Wolf spider predator avoidance tactics and survival in t predator cues (Araneae: Lycosidae)

Animal Behaviour 61, 43-51 DOI: 10.1006/anbe.2000.1594

Citation Report

#	Article	IF	CITATIONS
1	Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology, 1990, 68, 619-640.	0.4	6,597
2	Predatory mites avoid ovipositing near counterattacking prey. Experimental and Applied Acarology, 2001, 25, 613-623.	0.7	40
3	Wolf spiders show graded antipredator behavior in the presence of chemical cues from different sized predators. Journal of Chemical Ecology, 2001, 27, 2493-2504.	0.9	109
4	EARLY EXPERIENCE AND PREY PREFERENCE IN THE LYNX SPIDER, OXYOPES SALTICUS HENTZ (ARANEAE:) TJ ETQ	q1_1_0.784 0.6	4314 rgBT
5	Multisensory Cues and Multimodal Communication in Spiders: Insights from Video/Audio Playback Studies. Brain, Behavior and Evolution, 2002, 59, 222-230.	0.9	210
6	Fitness costs and benefits of antipredator behavior mediated by chemotactile cues in the wolf spider Pardosa milvina (Araneae: Lycosidae). Behavioral Ecology, 2002, 13, 386-392.	1.0	114
7	Does responsiveness to predator scents affect lizard survivorship?. Behavioral Ecology and Sociobiology, 2002, 52, 38-42.	0.6	65
8	Flexible antipredator behaviour in herbivorous mites through vertical migration in a plant. Oecologia, 2002, 132, 143-149.	0.9	56
9	Title is missing!. Journal of Insect Behavior, 2002, 15, 269-281.	0.4	70
10	Herbivore host plant selection: whitefly learns to avoid host plants that harbour predators of her offspring. Oecologia, 2003, 136, 484-488.	0.9	91
11	Phenotypic modifications to conspecific density arising from predation risk assessment. Oikos, 2003, 100, 409-415.	1.2	91
12	Sexual dimorphism and the differential mortality model: is behaviour related to survival?. Biological Journal of the Linnean Society, 2003, 78, 97-103.	0.7	60
13	PHYLOGENETICS OF POND AND LAKE LIFESTYLES IN CHAOBORUS MIDGE LARVAE. Evolution; International Journal of Organic Evolution, 2003, 57, 2173-2178.	1.1	23
14	HUNGRY SPIDERS AREN'T AFRAID OF THE BIG BAD WOLF SPIDER. Journal of Arachnology, 2003, 31, 425-427.	0.3	22
15	PHYLOGENETICS OF POND AND LAKE LIFESTYLES IN CHAOBORUS MIDGE LARVAE. Evolution; International Journal of Organic Evolution, 2003, 57, 2173.	1.1	0
16	Factors Initiating Emigration of Two Wolf Spider Species (Araneae: Lycosidae) in an Agroecosystem. Environmental Entomology, 2003, 32, 88-95.	0.7	24
17	Spiders Reduce Herbivory: Nonlethal Effects of Spiders on the Consumption of Soybean Leaves by Beetle Pests. Annals of the Entomological Society of America, 2003, 96, 914-919.	1.3	47
18	Semiochemistry of spiders. , 2004, , 110-150.		54

#	Article	IF	CITATIONS
19	Within-Field Distribution of the Sunflower Midge (Diptera: Cecidomyiidae). Environmental Entomology, 2004, 33, 1037-1044.	0.7	6
20	Detection of the Spider Predator, Hololena Nedra By NaÃ⁻ve Juvenile Field Crickets (Gryllus Integer) Using Indirect Cues. Behaviour, 2004, 141, 1189-1196.	0.4	37
21	The Influence of Predator Sex on Chemically Mediated Antipredator Response in the Wolf Spider Pardosa milvina (Araneae: Lycosidae). Ethology, 2004, 110, 323-339.	0.5	30
22	Antipredator behaviour mediated by chemical cues: the role of conspecific alarm signalling and predator labelling in the avoidance response of a marine gastropod. Oikos, 2004, 104, 43-50.	1.2	84
23	Predator-induced plasticity in web-building behaviour. Animal Behaviour, 2004, 67, 309-318.	0.8	52
24	Assessment of Potential Predation Costs of Male Decoration and Courtship Display in Wolf Spiders Using Video Digitization and Playback. Journal of Insect Behavior, 2004, 17, 67-80.	0.4	52
25	Species-Specificity of Chemical Signals: Silk Source Affects Discrimination in a Wolf Spider (Araneae:) Tj ETQq0 0	0 rgBT /C 0:4	overlock 10 Tf
26	One-encounter search-image formation by araneophagic spiders. Animal Cognition, 2004, 7, 247-254.	0.9	71
27	THE ROLE OF MUSCLE MASS AND TOOTH NUMBER IN ECOLOGICAL CHARACTER DISPLACEMENT BETWEEN PLETHODON CINEREUS AND P. HOFFMANI (CAUDATA: PLETHODONTIDAE). Herpetologica, 2004, 60, 408-413.	0.2	2
28	VARIATION IN THE ANTIPREDATOR RESPONSES OF THREE SYMPATRIC PLETHODONTID SALAMANDERS TO PREDATOR-DIET CUES. Herpetologica, 2004, 60, 401-408.	0.2	13
29	PARDOSA MILVINA (ARANEAE, LYCOSIDAE) SPIDERLING MOVEMENT IN THE PRESENCE OF CONSPECIFIC AND HETEROSPECIFIC SILK AND EXCRETA. Journal of Arachnology, 2004, 32, 341-344.	0.3	7
30	Chemical Cues from an Introduced Predator (Mantodea, Mantidae) Reduce the Movement and Foraging of a Native Wolf Spider (Araneae, Lycosidae) in the Laboratory. Environmental Entomology, 2004, 33, 1032-1036.	0.7	22
31	Damage, digestion, and defence: the roles of alarm cues and kairomones for inducing prey defences. Ecology Letters, 2005, 8, 505-512.	3.0	237
32	Responses to predation risk: alternative strategies in the crab Heterozius rotundifrons. Animal Behaviour, 2005, 69, 967-972.	0.8	34
33	To avoid or not to avoid? Factors influencing the discrimination of predator diet cues by a terrestrial salamander. Animal Behaviour, 2005, 69, 1425-1433.	0.8	16
34	Influence Of Diet-Related Chemical Cues from Predators on the Hatching of Egg-Carrying Spiders. Journal of Chemical Ecology, 2005, 31, 333-342.	0.9	20
35	Differential Shelter Selection in Response to Predator Chemical Cues by Two orthopterans: Libanasidus vittatus (Anostostomatidae) and Platygryllus primiformis (Gryllidae). Journal of Insect Behavior, 2005, 18, 381-387.	0.4	3
36	Behavioral Responses of Pepsis thisbe (Hymenoptera: Pompilidae) to Chemosensory Cues Associated with Host Spiders. Journal of Insect Behavior, 2005, 18, 757-766.	0.4	7

#	Article	IF	CITATIONS
37	Diet of intraguild predators affects antipredator behavior in intraguild prey. Behavioral Ecology, 2005, 16, 364-370.	1.0	60
38	Determining the fitness consequences of antipredation behavior. Behavioral Ecology, 2005, 16, 945-956.	1.0	318
39	THE EFFECTS OF MOISTURE AND HEAT ON THE EFFICACY OF CHEMICAL CUES USED IN PREDATOR DETECTION BY THE WOLF SPIDER PARDOSA MILVINA (ARANEAE, LYCOSIDAE). Journal of Arachnology, 2005, 33, 857-861.	0.3	28
40	SIZE DEPENDENT INTRAGUILD PREDATION AND CANNIBALISM IN COEXISTING WOLF SPIDERS (ARANEAE,) TJ ETQ	q110.78	4314 rgBT (
41	THE EFFECT OF PERCEIVED PREDATION RISK ON MALE COURTSHIP AND COPULATORY BEHAVIOR IN THE WOLF SPIDER PARDOSA MILVINA (ARANEAE, LYCOSIDAE). Journal of Arachnology, 2005, 33, 76-81.	0.3	35
42	The Effect of Predator Hunger on Chemically Mediated Antipredator Responses and Survival in the Wolf Spider Pardosa milvina (Araneae: Lycosidae). Ethology, 2006, 112, 903-910.	0.5	49
43	Effects of Predation Risk on Vertical Habitat Use and Foraging of Pardosa milvina. Ethology, 2006, 112, 1152-1158.	0.5	21
44	Olfactory information saves venom during prey-capture of the hunting spider Cupiennius salei (Araneae: Ctenidae). Functional Ecology, 2006, 20, 369-375.	1.7	29
45	Field Evidence of an Airborne Enemy-Avoidance Kairomone in Wolf Spiders. Journal of Chemical Ecology, 2006, 32, 1565-1576.	0.9	32
46	Behavioural response of bullfrog tadpoles to chemical cues of predation risk are affected by cue age and water source. Hydrobiologia, 2006, 573, 39-44.	1.0	61
47	Previous and Present Diets of Mite Predators Affect Antipredator Behaviour of Whitefly Prey. Experimental and Applied Acarology, 2006, 38, 113-124.	0.7	17
48	Behavioural and life history effects of predator diet cues during ontogeny in damselfly larvae. Oecologia, 2006, 148, 162-169.	0.9	42
49	Terrestrial snails use predator-diet to assess danger. Journal of Ethology, 2006, 24, 97-102.	0.4	14
50	Spider's attack versus cricket's escape: velocity modes determine success. Animal Behaviour, 2006, 72, 603-610.	0.8	73
51	The influence of predator cues on orb-web spider foraging behaviour. Ethology Ecology and Evolution, 2006, 18, 91-98.	0.6	9
52	The effect of prior exposure to predator cues on chemically-mediated defensive behavior and survival in the wolf spider Rabidosa rabida (Araneae: Lycosidae). Behaviour, 2007, 144, 889-906.	0.4	23
53	Predation and foraging costs of carrying eggsacs of different mass in the wolf spider Pardosa milvina. Behaviour, 2007, 144, 1002-1017.	0.4	20
54	Tradeoffs involved in site selection and foraging in a wolf spider: effects of substrate structure and predation risk. Oikos, 2007, 116, 853-863.	1.2	54

#	Article	IF	CITATIONS
55	Hunting Tactics in a Cobweb Spider (Araneae-Theridiidae) and the Evolution of Behavioral Plasticity. Journal of Insect Behavior, 2008, 21, 258-284.	0.4	21
56	Domatia reduce larval cannibalism in predatory mites. Ecological Entomology, 2008, 33, 374-379.	1.1	41
57	Temporal environmental variation and phenotypic plasticity: a mechanism underlying priority effects. Oikos, 2008, 117, 23-32.	1.2	41
58	Predator-naÃ ⁻ ve fall field crickets respond to the chemical cues of wolf spiders. Canadian Journal of Zoology, 2008, 86, 1259-1263.	0.4	32
59	Predator diet and prey adaptive responses: Can tadpoles distinguish between predators feeding on congeneric vs. conspecific prey?. Canadian Journal of Zoology, 2008, 86, 1329-1336.	0.4	23
60	Evolutionarily costly courtship displays in a wolf spider: a test of viability indicator theory. Behavioral Ecology, 2008, 19, 974-979.	1.0	63
61	Antipredator responses of wolf spiders (Araneae: Lycosidae) to sensory cues representing an avian predator. Animal Behaviour, 2009, 77, 813-821.	0.8	96
62	Multimodal signalling: the relative importance of chemical and visual cues from females to the behaviour of male wolf spiders (Lycosidae). Animal Behaviour, 2009, 77, 937-947.	0.8	53
63	Costs and benefits of freezing behaviour in the harvestman Eumesosoma roeweri (Arachnida,) Tj ETQq0 0 0 rgBT	- /Overlock	197f 50 422
64	Responses of an araneophagic assassin bug, <i>Stenolemus bituberus</i> , to spider draglines. Ecological Entomology, 2009, 34, 415-420.	1.1	3
65	Comparison of Failure Time Analysis and Abbott's Formula for Estimating Survival of Organisms Entrained at Power Stations. North American Journal of Fisheries Management, 2009, 29, 263-278.	0.5	1
66	Dragline deposition patterns among male and female Hogna helluo (Araneae, Lycosidae) in the presence of chemical cues from prey. Journal of Arachnology, 2009, 37, 97-100.	0.3	3
67	Exposure to a glyphosate-based herbicide affects agrobiont predatory arthropod behaviour and long-term survival. Ecotoxicology, 2010, 19, 1249-1257.	1.1	97
68	Exposure to multiple sensory cues as a juvenile affects adult female mate preferences in wolf spiders. Animal Behaviour, 2010, 80, 419-426.	0.8	39
69	Ambient pH and the Response to Chemical Alarm Cues in Juvenile Atlantic Salmon: Mechanisms of Reduced Behavioral Responses. Transactions of the American Fisheries Society, 2010, 139, 117-128.	0.6	23
70	Chemical Cues and Reducing the Risk of Predation. , 2010, , 355-370.		7
71	Balancing predator avoidance with hunting opportunities: substrate choice by Misumena vatia spiderlings. Journal of Arachnology, 2010, 38, 341-345.	0.3	1
72	The effects of predation risk on female silk deposition and male response to predator-cued conspecifics in the wolf spider, Pardosa milvina (Araneae: Lycosidae). Journal of Arachnology, 2010, 38,	0.3	6

#	Article	IF	CITATIONS
73	Chemical prey cues influence the urban microhabitat preferences of Western black widow spiders, Latrodectus hesperus. Journal of Arachnology, 2011, 39, 449-453.	0.3	22
74	Dynamic Population Structure and the Evolution of Spider Mating Systems. Advances in Insect Physiology, 2011, 41, 65-114.	1.1	36
75	Spider Cognition. Advances in Insect Physiology, 2011, 41, 115-174.	1.1	62
76	Plasticity, learning and cognition. , 0, , 307-347.		40
77	Flexible use of anti-predator defences. , 2011, , 99-126.		8
78	More Ornamented Males Exhibit Increased Predation Risk and Antipredatory Escapes, but not Greater Mortality. Ethology, 2011, 117, 102-114.	0.5	26
79	Male black widows court well-fed females more than starved females: silken cues indicate sexual cannibalism risk. Animal Behaviour, 2011, 82, 383-390.	0.8	46
80	Friend or foe: behavioral responses to conspecifics in the northern scorpion, Paruroctonus boreus (Scorpionida: Vaejovidae). Journal of Ethology, 2011, 29, 251-256.	0.4	13
81	Experience with chemotactile cues indicating female feeding history impacts male courtship investment in the wolf spider Schizocosa ocreata. Behavioral Ecology and Sociobiology, 2011, 65, 2175-2181.	0.6	13
82	Chemoreceptors distribution and relative importance of male forelegs and palps in intersexual chemical communication of the wolf spider Pardosa astrigera. Chemoecology, 2011, 21, 45-49.	0.6	8
83	The degree of response to increased predation risk corresponds to male secondary sexual traits. Behavioral Ecology, 2011, 22, 268-275.	1.0	40
84	Widespread reliance on olfactory sex and species identification by lyssomanine and spartaeine jumping spiders. Biological Journal of the Linnean Society, 2012, 107, 664-677.	0.7	24
85	Sex‣pecific Response of <i><scp>P</scp>ardosa milvina</i> (<scp>A</scp> raneae:) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5 0.5	i0 262 Td (<s 10</s
86	Predator cues and an herbicide affect activity and emigration in an agrobiont wolf spider. Chemosphere, 2012, 87, 390-396.	4.2	36
87	Chemicalâ€Mediated Predator Avoidance in the European House Cricket (<i>Acheta domesticus</i>) is Modulated by Predator Diet. Ethology, 2012, 118, 431-437.	0.5	20
88	Trade-off between pre- and postcopulatory sexual cannibalism in a wolf spider (Araneae, Lycosidae). Behavioral Ecology and Sociobiology, 2012, 66, 217-222.	0.6	10
89	Importance of body size and hunting strategy during interactions between the Mexican red-rump tarantula (<i>Brachypelmavagans</i>) and the wolf spider <i>Lycosasubfusca</i> . Canadian Journal of Zoology, 2013, 91, 545-553.	0.4	9
90	Clyphosate-Based Herbicide Has Contrasting Effects on Prey Capture by Two Co-Occurring Wolf Spider Species. Journal of Chemical Ecology, 2013, 39, 1247-1253.	0.9	25

		LFORT	
#	Article	IF	CITATIONS
91	Spider Pheromones $\hat{a} \in $ a Structural Perspective. Journal of Chemical Ecology, 2013, 39, 1-14.	0.9	61
92	Molecular systematics of the wolf spider genus Lycosa (Araneae: Lycosidae) in the Western Mediterranean Basin. Molecular Phylogenetics and Evolution, 2013, 67, 414-428.	1.2	35
93	Spider Olfaction: Attracting, Detecting, Luring and Avoiding. , 2013, , 141-157.		27
94	Detection of predator cues alters mating tactics in male wolf spiders. Behaviour, 2014, 151, 573-590.	0.4	19
95	Knowing the Risk: Crickets Distinguish between Spider Predators of Different Size and Commonness. Ethology, 2014, 120, 99-110.	0.5	31
96	Variation of prey responses to cues from a mesopredator and an apex predator. Austral Ecology, 2014, 39, 749-754.	0.7	14
97	Male Enchenopa treehoppers (Hemiptera: Membracidae) vary mate-searching behavior but not signaling behavior in response to spider silk. Die Naturwissenschaften, 2014, 101, 211-220.	0.6	6
98	Spider cues stimulate feeding, weight gain and survival of crickets. Ecological Entomology, 2014, 39, 667-673.	1.1	11
99	Sublethal pesticide exposure disrupts courtship in the striped lynx spider, <i>Oxyopes salticus</i> (Araneae: Oxyopidae). Journal of Applied Entomology, 2014, 138, 141-148.	0.8	5
100	The importance of intraguild predation in predicting emergent multiple predator effects. Ecology, 2014, 95, 2936-2945.	1.5	31
101	Effects of Spider Chemotactile Cues on Arthropod Behavior. Journal of Insect Behavior, 2014, 27, 567-580.	0.4	17
102	Active prey mixing as an explanation for polyphagy in predatory arthropods: synergistic dietary effects on egg production despite a behavioural cost. Functional Ecology, 2015, 29, 1317-1324.	1.7	28
103	Defences of a Neotropical harvestman against different levels of threat by the recluse spider. Behaviour, 2015, 152, 757-773.	0.4	11
104	Evidence that the house finch (Carpodacus mexicanus) uses scent to avoid omnivore mammals. Revista Chilena De Historia Natural, 2015, 88, .	0.5	14
105	Predator cues have contrasting effects on lifespan of <i>Pardosa milvina</i> (Araneae: Lycosidae). Journal of Arachnology, 2015, 43, 107-110.	0.3	8
106	FemalePardosa milvinawolf spiders increase silk advertisements when in the presence of silk from courting males. Journal of Arachnology, 2015, 43, 168-173.	0.3	7
107	The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia, 2015, 179, 699-710.	0.9	74
108	The effect of hunger on drilling behaviour of Natica tigrina: An experimental assessment. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 429, 57-61.	1.0	5

#	Article	IF	CITATIONS
109	Risk of spider predation alters food web structure and reduces local herbivory in the field. Oecologia, 2015, 178, 571-577.	0.9	40
110	Nonconsumptive Predator-Prey Interactions: Sensitivity of the Detritivore Sinella curviseta (Collembola: Entomobryidae) to Cues of Predation Risk From the Spider Pardosa milvina (Araneae:) Tj ETQq1 1 0.	78047314 rg	gB ढ /Overloct
111	Predicting Predatory Outcomes in the Context of Carryover Effects: Interactions between Juvenile Frogs and Spider Predators. Ethology, 2015, 121, 601-608.	0.5	2
112	Stream Salamanders Accurately Assess Size-Dependent Predation Threats. Herpetologica, 2015, 71, 184-189.	0.2	2
113	Are you Paying Attention? Female Wolf Spiders Increase Dragline Silk Advertisements When Males do not Court. Ethology, 2015, 121, 345-352.	0.5	11
114	Predators marked with chemical cues from one prey have increased attack success on another prey species. Ecological Entomology, 2015, 40, 62-68.	1.1	6
115	Food or fear: hunger modifies responses to injured conspecifics in tadpoles. Hydrobiologia, 2015, 743, 299-308.	1.0	16
116	Characterizing the vibratory and acoustic signals of the "purring―wolf spider, <i>Gladicosa gulosa</i> (Araneae: Lycosidae). Bioacoustics, 2016, 25, 293-303.	0.7	3
117	Predator–prey interactions mediated by prey personality and predator hunting mode. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160408.	1.2	87
118	Behavioral response of a generalist predator to chemotactile cues of two taxonomically distinct prey species. Chemoecology, 2016, 26, 153-162.	0.6	10
119	Naive tadpoles do not recognize recent invasive predatory fishes asÂdangerous. Ecology, 2016, 97, 2975-2985.	1.5	19
120	Various competitive interactions explain niche separation in cropâ€dwelling web spiders. Oikos, 2016, 125, 1586-1596.	1.2	5
121	A review of predator diet effects on prey defensive responses. Chemoecology, 2016, 26, 83-100.	0.6	59
122	Antipredator behaviours of a spider mite in response to cues of dangerous and harmless predators. Experimental and Applied Acarology, 2016, 69, 263-276.	0.7	18
123	Information from familiar and related conspecifics affects foraging in a solitary wolf spider. Oecologia, 2016, 181, 359-367.	0.9	7
124	Cautious versus desperado males: predation risk affects courtship intensity but not female choice in a wolf spider. Behavioral Ecology, 2016, 27, 876-885.	1.0	12
125	The wolf spider Pardosa milvina detects predator threat level using only vibratory cues. Behaviour, 2016, 153, 159-173.	0.4	11
126	Exploring the connection between emergent animal personality and fitness using a novel individual-based model and decision tree approach. Ecological Informatics, 2017, 40, 81-92.	2.3	13

#	Articie	IF	CITATION
127	Predation on reproducing wolf spiders: access to information has differential effects on male and female survival. Animal Behaviour, 2017, 128, 165-173.	0.8	3
128	Differences in mating behavior between two allopatric populations of a Neotropical scorpion. Zoology, 2017, 123, 71-78.	0.6	21
129	Life stage specific predation of Halyomorpha halys (Stål) by generalist predators. Biological Control, 2017, 114, 1-7.	1.4	18
130	Nesting stage and distance to refuge influence terrestrial nesting behavior of Painted Turtles (<i>Chrysemys picta</i>). Canadian Journal of Zoology, 2017, 95, 837-841.	0.4	4
131	Foraging Strategies of Cursorial and AmbushÂSpiders. , 2017, , 227-245.		9
132	Exotic black rats increase invertebrate Ordinal richness in urban habitat remnants. Biological Invasions, 2017, 19, 1315-1328.	1.2	7
133	A death in the family: Sea lamprey (<i>Petromyzon marinus</i>) avoidance of confamilial alarm cues diminishes with phylogenetic distance. Ecology and Evolution, 2018, 8, 3751-3762.	0.8	24
134	Contact with a glyphosate-based herbicide has long-term effects on the activity and foraging of an agrobiont wolf spider. Chemosphere, 2018, 194, 714-721.	4.2	20
135	Interacting Effects of Leg Autotomy and Exposure to Predator Cues on Survival in A Wolf Spider (Pardosa valens). Journal of Insect Behavior, 2018, 31, 459-470.	0.4	0
136	Limping following limb loss increases locomotor stability. Journal of Experimental Biology, 2018, 221, .	0.8	15
137	The Scent of Danger: the Impact of Predator Chemical Cues on Emergence from Refuge and Willingness to Autotomize Limbs in the House Cricket (Acheta domesticus). Journal of Insect Behavior, 2018, 31, 416-426.	0.4	11
138	Macroevolutionary evidence suggests traitâ€dependent coevolution between behavior and lifeâ€history. Evolution; International Journal of Organic Evolution, 2019, 73, 2312-2323.	1.1	4
139	Prey-predator interactions between two intraguild predators modulate their behavioral decisions. Acta Ethologica, 2019, 22, 195-201.	0.4	5
140	Courtship behavior and coloration influence conspicuousness of wolf spiders (Schizocosa ocreata) Tj ETQq1 1 0.	784314 rg 0.5	;BT_/Overloc
141	Predator water balance alters intraguild predation in a streamside food web. Ecology, 2019, 100, e02635.	1.5	9
142	Are Cecropia trees ecosystem engineers? The effect of decomposing Cecropia leaves on arthropod communities. Biotropica, 2019, 51, 562-571.	0.8	1
143	Temporal variation in behavioral responses to dietary cues from a gapeâ€limited predator in tadpole prey: A test of the phylogenetic relatedness hypothesis. Ethology, 2019, 125, 628-634.	0.5	3
144	The demographic and lifeâ€history costs of fear: Traitâ€mediated effects of threat of predation on <i>Aedes triseriatus</i> . Ecology and Evolution, 2019, 9, 3794-3806.	0.8	11

#	Article	IF	CITATIONS
145	The effect of predator kairomones on caudal regeneration by Allegheny Mountain Dusky Salamanders (<i>Desmognathus ochrophaeus</i>). Canadian Journal of Zoology, 2019, 97, 502-509.	0.4	4
146	Behavioral responses to ocean acidification in marine invertebrates: new insights and future directions. Journal of Oceanology and Limnology, 2020, 38, 759-772.	0.6	31
147	Egg sac damage and previous egg sac production influence truncated parental investment in the wolf spider, Pardosa milvina. Ethology, 2020, 126, 1111-1121.	0.5	3
148	Trade-off between fear level induced by predator and infection rate among prey species. Journal of Applied Mathematics and Computing, 2020, 64, 635-663.	1.2	19
149	Predator-induced stress responses in insects: A review. Journal of Insect Physiology, 2020, 122, 104039.	0.9	23
150	Forewarned is forearmed: Queensland fruit flies detect olfactory cues from predators and respond with predator-specific behaviour. Scientific Reports, 2020, 10, 7297.	1.6	10
151	Do Carolina chickadees (Poecile carolinensis) and tufted titmice (Baeolophus bicolor) use predator eyes in risk assessment?. Animal Cognition, 2021, 24, 533-540.	0.9	4
152	Male chemotactile cues are not attractive advertisements to Pardosa milvina (Araneae: Lycosidae) females in search of mates. Journal of Arachnology, 2021, 48, .	0.3	0
153	Female mating status affects male mating tactic expression in the wolf spider <i>Rabidosa punctulata</i> . Environmental Epigenetics, 2022, 68, 121-127.	0.9	3
154	The Colony Predation Algorithm. Journal of Bionic Engineering, 2021, 18, 674-710.	2.7	365
155			
	Males respond to substrate-borne, not airborne, female chemical cues in the jumping spider, Habronattus pyrrithrix (Araneae: Salticidae). Journal of Arachnology, 2021, 49, .	0.3	3
156	Males respond to substrate-borne, not airborne, female chemical cues in the jumping spider, Habronattus pyrrithrix (Araneae: Salticidae). Journal of Arachnology, 2021, 49, . Ontogenetic shifts in competitive interactions and intra-guild predation between two wolf spider species. Ecological Entomology, 2003, 28, 25-30.	0.3	3 50
156 157	Males respond to substrate-borne, not airborne, female chemical cues in the jumping spider, Habronattus pyrrithrix (Araneae: Salticidae). Journal of Arachnology, 2021, 49, . Ontogenetic shifts in competitive interactions and intra-guild predation between two wolf spider species. Ecological Entomology, 2003, 28, 25-30. Do Herbivores Eavesdrop on Ant Chemical Communication to Avoid Predation?. PLoS ONE, 2012, 7, e28703.	0.3 1.1 1.1	3 50 15
156 157 158	Males respond to substrate-borne, not airborne, female chemical cues in the jumping spider, Habronattus pyrrithrix (Araneae: Salticidae). Journal of Arachnology, 2021, 49, .Ontogenetic shifts in competitive interactions and intra-guild predation between two wolf spider species. Ecological Entomology, 2003, 28, 25-30.Do Herbivores Eavesdrop on Ant Chemical Communication to Avoid Predation?. PLoS ONE, 2012, 7, e28703.Chemical Compounds Related to the Predation Risk Posed by Malacophagous Ground Beetles Alter Self-Maintenance Behavior of Naive Slugs (Deroceras reticulatum). PLoS ONE, 2013, 8, e79361.	0.3 1.1 1.1 1.1	3 50 15 7
156 157 158 159	Males respond to substrate-borne, not airborne, female chemical cues in the jumping spider, Habronattus pyrrithrix (Araneae: Salticidae). Journal of Arachnology, 2021, 49, .Ontogenetic shifts in competitive interactions and intra-guild predation between two wolf spider species. Ecological Entomology, 2003, 28, 25-30.Do Herbivores Eavesdrop on Ant Chemical Communication to Avoid Predation?. PLoS ONE, 2012, 7, e28703.Chemical Compounds Related to the Predation Risk Posed by Malacophagous Ground Beetles Alter Self-Maintenance Behavior of Naive Slugs (Deroceras reticulatum). PLoS ONE, 2013, 8, e79361.Marine animal behaviour in a high CO2 ocean. Marine Ecology - Progress Series, 2015, 536, 259-279.	0.3 1.1 1.1 1.1 0.9	3 50 15 7 162
156 157 158 159 160	Males respond to substrate-borne, not airborne, female chemical cues in the jumping spider, Habronattus pyrrithrix (Araneae: Salticidae). Journal of Arachnology, 2021, 49, .Ontogenetic shifts in competitive interactions and intra-guild predation between two wolf spider species. Ecological Entomology, 2003, 28, 25-30.Do Herbivores Eavesdrop on Ant Chemical Communication to Avoid Predation?. PLoS ONE, 2012, 7, e28703.Chemical Compounds Related to the Predation Risk Posed by Malacophagous Ground Beetles Alter Self-Maintenance Behavior of Naive Slugs (Deroceras reticulatum). PLoS ONE, 2013, 8, e79361.Marine animal behaviour in a high CO2 ocean. Marine Ecology - Progress Series, 2015, 536, 259-279.Tests for attraction to prey and predator avoidance by chemical cues in spiders of the beech forest floor. Arachnologische Mitteilungen, 2012, 43, 84-89.	0.3 1.1 1.1 0.9	3 50 15 7 162 4
156 157 158 159 160	Males respond to substrate-borne, not airborne, female chemical cues in the jumping spider, Habronattus pyrrithrix (Araneae: Salticidae). Journal of Arachnology, 2021, 49, .Ontogenetic shifts in competitive interactions and intra-guild predation between two wolf spider species. Ecological Entomology, 2003, 28, 25-30.Do Herbivores Eavesdrop on Ant Chemical Communication to Avoid Predation?. PLoS ONE, 2012, 7, e28703.Chemical Compounds Related to the Predation Risk Posed by Malacophagous Ground Beetles Alter Self-Maintenance Behavior of Naive Slugs (Deroceras reticulatum). PLoS ONE, 2013, 8, e79361.Marine animal behaviour in a high CO2 ocean. Marine Ecology - Progress Series, 2015, 536, 259-279.Tests for attraction to prey and predator avoidance by chemical cues in spiders of the beech forest floor. Arachnologische Mitteilungen, 2012, 43, 84-89.Static visual predator recognition in jumping spiders. Functional Ecology, 2022, 36, 561-571.	0.3 1.1 1.1 0.9 0.4	3 50 15 7 162 4

#	Article	IF	CITATIONS
166	The effects of environmental light on the role of male chemotactile cues in wolf spider mating interactions. Behavioral Ecology and Sociobiology, 2022, 76, 1.	0.6	2
167	Effects of Seawater Acidification on Echinoid Adult Stage: A Review. Journal of Marine Science and Engineering, 2022, 10, 477.	1.2	4
169	Extremal Nelder–Mead colony predation algorithm for parameter estimation of solar photovoltaic models. Energy Science and Engineering, 2022, 10, 4176-4219.	1.9	1
170	Function of meerkats' mobbing-like response to secondary predator cues: recruitment not teaching. Animal Behaviour, 2022, 194, 111-126.	0.8	2
173	Trait-Specific Indirect Effects Underlie Variation in the Response of Spiders to Cannibalistic Social Partners. American Naturalist, 2023, 202, 322-336.	1.0	0