, 283, 140-156.	0.9	56
213	Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Developmental Biology, 2005, 283, 357-372.	0.9	191
214	Loss of Gbx2 results in neural crest cell patterning and pharyngeal arch artery defects in the mouse embryo. Developmental Biology, 2005, 284, 233-245.	0.9	63
215	Microarray analysis detects differentially expressed genes in the pharyngeal region of mice lacking Tbx1. Developmental Biology, 2005, 285, 554-569.	0.9	86
216	Cortical Development: New Concepts. Neuron, 2005, 46, 361-362.	3.8	17
217	Cardiac neural crest. Seminars in Cell and Developmental Biology, 2005, 16, 704-715.	2.3	174
218	COMT Val108/158Met Modifies Mismatch Negativity and Cognitive Function in 22q11 Deletion Syndrome. Biological Psychiatry, 2005, 58, 23-31.	0.7	126
219	The relative role of the T-domain and flanking sequences for developmental control and transcriptional regulation in protein chimeras of Drosophila OMB and ORG-1. Mechanisms of Development, 2005, 122, 81-96.	1.7	20
220	Tbx1 is required for proper neural crest migration and to stabilize spatial patterns during middle and inner ear development. Mechanisms of Development, 2005, 122, 199-212.	1.7	65
221	Morphogenesis of the Inner Ear. , 2005, , 43-84.		13
223	Genomic Disorders. , 2006, , .		26

#	Article	IF	CITATIONS
224	GENETIC REGULATION OF CARDIOGENESIS AND CONGENITAL HEART DISEASE. Annual Review of Pathology: Mechanisms of Disease, 2006, 1, 199-213.	9.6	70
225	Mouse Chromosome Engineering for Modeling Human Disease. Annual Review of Genomics and Human Genetics, 2006, 7, 247-276.	2.5	42
226	Persistent Fifth Aortic Arch Associated with 22q11.2 Deletion Syndrome. Journal of the Formosan Medical Association, 2006, 105, 284-289.	0.8	12
227	Transforming Growth Factor β–SMAD2 Signaling and Aortic Arch Development. Trends in Cardiovascular Medicine, 2006, 16, 1-6.	2.3	42
228	2. Update on primary immunodeficiency diseases. Journal of Allergy and Clinical Immunology, 2006, 117, S435-S441.	1.5	50
229	Mouse Models of 22q11 Deletion Syndrome. Biological Psychiatry, 2006, 59, 1172-1179.	0.7	67
230	Altered expression of hippocampal dentate granule neuron genes in a mouse model of human 22q11 deletion syndrome. Schizophrenia Research, 2006, 88, 251-259.	1.1	21
231	TRANSCRIPTION FACTORS AND CONGENITAL HEART DEFECTS. Annual Review of Physiology, 2006, 68, 97-121.	5.6	140
232	Evidence for a Functional Second Thymus in Mice. Science, 2006, 312, 284-287.	6.0	142
233	Dose-Dependent Interaction of Tbx1 and Crkl and Locally Aberrant RA Signaling in a Model of del22q11 Syndrome. Developmental Cell, 2006, 10, 81-92.	3.1	186
234	Crkl Deficiency Disrupts Fgf8 Signaling in a Mouse Model of 22q11 Deletion Syndromes. Developmental Cell, 2006, 10, 71-80.	3.1	138
235	Gene dosage in the developing and adult brain in a mouse model of 22q11 deletion syndrome. Molecular and Cellular Neurosciences, 2006, 33, 412-428.	1.0	38
236	Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1. Developmental Biology, 2006, 293, 499-512.	0.9	119
237	Cardiac arterial pole alignment is sensitive to FGF8 signaling in the pharynx. Developmental Biology, 2006, 295, 486-497.	0.9	89
238	Fgf8 expression in the Tbx1 domain causes skeletal abnormalities and modifies the aortic arch but not the outflow tract phenotype of Tbx1 mutants. Developmental Biology, 2006, 295, 559-570.	0.9	47
239	Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Developmental Biology, 2006, 297, 566-586.	0.9	164
240	The 22q11.2 Deletion Syndrome: A Gene Dosage Perspective. Scientific World Journal, The, 2006, 6, 1881-1887.	0.8	21
241	Tbx1 is expressed at multiple sites of epithelial-mesenchymal interaction during early development of the facial complex. International Journal of Developmental Biology, 2006, 50, 504-10.	0.3	33

#	Article	IF	CITATIONS
242	When Half Is Not Enough: Gene Expression and Dosage in the 22q11 Deletion Syndrome. Gene Expression, 2006, 13, 299-310.	0.5	53
243	22q11 Deletion syndrome: a review of some developmental biology aspects of the cardiovascular system. Journal of Cardiovascular Medicine, 2006, 7, 77-85.	0.6	3
244	Genetic heterogeneity and phenotypic anomalies in children with atrioventricular canal defect and tetralogy of Fallot. Clinical Dysmorphology, 2006, 15, 65-70.	0.1	27
246	A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression. BMC Developmental Biology, 2006, 6, 28.	2.1	80
247	Craniofacial malformations: intrinsic vs extrinsic neural crest cell defects in Treacher Collins and 22q11 deletion syndromes. Clinical Genetics, 2006, 69, 471-479.	1.0	52
248	Cellular and molecular events during early thymus development. Immunological Reviews, 2006, 209, 28-46.	2.8	102
249	Gene prioritization through genomic data fusion. Nature Biotechnology, 2006, 24, 537-544.	9.4	787
250	Regulation of cell fate in the sensory epithelia of the inner ear. Nature Reviews Neuroscience, 2006, 7, 837-849.	4.9	290
251	Gene Regulatory Networks in the Evolution and Development of the Heart. Science, 2006, 313, 1922-1927.	6.0	903
252	Analyses of the associations between the genes of 22q11 deletion syndrome and schizophrenia. Journal of Human Genetics, 2006, 51, 1037-1045.	1.1	52
253	A complex rearrangement on chromosome 22 affecting both homologues; haplo-insufficiency of the Cat eye syndrome region may have no clinical relevance. Human Genetics, 2006, 120, 77-84.	1.8	9
254	No evidence for parental imprinting of mouse 22q11 gene orthologs. Mammalian Genome, 2006, 17, 822-832.	1.0	7
255	Insights into the genetic basis of congenital heart disease. Cellular and Molecular Life Sciences, 2006, 63, 1141-1148.	2.4	76
256	Cell cycle regulation of the T-box transcription factor tbx2. Experimental Cell Research, 2006, 312, 2358-2366.	1.2	40
257	DiGeorge syndrome and pharyngeal apparatus development. BioEssays, 2006, 28, 1078-1086.	1.2	47
258	Tbx1 is regulated by forkhead proteins in the secondary heart field. Developmental Dynamics, 2006, 235, 701-710.	0.8	81
259	Developmental expression patterns ofTbx1,Tbx2,Tbx5, andTbx20 inXenopus tropicalis. Developmental Dynamics, 2006, 235, 1623-1630.	0.8	29
260	Recent advances in craniofacial morphogenesis. Developmental Dynamics, 2006, 235, 2353-2375.	0.8	535

		EPORT	
#	Article	IF	CITATIONS
261	T-genes and limb bud development. American Journal of Medical Genetics, Part A, 2006, 140A, 1407-1413.	0.7	57
262	Polymicrogyria and deletion 22q11.2 syndrome: Window to the etiology of a common cortical malformation. American Journal of Medical Genetics, Part A, 2006, 140A, 2416-2425.	0.7	125
263	Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development (Cambridge), 2006, 133, 3587-3595.	1.2	184
264	Molecular and Genetic Aspects of DiGeorge/Velocardiofacial Syndrome. , 2006, 126, 43-56.		15
265	Genetics of Cardiac Septation Defects and Their Pre-Implantation Diagnosis. , 2006, 126, 19-42.		5
266	Mouse Models for Investigating the Developmental Basis of Human Birth Defects. Pediatric Research, 2006, 59, 749-755.	1.1	22
267	Chromosome 22 Deletion Syndrome And Schizophrenia. International Review of Neurobiology, 2006, 73, 1-27.	0.9	14
268	Molecular Bases of Human Neurocristopathies. , 2006, 589, 213-234.		79
269	Modeling Chromosomes in Mouse to Explore the Function of Genes, Genomic Disorders, and Chromosomal Organization. PLoS Genetics, 2006, 2, e86.	1.5	38
270	Dissection of Tbx1 and Fgf interactions in mouse models of 22q11DS suggests functional redundancy. Human Molecular Genetics, 2006, 15, 3219-3228.	1.4	47
271	Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development (Cambridge), 2006, 133, 1565-1573.	1.2	132
272	lessen encodes a zebrafish trap100 required for enteric nervous system development. Development (Cambridge), 2006, 133, 395-406.	1.2	47
273	A Deficiency in the Region Homologous to Human 17q21.33–q23.2 Causes Heart Defects in Mice. Genetics, 2006, 173, 297-307.	1.2	18
274	Tissue-specific roles of Tbx1 in the development of the outer, middle and inner ear, defective in 22q11DS patients. Human Molecular Genetics, 2006, 15, 1629-1639.	1.4	91
275	Cyp26 genes a1, b1 and c1 are down-regulated in Tbx1 null mice and inhibition of Cyp26 enzyme function produces a phenocopy of DiGeorge Syndrome in the chick. Human Molecular Genetics, 2006, 15, 3394-3410.	1.4	98
278	Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: Implications for 22q11 deletion syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7729-7734.	3.3	289
279	Genetics of Transcription Factor Mutations. Advances in Developmental Biology (Amsterdam,) Tj ETQq0 0 0 rgE	T /Overloc	k 10 Tf 50 102

280	Blimp1 regulates development of the posterior forelimb, caudal pharyngeal arches, heart and sensory vibrissae in mice. Development (Cambridge), 2007, 134, 4335-4345.	1.2	119
-----	---	-----	-----

#	Article	IF	CITATIONS
281	A Novel, Single Nucleotide Polymorphism-Based Assay to Detect 22q11 Deletions. Genetic Testing and Molecular Biomarkers, 2007, 11, 91-100.	1.7	5
282	Duplication of the entire 22.9ÂMb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. Human Molecular Genetics, 2007, 16, 1359-1366.	1.4	165
283	Pinch1 Is Required for Normal Development of Cranial and Cardiac Neural Crest-Derived Structures. Circulation Research, 2007, 100, 527-535.	2.0	46
284	Noninvasive Intravital Imaging of Thymocyte Dynamics in Medaka. Journal of Immunology, 2007, 179, 1605-1615.	0.4	41
285	Parathyroid Development and the Role of Tubulin Chaperone E. Hormone Research in Paediatrics, 2007, 67, 12-21.	0.8	22
286	Cre/loxP-Mediated Chromosome Engineering of the Mouse Genome. Handbook of Experimental Pharmacology, 2007, , 29-48.	0.9	44
287	In vivo response to high-resolution variation of Tbx1 mRNA dosage. Human Molecular Genetics, 2007, 17, 150-157.	1.4	105
288	Transcriptional Control of Lung Morphogenesis. Physiological Reviews, 2007, 87, 219-244.	13.1	429
290	Heart Development and Tâ€box Transcription Factors: Lessons from Avian Embryos. Advances in Developmental Biology (Amsterdam, Netherlands), 2007, , 69-91.	0.4	3
293	Combinatorial signaling in the heart orchestrates cardiac induction, lineage specification and chamber formation. Seminars in Cell and Developmental Biology, 2007, 18, 54-66.	2.3	53
294	Model systems for the study of heart development and disease. Seminars in Cell and Developmental Biology, 2007, 18, 101-110.	2.3	274
295	The genetics of cardiac birth defects. Seminars in Cell and Developmental Biology, 2007, 18, 132-139.	2.3	58
296	Transcriptional pathways in second heart field development. Seminars in Cell and Developmental Biology, 2007, 18, 67-76.	2.3	136
297	Tbx1 regulates population, proliferation and cell fate determination of otic epithelial cells. Developmental Biology, 2007, 302, 670-682.	0.9	54
298	mef2ca is required in cranial neural crest to effect Endothelin1 signaling in zebrafish. Developmental Biology, 2007, 308, 144-157.	0.9	85
299	In vivo genetic ablation of the periotic mesoderm affects cell proliferation survival and differentiation in the cochlea. Developmental Biology, 2007, 310, 329-340.	0.9	17
300	Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet, The, 2007, 370, 1443-1452.	6.3	513
302	The 22q11 deletion syndrome candidate gene Tbx1 determines thyroid size and positioning. Human Molecular Genetics, 2007, 16, 276-285.	1.4	67

ARTICLE IF CITATIONS Congenital and Acquired Heart Disease., 2007, , 165-208. 304 0 Analysis of TBX1 Variation in Patients with Psychotic and Affective Disorders. Molecular Medicine, 2007, 13, 407-414. Signalling Pathways Regulating Cardiac Neural Crest Migration and Differentiation. Novartis 307 1.2 15 Foundation Symposium, 2007, 283, 152-164. Detection of pathogenic gene copy number variations in patients with mental retardation by genomewide oligonucleotide array comparative genomic hybridization. Human Mutation, 2007, 28, 113 Ĭ124-1132. A role for Tbx2 in the regulation of the $\hat{I}\pm 2(1)$ collagen gene in human fibroblasts. Journal of Cellular 312 1.2 16 Biochemistry, 2007, 102, 618-625. Tbx1 regulation of myogenic differentiation in the limb and cranial mesoderm. Developmental Dynamics, 2007, 236, 353-363. 0.8 Visualization of outflow tract development in the absence of Tbx1 using an FgF10 enhancer trap 314 0.8 49 transgene. Developmental Dynamics, 2007, 236, 821-828. Abnormal venous and arterial patterning in chordin mutants. Developmental Dynamics, 2007, 236, 0.8 9 2586-2593. A fate map of Tbx1 expressing cells reveals heterogeneity in the second cardiac field. Genesis, 2007, 45, 316 0.8 97 470-475. From microscopes to microarrays: dissecting recurrent chromosomal rearrangements. Nature Reviews Genetics, 2007, 8, 869-883. Mutations in TBX1 genocopy the 22q11.2 deletion and duplication syndromes: a new susceptibility 318 1.4 63 factor for mental retardation. European Journal of Human Genetics, 2007, 15, 658-663. Gene discovery in craniofacial development and disease - cashing in your chips. Clinical Genetics, 2007, 319 71, 109-119. Surprisingly complex Tâ€box gene complement in diploblastic metazoans. Evolution & Development, 2007, 320 1.1 66 9, 220-230. Differential gene expression in the hippocampus of the Df1/+ mice: A model for 22q11.2 deletion syndrome and schizophrenia. Brain Research, 2007, 1139, 48-59. 321 1.1 Tbx3, a transcriptional factor, involves in proliferation and osteogenic differentiation of human 322 1.4 26 adipose stromal cells. Molecular and Cellular Biochemistry, 2007, 296, 129-136. TBX3, the gene mutated in ulnar-mammary syndrome, promotes growth of mammary epithelial cells via 29 repression of p19ARF, independently of p53. Cell and Tissue Research, 2007, 328, 301-316. Bilateral Semilunar Valve Dysplasia in a Patient with Inverted Duplication 2p25–22. Pediatric 324 0.6 4 Cardiology, 2008, 29, 172-175. Deconstructing the pharyngeal metamere. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 336-344.

#	Article	IF	CITATIONS
326	Mandibular arch muscle identity is regulated by a conserved molecular process during vertebrate development. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 355-369.	0.6	25
327	Genetic modifiers of the physical malformations in veloâ€cardioâ€facial syndrome/DiGeorge syndrome. Developmental Disabilities Research Reviews, 2008, 14, 19-25.	2.9	48
328	Candidate genes and the behavioral phenotype in 22q11.2 deletion syndrome. Developmental Disabilities Research Reviews, 2008, 14, 26-34.	2.9	68
329	Properties of branchiomeric and somiteâ€derived muscle development in <i>Tbx1</i> mutant embryos. Developmental Dynamics, 2008, 237, 3071-3078.	0.8	48
330	Expression of Islet1 in thyroid development related to budding, migration, and fusion of primordia. Developmental Dynamics, 2008, 237, 3820-3829.	0.8	28
331	The basal chordate amphioxus as a simple model for elucidating developmental mechanisms in vertebrates. Birth Defects Research Part C: Embryo Today Reviews, 2008, 84, 175-187.	3.6	34
332	Genetic Mechanisms Controlling Cardiovascular Development. Annals of the New York Academy of Sciences, 2008, 1123, 10-19.	1.8	75
333	The developmental genetics of congenital heart disease. Nature, 2008, 451, 943-948.	13.7	673
334	Microduplications of 22q11.2 are frequently inherited and are associated with variable phenotypes. Genetics in Medicine, 2008, 10, 267-277.	1.1	170
335	Possible mechanisms and gene involvement in speech problems in the 22q11.2 deletion syndrome. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2008, 61, 1016-1023.	0.5	15
336	Chromosome 22q11.2 Deletion Syndrome: DiGeorge Syndrome/Velocardiofacial Syndrome. Immunology and Allergy Clinics of North America, 2008, 28, 353-366.	0.7	89
337	Chromosomes, Genes, and the Thyroid Gland. , 2008, , 55-71.		0
338	Frequency of 22q11.2 microdeletion in sporadic non-syndromic tetralogy of Fallot cases. International Journal of Cardiology, 2008, 126, 374-378.	0.8	22
339	Mitochondrial localization and function of a subset of 22q11 deletion syndrome candidate genes. Molecular and Cellular Neurosciences, 2008, 39, 439-451.	1.0	106
341	Histochemical and molecular overview of the thymus as site for T-cells development. Progress in Histochemistry and Cytochemistry, 2008, 43, 73-120.	5.1	35
342	Disruption of Smad4 in neural crest cells leads to mid-gestation death with pharyngeal arch, craniofacial and cardiac defects. Developmental Biology, 2008, 316, 417-430.	0.9	50
343	Loss of unc45a precipitates arteriovenous shunting in the aortic arches. Developmental Biology, 2008, 318, 258-267.	0.9	60
344	A regulatory relationship between Tbx1 and FGF signaling during tooth morphogenesis and ameloblast lineage determination. Developmental Biology, 2008, 320, 39-48.	0.9	45

#	Article	IF	CITATIONS
345	Thymus Organogenesis. Annual Review of Immunology, 2008, 26, 355-388.	9.5	223
346	Identification of downstream genetic pathways of Tbx1 in the second heart field. Developmental Biology, 2008, 316, 524-537.	0.9	124
347	Chapter 3 Thymic Microenvironments for T-Cell Repertoire Formation. Advances in Immunology, 2008, 99, 59-94.	1.1	75
348	Chapter 4 Mouse Models of Congenital Cardiovascular Disease. Current Topics in Developmental Biology, 2008, 84, 171-248.	1.0	48
349	Thyroid Disorders with Cutaneous Manifestations. , 2008, , .		2
351	WDR55 Is a Nucleolar Modulator of Ribosomal RNA Synthesis, Cell Cycle Progression, and Teleost Organ Development. PLoS Genetics, 2008, 4, e1000171.	1.5	23
352	Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17115-17120.	3.3	159
353	GENETICS OF CARDIAC MALFORMATIONS. Fetal and Maternal Medicine Review, 2008, 19, 105-118.	0.3	0
354	Strong evidence that GNB1L is associated with schizophrenia. Human Molecular Genetics, 2008, 17, 555-566.	1.4	64
355	<i>Frs2</i> l̂±-deficiency in cardiac progenitors disrupts a subset of FGF signals required for outflow tract morphogenesis. Development (Cambridge), 2008, 135, 3611-3622.	1.2	64
356	Pbx1 functions in distinct regulatory networks to pattern the great arteries and cardiac outflow tract. Development (Cambridge), 2008, 135, 3577-3586.	1.2	63
357	The del22q11.2 Candidate Gene <i>Tbx1</i> Controls Regional Outflow Tract Identity and Coronary Artery Patterning. Circulation Research, 2008, 103, 142-148.	2.0	134
358	Causes and Differential Diagnosis of Hypocalcemia -Recommendation Proposed by Expert Panel Supported by Ministry of Health, Labour and Welfare, Japan Endocrine Journal, 2008, 55, 787-794.	0.7	25
359	Multipotent Islet-1 Cardiovascular Progenitors in Development and Disease. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 297-306.	2.0	12
360	Parathyroid Hormone. , 2008, , 577-593.		2
361	Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. Journal of Clinical Investigation, 2009, 119, 3301-10.	3.9	119
362	Velocardiofacial Syndrome. Journal of Mental Health Research in Intellectual Disabilities, 2009, 2, 149-167.	1.3	53
363	<i>GATA6</i> mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13933-13938.	3.3	205

#	Article	IF	CITATIONS
364	Aneuploidy: From a Physiological Mechanism of Variance to Down Syndrome. Physiological Reviews, 2009, 89, 887-920.	13.1	106
365	Disease models and mechanisms in the classroom. DMM Disease Models and Mechanisms, 2009, 2, 103-106.	1.2	1
366	Keeping it simple: what mouse models of Wolf-Hirschhorn syndrome can tell us about large chromosomal deletions. DMM Disease Models and Mechanisms, 2009, 2, 315-316.	1.2	5
367	Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating <i>Gbx2 </i> expression in the pharyngeal ectoderm. Development (Cambridge), 2009, 136, 3173-3183.	1.2	124
368	Chordin Is a Modifier of Tbx1 for the Craniofacial Malformations of 22q11 Deletion Syndrome Phenotypes in Mouse. PLoS Genetics, 2009, 5, e1000395.	1.5	31
369	<i>Ott1</i> (<i>Rbm15</i>) Is Essential for Placental Vascular Branching Morphogenesis and Embryonic Development of the Heart and Spleen. Molecular and Cellular Biology, 2009, 29, 333-341.	1.1	41
370	<i>Tbx1</i> Regulates Proliferation and Differentiation of Multipotent Heart Progenitors. Circulation Research, 2009, 105, 842-851.	2.0	138
371	Diminished dosage of 22q11 genes disrupts neurogenesis and cortical development in a mouse model of 22q11 deletion/DiGeorge syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16434-16445.	3.3	149
372	Sept5 deficiency exerts pleiotropic influence on affective behaviors and cognitive functions in mice. Human Molecular Genetics, 2009, 18, 1652-1660.	1.4	78
373	Vertebral fusion in a patient with supernumeraryâ€der(22)t(11;22) syndrome. American Journal of Medical Genetics, Part A, 2009, 149A, 1722-1726.	0.7	2
374	Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Human Mutation, 2009, 30, 1231-1236.	1.1	124
375	Retinoic acid receptors exhibit cellâ€autonomous functions in cranial neural crest cells. Developmental Dynamics, 2009, 238, 2701-2711.	0.8	34
376	Gain of function of <i>Tbx1</i> affects pharyngeal and heart development in the mouse. Genesis, 2009, 47, 188-195.	0.8	35
377	Single nucleotide polymorphism discovery in TBX1 in individuals with and without 22q11.2 deletion syndrome. Birth Defects Research Part A: Clinical and Molecular Teratology, 2010, 88, 54-63.	1.6	5
378	Molecular embryology for an understanding of congenital heart diseases. Anatomical Science International, 2009, 84, 88-94.	0.5	15
379	The outflow tract of the heart in fishes: anatomy, genes and evolution. Journal of Fish Biology, 2009, 74, 983-1036.	0.7	64
380	Clinical features of chromosome 22q11.2 microdeletion syndrome in 208 Chilean patients. Clinical Genetics, 2009, 76, 465-470.	1.0	24
381	Congenital heart disease affects local gyrification in 22q11.2 deletion syndrome. Developmental Medicine and Child Neurology, 2009, 51, 746-753.	1.1	58

# 382	ARTICLE Dual role for neural crest cells during outflow tract septation in the neural crestâ€deficient mutant <i>Splotch^{2H}</i> . Journal of Anatomy, 2009, 214, 245-257.	IF 0.9	CITATIONS 32
383	Transcription Factor TBX1 Overexpression Induces Downregulation of Proteins Involved in Retinoic Acid Metabolism: A Comparative Proteomic Analysis. Journal of Proteome Research, 2009, 8, 1515-1526.	1.8	25
384	Genetics of microtia and associated syndromes. Journal of Medical Genetics, 2009, 46, 361-369.	1.5	119
385	Atypical deletion of 22q11.2: Detection using the FISH TBX1 probe and molecular characterization with high-density SNP arrays. European Journal of Medical Genetics, 2009, 52, 321-327.	0.7	30
386	Modeling cognitive endophenotypes of schizophrenia in mice. Trends in Neurosciences, 2009, 32, 347-358.	4.2	133
387	Familial Exudative Vitreoretinopathy and DiGeorge Syndrome. Ophthalmology, 2009, 116, 1522-1524.	2.5	6
388	Early thyroid development requires a Tbx1–Fgf8 pathway. Developmental Biology, 2009, 328, 109-117.	0.9	47
389	Enamel-free teeth: Tbx1 deletion affects amelogenesis in rodent incisors. Developmental Biology, 2009, 328, 493-505.	0.9	54
390	Thyroid gland development and function in the zebrafish model. Molecular and Cellular Endocrinology, 2009, 312, 14-23.	1.6	177
391	Chromosome Engineering in ES Cells. Methods in Molecular Biology, 2009, 530, 49-77.	0.4	11
392	Genetic syndromes and congenital heart defects: how is surgical management affected?. European Journal of Cardio-thoracic Surgery, 2009, 35, 606-614.	0.6	88
393	Gene expression profile of the third pharyngeal pouch reveals role of mesenchymal MafB in embryonic thymus development. Blood, 2009, 113, 2976-2987.	0.6	24
394	Controlled Somatic and Germline Copy Number Variation in the Mouse Model. Current Genomics, 2010, 11, 470-480.	0.7	3
395	22q11 Deletion Syndrome: A Role for TBX1 in Pharyngeal and Cardiovascular Development. Pediatric Cardiology, 2010, 31, 378-390.	0.6	114
396	Deficiencies in the region syntenic to human 21q22.3 cause cognitive deficits in mice. Mammalian Genome, 2010, 21, 258-267.	1.0	24
397	Manipulation of endogenous regulatory elements and transgenic analyses of the Tbx1 gene. Mammalian Genome, 2010, 21, 556-564.	1.0	13
398	Secondary immunologic consequences in chromosome 22q11.2 deletion syndrome (DiGeorge) Tj ETQq0 0 0 rgB	T /Oyerloc 1.4	k 10 Tf 50 10

#	Article	IF	CITATIONS
" 400	Nucleocytoplasmic functions of the PDZâ€LIM protein family: new insights into organ development. BioEssays, 2010, 32, 100-108.	1.2	95
401	Second lineage of heart forming region provides new understanding of conotruncal heart defects. Congenital Anomalies (discontinued), 2010, 50, 8-14.	0.3	38
402	Developmental perspectives on copy number abnormalities of the 22q11.2 region. Clinical Genetics, 2010, 78, 201-218.	1.0	11
403	T-Box Factors. , 2010, , 651-671.		3
404	Signaling Pathways Involved in Cardiogenesis. , 2010, , 2601-2609.		0
405	Tbx1 regulates <i>Vegfr3</i> and is required for lymphatic vessel development. Journal of Cell Biology, 2010, 189, 417-424.	2.3	74
406	Multiplexed quantitative real-time PCR to detect 22q11.2 deletion in patients with congenital heart disease. Physiological Genomics, 2010, 42A, 52-60.	1.0	34
407	DiGeorge Syndrome, Tbx1, and Retinoic Acid Signaling Come Full Circle. Circulation Research, 2010, 106, 630-632.	2.0	26
408	Loss of MicroRNAs in Neural Crest Leads to Cardiovascular Syndromes Resembling Human Congenital Heart Defects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2575-2586.	1.1	75
409	β-catenin deficiency causes DiGeorge syndrome-like phenotypes through regulation of Tbx1. Development (Cambridge), 2010, 137, 1137-1147.	1.2	45
410	Role of Mesodermal FGF8 and FGF10 Overlaps in the Development of the Arterial Pole of the Heart and Pharyngeal Arch Arteries. Circulation Research, 2010, 106, 495-503.	2.0	108
411	Systematic survey of variants in TBX1 in non-syndromic tetralogy of Fallot identifies a novel 57 base pair deletion that reduces transcriptional activity but finds no evidence for association with common variants. Heart, 2010, 96, 1651-1655.	1.2	61
412	Supportive Evidence for Reduced Expression of GNB1L in Schizophrenia. Schizophrenia Bulletin, 2010, 36, 756-765.	2.3	23
413	Autoregulatory Mechanisms Controlling the Microprocessor. Advances in Experimental Medicine and Biology, 2010, 700, 56-66.	0.8	14
414	The neural crest-enriched microRNA miR-452 regulates epithelial-mesenchymal signaling in the first pharyngeal arch. Development (Cambridge), 2010, 137, 4307-4316.	1.2	64
415	Role of Cardiac Neural Crest Cells in Morphogenesis of the Heart and Great Vessels. , 2010, , 417-439.		2
416	The Second Heart Field. , 2010, , 143-169.		4
417	Mirror-image type D interrupted aortic arch: A novel cardiac phenotype providing some perspective in the del22q11.2 syndrome. International Journal of Cardiology, 2010, 141, e47-e50.	0.8	2

		ON REPORT	
#	Article	IF	CITATIONS
418	Morphogenesis of the thyroid gland. Molecular and Cellular Endocrinology, 2010, 323, 35-54.	1.6	121
419	Hes1 expression is reduced in Tbx1 null cells and is required for the development of structures affected in 22q11 deletion syndrome. Developmental Biology, 2010, 340, 369-380.	0.9	57
420	Mesodermal Tbx1 is required for patterning the proximal mandible in mice. Developmental Biology, 2010, 344, 669-681.	0.9	52
421	Tbx1 regulates progenitor cell proliferation in the dental epithelium by modulating Pitx2 activation of p21. Developmental Biology, 2010, 347, 289-300.	0.9	36
422	Genomics of Congenital Heart Disease. , 2010, , 390-403.		0
423	Aetiology of Congenital Cardiac Disease. , 2010, , 161-171.		1
424	Stem Cell Models of Cardiac Development and Disease. Annual Review of Cell and Developmental Biology, 2010, 26, 667-687.	4.0	63
425	Fetal and Neonatal Diagnosis of Interrupted Aortic Arch: Associations and Outcomes. Fetal Diagnosis and Therapy, 2011, 30, 299-305.	0.6	13
427	Errors in Erasure: Links Between Histone Lysine Methylation Removal and Disease. , 2011, 67, 69-90.		18
428	Epigenetics and Disease. , 2011, , .		5
430	Genetics of Congenital Heart Defects. , 2011, , 283-304.		0
431	Cleft palate, retrognathia and congenital heart disease in velo-cardio-facial syndrome: A phenotype correlation study. International Journal of Pediatric Otorhinolaryngology, 2011, 75, 1167-1172.	0.4	18
432	Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: Patterning, proliferation, and mitochondrial functions of 22q11 genes. International Journal of Developmental Neuroscience, 2011, 29, 283-294.	0.7	57
433	The 22q11.2 microdeletion: Fifteen years of insights into the genetic and neural complexity of psychiatric disorders. International Journal of Developmental Neuroscience, 2011, 29, 259-281.	0.7	114
434	The consequences of structural genomic alterations in humans: Genomic Disorders, genomic instability and cancer. Seminars in Cell and Developmental Biology, 2011, 22, 875-885.	2.3	84
435	Molecular Mechanisms in 22q11 Deletion Syndrome. Schizophrenia Bulletin, 2011, 37, 882-889.	2.3	23
436	Redundant and dosage sensitive requirements for Fgf3 and Fgf10 in cardiovascular development. Developmental Biology, 2011, 356, 383-397.	0.9	47
437	The mechanism of TGFâ€Î² signaling during palate development. Oral Diseases, 2011, 17, 733-744.	1.5	96

#	Article	IF	CITATIONS
438	Absence of the vagus nerve in the stomach of Tbx1â~'/â~' mutant mice. Neurogastroenterology and Motility, 2011, 23, 125-130.	1.6	14
439	Annual Research Review: Transgenic mouse models of childhoodâ€onset psychiatric disorders. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2011, 52, 442-475.	3.1	27
440	Microdeletions and Microduplications in Patients with Congenital Heart Disease and Multiple Congenital Anomalies. Congenital Heart Disease, 2011, 6, 592-602.	0.0	82
441	The duplicated rainbow trout (<i>Oncorhynchus mykiss</i>) Tâ€box transcription factors 1, <i>tbx1a</i> and <i>tbx1b</i> , are upâ€regulated during testicular development. Molecular Reproduction and Development, 2011, 78, 172-180.	1.0	21
442	Cognitive, Behavioural and Psychiatric Phenotype in 22q11.2 Deletion Syndrome. Behavior Genetics, 2011, 41, 403-412.	1.4	115
443	Detecting 22q11.2 deletion in Chinese children with conotruncal heart defects and single nucleotide polymorphisms in the haploid TBX1 locus. BMC Medical Genetics, 2011, 12, 169.	2.1	25
444	Congenital anomalies and rhabdoid tumor associated with 22q11 germline deletion and somatic inactivation of the <i>SMARCB1</i> tumor suppressor. Genes Chromosomes and Cancer, 2011, 50, 379-388.	1.5	20
445	Genotype and cardiovascular phenotype correlations with TBX1 in 1,022 velo-cardio-facial/digeorge/22q11.2 deletion syndrome patients. Human Mutation, 2011, 32, 1278-1289.	1.1	57
446	<i>Xenopus</i> : An emerging model for studying congenital heart disease. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 495-510.	1.6	39
447	<i>Tbx1</i> , subpulmonary myocardium and conotruncal congenital heart defects. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 477-484.	1.6	47
448	Probing Human Cardiovascular Congenital Disease Using Transgenic Mouse Models. Progress in Molecular Biology and Translational Science, 2011, 100, 83-110.	0.9	15
449	Ripply3, a Tbx1 repressor, is required for development of the pharyngeal apparatus and its derivatives in mice. Development (Cambridge), 2011, 138, 339-348.	1.2	60
450	Inactivation of <i>Bmp4 </i> from the <i>Tbx1 </i> Expression Domain Causes Abnormal Pharyngeal Arch Artery and Cardiac Outflow Tract Remodeling. Cells Tissues Organs, 2011, 193, 393-403.	1.3	7
451	Mouse models for inherited endocrine and metabolic disorders. Journal of Endocrinology, 2011, 211, 211-230.	1.2	30
452	Chromosome 22q11.2 Deletion Syndrome (DiGeorge Syndrome/Velocardiofacial Syndrome). Medicine (United States), 2011, 90, 1-18.	0.4	381
453	Neuroradiological and Neurofunctional Examinations for Patients with 22q11.2 Deletion. Neuropediatrics, 2011, 42, 215-221.	0.3	13
454	A Rare Form of Persistent Right Aorta Arch in Linkage Disequilibrium with the DiGeorge Critical Region on CFA26 in German Pinschers. Journal of Heredity, 2011, 102, S68-S73.	1.0	5
455	Transcriptional Control in Cardiac Progenitors: Tbx1 Interacts with the BAF Chromatin Remodeling Complex and Regulates Wnt5a. PLoS Genetics, 2012, 8, e1002571.	1.5	109

#	Article	IF	CITATIONS
456	Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells. Journal of Cell Science, 2012, 125, 1738-49.	1.2	72
457	Tbx1 is a negative modulator of Mef2c. Human Molecular Genetics, 2012, 21, 2485-2496.	1.4	38
458	Screening for TBX1 Gene in Children With or Without Microdeletion of Chromosome 22q11 and Conotruncal Defect. Laboratory Medicine, 2012, 43, 11-13.	0.8	11
459	Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18839-18844.	3.3	89
460	Tbx1 regulates oral epithelial adhesion and palatal development. Human Molecular Genetics, 2012, 21, 2524-2537.	1.4	53
461	Age-Dependent MicroRNA Control of Synaptic Plasticity in 22q11 Deletion Syndrome and Schizophrenia. Journal of Neuroscience, 2012, 32, 14132-14144.	1.7	108
462	Structural heart disease. , 0, , 100-112.		0
463	Insights on Foxn1 Biological Significance and Usages of the "Nude―Mouse in Studies of T-Lymphopoiesis. International Journal of Biological Sciences, 2012, 8, 1156-1167.	2.6	36
464	Genetic Analysis of Essential Cardiac Transcription Factors in 256 Patients With Non-Syndromic Congenital Heart Defects. Circulation Journal, 2012, 76, 1703-1711.	0.7	73
465	Imaging of the Aorta: Embryology and Anatomy. Seminars in Ultrasound, CT and MRI, 2012, 33, 169-190.	0.7	21
466	How insights from cardiovascular developmental biology have impacted the care of infants and children with congenital heart disease. Mechanisms of Development, 2012, 129, 75-97.	1.7	26
467	Identification of a Tbx1/Tbx2/Tbx3 genetic pathway governing pharyngeal and arterial pole morphogenesis. Human Molecular Genetics, 2012, 21, 1217-1229.	1.4	68
468	Partitioning the heart: mechanisms of cardiac septation and valve development. Development (Cambridge), 2012, 139, 3277-3299.	1.2	179
469	Antibody deficiency in adults with 22q11.2 deletion syndrome. American Journal of Medical Genetics, Part A, 2012, 158A, 1934-1940.	0.7	23
470	Genetic analysis of the TBX1 gene promoter in ventricular septal defects. Molecular and Cellular Biochemistry, 2012, 370, 53-58.	1.4	17
471	Development and maturation of the spinal cord. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 3-30.	1.0	5
472	Embryology and Physiology of the Cardiovascular System. , 2012, , 699-713.		4

ARTICLE IF CITATIONS # KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. 13.7 363 474 Nature, 2012, 485, 363-367. The neural crest in cardiac congenital anomalies. Differentiation, 2012, 84, 25-40. 1.0 204 476 Genetics of Human Cardiovascular Disease. Cell, 2012, 148, 1242-1257. 13.5 395 Phenotypic variability of atypical 22q11.2 deletions not including <i>TBX1</i>. American Journal of Medical Genetics, Part A, 2012, 158Å, 2412-2420. MOZ Regulates the Tbx1 Locus, and Moz Mutation Partially Phenocopies DiGeorge Syndrome. 478 3.1 84 Developmental Cell, 2012, 23, 652-663. Localized and Temporal Gene Regulation in Heart Development. Current Topics in Developmental 479 1.0 Biology, 2012, 100, 171-201. Phenotypic heterogeneity in a family with a small atypical microduplication of Achromosome 22q11.2 480 0.7 24 involving TBX1. European Journal of Medical Genetics, 2012, 55, 732-736. Genetics and Genomics in Cardiovascular Gene Discovery., 2012, , 231-259. Cardiac Neural Crest and Congenital Heart Defects. Nihon Shoni Junkanki Gakkai Zasshi = Pediatric 482 0.0 1 Cardiology and Cardiac Surgery, 2012, 28, 110-116. Biallelic expression of $\langle i \rangle$ Tbx1 $\langle l \rangle$ protects the embryo from developmental defects caused by 0.8 increased receptor tyrosine kinase signaling. Developmental Dynamics, 2012, 241, 1310-1324. Screening of congenital heart disease patients using multiplex ligationâ€dependent probe amplification: 484 0.7 27 Early diagnosis of syndromic patients. American Journal of Medical Genetics, Part A, 2012, 158A, 720-725. Epigenetic mechanisms in cardiac development and disease. Acta Biochimica Et Biophysica Sinica, 2012, 54 44, 92-102. Notch pathway regulation of neural crest cell development in vivo. Developmental Dynamics, 2012, 486 0.8 61 241, 376-389. The 22q11 deletion: DiGeorge and velocardiofacial syndromes and the role of <i>TBX1</i>. Wiley 64 Interdisciplinary Reviews: Developmental Biology, 2013, 2, 393-403. Generation and characterization of Tbx1-AmCyan1 transgenic reporter mouse line that selectively 488 1.3 0 labels developing thymus primordium. Transgenic Research, 2013, 22, 659-666. Understanding the Role of Tbx1 as a Candidate Gene for 22q11.2 Deletion Syndrome. Current Allergy 489 2.4 and Asthma Reports, 2013, 13, 613-621. Embryology of the heart and its impact on understanding fetal and neonatal heart disease. Seminars in 490 1.1 40 Fetal and Neonatal Medicine, 2013, 18, 237-244. Congenital heart disease: emerging themes linking genetics and development. Current Opinion in 491 1.5 Genetics and Development, 2013, 23, 352-359.

#	Article	IF	CITATIONS
492	Complete but not partial thymectomy in early infancy reduces T-cell–mediated immune response: Three-year tracing study after pediatric cardiac surgery. Journal of Thoracic and Cardiovascular Surgery, 2013, 145, 656-662.e2.	0.4	26
493	<i>JAG1</i> Mutation in a patient with deletion 22q11.2 syndrome and tetralogy of Fallot. American Journal of Medical Genetics, Part A, 2013, 161, 3133-3136.	0.7	9
494	Chimeric Negative Regulation ofp14ARFandTBX1by a t(9;22) Translocation Associated with Melanoma, Deafness, and DNA Repair Deficiency. Human Mutation, 2013, 34, 1250-1259.	1.1	11
495	A candidate gene approach to identify modifiers of the palatal phenotype in 22q11.2 deletion syndrome patients. International Journal of Pediatric Otorhinolaryngology, 2013, 77, 123-127.	0.4	13
496	Phenotypic impact of genomic structural variation: insights from and for human disease. Nature Reviews Genetics, 2013, 14, 125-138.	7.7	502
497	Rare DNA copy number variants in cardiovascular malformations with extracardiac abnormalities. European Journal of Human Genetics, 2013, 21, 173-181.	1.4	49
498	Exploring a neurogenic basis of velopharyngeal dysfunction in Tbx1 mutant mice: No difference in volumes of the nucleus ambiguus. International Journal of Pediatric Otorhinolaryngology, 2013, 77, 1002-1007.	0.4	4
499	Signaling and Transcriptional Networks in Heart Development and Regeneration. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008292-a008292.	2.3	213
500	Tbx1 is required for second heart field proliferation in zebrafish. Developmental Dynamics, 2013, 242, 550-559.	0.8	45
501	Development and Function of Cortical Thymic Epithelial Cells. Current Topics in Microbiology and Immunology, 2013, 373, 1-17.	0.7	15
502	Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome. Clinical Immunology, 2013, 147, 11-22.	1.4	58
503	A genome-wide association study identifies two risk loci for congenital heart malformations in Han Chinese populations. Nature Genetics, 2013, 45, 818-821.	9.4	88
504	Cardiac outflow tract anomalies. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 499-530.	5.9	87
505	Evolution and development of the vertebrate neck. Journal of Anatomy, 2013, 222, 67-78.	0.9	59
506	NK4 Antagonizes Tbx1/10 to Promote Cardiac versus Pharyngeal Muscle Fate in the Ascidian Second Heart Field. PLoS Biology, 2013, 11, e1001725.	2.6	70
507	Molecular antagonism between X-chromosome and autosome signals determines nematode sex. Genes and Development, 2013, 27, 1159-1178.	2.7	27
508	Coâ€occurrence of 22q11 deletion syndrome and hdr syndrome. American Journal of Medical Genetics, Part A, 2013, 161, 2576-2581.	0.7	6
509	Mouse Models. , 2013, , 181-204.		1

#	Article	IF	Citations
510	<i>Tbx1</i> Genetically Interacts With the Transforming Growth Factor-β/Bone Morphogenetic Protein Inhibitor <i>Smad7</i> During Great Vessel Remodeling. Circulation Research, 2013, 112, 90-102.	2.0	46
511	Requirement for integrin-linked kinase in neural crest migration and differentiation and outflow tract morphogenesis. BMC Biology, 2013, 11, 107.	1.7	23
512	The Impact of Congenital Cardiovascular Malformations on the Assessment and Surgical Management of Infants with Cleft Lip and/or Palate. Cleft Palate-Craniofacial Journal, 2013, 50, 323-329.	0.5	18
513	DiGeorge Syndrome Gene tbx1 Functions through wnt11r to Regulate Heart Looping and Differentiation. PLoS ONE, 2013, 8, e58145.	1.1	35
514	22q11 deletion syndrome: a review of the neuropsychiatric features and their neurobiological basis. Neuropsychiatric Disease and Treatment, 2013, 9, 1873.	1.0	36
515	Mammalian TBX1 Preferentially Binds and Regulates Downstream Targets Via a Tandem T-site Repeat. PLoS ONE, 2014, 9, e95151.	1.1	33
516	The Cardiac Neural Crest and Their Role in Development and Disease. , 2014, , 205-229.		3
517	FOXN1 in Organ Development and Human Diseases. International Reviews of Immunology, 2014, 33, 83-93.	1.5	40
518	Tbx1 regulates brain vascularization. Human Molecular Genetics, 2014, 23, 78-89.	1.4	39
519	p53 suppression partially rescues the mutant phenotype in mouse models of DiGeorge syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13385-13390.	3.3	31
520	Molecular Determinants of Congenital Heart Disease. , 2014, , 151-179.		1
521	A Synaptic Function Approach to Investigating Complex Psychiatric Diseases. Neuroscientist, 2014, 20, 257-271.	2.6	22
522	Defects in Thymic Development. , 2014, , 221-242.		2
523	Genetic Syndromes with Evidence of Immune Deficiency. , 2014, , 281-324.		3
524	Tbx1 controls the morphogenesis of pharyngeal pouch epithelia through mesodermal Wnt11r and Fgf8a. Development (Cambridge), 2014, 141, 3583-3593.	1.2	46
525	Prdm1 functions in the mesoderm of the second heart field, where it interacts genetically with Tbx1, during outflow tract morphogenesis in the mouse embryo. Human Molecular Genetics, 2014, 23, 5087-5101.	1.4	21
526	Tbx1 Modulates Endodermal and Mesodermal Differentiation from Mouse Induced Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 1491-1500.	1.1	20
527	Tbx1 Coordinates Addition of Posterior Second Heart Field Progenitor Cells to the Arterial and Venous Poles of the Heart. Circulation Research, 2014, 115, 790-799.	2.0	105

ARTICLE IF CITATIONS Haploinsufficiency of interferon regulatory factor 6 alters brain morphology in the mouse. American 528 0.7 9 Journal of Medical Genetics, Part A, 2014, 164, 655-660. Connecting teratogenâ€induced congenital heart defects to neural crest cells and their effect on 529 3.6 cardiac function. Birth Defects Research Part C: Embryo Today Reviews, 2014, 102, 227-250. 530 DiGeorge Syndrome: A Serendipitous Discovery., 2014, , 229-240. 0 Identification of novel candidate gene loci and increased sex chromosome aneuploidy among infants with conotruncal heart defects. American Journal of Medical Genetics, Part A, 2014, 164, 397-406. Developing stratified epithelia: lessons from the epidermis and thymus. Wiley Interdisciplinary 532 5.9 26 Reviews: Developmental Biology, 2014, 3, 389-402. <i>HIC2</i> Is a Novel Dosage-Dependent Regulator of Cardiac Development Located Within the Distal 22q11 Deletion Syndrome Region. Circulation Research, 2014, 115, 23-31. Systematic Analyses of <i>rpm-1</i> Suppressors Reveal Roles for ESS-2 in mRNA Splicing in 534 1.2 17 <i>Caenorhabditis elegans</i>. Genetics, 2014, 198, 1101-1115. Targeted Chromosome Elimination from ES-Somatic Hybrid Cells., 2014, , 379-389. Regulation of Cardiac Cell Fate by microRNAs: Implications for Heart Regeneration. Cells, 2014, 3, 536 1.8 25 996-1026. Ectopic TBX1 suppresses thymic epithelial cell differentiation and proliferation during thymus 1.2 organogenesis. Development (Cambridge), 2014, 141, 2950-2958. 538 0.9 27 Ultrasound in Obstetrics and Gynecology, 2014, 43, 396-403. Development of the human aortic arch system captured in an interactive threeâ€dimensional reference 30 model. American Journal of Medical Genétics, Part A, 2014, 164, 1372-1383. Altered Tbx1 gene expression is associated with abnormal oesophageal development in the adriamycin 540 mouse model of oesophageal atresia/tracheo-oesophageal fistula. Pediatric Surgery International, 0.6 6 2014, 30, 143-149. Of mice and men: molecular genetics of congenital heart disease. Cellular and Molecular Life Sciences, 2014, 71, 1327-1352. 541 2.4 159 Tbx1 is required autonomously for cell survival and fate in the pharyngeal core mesoderm to form 542 1.4 31 the muscles of mastication. Human Molecular Genetics, 2014, 23, 4215-4231. Functional analysis of candidate genes in 2q13 deletion syndrome implicates FBLN7 and TMEM87B deficiency in congenital heart defects and FBLN7 in craniofacial malformations. Human Molecular Genetics, 2014, 23, 4272-4284. 543 1.4 Endodermâ€specific deletion of <i>Tbx1</i> reveals an FGFâ€independent role for Tbx1 in pharyngeal 544 0.8 24 apparatus morphogenesis. Developmental Dynamics, 2014, 243, 1143-1151. Kctd10 regulates heart morphogenesis by repressing the transcriptional activity of Tbx5a in zebrafish. 545 5.8 Nature Communications, 2014, 5, 3153.

#	Article	IF	CITATIONS
546	Insights into the Genetic Structure of Congenital Heart Disease from Human and Murine Studies on Monogenic Disorders. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a013946-a013946.	2.9	39
547	Thymus and Parathyroid Organogenesis. , 2014, , 869-897.		0
548	Genetics of Cardiovascular Development. Progress in Molecular Biology and Translational Science, 2014, 124, 19-41.	0.9	8
549	Mesodermal expression of integrin α5β1 regulates neural crest development and cardiovascular morphogenesis. Developmental Biology, 2014, 395, 232-244.	0.9	30
551	The T-box gene family: emerging roles in development, stem cells and cancer. Development (Cambridge), 2014, 141, 3819-3833.	1.2	246
553	Comprehensive Approach to Adult Congenital Heart Disease. , 2014, , .		7
554	Molecular Basis of Cardiac Development. , 2014, , 1-22.		1
555	Genetic analysis of the TBX1 gene promoter in indirect inguinal hernia. Gene, 2014, 535, 290-293.	1.0	12
556	Zebrafish as a model for understanding the evolution of the vertebrate immune system and human primary immunodeficiency. Experimental Hematology, 2014, 42, 697-706.	0.2	40
557	Cell-intrinsic requirement of Dscam1 isoform diversity for axon collateral formation. Science, 2014, 344, 1182-1186.	6.0	66
558	Specific disruption of thalamic inputs to the auditory cortex in schizophrenia models. Science, 2014, 344, 1178-1182.	6.0	107
559	The 22q11.2 Deletion Syndrome. , 0, , 100-111.		1
560	22q11.2 deletion syndrome. Nature Reviews Disease Primers, 2015, 1, 15071.	18.1	954
561	8p23.1 Interstitial Deletion in a Patient with Congenital Cardiopathy, Neurobehavioral Disorders, and Minor Signs Suggesting 22q11.2 Deletion Syndrome. Journal of Developmental and Behavioral Pediatrics, 2015, 36, 544-548.	0.6	10
562	Pharyngeal arch deficiencies affect taste bud development in the circumvallate papilla with aberrant glossopharyngeal nerve formation. Developmental Dynamics, 2015, 244, 874-887.	0.8	7
563	22q11 Deletion Syndrome. , 2015, , 677-696.		2
564	Regulating Craniofacial Development at the 3′ End. Current Topics in Developmental Biology, 2015, 115, 335-375.	1.0	11
565	Identification of Copy Number Variations in Isolated Tetralogy of Fallot. Pediatric Cardiology, 2015, 36, 1642-1646.	0.6	12

#	Article	IF	CITATIONS
566	Developmental Genetics of the Pharyngeal Arch System. Colloquium Series on Developmental Biology, 2015, 2, 1-108.	0.2	1
567	22q11.21 Deletion Syndromes: A Review of Proximal, Central, and Distal Deletions and Their Associated Features. Cytogenetic and Genome Research, 2015, 146, 89-99.	0.6	1,385
568	Loss of Tbx1 induces bone phenotypes similar to cleidocranial dysplasia. Human Molecular Genetics, 2015, 24, 424-435.	1.4	27
569	A defect in early myogenesis causes Otitis media in two mouse models of 22q11.2 Deletion Syndrome. Human Molecular Genetics, 2015, 24, 1869-1882.	1.4	23
570	Chromosomal Imbalances in Patients with Congenital Cardiac Defects: A Meta-analysis Reveals Novel Potential Critical Regions Involved in Heart Development. Congenital Heart Disease, 2015, 10, 193-208.	0.0	24
571	TBX1 protein interactions and microRNA-96-5p regulation controls cell proliferation during craniofacial and dental development: implications for 22q11.2 deletion syndrome. Human Molecular Genetics, 2015, 24, 2330-2348.	1.4	47
572	Why increased nuchal translucency is associated with congenital heart disease: a systematic review on genetic mechanisms. Prenatal Diagnosis, 2015, 35, 517-528.	1.1	22
573	Exclusion of chromosomal abnormalities and microdeletions 22q11 and 10p13 in algerian patients with isolated conotruncal malformation. Cytology and Genetics, 2015, 49, 36-41.	0.2	0
574	T-Box Genes and Developmental Anomalies. , 2015, , 635-652.		0
575	Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development. Progress in Neurobiology, 2015, 130, 1-28.	2.8	82
576	A Novel TBX1 Loss-of-Function Mutation Associated with Congenital Heart Disease. Pediatric Cardiology, 2015, 36, 1400-1410.	0.6	34
577	Copy-Number Variation of the Glucose Transporter Gene SLC2A3 and Congenital Heart Defects in the 22q11.2 Deletion Syndrome. American Journal of Human Genetics, 2015, 96, 753-764.	2.6	62
578	Gene discovery and functional assessment of rare copy-number variants in neurodevelopmental disorders. Briefings in Functional Genomics, 2015, 14, 315-328.	1.3	24
579	Unraveling the Link Between Ectodermal Disorders and Primary Immunodeficiencies. International Reviews of Immunology, 2015, 35, 1-14.	1.5	7
580	Mesodermal expression of Moz is necessary for cardiac septum development. Developmental Biology, 2015, 403, 22-29.	0.9	21
581	Histone Modifier Genes Alter Conotruncal Heart Phenotypes in 22q11.2 Deletion Syndrome. American Journal of Human Genetics, 2015, 97, 869-877.	2.6	49
582	Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner. Developmental Biology, 2015, 407, 195-210.	0.9	53
583	Development of Thymic Epithelial Cells. , 2016, , 169-181.		0

	C	ITATION REPO	RT	
#	Article	IF		Citations
584	Screening for Mutations in the TBX1 Gene on Chromosome 22q11.2 in Schizophrenia. Genes, 2016,	7, 102. 1.	0	5
585	Ciona as a Simple Chordate Model for Heart Development and Regeneration. Journal of Cardiovascular Development and Disease, 2016, 3, 25.	0.	.8	34
586	SDF1-CXCR4 signaling: A new player involved in DiGeorge/22q11-deletion syndrome. Rare Diseases (Austin, Tex), 2016, 4, e1195050.	1.	8	6
588	Genetic Advances in the Understanding of Microtia. Journal of Pediatric Genetics, 2016, 05, 189-197	7. 0.	.3	38
589	Delineation of a recognizable phenotype for the recurrent LCR22 to D/E atypical 22q11.2 deletic American Journal of Medical Genetics, Part A, 2016, 170, 1485-1494.	on. 0.	.7	9
590	Vitamin B12 ameliorates the phenotype of a mouse model of DiGeorge syndrome. Human Molecular Genetics, 2016, 25, ddw267.	. 1.	4	16
591	FOXN1 in thymus organogenesis and development. European Journal of Immunology, 2016, 46, 182	6-1837. 1.	6	90
592	Rapid molecular diagnostics of severe primary immunodeficiency determined by using targeted next-generation sequencing. Journal of Allergy and Clinical Immunology, 2016, 138, 1142-1151.e2.	1.	5	85
593	Mapping cellular processes in the mesenchyme during palatal development in the absence of Tbx1 reveals complex proliferation changes and perturbed cell packing and polarity. Journal of Anatomy, 2016, 228, 464-473.	0.	.9	12
594	Mechanism responsible for Dâ€transposition of the great arteries: Is this part of the spectrum of rigl isomerism?. Congenital Anomalies (discontinued), 2016, 56, 196-202.	it o	.3	9
595	A novel de novoTBX5mutation in a patient with Holt-Oram syndrome leading to a dramatically reduc biological function. Molecular Genetics & Genomic Medicine, 2016, 4, 557-567.	ed o	.6	17
596	Rebalancing gene haploinsufficiency in vivo by targeting chromatin. Nature Communications, 2016, 11688.	7, ₅ .	.8	66
597	Coronary stem development in wildâ€ŧype and <i>Tbx1</i> null mouse hearts. Developmental Dyna 2016, 245, 445-459.	mics, O.	.8	26
598	An affected core drives network integration deficits of the structural connectome in 22q11.2 deletion syndrome. NeuroImage: Clinical, 2016, 10, 239-249.	1.	4	19
599	Mode of reduction in the number of pharyngeal segments within the sarcopterygians. Zoological Letters, 2016, 2, 6.	0.	.7	13
600	Etiology and Morphogenesis of Congenital Heart Disease. , 2016, , .			19
601	Disruption of CXCR4 signaling in pharyngeal neural crest cells causes DiGeorge syndrome-like malformations. Development (Cambridge), 2016, 143, 582-8.	1.	2	33
602	22q11.2 Deletion Syndrome due to a Translocation t(6;22) in a Patient Conceived via in vitro Fertilization. Molecular Syndromology, 2016, 6, 242-247.	0.	.3	3

#	Article	IF	CITATIONS
603	Cortical Development Requires Mesodermal Expression of <i>Tbx1</i> , a Gene Haploinsufficient in 22q11.2 Deletion Syndrome. Cerebral Cortex, 2017, 27, bhw076.	1.6	13
604	Genetic and Developmental Basis of Cardiovascular Malformations. Clinics in Perinatology, 2016, 43, 39-53.	0.8	21
605	Human Genetics of Truncus Arteriosus. , 2016, , 559-567.		4
606	Hard to swallow: Developmental biological insights into pediatric dysphagia. Developmental Biology, 2016, 409, 329-342.	0.9	39
608	Pharyngeal arch artery defects and lethal malformations of the aortic arch and its branches in mice deficient for the Hrt1/Hey1 transcription factor. Mechanisms of Development, 2016, 139, 65-73.	1.7	16
609	Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Molecular Psychiatry, 2017, 22, 1313-1326.	4.1	68
610	The benefits and limitations of cellâ€free DNA screening for 22q11.2 deletion syndrome. Prenatal Diagnosis, 2017, 37, 53-60.	1.1	28
611	Modeling Human Craniofacial Disorders in Xenopus. Current Pathobiology Reports, 2017, 5, 79-92.	1.6	44
612	Genetic Drivers of Kidney Defects in the DiGeorge Syndrome. New England Journal of Medicine, 2017, 376, 742-754.	13.9	120
614	Chromosome microarray analysis in the investigation of children with congenital heart disease. BMC Pediatrics, 2017, 17, 117.	0.7	34
615	<i>TCF21</i> rs12190287 Polymorphisms Are Associated with Ventricular Septal Defects in a Chinese Population. Genetic Testing and Molecular Biomarkers, 2017, 21, 312-315.	0.3	8
616	Heart Failure in Pediatric Patients With Congenital Heart Disease. Circulation Research, 2017, 120, 978-994.	2.0	110
617	Genetics and Genomics of Congenital Heart Disease. Circulation Research, 2017, 120, 923-940.	2.0	349
618	Endothelium in the pharyngeal arches 3, 4 and 6 is derived from the second heart field. Developmental Biology, 2017, 421, 108-117.	0.9	39
619	CXCL12-CXCR4 signalling plays an essential role in proper patterning of aortic arch and pulmonary arteries. Cardiovascular Research, 2017, 113, 1677-1687.	1.8	25
620	Genome-Wide Association Study to Find Modifiers for Tetralogy of Fallot in the 22q11.2 Deletion Syndrome Identifies Variants in the <i>GPR98</i> Locus on 5q14.3. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	22
621	Expression, function, and regulation of the embryonic transcription factor TBX1 in parathyroid tumors. Laboratory Investigation, 2017, 97, 1488-1499.	1.7	25
622	Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nature Communications, 2017, 8, 599.	5.8	298

#	Article	IF	CITATIONS
623	Congenital heart disease and genetic syndromes: new insights into molecular mechanisms. Expert Review of Molecular Diagnostics, 2017, 17, 861-870.	1.5	39
624	Regulation of Sema3c and the Interaction between Cardiac Neural Crest and Second Heart Field during Outflow Tract Development. Scientific Reports, 2017, 7, 6771.	1.6	45
625	Unraveling the genetic architecture of copy number variants associated with schizophrenia and other neuropsychiatric disorders. Journal of Neuroscience Research, 2017, 95, 1144-1160.	1.3	37
626	A Molecular Prospective for HIRA Complex Assembly and H3.3-Specific Histone Chaperone Function. Journal of Molecular Biology, 2017, 429, 1924-1933.	2.0	31
627	TBX1 loss‑of‑function mutation contributes to congenital conotruncal defects. Experimental and Therapeutic Medicine, 2018, 15, 447-453.	0.8	14
628	Mapping the distribution of stem/progenitor cells across the middle ear during homeostasis and inflammation. Development (Cambridge), 2018, 145, .	1.2	15
629	Cardioskeletal Muscle Disease Associated With Chromosomal Disorders. , 2017, , 331-344.		0
630	Chromosome 22q11 Deletion Syndrome: Discovery and Associated Cardiovascular Anomalies. Nihon Shoni Junkanki Gakkai Zasshi = Pediatric Cardiology and Cardiac Surgery, 2017, 33, 3-9.	0.0	Ο
631	T-Box Genes in Human Development and Disease. Current Topics in Developmental Biology, 2017, 122, 383-415.	1.0	30
632	T-Box Genes in the Kidney and Urinary Tract. Current Topics in Developmental Biology, 2017, 122, 245-278.	1.0	5
633	Tbx1. Current Topics in Developmental Biology, 2017, 122, 223-243.	1.0	56
634	Reduced dosage of β-catenin provides significant rescue of cardiac outflow tract anomalies in a Tbx1 conditional null mouse model of 22q11.2 deletion syndrome. PLoS Genetics, 2017, 13, e1006687.	1.5	27
635	Integrated rare variant-based risk gene prioritization in disease case-control sequencing studies. PLoS Genetics, 2017, 13, e1007142.	1.5	7
636	Critical region within 22q11.2 linked to higher rate of autism spectrum disorder. Molecular Autism, 2017, 8, 58.	2.6	37
637	Zebrafish: A Model System to Study the Architecture of Human Genetic Disease. , 2017, , 651-670.		2
638	Dysregulation of TBX1 dosage in the anterior heart field results in congenital heart disease resembling the 22q11.2 duplication syndrome. Human Molecular Genetics, 2018, 27, 1847-1857.	1.4	16
639	Structural variation in the 3D genome. Nature Reviews Genetics, 2018, 19, 453-467.	7.7	508
640	Congenital heart diseases and cardiovascular abnormalities in 22q11.2 deletion syndrome: From wellâ€established knowledge to new frontiers. American Journal of Medical Genetics, Part A, 2018, 176, 2087-2098.	0.7	57

#	Article	IF	CITATIONS
641	Variable immune deficiency related to deletion size in chromosome 22q11.2 deletion syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 2082-2086.	0.7	53
642	Critical role of phosphodiesterase 2A in mouse congenital heart defects. Cardiovascular Research, 2018, 114, 830-845.	1.8	19
643	Physiology of cardiac development: from genetics to signaling to therapeutic strategies. Current Opinion in Physiology, 2018, 1, 123-139.	0.9	22
644	A higher rare CNV burden in the genetic background potentially contributes to intellectual disability phenotypes in 22q11.2 deletion syndrome. European Journal of Medical Genetics, 2018, 61, 209-212.	0.7	17
645	Evaluation of loss of heterozygosity of chromosome 22q11.21 region in patients with congenital heart diseases. Egyptian Heart Journal, 2018, 70, 267-270.	0.4	0
646	OBSOLETE: Heart Development. , 2018, , .		Ο
647	Loss of CXCL12/CXCR4 signalling impacts several aspects of cardiovascular development but does not exacerbate Tbx1 haploinsufficiency. PLoS ONE, 2018, 13, e0207251.	1.1	11
648	Asymmetry in Mechanosensitive Gene Expression during Aortic Arch Morphogenesis. Scientific Reports, 2018, 8, 16948.	1.6	9
649	Heterozygous Mutations in TBX1 as a Cause of Isolated Hypoparathyroidism. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4023-4032.	1.8	15
650	Regulation and Function of Cardiac Neural Crest Cells â~†. , 2018, , .		1
650 651	Regulation and Function of Cardiac Neural Crest Cells â ⁺ t. , 2018, , . The impact of hypocalcemia on full scale IQ in patients with 22q11.2 deletion syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 2167-2171.	0.7	1
	The impact of hypocalcemia on full scale IQ in patients with 22q11.2 deletion syndrome. American	0.7	
651	The impact of hypocalcemia on full scale IQ in patients with 22q11.2 deletion syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 2167-2171. Defective Vagal Innervation in Murine Tbx1 Mutant Hearts. Journal of Cardiovascular Development		7
651 652	The impact of hypocalcemia on full scale IQ in patients with 22q11.2 deletion syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 2167-2171. Defective Vagal Innervation in Murine Tbx1 Mutant Hearts. Journal of Cardiovascular Development and Disease, 2018, 5, 49. Molecular genetics of 22q11.2 deletion syndrome. American Journal of Medical Genetics, Part A, 2018,	0.8	7 5
651 652 653	The impact of hypocalcemia on full scale IQ in patients with 22q11.2 deletion syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 2167-2171. Defective Vagal Innervation in Murine Tbx1 Mutant Hearts. Journal of Cardiovascular Development and Disease, 2018, 5, 49. Molecular genetics of 22q11.2 deletion syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 2070-2081. Genetic Imbalances in Argentinean Patients with Congenital Conotruncal Heart Defects. Genes, 2018, 9,	0.8 0.7	7 5 96
651652653654	The impact of hypocalcemia on full scale IQ in patients with 22q11.2 deletion syndrome. American Journal of Medical Cenetics, Part A, 2018, 176, 2167-2171. Defective Vagal Innervation in Murine Tbx1 Mutant Hearts. Journal of Cardiovascular Development and Disease, 2018, 5, 49. Molecular genetics of 22q11.2 deletion syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 2070-2081. Genetic Imbalances in Argentinean Patients with Congenital Conotruncal Heart Defects. Genes, 2018, 9, 454. Tbx1 represses Mef2c gene expression and is correlated with histone 3 deacetylation of the anterior	0.8 0.7 1.0	7 5 96 4
 651 652 653 654 655 	The impact of hypocalcemia on full scale IQ in patients with 22q11.2 deletion syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 2167-2171. Defective Vagal Innervation in Murine Tbx1 Mutant Hearts. Journal of Cardiovascular Development and Disease, 2018, 5, 49. Molecular genetics of 22q11.2 deletion syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 2070-2081. Genetic Imbalances in Argentinean Patients with Congenital Conotruncal Heart Defects. Genes, 2018, 9, 454. Tbx1 represses Mef2c gene expression and is correlated with histone 3 deacetylation of the anterior heart field enhancer. DMM Disease Models and Mechanisms, 2018, 11, . Role of Epigenetics in Cardiac Development and Congenital Diseases. Physiological Reviews, 2018, 98,	0.8 0.7 1.0 1.2	 7 5 96 4 10

#	Article	IF	CITATIONS
659	Hypoparathyroidism. , 2018, , 617-636.		0
660	Pervasive genetic interactions modulate neurodevelopmental defects of the autism-associated 16p11.2 deletion in Drosophila melanogaster. Nature Communications, 2018, 9, 2548.	5.8	56
661	Mouse Models: Approaches to Generate In Vivo Models for Hereditary Disorders of Mineral and Skeletal Homeostasis. , 2018, , 89-118.		0
662	Heart Development. , 2018, , 380-398.		0
663	Gene expression profiling in the developing secondary palate in the absence of Tbx1 function. BMC Genomics, 2018, 19, 429.	1.2	3
664	22q11.2 Deletion Syndrome. , 2018, , 621-626.e1.		4
665	Congenital Heart Defects and Ciliopathies Associated With Renal Phenotypes. Frontiers in Pediatrics, 2018, 6, 175.	0.9	18
666	Functional variants in TBX2 are associated with a syndromic cardiovascular and skeletal developmental disorder. Human Molecular Genetics, 2018, 27, 2454-2465.	1.4	54
667	Deletion of the T-box transcription factor gene, Tbx1, in mice induces differential expression of genes associated with cleft palate in humans. Archives of Oral Biology, 2018, 95, 149-155.	0.8	5
668	Novel heterozygous mutation in <i>TBX1</i> in an infant with hypocalcemic seizures. Clinical Pediatric Endocrinology, 2018, 27, 159-164.	0.4	13
669	22q11.2 microduplication syndrome and juvenile glaucoma. Ophthalmic Genetics, 2018, 39, 532-538.	0.5	3
670	Developmental Biology of the Heart. , 2018, , 724-740.e3.		2
671	Tbx1 regulates inherited metabolic and myogenic abilities of progenitor cells derived from slow- and fast-type muscle. Cell Death and Differentiation, 2019, 26, 1024-1036.	5.0	23
672	Association between phenotype and deletion size in 22q11.2 microdeletion syndrome: systematic review and meta-analysis. Orphanet Journal of Rare Diseases, 2019, 14, 195.	1.2	22
673	Genome-wide association study identifies 14 previously unreported susceptibility loci for adolescent idiopathic scoliosis in Japanese. Nature Communications, 2019, 10, 3685.	5.8	47
674	Tbx1 and Foxi3 genetically interact in the pharyngeal pouch endoderm in a mouse model for 22q11.2 deletion syndrome. PLoS Genetics, 2019, 15, e1008301.	1.5	27
675	Gene profiling of head mesoderm in early zebrafish development: insights into the evolution of cranial mesoderm. EvoDevo, 2019, 10, 14.	1.3	21
676	Reduced maternal vitamin A status increases the incidence of normal aortic arch variants. Genesis, 2019, 57, e23326.	0.8	2

ARTICLE IF CITATIONS Structural Heart Disease: Embryology., 2019, , 110-122. 0 677 A case report of T-box 1 mutation causing phenotypic features of chromosome 22q11.2 deletion 678 1.3 syndrome. Clinical Diabetes and Endocrinology, 2019, 5, 13. Epithelial Development Based on a Branching Morphogenesis Program: The Special Condition of 679 1 Thymic Epithelium. , 2019, , . Genetics in cardiovascular diseases. Italian Journal of Medicine, 2019, 13, 137-151. 680 0.2 An interaction-based model for neuropsychiatric features of copy-number variants. PLoS Genetics, 681 1.5 39 2019, 15, e1007879. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all 1.5 56 suspects?. Journal of Neurodevelopmental Disorders, 2019, 11, 7. Tbx1 regulates extracellular matrix-cell interactions in the second heart field. Human Molecular 683 1.4 30 Genetics, 2019, 28, 2295-2308. Retinoic acid signaling in heart development. Genesis, 2019, 57, e23300. 684 0.8 24 685 Thymus Ontogeny and Development., 2019, , 19-34. 3 Left pulmonary artery in 22q11.2 deletion syndrome. Echocardiographic evaluation in patients without 1.1 cardiac defects and role of Tbx1 in mice. PLoS ONE, 2019, 14, e0211170. Gene-environment interaction impacts on heart development and embryo survival. Development 687 1.2 43 (Cambridge), 2019, 146, . <i>Pax9</i> is required for cardiovascular development and interacts with <i>Tbx1</i> in the pharyngeal endoderm to control 4th pharyngeal arch artery morphogenesis. Development 1.2 (Cambridge), 2019, 146, . PDGF signaling from pharyngeal pouches promotes arch artery morphogenesis. Journal of Genetics 690 1.7 10 and Genomics, 2019, 46, 551-559. Chromosome 22q11.2 deletion syndrome and DiGeorge syndrome. Immunological Reviews, 2019, 287, 691 2.8 186-201. Choanal atresia and stenosis: Development and diseases of the nasal cavity. Wiley Interdisciplinary 692 5.9 20 Reviews: Developmental Biology, 2019, 8, e336. Whole Exome Sequencing Reveals the Major Genetic Contributors to Nonsyndromic Tetralogy of 118 Fallot. Circulation Research, 2019, 124, 553-563. Characterization and function of the T-box 1 gene in Chinese giant salamander Andrias davidianus. 694 1.35 Genomics, 2019, 111, 1351-1359. TBX1 variant as a cause of non-syndromic familial vascular ring. Progress in Pediatric Cardiology, 2020, 56, 101173.

	Сітатіс	on Report	
#	Article	IF	CITATIONS
696	Complete Sequence of the 22q11.2 Allele in 1,053 Subjects with 22q11.2 Deletion Syndrome Reveals Modifiers of Conotruncal Heart Defects. American Journal of Human Genetics, 2020, 106, 26-40.	2.6	42
697	Congenital heart defects in CHARGE: The molecular role of CHD7 and effects on cardiac phenotype and clinical outcomes. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 81-89.	0.7	17
698	Parathyroid hormone molecular biology. , 2020, , 575-594.		2
699	Genetic regulation of parathyroid gland development. , 2020, , 1355-1377.		0
700	Candidate modifier genes for immune function in 22q11.2 deletion syndrome. Molecular Genetics & Genomic Medicine, 2020, 8, e1057.	0.6	3
701	Cardiopharyngeal Progenitor Specification: Multiple Roads to the Heart and Head Muscles. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036731.	2.3	16
702	Genetic characterisation of 22q11.2 variations and prevalence in patients with congenital heart disease. Archives of Disease in Childhood, 2020, 105, 367-374.	1.0	17
703	Importance of endothelial Hey1 expression for thoracic great vessel development and its distal enhancer for Notch-dependent endothelial transcription. Journal of Biological Chemistry, 2020, 295, 17632-17645.	1.6	8
704	A dual role for <i>Tbx1</i> in cardiac lymphangiogenesis through genetic interaction with <i>Vegfr3</i> . FASEB Journal, 2020, 34, 15062-15079.	0.2	11
705	Variations in maternal vitamin A intake modifies phenotypes in a mouse model of 22q11.2 deletion syndrome. Birth Defects Research, 2020, 112, 1194-1208.	0.8	7
706	Pharyngeal epithelial deletion of Tbx1 causes caudal pharyngeal arch defect but not cardiac conotruncal anomaly. Biochemical and Biophysical Research Communications, 2020, 533, 1315-1322.	1.0	1
707	The spectrum of brain malformations and disruptions in twins. American Journal of Medical Genetics, Part A, 2021, 185, 2690-2718.	0.7	13
708	Uncovering the secreted signals and transcription factors regulating the development of mammalian middle ear ossicles. Developmental Dynamics, 2020, 249, 1410-1424.	0.8	8
709	Early Embryonic Expression of AP-2α Is Critical for Cardiovascular Development. Journal of Cardiovascular Development and Disease, 2020, 7, 27.	0.8	6
710	New Insights Into Cranial Synchondrosis Development: A Mini Review. Frontiers in Cell and Developmental Biology, 2020, 8, 706.	1.8	22
711	Thymus Inception: Molecular Network in the Early Stages of Thymus Organogenesis. International Journal of Molecular Sciences, 2020, 21, 5765.	1.8	8
712	Cardiopharyngeal mesoderm origins of musculoskeletal and connective tissues in the mammalian pharynx. Development (Cambridge), 2020, 147, .	1.2	36
713	Molecular Insights Into the Causes of Human Thymic Hypoplasia With Animal Models. Frontiers in Immunology, 2020, 11, 830.	2.2	16

# 714	ARTICLE Pulmonary ductal coarctation and left pulmonary artery interruption; pathology and role of neural crest and second heart field during development. PLoS ONE, 2020, 15, e0228478.	IF 1.1	CITATIONS
715	Pax9 and Gbx2 Interact in the Pharyngeal Endoderm to Control Cardiovascular Development. Journal of Cardiovascular Development and Disease, 2020, 7, 20.	0.8	8
716	TBX1 Regulates Chondrocyte Maturation in the Spheno-occipital Synchondrosis. Journal of Dental Research, 2020, 99, 1182-1191.	2.5	8
717	Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes. Journal of Developmental Biology, 2020, 8, 6.	0.9	17
718	22q11.2 deletion syndrome. , 2020, , 143-164.		0
719	T-cell Receptor Excision Circles in Newborns with Heart Defects. Pediatric Cardiology, 2020, 41, 809-815.	0.6	6
720	The Genetics and Epigenetics of 22q11.2 Deletion Syndrome. Frontiers in Genetics, 2019, 10, 1365.	1.1	64
721	Genetic syndromes with evidence of immune deficiency. , 2020, , 61-97.		1
722	Drosophila models of pathogenic copy-number variant genes show global and non-neuronal defects during development. PLoS Genetics, 2020, 16, e1008792.	1.5	9
723	Defects in thymic development. , 2020, , 357-379.		2
724	Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension. , 2020, , .		4
725	Comprehensive analysis of a novel mouse model of the 22q11.2 deletion syndrome: a model with the most common 3.0-Mb deletion at the human 22q11.2 locus. Translational Psychiatry, 2020, 10, 35.	2.4	30
726	Suckling, Feeding, and Swallowing: Behaviors, Circuits, and Targets for Neurodevelopmental Pathology. Annual Review of Neuroscience, 2020, 43, 315-336.	5.0	26
727	NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models. PLoS Genetics, 2020, 16, e1008590.	1.5	30
728	Visualization and Analysis of Pharyngeal Arch Arteries using Whole-mount Immunohistochemistry and 3D Reconstruction. Journal of Visualized Experiments, 2020, , .	0.2	8
729	Cardiac Neural Crest. Cold Spring Harbor Perspectives in Biology, 2021, 13, a036715.	2.3	19
730	Olfactory Neuroepithelium Cells from Cannabis Users Display Alterations to the Cytoskeleton and to Markers of Adhesion, Proliferation and Apoptosis. Molecular Neurobiology, 2021, 58, 1695-1710.	1.9	6
731	Cell-Extracellular Matrix Interactions Play Multiple Essential Roles in Aortic Arch Development. Circulation Research, 2021, 128, e27-e44.	2.0	15

#	Article	IF	CITATIONS
732	In Vivo and In Vitro Genetic Models of Congenital Heart Disease. Cold Spring Harbor Perspectives in Biology, 2021, 13, a036764.	2.3	23
733	Genetic Etiology of Leftâ€Sided Obstructive Heart Lesions: A Story in Development. Journal of the American Heart Association, 2021, 10, e019006.	1.6	23
734	Identifying of 22q11.2 variations in Chinese patients with development delay. BMC Medical Genomics, 2021, 14, 26.	0.7	9
736	Contribution of Mitochondrial DNA Heteroplasmy to the Congenital Cardiac and Palatal Phenotypic Variability in Maternally Transmitted 22q11.2 Deletion Syndrome. Genes, 2021, 12, 92.	1.0	0
738	Cardiac Development: A Glimpse on Its Translational Contributions. Hearts, 2021, 2, 87-118.	0.4	1
739	MLPA analysis of 32 foetuses with a congenital heart defect and 1 foetus with renal defects - pilot study. The significant frequency rate of presented pathological CNV. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2022, 166, 187-194.	0.2	2
740	The Role of Genetic Factors in Endocrine Tissues Development and Its Regulation In Vivo and In Vitro. Russian Journal of Genetics, 2021, 57, 273-281.	0.2	0
741	EZH2 is required for parathyroid and thymic development through differentiation of the third pharyngeal pouch endoderm. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	7
742	Genetic and Cellular Interaction During Cardiovascular Development Implicated in Congenital Heart Diseases. Frontiers in Cardiovascular Medicine, 2021, 8, 653244.	1.1	12
743	Understanding Heart Field Progenitor Cells for Modeling Congenital Heart Diseases. Current Cardiology Reports, 2021, 23, 38.	1.3	5
744	Coexistence of DiGeorge syndrome with Fahr syndrome, mosaic Turner syndrome and psychiatric symptoms: A case report Psychiatria Polska, 2021, 55, 397-404.	0.2	1
745	Mutations in RNA Methyltransferase Gene NSUN5 Confer High Risk of Outflow Tract Malformation. Frontiers in Cell and Developmental Biology, 2021, 9, 623394.	1.8	6
746	Congenital Athymia: Genetic Etiologies, Clinical Manifestations, Diagnosis, and Treatment. Journal of Clinical Immunology, 2021, 41, 881-895.	2.0	26
747	<i>Setd5</i> is required in cardiopharyngeal mesoderm for heart development and its haploinsufficiency is associated with outflow tract defects in mouse. Genesis, 2021, 59, e23421.	0.8	6
748	Long Noncoding RNA lnc-TSSK2-8 Activates Canonical Wnt/β-Catenin Signaling Through Small Heat Shock Proteins HSPA6 and CRYAB. Frontiers in Cell and Developmental Biology, 2021, 9, 660576.	1.8	7
749	Differential Spatio-Temporal Regulation of T-Box Gene Expression by microRNAs during Cardiac Development. Journal of Cardiovascular Development and Disease, 2021, 8, 56.	0.8	3
750	Maternal iron deficiency perturbs embryonic cardiovascular development in mice. Nature Communications, 2021, 12, 3447.	5.8	17
751	Prenatal sonographic and cytogenetic/molecular findings of 22q11.2 microdeletion syndrome in 48 confirmed cases in a single tertiary center. Archives of Gynecology and Obstetrics, 2022, 305, 323-342.	0.8	6

#	Article	IF	CITATIONS
753	The Cardiac Neural Crest Cells in Heart Development and Congenital Heart Defects. Journal of Cardiovascular Development and Disease, 2021, 8, 89.	0.8	7
754	Variants in a cis-regulatory element of TBX1 in conotruncal heart defect patients impair GATA6-mediated transactivation. Orphanet Journal of Rare Diseases, 2021, 16, 334.	1.2	9
756	Cardiac Defects and Genetic Syndromes: Old Uncertainties and New Insights. Genes, 2021, 12, 1047.	1.0	12
757	<i>egfl6</i> expression in the pharyngeal pouch is dispensable for craniofacial development. Animal Cells and Systems, 2021, 25, 255-263.	0.8	1
758	Pharyngeal endoderm expression of nanos1 is dispensable for craniofacial development. Gene Expression Patterns, 2021, 41, 119202.	0.3	0
759	Pharmacological Rescue of the Brain Cortex Phenotype of Tbx1 Mouse Mutants: Significance for 22q11.2 Deletion Syndrome. Frontiers in Molecular Neuroscience, 2021, 14, 663598.	1.4	2
760	The Names of Things: The 2018 Bernard Sachs Lecture. Pediatric Neurology, 2021, 122, 41-49.	1.0	0
761	Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Translational Pediatrics, 2021, 10, 2366-2386.	0.5	26
762	22q11.2 Deletion Syndrome. , 2021, , 154-163.		2
763	22q11.2 deletion syndrome and congenital heart disease. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 64-72.	0.7	66
764	Development of Parathyroid Glands. , 2005, , 1-7.		2
765	Genetic Causes of Hypoparathyroidism. , 2005, , 159-178.		1
766	The Neural Crest and Craniofacial Malformations. , 2006, , 191-228.		2
767	Molecular Mechanisms of Cardiac Development. , 2013, , 19-39.		7
768	Thymus Organogenesis and Development of the Thymic Stroma. Methods in Molecular Biology, 2007, 380, 125-162.	0.4	23
769	Molecular Basis of Cardiac Development and Congenital Heart Disease. , 2012, , 317-339.		2
770	Pathophysiology and Pharmacotherapy of Adult Congenital Heart Disease. , 2015, , 1269-1291.		1
771	Neural Crest. , 2016, , 41-53.		2

#ARTICLEIFCITATIO772AHistory and Interaction of Outflow Progenitor Cells Implicated in "Takao Syndromeâ€r, 2016, , 201-209.3773Tbx1/Ripply3/Retinoic Acid Signal Network That Regulates Pharyngeal Arch Development., 2014,, 97-108.2775Parathyroid Disorders., 2003,, 485-508.5776Thymus and Parathyroid Organogenesis., 2007,, 647-662.1777Islets of Thymic Epithelium: Telltale Signs of Epithelial Stemâ€"Progenitor Cell Activity in Thymus Organogenesis., 2004,, 555-564.3778Molecular Determinants of Cardiac Development and Congenital Disease., 2002,, 331-370.8785Cenetic Dissection of the DiGeorge Syndrome Phenotype. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 327-332.2.022				
772 201-209. 3 773 Tbx1/Ripply3/Retinoic Acid Signal Network That Regulates Pharyngeal Arch Development., 2014,, 97-108. 2 775 Parathyroid Disorders., 2003,, 485-508. 5 776 Thymus and Parathyroid Organogenesis., 2007,, 647-662. 1 777 Islets of Thymic Epithelium: Telltale Signs of Epithelial Stemâ€"Progenitor Cell Activity in Thymus Organogenesis., 2004,, 555-564. 3 778 Molecular Determinants of Cardiac Development and Congenital Disease., 2002,, 331-370. 8 785 Genetic Dissection of the DiGeorge Syndrome Phenotype. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 327-332. 2.0 13	#	Article	IF	CITATIONS
773Tbx1/Ripply3/Retinoic Acid Signal Network That Regulates Pharyngeal Arch Development., 2014,, 97-108.2775Parathyroid Disorders., 2003,, 485-508.5776Thymus and Parathyroid Organogenesis., 2007,, 647-662.1777Islets of Thymic Epithelium: Telltale Signs of Epithelial Stemâ€"Progenitor Cell Activity in Thymus Organogenesis., 2004,, 555-564.3778Molecular Determinants of Cardiac Development and Congenital Disease., 2002,, 331-370.8785Genetic Dissection of the DiGeorge Syndrome Phenotype. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 327-332.2.013796Neural Crest Migration and Mouse Models of Congenital Heart Disease. Cold Spring Harbor Symposia2.013	772			3
775 Parathyroid Disorders., 2003,, 485-508. 5 776 Thymus and Parathyroid Organogenesis., 2007,, 647-662. 1 777 Islets of Thymic Epithelium: Telltale Signs of Epithelial Stemâ€"Progenitor Cell Activity in Thymus Organogenesis., 2004,, 555-564. 3 778 Molecular Determinants of Cardiac Development and Congenital Disease., 2002,, 331-370. 8 785 Genetic Dissection of the DiCeorge Syndrome Phenotype. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 327-332. 13				
776 Thymus and Parathyroid Organogenesis. , 2007, , 647-662. 1 777 Islets of Thymic Epithelium: Telltale Signs of Epithelial Stemâ€"Progenitor Cell Activity in Thymus 3 778 Molecular Determinants of Cardiac Development and Congenital Disease. , 2002, , 331-370. 8 785 Genetic Dissection of the DiGeorge Syndrome Phenotype. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 327-332. 13 786 Neural Crest Migration and Mouse Models of Congenital Heart Disease. Cold Spring Harbor Symposia 2.0 13	773	Tbx1/Ripply3/Retinoic Acid Signal Network That Regulates Pharyngeal Arch Development. , 2014, , 97-108.		2
776 Thymus and Parathyroid Organogenesis. , 2007, , 647-662. 1 777 Islets of Thymic Epithelium: Telltale Signs of Epithelial Stemâ€"Progenitor Cell Activity in Thymus 3 778 Molecular Determinants of Cardiac Development and Congenital Disease. , 2002, , 331-370. 8 785 Genetic Dissection of the DiGeorge Syndrome Phenotype. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 327-332. 13 786 Neural Crest Migration and Mouse Models of Congenital Heart Disease. Cold Spring Harbor Symposia 2.0 13				
777 Islets of Thymic Epithelium: Telltale Signs of Epithelial Stemâ€"Progenitor Cell Activity in Thymus 3 777 Organogenesis., 2004, , 555-564. 3 778 Molecular Determinants of Cardiac Development and Congenital Disease., 2002, , 331-370. 8 785 Genetic Dissection of the DiGeorge Syndrome Phenotype. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 327-332. 2.0 13 786 Neural Crest Migration and Mouse Models of Congenital Heart Disease. Cold Spring Harbor Symposia 2.0 13	775	Parathyroid Disorders. , 2003, , 485-508.		5
777 Islets of Thymic Epithelium: Telltale Signs of Epithelial Stemâ€"Progenitor Cell Activity in Thymus 3 777 Organogenesis., 2004, , 555-564. 3 778 Molecular Determinants of Cardiac Development and Congenital Disease., 2002, , 331-370. 8 785 Genetic Dissection of the DiGeorge Syndrome Phenotype. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 327-332. 2.0 13 786 Neural Crest Migration and Mouse Models of Congenital Heart Disease. Cold Spring Harbor Symposia 2.0 13				
777 Organogenesis., 2004, , 555-564. 3 778 Molecular Determinants of Cardiac Development and Congenital Disease., 2002, , 331-370. 8 785 Genetic Dissection of the DiGeorge Syndrome Phenotype. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 327-332. 13 Neural Crest Migration and Mouse Models of Congenital Heart Disease. Cold Spring Harbor Symposia	776	Thymus and Parathyroid Organogenesis. , 2007, , 647-662.		1
778Molecular Determinants of Cardiac Development and Congenital Disease. , 2002, , 331-370.8785Genetic Dissection of the DiGeorge Syndrome Phenotype. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 327-332.2.013786Neural Crest Migration and Mouse Models of Congenital Heart Disease. Cold Spring Harbor Symposia2.023	777			3
 Genetic Dissection of the DiGeorge Syndrome Phenotype. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 327-332. Neural Crest Migration and Mouse Models of Congenital Heart Disease. Cold Spring Harbor Symposia 		Organogenesis. , 2004, , 555-564.		-
785 Quantitative Biology, 2002, 67, 327-332. 2.0 13 Neural Crest Migration and Mouse Models of Congenital Heart Disease. Cold Spring Harbor Symposia 2.0 13	778	Molecular Determinants of Cardiac Development and Congenital Disease. , 2002, , 331-370.		8
785 Quantitative Biology, 2002, 67, 327-332. 2.0 13 Neural Crest Migration and Mouse Models of Congenital Heart Disease. Cold Spring Harbor Symposia 2.0 13				
	785		2.0	13
	786		2.0	22
Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor		Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor		
7877876GCMB. Journal of Clinical Investigation, 2001, 108, 1215-1220.3.9	787		3.9	86
Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor	700		2.0	100
788 GCMB. Journal of Clinical Investigation, 2001, 108, 1215-1220. 3.9 183	/88	GCMB. Journal of Clinical Investigation, 2001, 108, 1215-1220.	3.9	183
789 Morphogenesis of the right ventricle requires myocardial expression of Gata4. Journal of Clinical 3.9 232	789	Morphogenesis of the right ventricle requires myocardial expression of Gata4. Journal of Clinical	3.9	232
⁷⁸⁹ Investigation, 2005, 115, 1522-1531. 5.9 232		Investigation, 2005, 115, 1522-1531.		
A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial 3.9 123 morphogenesis. Journal of Clinical Investigation, 2011, 121, 1585-1595.	790	A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. Journal of Clinical Investigation, 2011, 121, 1585-1595.	3.9	123
 Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch 1.2 282 	791	Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development (Cambridge), 2001, 128, 3061-3070.	1.2	282
792Determinants of T box protein specificity. Development (Cambridge), 2001, 128, 3749-3758.1.2131	792	Determinants of T box protein specificity. Development (Cambridge), 2001, 128, 3749-3758.	1.2	131
An <i>>Fgf8</i> >mouse mutant phenocopies human 22q11 deletion syndrome. Development (Cambridge),		AnzisEaf8/lismouse mutant phanocopies human 22a11 deletion syndrome. Development (Cambridge)		
⁷⁹³ 2002, 129, 4591-4603.	793		1.2	312
A genetic link between <i>Tbx1</i> and fibroblast growth factor signaling. Development (Cambridge),		A genetic link between <i>Tbx1</i> and fibroblast growth factor signaling. Development (Cambridge).		
⁷⁹⁴ 2002, 129, 4605-4611. 1.2 245	794		1.2	245
<i>>Fgf8</i> is required for pharyngeal arch and cardiovascular development in the mouse. 1.2 370	705	<i>Fgf8</i> is required for pharyngeal arch and cardiovascular development in the mouse.	19	370
⁷⁹⁵ Development (Cambridge), 2002, 129, 4613-4625.	170	Development (Cambridge), 2002, 129, 4613-4625.	1,2	570
796 The <i>heartstrings</i> mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome. Development 1.2 237 (Cambridge), 2002, 129, 4635-4645. 1.2 237	796	The <i>heartstrings</i> mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome. Development	1.2	237

	CITATION R	EPORT	
#	Article	IF	CITATIONS
797	<i>Pitx2c</i> patterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions. Development (Cambridge), 2002, 129, 5081-5091.	1.2	162
798	Endothelial Neuropilin Disruption in Mice Causes DiGeorge Syndrome-Like Malformations via Mechanisms Distinct to Those Caused by Loss of Tbx1. PLoS ONE, 2012, 7, e32429.	1.1	23
799	Functional Gene-Expression Analysis Shows Involvement of Schizophrenia-Relevant Pathways in Patients with 22q11 Deletion Syndrome. PLoS ONE, 2012, 7, e33473.	1.1	27
800	TBX1 Represses Vegfr2 Gene Expression and Enhances the Cardiac Fate of VEGFR2+ Cells. PLoS ONE, 2015, 10, e0138525.	1.1	10
801	TBX1, a DiGeorge syndrome candidate gene, is inhibited by retinoic acid. International Journal of Developmental Biology, 2006, 50, 55-61.	0.3	37
802	Mice and humans: chromosome engineering and its application to functional genomics Acta Biochimica Polonica, 2002, 49, 553-569.	0.3	9
804	MicroRNA‑3651 promotes colorectal cancer cell proliferation through directly repressing T‑box transcription factor 1. International Journal of Molecular Medicine, 2020, 45, 956-966.	1.8	8
805	Cardiac Progenitor Cells and their Therapeutic Application for Cardiac Repair. Journal of Clinical & Experimental Cardiology, 2013, 01, .	0.0	3
806	Msx1 haploinsufficiency modifies the Pax9-deficient cardiovascular phenotype. BMC Developmental Biology, 2021, 21, 14.	2.1	6
807	Clinical Manifestations of 22q11.2 Deletion Syndrome. Heart Failure Clinics, 2021, 18, 155-164.	1.0	15
808	The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mechanisms of Disease, 2022, 14, e1537.	1.5	3
810	Conditional Transgenesis. Developments in Cardiovascular Medicine, 2001, , 39-52.	0.1	0
811	Tpit, un nouveau membre de la famille des gÃ nes à boîte T, est impliqué dans la déficience isolée en ACTH. Medecine/Sciences, 2001, 17, 1203-1207.	0.0	0
812	Genetic Control of Parathyroid Gland Development and Molecular Insights into Hypoparathyroidism. , 2002, , 181-192.		0
813	The Parathyroid Gland. , 2002, , 201-222.		0
814	A Haplolethal Locus Uncovered by Deletions in the Mouse t Complex. Genetics, 2002, 160, 675-682.	1.2	15
817	Development of the Fetal Heart. , 2004, , 613-621.		1
818	Genetic Inheritance. , 2004, , 31-56.		0

#	Article	IF	CITATIONS
819	Velo-cardio-facial syndrome (deletion 22q11.2): a homogeneous neurodevelopmental model for schizophrenia. , 2004, , 121-137.		4
820	Dysmorphology and Genetics. , 2006, , 49-72.		3
821	Cardiac Development: Toward a Molecular Basis for Congenital Heart Disease. , 2007, , 1135-1156.		0
823	Toward Understanding How the Immune System Establishes a Diverse Yet Self-Tolerant T-Cell Repertoire: Stepwise Roles of Thymic Microenvironments. , 2009, , 71-82.		0
824	Epithelial Stem Cells and the Development of the Thymus, Parathyroid, and Skin. , 2009, , 405-437.		0
825	Genomics of Congenital Heart Disease. , 2009, , 781-793.		0
826	Origin and Identity of the Right Heart. , 2009, , 3-8.		0
827	Genetics, Epidemiology, and Counseling. , 2009, , 221-247.		0
830	Signaling in Congenital Heart Disease. , 2011, , 197-217.		0
831	Anatomy in Patients with 22q11 Deletion and Pulmonary Atresia with Ventricular Septal Defect and Major Aortopulmonary Collaterals. Surgical Science, 2011, 02, 294-296.	0.1	0
832	Growth of the Normal Human Heart. , 2012, , 1305-1316.		0
833	Mouse Models of Congenital Heart Disease. , 2012, 02, .		0
834	Extra Cardiac Anomalies (ECA) in 2020 Subjects with Congenital Cardiovascular Malformation (CCVM) and Control: Etiological Perspective. Journal of Medical Sciences (Faisalabad, Pakistan), 2012, 12, 29-36.	0.0	1
836	Truncus Arteriosus. , 2014, , 1983-2001.		1
837	Syndromic Congenital Heart Diseases. , 2014, , 65-69.		1
838	The Neural Crest and Craniofacial Malformations. , 2014, , 219-269.		2
840	Neural Regulation of Lung Development. Pancreatic Islet Biology, 2015, , 43-62.	0.1	0
841	Congenital Heart Diseases and Disease-specific iPS Cells. Nihon Shoni Junkanki Gakkai Zasshi = Pediatric Cardiology and Cardiac Surgery, 2015, 31, 138-147.	0.0	0

#	Article	IF	CITATIONS
842	DiGeorge Syndrome. , 2015, , 189-197.		0
843	Molecular Pathways and Animal Models of Semilunar Valve and Aortic Arch Anomalies. , 2016, , 513-526.		Ο
844	Cardiomyocytes: Function and Regeneration. , 2016, , 25-65.		0
848	Specification of Cardiac Progenitors During Development. , 2018, , 265-265.		0
854	Parathyroid glands: the normal development, anatomy and histological structure. Endocrine Surgery, 2018, 12, 178-187.	0.0	7
855	Significance of Transcription Factors in the Mechanisms of Great Artery Malformations. , 2020, , 385-387.		0
860	Genetic Variant of TBX1 Gene Is Functionally Associated With Adolescent Idiopathic Scoliosis in the Chinese Population. Spine, 2021, 46, 17-21.	1.0	8
861	Integration of genetic, transcriptomic, and clinical data provides insight into 16p11.2 and 22q11.2 CNV genes. Genome Medicine, 2021, 13, 172.	3.6	16
864	Pharyngeal pouches provide a niche microenvironment for arch artery progenitor specification. Development (Cambridge), 2021, 148, .	1.2	4
867	Moleukulare Ursachen von EntwicklungsstĶrungen des Endokriniums. , 2005, , 365-392.		0
869	Genetic Underpinnings of Cardiogenesis and Congenital Heart Disease. , 2005, , 155-164.		0
871	Chromosome-Engineered Mouse Models. , 2006, , 373-387.		0
873	An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development (Cambridge), 2002, 129, 4591-603.	1.2	145
874	Clinical manifestations of Deletion 22q11.2 syndrome (DiGeorge/Velo-Cardio-Facial syndrome). Images in Paediatric Cardiology, 2005, 7, 23-34.	0.1	23
876	Increased Tbx1 expression may play a role via TGFβ-Smad2/3 signaling pathway in acute kidney injury induced by gentamicin. International Journal of Clinical and Experimental Pathology, 2014, 7, 1595-605.	0.5	8
877	Vascular Smooth Muscle Cell Development and Cardiovascular Malformations. Cardiology Discovery, 2021, 1, 259-268.	0.6	1
879	Single cell multi-omic analysis identifies a Tbx1-dependent multilineage primed population in murine cardiopharyngeal mesoderm. Nature Communications, 2021, 12, 6645.	5.8	31
881	Generation of thymic cells from pluripotent stem cells for basic research and cell therapy. , 2022, , 135-147.		0

#	Article	IF	Citations
882	Whole-Mount Immunofluorescence Protocol for 3D Imaging, Reconstruction, and Quantification of Fourth Pharyngeal Arch Formation. Methods in Molecular Biology, 2022, 2441, 41-62.	0.4	0
883	The TBX1/miR-193a-3p/TGF-β2 Axis Mediates CHD by Promoting Ferroptosis. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-13.	1.9	6
885	Identification and characterisation of spontaneous mutations causing deafness from a targeted knockout programme. BMC Biology, 2022, 20, 67.	1.7	0
886	Positively selected genes in the hoary bat (<i>Lasiurus cinereus</i>) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ, 2022, 10, e13130.	0.9	0
887	Establishment of a Dihydrofolate Reductase Gene Knock-In Zebrafish Strain to Aid Preliminary Analysis of Congenital Heart Disease Mechanisms. Frontiers in Cardiovascular Medicine, 2021, 8, 763851.	1.1	3
888	A Case for Thalamic Mechanisms of Schizophrenia: Perspective From Modeling 22q11.2 Deletion Syndrome. Frontiers in Neural Circuits, 2021, 15, 769969.	1.4	13
889	Expression and Functional Analysis of cofilin1-like in Craniofacial Development in Zebrafish. Development & Reproduction, 2022, 26, 23-36.	0.1	0
894	Morphogenesis of the Mammalian Aortic Arch Arteries. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	19
895	Developmental dynamics of the neural crest–mesenchymal axis in creating the thymic microenvironment. Science Advances, 2022, 8, eabm9844.	4.7	6
896	Craniofacial Phenotypes and Genetics of DiGeorge Syndrome. Journal of Developmental Biology, 2022, 10, 18.	0.9	11
897	22q11.2 Deletion Syndrome: Impact of Genetics in the Treatment of Conotruncal Heart Defects. Children, 2022, 9, 772.	0.6	7
898	Case Report: Balanced Reciprocal Translocation t (17; 22) (p11.2; q11.2) and 10q23.31 Microduplication in an Infertile Male Patient Suffering From Teratozoospermia. Frontiers in Genetics, 2022, 13, .	1.1	1
899	inka1b expression in the head mesoderm is dispensable for facial cartilage development. Gene Expression Patterns, 2022, 45, 119262.	0.3	0
900	Multiple Recurrent Copy Number Variations (CNVs) in Chromosome 22 Including 22q11.2 Associated with Autism Spectrum Disorder. Pharmacogenomics and Personalized Medicine, 0, Volume 15, 705-720.	0.4	2
902	Genetic detection of congenital heart disease. Gynecology and Obstetrics Clinical Medicine, 2022, 2, 109-123.	0.2	3
903	A cross-disorder dosage sensitivity map of the human genome. Cell, 2022, 185, 3041-3055.e25.	13.5	117
904	A phenotypic rescue approach identifies lineage regionalization defects in a mouse model of DiGeorge syndrome. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	2
906	Congenital heart disease and cardiovascular abnormalities associated with 22q11.2 deletion syndrome. , 2022, , 78-100.		0

#	Article	IF	CITATIONS
907	Embryonic development in 22q11.2 deletion syndrome. , 2022, , 54-76.		0
908	22q11.2 deletion syndrome: Future directions. , 2022, , 406-418.		0
909	Genetics, mechanism, and pathophysiology of 22q11.2 deletion syndrome. , 2022, , 34-52.		0
910	Mesenchymal cell replacement corrects thymic hypoplasia in murine models of 22q11.2 deletion syndrome. Journal of Clinical Investigation, 2022, 132, .	3.9	2
912	T Cell Transcriptome in Chromosome 22q11.2 Deletion Syndrome. Journal of Immunology, 2022, 209, 874-885.	0.4	1
913	Aortic Arch Laterality in Chromosome 22q11.2 Deletion Syndrome: Male-Female Difference. Clinical Pediatrics, 0, , 000992282211277.	0.4	0
914	VEGFR3 modulates brain microvessel branching in a mouse model of 22q11.2 deletion syndrome. Life Science Alliance, 2022, 5, e202101308.	1.3	2
915	Truncus Arteriosus. , 2021, , 1-19.		0
916	Transpositions of the great arteries versus aortic dextropositions. A review of some embryogenetic and morphological aspects. Anatomical Record, 0, , .	0.8	0
917	<i>Ranbp1</i> modulates morphogenesis of the craniofacial midline in mouse models of 22q11.2 deletion syndrome. Human Molecular Genetics, 0, , .	1.4	0
918	Epithelial Stem/Progenitor Cells in Thymus Organogenesis. , 2004, , 83-100.		1
920	Single-cell transcriptomics uncovers a non-autonomous Tbx1-dependent genetic program controlling cardiac neural crest cell development. Nature Communications, 2023, 14, .	5.8	6
921	Genetic Screening of Targeted Region on the Chromosome 22q11.2 in Patients with Microtia and Congenital Heart Defect. Genes, 2023, 14, 879.	1.0	0
922	Developmental Biology of the Heart. , 2024, , 659-674.e4.		0
926	The Role of Genetics in Development of Congenital Heart Disease. , 2023, , 1-31.		0
930	The Neural Crest and Craniofacial Malformations. , 2023. , 313-378.		0