Herbivore-induced volatile production by Arabidopsis to parasitoid Cotesia rubecula: chemical, behavioral, and g

Journal of Chemical Ecology 27, 1911-1928

DOI: 10.1023/a:1012213116515

Citation Report

#	Article	IF	CITATIONS
1	Characterization of an Acyltransferase Capable of Synthesizing Benzylbenzoate and Other Volatile Esters in Flowers and Damaged Leaves of Clarkia breweri Â. Plant Physiology, 2002, 130, 466-476.	2.3	185
2	Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway. Journal of Experimental Botany, 2002, 53, 1793-1799.	2.4	130
3	Novel S-adenosyl-l-methionine:salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers. Archives of Biochemistry and Biophysics, 2002, 406, 261-270.	1.4	71
4	The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinion in Plant Biology, 2002, 5, 237-243.	3.5	956
5	Volatile signaling in plant–plant–herbivore interactions: what is real?. Current Opinion in Plant Biology, 2002, 5, 351-354.	3.5	181
6	Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Molecular Genetics and Genomics, 2002, 267, 730-745.	1.0	372
7	Plant resistance towards insect herbivores: a dynamic interaction. New Phytologist, 2002, 156, 145-169.	3.5	517
8	Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Molecular Biology, 2003, 51, 925-948.	2.0	240
9	Gene expression during anthesis and senescence in Iris flowers. Plant Molecular Biology, 2003, 53, 845-863.	2.0	123
10	Functional identification of AtTPS03 as (E)-β-ocimene synthase: a monoterpene synthase catalyzing jasmonate- and wound-induced volatile formation in Arabidopsis thaliana. Planta, 2003, 216, 745-751.	1.6	134
11	Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Current Opinion in Plant Biology, 2003, 6, 372-378.	3.5	503
12	Floral scent of Arabidopsis lyrata (Brassicaceae). Biochemical Systematics and Ecology, 2003, 31, 1193-1195.	0.6	10
13	Induced plant defences: from molecular biology to evolutionary ecology. Basic and Applied Ecology, 2003, 4, 3-14.	1.2	188
14	Inducible indirect defence of plants: from mechanisms to ecological functions. Basic and Applied Ecology, 2003, 4, 27-42.	1.2	243
15	Signal transduction downstream of salicylic and jasmonic acid in herbivory-induced parasitoid attraction by Arabidopsis is independent of JAR1 and NPR1. Plant, Cell and Environment, 2003, 26, 1541-1548.	2.8	30
16	Reactive electrophile species activate defense gene expression in Arabidopsis. Plant Journal, 2003, 34, 205-216.	2.8	244
17	An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant Journal, 2003, 36, 577-588.	2.8	278
18	Attraction of the specialist parasitoid Cotesia rubecula to Arabidopsis thaliana infested by host or non-host herbivore species. Entomologia Experimentalis Et Applicata, 2003, 107, 229-236.	0.7	52

#	ARTICLE	IF	CITATIONS
19	Interactions between aboveground and belowground induced responses against phytophages. Basic and Applied Ecology, 2003, 4, 63-77.	1.2	147
20	Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis Plants[W]. Plant Cell, 2003, 15, 2866-2884.	3.1	461
21	Chapter five Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. Recent Advances in Phytochemistry, 2003, , 101-125.	0.5	131
22	Structural Basis for Substrate Recognition in the Salicylic Acid Carboxyl Methyltransferase Family. Plant Cell, 2003, 15, 1704-1716.	3.1	214
23	Chapter eleven The SABATH family of MTS in Arabidopsis Thaliana and other plant species. Recent Advances in Phytochemistry, 2003, , 253-283.	0.5	54
24	Biosynthesis and Emission of Terpenoid Volatiles from Arabidopsis Flowers. Plant Cell, 2003, 15, 481-494.	3.1	381
25	Chapter two Structural, functional, and evolutionary basis for methylation of plant small molecules. Recent Advances in Phytochemistry, 2003, 37, 37-58.	0.5	68
26	Insect Attack and Wounding Induce Traumatic Resin Duct Development and Gene Expression of ($\hat{a}\in$ ")-Pinene Synthase in Sitka Spruce. Plant Physiology, 2003, 133, 368-378.	2.3	144
27	Signaling and Insect-Inducible Compounds in Plants. , 2003, , .		0
28	A Conserved Transcript Pattern in Response to a Specialist and a Generalist Herbivorew $\hat{a}f\check{z}$. Plant Cell, 2004, 16, 3132-3147.	3.1	470
29	IRIS HEXAGONA HORMONAL RESPONSES TO SALINITY STRESS, LEAFMINER HERBIVORY, AND PHENOLOGY. Ecology, 2004, 85, 38-47.	1.5	26
30	Chapter one Arabidopsis thaliana, a model system for investigating volatile terpene biosynthesis, regulation, and function. Recent Advances in Phytochemistry, 2004, , 1-18.	0.5	4
31	Jasmonic Acid Is a Key Regulator of Spider Mite-Induced Volatile Terpenoid and Methyl Salicylate Emission in Tomato. Plant Physiology, 2004, 135, 2025-2037.	2.3	337
32	Biochemistry of Plant Volatiles: Figure 1 Plant Physiology, 2004, 135, 1893-1902.	2.3	873
33	Proton-Transfer-Reaction Mass Spectrometry as a New Tool for Real Time Analysis of Root-Secreted Volatile Organic Compounds in Arabidopsis. Plant Physiology, 2004, 135, 47-58.	2.3	204
34	STRETCHING THE LIMITS OF PLASTICITY: CAN A PLANT DEFEND AGAINST BOTH COMPETITORS AND HERBIVORES?. Ecology, 2004, 85, 28-37.	1.5	108
35	Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant, Cell and Environment, 2004, 27, 675-684.	2.8	335
36	Root damage and aboveground herbivory change concentration and composition of pyrrolizidine alkaloids of Senecio jacobaea. Basic and Applied Ecology, 2004, 5, 253-260.	1.2	65

#	ARTICLE	IF	CITATIONS
37	Indirect Defence of Plants against Herbivores: Using Arabidopsis thalianaas a Model Plant. Plant Biology, 2004, 6, 387-401.	1.8	145
38	Qualitative and Quantitative Variation Among Volatile Profiles Induced by Tetranychus urticae Feeding on Plants from Various Families. Journal of Chemical Ecology, 2004, 30, 69-89.	0.9	211
39	Identification of Volatiles That Are Used in Discrimination Between Plants Infested with Prey or Nonprey Herbivores by a Predatory Mite. Journal of Chemical Ecology, 2004, 30, 2215-2230.	0.9	194
40	Information use by the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae), a specialised natural enemy of herbivorous spider mites. Applied Entomology and Zoology, 2005, 40, 1-12.	0.6	20
41	Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function. Phytochemistry, 2005, 66, 1211-1230.	1.4	113
42	Volatile profiling of Arabidopsis thaliana $\hat{a} \in \text{``Putative olfactory compounds in plant communication.}$ Phytochemistry, 2005, 66, 1941-1955.	1.4	83
43	The glucosinolate–myrosinase system in an ecological and evolutionary context. Current Opinion in Plant Biology, 2005, 8, 264-271.	3.5	212
44	Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Current Opinion in Plant Biology, 2005, 8, 242-248.	3.5	123
45	The secondary metabolism of Arabidopsis thaliana: growing like a weed. Current Opinion in Plant Biology, 2005, 8, 308-316.	3.5	268
46	The Role of Fresh versus Old Leaf Damage in the Attraction of Parasitic Wasps to Herbivore-Induced Maize Volatiles. Journal of Chemical Ecology, 2005, 31, 2003-2018.	0.9	87
47	Herbivores, Vascular Pathways, and Systemic Induction: Facts and Artifacts. Journal of Chemical Ecology, 2005, 31, 2231-2242.	0.9	133
48	QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry. Euphytica, 2005, 145, 269-279.	0.6	70
49	Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Molecular Biology, 2005, 58, 497-513.	2.0	292
50	A method for the solvent extraction of low-boiling-point plant volatiles. Phytochemical Analysis, 2005, 16, 239-245.	1.2	10
51	Genetic Engineering of Terpenoid Metabolism Attracts Bodyguards to Arabidopsis. Science, 2005, 309, 2070-2072.	6.0	482
52	Characterizing the Grape Transcriptome. Analysis of Expressed Sequence Tags from Multiple Vitis Species and Development of a Compendium of Gene Expression during Berry Development. Plant Physiology, 2005, 139, 574-597.	2.3	159
53	Volatile composition, emission pattern, and localization of floral scent emission in <i>Mirabilis jalapa</i> (Nyctaginaceae). American Journal of Botany, 2005, 92, 2-12.	0.8	77
54	Biogenesis, molecular regulation and function of plant isoprenoids. Progress in Lipid Research, 2005, 44, 357-429.	5.3	442

#	ARTICLE	IF	CITATIONS
55	Signal Signature and Transcriptome Changes of Arabidopsis During Pathogen and Insect Attack. Molecular Plant-Microbe Interactions, 2005, 18, 923-937.	1.4	909
56	Biochemical Genetics and Genomics of Insect Esterases. , 2005, , 309-381.		171
57	Methylation and Demethylation of Plant Signaling Molecules. Recent Advances in Phytochemistry, 2006, , 253-270.	0.5	1
58	Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst, The, 2006, 131, 24-32.	1.7	161
59	Chemical Signals in Plants: Jasmonates and the Role of Insect-Derived Elicitors in Responses to Herbivores., 2006,, 259-278.		11
60	Behavioural responses of the aphid parasitoid Diaeretiella rapae to volatiles from Arabidopsis thaliana induced by Myzus persicae. Entomologia Experimentalis Et Applicata, 2006, 120, 1-9.	0.7	57
61	Induction of Volatile Organic Compounds of Lycopersicon esculentum Mill. and Its Resistance to Botrytis cinerea Pers. by Burdock Oligosaccharide. Journal of Integrative Plant Biology, 2006, 48, 550-557.	4.1	27
62	Caterpillar Herbivory and Salivary Enzymes Decrease Transcript Levels of Medicago truncatula genes Encoding Early Enzymes in Terpenoid Biosynthesis. Plant Molecular Biology, 2006, 60, 519-531.	2.0	145
63	Volatile Emissions from an Odorous Plant in Response to Herbivory and Methyl Jasmonate Exposure. Journal of Chemical Ecology, 2006, 32, 725-743.	0.9	66
64	OsBISAMT1, a gene encoding S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, is differentially expressed in rice defense responses. Molecular Biology Reports, 2006, 33, 223-231.	1.0	35
65	Does Methyl Salicylate, A Component of Herbivore-induced Plant Odour, Promote Sporulation of the Mite-pathogenic Fungus Neozygites tanajoae?. Experimental and Applied Acarology, 2006, 39, 63-74.	0.7	17
66	Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. Planta, 2006, 224, 1197-1208.	1.6	103
67	Effects of glucosinolate and myrosinase levels in Brassica juncea on a glucosinolate-sequestering herbivore – and vice versa. Chemoecology, 2006, 16, 191-201.	0.6	48
68	Genetic Engineering Renders Plants Attractive to "Bodyguards― Angewandte Chemie - International Edition, 2006, 45, 2008-2010.	7.2	2
70	The <i> Arabidopsis thaliana </i> Transcription Factor AtMYB102 Functions in Defense Against The Insect Herbivore <i> Pieris rapae Plant Signaling and Behavior, 2006, 1, 305-311.</i>	1.2	72
71	The Role of Terpene Synthases in the Direct and Indirect Defense of Conifers Against Insect Herbivory and Fungal Pathogens., 2006,, 296-313.		8
72	Herbivore-Induced Resistance against Microbial Pathogens in Arabidopsis. Plant Physiology, 2006, 142, 352-363.	2.3	207
73	Identifying Substrates and Products of Enzymes of Plant Volatile Biosynthesis with the Help of Metabolic Profiling., 2007,, 169-182.		0

#	ARTICLE	IF	CITATIONS
74	First Report of an Attractant for a Tumbling Flower Beetle (Coleoptera: Mordellidae). Environmental Entomology, 2007, 36, 894-898.	0.7	1
75	Arabidopsis, a Model to Study Biological Functions of Isoprene Emission?. Plant Physiology, 2007, 144, 1066-1078.	2.3	85
76	Arabidopsis-Insect Interactions. The Arabidopsis Book, 2007, 5, e0107.	0.5	25
77	Positive Selection for Single Amino Acid Change Promotes Substrate Discrimination of a Plant Volatile-Producing Enzyme. Molecular Biology and Evolution, 2007, 24, 1320-1329.	3.5	41
78	Linking ecological and evolutionary change in multitrophic interactions: assessing the evolutionary consequences of herbivore-induced changes in plant traits., 2007,, 354-376.		1
79	Sensitivity and Speed of Induced Defense of Cabbage (Brassica oleracea L.): Dynamics of BoLOX Expression Patterns During Insect and Pathogen Attack. Molecular Plant-Microbe Interactions, 2007, 20, 1332-1345.	1.4	89
80	Metabolic Engineering of Terpenoid Biosynthesis in Plants. , 2007, , 219-236.		6
82	A genomic approach to characterization of the Citrus terpene synthase gene family. Genetics and Molecular Biology, 2007, 30, 832-840.	0.6	28
83	Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant Journal, 2007, 49, 194-207.	2.8	199
84	A new catalytic activity from tobacco converting 2-coumaric acid to salicylic aldehyde. Physiologia Plantarum, 2007, 129, 461-471.	2.6	23
85	Ecogenomic approach to the role of herbivore-induced plant volatiles in community ecology. Journal of Ecology, 2007, 95, 17-26.	1.9	47
86	Suitability of Arabidopsis thaliana as a model for host plant?Plutella xylostella?Cotesia plutellae interactions. Entomologia Experimentalis Et Applicata, 2007, 122, 17-26.	0.7	9
87	The role of the plant in attracting parasitoids: response to progressive mechanical wounding. Entomologia Experimentalis Et Applicata, 2007, 125, 145-155.	0.7	21
88	Plant Terpenoids: Biosynthesis and Ecological Functions. Journal of Integrative Plant Biology, 2007, 49, 179-186.	4.1	352
89	GAMT2 Encodes a Methyltransferase of Gibberellic Acid That is Involved in Seed Maturation and Germination in Arabidopsis. Journal of Integrative Plant Biology, 2007, 49, 368-381.	4.1	14
90	Genotypic variation in genome-wide transcription profiles induced by insect feeding: Brassica oleracea – Pieris rapae interactions. BMC Genomics, 2007, 8, 239.	1.2	75
91	Protection in an ant–plant mutualism: an adaptation or a sensory trap?. Animal Behaviour, 2007, 74, 377-385.	0.8	28
92	Nutritional suitability and ecological relevance of Arabidopsis thaliana and Brassica oleracea as foodplants for the cabbage butterfly, Pieris rapae. Plant Ecology, 2007, 189, 117-126.	0.7	42

#	ARTICLE	IF	CITATIONS
93	Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Molecular Biology, 2007, 64, 1-15.	2.0	124
94	Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Molecular Biology, 2007, 64, 251-263.	2.0	185
95	The Role of Ozone-reactive Compounds, Terpenes, and Green Leaf Volatiles (GLVs), in the Orientation of Cotesia plutellae. Journal of Chemical Ecology, 2007, 33, 2218-2228.	0.9	69
96	Comparative Innate Responses of the Aphid Parasitoid Diaeretiella rapae to Alkenyl Glucosinolate Derived Isothiocyanates, Nitriles, and Epithionitriles. Journal of Chemical Ecology, 2008, 34, 1302-1310.	0.9	41
97	Formation of Simple Nitriles upon Glucosinolate Hydrolysis Affects Direct and Indirect Defense Against the Specialist Herbivore, Pieris rapae. Journal of Chemical Ecology, 2008, 34, 1311-1321.	0.9	115
98	Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in Arabidopsis against Botrytis cinerea. Phytochemistry, 2008, 69, 2127-2132.	1.4	105
99	Gene Networks in Plant Ozone Stress Response and Tolerance. Journal of Integrative Plant Biology, 2008, 50, 1256-1267.	4.1	41
100	Global Change Effects on Plant Chemical Defenses against Insect Herbivores. Journal of Integrative Plant Biology, 2008, 50, 1339-1354.	4.1	229
101	Behavioural responses of the sevenâ€spot ladybird <i>Coccinella septempunctata </i> to plant headspace chemicals collected from four crop Brassicas and <i>Arabidopsis thaliana</i> , infested with <i>Myzus persicae</i> . Agricultural and Forest Entomology, 2008, 10, 297-306.	0.7	17
102	Molecular and genomic basis of volatileâ€mediated indirect defense against insects in rice. Plant Journal, 2008, 55, 491-503.	2.8	163
103	Location, acceptance and suitability of lepidopteran stemborers feeding on a cultivated and wild host-plant to the endoparasitoid Cotesia flavipes Cameron (Hymenoptera: Braconidae). Biological Control, 2008, 45, 36-47.	1.4	17
104	Expression in Arabidopsis of a Strawberry Linalool Synthase Gene Under the Control of the Inducible Potato PI2 Promoter. Agricultural Sciences in China, 2008, 7, 521-534.	0.6	2
105	Differential Effectiveness of Microbially Induced Resistance Against Herbivorous Insects in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2008, 21, 919-930.	1.4	213
106	Identification and Regulation of TPS04/GES, an <i>Arabidopsis</i> Geranyllinalool Synthase Catalyzing the First Step in the Formation of the Insect-Induced Volatile C16-Homoterpene TMTT. Plant Cell, 2008, 20, 1152-1168.	3.1	136
107	Isoprene interferes with the attraction of bodyguards by herbaceous plants. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17430-17435.	3.3	129
108	Methyl Salicylate, Identified as Primary Odorant of a Specific Receptor Neuron Type, Inhibits Oviposition by the Moth Mamestra Brassicae L. (Lepidoptera, Noctuidae). Chemical Senses, 2008, 33, 35-46.	1.1	47
109	<i>Pseudomonas syringae</i> Elicits Emission of the Terpenoid (E,E)-4,8,12-Trimethyl-1,3,7,11-Tridecatetraene in <i>Arabidopsis</i> Expression of the Terpene Synthase TPS4. Molecular Plant-Microbe Interactions, 2008, 21, 1482-1497.	1.4	45
110	Physiological and ecological functions and biosynthesis of health-promoting compounds in fruit and vegetables., 2008,, 201-247.		4

#	Article	IF	CITATIONS
111	Qualitative properties of Mentha $\tilde{A}-$ piperita (L.) after application of the fungicide Hattrick DP-50. Plant, Soil and Environment, 2009, 55, 454-459.	1.0	4
112	Biotic and abiotic stresses induce AbSAMT1, encoding S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, in Atropa belladonna. Plant Biotechnology, 2009, 26, 207-215.	0.5	12
113	Herbivory induces a ROS burst and the release of volatile organic compounds in the fern <i>Pteris vittata</i> L Journal of Plant Interactions, 2009, 4, 15-22.	1.0	30
114	Methyl Salicylate Production and Jasmonate Signaling Are Not Essential for Systemic Acquired Resistance in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 954-971.	3.1	208
115	Neem chemicals disturb the behavioral response of Liriomyza huidobrensis to conspecific-induced potato volatiles. Pure and Applied Chemistry, 2009, 81, 85-95.	0.9	4
116	Bioengineering. , 2009, , 435-473.		3
117	Healthy and unhealthy plants: The effect of stress on the metabolism of Brassicaceae. Environmental and Experimental Botany, 2009, 67, 23-33.	2.0	107
118	Floral and insect-induced volatile formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana. Planta, 2009, 230, 1-11.	1.6	43
119	Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochemistry Reviews, 2009, 8, 187-206.	3.1	130
120	Anti-aphrodisiac Compounds of Male Butterflies Increase the Risk of Egg Parasitoid Attack by Inducing Plant Synomone Production. Journal of Chemical Ecology, 2009, 35, 1373-1381.	0.9	48
121	Diversity, regulation, and genetic manipulation of plant mono- and sesquiterpenoid biosynthesis. Cellular and Molecular Life Sciences, 2009, 66, 3043-3052.	2.4	90
122	Behavioural and community ecology of plants that cry for help. Plant, Cell and Environment, 2009, 32, 654-665.	2.8	274
123	Constitutive and herbivoreâ€induced monoterpenes emitted by <i>Populusâ€f×â€feuroamericana</i> leaves at key volatiles that orient <i>Chrysomela populi</i> beetles. Plant, Cell and Environment, 2009, 32, 542-552.	re 2 . 8	137
124	Chemical complexity of volatiles from plants induced by multiple attack. Nature Chemical Biology, 2009, 5, 317-324.	3.9	364
125	The Quest for Long-Distance Signals in Plant Systemic Immunity. Science Signaling, 2009, 2, pe31.	1.6	30
126	Induction of secondary metabolism in grape cell cultures by jasmonates. Functional Plant Biology, 2009, 36, 323.	1.1	69
127	Variation of Herbivore-Induced Volatile Terpenes among Arabidopsis Ecotypes Depends on Allelic Differences and Subcellular Targeting of Two Terpene Synthases, TPS02 and TPS03 Â Â. Plant Physiology, 2010, 153, 1293-1310.	2.3	131
128	Searching for signals in the noise: metabolomics in chemical ecology. Analytical and Bioanalytical Chemistry, 2010, 396, 193-197.	1.9	77

#	Article	IF	Citations
129	Methylation of phytohormones by the SABATH methyltransferases. Science Bulletin, 2010, 55, 2211-2218.	1.7	11
130	The Herbivore-Induced Plant Volatile Methyl Salicylate Negatively Affects Attraction of the Parasitoid Diadegma semiclausum. Journal of Chemical Ecology, 2010, 36, 479-489.	0.9	77
131	Present or Past Herbivory: A Screening of Volatiles Released from Brassica rapa Under Caterpillar Attacks as Attractants for the Solitary Parasitoid, Cotesia vestalis. Journal of Chemical Ecology, 2010, 36, 620-628.	0.9	52
132	Identification of Biologically Relevant Compounds in Aboveground and Belowground Induced Volatile Blends. Journal of Chemical Ecology, 2010, 36, 1006-1016.	0.9	55
133	Enzymatic, expression and structural divergences among carboxyl O-methyltransferases after gene duplication and speciation in Nicotiana. Plant Molecular Biology, 2010, 72, 311-330.	2.0	25
134	Effects of an herbivore-induced plant volatile on arthropods from three trophic levels in brassicas. Biological Control, 2010, 53, 62-67.	1.4	64
136	Realâ€ŧime monitoring of herbivore induced volatile emissions in the field. Physiologia Plantarum, 2010, 138, 123-133.	2.6	93
137	The Chemistry of Arabidopsis thaliana. , 2010, , 1297-1315.		3
138	Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21205-21210.	3.3	152
139	Variation in natural plant products and the attraction of bodyguards involved in indirect plant defenseThe present review is one in the special series of reviews on animal–plant interactions Canadian Journal of Zoology, 2010, 88, 628-667.	0.4	275
140	Abiotic stresses and induced BVOCs. Trends in Plant Science, 2010, 15, 154-166.	4.3	833
141	Biosynthesis and Therapeutic Properties of <i>Lavandula </i> Essential Oil Constituents. Planta Medica, 2011, 77, 7-15.	0.7	163
142	Host plant effects on generalist and specialist lepidopterous cabbage pests modulated by organic soil amendment. Pedobiologia, 2011, 54, 353-359.	0.5	10
143	Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Frontiers in Plant Science, 2011, 2, 47.	1.7	155
144	Indirect plant-mediated interactions among parasitoid larvae. Ecology Letters, 2011, 14, 670-676.	3.0	38
145	The family of terpene synthases in plants: a midâ€size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant Journal, 2011, 66, 212-229.	2.8	1,068
146	Ecological genetics and genomics of plant defences: evidence and approaches. Functional Ecology, 2011, 25, 312-324.	1.7	54
147	Jasmonates differentially affect interconnected signal-transduction pathways of Pieris rapae-induced defenses in Arabidopsis thaliana. Insect Science, 2011, 18, 249-258.	1.5	5

#	Article	IF	CITATIONS
148	Transcriptional responses of Brassica nigra to feeding by specialist insects of different feeding guilds. Insect Science, 2011, 18, 259-272.	1.5	30
149	Cytochromes P450. The Arabidopsis Book, 2011, 9, e0144.	0.5	294
150	Silencing Defense Pathways in Arabidopsis by Heterologous Gene Sequences from Brassica oleracea Enhances the Performance of a Specialist and a Generalist Herbivorous Insect. Journal of Chemical Ecology, 2011, 37, 818-829.	0.9	21
151	Spatial and temporal patterns of floral scent emission in Dianthus inoxianus and electroantennographic responses of its hawkmoth pollinator. Phytochemistry, 2011, 72, 601-609.	1.4	61
152	Enhanced \hat{l}^2 -ionone Emission in Arabidopsis Over-expressing <l>AtCCD1</l> Reduces Feeding Damage <l>in vivo</l> by the Crucifer Flea Beetle. Environmental Entomology, 2011, 40, 1622-1630.	0.7	50
153	Terpene Specialized Metabolism in <i>Arabidopsis thaliana</i> . The Arabidopsis Book, 2011, 9, e0143.	0.5	170
154	Salicylic Acid Biosynthesis and Metabolism. The Arabidopsis Book, 2011, 9, e0156.	0.5	597
155	Elucidating the Metabolism of Plant Terpene Volatiles: Alternative Tools for Engineering Plant Defenses?., 2011,, 159-178.		4
156	Plant Glandular Trichomes as Targets for Breeding or Engineering of Resistance to Herbivores. International Journal of Molecular Sciences, 2012, 13, 17077-17103.	1.8	408
157	Recent Trends in the Olfactory Responses of Insect Natural Enemies to Plant Volatiles. Signaling and Communication in Plants, 2012, , 281-301.	0.5	12
158	Elucidating the Formation of Geranyllinalool, the Precursor of the Volatile C16-Homoterpene TMTT Involved in Indirect Plant Defense., 2012,, 185-198.		0
159	Plant Defense Compounds: Systems Approaches to Metabolic Analysis. Annual Review of Phytopathology, 2012, 50, 155-173.	3.5	46
160	Population biology and epidemiology of plant virus epidemics: from tripartite to tritrophic interactions. European Journal of Plant Pathology, 2012, 133, 3-23.	0.8	28
161	Influence of different gel complexes on flavour and colour change in Chongcai paste during storage. Food Chemistry, 2012, 130, 632-637.	4.2	4
162	Herbivore-Induced Plant Volatiles to Enhance Biological Control in Agriculture. Neotropical Entomology, 2013, 42, 331-343.	0.5	53
163	Canopy light cues affect emission of constitutive and methyl jasmonateâ€induced volatile organic compounds in <i><scp>A</scp>rabidopsis thaliana</i> . New Phytologist, 2013, 200, 861-874.	3.5	78
164	Perception, signaling and molecular basis of oviposition-mediated plant responses. Planta, 2013, 238, 247-258.	1.6	119
165	â€~Attract and reward': Combining a herbivore-induced plant volatile with floral resource supplementation – Multi-trophic level effects. Biological Control, 2013, 64, 106-115.	1.4	48

#	Article	IF	CITATIONS
166	Molecular cloning and expression analysis of a putative sesquiterpene synthase gene from tea plant (Camellia sinensis). Acta Physiologiae Plantarum, 2013, 35, 289-293.	1.0	12
167	Plant volatiles as method of communication. Plant Biotechnology Reports, 2013, 7, 9-26.	0.9	91
168	CytosolicLOXoverexpression in Arabidopsisen hances the attractiveness of parasitic wasps in response to herbivory and incidences of parasitism. Journal of Plant Interactions, 2013, 8, 207-215.	1.0	4
169	Metabolomics as a Tool to Investigate Abiotic Stress Tolerance in Plants. International Journal of Molecular Sciences, 2013, 14, 4885-4911.	1.8	526
170	Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid. Pest Management Science, 2013, 69, 302-311.	1.7	43
171	Herbivory by the insect d <i>iaphorina citri</i> Âinduces greater change in citrus plant volatile profile than does infection by the bacterium, <i><i>Candidatus</i>Liberibacter asiaticus. Plant Signaling and Behavior, 2013, 8, e25677.</i>	1.2	46
172	An ecogenomic analysis of herbivoreâ€induced plant volatiles in <i><scp>B</scp>rassica juncea</i> . Molecular Ecology, 2013, 22, 6179-6196.	2.0	25
173	Salivary signals of European corn borer induce indirect defenses in tomato. Plant Signaling and Behavior, 2013, 8, e27318.	1.2	15
174	Seasonal Variation of the Chemical Composition and Antimicrobial and Cytotoxic Activities of the Essential Oils from Inga laurina (Sw.) Willd Molecules, 2014, 19, 4560-4577.	1.7	25
175	<i>Plutella xylostella</i> (L.) infestations at varying temperatures induce the emission of specific volatile blends by <i>Arabidopsis thaliana</i> (L.) Heynh. Plant Signaling and Behavior, 2014, 9, e973816.	1.2	7
176	Geranyllinalool Synthases in Solanaceae and Other Angiosperms Constitute an Ancient Branch of Diterpene Synthases Involved in the Synthesis of Defensive Compounds Â. Plant Physiology, 2014, 166, 428-441.	2.3	36
177	Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa). BMC Plant Biology, 2014, 14, 270.	1.6	86
178	Acyl-lipid thioesterase1–4 from Arabidopsis thaliana form a novel family of fatty acyl–acyl carrier protein thioesterases with divergent expression patterns and substrate specificities. Plant Molecular Biology, 2014, 84, 549-563.	2.0	13
180	Volatile phytochemicals as mosquito semiochemicals. Phytochemistry Letters, 2014, 8, 196-201.	0.6	76
181	The evolution of foliar terpene diversity in Myrtaceae. Phytochemistry Reviews, 2014, 13, 695-716.	3.1	60
182	A plant chamber system with downstream reaction chamber to study the effects of pollution on biogenic emissions. Environmental Sciences: Processes and Impacts, 2014, 16, 2301-2312.	1.7	7
183	Role of Methyl Salicylate on Oviposition Deterrence in Arabidopsis thaliana. Journal of Chemical Ecology, 2014, 40, 754-759.	0.9	16
184	Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Annals of Botany, 2015, 115, 1015-1051.	1.4	244

#	Article	IF	CITATIONS
185	Evolution of herbivory in Drosophilidae linked to loss of behaviors, antennal responses, odorant receptors, and ancestral diet. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3026-3031.	3.3	122
186	Molecular characterization of two isoforms of a farnesyl pyrophosphate synthase gene in wheat and their roles in sesquiterpene synthesis and inducible defence against aphid infestation. New Phytologist, 2015, 206, 1101-1115.	3.5	26
187	The siren song of a sticky plant: Columbines provision mutualist arthropods by attracting and killing passerby insects. Ecology, 2015, 96, 2862-2869.	1.5	34
188	In situ detection of salicylate in Ocimum basilicum plant leaves via reverse iontophoresis. Chemical Communications, 2015, 51, 16534-16536.	2.2	21
189	Cross-tolerance to abiotic stresses in halophytes: application for phytoremediation of organic pollutants. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	21
190	Use of the de novo transcriptome analysis of silver-leaf nightshade (Solanum elaeagnifolium) to identify gene expression changes associated with wounding and terpene biosynthesis. BMC Genomics, 2015, 16, 504.	1.2	24
191	Differences in photosynthesis and terpene content in leaves and roots of wild-type and transgenic Arabidopsis thaliana plants. Russian Journal of Plant Physiology, 2015, 62, 823-829.	0.5	3
192	Rice terpene synthase 20 (OsTPS20) plays an important role in producing terpene volatiles in response to abiotic stresses. Protoplasma, 2015, 252, 997-1007.	1.0	46
193	Dense white trichome production by plants as possible mimicry of arthropod silk or fungal hyphae that deter herbivory. Journal of Theoretical Biology, 2015, 364, 1-6.	0.8	28
194	Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech, 2015, 5, 129-151.	1.1	360
195	Apple Proliferation Phytoplasma Influences the Pattern of Plant Volatiles Emitted Depending on Pathogen Virulence. Frontiers in Ecology and Evolution, 2016, 3, .	1.1	27
196	Air pollutants degrade floral scents and increase insect foraging times. Atmospheric Environment, 2016, 141, 361-374.	1.9	67
197	Effect of prior drought and pathogen stress on <i>Arabidopsis</i> transcriptome changes to caterpillar herbivory. New Phytologist, 2016, 210, 1344-1356.	3.5	53
198	Rapid leaf development drives the seasonal pattern of volatile organic compound (VOC) fluxes in a †coppiced' bioenergy poplar plantation. Plant, Cell and Environment, 2016, 39, 539-555.	2.8	29
199	Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle. Scientific Reports, 2016, 6, 38990.	1.6	16
200	Pre-exposure of Arabidopsis to the abiotic or biotic environmental stimuli "chilling―or "insect eggs― exhibits different transcriptomic responses to herbivory. Scientific Reports, 2016, 6, 28544.	1.6	22
201	Cytochrome P450 CYP71AT96 catalyses the final step of herbivore-induced phenylacetonitrile biosynthesis in the giant knotweed, Fallopia sachalinensis. Plant Molecular Biology, 2016, 91, 229-239.	2.0	30
202	Temporal Dynamics of Plant Volatiles: Mechanistic Bases and Functional Consequences. Signaling and Communication in Plants, 2016, , 3-34.	0.5	6

#	Article	IF	CITATIONS
203	An invader supported by a parasite: Mistletoe berries as a host for food and reproduction of Spotted Wing Drosophila in early spring. Journal of Pest Science, 2016, 89, 749-759.	1.9	50
204	Attraction of entomopathogenic nematodes to sugarcane root volatiles under herbivory by a sap-sucking insect. Chemoecology, 2016, 26, 59-66.	0.6	18
205	Defensive animal and animal-action mimicry by plants. Israel Journal of Plant Sciences, 2017, , 1-31.	0.3	3
206	Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic analyses reveal distinct local and systemic responses. Scientific Reports, 2017, 7, 40453.	1.6	39
207	Terpenoid biosynthesis in Arabidopsis attacked by caterpillars and aphids: effects of aphid density on the attraction of a caterpillar parasitoid. Oecologia, 2017, 185, 699-712.	0.9	10
208	Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta, 2017, 246, 803-816.	1.6	174
209	Functional Characterization of Salicylic Acid Carboxyl Methyltransferase from <i>Camellia sinensis</i> , Providing the Aroma Compound of Methyl Salicylate during the Withering Process of White Tea. Journal of Agricultural and Food Chemistry, 2017, 65, 11036-11045.	2.4	45
210	Identification of QTLs controlling aroma volatiles using a  Fortune' x  Murcott' (Citrus reticulata) population. BMC Genomics, 2017, 18, 646.	1.2	35
211	Indirect plant defense against insect herbivores: a review. Insect Science, 2018, 25, 2-23.	1.5	225
212	Effect of Methyl Salicylate (MeSA) induced changes in rice plant (OryzaÂsativa) that affect growth and development of the rice leaffolder, Cnaphalocrocis medinalis. Physiological and Molecular Plant Pathology, 2018, 101, 116-126.	1.3	24
213	Identification and functional analysis of two P450 enzymes of <i>Gossypium hirsutum</i> involved in DMNT and TMTT biosynthesis. Plant Biotechnology Journal, 2018, 16, 581-590.	4.1	20
214	Effects of acute salt stress on modulation of gene expression in a Malaysian salt-tolerant indigenous rice variety, Bajong. Journal of Plant Research, 2018, 131, 191-202.	1.2	8
215	Antifungal Effect of Essential Oils., 0,,.		11
217	Kairomones from highly susceptible host to control banana pseudostem weevil, Odoiporus longicollis (Olivier). Biocatalysis and Agricultural Biotechnology, 2018, 16, 655-662.	1.5	5
218	Developing Stress-Tolerant Plants Through In Vitro Tissue Culture: Family Brassicaceae. , 2018, , 327-372.		15
220	Characterization of Solanum melongena Thioesterases Related to Tomato Methylketone Synthase 2. Genes, 2019, 10, 549.	1.0	6
221	Changes in Content of Polyphenols and Ascorbic Acid in Leaves of White Cabbage after Pest Infestation. Molecules, 2019, 24, 2622.	1.7	26
222	Identification and Functional Characterization of a Soybean (Glycine max) Thioesterase that Acts on Intermediates of Fatty Acid Biosynthesis. Plants, 2019, 8, 397.	1.6	2

#	Article	IF	CITATIONS
223	Molecular and Functional Characterization of One Odorant-Binding Protein Gene OBP3 in Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of Economic Entomology, 2019, 113, 299-305.	0.8	5
224	Long-term, sustained feeding by Asian citrus psyllid disrupts salicylic acid homeostasis in sweet orange. BMC Plant Biology, 2019, 19, 493.	1.6	18
225	The Structure and Function of Major Plant Metabolite Modifications. Molecular Plant, 2019, 12, 899-919.	3.9	250
226	Chemogenic Subqualities of Mouthfeel. Chemical Senses, 2019, 44, 281-288.	1.1	31
227	The ethological significance and olfactory detection of herbivore-induced plant volatiles in interactions of plants, herbivorous insects, and parasitoids. Arthropod-Plant Interactions, 2019, 13, 161-179.	0.5	39
228	Linking Terpene Synthases to Sesquiterpene Metabolism in Grapevine Flowers. Frontiers in Plant Science, 2019, 10, 177.	1.7	27
229	Biochemical Pathway of Benzyl Nitrile Derived from <scp>l</scp> -Phenylalanine in Tea (<i>Camellia) Tj ETQq0 0 0 Chemistry, 2020, 68, 1397-1404.</i>	rgBT /Ove 2.4	rlock 10 Tf 5 25
230	Plant–Plant Communication: Is There a Role for Volatile Damage-Associated Molecular Patterns?. Frontiers in Plant Science, 2020, 11, 583275.	1.7	49
231	Nematicidal Amendments and Soil Remediation. Plants, 2020, 9, 429.	1.6	32
232	Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes. Soil Ecology Letters, 2021, 3, 42-51.	2.4	71
233	Overexpression of the homoterpene synthase gene, <scp>OsCYP92C21</scp> , increases emissions of volatiles mediating tritrophic interactions in rice. Plant, Cell and Environment, 2021, 44, 948-963.	2.8	6
235	Isothiocyanate Derivatives of Glucosinolates as Efficient Natural Fungicides. PhytoFrontiers, 2021, 1, 40-50.	0.8	9
236	The Genetic Basis of Plant-Herbivore Interactions. , 2021, , 59-91.		1
237	Specific decorations of 17-hydroxygeranyllinalool diterpene glycosides solve the autotoxicity problem of chemical defense in (i) Nicotiana attenuata (i). Plant Cell, 2021, 33, 1748-1770.	3.1	18
238	Both Allene Oxide Synthases Genes Are Involved in the Biosynthesis of Herbivore-Induced Jasmonic Acid and Herbivore Resistance in Rice. Plants, 2021, 10, 442.	1.6	17
239	Only Females Oviposit: Chemical Discrimination of Adult Stink Bug Sex by the Egg Parasitoid Trissolcus japonicus. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	4
240	Silicon suppresses a ubiquitous mite herbivore and promotes natural enemy attraction by altering plant volatile blends. Journal of Pest Science, 2022, 95, 423-434.	1.9	11
241	Life history trade-offs of thrips reared on fertilized and unfertilized Brazilian peppertree with respect to changes in plant terpenoid profiles. Biological Control, 2021, 156, 104553.	1.4	6

#	Article	IF	Citations
242	Disentangling transcriptional responses in plant defense against arthropod herbivores. Scientific Reports, 2021, 11, 12996.	1.6	9
243	Phytochemicals and quality level of food plants grown in an aquaponics system. Journal of the Science of Food and Agriculture, 2022, 102, 844-850.	1.7	22
244	Plant cytochrome P450s: Role in stress tolerance and potential applications for human welfare. International Journal of Biological Macromolecules, 2021, 184, 874-886.	3.6	16
245	Olfactory detection of trace amounts of plant volatiles is correlated with testosterone in a passerine bird. Hormones and Behavior, 2021, 136, 105045.	1.0	9
246	Metabolic Engineering of Plant Secondary Metabolism. , 0, , .		4
247	Aromatic Volatiles and Their Involvement in Plant Defense. , 2008, , 409-432.		24
248	Prenyldiphosphate Synthases and Gibberellin Biosynthesis., 2012,, 213-232.		2
249	Ant Mimicry. , 2016, , 299-304.		1
250	Oxylipin Signaling and Plant Growth. Plant Cell Monographs, 2010, , 277-291.	0.4	7
251	Plant Defenses Against Insect Herbivory. , 2010, , 189-208.		4
252	BVOC-Mediated Plant-Herbivore Interactions. Tree Physiology, 2013, , 21-46.	0.9	21
253	Genetic Engineering of BVOC Emissions from Trees. Tree Physiology, 2013, , 95-118.	0.9	17
254	Biochemical Genetics and Genomics of Insect Esterases. , 2019, , .		3
256	The Influence of Prior Learning Experience on Pollinator Choice: An Experiment Using Bumblebees on Two Wild Floral Types of Antirrhinum majus. PLoS ONE, 2015, 10, e0130225.	1.1	6
257	Novel Genes Affecting the Interaction between the Cabbage Whitefly and Arabidopsis Uncovered by Genome-Wide Association Mapping. PLoS ONE, 2015, 10, e0145124.	1.1	9
258	Overcoming Glucosinolate-Myrosinase-Isothiocyanate Defense System by Plant Pathogenic Fungi. International Journal of Secondary Metabolite, 2020, 7, 19-27.	0.5	4
259	The role of herbivore-induced plant volatiles (HIPVs) as indirect plant defense mechanism in a diverse plant and herbivore species; a review. International Journal of Agriculture Environment and Food Sciences, 0, , 139-147.	0.2	11
260	Suitability of Arabidopsis thaliana as a model for host plant?Plutella xylostella?Cotesia plutellae interactions. Entomologia Experimentalis Et Applicata, 2006, .	0.7	O

#	Article	IF	CITATIONS
262	Spider Web Mimicry. , 2016, , 309-316.		O
264	First Report of an Attractant for a Tumbling Flower Beetle (Coleoptera: Mordellidae). Environmental Entomology, 2007, 36, 894-898.	0.7	1
265	Research progress in biosynthesis and regulation of plant terpenoids. Biotechnology and Biotechnological Equipment, 2021, 35, 1799-1808.	0.5	11
266	Regulation of Tomato Specialised Metabolism after Establishment of Symbiosis with the Endophytic Fungus Serendipita indica. Microorganisms, 2022, 10, 194.	1.6	8
267	Salicylic acid mediated immune response of Citrus sinensis to varying frequencies of herbivory and pathogen inoculation. BMC Plant Biology, 2022, 22, 7.	1.6	5
268	GC-MS and SPME-GC/MS Analysis and Bioactive Potential Evaluation of Essential Oils from Two Viola Species Belonging to the V. calcarata Complex. Separations, 2022, 9, 39.	1.1	6
269	A simple and efficient protocol for hairy root culture of Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture, 2022, 150, 105-112.	1,2	2
270	OUP accepted manuscript. Environmental Entomology, 2022, , .	0.7	0
271	Chemical ecology from genes to communities: integrating  omics' with community ecology. , 0, , 175-189.		0
288	Ethyl Vinyl Ketone Activates K+ Efflux to Regulate Stomatal Closure by MRP4-Dependent eATP Accumulation Working Upstream of H2O2 Burst in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 9002.	1.8	8
289	The complex genome and adaptive evolution of polyploid Chinese pepper (<i>Zanthoxylum armatum</i>) Tj ETQ	q0 _{4.1} 0 rgB	T <u> O</u> verlock
291	How the volatile organic compounds emitted by corpse plant change through flowering. Scientific Reports, 2023, 13, .	1.6	1
292	Herbivore-Dependent Induced Volatiles in Pear Plants Cause Differential Attractive Response by Lacewing Larvae. Journal of Chemical Ecology, 2023, 49, 262-275.	0.9	2
294	DORN1 and GORK regulate stomatal closure in Arabidopsis mediated by volatile organic compound ethyl vinyl ketone. International Journal of Biological Macromolecules, 2023, 231, 123503.	3.6	1
295	Functional characterization of a bark-specific monoterpene synthase potentially involved in wounding- and methyl jasmonate-induced linalool emission in rubber (Hevea brasiliensis). Journal of Plant Physiology, 2023, 282, 153942.	1.6	2
296	Transcriptome analysis of transcription factors and enzymes involved in monoterpenoid biosynthesis in different chemotypes of <i>Mentha haplocalyx</i>) Briq. PeerJ, 0, 11, e14914.	0.9	2
297	The influence of plant odours on sexual readiness in an insectivorous songbird. Journal of Experimental Biology, 2023, 226, .	0.8	2
298	Where, When, and Why Do Plant Volatiles Mediate Ecological Signaling? The Answer Is Blowing in the Wind. Annual Review of Plant Biology, 2023, 74, 609-633.	8.6	3

#	Article	IF	CITATIONS
299	Growth substrates alter aboveground plant microbial and metabolic properties thereby influencing insect herbivore performance. Science China Life Sciences, 0, , .	2.3	0
300	Plant–herbivore interactions: Experimental demonstration of genetic variability in plant–plant signalling. Evolutionary Applications, 0, , .	1.5	0
301	RBOH play regulatory role in the JA pathway induced by the volatile organic compound ethyl vinyl ketone. Plant Growth Regulation, 0 , , .	1.8	0
302	Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. Planta, 2023, 257, .	1.6	1
303	Leaf anatomy for delimiting Atlantic Forest species of Psidium (Myrtaceae). Rodriguesia, 0, 74, .	0.9	0
310	Role of Induced Resistance in Insect-Pest Management. , 2024, , 249-277.		0