THE CONCEPT OF HYDROLOGIC LANDSCAPES

Journal of the American Water Resources Association 37, 335-349 DOI: 10.1111/j.1752-1688.2001.tb00973.x

Citation Report

#	Article	IF	CITATIONS
1	ANALYZIIG RIPARIAN SITE CAPABILITY AND MANAGEMENT OPTIONS. Journal of the American Water Resources Association, 2001, 37, 1665-1679.	2.4	3
2	Recharge and groundwater models: an overview. Hydrogeology Journal, 2002, 10, 110-120.	2.1	228
3	Reservoirs and the limnologist's growing role in sustainable water resource management. Hydrobiologia, 2003, 504, XI-XII.	2.0	7
4	Isolated wetlands and their functions: An ecological perspective. Wetlands, 2003, 23, 517-531.	1.5	186
5	Hydrologic considerations in defining isolated wetlands. Wetlands, 2003, 23, 532-540.	1.5	121
6	Isolated wetlands: State-of-the-science and future directions. Wetlands, 2003, 23, 663-684.	1.5	52
7	Environmental Water-Quality Zones for Streams: A Regional Classification Scheme. Environmental Management, 2003, 31, 581-602.	2.7	18
8	A GIS Model of Subsurface Water Potential for Aquatic Resource Inventory, Assessment, and Environmental Management. Environmental Management, 2003, 32, 706-719.	2.7	34
9	Where Does the Ground Water in Small Watersheds Come From?. Ground Water, 2003, 41, 989-1000.	1.3	119
10	The vegetation and ecological gradients of calcareous mires in the South Park valley, Colorado. Canadian Journal of Botany, 2003, 81, 201-219.	1.1	26
12	Transient groundwater impacts on the development of paleoclimatic lake records in semi-arid environments. Geofluids, 2004, 4, 187-196.	0.7	19
13	The wetland continuum: A conceptual framework for interpreting biological studies. Wetlands, 2004, 24, 448-458.	1.5	270
14	Delineation and Evaluation of Hydrologic-Landscape Regions in the United States Using Geographic Information System Tools and Multivariate Statistical Analyses. Environmental Management, 2004, 34, S71-S88.	2.7	206
15	Sensitivity to acidification of subalpine ponds and lakes in north-western Colorado. Hydrological Processes, 2004, 18, 2817-2834.	2.6	9
16	A geological framework for interpreting the low-flow regimes of Cascade streams, Willamette River Basin, Oregon. Water Resources Research, 2004, 40, .	4.2	205
17	Semi-discrete dynamical model for mountain-front recharge and water balance estimation, Rio Grande of southern Colorado and New Mexico. Water Science and Application, 2004, , 255-271.	0.3	14
19	A Freshwater Classification Approach for Biodiversity Conservation Planning. Conservation Biology, 2005, 19, 432-445.	4.7	171
20	A framework for broad-scale classification of hydrologic response units on the Boreal Plain: is topography the last thing to consider?. Hydrological Processes, 2005, 19, 1705-1714.	2.6	270

#	Article	IF	CITATIONS
21	Causes and Consequences of Spatial Heterogeneity in Lakes. , 2005, , 329-347.		14
22	Interaction of groundwater and shallow lakes on outwash sediments in the sub-humid Boreal Plains of Canada. Journal of Hydrology, 2005, 314, 246-262.	5.4	103
23	High Arctic Patchy Wetlands: Hydrologic Variability and Their Sustainability. Physical Geography, 2006, 27, 297-307.	1.4	16
24	Hydropedology: Synergistic integration of pedology and hydrology. Water Resources Research, 2006, 42, .	4.2	153
25	Groundwater-supported evapotranspiration within glaciated watersheds under conditions of climate change. Journal of Hydrology, 2006, 320, 484-500.	5.4	39
26	Surface-water hydrodynamics and regimes of a small mountain stream–lake ecosystem. Journal of Hydrology, 2006, 329, 500-513.	5.4	33
27	Variation in Streamwater Chemistry Throughout the Hubbard Brook Valley. Biogeochemistry, 2006, 78, 1-30.	3.5	97
28	Mapping first-order controls on streamflow from drainage basins: the T3 template. Hydrological Processes, 2006, 20, 3415-3422.	2.6	82
29	A Framework and Guidelines for Moving Toward Sustainable Water Resources Management. Proceedings of the Water Environment Federation, 2006, 2006, 2762-2777.	0.0	4
30	Hydroclimatic Analysis of a Carbonate Island Pond Through the Development of a Hydrologic Landscape Unit Model. Physical Geography, 2006, 27, 554-570.	1.4	3
32	Hydrologic response of the Crow Wing Watershed, Minnesota, to mid-Holocene climate change. Bulletin of the Geological Society of America, 2007, 119, 363-376.	3.3	9
33	Discontinuities in stream nutrient uptake below lakes in mountain drainage networks. Limnology and Oceanography, 2007, 52, 1978-1990.	3.1	27
34	Remote sensing of floodplain geomorphology as a surrogate for biodiversity in a tropical river system (Madre de Dios, Peru). Geomorphology, 2007, 89, 23-38.	2.6	158
35	Review of classification systems and new multi-scale typology of groundwater–surface water interaction. Journal of Hydrology, 2007, 344, 1-16.	5.4	140
36	Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems. Reviews of Geophysics, 2007, 45, .	23.0	127
37	Simulations of fully coupled lake-groundwater exchange in a subhumid climate with an integrated hydrologic model. Water Resources Research, 2007, 43, .	4.2	68
39	Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in Water Resources, 2007, 30, 1756-1774.	3.8	417
40	Understanding variation in trophic status of lakes on the Boreal Plain: A 20Âyear retrospective using Landsat TM imagery. Remote Sensing of Environment, 2007, 109, 127-141.	11.0	60

#	Article	IF	CITATIONS
41	A Gis-Based Approach to Watershed Classification for Nebraska Reservoirs. Journal of the American Water Resources Association, 2007, 43, 605-621.	2.4	13
42	Catchment Classification and Hydrologic Similarity. Geography Compass, 2007, 1, 901-931.	2.7	602
43	An evaluation of rapid methods for assessing the ecological condition of wetlands. Wetlands, 2007, 27, 543-560.	1.5	148
44	Effects of hydrologic connectivity on water chemistry, soils, and vegetation structure and function in an intermontane depressional wetland landscape. Wetlands, 2007, 27, 719-738.	1.5	60
45	Grouping Lakes for Water Quality Assessment and Monitoring: The Roles of Regionalization and Spatial Scale. Environmental Management, 2008, 41, 425-440.	2.7	46
46	Testing the Hydrological Landscape Unit Classification System and Other Terrain Analysis Measures for Predicting Low-Flow Nitrate and Chloride in Watersheds. Environmental Management, 2008, 42, 877-893.	2.7	18
47	Geological control of physical and chemical hydrology in California vernal pools. Wetlands, 2008, 28, 347-362.	1.5	39
48	Creating New Landscapes and Ecosystems. Annals of the New York Academy of Sciences, 2008, 1134, 120-145.	3.8	86
49	Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. Journal of Hydrology, 2008, 351, 139-153.	5.4	183
51	River Models. , 2008, , 3069-3083.		1
51 52	River Models. , 2008, , 3069-3083. Regional groundwater flow in mountainous terrain: Threeâ€dimensional simulations of topographic and hydrogeologic controls. Water Resources Research, 2008, 44, .	4.2	1 164
	Regional groundwater flow in mountainous terrain: Threeâ€dimensional simulations of topographic	4.2	
52	Regional groundwater flow in mountainous terrain: Threeâ€dimensional simulations of topographic and hydrogeologic controls. Water Resources Research, 2008, 44, . Non-navigable streams and adjacent wetlands: addressing science needs following the Supreme		164
52 53	Regional groundwater flow in mountainous terrain: Threeâ€dimensional simulations of topographic and hydrogeologic controls. Water Resources Research, 2008, 44, . Non-navigable streams and adjacent wetlands: addressing science needs following the Supreme Court's <i>Rapanos</i> decision. Frontiers in Ecology and the Environment, 2008, 6, 364-371. Surface Water–Groundwater Exchange Processes and Fluvial Ecosystem Function: An Analysis of		164 106
52 53 54	Regional groundwater flow in mountainous terrain: Threeâ€dimensional simulations of topographic and hydrogeologic controls. Water Resources Research, 2008, 44, . Non-navigable streams and adjacent wetlands: addressing science needs following the Supreme Court's <i>Rapanos</i> decision. Frontiers in Ecology and the Environment, 2008, 6, 364-371. Surface Water–Groundwater Exchange Processes and Fluvial Ecosystem Function: An Analysis of Temporal and Spatial Scale Dependency. , 0, , 93-111. National, Holistic, Watershedâ€Scale Approach to Understand the Sources, Transport, and Fate of	4.0	164 106 6
52 53 54 56	Regional groundwater flow in mountainous terrain: Threeâ€dimensional simulations of topographic and hydrogeologic controls. Water Resources Research, 2008, 44, . Non-navigable streams and adjacent wetlands: addressing science needs following the Supreme Court's <i>Rapanos</i> decision. Frontiers in Ecology and the Environment, 2008, 6, 364-371. Surface Water–Groundwater Exchange Processes and Fluvial Ecosystem Function: An Analysis of Temporal and Spatial Scale Dependency. , 0, , 93-111. National, Holistic, Watershed cale Approach to Understand the Sources, Transport, and Fate of Agricultural Chemicals. Journal of Environmental Quality, 2008, 37, 983-993. Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments. Hydrology and Earth System Sciences, 2008, 12,	4.0 2.0	164 106 6 62
52 53 54 56 57	Regional groundwater flow in mountainous terrain: Threeâ€dimensional simulations of topographic and hydrogeologic controls. Water Resources Research, 2008, 44, . Non-navigable streams and adjacent wetlands: addressing science needs following the Supreme Court's <i>Rapanos</i> >dicitation. Frontiers in Ecology and the Environment, 2008, 6, 364-371. Surface Water–Groundwater Exchange Processes and Fluvial Ecosystem Function: An Analysis of Temporal and Spatial Scale Dependency., 0, , 93-111. National, Holistic, Watershed cale Approach to Understand the Sources, Transport, and Fate of Agricultural Chemicals. Journal of Environmental Quality, 2008, 37, 983-993. Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments. Hydrology and Earth System Sciences, 2008, 12, 769-796. The lake landscape-context framework: linking aquatic connections, terrestrial features and human effects at multiple spatial scales. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2009, 30,	4.0 2.0 4.9	164 106 6 62 60

#	Article	IF	CITATIONS
61	Detecting hydroclimatic change using spatio-temporal analysis of time series in Colorado River Basin. Journal of Hydrology, 2009, 374, 1-15.	5.4	25
62	Predictive mapping of the natural flow regimes of France. Journal of Hydrology, 2009, 373, 57-67.	5.4	119
63	Controls on event runoff coefficients in the eastern Italian Alps. Journal of Hydrology, 2009, 375, 312-325.	5.4	149
64	Global Distribution, Diversity and Human Alterations of Wetland Resources. , 0, , 43-64.		4
65	Longâ€ŧerm effects of management practices on waterâ€driven soil erosion in an intense agricultural subâ€watershed: monitoring and modelling. Hydrological Processes, 2009, 23, 2818-2837.	2.6	89
66	Investigating local variation in groundwater recharge along a topographic gradient, Walnut Creek, Iowa, USA. Hydrogeology Journal, 2009, 17, 397-407.	2.1	32
67	Groundwater recharge: A hydrogeologic thought. Water Resources, 2009, 36, 625-631.	0.9	2
68	An efficient domain decomposition framework for accurate representation of geodata in distributed hydrologic models. International Journal of Geographical Information Science, 2009, 23, 1569-1596.	4.8	36
69	Flood Plains. , 2009, , 378-386.		5
70	Reducing Uncertainty of Continuous Streamflow Predictions in Ungauged Basins (PUB) Using Regional Constraints: Using Regional Constraints for PUB. , 2009, , .		0
71	Simulated impacts of artificial groundwater recharge and discharge on the source area and source volume of an Atlantic Coastal Plain stream, Delaware, USA. Hydrogeology Journal, 2010, 18, 1855-1866.	2.1	8
72	Ecosystem Characteristics and Summer Secondary Production in Stormwater Ponds and Reference Wetlands. Wetlands, 2010, 30, 461-474.	1.5	16
73	Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology, 2010, 55, 171-193.	2.4	416
74	An Aquifer Classification System and Geographical Information Systemâ€Based Analysis Tool for Watershed Managers in the Western U.S. ¹ . Journal of the American Water Resources Association, 2010, 46, 1003-1023.	2.4	8
75	HESS Opinions "Topography driven conceptual modelling (FLEX-Topo)". Hydrology and Earth System Sciences, 2010, 14, 2681-2692.	4.9	145
76	Toward improved identification of hydrological models: A diagnostic evaluation of the " <i>abcd</i> ― monthly water balance model for the conterminous United States. Water Resources Research, 2010, 46, .	4.2	120
77	Human-Impacted Water Resources: Domain Stratification and Mapping To Determine Hydrologically Similar Units. Environmental Science & Technology, 2010, 44, 7890-7896.	10.0	10
78	Using Landscape Limnology to Classify Freshwater Ecosystems for Multi-ecosystem Management and Conservation. BioScience, 2010, 60, 440-454.	4.9	106

#	Article	IF	CITATIONS
80	Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrology and Earth System Sciences, 2011, 15, 2895-2911.	4.9	405
81	Study of Dynamic Response of the Sandy Soil by Cone Penetration Testing. Procedia Engineering, 2011, 24, 385-389.	1.2	2
82	Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment. Hydrology and Earth System Sciences, 2011, 15, 3275-3291.	4.9	121
83	Hydrologic similarity among catchments under variable flow conditions. Hydrology and Earth System Sciences, 2011, 15, 989-997.	4.9	40
84	Biophysical-Regulatory Classification and Profiling of Streams Across Management Units and Ecoregions1. Journal of the American Water Resources Association, 2011, 47, 386-407.	2.4	16
85	Trend-outflow method for understanding interactions of surface water with groundwater and atmospheric water for eight reaches of the Upper Rio Grande. Journal of Hydrology, 2011, 409, 710-723.	5.4	7
86	Modeling hydrologic and geomorphic hazards across post-fire landscapes using a self-organizing map approach. Environmental Modelling and Software, 2011, 26, 1660-1674.	4.5	24
87	Science and policy integration issues for stream and wetland jurisdictional determinations in a semi-arid region of the western U.S Wetlands Ecology and Management, 2011, 19, 351-371.	1.5	11
88	Comparing Hydrogeomorphic Approaches to Lake Classification. Environmental Management, 2011, 48, 957-974.	2.7	21
89	Influence of Bedrock Geology on Water Chemistry of Slope Wetlands and Headwater Streams in the Southern Rocky Mountains. Wetlands, 2011, 31, 251-261.	1.5	22
90	Some relationships between lithology, basin form and hydrology: a case study from the Thames basin, UK. Hydrological Processes, 2011, 25, 2518-2530.	2.6	50
91	Hydrological principles for sustainable management of forest ecosystems. Hydrological Processes, 2011, 25, 2152-2160.	2.6	24
92	The Simulation and Analysis of Groundwater Flow in Rock. Advanced Materials Research, 2011, 382, 328-331.	0.3	0
94	Comparison of regional stream and lake chemistry: Differences, similarities, and potential drivers. Limnology and Oceanography, 2011, 56, 1551-1562.	3.1	28
95	Perspectives on Climate Change, Mountain Hydrology, and Water Resources in the Oregon Cascades, USA. Mountain Research and Development, 2012, 32, S35-S46.	1.0	45
96	Do Environmental Stream Classifications Support Flow Assessments in Mediterranean Basins?. Water Resources Management, 2012, 26, 3803-3817.	3.9	8
97	Soil hydrodynamics and controls in prairie potholes of central Canada. Area, 2012, 44, 305-316.	1.6	3
98	A comparison of similarity indices for catchment classification using a cross-regional dataset. Advances in Water Resources, 2012, 40, 11-22.	3.8	85

# 99	ARTICLE Interpretation of hydrologic trends from a water balance perspective: The role of groundwater storage in the Budyko hypothesis. Water Resources Research, 2012, 48, .	IF 4.2	Citations
101	Hydrological regime of remote catchments with extreme gradients under accelerated change: the Baker basin in Patagonia. Hydrological Sciences Journal, 2012, 57, 1530-1542.	2.6	32
102	Parameterization and quantification of recharge in crystalline fractured bedrocks in Galicia-Costa (NW Spain). Hydrology and Earth System Sciences, 2012, 16, 1667-1683.	4.9	19
103	A framework for hydrologic classification with a review of methodologies and applications in ecohydrology. Ecohydrology, 2012, 5, 503-518.	2.4	206
104	Prediction of Streamflow Regime and Annual Runoff for Ungauged Basins Using a Distributed Monthly Water Balance Model ¹ . Journal of the American Water Resources Association, 2012, 48, 32-42.	2.4	18
105	Spatially telescoping measurements for improved characterization of ground water–surface water interactions. Journal of Hydrology, 2012, 446-447, 1-12.	5.4	18
106	A temperatureâ€precipitationâ€based model of thirtyâ€year mean snowpack accumulation and melt in Oregon, USA. Hydrological Processes, 2012, 26, 741-759.	2.6	15
107	The influence of natural flow regimes on macroinvertebrate assemblages in a semiarid Mediterranean basin. Ecohydrology, 2013, 6, 363-379.	2.4	54
108	A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrological Sciences Journal, 2013, 58, 1198-1255.	2.6	821
109	Development and persistence of an African mire: How the oldest South African fen has survived in a marginal climate. Catena, 2013, 110, 176-183.	5.0	24
110	Molecules to modeling: Toxoplasma gondii oocysts at the human–animal–environment interface. Comparative Immunology, Microbiology and Infectious Diseases, 2013, 36, 217-231.	1.6	75
111	Seminal advances in hydrogeology, 1963 to 2013: The O.E. Meinzer Award legacy. , 2013, , .		3
112	Oregon Hydrologic Landscapes: A Classification Framework ¹ . Journal of the American Water Resources Association, 2013, 49, 163-182.	2.4	38
114	Prediction of streamâ€flow regime using ecological classification zones. Hydrological Processes, 2013, 27, 1935-1944.	2.6	4
115	Riparian hydraulic gradient and streamâ€groundwater exchange dynamics in steep headwater valleys. Journal of Geophysical Research F: Earth Surface, 2013, 118, 953-969.	2.8	46
116	Parameterizing sub-surface drainage with geology to improve modeling streamflow responses to climate in data limited environments. Hydrology and Earth System Sciences, 2013, 17, 341-354.	4.9	31
117	What makes Darwinian hydrology "Darwinian"? Asking a different kind of question about landscapes. Hydrology and Earth System Sciences, 2014, 18, 417-433.	4.9	64
118	Hydrologic landscape classification evaluates streamflow vulnerability to climate change in Oregon, USA. Hydrology and Earth System Sciences, 2014, 18, 3367-3392.	4.9	19

#	Article	IF	CITATIONS
119	Characterizing hydrologic change through catchment classification. Hydrology and Earth System Sciences, 2014, 18, 273-285.	4.9	75
120	HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments. Hydrology and Earth System Sciences, 2014, 18, 4635-4655.	4.9	78
121	Large-sample hydrology: a need to balance depth with breadth. Hydrology and Earth System Sciences, 2014, 18, 463-477.	4.9	208
122	Hydroclimatic regimes: a distributed water-balance framework for hydrologic assessment, classification, and management. Hydrology and Earth System Sciences, 2014, 18, 3855-3872.	4.9	23
123	Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration. Hydrology and Earth System Sciences, 2014, 18, 4839-4859.	4.9	106
124	Hydrologic Landscape Regionalisation Using Deductive Classification and Random Forests. PLoS ONE, 2014, 9, e112856.	2.5	23
125	Use of Hydrologic Landscape Classification to Diagnose Streamflow Predictability in Oregon. Journal of the American Water Resources Association, 2014, 50, 762-776.	2.4	17
126	GISâ€Based Stream Classification in a Mountain Watershed for Jurisdictional Evaluation. Journal of the American Water Resources Association, 2014, 50, 1304-1324.	2.4	12
127	Characterizing effects of landscape and morphometric factors on water quality of reservoirs using a self-organizing map. Environmental Modelling and Software, 2014, 55, 214-221.	4.5	80
128	Water Balances of Two Piedmont Headwater Catchments: Implications for Regional Hydrologic Landscape Classification. Journal of the American Water Resources Association, 2014, 50, 1063-1079.	2.4	9
129	Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments – A comparative hydrology approach. Journal of Hydrology, 2014, 517, 985-996.	5.4	84
130	Patterns of similarity of seasonal water balances: A window into streamflow variability over a range of time scales. Water Resources Research, 2014, 50, 5638-5661.	4.2	167
131	Controls on groundwater flow in a semiarid folded and faulted intermountain basin. Water Resources Research, 2014, 50, 6788-6809.	4.2	19
132	A Comparison of Fish-based Classification Schemes for Reference Streams and Rivers in Nebraska. Journal of Environmental Quality, 2014, 43, 1004-1012.	2.0	1
133	Seasonal variations in groundwater upwelling zones in a Danish lowland stream analyzed using Distributed Temperature Sensing (DTS). Hydrological Processes, 2014, 28, 1422-1435.	2.6	27
134	Hydraulic subsurface measurements and hydrodynamic modelling as indicators for groundwater flow systems in the Rotondo granite, Central Alps (Switzerland). Hydrological Processes, 2014, 28, 255-278.	2.6	12
135	Spatioâ€ŧemporal habitat selection shifts in brown trout populations under contrasting natural flow regimes. Ecohydrology, 2014, 7, 569-579.	2.4	18
136	On the use of spatially distributed, time-lapse microgravity surveys to inform hydrological modeling. Water Resources Research, 2015, 51, 7270-7288.	4.2	22

CITATION REPORT ARTICLE IF CITATIONS Continental U.S. streamflow trends from 1940 to 2009 and their relationships with watershed spatial 4.2 64 characteristics. Water Resources Research, 2015, 51, 6262-6275. Classifying the flow regimes of Mediterranean streams using multivariate analysis. Hydrological 2.6 Processes, 2015, 29, 4666-4682. Reliable, robust and realistic: the three R's of next-generation land-surface modelling. Atmospheric 4.9 167 Chemistry and Physics, 2015, 15, 5987-6005. Assessing the performance of a semiâ€distributed hydrological model under various watershed 34 discretization schemes. Hydrological Processes, 2015, 29, 4018-4031. Metaâ€analysis of flow modeling performancesâ€"to build a matching system between catchment 20 2.6 complexity and model types. Hydrological Processes, 2015, 29, 2463-2477. Catchment coevolution: A useful framework for improving predictions of hydrological change?. Water Resources Research, 2015, 51, 4903-4922. 4.2 Using <scp>GIS</scp> to Delineate Headwater Stream Origins in the Appalachian Coalfields of 2.4 14 Kentucky. Journal of the American Water Resources Association, 2015, 51, 1667-1687. A groundwater recharge perspective on locating tree plantations within low-rainfall catchments to 4.9 26 limit water resource losses. Hydrology and Earth System Sciences, 2015, 19, 1107-1123. Modeling Purpose and Conceptual Model., 2015, , 27-67. 3 A large-scale simulation model to assess karstic groundwater recharge over Europe and the 3.6 Mediterranean. Geoscientific Model Development, 2015, 8, 1729-1746. Hydrological Processes and Model Representation: Impact of Soft Data on Calibration. Transactions 130 1.1 of the ASABE, 2015, 58, 1637-1660. Assessment of Regional Variation in Streamflow Responses to Urbanization and the Persistence of 10.0 Physiography. Environmental Science & amp; Technology, 2015, 49, 2724-2732. The effect of forcing and landscape distribution on performance and consistency of model 2.6 41 structures. Hydrological Processes, 2015, 29, 3727-3743. Aquifer–peatland connectivity in southern Quebec (Canada). Hydrological Processes, 2015, 29, 2.6 2600-2612 Agro-hydrologic Landscapes in the Upper Mississippi and Ohio River Basins. Environmental 2.7 24 Management, 2015, 55, 646-656.

152	Impacts and prognosis of natural resource development on water and wetlands in Canada's boreal zone. Environmental Reviews, 2015, 23, 78-131.	4.5	64
153	Quantitative assessment of groundwater controls across major US river basins using a multi-model regression algorithm. Advances in Water Resources, 2015, 82, 106-123.	3.8	17
154	Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecological	3.8	121

Applications, 2015, 25, 1397-1419.

#

137

139

140

141

143

144

145

146

147

148

149

#	Article	IF	Citations
155	Evaluation of river–aquifer interaction in the north part of Dezful–Andimeshk district, SW of Iran. Arabian Journal of Geosciences, 2015, 8, 7177-7189.	1.3	7
156	Towards simplification of hydrologic modeling: identification of dominant processes. Hydrology and Earth System Sciences, 2016, 20, 4655-4671.	4.9	52
157	Spatial Combination Modeling Framework of Saturation-Excess and Infiltration-Excess Runoff for Semihumid Watersheds. Advances in Meteorology, 2016, 2016, 1-15.	1.6	15
158	The importance of topography-controlled sub-grid process heterogeneity and semi-quantitative prior constraints in distributed hydrological models. Hydrology and Earth System Sciences, 2016, 20, 1151-1176.	4.9	47
159	Landscape and Regional Stream Ecology. , 2016, , 389-415.		1
160	From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions. Water Resources Research, 2016, 52, 954-989.	4.2	78
161	Sub-surface water contribution to recession flow in a mountain headwater stream system based on single monitoring campaign. Hydrological Processes, 2016, 30, 899-913.	2.6	3
162	Groundwater connectivity controls peat burn severity in the boreal plains. Ecohydrology, 2016, 9, 574-584.	2.4	53
163	Delineating floodplain and upland areas for hydrologic models: a comparison of methods. Hydrological Processes, 2016, 30, 4367-4383.	2.6	17
164	Hydrologic Landscape Characterization for the Pacific Northwest, USA. Journal of the American Water Resources Association, 2016, 52, 473-493.	2.4	18
165	Construction and analysis of Hydrogeological Landscape units using Self-Organising Maps. Soil Research, 2016, 54, 328.	1.1	5
166	Development of a data-driven semi-distributed hydrological model for regional scale catchments prone to Mediterranean flash floods. Journal of Hydrology, 2016, 541, 173-189.	5.4	25
167	Linking the Budyko framework and the Dunne diagram. Journal of Hydrology, 2016, 535, 581-597.	5.4	66
168	On the use of late-time peaks of residence time distributions for the characterization of hierarchically nested groundwater flow systems. Journal of Hydrology, 2016, 543, 47-58.	5.4	24
169	Hydrogeological controls of water tableâ€land surface interactions. Geophysical Research Letters, 2016, 43, 9653-9661.	4.0	19
170	Geographically isolated wetlands are part of the hydrological landscape. Hydrological Processes, 2016, 30, 153-160.	2.6	127
171	The influence of watershed characteristics on spatial patterns of trends in annual scale streamflow variability in the continental U.S Journal of Hydrology, 2016, 540, 850-860.	5.4	24
172	Unraveling complex hydrogeological processes in Andean basins in southâ€central Chile: An integrated assessment to understand hydrological dissimilarity. Hydrological Processes, 2016, 30, 4934-4943.	2.6	28

#	Article	IF	CITATIONS
173	Transit times—the link between hydrology and water quality at the catchment scale. Wiley Interdisciplinary Reviews: Water, 2016, 3, 629-657.	6.5	184
174	Classification of Drainage Basins Based on Readily Available Information. Water Resources Management, 2016, 30, 5559-5574.	3.9	7
175	Interactions Between Surface Water and Groundwater: Key Processes in Ecological Restoration of Degraded Coastal Wetlands Caused by Reclamation. Wetlands, 2016, 36, 95-102.	1.5	33
176	Regionalization of Flow-Duration Curves through Catchment Classification with Streamflow Signatures and Physiographic–Climate Indices. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	1.9	53
177	Influence of glacial landform hydrology on phosphorus budgets of shallow lakes on the Boreal Plain, Canada. Journal of Hydrology, 2016, 535, 191-203.	5.4	11
178	Expansion of landscape characterisation methods within the Hydrogeological Landscape Framework: application in the Australian Capital Territory. Australian Journal of Earth Sciences, 2017, 64, 1073-1084.	1.0	6
179	Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2842-2847.	7.1	128
180	Revealing the Diversity of Natural Hydrologic Regimes in California with Relevance for Environmental Flows Applications. Journal of the American Water Resources Association, 2017, 53, 411-430.	2.4	30
181	Delineation of Environmental Units by Multivariate Techniques in the Duero River Watershed, Michoacán, Mexico. Environmental Modeling and Assessment, 2017, 22, 257-266.	2.2	6
182	The hydrologic landscape of the Ajó coastal plain, Argentina: An assessment of human-induced changes. Anthropocene, 2017, 18, 1-14.	3.3	7
183	Regional variation in streamflow drivers across a continental climatic gradient. Ecohydrology, 2017, 10, e1816.	2.4	25
184	Spatio-temporal aspects of the environmental factors affecting water quality in boreal rivers. Environmental Earth Sciences, 2017, 76, 1.	2.7	9
185	An analytical study on threeâ€dimensional versus twoâ€dimensional water tableâ€induced flow patterns in a Tóthian basin. Hydrological Processes, 2017, 31, 4006-4018.	2.6	7
186	Landscape controls on longâ€ŧerm runoff in subhumid heterogeneous Boreal Plains catchments. Hydrological Processes, 2017, 31, 2737-2751.	2.6	53
187	Development of Regional Curves for Hydrologic Landscape Regions (<scp>HLR</scp>) in the Contiguous United States. Journal of the American Water Resources Association, 2017, 53, 903-928.	2.4	14
188	Hydrologic Landscape Classification to Estimate Bristol Bay, Alaska Watershed Hydrology. Journal of the American Water Resources Association, 2017, 53, 1008-1031.	2.4	3
189	The freshwater landscape: lake, wetland, and stream abundance and connectivity at macroscales. Ecosphere, 2017, 8, e01911.	2.2	52
190	Combined soil-terrain stratification for characterizing catchment-scale soil moisture variation. Geoderma, 2017, 285, 260-269.	5.1	20

#	Article	IF	CITATIONS
191	Increase in Nutrients, Mercury, and Methylmercury as a Consequence of Elevated Sulfate Reduction to Sulfide in Experimental Wetland Mesocosms. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2769-2785.	3.0	23
192	Landform features and seasonal precipitation predict shallow groundwater influence on temperature in headwater streams. Water Resources Research, 2017, 53, 5788-5812.	4.2	32
193	lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based hydrological models. Geoscientific Model Development, 2017, 10, 3001-3023.	3.6	17
194	Hydrogeological controls on spatial patterns of groundwater discharge in peatlands. Hydrology and Earth System Sciences, 2017, 21, 6031-6048.	4.9	34
195	Understanding hydrologic variability across Europe through catchment classification. Hydrology and Earth System Sciences, 2017, 21, 2863-2879.	4.9	97
196	HESS Opinions: The complementary merits of competing modelling philosophies in hydrology. Hydrology and Earth System Sciences, 2017, 21, 3953-3973.	4.9	134
197	Grazing, forest density, and carbon storage: towards a more sustainable land use in Caatinga dry forests of Brazil. Regional Environmental Change, 2018, 18, 1969-1981.	2.9	22
198	Connectivity of Streams and Wetlands to Downstream Waters: An Integrated Systems Framework. Journal of the American Water Resources Association, 2018, 54, 298-322.	2.4	119
199	Quantifying peat hydrodynamic properties and their influence on water table depths in peatlands of southern Quebec (Canada). Ecohydrology, 2018, 11, e1976.	2.4	9
200	Experiences in calibrating and evaluating lumped karst hydrological models. Geological Society Special Publication, 2018, 466, 331-340.	1.3	8
201	Typecasting catchments: Classification, directionality, and the pursuit of universality. Advances in Water Resources, 2018, 112, 245-253.	3.8	8
202	Landscape metrics as predictors of hydrologic connectivity between Coastal Plain forested wetlands and streams. Hydrological Processes, 2018, 32, 516-532.	2.6	37
203	Multi-Element Composition of Prairie Pothole Wetland Soils along Depth Profiles Reflects Past Disturbance to a Depth of at Least one Meter. Wetlands, 2018, 38, 1245-1258.	1.5	14
204	River Classification as a Geographic Tool in the Age of Big Data and Global Change. Geographical Review, 2018, 108, 120-137.	1.8	9
205	Preliminary estimation of groundwater recharge on Brda river outwash plain. E3S Web of Conferences, 2018, 44, 00050.	0.5	2
206	Effect of climate change and mining on hydrological connectivity of surficial layers in the Athabasca Oil Sands Region. Hydrological Processes, 2018, 32, 3698-3716.	2.6	12
207	Oxygen and Carbon Stable Isotope Composition of Cretaceous to Pliocene Calcareous Paleosols in the Tian Shan Region (Central Asia): Controlling Factors and Paleogeographic Implications. Geosciences (Switzerland), 2018, 8, 330.	2.2	8
208	Wetlands inform how climate extremes influence surface water expansion and contraction. Hydrology and Earth System Sciences, 2018, 22, 1851-1873.	4.9	16

#	Article	IF	CITATIONS
209	Landscape heterogeneity and hydrological processes: a review of landscape-based hydrological models. Landscape Ecology, 2018, 33, 1461-1480.	4.2	56
210	Quaternary Landforms and Basin Morphology Control the Natural Eutrophy of Boreal Lakes and Their Sensitivity to Anthropogenic Forcing. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	12
211	Differing Modes of Biotic Connectivity within Freshwater Ecosystem Mosaics. Journal of the American Water Resources Association, 2019, 55, 307-317.	2.4	23
212	An investigation into structural discretisation as a first-order and pilot framework to understand groundwater–stream water connectivity at a reach scale. Sustainable Water Resources Management, 2019, 5, 883-900.	2.1	5
213	Opportunistic wetland formation on reconstructed landforms in a sub-humid climate: influence of site and landscape-scale factors. Wetlands Ecology and Management, 2019, 27, 587-608.	1.5	10
214	Revisiting SWAT as a Saturation-Excess Runoff Model. Water (Switzerland), 2019, 11, 1427.	2.7	8
215	Discussion of "Low-Impact Development Effects on Aquifer Recharge Using Coupled Surface and Groundwater Models―by Eva W. Mooers, Rob C. Jamieson, Jenny L. Hayward, John Drage, and Craig B. Lake. Journal of Hydrologic Engineering - ASCE, 2019, 24, 07019002.	1.9	0
216	A conceptual framework for the identification and characterization of lacustrine spawning habitats for native lake charr Salvelinus namaycush. Environmental Biology of Fishes, 2019, 102, 1533-1557.	1.0	17
217	Assessing Vegetation Composition and the Indicator Species Around Water Source Areas in a Pine Forest Plantation: A Case Study from Watujali and Silengkong Catchments, Kebumen, Indonesia. Forests, 2019, 10, 825.	2.1	8
218	Distribution of tree species around springs and trees-springs interplay possibility in the springs area of Soloraya, Central Java, Indonesia. Forest Science and Technology, 2019, 15, 128-139.	0.8	4
219	Unsupervised hydrologic classification of rivers: Watershed controls on natural and anthropogenic flow regimes, Alabama, USA. Hydrological Processes, 2019, 33, 1231-1244.	2.6	7
220	Comparative Study of Two State-of-the-Art Semi-Distributed Hydrological Models. Water (Switzerland), 2019, 11, 871.	2.7	15
221	How do hydrogeological setting and meteorological conditions influence water table depth and fluctuations in ombrotrophic peatlands?. Journal of Hydrology X, 2019, 4, 100032.	1.6	10
222	From Points to Patterns: Using Groundwater Time Series Clustering to Investigate Subsurface Hydrological Connectivity and Runoff Source Area Dynamics. Water Resources Research, 2019, 55, 5784-5806.	4.2	34
223	Groundwater and Surface Water Interaction. , 2019, , 197-207.		9
224	Climate Change, Land Use/Land Cover Change, and Population Growth as Drivers of Groundwater Depletion in the Central Valleys, Oaxaca, Mexico. Remote Sensing, 2019, 11, 1290.	4.0	34
225	A framework for conceptualizing groundwater-surface water interactions and identifying potential impacts on water quality, water quantity, and ecosystems. Journal of Hydrology, 2019, 574, 609-627.	5.4	97
226	Groundwater nitrate removal in riparian buffer zones: a review of research progress in the past 20 years. Biogeochemistry, 2019, 143, 347-369.	3.5	60

		CITATION REP	ORT	
# 227	ARTICLE Secondary Hydrogeologic Regions of the Conterminous United States. Ground Water, 2019, 57		IF 1.3	CITATIONS
221	Secondary Hydrogeologic Regions of the Conterminous diffied States. Ground Water, 2017, 57	, 307-377.	1.5	13
228	The influence of landscape characteristics on the spatial variability of river temperatures. Catena 2019, 177, 70-83.	a,	5.0	35
229	A Multi-Dimensional Hydro-Climatic Similarity and Classification Framework Based on Budyko T for Continental-Scale Applications in China. Water (Switzerland), 2019, 11, 319.	neory	2.7	5
230	Assessing wetland climate change vulnerability for wetland management decision support using hydrogeological landscape framework: application in the Australian Capital Territory. Marine and Freshwater Research, 2019, 70, 225.		1.3	3
231	Advances in Quantifying Streamflow Variability Across Continental Scales: 1. Identifying Natura Anthropogenic Controlling Factors in the USA Using a Spatially Explicit Modeling Method. Wate Resources Research, 2019, 55, 10893-10917.		4.2	7
232	Aquifer System, Recharge-Discharge Zone and Groundwater Basin Boundary Mapping to Suppo and Transparent Water Data, Case Study: Karangkobar Groundwater Basin. E3S Web of Confer 2019, 125, 01012.		0.5	0
233	Advances in Quantifying Streamflow Variability Across Continental Scales: 2. Improved Model Regionalization and Prediction Uncertainties Using Hierarchical Bayesian Methods. Water Reso Research, 2019, 55, 11061-11087.	urces	4.2	6
234	Interactions Between Regional Climate, Surficial Geology, and Topography: Characterizing Shall Groundwater Systems in Subhumid, Lowâ€Relief Landscapes. Water Resources Research, 2019	ow , 55, 284-297.	4.2	21
235	Controls of the spatial variability of denitrification potential in nontidal floodplains of the Chesapeake Bay watershed, USA. Geoderma, 2019, 338, 14-29.		5.1	15
236	Classifying physiographic regimes on terrain and hydrologic factors for adaptive generalization stream networks. International Journal of Cartography, 2020, 6, 4-21.	of	0.4	8
237	Linking soil water balance with flood spatial arrangement in an extremely flat landscape. Hydrological Processes, 2020, 34, 21-32.		2.6	5
238	Identification of factors influencing hydrologic model performance using a topâ€down approac large number of U.S. catchments. Hydrological Processes, 2020, 34, 4-20.	n in a	2.6	15
239	Anthropogenic Modifications and River Ecosystem Services: A Landscape Perspective. Water (Switzerland), 2020, 12, 2706.		2.7	43
240	Physiographic and Climatic Controls on Regional Groundwater Dynamics. Water Resources Res 2020, 56, e2019WR026545.	earch,	4.2	15
241	Toward Global Stochastic River Flood Modeling. Water Resources Research, 2020, 56, e2020W	R027692.	4.2	15
242	Calibrated Simulation of the Longâ€Term Average Surficial Groundwater System and Derived Sp Distributions of its Characteristics for the Contiguous United States. Water Resources Research 2020, 56, e2019WR026724.	atial 1,	4.2	24
243	Baseflow Age Distributions and Depth of Active Groundwater Flow in a Snowâ€Dominated Mou Headwater Basin. Water Resources Research, 2020, 56, e2020WR028161.	ntain	4.2	10
244	Wetland Assessment: Beyond the Traditional Water Quality Perspective. , 2020, , .			1

#	Article	IF	CITATIONS
245	Lake water level response to drought in a lake-rich region explained by lake and landscape characteristics. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 1836-1845.	1.4	12
246	The joint effect of natural and human-induced environmental factors on surface water quality in the Birim North District of Ghana. Water Practice and Technology, 2020, 15, 605-618.	2.0	0
247	Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed. Water Resources Management, 2020, 34, 2255-2267.	3.9	4
248	Long-term hydrological response to forest harvest during seasonal low flow: Potential implications for current forest practices. Science of the Total Environment, 2020, 730, 138926.	8.0	32
249	Changes to inter-aquifer exchange resulting from long-term pumping: implications for bedrock groundwater recharge. Hydrogeology Journal, 2020, 28, 1359-1370.	2.1	8
250	Machine learning based identification of dominant controls on runoff dynamics. Hydrological Processes, 2020, 34, 2450-2465.	2.6	21
251	A Hydrologic Landscapes Perspective on Groundwater Connectivity of Depressional Wetlands. Water (Switzerland), 2020, 12, 50.	2.7	20
252	Geomorphic controls of perched groundwater interaction with natural ridgeâ€ŧop depressional wetlands. Hydrological Processes, 2020, 34, 1089-1100.	2.6	2
253	Forestland-peatland hydrologic connectivity in water-limited environments: hydraulic gradients often oppose topography. Environmental Research Letters, 2020, 15, 034021.	5.2	18
254	Intra-catchment comparison and classification of long-term streamflow variability in the Alps using wavelet analysis. Journal of Hydrology, 2020, 587, 124927.	5.4	22
255	Surface water and groundwater: unifying conceptualization and quantification of the two "water worlds― Hydrology and Earth System Sciences, 2020, 24, 1831-1858.	4.9	16
256	Integrating field work and large-scale modeling to improve assessment of karst water resources. Hydrogeology Journal, 2021, 29, 315-329.	2.1	14
257	Generation of realistic synthetic catchments to explore fine continental surface processes. Earth Surface Processes and Landforms, 2021, 46, 593-610.	2.5	3
258	Including Regional Knowledge Improves Baseflow Signature Predictions in Large Sample Hydrology. Water Resources Research, 2021, 57, e2020WR028354.	4.2	30
259	Time, Hydrologic Landscape, and the Longâ€Term Storage of Peatland Carbon in Sedimentary Basins. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005762.	2.8	7
260	Impact of Sea-Level Rise on the Hydrologic Landscape of the MÄnÄ•Plain, Kauaâ€~i. Water (Switzerland), 2021, 13, 766.	2.7	2
261	Similarity-based approaches in hydrogeology: proposal of a new concept for data-scarce groundwater resource characterization and prediction. Hydrogeology Journal, 2021, 29, 1693.	2.1	8
262	Groundwater recharge in a confined paleovalley setting, Northeast British Columbia, Canada. Hydrogeology Journal, 2021, 29, 1797-1812.	2.1	2

#	Article	IF	CITATIONS
263	Uncertainty in the extreme flood magnitude estimates of large-scale flood hazard models. Environmental Research Letters, 2021, 16, 064013.	5.2	8
264	Rapid groundwater potential mapping in humanitarian contexts: improving borehole implementation in basement environments. Hydrogeology Journal, 2021, 29, 2033.	2.1	4
265	Understanding the Information Content in the Hierarchy of Model Development Decisions: Learning From Data. Water Resources Research, 2021, 57, e2020WR027948.	4.2	22
266	The Limits of Homogenization: What Hydrological Dynamics can a Simple Model Represent at the Catchment Scale?. Water Resources Research, 2021, 57, e2020WR029528.	4.2	13
267	Using hydrologic landscape classification and climatic time series to assess hydrologic vulnerability of the western U.S. to climate. Hydrology and Earth System Sciences, 2021, 25, 3179-3206.	4.9	2
268	Regional Patterns and Physical Controls of Streamflow Generation Across the Conterminous United States. Water Resources Research, 2021, 57, e2020WR028086.	4.2	20
269	Climate Impacts on Source Contributions and Evaporation to Flow in the Snake River Basin Using Surface Water Isoscapes (δ2 H and δ18 O). Water Resources Research, 2021, 57, e2020WR029157.	4.2	0
270	Knowledge gaps in our perceptual model of Great Britain's hydrology. Hydrological Processes, 2021, 35, e14288.	2.6	22
271	Hydrology drives variation in spawning phenologies and diversity of larval assemblages of Australian wet–dry tropical fish. Freshwater Biology, 2021, 66, 1949-1967.	2.4	7
272	Dynamics of plant ecology and soil conservation: Implications for cut-slope protection. Acta Oecologica, 2021, 111, 103744.	1.1	3
273	On doing hydrology with dragons: Realizing the value of perceptual models and knowledge accumulation. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1550.	6.5	26
274	Too Many Streams and Not Enough Time or Money? Analytical Depletion Functions for Streamflow Depletion Estimates. Ground Water, 2021, , .	1.3	3
275	The hydrologic classification of dilute lakes. Canadian Geographer / Geographie Canadien, 2022, 66, 369-382.	1.5	0
277	Effect of DEM-smoothing and -aggregation on topographically-based flow directions and catchment boundaries. Journal of Hydrology, 2021, 602, 126717.	5.4	12
278	Hummock-scale controls on groundwater recharge rates and the potential for developing local groundwater flow systems in water-limited environments. Journal of Hydrology, 2021, 603, 126894.	5.4	2
279	Quantifying flow–ecology relationships across flow regime class and ecoregions in South Carolina. Science of the Total Environment, 2022, 802, 149721.	8.0	18
280	MULTISCALE RELATIONSHIPS BETWEEN LANDSCAPE CHARACTERISTICS AND NITROGEN CONCENTRATIONS IN STREAMS. , 2006, , 205-224.		6
281	Hydrological Catchment Classification Using a Data-Based Mechanistic Strategy. , 2012, , 483-500.		4

#	Article	IF	CITATIONS
282	Water Resource Development on Small Carbonate Islands: Solutions Offered by the Hydrologic Landscape Concept. , 2004, , 503-507.		4
283	What is the hydrologically effective area of a catchment?. Environmental Research Letters, 2020, 15, 104024.	5.2	33
284	Effects of Land Use on Lake Nutrients: The Importance of Scale, Hydrologic Connectivity, and Region. PLoS ONE, 2015, 10, e0135454.	2.5	98
287	Conceptual model building inspired by field-mapped runoff generation mechanisms. Journal of Hydrology and Hydromechanics, 2018, 66, 303-315.	2.0	9
288	A comparison of four approaches to river landscape delineation: The case of small watercourses in the Czech Republic. Moravian Geographical Reports, 2019, 27, 229-240.	1.2	2
296	Flexible vector-based spatial configurations in land models. Hydrology and Earth System Sciences, 2020, 24, 5953-5971.	4.9	16
310	Groundwater Connectivity between Douglas Lake and Carp Creek Based on Fluorescein Dye Studies. Michigan Academician, 2016, 43, 380-392.	0.1	1
311	Mixed Land Use and Cumulative Effects. , 2007, , 257-281.		0
314	Aboveground biomass in norway spruce trees in natural forest stand. Visnyk of the Lviv University Series Geography, 2014, , 150-158.	0.1	0
315	Geomorphic characteristics of small seeps and fens in a glaciated landscape. Landform Analysis, 0, 27, 15-25.	0.0	0
316	Consideration of the Landscape. , 2016, , 73-91.		0
317	Wetland Classification: Hydrogeomorphic System. , 2016, , 1-8.		0
318	Wetland Classification: Hydrogeomorphic System. , 2018, , 1483-1489.		0
319	The Role of Water in the Landscape. Springer Water, 2020, , 71-90.	0.3	1
320	Direct and Indirect Effects of Forest Harvesting on Sediment Yield in Forested Watersheds of the United States. Journal of the American Water Resources Association, 2021, 57, 1-31.	2.4	13
321	Wise Water Resources Management under the Increasing Number of Refugees in the Third Poorest Water Resources Country (Jordan) – A Suggested Future Spatial Plan for Water Resources Investments. International Journal of Sustainable Development and Planning, 2020, 20, 235-238.	0.7	2
323	Characteristics of Dissolved Organic Carbon in Boreal Lakes: High Spatial and Interâ€Annual Variability Controlled by Landscape Attributes and Wetâ€Dry Periods. Water Resources Research, 2021, 57, .	4.2	8
324	Land-Based Sources, Water Quality and Management. NATO Security Through Science Series C: Environmental Security, 2008, , 483-512.	0.1	Ο

#	Article	IF	CITATIONS
325	Impacts of precipitation and topographic conditions on the model simulation in the north of China. Water Science and Technology: Water Supply, 2021, 21, 1025-1035.	2.1	4
326	Landscape controls of surface-water/groundwater interactions on shallow outwash lakes: how the long-term groundwater signal overrides interannual variability due to evaporative effects. Hydrogeology Journal, 2022, 30, 251-264.	2.1	2
327	The Hydrology of Groundwater Systems - From Recharge to Discharge. , 2022, , 324-330.		3
328	Modeling streamflow variability at the regional scale: (1) perceptual model development through signature analysis. Journal of Hydrology, 2022, 605, 127287.	5.4	7
329	Shallow Groundwater Thermal Response to Land Surface Energy Dissipation and Potential Implications on the Use of Heat as a Tracer. Earth Systems and Environment, 0, , 1.	6.2	0
330	The State-of-the-Art Estimation of Groundwater Recharge and Water Balance with a Special Emphasis on India: A Critical Review. Sustainability, 2022, 14, 340.	3.2	8
332	Modeling the Hydrologic Influence of Subsurface Tile Drainage Using the National Water Model. Water Resources Research, 2022, 58, .	4.2	9
333	Using statistical models and GIS to delimit the groundwater recharge potential areas and to estimate the infiltration rate: A case study of Nadhour-Sisseb-El Alem Basin, Tunisia. Journal of Arid Land, 2021, 13, 1122-1141.	2.3	7
334	Surface Flooding as a Key Driver of Groundwater Arsenic Contamination in Southeast Asia. Environmental Science & Technology, 2022, 56, 928-937.	10.0	25
335	Using Remote Sensing and Machine Learning to Locate Groundwater Discharge to Salmon-Bearing Streams. Remote Sensing, 2022, 14, 63.	4.0	6
336	Land-Surface Modelling. Atmospheric and Oceanographic Sciences Library, 2008, , 91-115.	0.1	0
339	Consideration of the landscape. , 2022, , 93-116.		0
340	The waterscape continuum concept: Rethinking boundaries in ecosystems. Wiley Interdisciplinary Reviews: Water, 2022, 9, .	6.5	6
341	Understanding process controls on groundwater recharge variability across Africa through recharge landscapes. Journal of Hydrology, 2022, 612, 127967.	5.4	6
342	Aquifer-Peatland Hydrological Connectivity and Controlling Factors in Boreal Peatlands. Frontiers in Earth Science, 0, 10, .	1.8	3
343	Identifying most relevant controls on catchment hydrological similarity using model transferability – A comprehensive study in Iran. Journal of Hydrology, 2022, 612, 128193.	5.4	6
344	Regionalization of flow duration curves in Colombia. Hydrology Research, 2022, 53, 1075-1089.	2.7	5
345	Seven hydrogeological terrains characteristic of southern Ontario. Canadian Journal of Earth Sciences, 0, , .	1.3	Ο

#	Article	IF	CITATIONS
346	Natural controls on phosphorus concentrations in small Lakes in Central Alberta, Canada. Canadian Water Resources Journal, 2023, 48, 1-17.	1.2	1
347	Identifying Hydrologic Regimes and Drivers in Nova Scotia, Canada: Catchment Classification Efforts for a Data-Limited Region. Journal of Hydrologic Engineering - ASCE, 2022, 27, .	1.9	1
349	A Hydrogeologic-Landscapes Framework for Depressional-Wetland Vegetation in the Southeastern Coastal Plain, USA. Wetlands, 2022, 42, .	1.5	3
350	The Impact of an Open Water Balance Assumption on Understanding the Factors Controlling the Longâ€Term Streamflow Components. Water Resources Research, 2022, 58, .	4.2	5
352	How Does Topography Control Topographyâ€Driven Groundwater Flow?. Geophysical Research Letters, 2022, 49, .	4.0	1
353	Assessment of lake-level fluctuation as an indicator of fire activity in boreal Canada. Ecological Indicators, 2022, 145, 109611.	6.3	0
354	An overview of the effects of forest management on groundwater hydrology. , 0, , .		11
355	Tracking a blue wave of ephemeral water across arid southern Africa. Environmental Research Letters, 2022, 17, 114063.	5.2	2
356	New strategy for evaluating the spatiotemporal distribution of groundwater resource quantity under seasonal freeze/thaw in mountainous areas. Journal of Hydrology, 2023, 616, 128850.	5.4	2
357	From basin-scale groundwater flow to integrated geofluid research in the hydrogeology research group of E¶tv¶s Lor¡nd University, Hungary. Journal of Hydrology X, 2022, 17, 100142.	1.6	1
358	Hydrologic Connectivity and Flow Generation from California Vernal Pool, Swale, and Headwater Stream Complexes to Downstream Waters. Wetlands, 2023, 43, .	1.5	1
359	Hydrological response of a headwater catchment in Southeast Brazil—Threshold patterns of stormflow response. Hydrological Processes, 2023, 37, .	2.6	3
360	Setting a reference for wetland carbon: the importance of accounting for hydrology, topography, and natural variability. Environmental Research Letters, 2023, 18, 064014.	5.2	3
361	Dataâ€Driven Estimation of Groundwater Level Timeâ€5eries at Unmonitored Sites Using Comparative Regional Analysis. Water Resources Research, 2023, 59, .	4.2	2
362	Unravelling geological controls on groundwater flow and surface water-groundwater interaction in mountain systems: A multi-disciplinary approach. Journal of Hydrology, 2023, 623, 129786.	5.4	1
364	Application of Hydro-Based Morphological Models for Environmental Assessment of Watersheds. ISPRS International Journal of Geo-Information, 2023, 12, 314.	2.9	0
365	The role of previously glaciated landscapes in spatiotemporal variability of streamflow in snow-dominated watersheds: British Columbia, Canada. Journal of Hydrology: Regional Studies, 2023, 49, 101478.	2.4	0
367	Local Topography and Streambed Hydraulic Conductivity Influence Riparian Groundwater Age and Groundwater urface Water Connection. Water Resources Research, 2023, 59, .	4.2	3

		_	
#	Article	IF	CITATIONS
368	The Problem of Effective Evacuation of the Population from Floodplains under Threat of Flooding: Algorithmic and Software Support with Shortage of Resources. Computation, 2023, 11, 150.	2.0	2
369	EcoGIS-Simulation Software for riverbed sediments modeling. E3S Web of Conferences, 2023, 411, 02005.	0.5	1
370	Other Important Elements. , 2024, , 427-461.		0
371	Interaction of focused recharge and deep groundwater discharge near a wetland: A study in the Ordos Basin, China. Journal of Hydrology, 2023, 626, 130361.	5.4	Ο
372	Modelling flood frequency and magnitude in a glacially conditioned, heterogeneous landscape: testing the importance of land cover and land use. Hydrology and Earth System Sciences, 2023, 27, 3977-3998.	4.9	0
372 373	Modelling flood frequency and magnitude in a glacially conditioned, heterogeneous landscape: testing the importance of land cover and land use. Hydrology and Earth System Sciences, 2023, 27,	4.9 4.2	0