Crystal structure and assembly of a eukaryotic small he

Nature Structural Biology 8, 1025-1030 DOI: 10.1038/nsb722

Citation Report

#	Article	IF	CITATIONS
1	Structure and function of the small heat shock protein/α-crystallin family of molecular chaperones. Advances in Protein Chemistry, 2001, 59, 105-156.	4.4	374
3	Subunit Exchange, Conformational Stability, and Chaperone-like Function of the Small Heat Shock Protein 16.5 fromMethanococcus jannaschii. Journal of Biological Chemistry, 2002, 277, 38468-38475.	3.4	116
4	Small heat-shock proteins regulate membrane lipid polymorphism. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13504-13509.	7.1	294
5	Subunit Exchange of Multimeric Protein Complexes. Journal of Biological Chemistry, 2002, 277, 38921-38929.	3.4	180
6	Role of the C-terminal Extensions of α-Crystallins. Journal of Biological Chemistry, 2002, 277, 45821-45828.	3.4	46
7	Mildly Acidic pH Activates the Extracellular Molecular Chaperone Clusterin. Journal of Biological Chemistry, 2002, 277, 39532-39540.	3.4	92
8	Distinct Roles of the N-terminal-binding Domain and the C-terminal-solubilizing Domain of α-Synuclein, a Molecular Chaperone. Journal of Biological Chemistry, 2002, 277, 28512-28520.	3.4	101
9	Analysis of interactions between domains of a small heat shock protein, Hsp30 of Neurospora crassa. Cell Stress and Chaperones, 2002, 7, 374.	2.9	6
10	Changes in Oligomerization Are Essential for the Chaperone Activity of a Small Heat Shock Protein in Vivo and in Vitro. Journal of Biological Chemistry, 2002, 277, 46310-46318.	3.4	150
11	C-terminal lysine truncation increases thermostability and enhances chaperone-like function of porcine αB-crystallin. Biochemical and Biophysical Research Communications, 2002, 297, 309-316.	2.1	20
12	The determinants of the oligomeric structure in Hsp16.5 are encoded in the α-crystallin domain. FEBS Letters, 2002, 519, 16-22.	2.8	42
13	p23 and HSP20/α-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families. FEBS Letters, 2002, 529, 162-167.	2.8	128
14	Monodisperse Hsp16.3 Nonamer Exhibits Dynamic Dissociation and Reassociation, with the Nonamer Dissociation Prerequisite for Chaperone-like Activity. Journal of Molecular Biology, 2002, 319, 517-526.	4.2	99
15	α-Crystallin-Type Heat Shock Proteins: Socializing Minichaperones in the Context of a Multichaperone Network. Microbiology and Molecular Biology Reviews, 2002, 66, 64-93.	6.6	480
16	Small heat shock proteins and stress tolerance in plants. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1577, 1-9.	2.4	556
17	Structure and properties of avian small heat shock protein with molecular weight 25 kDa. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2002, 1601, 64-74.	2.3	18
18	A critical motif for oligomerization and chaperone activity of bacterial α-heat shock proteins. FEBS Journal, 2002, 269, 3578-3586.	0.2	81
19	Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry (Moscow), 2002, 67, 511-519.	1.5	133

#	Article	IF	CITATIONS
20	Structural perturbation and enhancement of the chaperone-like activity of α-crystallin by arginine hydrochloride. Protein Science, 2003, 12, 1262-1270.	7.6	52
21	Characterization of a unique genomic clone located 5′ upstream of the Oshsp16.9B gene on chromosome 1 in rice (Oryza sativa L. cv Tainung No. 67). Theoretical and Applied Genetics, 2003, 106, 503-511.	3.6	4
22	Multi-subunit assembly of the Pyrococcus furiosus small heat shock protein is essential for cellular protection at high temperature. Extremophiles, 2003, 7, 79-83.	2.3	16
23	A 10-kDa class-Cl sHsp protects E. coli from oxidative and high-temperature stress. Planta, 2003, 217, 813-819.	3.2	24
24	Crystal Structure of Halophilic Dodecin. Structure, 2003, 11, 375-385.	3.3	86
25	Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Molecular Microbiology, 2003, 50, 585-595.	2.5	342
26	Getting a grip on nonâ€native proteins. EMBO Reports, 2003, 4, 565-570.	4.5	39
27	Alteration of Protein–Protein Interactions of Congenital Cataract Crystallin Mutants. , 2003, 44, 1155.		74
28	Two-dimensional crystallization of a small heat shock protein HSP16.3 on lipid layer. Biochemical and Biophysical Research Communications, 2003, 310, 360-366.	2.1	8
29	Small heat shock protein Hsp16.3 modulates its chaperone activity by adjusting the rate of oligomeric dissociation. Biochemical and Biophysical Research Communications, 2003, 310, 412-420.	2.1	39
30	Mycobacterium tuberculosis Hsp16.3 Nonamers are Assembled and Re-assembled via Trimer and Hexamer Intermediates. Journal of Molecular Biology, 2003, 326, 1013-1023.	4.2	19
31	Structural and Functional Defects Caused by Point Mutations in the α-Crystallin Domain of a Bacterial α-Heat Shock Protein. Journal of Molecular Biology, 2003, 328, 927-937.	4.2	40
32	Alpha-crystallin. Experimental Eye Research, 2003, 76, 145-153.	2.6	588
33	The R1 subunit of herpes simplex virus ribonucleotide reductase has chaperone-like activity similar to Hsp27. FEBS Letters, 2003, 545, 213-218.	2.8	30
34	Enhanced stability of αB-crystallin in the presence of small heat shock protein Hsp27. Biochemical and Biophysical Research Communications, 2003, 302, 710-714.	2.1	40
35	Activation mechanism of HSP16.5 from Methanococcus jannaschii. Biochemical and Biophysical Research Communications, 2003, 307, 991-998.	2.1	24
36	Disulfide bonds convert small heat shock protein Hsp16.3 from a chaperone to a non-chaperone: implications for the evolution of cysteine in molecular chaperones. Biochemical and Biophysical Research Communications, 2003, 308, 627-635.	2.1	26
37	Three-dimensional models corresponding to the C-terminal domain of human αA- and αB-crystallins based on the crystal structure of the small heat-shock protein HSP16.9 from wheat. International Journal of Biological Macromolecules, 2003, 33, 107-112.	7.5	20

#	Article	IF	CITATIONS
38	Chaperone-like activity of alpha-crystallin is enhanced by high-pressure treatment. Biochemical Journal, 2003, 370, 859-866.	3.7	17
39	Mechanism of Chaperone Function in Small Heat-shock Proteins. Journal of Biological Chemistry, 2003, 278, 10361-10367.	3.4	103
40	A Backbone-reversed Form of an All-β α-Crystallin Domain from a Small Heat-shock Protein (Retro-HSP12.6) Folds and Assembles into Structured Multimers. Journal of Biological Chemistry, 2003, 278, 26505-26510.	3.4	14
41	The human genome encodes 10 α-crystallin–related small heat shock proteins: HspB1–10. Cell Stress and Chaperones, 2003, 8, 53.	2.9	391
42	Mechanism of Chaperone Function in Small Heat-shock Proteins. Journal of Biological Chemistry, 2003, 278, 44214-44221.	3.4	50
43	Refolding of Substrates Bound to Small Hsps Relies on a Disaggregation Reaction Mediated Most Efficiently by ClpB/DnaK. Journal of Biological Chemistry, 2003, 278, 31033-31042.	3.4	243
44	Role of the Conserved SRLFDQFFG Region of α-Crystallin, a Small Heat Shock Protein. Journal of Biological Chemistry, 2003, 278, 51159-51166.	3.4	72
45	The Small Heat-shock Protein αB-Crystallin Promotes FBX4-dependent Ubiquitination. Journal of Biological Chemistry, 2003, 278, 4699-4704.	3.4	112
46	Polydispersity of a mammalian chaperone: Mass spectrometry reveals the population of oligomers in ÂB-crystallin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10611-10616.	7.1	235
47	Analysis of the Interaction of Small Heat Shock Proteins with Unfolding Proteins. Journal of Biological Chemistry, 2003, 278, 18015-18021.	3.4	154
48	A Comparative View of Alpha Crystallins: The contribution of comparative studies to understanding function. Integrative and Comparative Biology, 2003, 43, 481-491.	2.0	14
49	Subunit Exchange Demonstrates a Differential Chaperone Activity of Calf α-Crystallin toward βLOW- and Individual γ-Crystallins. Journal of Biological Chemistry, 2003, 278, 13747-13756.	3.4	61
50	The role of structural disorder in the function of RNA and protein chaperones. FASEB Journal, 2004, 18, 1169-1175.	0.5	496
51	Mutants in a Small Heat Shock Protein That Affect the Oligomeric State. Journal of Biological Chemistry, 2004, 279, 32674-32683.	3.4	66
52	Interactions between Small Heat Shock Protein Subunits and Substrate in Small Heat Shock Protein-Substrate Complexes. Journal of Biological Chemistry, 2004, 279, 1080-1089.	3.4	100
53	Association of the Chaperone αB-crystallin with Titin in Heart Muscle. Journal of Biological Chemistry, 2004, 279, 7917-7924.	3.4	147
54	Oligomerization, Chaperone Activity, and Nuclear Localization of p26, a Small Heat Shock Protein from Artemia franciscana. Journal of Biological Chemistry, 2004, 279, 39999-40006.	3.4	53
55	Analysis of the Regulation of the Molecular Chaperone Hsp26 by Temperature-induced Dissociation. Journal of Biological Chemistry, 2004, 279, 11222-11228.	3.4	118

#	Article	IF	CITATIONS
56	Role of ATP on the Interaction of α-Crystallin with Its Substrates and Its Implications for the Molecular Chaperone Function. Journal of Biological Chemistry, 2004, 279, 42648-42657.	3.4	108
57	The Structural Basis of the Thermostability of SP1, a Novel Plant (Populus tremula) Boiling Stable Protein. Journal of Biological Chemistry, 2004, 279, 51516-51523.	3.4	73
58	Azetidine-induced Accumulation of Class I Small Heat Shock Proteins in the Soluble Fraction Provides Thermotolerance in Soybean Seedlings. Plant and Cell Physiology, 2004, 45, 1759-1767.	3.1	9
59	Crossâ€ŀinking of ubiquitin, HSP27, parkin and αâ€synuclein by γâ€glutamylâ€îµâ€ŀysine bonds in Alzheimer's neurofibrillary tangles. FASEB Journal, 2004, 18, 1135-1137.	0.5	108
60	Essential Role of the NH2-terminal WD/EPF Motif in the Phosphorylation-activated Protective Function of Mammalian Hsp27. Journal of Biological Chemistry, 2004, 279, 23463-23471.	3.4	101
61	Human Sgt1 Binds HSP90 through the CHORD-Sgt1 Domain and Not the Tetratricopeptide Repeat Domain. Journal of Biological Chemistry, 2004, 279, 16511-16517.	3.4	107
62	The Identity of Proteins Associated with a Small Heat Shock Protein during Heat Stress in Vivo Indicates That These Chaperones Protect a Wide Range of Cellular Functions. Journal of Biological Chemistry, 2004, 279, 7566-7575.	3.4	145
63	Chaperone activity of cytosolic small heat shock proteins from wheat. FEBS Journal, 2004, 271, 1426-1436.	0.2	96
64	Temperature and concentration-controlled dynamics of rhizobial small heat shock proteins. FEBS Journal, 2004, 271, 2494-2503.	0.2	36
65	Alpha crystallin: hot molecule, not just a lens packer. Australasian journal of optometry, The, 2004, 87, 354-355.	1.3	0
66	α rystallin: a review of its structure and function. Australasian journal of optometry, The, 2004, 87, 356-366.	1.3	130
67	Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant Journal, 2004, 41, 269-281.	5.7	66
68	Minimal protein-folding systems in hyperthermophilic archaea. Nature Reviews Microbiology, 2004, 2, 315-324.	28.6	68
69	Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO Journal, 2004, 23, 638-649.	7.8	180
70	Ageing and vision: structure, stability and function of lens crystallins. Progress in Biophysics and Molecular Biology, 2004, 86, 407-485.	2.9	742
71	Inter-subunit Cross-linking Suppressed the Dynamic Oligomeric Dissociation of Mycobacterium tuberculosis Hsp16.3 and Reduced Its Chaperone Activity. Biochemistry (Moscow), 2004, 69, 552-557.	1.5	7
72	Nodulin�22 from Phaseolus vulgaris protects Escherichia coli cells from oxidative stress. Planta, 2004, 219, 993-1002.	3.2	8
73	Small heat shock proteins from extremophiles: a review. Extremophiles, 2004, 8, 1-11.	2.3	87

#	Article	IF	CITATIONS
74	Effects of divalent metal ions on the αB-crystallin chaperone-like activity: spectroscopic evidence for a complex between copper(II) and protein. Journal of Inorganic Biochemistry, 2004, 98, 1103-1109.	3.5	54
75	Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Molecular Biology, 2004, 56, 795-809.	3.9	81
76	The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynthesis Research, 2004, 82, 221-240.	2.9	128
77	Evolutionary Diversity of Vertebrate Small Heat Shock Proteins. Journal of Molecular Evolution, 2004, 59, 792-805.	1.8	167
78	Tsp36, a tapeworm small heat-shock protein with a duplicated α-crystallin domain, forms dimers and tetramers with good chaperone-like activity. Proteins: Structure, Function and Bioinformatics, 2004, 57, 109-117.	2.6	13
79	Some properties of human small heat shock protein Hsp20 (HspB6). FEBS Journal, 2004, 271, 291-302.	0.2	109
80	Investigation of intact protein complexes by mass spectrometry. Mass Spectrometry Reviews, 2004, 23, 368-389.	5.4	541
81	Thermal stability of human Â-crystallins sensed by amide hydrogen exchange. Protein Science, 2004, 13, 332-341.	7.6	13
82	Expression and biochemical characterization of two small heat shock proteins from the thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7. Protein Science, 2004, 13, 134-144.	7.6	28
83	Phosphorylation of αB-Crystallin Alters Chaperone Function through Loss of Dimeric Substructure. Journal of Biological Chemistry, 2004, 279, 28675-28680.	3.4	144
84	Beyond Transcription—New Mechanisms for the Regulation of Molecular Chaperones. Critical Reviews in Biochemistry and Molecular Biology, 2004, 39, 297-317.	5.2	84
85	Sulfur in human crystallins. Experimental Eye Research, 2004, 79, 823-831.	2.6	27
86	Cataract formation in a strain of rats selected for high oxidative stress. Experimental Eye Research, 2004, 79, 595-612.	2.6	84
87	Structure function relationship among α-crystallin related small heat shock proteins. Experimental Eye Research, 2004, 79, 787-794.	2.6	6
88	Dissociation is not required for α-crystallin's chaperone function. Experimental Eye Research, 2004, 79, 781-784.	2.6	37
89	Role of the N-terminal region of the crenarchaeal sHsp, StHsp14.0, in thermal-induced disassembly of the complex and molecular chaperone activity. Biochemical and Biophysical Research Communications, 2004, 315, 113-118.	2.1	20
90	Some properties of human small heat shock protein Hsp22 (H11 or HspB8). Biochemical and Biophysical Research Communications, 2004, 315, 796-801.	2.1	55
91	Temperature-dependent subunit exchange and chaperone-like activities of Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 2004, 316, 291-299.	2.1	48

#	Article	IF	CITATIONS
92	pH-induced changes of the structure of small heat shock proteins with molecular mass 24/27kDa (HspB1). Biochemical and Biophysical Research Communications, 2004, 324, 1199-1203.	2.1	21
93	α-Synuclein has structural and functional similarities to small heat shock proteins. Biochemical and Biophysical Research Communications, 2004, 324, 1352-1359.	2.1	41
94	Detection of oligomerisation and substrate recognition sites of small heat shock proteins by peptide arrays. Biochemical and Biophysical Research Communications, 2004, 325, 401-407.	2.1	37
95	The excised heat-shock domain of αB crystallin is a folded, proteolytically susceptible trimer with significant surface hydrophobicity and a tendency to self-aggregate upon heating. Protein Expression and Purification, 2004, 36, 263-271.	1.3	11
96	Tobacco small heat-shock protein, NtHSP18.2, has broad substrate range as a molecular chaperone. Plant Science, 2004, 167, 1017-1025.	3.6	9
97	Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 2004, 9, 244-252.	8.8	2,358
98	A Domain in the N-terminal Part of Hsp26 is Essential for Chaperone Function and Oligomerization. Journal of Molecular Biology, 2004, 343, 445-455.	4.2	93
99	A preliminary study on functional domains of small heat shock protein Hsp16.3 *. Progress in Natural Science: Materials International, 2004, 14, 21-25.	4.4	1
100	Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochemical Journal, 2004, 381, 379-387.	3.7	111
101	Conserved methionines in chloroplasts. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1703, 191-202.	2.3	36
102	Onset of oxidative damage in α-crystallin by radical probe mass spectrometry. Analytical Biochemistry, 2005, 344, 247-256.	2.4	32
103	N-terminal control of small heat shock protein oligomerization: changes in aggregate size and chaperone-like function. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1748, 146-156.	2.3	20
104	Purification and Characterization of Two Small Heat Shock Proteins from Anabaena sp. PCC 7120. IUBMB Life, 2005, 57, 449-454.	3.4	6
105	Some like it hot: the structure and function of small heat-shock proteins. Nature Structural and Molecular Biology, 2005, 12, 842-846.	8.2	736
106	Characterization of novel sequence motifs within N- and C-terminal extensions of p26, a small heat shock protein from Artemia franciscana. FEBS Journal, 2005, 272, 5230-5243.	4.7	24
107	Atomic Models by Cryo-EM and Site-Directed Spin Labeling: Application to the N-Terminal Region of Hsp16.5. Structure, 2005, 13, 1165-1171.	3.3	29
109	Analysis of Chaperone Function and Formation of Hetero-oligomeric Complexes of Hsp18.1 and Hsp17.7, Representing Two Different Cytoplasmic sHSP Classes in Pisum sativum. Journal of Plant Growth Regulation, 2005, 24, 226-237.	5.1	5
110	Small heat shock proteins: molecular structure and chaperone function. Cellular and Molecular Life Sciences, 2005, 62, 2460-2476.	5.4	428

#	Article	IF	Citations
111	Chaperone-Like Activity of Mycobacterium tuberculosis Hsp16.3 Does Not Require Its Intact (Native) Structures. Biochemistry (Moscow), 2005, 70, 913-919.	1.5	8
112	Site-specific transamidation and deamidation of the small heat-shock protein Hsp20 by tissue transglutaminase. Proteins: Structure, Function and Bioinformatics, 2005, 62, 1044-1052.	2.6	20
117	Crystal Structure of the Flagellar Rotor Protein FliN from Thermotoga maritima. Journal of Bacteriology, 2005, 187, 2890-2902.	2.2	117
118	The Small Heat Shock Protein IbpA of Escherichia coli Cooperates with IbpB in Stabilization of Thermally Aggregated Proteins in a Disaggregation Competent State. Journal of Biological Chemistry, 2005, 280, 12292-12298.	3.4	97
119	αB-crystallin-assisted reactivation of glucose-6-phosphate dehydrogenase upon refolding. Biochemical Journal, 2005, 391, 335-341.	3.7	29
120	Interaction of a Small Heat Shock Protein of the Fission Yeast, Schizosaccharomyces pombe, with a Denatured Protein at Elevated Temperature. Journal of Biological Chemistry, 2005, 280, 32586-32593.	3.4	19
121	Mechanism of Chaperone Function in Small Heat Shock Proteins. Journal of Biological Chemistry, 2005, 280, 5281-5289.	3.4	152
122	Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18896-18901.	7.1	67
123	A Dual Role for the N-terminal Region of Mycobacterium tuberculosis Hsp16.3 in Self-oligomerization and Binding Denaturing Substrate Proteins. Journal of Biological Chemistry, 2005, 280, 6337-6348.	3.4	70
125	Dodecameric Structure of the Small Heat Shock Protein Acr1 from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2005, 280, 33419-33425.	3.4	91
126	HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Human Molecular Genetics, 2005, 14, 1659-1669.	2.9	159
127	The effect of N-terminal truncation on double-dimer assembly of goose δ-crystallin. Biochemical Journal, 2005, 392, 545-554.	3.7	7
128	Self-association of a Small Heat Shock Protein. Journal of Molecular Biology, 2005, 345, 631-642.	4.2	73
129	The Essential Role of the Flexible Termini in the Temperature-responsiveness of the Oligomeric State and Chaperone-like Activity for the Polydisperse Small Heat Shock Protein IbpB from Escherichia coli. Journal of Molecular Biology, 2005, 347, 871-884.	4.2	59
130	The Activation Mechanism of Hsp26 does not Require Dissociation of the Oligomer. Journal of Molecular Biology, 2005, 350, 1083-1093.	4.2	81
131	Wrapping the α-Crystallin Domain Fold in a Chaperone Assembly. Journal of Molecular Biology, 2005, 353, 68-79.	4.2	142
132	A modeling study of αB-crystallin in complex with zinc for seeking of correlations between chaperone-like activity and exposure of hydrophobic surfaces. International Journal of Biological Macromolecules, 2005, 36, 208-214.	7.5	8
133	The association of small heat shock protein Hsp16.3 with the plasma membrane of Mycobacterium tuberculosis: Dissociation of oligomers is a prerequisite. Biochemical and Biophysical Research Communications, 2005, 330, 1055-1061.	2.1	29

#	Article	IF	CITATIONS
134	Hsp20, a novel Â-crystallin, prevents AÂ fibril formation and toxicity. Protein Science, 2005, 14, 593-601.	7.6	68
135	Insights into the domains required for dimerization and assembly of human ÂB crystallin. Protein Science, 2005, 14, 684-695.	7.6	73
136	Identification of bis-ANS binding sites in Mycobacterium tuberculosis small heat shock protein Hsp16.3: Evidences for a two-step substrate-binding mechanism. Biochemical and Biophysical Research Communications, 2006, 349, 167-171.	2.1	15
137	The β4-β8 Groove Is an ATP-interactive Site in the α Crystallin Core Domain of the Small Heat Shock Protein, Human αB Crystallin. Journal of Molecular Biology, 2006, 364, 364-375.	4.2	20
138	Recombinant expression and in vitro refolding of the yeast small heat shock protein Hsp42. International Journal of Biological Macromolecules, 2006, 38, 107-114.	7.5	15
139	Matrix-assisted refolding of oligomeric small heat-shock protein Hsp26. International Journal of Biological Macromolecules, 2006, 39, 104-110.	7.5	4
140	Diversity, structure, and expression of the gene for p26, a small heat shock protein from Artemia. Genomics, 2006, 88, 230-240.	2.9	30
141	Purification and characterization of the chaperone-like Hsp26 from Saccharomyces cerevisiae. Protein Expression and Purification, 2006, 47, 384-392.	1.3	9
143	High-salt peridinin-chlorophyll-protein fromA. carterae: the structure of the monomeric antenna protein complex. Acta Crystallographica Section A: Foundations and Advances, 2006, 62, s137-s137.	0.3	0
144	New insights into the quaternary structure of small heat shock proteins under stress investigated by small angle X-ray scattering. Acta Crystallographica Section A: Foundations and Advances, 2006, 62, s137-s137.	0.3	0
145	Crystallization and preliminary X-ray diffraction analysis of XAC1151, a small heat-shock protein fromXanthomonas axonopodispv.citribelonging to the α-crystallin family. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 446-448.	0.7	12
146	Structural and functional roles for beta-strand 7 in the alpha-crystallin domain of p26, a polydisperse small heat shock protein from Artemia franciscana. FEBS Journal, 2006, 273, 1020-1034.	4.7	25
147	Identification of a highly conserved pro-gly doublet in non-animal small heat shock proteins and characterization of its structural and functional roles in Mycobacterium tuberculosis Hsp 16.3. Biochemistry (Moscow), 2006, 71, S83-S90.	1.5	13
148	Studies of αB crystallin subunit dynamics by surface plasmon resonance. Analytical Biochemistry, 2006, 350, 186-195.	2.4	25
149	sHSPs under temperature and pressure: The opposite behaviour of lens alpha-crystallins and yeast HSP26. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 372-383.	2.3	24
150	Tandem Mass Spectrometry Reveals the Quaternary Organization of Macromolecular Assemblies. Chemistry and Biology, 2006, 13, 597-605.	6.0	206
151	Temperature dependence of chaperone-like activity and oligomeric state of αB-crystallin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 677-687.	2.3	16
152	Phylogenetic and Biochemical Studies Reveal a Potential Evolutionary Origin of Small Heat Shock Proteins of Animals from Bacterial Class A. Journal of Molecular Evolution, 2006, 62, 257-266.	1.8	41

CHATION REPORT

#	Article	IF	CITATIONS
153	Multiple Distinct Assemblies Reveal Conformational Flexibility in the Small Heat Shock Protein Hsp26. Structure, 2006, 14, 1197-1204.	3.3	87
154	Stabilization ofTaq DNA Polymerase at High Temperature by Protein Folding Pathways From a Hyperthermophilic Archaeon,Pyrococcus furiosus. Biotechnology and Bioengineering, 2006, 93, 1-5.	3.3	33
155	Hsp27 Enhances Recovery of Splicing as well as Rephosphorylation of SRp38 after Heat Shock. Molecular Biology of the Cell, 2006, 17, 886-894.	2.1	39
156	Mechanism of a Hereditary Cataract Phenotype. Journal of Biological Chemistry, 2006, 281, 14273-14279.	3.4	52
157	The N-terminal Arm of Small Heat Shock Proteins Is Important for Both Chaperone Activity and Substrate Specificity. Journal of Biological Chemistry, 2006, 281, 39943-39952.	3.4	158
158	Molecular chaperones—holding and folding. , 2006, , 315-342.		1
159	Analysis of Properties of Small Heat Shock Protein Hsp25 in MAPK-activated Protein Kinase 2 (MK2)-deficient Cells. Journal of Biological Chemistry, 2006, 281, 26966-26975.	3.4	44
160	Tuning of DnaK Chaperone Action by Nonnative Protein Sensor DnaJ and Thermosensor GrpE. Journal of Biological Chemistry, 2006, 281, 34448-34456.	3.4	52
161	A Novel $\hat{I}\pm B$ -Crystallin Mutation Associated with Autosomal Dominant Congenital Lamellar Cataract. , 2006, 47, 1069.		115
162	Self-association and Chaperone Activity of Hsp27 Are Thermally Activated. Journal of Biological Chemistry, 2006, 281, 8169-8174.	3.4	86
163	Cryoelectron Microscopy and EPR Analysis of Engineered Symmetric and Polydisperse Hsp16.5 Assemblies Reveals Determinants of Polydispersity and Substrate Binding. Journal of Biological Chemistry, 2006, 281, 40420-40428.	3.4	43
164	Identification and Characterization of a Stress-Inducible and a Constitutive Small Heat-Shock Protein Targeted to the Matrix of Plant Peroxisomes. Plant Physiology, 2006, 141, 47-60.	4.8	112
165	Molecular Characterization of hsp20 , Encoding a Small Heat Shock Protein of Bifidobacterium breve UCC2003. Applied and Environmental Microbiology, 2007, 73, 4695-4703.	3.1	51
166	X-Ray- and Neutron-Scattering Studies of α-Crystallin and Evidence That the Target Protein Sits in the Fenestrations of the α-Crystallin Shell. , 2007, 48, 2695.		14
167	Interaction of mammalian Hsp22 with lipid membranes. Biochemical Journal, 2007, 401, 437-445.	3.7	40
168	Regulation of stress-induced intracellular sorting and chaperone function of Hsp27 (HspB1) in mammalian cells. Biochemical Journal, 2007, 407, 407-417.	3.7	78
169	Transcriptional profiling of canola (Brassica napus L.) responses to the fungal pathogen Sclerotinia sclerotiorum. Plant Science, 2007, 173, 156-171.	3.6	76
170	Biochemical and biophysical characterization of small heat shock proteins from sugarcane. International Journal of Biochemistry and Cell Biology, 2007, 39, 818-831.	2.8	29

#	Article	IF	CITATIONS
171	Crystallization of sparingly soluble stress-related proteins from cyanobacteria by controlled urea solublization. Journal of Structural Biology, 2007, 158, 116-121.	2.8	9
172	Characterisation of Amyloid Fibril Formation by Small Heat-shock Chaperone Proteins Human αA-, αB- and R120G αB-Crystallins. Journal of Molecular Biology, 2007, 372, 470-484.	4.2	93
173	Mimicking phosphorylation of αB-crystallin affects its chaperone activity. Biochemical Journal, 2007, 401, 129-141.	3.7	159
174	Protein Complexes in the Gas Phase:  Technology for Structural Genomics and Proteomics. Chemical Reviews, 2007, 107, 3544-3567.	47.7	376
175	Interactive Domains in the Molecular Chaperone Human αB Crystallin Modulate Microtubule Assembly and Disassembly. PLoS ONE, 2007, 2, e498.	2.5	56
176	Structure, function, property, and role in neurologic diseases and other diseases of the sHsp22. Journal of Neuroscience Research, 2007, 85, 2071-2079.	2.9	24
177	Effect of mutations in the β5–β7 loop on the structure and properties of human small heat shock protein HSP22 (HspB8, H11). FEBS Journal, 2007, 274, 5628-5642.	4.7	31
178	Small heat shock protein Hsp27 prevents heatâ€induced aggregation of Fâ€actin by forming soluble complexes with denatured actin. FEBS Journal, 2007, 274, 5937-5948.	4.7	69
179	Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 2007, 10, 310-316.	7.1	1,129
180	Crystallins in the eye: Function and pathology. Progress in Retinal and Eye Research, 2007, 26, 78-98.	15.5	375
181	Genetic Heterogeneity in Microcornea-Cataract: Five Novel Mutations in <i>CRYAA</i> , <i>CRYGD</i> , and <i>GJA8</i> ., 2007, 48, 3937.		131
182	Chemical cross-linking of the chloroplast localized small heat-shock protein, Hsp21, and the model substrate citrate synthase. Protein Science, 2007, 16, 1464-1478.	7.6	46
183	Evolutionary Analysis of the Small Heat Shock Proteins in Five Complete Algal Genomes. Journal of Molecular Evolution, 2007, 65, 162-174.	1.8	57
184	The small heat shock proteins and their clients. Cellular and Molecular Life Sciences, 2007, 64, 294-306.	5.4	271
185	Small heat shock proteins prevent aggregation of citrate synthase and bind to the N-terminal region which is absent in thermostable forms of citrate synthase. Extremophiles, 2007, 11, 659-666.	2.3	15
186	Surface-induced dissociation shows potential to be more informative than collision-induced dissociation for structural studies of large systems. Journal of the American Society for Mass Spectrometry, 2008, 19, 903-913.	2.8	77
187	A comparative genomic analysis of the small heat shock proteins in Caenorhabditis elegans and briggsae. Genetica, 2008, 133, 307-319.	1.1	33
188	Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress and Chaperones, 2008, 13, 127-142.	2.9	157

#	Article	IF	CITATIONS
189	The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress and Chaperones, 2008, 13, 183-197.	2.9	195
190	Role of the IXI/V motif in oligomer assembly and function of StHsp14.0, a small heat shock protein from the acidothermophilic archaeon, <i>Sulfolobus tokodaii</i> strain 7. Proteins: Structure, Function and Bioinformatics, 2008, 71, 771-782.	2.6	34
191	HSPB2/MKBP, a novel and unique member of the small heatâ€shock protein family. Journal of Neuroscience Research, 2008, 86, 2125-2133.	2.9	14
192	Preheating induced homogeneity of the small heat shock protein from Methanococcus jannaschii. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 489-495.	2.3	9
193	ArHsp22, a developmentally regulated small heat shock protein produced in diapauseâ€destined <i>Artemia</i> embryos, is stress inducible in adults. FEBS Journal, 2008, 275, 3556-3566.	4.7	54
194	Phosphorylation by cyclic AMP-dependent protein kinase inhibits chaperone-like activity of human HSP22 in vitro. Biochemistry (Moscow), 2008, 73, 200-208.	1.5	15
195	Changes in the expression of heat-shock protein genes depending on different heat resistance of plants. Doklady Biological Sciences, 2008, 422, 352-354.	0.6	0
196	lon mobility–mass spectrometry analysis of large protein complexes. Nature Protocols, 2008, 3, 1139-1152.	12.0	973
197	De Novo High-Resolution Protein Structure Determination from Sparse Spin-Labeling EPR Data. Structure, 2008, 16, 181-195.	3.3	120
198	Truncation of αB-Crystallin by the Myopathy-causing Q151X Mutation Significantly Destabilizes the Protein Leading to Aggregate Formation in Transfected Cells. Journal of Biological Chemistry, 2008, 283, 10500-10512.	3.4	49
199	Structural perturbation of αB-crystallin by zinc and temperature related to its chaperone-like activity. International Journal of Biological Macromolecules, 2008, 42, 229-234.	7.5	26
200	Structure and Orientation of T4 Lysozyme Bound to the Small Heat Shock Protein α-Crystallin. Journal of Molecular Biology, 2008, 375, 1026-1039.	4.2	24
201	Structural Dynamics of Archaeal Small Heat Shock Proteins. Journal of Molecular Biology, 2008, 378, 362-374.	4.2	53
202	Activation of the Chaperone Hsp26 Is Controlled by the Rearrangement of Its Thermosensor Domain. Molecular Cell, 2008, 29, 207-216.	9.7	90
203	Structural and Functional Diversities between Members of the Human HSPB, HSPH, HSPA, and DNAJ Chaperone Families. Biochemistry, 2008, 47, 7001-7011.	2.5	327
204	Insights into Small Heat Shock Protein and Substrate Structure during Chaperone Action Derived from Hydrogen/Deuterium Exchange and Mass Spectrometry. Journal of Biological Chemistry, 2008, 283, 26634-26642.	3.4	70
205	A Mutant Small Heat Shock Protein with Increased Thylakoid Association Provides an Elevated Resistance Against UV-B Damage in Synechocystis 6803. Journal of Biological Chemistry, 2008, 283, 22983-22991.	3.4	53
206	Association of partially folded lens βB2-crystallins with the α-crystallin molecular chaperone. Biochemical Journal, 2008, 409, 691-699.	3.7	22

#	Article	IF	Citations
207	The dramatically increased chaperone activity of small heat-shock protein lbpB is retained for an extended period of time after the stress condition is removed. Biochemical Journal, 2008, 410, 63-70.	3.7	21
208	HspB5/αB-Crystallin: Properties and Current Progress in Neuropathy. Current Neurovascular Research, 2008, 5, 143-152.	1.1	8
210	Substrate binding site flexibility of the small heat shock protein molecular chaperones. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15604-15609.	7.1	223
211	The interwinding nature of protein–protein interfaces and its implication for protein complex formation. Bioinformatics, 2009, 25, 3108-3113.	4.1	16
212	Changes in the X-Ray Diffraction Pattern from Lens during a Solid-to-Liquid Phase Transition. Current Eye Research, 2009, 34, 492-500.	1.5	4
213	Clustering of protein domains for functional and evolutionary studies. BMC Bioinformatics, 2009, 10, 335.	2.6	6
214	The small heat shock protein (sHSP) genes in the silkworm, Bombyx mori, and comparative analysis with other insect sHSP genes. BMC Evolutionary Biology, 2009, 9, 215.	3.2	98
215	Structural and functional diversity in the family of small heat shock proteins from the parasite Toxoplasma gondii. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1738-1748.	4.1	25
216	Trypanosoma cruzi SHSP16: Characterization of an α-crystallin small heat shock protein. Experimental Parasitology, 2009, 123, 182-189.	1.2	26
217	Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. Plant Molecular Biology, 2009, 70, 341-357.	3.9	95
218	High activity of Mj HSP16.5 under acidic condition. Science in China Series B: Chemistry, 2009, 52, 325-331.	0.8	1
219	Crystallin proteins and amyloid fibrils. Cellular and Molecular Life Sciences, 2009, 66, 62-81.	5.4	220
220	Characterization of a sHsp of <i>Schizosaccharomyces pombe</i> , SpHsp15.8, and the implication of its functional mechanism by comparison with another sHsp, SpHsp16.0. Proteins: Structure, Function and Bioinformatics, 2009, 74, 6-17.	2.6	10
221	Crystallization and heavy-atom derivatization of StHsp14.0, a small heat-shock protein fromSulfolobus tokodaii. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 1007-1010.	0.7	0
222	The taming of small heat-shock proteins: crystallization of the α-crystallin domain from human Hsp27. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 1277-1281.	0.7	13
223	Small heatâ€shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in <i>Agave tequilana</i> var. Weber. Plant, Cell and Environment, 2009, 32, 1791-1803.	5.7	35
224	Begomovirus coat protein interacts with a small heatâ€shock protein of its transmission vector (<i>Bemisia tabaci</i>). Insect Molecular Biology, 2009, 18, 693-703.	2.0	56
225	Gene expression analysis of molecular mechanisms of defense induced in Medicago truncatula parasitized by Orobanche crenata. Plant Physiology and Biochemistry, 2009, 47, 635-641.	5.8	10

#	Article	IF	CITATIONS
226	Role of thermoinduced dissociation in interaction between α-crystallin as an oligomeric chaperone and glyceraldehyde-3-phosphate dehydrogenase as an oligomeric protein substrate. Doklady Biochemistry and Biophysics, 2009, 428, 245-248.	0.9	11
227	Abnormal Assemblies and Subunit Exchange of $\hat{I}\pm B$ -Crystallin R120 Mutants Could Be Associated with Destabilization of the Dimeric Substructure. Biochemistry, 2009, 48, 442-453.	2.5	40
228	The eye lens chaperone α-crystallin forms defined globular assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13272-13277.	7.1	123
229	Structure and Mechanism of Protein Stability Sensors: Chaperone Activity of Small Heat Shock Proteins. Biochemistry, 2009, 48, 3828-3837.	2.5	235
230	Alpha crystallin: The quest for a homogeneous quaternary structure. Experimental Eye Research, 2009, 88, 190-194.	2.6	62
231	Lens aging: Effects of crystallins. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 1095-1108.	2.4	268
232	αB-Crystallin: A Hybrid Solid-State/Solution-State NMR Investigation Reveals Structural Aspects of the Heterogeneous Oligomer. Journal of Molecular Biology, 2009, 385, 1481-1497.	4.2	106
233	Crystal Structures of α-Crystallin Domain Dimers of αB-Crystallin and Hsp20. Journal of Molecular Biology, 2009, 392, 1242-1252.	4.2	262
234	The Small Heat-Shock Proteins HSPB2 and HSPB3 Form Well-defined Heterooligomers in a Unique 3 to 1 Subunit Ratio. Journal of Molecular Biology, 2009, 393, 1022-1032.	4.2	50
235	ORF-C4 from the early branching eukaryote <i>Giardia lamblia</i> displays characteristics of α-crystallin small heat-shock proteins. Bioscience Reports, 2009, 29, 25-34.	2.4	3
236	The crystal structure of Escherichia coli heat shock protein YedU reveals three potential catalytic active sites. Protein Science, 2009, 12, 2303-2311.	7.6	28
237	Crystal structure of truncated human βB1-crystallin. Protein Science, 2009, 12, 2606-2612.	7.6	92
239	Structure and Function of Small Heat Shock Proteins from the Magnetotactic Bacterium Magnetospirillum magneticum AMB-1. Kobunshi Ronbunshu, 2010, 67, 698-704.	0.2	1
240	Characterization of Xanthomonas campestris pv. campestris heat shock protein A (HspA), which possesses an intrinsic ability to reactivate inactivated proteins. Applied Microbiology and Biotechnology, 2010, 88, 699-709.	3.6	13
241	The pivotal role of the β7 strand in the intersubunit contacts of different human small heat shock proteins. Cell Stress and Chaperones, 2010, 15, 365-377.	2.9	49
242	Why proteins without an α-crystallin domain should not be included in the human small heat shock protein family HSPB. Cell Stress and Chaperones, 2010, 15, 457-461.	2.9	76
243	Expression profile of cuticular genes of silkworm, Bombyx mori. BMC Genomics, 2010, 11, 173.	2.8	58
244	IbpA the small heat shock protein from <i>Escherichia coli</i> forms fibrils in the absence of its cochaperone IbpB. FEBS Letters, 2010, 584, 2253-2257.	2.8	23

#	Article	IF	CITATIONS
246	Interaction of Hsp27 with Native Phosphorylase Kinase under Crowding Conditions. Macromolecular Bioscience, 2010, 10, 783-789.	4.1	24
247	Effects of congenital cataract mutation R116H on αA-crystallin structure, function and stability. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 948-956.	2.3	25
248	The Quaternary Organization and Dynamics of the Molecular Chaperone HSP26 Are Thermally Regulated. Chemistry and Biology, 2010, 17, 1008-1017.	6.0	45
249	Investigation of the chaperone function of the small heat shock protein — AgsA. BMC Biochemistry, 2010, 11, 27.	4.4	14
250	Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Science, 2010, 19, 1031-1043.	7.6	264
251	Nonâ€3D domain swapped crystal structure of truncated zebrafish alphaA crystallin. Protein Science, 2010, 19, 1978-1984.	7.6	50
252	Evidence for specific subunit distribution and interactions in the quaternary structure of α rystallin. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2546-2553.	2.6	9
253	The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein lâ \in 2. Plant Journal, 2010, 63, 563-572.	5.7	52
254	Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers. Nature Structural and Molecular Biology, 2010, 17, 1037-1042.	8.2	263
255	Extremophilic microorganisms: Biochemical adaptation and biotechnological application (review). Applied Biochemistry and Microbiology, 2010, 46, 1-14.	0.9	59
256	Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2007-2012.	7.1	231
257	Duplication of the class I cytosolic small heat shock protein gene and potential functional divergence revealed by sequence variations flanking the α-crystallin domain in the genus Rhododendron (Ericaceae). Annals of Botany, 2010, 105, 57-69.	2.9	7
258	Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB Journal, 2010, 24, 3633-3642.	0.5	219
259	Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza) Tj ETQq1 1 0.7	84314 rgE 4.8	BT /Overlock
260	Feature-incorporated alignment based ligand-binding residue prediction for carbohydrate-binding modules. Bioinformatics, 2010, 26, 1022-1028.	4.1	6
261	The Interaction of αB-Crystallin with Mature α-Synuclein Amyloid Fibrils Inhibits Their Elongation. Biophysical Journal, 2010, 98, 843-851.	0.5	136
262	Increased Monomerization of Mutant HSPB1 Leads to Protein Hyperactivity in Charcot-Marie-Tooth Neuropathy. Journal of Biological Chemistry, 2010, 285, 12778-12786.	3.4	95
263	Regions Outside the α-Crystallin Domain of the Small Heat Shock Protein Hsp26 Are Required for Its Dimerization. Journal of Molecular Biology, 2010, 398, 122-131.	4.2	32

#	ARTICLE	IF	CITATIONS
264	Structural and Mechanical Hierarchies in the α-Crystallin Domain Dimer of the Hyperthermophilic Small Heat Shock Protein Hsp16.5. Journal of Molecular Biology, 2010, 400, 1046-1056.	4.2	23
265	Investigation of γE-crystallin target protein binding to bovine lens alpha-crystallin by small-angle neutron scattering. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 392-397.	2.4	8
266	A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin. Experimental Eye Research, 2010, 91, 691-699.	2.6	56
267	The Small Heat-shock Protein HspL Is a VirB8 Chaperone Promoting Type IV Secretion-mediated DNA Transfer. Journal of Biological Chemistry, 2010, 285, 19757-19766.	3.4	21
268	Are Ancient Proteins Responsible for the Age-Related Decline in Health and Fitness?. Rejuvenation Research, 2010, 13, 83-89.	1.8	30
269	Detection and Architecture of Small Heat Shock Protein Monomers. PLoS ONE, 2010, 5, e9990.	2.5	83
270	Ion Mobility-Mass Spectrometry Reveals the Influence of Subunit Packing and Charge on the Dissociation of Multiprotein Complexes. Analytical Chemistry, 2010, 82, 9702-9710.	6.5	66
271	Mechanistic Differences between Two Conserved Classes of Small Heat Shock Proteins Found in the Plant Cytosol. Journal of Biological Chemistry, 2010, 285, 11489-11497.	3.4	77
272	Chemical engineering of Mycobacterium tuberculosis dodecin hybrids. Chemical Communications, 2011, 47, 11071.	4.1	6
274	Flexible Nets of Malleable Guardians: Intrinsically Disordered Chaperones in Neurodegenerative Diseases. Chemical Reviews, 2011, 111, 1134-1166.	47.7	65
275	Biochemical characterization of small heat shock protein HspB8 (Hsp22)–Bag3 interaction. Archives of Biochemistry and Biophysics, 2011, 513, 1-9.	3.0	49
276	Disorder Targets Misorder in Nuclear Quality ControlÂDegradation: A Disordered Ubiquitin Ligase Directly Recognizes Its Misfolded Substrates. Molecular Cell, 2011, 41, 93-106.	9.7	172
277	Dimer structure and conformational variability in the N-terminal region of an archaeal small heat shock protein, StHsp14.0. Journal of Structural Biology, 2011, 174, 92-99.	2.8	34
278	Crystal Structures of Xanthomonas Small Heat Shock Protein Provide a Structural Basis for an Active Molecular Chaperone Oligomer. Journal of Molecular Biology, 2011, 408, 74-86.	4.2	50
279	Crystal Structure of R120G Disease Mutant of Human αB-Crystallin Domain Dimer Shows Closure of a Groove. Journal of Molecular Biology, 2011, 408, 118-134.	4.2	106
280	Three-Dimensional Structure of α-Crystallin Domain Dimers of Human Small Heat Shock Proteins HSPB1 and HSPB6. Journal of Molecular Biology, 2011, 411, 110-122.	4.2	107
281	αB-Crystallin Polydispersity Is a Consequence of Unbiased Quaternary Dynamics. Journal of Molecular Biology, 2011, 413, 297-309.	4.2	122
282	Quaternary Dynamics of αB-Crystallin as a Direct Consequence of Localised Tertiary Fluctuations in the C-Terminus. Journal of Molecular Biology, 2011, 413, 310-320.	4.2	89

#	Article	IF	CITATIONS
283	Heat Shock Proteins in Association with Heat Tolerance in Grasses. International Journal of Proteomics, 2011, 2011, 1-11.	2.0	76
284	An Overview of the Role of Molecular Chaperones in Protein Homeostasis. Protein and Peptide Letters, 2011, 18, 101-109.	0.9	54
285	HSP22 and its Role in Human Neurological Disease. Current Neurovascular Research, 2011, 8, 323-333.	1.1	6
286	The Polydispersity of αB-Crystallin Is Rationalized by an Interconverting Polyhedral Architecture. Structure, 2011, 19, 1855-1863.	3.3	116
287	Small heat shock protein AgsA forms dynamic fibrils. FEBS Letters, 2011, 585, 3396-3402.	2.8	12
288	Large Potentials of Small Heat Shock Proteins. Physiological Reviews, 2011, 91, 1123-1159.	28.8	359
289	The molecular characterization and expression of heat shock protein 90 (Hsp90) and 26 (Hsp26) cDNAs in sea cucumber (Apostichopus japonicus). Cell Stress and Chaperones, 2011, 16, 481-493.	2.9	34
290	The small heat shock proteins from Acidithiobacillus ferrooxidans: gene expression, phylogenetic analysis, and structural modeling. BMC Microbiology, 2011, 11, 259.	3.3	8
291	Subunit arrangement in the dodecameric chloroplast small heat shock protein Hsp21. Protein Science, 2011, 20, 291-301.	7.6	29
292	Phosphorylation status of heat shock protein 27 influences neurite growth in adult dorsal root ganglion sensory neurons in vitro. Journal of Neuroscience Research, 2011, 89, 1160-1172.	2.9	15
293	Enhanced molecular chaperone activity of the small heatâ€shock protein αBâ€crystallin following covalent immobilization onto a solidâ€phase support. Biopolymers, 2011, 95, 376-389.	2.4	14
294	Integrating Protein Homeostasis Strategies in Prokaryotes. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004366-a004366.	5.5	82
295	Small Heat Shock Protein Hsp17.8 Functions as an AKR2A Cofactor in the Targeting of Chloroplast Outer Membrane Proteins in Arabidopsis Â. Plant Physiology, 2011, 157, 132-146.	4.8	58
296	Comment on "Chaperone Activity of α B-Crystallin Is Responsible for Its Incorrect Assignment as an Autoantigen in Multiple Sclerosis― Journal of Immunology, 2011, 187, 3.1-3.	0.8	1
297	StHsp14.0, a small heat shock protein of Sulfolobus tokodaii strain 7, protects denatured proteins from aggregation in the partially dissociated conformation. Journal of Biochemistry, 2011, 150, 403-409.	1.7	6
298	N-terminal domain of αB-crystallin provides a conformational switch for multimerization and structural heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6409-6414.	7.1	185
299	Chaperone Activity of Small Heat Shock Proteins Underlies Therapeutic Efficacy in Experimental Autoimmune Encephalomyelitis. Journal of Biological Chemistry, 2012, 287, 36423-36434.	3.4	55
300	Importance of N- and C-terminal Regions of IbpA, Escherichia coli Small Heat Shock Protein, for Chaperone Function and Oligomerization. Journal of Biological Chemistry, 2012, 287, 2843-2853.	3.4	43

#	Article	IF	CITATIONS
301	The Role of Intrinsically Disordered Regions in the Structure and Functioning of Small Heat Shock Proteins. Current Protein and Peptide Science, 2012, 13, 76-85.	1.4	70
302	The oligomer plasticity of the small heat-shock protein Lo18 from <i>Oenococcus oeni</i> influences its role in both membrane stabilization and protein protection. Biochemical Journal, 2012, 444, 97-104.	3.7	36
303	CHAPTER SYMBIOSIS. , 2012, , 346-426.		0
304	3.10 Chaperones and Protein Folding. , 2012, , 212-237.		0
305	Alternative bacterial two-component small heat shock protein systems. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20407-20412.	7.1	119
306	Binding determinants of the small heat shock protein, αB-crystallin: recognition of the â€~Ixl' motif. EMBO Journal, 2012, 31, 4587-4594.	7.8	104
307	GTL1 keeps cell growth and nuclear ploidy under control. EMBO Journal, 2012, 31, 4483-4485.	7.8	5
308	Probing Dynamic Conformations of the High-Molecular-Weight αB-Crystallin Heat Shock Protein Ensemble by NMR Spectroscopy. Journal of the American Chemical Society, 2012, 134, 15343-15350.	13.7	63
309	Small Heat-Shock Proteins: Paramedics of the Cell. Topics in Current Chemistry, 2012, 328, 69-98.	4.0	116
310	Structural Studies on the Oligomeric Transition of a Small Heat Shock Protein, StHsp14.0. Journal of Molecular Biology, 2012, 422, 100-108.	4.2	31
311	A mechanism of action for small heat shock proteins. Biochemical and Biophysical Research Communications, 2012, 417, 268-273.	2.1	7
312	A P39R mutation at the N-terminal domain of human αB-crystallin regulates its oligomeric state and chaperone-like activity. Biochemical and Biophysical Research Communications, 2012, 425, 601-606.	2.1	11
313	sHSP in the eye lens: Crystallin mutations, cataract and proteostasis. International Journal of Biochemistry and Cell Biology, 2012, 44, 1687-1697.	2.8	99
314	The family of mammalian small heat shock proteins (HSPBs): Implications in protein deposit diseases and motor neuropathies. International Journal of Biochemistry and Cell Biology, 2012, 44, 1657-1669.	2.8	75
315	Structural and functional specificity of small heat shock protein HspB1 and HspB4, two cellular partners of HspB5: Role of the inÂvitro hetero-complex formation in chaperone activity. Biochimie, 2012, 94, 975-984.	2.6	31
316	Mutations of small heat shock proteins and human congenital diseases. Biochemistry (Moscow), 2012, 77, 1500-1514.	1.5	40
317	Small heat-shock proteins protect from heat-stroke-associated neurodegeneration. Nature, 2012, 490, 213-218.	27.8	161
318	Interactions of the Proteasomal System with Chaperones. Progress in Molecular Biology and Translational Science, 2012, 109, 113-160.	1.7	53

		CITATION REPO	ORT	
# 319	ARTICLE The Absence of Heat Shock Protein HSP101 Affects the Proteome of Mature and Germinating Ma Embryos. Journal of Proteome Research, 2012, 11, 3246-3258.	ize ;	F 3.7	CITATIONS
320	Identification of the p. R116H mutation in a Chinese Family with Novel Variable Cataract Phenoty Evidence for a Mutational Hot Spot in αA-Crystallin Gene. Ophthalmic Genetics, 2012, 33, 134-1	pe: 88.	1.2	4
321	Roles of the N―and Câ€ŧerminal sequences in Hsp27 selfâ€association and chaperone activity. Science, 2012, 21, 122-133.	Protein ,	7.6	42
322	Sequence, Structure, and Dynamic Determinants of Hsp27 (HspB1) Equilibrium Dissociation Are Encoded by the N-Terminal Domain. Biochemistry, 2012, 51, 1257-1268.		2.5	95
323	Small heat shock proteins and $\hat{l}\pm$ -crystallins: dynamic proteins with flexible functions. Trends in Biochemical Sciences, 2012, 37, 106-117.		7.5	466
324	Critical Role for Heat Shock Protein 20 (HSP20) in Migration of Malarial Sporozoites. Journal of Biological Chemistry, 2012, 287, 2410-2422.		3.4	62
325	Structural Aspects and Chaperone Activity of Human HspB3: Role of the "C-Terminal Extensio Biochemistry and Biophysics, 2012, 64, 61-72.	n― Cell	1.8	25
326	Crystal Structure of an Activated Variant of Small Heat Shock Protein Hsp16.5. Biochemistry, 201 5105-5112.	2, 51,	2.5	39
327	Evolution and functional diversification of the small heat shock protein/α-crystallin family in high plants. Planta, 2012, 235, 1299-1313.	r (3.2	77
328	Characterization of eight cytosolic sHSP genes and their expression in Capsella bursa-pastoris. Biologia Plantarum, 2012, 56, 648-656.		1.9	6
329	Breaking Down Order to Keep Cells Tidy. Chemistry and Biology, 2012, 19, 547-548.	(6.0	0
330	YrhB is a highly stable small protein with unique chaperoneâ€like activity in <i>Escherichia coliBL21(DE3). FEBS Letters, 2012, 586, 1044-1048.</i>		2.8	2
331	Initial crystallographic studies of a small heat-shock protein from <i>Xylella fastidiosa</i> . Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 535-539.	(0.7	2
332	Heterooligomeric complexes of human small heat shock proteins. Cell Stress and Chaperones, 20 157-169.	12, 17,	2.9	83
333	Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly ga midge. Nature Communications, 2013, 4, 2070.	II :	12.8	33
334	Molecular cloning and differential expression of sHSP gene family members from the resurrection plant Boea hygrometrica in response to abiotic stresses. Biologia (Poland), 2013, 68, 651-661.		1.5	14
335	Molecular Chaperones. Topics in Current Chemistry, 2013, , .		4.0	18
336	Structural and Functional Aspects of Hetero-oligomers Formed by the Small Heat Shock Proteins αB-Crystallin and HSP27. Journal of Biological Chemistry, 2013, 288, 13602-13609.		3.4	68

		CITATION R	EPORT	
#	Article		IF	CITATIONS
337	One size does not fit all: The oligomeric states of $\hat{I}\pm B$ crystallin. FEBS Letters, 2013, 58	7, 1073-1080.	2.8	157
339	Identification of immune response-related genes in the Chinese oak silkworm, Anthera suppression subtractive hybridization. Journal of Invertebrate Pathology, 2013, 114, 31	ea pernyi by L3-323.	3.2	30
340	C-terminal interactions mediate the quaternary dynamics of αB-crystallin. Philosophica of the Royal Society B: Biological Sciences, 2013, 368, 20110405.	l Transactions	4.0	70
341	Small heat shock protein AgsA: An effective stabilizer of enzyme activities. Journal of B Bioengineering, 2013, 115, 15-19.	ioscience and	2.2	8
342	Nonequivalence Observed for the 16-Meric Structure of a Small Heat Shock Protein, Sp Schizosaccharomyces pombe. Structure, 2013, 21, 220-228.)Hsp16.0, from	3.3	56
343	The evolution, function, structure, and expression of the plant sHSPs. Journal of Experi Botany, 2013, 64, 391-403.	mental	4.8	322
344	Probing the transient interaction between the small heat-shock protein Hsp21 and a m protein using crosslinking mass spectrometry. Cell Stress and Chaperones, 2013, 18, 7	odel substrate '5-85.	2.9	14
345	Protein disorder, prion propensities, and self-organizing macromolecular collectives. Bi Biophysica Acta - Proteins and Proteomics, 2013, 1834, 918-931.	ochimica Et	2.3	164
346	Cryoelectron Microscopy Analysis of Small Heat Shock Protein 16.5 (Hsp16.5) Comple Lysozyme Reveals the Structural Basis of Multimode Binding. Journal of Biological Cher 288, 4819-4830.	xes with T4 nistry, 2013,	3.4	42
347	Evolution of crystallins for a role in the vertebrate eye lens. Protein Science, 2013, 22,	367-380.	7.6	135
348	An Unusual Dimeric Small Heat Shock Protein Provides Insight into the Mechanism of T Chaperones. Journal of Molecular Biology, 2013, 425, 1683-1696.	This Class of	4.2	54
349	Opportunities and Challenges for Molecular Chaperone Modulation to Treat Protein-Co Brain Diseases. Neurotherapeutics, 2013, 10, 416-428.	onformational	4.4	13
350	Molecular Chaperones in Thermophilic Eubacteria and Archaea. , 2013, , 375-394.			2
352	Overexpression of small heat shock protein 21 protects the Chinese oak silkworm Antl against thermal stress. Journal of Insect Physiology, 2013, 59, 848-854.	neraea pernyi	2.0	45
353	Different anti-aggregation and pro-degradative functions of the members of the mamn family in neurological disorders. Philosophical Transactions of the Royal Society B: Biolo Sciences, 2013, 368, 20110409.	nalian sHSP ogical	4.0	71
354	Small heat shock proteins: recent developments. Biomolecular Concepts, 2013, 4, 583	-595.	2.2	15
355	Small Heat Shock Protein IbpB Acts as a Robust Chaperone in Living Cells by Hierarchic Its Multi-type Substrate-binding Residues. Journal of Biological Chemistry, 2013, 288, 1	ally Activating 1897-11906.	3.4	34
356	Changes in the quaternary structure and function of MjHSP16.5 attributable to deletic motif and introduction of the substitution, R107G, in the <i>l±</i> -crystallin domain. For the substitution is the substitution of the substitution is the substitution. Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120327.	n of the IXI Philosophical	4.0	18

#	Article	IF	CITATIONS
357	Identification of Subunit-Subunit Interaction Sites in αA-WT Crystallin and Mutant αA-G98R Crystallin Using Isotope-Labeled Cross-Linker and Mass Spectrometry. PLoS ONE, 2013, 8, e65610.	2.5	8
358	Cell Stress Promotes the Association of Phosphorylated HspB1 with F-Actin. PLoS ONE, 2013, 8, e68978.	2.5	42
359	Tetramers Are the Activation-competent Species of the HOCl-specific Transcription Factor HypT. Journal of Biological Chemistry, 2014, 289, 977-986.	3.4	18
360	A MITE insertion into the 3′-UTR regulates the transcription of TaHSP16.9 in common wheat. Crop Journal, 2014, 2, 381-387.	5.2	18
361	The Chaperoneâ€like Activity and Structure of Mutant H119G of Rat Lens αBâ€crystallin: A Study of Divalent Metal Ion Binding Site. Journal of the Chinese Chemical Society, 2014, 61, 995-1003.	1.4	0
362	A tricistronic heat shock operon is important for stress tolerance of <scp><i>P</i></scp> <i>seudomonas putida</i> and conserved in many environmental bacteria. Environmental Microbiology, 2014, 16, 1835-1853.	3.8	20
363	The minimal αâ€crystallin domain of Mj Hsp16.5 is functional at nonâ€heatâ€shock conditions. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1156-1167.	2.6	3
364	Adaptive evolution of duplicated hsp17 genes in wild barley from microclimatically divergent sites of Israel. Genetics and Molecular Research, 2014, 13, 1220-1232.	0.2	8
365	Multilevel structural characteristics for the natural substrate proteins of bacterial small heat shock proteins. Protein Science, 2014, 23, 229-237.	7.6	9
366	Functions of crystallins in and out of lens: Roles in elongated and post-mitotic cells. Progress in Biophysics and Molecular Biology, 2014, 115, 52-67.	2.9	71
367	Chaperone function of two small heat shock proteins from maize. Plant Science, 2014, 221-222, 48-58.	3.6	14
368	Chaperone function and mechanism of small heat-shock proteins. Acta Biochimica Et Biophysica Sinica, 2014, 46, 347-356.	2.0	51
369	Disordered Proteinaceous Machines. Chemical Reviews, 2014, 114, 6806-6843.	47.7	109
370	Molecular structure and dynamics of the dimeric human small heat shock protein HSPB6. Journal of Structural Biology, 2014, 185, 342-354.	2.8	59
371	The kinetics of thermal stress induced denaturation of Aquaporin 0. Biochemical and Biophysical Research Communications, 2014, 450, 1668-1672.	2.1	4
372	Differential degradation for small heat shock proteins IbpA and IbpB is synchronized in Escherichia coli: Implications for their functional cooperation in substrate refolding. Biochemical and Biophysical Research Communications, 2014, 452, 402-407.	2.1	2
373	<i>REPRESSOR OF SILENCING5</i> Encodes a Member of the Small Heat Shock Protein Family and Is Required for DNA Demethylation in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 2660-2675.	6.6	42
374	Regulation of Active DNA Demethylation by an α-Crystallin Domain Protein in Arabidopsis. Molecular Cell, 2014, 55, 361-371.	9.7	44

#	Article	IF	CITATIONS
375	Plantation Forestry under Global Warming: Hybrid Poplars with Improved Thermotolerance Provide New Insights on the in Vivo Function of Small Heat Shock Protein Chaperones Â. Plant Physiology, 2014, 164, 978-991.	4.8	21
376	Intrinsic Disorder in Plant Proteins and Phytopathogenic Bacterial Effectors. Chemical Reviews, 2014, 114, 6912-6932.	47.7	39
377	Replica Exchange Molecular Dynamics Simulations Provide Insight into Substrate Recognition by Small Heat Shock Proteins. Biophysical Journal, 2014, 106, 2644-2655.	0.5	32
378	Conditionally and Transiently Disordered Proteins: Awakening Cryptic Disorder To Regulate Protein Function. Chemical Reviews, 2014, 114, 6779-6805.	47.7	165
379	Preventing α-synuclein aggregation: The role of the small heat-shock molecular chaperone proteins. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1830-1843.	3.8	70
380	Five small heat shock protein genes from Chilo suppressalis: characteristics of gene, genomic organization, structural analysis, and transcription profiles. Cell Stress and Chaperones, 2014, 19, 91-104.	2.9	61
381	Genome-wide identification, classification, and expression analysis of sHSP genes in Chinese cabbage (Brassica rapa ssp pekinensis). Genetics and Molecular Research, 2015, 14, 11975-11993.	0.2	8
382	Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. Plant Pathology Journal, 2015, 31, 323-333.	1.7	460
383	Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress. Frontiers in Plant Science, 2015, 6, 713.	3.6	103
384	Molecular Chaperones of <i>Leishmania</i> : Central Players in Many Stress-Related and -Unrelated Physiological Processes. BioMed Research International, 2015, 2015, 1-21.	1.9	56
385	BmHSP20.8 is Localized in the Mitochondria and has a Molecular Chaperone Function In Vitro. Journal of Insect Science, 2015, 15, 99.	1.5	4
386	The role of small heat shock proteins in parasites. Cell Stress and Chaperones, 2015, 20, 767-780.	2.9	53
387	The Chaperone Activity of the Developmental Small Heat Shock Protein Sip1 Is Regulated by pH-Dependent Conformational Changes. Molecular Cell, 2015, 58, 1067-1078.	9.7	48
388	Small Heat Shock Proteins and Distal Hereditary Neuropathies. Biochemistry (Moscow), 2015, 80, 1734-1747.	1.5	21
389	Small heat shock proteins: Role in cellular functions and pathology. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 291-319.	2.3	364
390	Crystal structure and function of an unusual dimeric Hsp20.1 provide insight into the thermal protection mechanism of small heat shock proteins. Biochemical and Biophysical Research Communications, 2015, 458, 429-434.	2.1	5
391	A First Line of Stress Defense: Small Heat Shock Proteins and Their Function in Protein Homeostasis. Journal of Molecular Biology, 2015, 427, 1537-1548.	4.2	472
392	Identification of HSP20 Gene Family in Wheat and Barley and Their Differential Expression Profiling Under Heat Stress. Applied Biochemistry and Biotechnology, 2015, 175, 2427-2446.	2.9	38

#	Article	IF	CITATIONS
393	A Novel Mechanism for Small Heat Shock Proteins to Function as Molecular Chaperones. Scientific Reports, 2015, 5, 8811.	3.3	56
394	Characterization of rice small heat shock proteins targeted to different cellular organelles. Cell Stress and Chaperones, 2015, 20, 451-460.	2.9	18
395	Effect of Ca2+ and Mg2+ ions on oligomeric state and chaperone-like activity of $\hat{I}\pm B$ -crystallin in crowded media. International Journal of Biological Macromolecules, 2015, 76, 86-93.	7.5	14
396	Combining tandem mass spectrometry with ion mobility separation to determine the architecture of polydisperse proteins. International Journal of Mass Spectrometry, 2015, 377, 663-671.	1.5	16
397	The Chloroplast-Localized Plant sHsp in Arabidopsis Thaliana: Role of Its Oligomeric Conformation and Its Translocation into Membranes. Heat Shock Proteins, 2015, , 255-266.	0.2	0
398	Understanding What Small Heat Shock Proteins Do for Bacterial Cells. Heat Shock Proteins, 2015, , 511-525.	0.2	3
399	Drosophila Small Heat Shock Proteins: An Update on Their Features and Functions. Heat Shock Proteins, 2015, , 579-606.	0.2	21
400	Dynamics-Function Relationships of the Small Heat-Shock Proteins. Heat Shock Proteins, 2015, , 87-100.	0.2	5
401	Insights into How Small Heat Shock Proteins Bind a Great Diversity of Substrate Proteins: A Super-Transformer Model. Heat Shock Proteins, 2015, , 101-117.	0.2	5
403	The Multicolored World of the Human HSPB Family. Heat Shock Proteins, 2015, , 3-26.	0.2	9
404	Model Chaperones: Small Heat Shock Proteins from Plants. Heat Shock Proteins, 2015, , 119-153.	0.2	22
405	Regulation of the Chaperone Function of Small Hsps. Heat Shock Proteins, 2015, , 155-178.	0.2	22
406	Palytoxin Induces Dissociation of HSP 27 Oligomers through a p38 Protein Kinase Pathway. Chemical Research in Toxicology, 2015, 28, 752-764.	3.3	4
407	Design and Function of Engineered Protein Nanocages as a Drug Delivery System for Targeting Pancreatic Cancer Cells via Neuropilin-1. Molecular Pharmaceutics, 2015, 12, 1422-1430.	4.6	46
408	Hsp90, Hsp60 and sHsp families of heat shock protein genes in channel catfish and their expression after bacterial infections. Fish and Shellfish Immunology, 2015, 44, 642-651.	3.6	64
409	Molecular Cloning and Differential Expression of Cytosolic Class I Small Hsp Gene Family in Pennisetum glaucum (L.). Applied Biochemistry and Biotechnology, 2015, 176, 598-612.	2.9	8
410	Active-State Structures of a Small Heat-Shock Protein Revealed a Molecular Switch for Chaperone Function. Structure, 2015, 23, 2066-2075.	3.3	16
411	Rapid externalization of 27-kDa heat shock protein (HSP27) and atypical cell death in neutrophils treated with the sphingolipid analog drug FTY720. Journal of Leukocyte Biology, 2015, 98, 591-599.	3.3	15

		CITATION R	EPORT	
#	Article		IF	CITATIONS
412	The Networking of Chaperones by Co-chaperones. Sub-Cellular Biochemistry, 2015, , .		2.4	10
413	Small heat-shock proteins: important players in regulating cellular proteostasis. Cellular Molecular Life Sciences, 2015, 72, 429-451.	rand	5.4	175
414	Identification of multiple small heat-shock protein genes in Plutella xylostella (L.) and th expression profiles in response to abiotic stresses. Cell Stress and Chaperones, 2015, 2	neir 10, 23-35.	2.9	44
415	The function of small heat-shock proteins and their implication in proteostasis. Essays i Biochemistry, 2016, 60, 163-172.	n	4.7	28
416	Chaperone families and interactions in metazoa. Essays in Biochemistry, 2016, 60, 237	-253.	4.7	29
417	Pharmacoinformatic and molecular docking studies reveal potential novel antidepressa neurodegenerative disorders by targeting HSPB8. Drug Design, Development and Thera	nts against apy, 2016, 10, 1605.	4.3	29
418	Function of Heat-Shock Proteins in Drought Tolerance Regulation of Plants. , 2016, , 16	53-185.		30
419	Heterogeneous expression pattern of tandem duplicated sHsps genes during fruit riper tomato species. Journal of Physics: Conference Series, 2016, 705, 012004.	ning in two	0.4	3
420	Multiple oligomeric structures of a bacterial small heat shock protein. Scientific Report 24019.	s, 2016, 6,	3.3	28
421	Structural insights into chaperone-activity enhancement by a K354E mutation in tomat aminopeptidase. Acta Crystallographica Section D: Structural Biology, 2016, 72, 694-7	co acidic leucine 02.	2.3	4
422	Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell Progress in Retinal and Eye Research, 2016, 52, 22-46.	survival.	15.5	56
423	Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Journal of the American Society for Mass Spectrometry, 2016, 27, 975-990.	Complexes.	2.8	73
425	Photosynthetic Pigment Apparatus in Northern Plants. , 2016, , 421-436.			0
426	Structural and functional consequences of chaperone site deletion in αA-crystallin. Bio Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1529-1538.	chimica Et	2.3	3
429	Class I and II small heat-shock proteins protect protein translation factors during heat s Physiology, 2016, 172, pp.00536.2016.	stress. Plant	4.8	94
430	New insight into the dynamical system of αB-crystallin oligomers. Scientific Reports, 20	016, 6, 29208.	3.3	32
431	The Function of Ile-X-Ile Motif in the Oligomerization and Chaperone-Like Activity of Sm Protein AgsA at Room Temperature. Protein Journal, 2016, 35, 401-406.	1all Heat Shock	1.6	0
432	sHSPdb: a database for the analysis of small Heat Shock Proteins. BMC Plant Biology, 2	016, 16, 135.	3.6	19

#	Article	IF	CITATIONS
433	Inhibitory Effect of β-Casein on the Amyloid Fibril Formation of Aβ1–40 Associated with Alzheimer's Disease. International Journal of Peptide Research and Therapeutics, 2016, 22, 23-29.	1.9	5
434	Small heat shock proteins, phylogeny in filamentous fungi and expression analyses in Aspergillus nidulans. Gene, 2016, 575, 675-679.	2.2	20
435	Functional sequences in human alphaB crystallin. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 240-245.	2.4	22
436	Structure and function of $\hat{l}\pm$ -crystallins: Traversing from in vitro to in vivo. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 149-166.	2.4	82
437	Chaperone activity of human small heat shock protein-GST fusion proteins. Cell Stress and Chaperones, 2017, 22, 503-515.	2.9	10
438	Structural Basis for the Interaction of a Human Small Heat Shock Protein with the 14-3-3 Universal Signaling Regulator. Structure, 2017, 25, 305-316.	3.3	101
439	Structure and assembly of scalable porous protein cages. Nature Communications, 2017, 8, 14663.	12.8	102
440	α-Crystallins are small heat shock proteins: Functional and structural properties. Biochemistry (Moscow), 2017, 82, 106-121.	1.5	9
441	Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana. Plant Cell Reports, 2017, 36, 1125-1135.	5.6	44
442	The protective role of small heat shock proteins in cardiac diseases: key role in atrial fibrillation. Cell Stress and Chaperones, 2017, 22, 665-674.	2.9	26
443	Oligomeric structure and chaperone-like activity of Drosophila melanogaster mitochondrial small heat shock protein Hsp22 and arginine mutants in the alpha-crystallin domain. Cell Stress and Chaperones, 2017, 22, 577-588.	2.9	8
444	Crystal structure of a small heat-shock protein from <i>Xylella fastidiosa</i> reveals a distinct high-order structure. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 222-227.	0.8	7
445	The growing world of small heat shock proteins: from structure to functions. Cell Stress and Chaperones, 2017, 22, 601-611.	2.9	158
446	Structural model of dodecameric heat-shock protein Hsp21: Flexible N-terminal arms interact with client proteins while C-terminal tails maintain the dodecamer and chaperone activity. Journal of Biological Chemistry, 2017, 292, 8103-8121.	3.4	24
447	Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii. Plant Molecular Biology, 2017, 95, 579-591.	3.9	26
448	Asymmetric inheritance of the yeast chaperone Hsp26p and its functional consequences. Biochemical and Biophysical Research Communications, 2017, 491, 1055-1061.	2.1	2
449	A Class II small heat shock protein OsHsp18.0 plays positive roles in both biotic and abiotic defense responses in rice. Scientific Reports, 2017, 7, 11333.	3.3	28
450	Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum) Tj ETQq1 1 0.78	34314 rgB1	[/Qyerlock 10

#	Article	IF	CITATIONS
451	Elucidation of the molecular mechanism of heat shock proteins and its correlation with K722Q mutations in Lon protease. BioSystems, 2017, 159, 12-22.	2.0	2
452	BAC3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins. Journal of Molecular Biology, 2017, 429, 128-141.	4.2	110
453	The Câ€ŧerminal extension of Mycobacterium tuberculosis Hsp16.3 regulates its oligomerization, subunit exchange dynamics and chaperone function. FEBS Journal, 2017, 284, 277-300.	4.7	15
454	Effect of N-terminal region of nuclear Drosophila melanogaster small heat shock protein DmHsp27 on function and quaternary structure. PLoS ONE, 2017, 12, e0177821.	2.5	5
455	Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science, 2018, 359, 930-935.	12.6	51
456	Structural and functional aspects of the interaction partners of the small heat-shock protein in Synechocystis. Cell Stress and Chaperones, 2018, 23, 723-732.	2.9	5
457	The influence of the N-terminal region proximal to the core domain on the assembly and chaperone activity of αB-crystallin. Cell Stress and Chaperones, 2018, 23, 827-836.	2.9	7
458	The small heat shock protein Hsp27 binds α-synuclein fibrils, preventing elongation and cytotoxicity. Journal of Biological Chemistry, 2018, 293, 4486-4497.	3.4	97
459	The sHSP22 Heat Shock Protein Requires the ABI1 Protein Phosphatase to Modulate Polar Auxin Transport and Downstream Responses. Plant Physiology, 2018, 176, 2406-2425.	4.8	39
460	Association of <scp>HSP</scp> 22 with <scp>mTOR</scp> in osteoblasts: regulation of <scp>TNF</scp> â€i±â€stimulated <scp>IL</scp> â€6 synthesis. FEBS Letters, 2018, 592, 1202-1210.	2.8	4
461	Asp 58 modulates lens αAâ€crystallin oligomer formation and chaperone function. FEBS Journal, 2018, 285, 2263-2277.	4.7	7
462	Characteristics and expression of genes encoding two small heat shock protein genes lacking introns from Chilo suppressalis. Cell Stress and Chaperones, 2018, 23, 55-64.	2.9	14
463	The structural insights of 16.3ÅkDa heat shock protein (HSP16.3) from <i>Mycobacterium tuberculosis</i> via <i>in silico</i> study. Molecular Simulation, 2018, 44, 117-127.	2.0	4
464	Identification and expression analysis of multiple small heat shock protein genes in spruce budworm, Choristoneura fumiferana (L.). Cell Stress and Chaperones, 2018, 23, 141-154.	2.9	22
465	Transcriptome analysis of hsp18.3 functions and regulatory systems using RNA-sequencing in the red flour beetle, Tribolium castaneum. Journal of Integrative Agriculture, 2018, 17, 1040-1056.	3.5	5
466	The oligomeric plasticity of Hsp20 of Sulfolobus acidocaldarius protects environment-induced protein aggregation and membrane destabilization. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2549-2565.	2.6	16
467	Heat Shock Proteins and Stress. Heat Shock Proteins, 2018, , .	0.2	5
468	It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate. Journal of Biological Chemistry, 2018, 293, 19511-19521.	3.4	41

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
469	Small Heat Shock Proteins in Stress Response of Higher Eukaryotes. Heat Shock Proteins, 2018, , 291-31	5. 0.2	0
470	Genome-Wide Characterization of the sHsp Gene Family in Salix suchowensis Reveals Its Functions under Different Abiotic Stresses. International Journal of Molecular Sciences, 2018, 19, 3246.	4.1	20
471	Heat in Wheat: Exploit Reverse Genetic Techniques to Discover New Alleles Within the Triticum durum sHsp26 Family. Frontiers in Plant Science, 2018, 9, 1337.	3.6	38
472	Characterization of an N-terminal mutant of αA-crystallin αA–R21Q associated with congenital catarac Experimental Eye Research, 2018, 174, 185-195.	ct. 2.6	5
473	Terminal Regions Confer Plasticity to the Tetrameric Assembly of Human HspB2 and HspB3. Journal of Molecular Biology, 2018, 430, 3297-3310.	4.2	37
474	Heat Shock Proteins in Cardiovascular Diseases: From Bench to Bedside. Heat Shock Proteins, 2018, , 223-245.	0.2	5
475	Improving stress tolerance and cell integrity of <i>Rhodococcus ruber</i> by overexpressing small-shock-protein Hsp16 of <i>Rhodococcus</i> . Journal of Industrial Microbiology and Biotechnology, 2018, 45, 929-938.	3.0	9
476	Engineering of a Polydisperse Small Heat-Shock Protein Reveals Conserved Motifs of Oligomer Plasticity. Structure, 2018, 26, 1116-1126.e4.	3.3	9
477	Enzymatic characterization of a soluble aggregate induced by N -terminal extension to a lipolytic enzyme. Journal of Biotechnology, 2018, 281, 130-136.	3.8	0
478	SAFlex: A structural alphabet extension to integrate protein structural flexibility and missing data information. PLoS ONE, 2018, 13, e0198854.	2.5	1
479	Small heat shock proteins and neurodegeneration: recent developments. Biomolecular Concepts, 2018, 9, 94-102.	2.2	17
480	The Role of the Arginine in the Conserved N-Terminal Domain RLFDQxFG Motif of Human Small Heat Shock Proteins HspB1, HspB4, HspB5, HspB6, and HspB8. International Journal of Molecular Sciences, 2018, 19, 2112.	4.1	17
481	Regulation by Hsp27/P53 in testis development and sperm apoptosis of male cattle (cattleâ€yak and yak) Journal of Cellular Physiology, 2019, 234, 650-660.). 4.1	17
482	Small Heat Shock Proteins, Big Impact on Protein Aggregation in Neurodegenerative Disease. Frontiers in Pharmacology, 2019, 10, 1047.	3.5	117
483	Functional and structural characterization of HspB1/Hsp27 from Chinese hamster ovary cells. FEBS Open Bio, 2019, 9, 1826-1834.	2.3	5
484	Functional Rescue of Cataract-Causing αA-G98R-Crystallin by Targeted Compensatory Suppressor Mutations in Human αA-Crystallin. Biochemistry, 2019, 58, 4148-4158.	2.5	4
485	Biophysical and structural characterization of the small heat shock protein HspA from Thermosynechococcus vulcanus in 2 M urea. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 442-452.	2.3	2
486	Elucidation of the molecular mechanism of heat shock proteins and its correlation with the effects of double mutations S679A & K722Q in the catalytic dyad residues of Lon protease. Gene Reports, 2019, 16, 100438.	0.8	1

#	Article	IF	CITATIONS
488	Cellular Functions and Mechanisms of Action of Small Heat Shock Proteins. Annual Review of Microbiology, 2019, 73, 89-110.	7.3	127
489	The N terminus of the small heat shock protein HSPB7 drives its polyQ aggregation–suppressing activity. Journal of Biological Chemistry, 2019, 294, 9985-9994.	3.4	17
491	Molecular Chaperones: Key Players of Abiotic Stress Response in Plants. Sustainable Development and Biodiversity, 2019, , 125-165.	1.7	3
492	PtsHSP19.6, a small heat-shock protein from the marine red alga Pyropia tenera (Rhodophyta), aggregates into granules and enhances heat tolerance. Journal of Applied Phycology, 2019, 31, 1921-1929.	2.8	2
493	A New Functional Model for Prediction of Chaperone Activity of the Recombinant M. tb Acr (α-Crystallin) Using Insulin as Substrate. Canadian Journal of Infectious Diseases and Medical Microbiology, 2019, 2019, 1-18.	1.9	2
495	The structure and oxidation of the eye lens chaperone αA-crystallin. Nature Structural and Molecular Biology, 2019, 26, 1141-1150.	8.2	42
496	Oligomeric state of $\hat{I}\pm B$ -crystallin under crowded conditions. Biochemical and Biophysical Research Communications, 2019, 508, 1101-1105.	2.1	9
497	HSPB5 engages multiple states of a destabilized client to enhance chaperone activity in a stress-dependent manner. Journal of Biological Chemistry, 2019, 294, 3261-3270.	3.4	15
498	YocM a small heat shock protein can protect <i>Bacillus subtilis</i> cells during salt stress. Molecular Microbiology, 2019, 111, 423-440.	2.5	18
499	Probing the Dissociation of Protein Complexes by Means of Gas-Phase H/D Exchange Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 45-57.	2.8	16
500	Molecular Approaches for Dissecting and Improving Drought and Heat Tolerance in Rice. , 2019, , 839-867.		11
501	Dodecameric structure of a small heat shock protein from <i><scp>Mycobacterium marinum</scp> M</i> . Proteins: Structure, Function and Bioinformatics, 2019, 87, 365-379.	2.6	5
502	Functional principles and regulation of molecular chaperones. Advances in Protein Chemistry and Structural Biology, 2019, 114, 1-60.	2.3	50
503	Small heat shock proteins: Simplicity meets complexity. Journal of Biological Chemistry, 2019, 294, 2121-2132.	3.4	205
504	Small Heat Shock Proteins, Amyloid Fibrils, and Nicotine Stimulate a Common Immune Suppressive Pathway with Implications for Future Therapies. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034223.	6.2	7
505	The functional diversity of structural disorder in plant proteins. Archives of Biochemistry and Biophysics, 2020, 680, 108229.	3.0	27
506	Regulation of small heat-shock proteins by hetero-oligomer formation. Journal of Biological Chemistry, 2020, 295, 158-169.	3.4	34
507	The Mitochondrial Small Heat Shock Protein HSP22 from Pea is a Thermosoluble Chaperone Prone to Co-Precipitate with Unfolding Client Proteins. International Journal of Molecular Sciences, 2020, 21, 97.	4.1	15

#	Article	IF	CITATIONS
508	Heterologous expression of heat shock proteins confers stress tolerance in Escherichia coli, an industrial cell factory: A short review. Biocatalysis and Agricultural Biotechnology, 2020, 29, 101833.	3.1	7
509	Application of CRISPR/Cas9-Based Reverse Genetics in Leishmania braziliensis: Conserved Roles for HSP100 and HSP23. Genes, 2020, 11, 1159.	2.4	9
510	Manoeuvring protein functions and functional levels by structural excursions. , 2020, , 77-104.		2
511	Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduction and Targeted Therapy, 2020, 5, 125.	17.1	81
512	AgsA oligomer acts as a functional unit. Biochemical and Biophysical Research Communications, 2020, 530, 22-28.	2.1	0
514	Proteinaceous Transformers: Structural and Functional Variability of Human sHsps. International Journal of Molecular Sciences, 2020, 21, 5448.	4.1	14
515	Combining native and â€~omics' mass spectrometry to identify endogenous ligands bound to membrane proteins. Nature Methods, 2020, 17, 505-508.	19.0	111
516	A novel dominant mutation in <i>CRYAB</i> gene leading to a severe phenotype with childhood onset. Molecular Genetics & Genomic Medicine, 2020, 8, e1290.	1.2	11
517	N- and C-terminal regions of αB-crystallin and Hsp27 mediate inhibition of amyloid nucleation, fibril binding, and fibril disaggregation. Journal of Biological Chemistry, 2020, 295, 9838-9854.	3.4	22
518	Structure of the Hydrophobic Core Determines the 3D Protein Structure—Verification by Single Mutation Proteins. Biomolecules, 2020, 10, 767.	4.0	24
519	Genotype-Dependent Gene Expression in Strawberry (Fragaria x ananassa) Plants Under High Temperature Stress. Biochemical Genetics, 2020, 58, 848-866.	1.7	4
520	Specific Roles of HSP27 S15 Phosphorylation Augmenting the Nuclear Function of HER2 to Promote Trastuzumab Resistance. Cancers, 2020, 12, 1540.	3.7	14
521	Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation. Nature Structural and Molecular Biology, 2020, 27, 363-372.	8.2	117
522	The congenital cataractâ€causing mutations P20R and A171T are associated with important changes in the amyloidogenic feature, structure and chaperoneâ€like activity of human αBâ€crystallin. Biopolymers, 2020, 111, e23350.	2.4	12
524	Structural and Functional Peculiarities of α-Crystallin. Biology, 2020, 9, 85.	2.8	13
525	Studying heat shock proteins through single-molecule mechanical manipulation. Cell Stress and Chaperones, 2020, 25, 615-628.	2.9	5
526	Hsp27 reduces glycationâ€induced toxicity and aggregation of alphaâ€synuclein. FASEB Journal, 2020, 34, 6718-6728.	0.5	18
527	Small but mighty: a functional look at bacterial sHSPs. Cell Stress and Chaperones, 2020, 25, 593-600.	2.9	12

# 528	ARTICLE Plant small heat shock proteins – evolutionary and functional diversity. New Phytologist, 2020, 227, 24-37.	IF 7.3	CITATIONS
529	Structure, gene expression, and putative functions of crustacean heat shock proteins in innate immunity. Developmental and Comparative Immunology, 2021, 115, 103875.	2.3	29
530	Single-molecule fluorescence-based approach reveals novel mechanistic insights into human small heat shock protein chaperone function. Journal of Biological Chemistry, 2021, 296, 100161.	3.4	12
531	An immunomodulatory role for the Mycobacterium tuberculosis Acr protein in the formation of the tuberculous granuloma. FEBS Letters, 2021, 595, 284-293.	2.8	4
532	AlphaB-crystallin and breast cancer: role and possible therapeutic strategies. Cell Stress and Chaperones, 2021, 26, 19-28.	2.9	12
533	Analysis of insect nuclear small heat shock proteins and interacting proteins. Cell Stress and Chaperones, 2021, 26, 265-274.	2.9	5
534	Stress Proteins: Biological Functions, Human Diseases, and Virus Infections. , 2021, , 77-102.		0
535	Molecular Mechanisms of Heat Shock Proteins for Sustainable Plant Growth and Production. , 2021, , 141-169.		0
536	Structural Proteins Crystallins of the Mammalian Eye Lens. , 2021, , 639-667.		1
537	The Role of HSPB8, a Component of the Chaperone-Assisted Selective Autophagy Machinery, in Cancer. Cells, 2021, 10, 335.	4.1	28
538	Network of <i>Entamoeba histolytica</i> HSP18.5 dimers formed by two overlapping [IV]â€Xâ€[IV] motifs. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1039-1054.	2.6	0
539	Structural basis of substrate recognition and thermal protection by a small heat shock protein. Nature Communications, 2021, 12, 3007.	12.8	22
541	H101G Mutation in Rat Lens $\hat{I}\pm B$ -Crystallin Alters Chaperone Activity and Divalent Metal Ion Binding. Current Pharmaceutical Biotechnology, 2021, 22, .	1.6	0
542	Horizontal Transmission of Stress Resistance Genes Shape the Ecology of Beta- and Gamma-Proteobacteria. Frontiers in Microbiology, 2021, 12, 696522.	3.5	20
543	Mitochondrial HSP70 Chaperone System—The Influence of Post-Translational Modifications and Involvement in Human Diseases. International Journal of Molecular Sciences, 2021, 22, 8077.	4.1	27
544	Differential Modulation of Heat-Inducible Genes Across Diverse Genotypes and Molecular Cloning of a sHSP From Pearl Millet [Pennisetum glaucum (L.) R. Br.]. Frontiers in Plant Science, 2021, 12, 659893.	3.6	8
545	The <scp><i>Caenorhabditis elegans</i> 12â€kDa</scp> small heat shock proteins with little in vitro chaperone activity play crucial roles for its dauer formation, longevity, and reproduction. Protein Science, 2021, 30, 2170-2182.	7.6	5
546	The chaperone HSPB1 prepares protein aggregates for resolubilization by HSP70. Scientific Reports, 2021, 11, 17139.	3.3	19

#	Article	IF	CITATIONS
547	Structural Probing of Hsp26 Activation and Client Binding by Quantitative Cross-Linking Mass Spectrometry. Analytical Chemistry, 2021, 93, 13226-13234.	6.5	3
548	Mitogenâ€activated protein kinaseâ€activated protein kinaseâ€2 (MK2) and its role in cell survival, inflammatory signaling, and migration in promoting cancer. Molecular Carcinogenesis, 2022, 61, 173-199.	2.7	9
549	Heat Stress in Cotton: A Review on Predicted and Unpredicted Growth-Yield Anomalies and Mitigating Breeding Strategies. Agronomy, 2021, 11, 1825.	3.0	29
550	Genome-Wide Analysis of the HSP20 Gene Family and Expression Patterns of HSP20 Genes in Response to Abiotic Stresses in Cynodon transvaalensis. Frontiers in Genetics, 2021, 12, 732812.	2.3	11
551	Elucidation of the mechanism of subunit exchange in αB crystallin oligomers. Scientific Reports, 2021, 11, 2555.	3.3	11
554	Role of Heat Shock Proteins (HSPs) and Heat Stress Tolerance in Crop Plants. , 2020, , 211-234.		28
555	p23 and Aha1. Sub-Cellular Biochemistry, 2015, 78, 113-131.	2.4	25
556	Molecular Chaperones and HSPs in Sugarcane and Eucalyptus. Heat Shock Proteins, 2016, , 245-282.	0.2	1
557	Small Heat Shock Proteins, a Key Player in Grass Plant Thermotolerance. Heat Shock Proteins, 2016, , 41-64.	0.2	4
558	Heat Shock Proteins in Wild Barley at "Evolution Canyonâ€ , Mount Carmel, Israel. Heat Shock Proteins, 2016, , 79-102.	0.2	2
559	Evidence on Cholesterol-Controlled Lipid Raft Interaction of the Small Heat Shock Protein HSPB11. Heat Shock Proteins, 2012, , 75-85.	0.2	6
561	A class I cytosolic HSP20 of rice enhances heat and salt tolerance in different organisms. Scientific Reports, 2020, 10, 1383.	3.3	61
562	Site-Directed Mutations in the C-Terminal Extension of Human $\hat{I}\pm B$ -Crystallin Affect Chaperone Function and Block Amyloid Fibril Formation. PLoS ONE, 2007, 2, e1046.	2.5	44
563	Dynamic Subunit Exchange and the Regulation of Microtubule Assembly by the Stress Response Protein Human αB Crystallin. PLoS ONE, 2010, 5, e11795.	2.5	29
564	αA-Crystallin Peptide 66SDRDKFVIFLDVKHF80 Accumulating in Aging Lens Impairs the Function of α-Crystallin and Induces Lens Protein Aggregation. PLoS ONE, 2011, 6, e19291.	2.5	54
565	Multiple Sites in αB-Crystallin Modulate Its Interactions with Desmin Filaments Assembled In Vitro. PLoS ONE, 2011, 6, e25859.	2.5	22
566	Clobal Transcriptome Profiling of the Pine Shoot Beetle, Tomicus yunnanensis (Coleoptera:) Tj ETQq0 0 0 rgBT /۵)verlock 1(2.5	D Tf 50 102 T 47

⁵⁶⁷Analysis and Phylogeny of Small Heat Shock Proteins from Marine Viruses and Their Cyanobacteria2.552567Host. PLoS ONE, 2013, 8, e81207.52

# 568	ARTICLE Unraveling Regulation of the Small Heat Shock Proteins by the Heat Shock Factor HvHsfB2c in Barley: Its Implications in Drought Stress Response and Seed Development. PLoS ONE, 2014, 9, e89125.	IF 2.5	Citations 84
569	Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18. PLoS ONE, 2015, 10, e0129734.	2.5	11
570	Fusion Molecules of Heat Shock Protein HSPX with Other Antigens of Mycobacterium tuberculosis Show High Potential in Serodiagnosis of Tuberculosis. PLoS ONE, 2016, 11, e0163349.	2.5	13
571	p23, a simple protein with complex activities. Cell Stress and Chaperones, 2003, 8, 108.	2.9	117
572	A small heat shock/α-crystallin protein from encysted Artemia embryos suppresses tubulin denaturation. Cell Stress and Chaperones, 2003, 8, 183.	2.9	40
573	Tomato heat stress protein Hsp16.1-CIII represents a member of a new class of nucleocytoplasmic small heat stress proteins in plants. Cell Stress and Chaperones, 2003, 8, 381.	2.9	33
574	Structural instability caused by a mutation at a conserved arginine in the $\hat{1}$ ±-crystallin domain of Chinese hamster heat shock protein 27. Cell Stress and Chaperones, 2005, 10, 157.	2.9	16
575	Conformational changes resulting from pseudophosphorylation of mammalian small heat shock proteins—a two-hybrid study. Cell Stress and Chaperones, 2006, 11, 61.	2.9	17
576	The function of the β3 interactive domain in the small heat shock protein and molecular chaperone, human αB crystallin. Cell Stress and Chaperones, 2006, 11, 187.	2.9	18
577	New HSP27 inhibitors efficiently suppress drug resistance development in cancer cells. Oncotarget, 2016, 7, 68156-68169.	1.8	50
579	A Cytosolic Heat Shock Protein Expressed in Carrot (Daucus carota L.) Enhances Cell Viability under Oxidative and Osmotic Stress Conditions. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 143-148.	1.0	9
580	N-Acetyl-d-Glucosamine Kinase Interacts with NudC and Lis1 in Dynein Motor Complex and Promotes Cell Migration. International Journal of Molecular Sciences, 2021, 22, 129.	4.1	9
581	Structure and interactions in α-crystallin probed through thiol group reactivity. Advances in Biological Chemistry, 2013, 03, 427-439.	0.6	1
582	Overexpression of the Small Heat Shock Protein, PtsHSP19.3 from Marine Red Algae, Pyropia tenera (Bangiales, Rhodophyta) Enhances Abiotic Stress Tolerance in Chlamydomonas. Journal of Plant Biotechnology, 2017, 44, 287-295.	0.4	11
583	Tobacco mitochondrial small heat shock protein NtHSP24.6 adopts a dimeric configuration and has a broad range of substrates. BMB Reports, 2011, 44, 816-820.	2.4	3
584	Functional insights by comparison of modeled structures of 18kDa small heat shock protein and its mutant in Mycobacterium leprae. Bioinformation, 2008, 3, 230-234.	0.5	6
585	Genome-wide identification and classification of the <i>Hsf</i> and <i>sHsp</i> gene families in <i>Prunus mume</i> , and transcriptional analysis under heat stress. PeerJ, 2019, 7, e7312.	2.0	18
586	Oligomeric Structural Transition of HspB1 from Chinese Hamster. International Journal of Molecular Sciences, 2021, 22, 10797.	4.1	0

#	Article	IF	Citations
587	sHsps: the neglected chaperones. Journal of Cell Science, 2002, 115, 2255-2256.	2.0	0
589	Small Heat Shock Proteins OR: A Subgroup of Molecular Chaperones. Journal of Biological Sciences, 2004, 5, 1-9.	0.3	2
590	Plant small heat shock proteins. Biopolymers and Cell, 2005, 21, 392-399.	0.4	0
593	Protein-Folding Systems. , 0, , 209-223.		0
594	Structural Insights into IbpA–IbpB Interactions to Predict Their Roles in Heat Shock Response. SpringerBriefs in Applied Sciences and Technology, 2015, , 41-51.	0.4	0
595	Structural Bioinformatic Approach to Understand the Molecular Mechanism of the Interactions of Small Heat Shock Proteins IbpA and IbpB with Lon Protease. Advances in Intelligent Systems and Computing, 2015, , 29-36.	0.6	1
596	Identifying Molecular Chaperones as Therapeutic Targets for Cancer: A Mini Review. Biochemistry & Pharmacology: Open Access, 2017, 06, .	0.2	0
604	Role of HspB1 and HspB8 in Hereditary Peripheral Neuropathies: Beyond the Chaperone Function. , 2008, , 139-155.		0
605	Screening for transglutaminase-catalyzed modifications by peptide mass finger printing using multipoint recalibration on recognized peaks for high mass accuracy. Journal of Biomolecular Techniques, 2005, 16, 197-208.	1.5	5
606	Role of alphaBI5 and alphaBT162 residues in subunit interaction during oligomerization of alphaB-crystallin. Molecular Vision, 2008, 14, 1835-44.	1.1	6
607	COOH-terminal truncations and site-directed mutations enhance thermostability and chaperone-like activity of porcine alphaB-crystallin. Molecular Vision, 2009, 15, 1429-44.	1.1	12
608	The interaction of unfolding α-lactalbumin and malate dehydrogenase with the molecular chaperone αB-crystallin: a light and X-ray scattering investigation. Molecular Vision, 2010, 16, 2446-56.	1.1	20
609	αA-crystallin-derived minichaperone stabilizes αAG98R-crystallin by affecting its zeta potential. Molecular Vision, 2018, 24, 297-304.	1.1	1
610	Phosphorylation activates the yeast small heat shock protein Hsp26 by weakening domain contacts in the oligomer ensemble. Nature Communications, 2021, 12, 6697.	12.8	12
611	Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Frontiers in Molecular Biosciences, 2022, 9, 842149.	3.5	34
612	Role of ATP-Small Heat Shock Protein Interaction in Human Diseases. Frontiers in Molecular Biosciences, 2022, 9, 844826.	3.5	4
613	Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Frontiers in Immunology, 2022, 13, 852702.	4.8	10
614	The Multifaceted Neurotoxicity of Astrocytes in Ageing and Age-Related Neurodegenerative Diseases: A Translational Perspective. Frontiers in Physiology, 2022, 13, 814889.	2.8	8

#	Article	IF	CITATIONS
615	Insights Into the Role of Heat Shock Protein 27 in the Development of Neurodegeneration. Frontiers in Molecular Neuroscience, 2022, 15, 868089.	2.9	2
616	Research advances in function and regulation mechanisms of plant small heat shock proteins (sHSPs) under environmental stresses. Science of the Total Environment, 2022, 825, 154054.	8.0	36
625	Molecular Chaperones and the Ubiquitinâ \in "Proteasome System. , 0, , 1-30.		0
626	Identification and up-regulation of three small heat shock proteins in summer and winter diapause in response to temperature stress in Pieris melete. International Journal of Biological Macromolecules, 2022, 209, 1144-1154.	7.5	2
627	Minimal Yet Powerful: The Role of Archaeal Small Heat Shock Proteins in Maintaining Protein Homeostasis. Frontiers in Molecular Biosciences, 2022, 9, .	3.5	3
628	Identification, expression analysis and functional verification of two genes encoding small heat shock proteins in the western flower thrips, Frankliniella occidentalis (Pergande). International Journal of Biological Macromolecules, 2022, 211, 74-84.	7.5	8
629	Identification of the DcHsp20 gene family in carnation (Dianthus caryophyllus) and functional characterization of DcHsp17.8 in heat tolerance. Planta, 2022, 256, .	3.2	6
630	Comprehensive Analysis of the Hsp20 Gene Family in Canavalia rosea Indicates Its Roles in the Response to Multiple Abiotic Stresses and Adaptation to Tropical Coral Islands. International Journal of Molecular Sciences, 2022, 23, 6405.	4.1	1
631	RNA interference-induced silencing of the SIHSP17.7 gene delays fruit ripening in tomato. Journal of Plant Biochemistry and Biotechnology, 0, , .	1.7	0
632	The Monomeric α-Crystallin Domain of the Small Heat-shock Proteins αB-crystallin and Hsp27 Binds Amyloid Fibril Ends. Journal of Molecular Biology, 2022, 434, 167711.	4.2	2
633	Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm, 2022, 3, .	7.2	102
634	Molecular Mechanisms Underlying the Role of HSPB8 in Neurodegeneration. , 2022, , 197-218.		0
635	The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases. International Journal of Molecular Sciences, 2022, 23, 11759.	4.1	5
636	Is the lipochaperone activity of sHSP a key to the stress response encoded in its primary sequence?. Cell Stress and Chaperones, 2023, 28, 21-33.	2.9	2
637	Heat Shock Proteins (Hsps) in Cellular Homeostasis: A Promising Tool for Health Management in Crustacean Aquaculture. Life, 2022, 12, 1777.	2.4	19
638	The permanently chaperone-active small heat shock protein Hsp17 from Caenorhabditis elegans exhibits topological separation of its N-terminal regions. Journal of Biological Chemistry, 2023, 299, 102753.	3.4	3
639	The Common Bean Small Heat Shock Protein Nodulin 22 from Phaseolus vulgaris L. Assembles into Functional High-Molecular-Weight Oligomers. Molecules, 2022, 27, 8681.	3.8	0
640	Structure–function relationship of α-crystallin in the context of vertebrate lens evolution and its role in eye disorders. Journal of Proteins and Proteomics, 0, ,	1.5	0

#	Article	IF	CITATIONS
641	Tailored Functionalized Protein Nanocarriers for Cancer Therapy: Recent Developments and Prospects. Pharmaceutics, 2023, 15, 168.	4.5	5
642	Rice OsHsp16.9A interacts with OsHsp101 to confer thermotolerance. Plant Science, 2023, 330, 111634.	3.6	2
643	Molecular chaperones, proteases, and unfolded protein responses. , 2023, , 647-689.		0
644	Insights and Perspectives on the Role of Proteostasis and Heat Shock Proteins in Fungal Infections. Microorganisms, 2023, 11, 1878.	3.6	0
645	Functional Diversity of Mammalian Small Heat Shock Proteins: A Review. Cells, 2023, 12, 1947.	4.1	4
646	PINK1 and Parkin rescue motor defects and mitochondria dysfunction induced by a patient-derived HSPB3 mutant in Drosophila models. Biochemical and Biophysical Research Communications, 2023, 682, 71-76.	2.1	0
647	Thermomechanically stable supramolecular elastomers inspired by heat shock proteins. Materials Horizons, 2024, 11, 1014-1022.	12.2	0
648	HspB5 Chaperone Structure and Activity Are Modulated by Chemical-Scale Interactions in the ACD	4.1	0