Vapor–liquid equilibria of mixtures containing alkane

AICHE Journal 47, 1676-1682 DOI: 10.1002/aic.690470719

Citation Report

#	Article	IF	CITATIONS
42	Structural characterization of an Sb deltaâ€doping layer in silicon. Applied Physics Letters, 1989, 55, 963-965.	1.5	24
43	Tricarbonylrhenium(I) halide complexes of 2-[(4R,6R)-4,6-dimethyl-1,3-dioxan-2-yl]pyridine (L1) and 2,6-bis[(4R,6R)-4,6-dimethyl-1,3-dioxan-2-yl]pyridine (L2): structure and solution stereodynamics. Dalton Transactions RSC, 2000, , 1769-1776.	2.3	11
44	Direct Gibbs Ensemble Monte Carlo Simulations for Solidâ^'Vapor Phase Equilibria:  Applications to Lennardâ^'Jonesium and Carbon Dioxide. Journal of Physical Chemistry B, 2001, 105, 9840-9848.	1.2	97
45	Atomistic Simulations of CO2and N2Adsorption in Silica Zeolites: The Impact of Pore Size and Shapeâ€. Journal of Physical Chemistry B, 2002, 106, 8367-8375.	1.2	205
46	Phase transitions of adsorbed fluids computed from multiple-histogram reweighting. Molecular Physics, 2002, 100, 2139-2150.	0.8	41
47	Temperature effects on the retention of n-alkanes and arenes in helium–squalane gas–liquid chromatography. Journal of Chromatography A, 2002, 954, 181-190.	1.8	66
48	Theoretical Examination of the Global Fluid Phase Behavior and Critical Phenomena in Carbon Dioxide +n-Alkane Binary Mixtures. Journal of Physical Chemistry B, 2002, 106, 4503-4515.	1.2	110
49	Vapor–liquid equilibria of mixtures containing nitrogen, oxygen, carbon dioxide, and ethane. AICHE Journal, 2003, 49, 2187-2198.	1.8	88
50	Binary mixtures of supercritical carbon dioxide with methanol. A molecular dynamics simulation study. Chemical Physics Letters, 2003, 374, 187-193.	1.2	50
51	Vapor–liquid equilibria of the binary mixtures nitrogen + methane, nitrogen + ethane and nitrogen + carbon dioxide, and the ternary mixture nitrogen + methane + ethane from Gibbs-ensemble molecular simulation. Fluid Phase Equilibria, 2003, 208, 155-169.	1.4	19
52	Monte Carlo Simulation of Single- and Binary-Component Adsorption of CO2, N2, and H2in Zeolite Na-4A. Energy & Fuels, 2003, 17, 977-983.	2.5	165
53	Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations. Molecular Simulation, 2003, 29, 405-412.	0.9	39
54	Binary phase behavior and aggregation of dilute methanol in supercritical carbon dioxide: A Monte Carlo simulation study. Journal of Chemical Physics, 2004, 121, 1525-1534.	1.2	69
55	Phase behavior of n-alkanes in supercritical solution: A Monte Carlo study. Journal of Chemical Physics, 2004, 121, 2169-2179.	1.2	89
56	Molecular Simulation of Phase Equilibria for Industrial Applications. Computer Aided Chemical Engineering, 2004, , 279-307.	0.3	4
57	Why Is CO2So Soluble in Imidazolium-Based Ionic Liquids?. Journal of the American Chemical Society, 2004, 126, 5300-5308.	6.6	1,348
58	Vapor-phase chemical equilibrium for the hydrogenation of benzene to cyclohexane from reaction-ensemble molecular simulation. Fluid Phase Equilibria, 2004, 219, 181-193.	1.4	17
59	A Monte Carlo simulation study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate: liquid structure, volumetric properties and infinite dilution solution thermodynamics of CO2. Fluid Phase Equilibria, 2004, 222-223, 195-203.	1.4	85

#	Article	IF	CITATIONS
60	Molecular simulation of binary vapour–liquid equilibria with components differing largely in volatility. Molecular Physics, 2004, 102, 301-317.	0.8	5
61	Adsorption of Small Molecules in LTA Zeolites. 1. NH3, CO2, and H2O in Zeolite 4A. Journal of Physical Chemistry B, 2004, 108, 20155-20159.	1.2	121
62	Transferable Potentials for Phase Equilibria. 6. United-Atom Description for Ethers, Glycols, Ketones, and Aldehydes. Journal of Physical Chemistry B, 2004, 108, 17596-17605.	1.2	410
63	An Improved Force Field for the Prediction of the Vaporâ^Liquid Equilibria for Carboxylic Acids. Journal of Physical Chemistry B, 2004, 108, 14130-14136.	1.2	82
64	Adsorption of Quadrupolar, Diatomic Nitrogen onto Graphitized Thermal Carbon Black and in Slit-Shaped Carbon Pores. Effects of Surface Mediation. Adsorption Science and Technology, 2005, 23, 267-288.	1.5	17
65	Effect of quadrupole moment on the phase behavior of binary mixtures containing ethene. Fluid Phase Equilibria, 2005, 234, 144-150.	1.4	33
66	Determination of Henry's law constants through transition matrix Monte Carlo simulation. Fluid Phase Equilibria, 2005, 236, 58-65.	1.4	42
67	Formation of Odd-Numbered Clusters ofCO2Adsorbed on Nanotube Bundles. Physical Review Letters, 2005, 94, 125701.	2.9	31
68	Effects of surface heterogeneity on the adsorption of nitrogen on graphitized thermal carbon black. Molecular Simulation, 2005, 31, 651-659.	0.9	15
69	Monte Carlo Simulations of Gas Solubility in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate. Journal of Physical Chemistry B, 2005, 109, 10395-10405.	1.2	166
70	Packing of adsorbed molecules in microporous polymorphs aluminium methylphosphonates α and β. Physical Chemistry Chemical Physics, 2005, 7, 2351.	1.3	20
71	Molecular models of unlike interactions in fluid mixtures. Molecular Simulation, 2005, 31, 215-221.	0.9	47
72	Microscopic Origins for the Favorable Solvation of Carbonate Ether Copolymers in CO2. Journal of the American Chemical Society, 2005, 127, 12338-12342.	6.6	28
73	Dielectric Constant and Density Dependence of the Structure of Supercritical Carbon Dioxide Using a New Modified Empirical Potential Model:Â A Monte Carlo Simulation Study. Journal of Physical Chemistry B, 2005, 109, 13375-13382.	1.2	63
74	Pressure Dependence of the Vaporâ~'Liquidâ~'Liquid Phase Behavior in Ternary Mixtures Consisting ofn-Alkanes,n-Perfluoroalkanes, and Carbon Dioxide. Journal of Physical Chemistry B, 2005, 109, 2911-2919.	1.2	81
75	Transferable Potentials for Phase Equilibria. 7. Primary, Secondary, and Tertiary Amines, Nitroalkanes and Nitrobenzene, Nitriles, Amides, Pyridine, and Pyrimidine. Journal of Physical Chemistry B, 2005, 109, 18974-18982.	1.2	212
76	Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene. Journal of Physical Chemistry B, 2005, 109, 24100-24107.	1.2	112
77	An optimized molecular potential for carbon dioxide. Journal of Chemical Physics, 2005, 122, 214507.	1.2	188

#	Article	IF	CITATIONS
78	Partial Molar Volume and Solvation Structure of Naphthalene in Supercritical Carbon Dioxide:Â A Monte Carlo Simulation Study. Journal of Physical Chemistry B, 2005, 109, 19885-19892.	1.2	28
79	Effect of partial charge parametrization on the fluid phase behavior of hydrogen sulfide. Journal of Chemical Physics, 2005, 123, 124505.	1.2	69
80	Using arbitrary trial distributions to improve intramolecular sampling in configurational-bias Monte Carlo. Molecular Physics, 2006, 104, 2439-2456.	0.8	54
81	Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes. Journal of Chemical Physics, 2006, 124, 054708.	1.2	175
82	Nitrogen and Water Adsorption in Aluminum Methylphosphonate α: A Molecular Simulation Study. Langmuir, 2006, 22, 3097-3104.	1.6	11
83	Molecular Dynamics Simulation of the Cybotactic Region in Gas-Expanded Methanolâ^'Carbon Dioxide and Acetoneâ^'Carbon Dioxide Mixtures. Journal of Physical Chemistry B, 2006, 110, 24101-24111.	1.2	36
84	Monte Carlo Simulation of Carboxylic Acid Phase Equilibria. Journal of Physical Chemistry B, 2006, 110, 21938-21943.	1.2	23
85	Effects of potential models on the adsorption of carbon dioxide on graphitized thermal carbon black: GCMC computer simulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277, 239-248.	2.3	28
86	Application of TraPPE-UA force field for determination of vapor–liquid equilibria of carboxylate esters. Fluid Phase Equilibria, 2006, 240, 46-55.	1.4	51
87	Chemical equilibria of multiple-reaction systems from reaction ensemble Monte Carlo simulation and a predictive equation of state: Combined hydrogenation of ethylene and propylene. Fluid Phase Equilibria, 2006, 242, 189-203.	1.4	12
88	Molecular Simulation of Carbon Dioxide/Methane/Hydrogen Mixture Adsorption in Metalâ^'Organic Frameworks. Journal of Physical Chemistry B, 2006, 110, 17776-17783.	1.2	503
89	Direct calculation of Henry's law constants from Gibbs ensemble Monte Carlo simulations: nitrogen, oxygen, carbon dioxide and methane in ethanol. Theoretical Chemistry Accounts, 2006, 115, 391-397.	0.5	101
90	Monte Carlo predictions for the phase behavior of H2 S+n-alkane, H2 S+CO2, CO2+CH4 and H2 S+CO2+CH4 mixtures. Fluid Phase Equilibria, 2006, 246, 71-78.	1.4	24
91	Molecular simulation of carbon dioxide adsorption in chemically and structurally heterogeneous porous carbons. Environmental Progress, 2006, 25, 343-354.	0.8	104
92	Computing the starting state for Gibbs-Duhem integration. Journal of Chemical Physics, 2006, 124, 054905.	1.2	5
93	An advanced Gibbs-Duhem integration method: Theory and applications. Journal of Chemical Physics, 2006, 124, 054906.	1.2	12
94	Gibbs ensemble Monte Carlo simulation of supercritical CO2 adsorption on NaA and NaX zeolites. Journal of Chemical Physics, 2006, 124, 244705.	1.2	26
95	Effect of partial charge parameterization on the phase equilibria of dimethyl ether. Molecular Simulation, 2007, 33, 769-776.	0.9	20

#	Article	IF	CITATIONS
96	Transferable Potentials for Phase Equilibria. 9. Explicit Hydrogen Description of Benzene and Five-Membered and Six-Membered Heterocyclic Aromatic Compounds. Journal of Physical Chemistry B, 2007, 111, 10790-10799.	1.2	185
97	Effects of Surface Structure and Temperature on the Surface Mediation, Layer Concentration and Molecular Projection Area: Adsorption of Argon and Nitrogen onto Graphitized Thermal Carbon Black. Adsorption Science and Technology, 2007, 25, 347-363.	1.5	22
98	Continuous Fractional Component Monte Carlo:  An Adaptive Biasing Method for Open System Atomistic Simulations. Journal of Chemical Theory and Computation, 2007, 3, 1451-1463.	2.3	188
99	Vaporâ~'Liquid Equilibria of Diethylamine + Methanol, Diethylamine + Acetone and Diethylamine + Acetonitrile:  Predictions of Atomistic Computer Simulations. Journal of Physical Chemistry C, 2007, 111, 1451-1458.	1.5	2
100	Simulations of Binary Mixture Adsorption of Carbon Dioxide and Methane in Carbon Nanotubes: Temperature, Pressure, and Pore Size Effects. Journal of Physical Chemistry C, 2007, 111, 11912-11920.	1.5	122
101	Applicability of the BET Method for Determining Surface Areas of Microporous Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2007, 129, 8552-8556.	6.6	885
102	Thermodynamic and transport properties of carbon dioxide from molecular simulation. Journal of Chemical Physics, 2007, 126, 064509.	1.2	76
103	Molecular simulation of separation of CO ₂ from flue gases in CUâ€BTC metalâ€organic framework. AICHE Journal, 2007, 53, 2832-2840.	1.8	235
104	Prediction of the bubble point pressure for the binary mixture of ethanol and 1,1,1,2,3,3,3-heptafluoropropane from Gibbs ensemble Monte Carlo simulations using the TraPPE force field. Fluid Phase Equilibria, 2007, 260, 199-211.	1.4	11
105	New force fields for nitrous oxide and oxygen and their application to phase equilibria simulations. Fluid Phase Equilibria, 2007, 259, 180-188.	1.4	48
106	Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1. Fluid Phase Equilibria, 2007, 261, 152-161.	1.4	129
107	Adsorption of gas-water binary systems in carbon micropores: Computer simulation. Russian Journal of Physical Chemistry A, 2007, 81, 1285-1291.	0.1	7
108	Application of the TraPPE Force Field to Predicting Isothermal Pressure–Volume Curves at High Pressures and High Temperatures. International Journal of Thermophysics, 2007, 28, 796-804.	1.0	6
109	Comparative simulation study of nitrogen and ammonia adsorption on graphitized and nongraphitized carbon blacks. Journal of Colloid and Interface Science, 2008, 320, 415-422.	5.0	12
110	Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC: A computational study. Separation and Purification Technology, 2008, 60, 30-35.	3.9	136
111	Molecular dynamic simulations of carbon nanotubes in CO2 atmosphere. Chemical Physics Letters, 2008, 460, 512-516.	1.2	29
112	Picosecond dynamics of gas-phase dimers in liquid carbon dioxide. Chemical Physics Letters, 2008, 464, 177-180.	1.2	4
113	Development of the TraPPE-UA force field for ethylene oxide. Fluid Phase Equilibria, 2008, 274, 44-49.	1.4	30

#	Article	IF	CITATIONS
114	Computational Study of CO ₂ Storage in Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2008, 112, 1562-1569.	1.5	240
115	Separation of CO ₂ from CH ₄ Using Mixed-Ligand Metalâ^'Organic Frameworks. Langmuir, 2008, 24, 8592-8598.	1.6	557
116	Effect of Open Metal Sites on Adsorption of Polar and Nonpolar Molecules in Metalâ^'Organic Framework Cu-BTC. Langmuir, 2008, 24, 8620-8626.	1.6	219
117	Solubility in Supercritical Carbon Dioxide: Importance of the Poynting Correction and Entrainer Effects. Journal of Physical Chemistry B, 2008, 112, 11374-11380.	1.2	38
118	New Method for Atomistic Modeling of the Microstructure of Activated Carbons Using Hybrid Reverse Monte Carlo Simulation. Langmuir, 2008, 24, 7912-7922.	1.6	114
119	Application of the TraPPE Force Field for Predicting the Hildebrand Solubility Parameters of Organic Solvents and Monomer Units. Journal of Chemical Theory and Computation, 2008, 4, 136-144.	2.3	32
120	Atomistic Simulations of CO2 and N2 Diffusion in Silica Zeolites: The Impact of Pore Size and Shape. Journal of Physical Chemistry C, 2008, 112, 16521-16531.	1.5	28
121	Effects of Solute Structure on Local Solvation and Solvent Interactions: Results from UV/Vis Spectroscopy and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2008, 112, 14993-14998.	1.2	10
122	A Spectroscopic and Computational Exploration of the Cybotactic Region of Gas-Expanded Liquids: Methanol and Acetone. Journal of Physical Chemistry B, 2008, 112, 4666-4673.	1.2	23
123	Atomistic Simulation of the Sorption of Small Gas Molecules in Polyisobutylene. Macromolecules, 2008, 41, 6228-6238.	2.2	20
124	Response to "Comment on â€~An optimized potential for carbon dioxide' ―[J. Chem. Phys. 129, 087 (2008)]. Journal of Chemical Physics, 2008, 129, 087102.	101 1.2	3
125	Multi-scale Modeling of Structure, Dynamic and Thermodynamic Properties of Imidazolium-based Ionic Liquids: Ab initio DFT Calculations, Molecular Simulation and Equation of State Predictions. Oil and Gas Science and Technology, 2008, 63, 283-293.	1.4	20
126	Collective dynamics and molecular interactions in liquid <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mtext>CO</mml:mtext></mml:mrow><mml:mn>2 indiatic neutron scattering and computer simulations. Physical Paviow B, 2009, 79</mml:mn></mml:mrow></mml:math 	< 1 ,1 < 7 mml:mr	14/mml:ms
127	Effects of the side pockets on gas separation in metal-organic framework Cu-BTC: a molecular simulation study. Molecular Simulation, 2009, 35, 1249-1255.	0.9	18
128	Structural motifs of cholesterol nanoparticles. Journal of Chemical Physics, 2009, 131, 034906.	1.2	6
129	Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model. Journal of Chemical Physics, 2009, 131, 084709.	1.2	40
130	A Fully Flexible Potential Model for Carbon Dioxide. Chinese Journal of Chemical Engineering, 2009, 17, 268-272.	1.7	66
131	Molecular Simulation of CO2/H2 Mixture Separation in Metal-organic Frameworks: Effect of Catenation and Electrostatic Interactions. Chinese Journal of Chemical Engineering, 2009, 17, 781-790.	1.7	42

#	Article	IF	CITATIONS
132	Effects of surface structure on the molecular projection area. Adsorption of argon and nitrogen onto defective surfaces. Adsorption, 2009, 15, 240-246.	1.4	9
133	Molecular models for 267 binary mixtures validated by vapor–liquid equilibria: A systematic approach. Fluid Phase Equilibria, 2009, 279, 120-135.	1.4	54
134	Atomically detailed models of gas mixture diffusion through CuBTC membranes. Microporous and Mesoporous Materials, 2009, 125, 101-106.	2.2	90
135	Prediction of ternary vapor–liquid equilibria for 33 systems by molecular simulation. Fluid Phase Equilibria, 2009, 287, 62-69.	1.4	20
136	Molecular Modeling of Imidazolium-Based [Tf ₂ N ^{â^²}] Ionic Liquids: Microscopic Structure, Thermodynamic and Dynamic Properties, and Segmental Dynamics. Journal of Physical Chemistry B, 2009, 113, 7211-7224.	1.2	92
137	Extension of the Transferable Potentials for Phase Equilibria Force Field to Dimethylmethyl Phosphonate, Sarin, and Soman. Journal of Physical Chemistry B, 2009, 113, 10292-10297.	1.2	37
138	All-Atom Force Field for the Prediction of Vaporâ [^] Liquid Equilibria and Interfacial Properties of HFA134a. Journal of Physical Chemistry B, 2009, 113, 178-187.	1.2	42
139	TraPPE-UA Force Field for Acrylates and Monte Carlo Simulations for Their Mixtures with Alkanes and Alcohols. Journal of Physical Chemistry B, 2009, 113, 6415-6425.	1.2	94
140	Strategies for Characterization of Large-Pore Metal-Organic Frameworks by Combined Experimental and Computational Methods. Chemistry of Materials, 2009, 21, 4768-4777.	3.2	68
141	Molecular Simulation Study of the Stepped Behaviors of Gas Adsorption in Two-Dimensional Covalent Organic Frameworks. Langmuir, 2009, 25, 2302-2308.	1.6	53
142	Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N ₂ and CO ₂ adsorption isotherms? Simulation results for a realistic carbon model. Journal of Physics Condensed Matter, 2009, 21, 315005.	0.7	35
143	Adsorption and Diffusion of Light Gases in ZIF-68 and ZIF-70: A Simulation Study. Journal of Physical Chemistry C, 2009, 113, 16906-16914.	1.5	126
144	Method for Analyzing Structural Changes of Flexible Metalâ^'Organic Frameworks Induced by Adsorbates. Journal of Physical Chemistry C, 2009, 113, 19317-19327.	1.5	71
145	Coarse-grained models for fluids and their mixtures: Comparison of Monte Carlo studies of their phase behavior with perturbation theory and experiment. Journal of Chemical Physics, 2009, 130, 044101.	1.2	51
146	<i>Ab initio</i> molecular dynamics study of supercritical carbon dioxide including dispersion corrections. Journal of Chemical Physics, 2009, 131, 144506.	1.2	29
147	Molecular Simulation of Excess Isotherm and Excess Enthalpy Change in Gas-Phase Adsorption. Journal of Physical Chemistry B, 2009, 113, 1030-1040.	1.2	39
148	Screening of Metalâ^'Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach. Journal of the American Chemical Society, 2009, 131, 18198-18199.	6.6	816
149	Molecular simulations of adsorption and diffusion of RDX in IRMOF-1. Molecular Simulation, 2009, 35, 910-919.	0.9	28

#	Article	IF	CITATIONS
150	Computational Study on the Influences of Framework Charges on CO ₂ Uptake in Metalâ^'Organic Frameworks. Industrial & Engineering Chemistry Research, 2009, 48, 10479-10484.	1.8	76
151	Comparative Molecular Simulation Study of CO ₂ /N ₂ and CH ₄ /N ₂ Separation in Zeolites and Metalâ°'Organic Frameworks. Langmuir, 2009, 25, 5918-5926.	1.6	276
152	Bond Angle Distributions of Carbon Dioxide in the Gas, Supercritical, and Solid Phases. Journal of Physical Chemistry A, 2009, 113, 2053-2059.	1.1	26
153	Progress, Opportunities, and Challenges for Applying Atomically Detailed Modeling to Molecular Adsorption and Transport in Metalâ^`Organic Framework Materials. Industrial & Engineering Chemistry Research, 2009, 48, 2355-2371.	1.8	283
154	Heats of Adsorption for Seven Gases in Three Metalâ^'Organic Frameworks: Systematic Comparison of Experiment and Simulation. Langmuir, 2009, 25, 7383-7388.	1.6	212
155	Fullerene-Intercalated Graphene Nano-Containers — Mechanism of Argon Adsorption and High-Pressure CH ₄ and CO ₂ Storage Capacities. Adsorption Science and Technology, 2009, 27, 281-296.	1.5	35
156	Microscopic Structure and Interaction Analysis for Supercritical Carbon Dioxideâ^'Ethanol Mixtures: A Monte Carlo Simulation Study. Journal of Physical Chemistry B, 2009, 113, 4781-4789.	1.2	30
157	Molecular Dynamics Simulations of Solvation and Solvent Reorganization Dynamics in CO ₂ -Expanded Methanol and Acetone. Journal of Chemical Theory and Computation, 2009, 5, 267-275.	2.3	9
158	First principles models of the interactions of methane and carbon dioxide. Fluid Phase Equilibria, 2010, 290, 48-54.	1.4	18
159	Developing force fields from the microscopic structure of solutions. Fluid Phase Equilibria, 2010, 290, 43-47.	1.4	53
160	Prediction of carbon dioxide permeability in carbon slit pores. Journal of Membrane Science, 2010, 355, 186-199.	4.1	28
161	Simple model of adsorption on external surface of carbon nanotubes—aÂnew analytical approach basing on molecular simulation data. Adsorption, 2010, 16, 197-213.	1.4	23
162	Ergodic Convergence Times for Molecular Liquids. International Journal of Thermophysics, 2010, 31, 766-773.	1.0	0
163	New Microporous Materials for Acetylene Storage and C ₂ H ₂ /CO ₂ Separation: Insights from Molecular Simulations. ChemPhysChem, 2010, 11, 2220-2229.	1.0	118
164	Monte Carlo simulations of vapor–liquid–liquid equilibrium of some ternary petrochemical mixtures. Fluid Phase Equilibria, 2010, 299, 24-31.	1.4	4
165	Importance of molecular shape in the adsorption of nitrogen, carbon dioxide and methane on surfaces and in confined spaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 353, 10-29.	2.3	23
167	The influence of carbon surface oxygen groups on Dubinin–Astakhov equation parameters calculated from CO ₂ adsorption isotherm. Journal of Physics Condensed Matter, 2010, 22, 085003.	0.7	24
168	Molecular model for carbon dioxide optimized to vapor-liquid equilibria. Journal of Chemical Physics, 2010, 132, 234512.	1.2	71

#	Article	IF	CITATIONS
169	Molecular dynamics simulations for CO2 absorption spectra. I. Line broadening and the far wing of the $\hat{1}/23$ infrared band. Journal of Chemical Physics, 2010, 133, 144313.	1.2	22
170	Characterization of Semicrystalline Polymeric Materials by Atomistic Models. , 2010, , .		0
171	Molecular Simulation Studies of Separation of CO ₂ /N ₂ , CO ₂ /CH ₄ , and CH ₄ /N ₂ by ZIFs. Journal of Physical Chemistry C, 2010, 114, 8515-8522.	1.5	266
173	Computer simulations of critical phenomena and phase behaviour of fluids. Molecular Physics, 2010, 108, 1797-1815.	0.8	28
174	Estimation of Framework Charges in Covalent Organic Frameworks Using Connectivity-Based Atom Contribution Method. Journal of Physical Chemistry C, 2010, 114, 9945-9951.	1.5	42
175	A General Approach for Estimating Framework Charges in Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2010, 114, 5035-5042.	1.5	118
176	Molecular Simulations and Experimental Studies of CO ₂ , CO, and N ₂ Adsorption in Metalâ 'Organic Frameworks. Journal of Physical Chemistry C, 2010, 114, 15735-15740.	1.5	169
177	Li-modified metal–organic frameworks for CO ₂ /CH ₄ separation: a route to achieving high adsorption selectivity. Journal of Materials Chemistry, 2010, 20, 706-714.	6.7	115
178	Evaluation of the BET Method for Determining Surface Areas of MOFs and Zeolites that Contain Ultra-Micropores. Langmuir, 2010, 26, 5475-5483.	1.6	257
179	Molecular Mechanism of CO ₂ and SO ₂ Molecules Binding to the Air/Liquid Interface of 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid: A Molecular Dynamics Study with Polarizable Potential Models. Journal of Physical Chemistry B, 2010, 114, 14965-14971.	1.2	50
180	Molecular Dynamics Simulations of CO ₂ at an Ionic Liquid Interface: Adsorption, Ordering, and Interfacial Crossing. Journal of Physical Chemistry B, 2010, 114, 11827-11837.	1.2	107
181	Carbon Dioxide Adsorption-Induced Deformation of Microporous Carbons. Journal of Physical Chemistry C, 2010, 114, 5126-5133.	1.5	61
182	Exceptional CO ₂ Capture Capability and Molecular-Level Segregation in a Li-Modified Metalâ ''Organic Framework. Journal of Physical Chemistry C, 2010, 114, 16611-16617.	1.5	71
183	Monte Carlo Simulations of Mixtures Involving Ketones and Aldehydes by a Direct Bubble Pressure Calculation. Journal of Physical Chemistry B, 2010, 114, 8680-8688.	1.2	32
184	Use of the Ornstein-Zernike Percus-Yevick equation to extract interaction potentials from pair correlation functions. Physical Review E, 2010, 81, 061204.	0.8	15
185	Sorbents for CO2 capture from flue gas—aspects from materials and theoretical chemistry. Nanoscale, 2010, 2, 1819.	2.8	213
186	Calculating Thermodynamic Properties of an Ionic Liquid with Monte Carlo Simulations with an Orthorhombic and a Cubic Simulation Box. Journal of Physical Chemistry B, 2010, 114, 8954-8960.	1.2	7
187	Understanding the Effect of Confinement on the Liquidâ^'Gas Transition: A Study of Adsorption Isotherms in a Family of Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2010, 114, 21631-21637.	1.5	27

		CITATION REPO	ORT	
#	Article	I	F	CITATIONS
188	Molecular Simulation of Nitrogen Adsorption in Nanoporous Silica. Langmuir, 2010, 26,	10872-10881.	1.6	61
189	Development of the trappe force field for ammonia. Collection of Czechoslovak Chemica Communications, 2010, 75, 577-591.	al E	1.0	30
190	A Computer Simulation Study on Self- and Cross-Aggregation of Multiple Polar Species i Supercritical Carbon Dioxide. Journal of Physical Chemistry A, 2010, 114, 5414-5428.	n r	L.1	8
191	Histogram of number of particles as an indicator for 2D phase transition in adsorption or graphite. Molecular Simulation, 2010, 36, 1173-1181.	gases on	0.9	8
192	Physically Motivated, Robust, ab Initio Force Fields for CO ₂ and N _{2Physical Chemistry B, 2011, 115, 10054-10063.}	sub>. Journal of	1.2	51
193	A Kirkwood–Buff force field for the aromatic amino acids. Physical Chemistry Chemica 13, 18154.	Physics, 2011,	L.3	39
194	A theoretical study of structure–solubility correlations of carbon dioxide in polymers c ether and carbonyl groups. Physical Chemistry Chemical Physics, 2011, 13, 21084.	ontaining	L.3	11
195	Absolute Entropy and Energy of Carbon Dioxide Using the Two-Phase Thermodynamic M of Chemical Theory and Computation, 2011, 7, 1893-1901.	odel. Journal	2.3	44
196	Optimized Unlike-Pair Interactions for Water–Carbon Dioxide Mixtures Described by t EPM2 Models. Journal of Physical Chemistry B, 2011, 115, 8775-8784.	he SPC/E and	1.2	68
197	Adsorptive behavior of CO2, CH4 and their mixtures in carbon nanospace: a molecular si study. Physical Chemistry Chemical Physics, 2011, 13, 3985.	mulation	L.3	66
198	Adsorption of Gases in Microporous Organic Molecular Crystal, a Multiscale Computatic Investigation. Journal of Physical Chemistry C, 2011, 115, 4935-4942.	nal :	1.5	13
199	Atomistic Simulations of CO ₂ and N ₂ within Cage-Type Silica Langmuir, 2011, 27, 1954-1963.	Zeolites.	L.6	14
200	Atomistic Simulations for Adsorption, Diffusion, and Separation of Gas Mixtures in Zeoli Imidazolate Frameworks. Journal of Physical Chemistry C, 2011, 115, 800-807.	:e	1.5	85
201	Computer simulations for the adsorption and separation of CO2/CH4/H2/N2 gases by U UMCM-2 metal organic frameworks. Journal of Materials Chemistry, 2011, 21, 11259.	MCM-1 and	5.7	79
202	Microporous carbon adsorbents with high CO2 capacities for industrial applications. Phy Chemistry Chemical Physics, 2011, 13, 16063.	rsical	L.3	53
203	Molecular Dynamics Study of Carbon Dioxide Hydrate Dissociation. Journal of Physical C 2011, 115, 6102-6111.	hemistry A,	1.1	107
204	High CO ₂ Selectivity of A Microporous Metal–Imidazolate Framework: A Simulation Study. Industrial & Engineering Chemistry Research, 2011, 50, 8230-82	Molecular 36.	L.8	26
205	Molecular Dynamics Simulations of Carbon Dioxide and Water at an Ionic Liquid Interfac Physical Chemistry B, 2011, 115, 10488-10499.	e. Journal of	1.2	71

#	Article	IF	CITATIONS
206	Investigation on the Solubility of SO ₂ and CO ₂ in Imidazolium-Based Ionic Liquids Using NPT Monte Carlo Simulation. Journal of Physical Chemistry B, 2011, 115, 13599-13607.	1.2	66
207	Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks. Nanoscale, 2011, 3, 856.	2.8	88
208	Assessment of the potential models of acetone/CO2 and ethanol/CO2 mixtures by computer simulation and thermodynamic integration in liquid and supercritical states. Physical Chemistry Chemical Physics, 2011, 13, 16272.	1.3	17
209	Monte Carlo Simulations of High-Pressure Phase Equilibria of CO ₂ –H ₂ O Mixtures. Journal of Physical Chemistry B, 2011, 115, 6629-6635.	1.2	45
210	Molecular Simulations and Theoretical Predictions for Adsorption and Diffusion of CH ₄ /H ₂ and CO ₂ /CH ₄ Mixtures in ZIFs. Journal of Physical Chemistry C, 2011, 115, 12560-12566.	1.5	101
211	SAFT-Î ³ Force Field for the Simulation of Molecular Fluids. 1. A Single-Site Coarse Grained Model of Carbon Dioxide. Journal of Physical Chemistry B, 2011, 115, 11154-11169.	1.2	200
212	Adsorption and Transport of CH ₄ , CO ₂ , H ₂ Mixtures in a Bio-MOF Material from Molecular Simulations. Journal of Physical Chemistry C, 2011, 115, 6833-6840.	1.5	72
213	Enhancement of CO2/N2 Mixture Separation Using the Thermodynamic Stepped Behavior of Adsorption in Metalâ~'Organic Frameworks. Journal of Physical Chemistry C, 2011, 115, 2790-2797.	1.5	28
214	Structural Chemistry, Monoclinic-to-Orthorhombic Phase Transition, and CO ₂ Adsorption Behavior of the Small Pore Scandium Terephthalate, Sc ₂ (O ₂ CC ₆ H ₄ CO ₂) ₃ , and Its Nitro- And Amino-Functionalized Derivatives. Inorganic Chemistry, 2011, 50, 10844-10858.	1.9	75
215	Nitrogen Adsorption Studies on Non-Porous Silica: The Annealing Effect over Surface Non-Bridging Oxygen Atoms. Adsorption Science and Technology, 2011, 29, 357-364.	1.5	3
216	Interaction of gas molecules with crystalline polymer separation membranes: Atomic-scale modeling and first-principles calculations. Journal of Membrane Science, 2011, 384, 176-183.	4.1	5
217	Computer Simulation of Adsorption and Separation of CO2/CH4 in Modified COF-102. Chinese Journal of Chemical Engineering, 2011, 19, 709-716.	1.7	12
218	A multi-scale approach to the physical adsorption in slit pores. Chemical Engineering Science, 2011, 66, 5447-5458.	1.9	18
219	Effect of temperature on gas adsorption and separation in ZIF-8: A combined experimental and molecular simulation study. Chemical Engineering Science, 2011, 66, 6297-6305.	1.9	146
220	Development of an Optimized Intermolecular Potential for Sulfur Dioxide. Journal of Physical Chemistry B, 2011, 115, 4949-4954.	1.2	65
221	Using an Analytic Equation of State to Obtain Quantitative Solubilities of CO2 by Molecular Simulation. Journal of Physical Chemistry Letters, 2011, 2, 393-396.	2.1	7
222	Modeling gas separation in metal-organic frameworks. Adsorption, 2011, 17, 255-264.	1.4	20
223	Improving the equilibrium performance of active carbons for separation processes by co-adsorption with low pressure solvent: application to carbon capture. Adsorption, 2011, 17, 723-737.	1.4	7

			2
#	ARTICLE	IF	CITATIONS
224	A computational study of the effect of doping metals on CO2/CH4 separation in metal–organic frameworks. Microporous and Mesoporous Materials, 2011, 143, 66-72.	2.2	24
225	The composition of liquid methane–nitrogen aerosols in Titan's lower atmosphere from Monte Carlo simulations. Icarus, 2011, 212, 779-789.	1.1	12
226	Towards rapid computational screening of metal-organic frameworks for carbon dioxide capture: Calculation of framework charges via charge equilibration. Chemical Engineering Journal, 2011, 171, 775-781.	6.6	141
227	Simulations of model metal-organic frameworks for the separation of carbon dioxide. Energy Procedia, 2011, 4, 568-575.	1.8	6
228	Isothermal vapor–liquid equilibrium data for the carbon dioxide (R744)+decafluorobutane (R610) system at temperatures from 263 to 353K. Fluid Phase Equilibria, 2011, 304, 44-51.	1.4	29
229	Monte Carlo simulation of solute extraction via supercritical carbon dioxide from poly(ethylene) Tj ETQq1 1 0.78	4314 rgBT 1.4	/Qyerlock 10
230	Gaussian charge polarizable interaction potential for carbon dioxide. Journal of Chemical Physics, 2011, 134, 034312.	1.2	18
231	Molecular simulation of CO ₂ , N ₂ and CH ₄ adsorption and separation in ZIF-78 and ZIF-79. Molecular Simulation, 2011, 37, 1131-1142.	0.9	26
232	A new method of semigrand canonical ensemble to calculate first-order phase transitions for binary mixtures. Journal of Chemical Physics, 2012, 136, 034505.	1.2	11
233	Monte Carlo predictions of phase equilibria and structure for dimethyl ether + sulfur dioxide and dimethyl ether + carbon dioxide. Journal of Chemical Physics, 2012, 136, 044514.	1.2	9
234	Characterization ofCO2Flow Through Charged Carbon Nanotubes. Journal of Physics: Conference Series, 2012, 362, 012019.	0.3	0
235	Combined Application of High-Field Diffusion NMR and Molecular Dynamics Simulations To Study Dynamics in a Mixture of Carbon Dioxide and an Imidazolium-Based Ionic Liquid. Journal of Physical Chemistry B, 2012, 116, 9141-9151.	1.2	45
236	Porous Carbon Nanotube Membranes for Separation of H ₂ /CH ₄ and CO ₂ /CH ₄ Mixtures. Journal of Physical Chemistry C, 2012, 116, 25904-25910.	1.5	59
237	Understanding the Effect of Trace Amount of Water on CO ₂ Capture in Natural Gas Upgrading in Metal–Organic Frameworks: A Molecular Simulation Study. Industrial & Engineering Chemistry Research, 2012, 51, 10031-10038.	1.8	67
238	Molecular Simulation of a Zn–Triazamacrocyle Metal–Organic Frameworks Family with Extraframework Anions. Journal of Physical Chemistry C, 2012, 116, 2952-2959.	1.5	5
239	Understanding CO ₂ Capture in Amine-Functionalized MCM-41 by Molecular Simulation. Journal of Physical Chemistry C, 2012, 116, 3017-3024.	1.5	40
240	Gas Adsorption Properties and Selectivity in Cull/Adeninato/Carboxylato Metal-Biomolecule Frameworks. European Journal of Inorganic Chemistry, 2012, 2012, 5921-5933.	1.0	31
241	The effect of grafted amine group on the adsorption of CO2 in MCM-41: A molecular simulation. Catalysis Today, 2012, 194, 53-59.	2.2	16

#	Article	IF	CITATIONS
242	Characterization and Comparison of the Performance of IRMOF-1, IRMOF-8, and IRMOF-10 for CO ₂ Adsorption in the Subcritical and Supercritical Regimes. Journal of Physical Chemistry C, 2012, 116, 22938-22946.	1.5	25
243	Ab Initio, Physically Motivated Force Fields for CO ₂ Adsorption in Zeolitic Imidazolate Frameworks. Journal of Physical Chemistry C, 2012, 116, 1892-1903.	1.5	87
244	Experimental and theoretical investigations on the MMOF selectivity for CO2vs. N2 in flue gas mixtures. Dalton Transactions, 2012, 41, 4232.	1.6	31
245	Molecular insight into the high selectivity of double-walled carbon nanotubes. Physical Chemistry Chemical Physics, 2012, 14, 2784.	1.3	26
246	Influence of Zeolite Topology on CO ₂ /N ₂ Separation Behavior: Force-Field Simulations Using a DFT-Derived Charge Model. Journal of Physical Chemistry C, 2012, 116, 26449-26463.	1.5	51
247	Molecular Simulation of the Thermophysical Properties of N-Functionalized Alkylimidazoles. Journal of Physical Chemistry B, 2012, 116, 6529-6535.	1.2	26
248	Computer Simulations of Gas Diffusion in Polystyrene–C ₆₀ Fullerene Nanocomposites Using Trajectory Extending Kinetic Monte Carlo Method. Journal of Physical Chemistry B, 2012, 116, 95-103.	1.2	24
249	Transferable Force Field for Carboxylate Esters: Application to Fatty Acid Methylic Ester Phase Equilibria Prediction. Journal of Physical Chemistry B, 2012, 116, 3239-3248.	1.2	27
250	Nature of Protein–CO ₂ Interactions as Elucidated via Molecular Dynamics. Journal of Physical Chemistry B, 2012, 116, 11578-11593.	1.2	7
251	Toward Rational Design of Metal–Organic Frameworks for Sensing Applications: Efficient Calculation of Adsorption Characteristics in Zero Loading Regime. Journal of Physical Chemistry C, 2012, 116, 3025-3033.	1.5	48
252	Toward a Possibility To Exchange CO ₂ and CH ₄ in sI Clathrate Hydrates. Journal of Physical Chemistry B, 2012, 116, 3745-3753.	1.2	24
253	Ab initio carbon capture in open-site metal–organic frameworks. Nature Chemistry, 2012, 4, 810-816.	6.6	310
254	Robust Metal–Organic Framework with An Octatopic Ligand for Gas Adsorption and Separation: Combined Characterization by Experiments and Molecular Simulation. Chemistry of Materials, 2012, 24, 18-25.	3.2	88
255	Grand Canonical Monte Carlo Simulation of Low-Pressure Methane Adsorption in Nanoporous Framework Materials for Sensing Applications. Journal of Physical Chemistry C, 2012, 116, 3492-3502.	1.5	30
256	Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. Journal of Materials Chemistry, 2012, 22, 10210.	6.7	124
257	Separation of CO2–CH4 mixtures in the mesoporous MIL-100(Cr) MOF: experimental and modelling approaches. Dalton Transactions, 2012, 41, 4052.	1.6	78
258	Improving Predictions of Gas Adsorption in Metal–Organic Frameworks with Coordinatively Unsaturated Metal Sites: Model Potentials, ab initio Parameterization, and GCMC Simulations. Journal of Physical Chemistry C, 2012, 116, 18899-18909.	1.5	102
259	Alkylsilane-Functionalized Microporous and Mesoporous Materials: Molecular Simulation and Experimental Analysis of Gas Adsorption. Journal of Physical Chemistry C, 2012, 116, 10150-10161.	1.5	25

#	Article	IF	CITATIONS
260	CO2 adsorption studies on Prussian blue analogues. Microporous and Mesoporous Materials, 2012, 162, 91-97.	2.2	42
261	Understanding the Potential of Zeolite Imidazolate Framework Membranes in Gas Separations Using Atomically Detailed Calculations. Journal of Physical Chemistry C, 2012, 116, 15525-15537.	1.5	42
262	Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal–organic frameworks: a combined experimental and molecular simulation study. Physical Chemistry Chemical Physics, 2012, 14, 2317.	1.3	81
263	In silico screening of carbon-capture materials. Nature Materials, 2012, 11, 633-641.	13.3	497
264	Adsorption of Hydrocarbons in Metal–Organic Frameworks: A Force Field Benchmark on the Example of Benzene in Metal–Organic Framework 5. Journal of Physical Chemistry C, 2012, 116, 15369-15377.	1.5	14
265	Effects of Surface Heterogeneity on the Adsorption of CO ₂ in Microporous Carbons. Environmental Science & Technology, 2012, 46, 1940-1947.	4.6	243
266	Virtual Porous Carbons. , 2012, , 61-104.		10
267	Molecular simulation of CO2 adsorption in micro- and mesoporous carbons with surface heterogeneity. International Journal of Coal Geology, 2012, 104, 83-95.	1.9	156
268	Surprising role of the BDC organic ligand in the adsorption of CO2 by MOF-5. Microporous and Mesoporous Materials, 2012, 163, 186-191.	2.2	24
269	Atomically Detailed Models for Transport of Gas Mixtures in ZIF Membranes and ZIF/Polymer Composite Membranes. Industrial & Engineering Chemistry Research, 2012, 51, 3091-3100.	1.8	36
270	Many-body effects are essential in a physically motivated CO2 force field. Journal of Chemical Physics, 2012, 136, 034503.	1.2	34
271	Effects of Polarizability on the Adsorption of Noble Gases at Low Pressures in Monohalogenated Isoreticular Metal–Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 19765-19772.	1.5	99
272	Atomistic Model of Micelle-Templated Mesoporous Silicas: Structural, Morphological, and Adsorption Properties. Langmuir, 2012, 28, 11131-11141.	1.6	47
273	The influence of carbon dioxide cosolvent on solubility in poly(ethylene glycol). Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	4
274	Flexibility and swing effect on the adsorption of energy-related gases on ZIF-8: combined experimental and simulation study. Dalton Transactions, 2012, 41, 10752.	1.6	176
275	Recent Advances in Molecular Dynamics Simulations of Gas Diffusion in Metal Organic Frameworks. , 0, , .		3
276	Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. I. Thermodynamic properties in the bulk and at the liquid-vapor phase boundary. Journal of Chemical Physics, 2012, 136, 184107.	1.2	46
277	Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. II. Adsorption of atomic and molecular fluids in a porous material. Journal of Chemical Physics, 2012, 136, 184108.	1.2	41

#	Article	IF	CITATIONS
278	Evaluation of Ideal Adsorbed Solution Theory as a Tool for the Design of Metal–Organic Framework Materials. Industrial & Engineering Chemistry Research, 2012, 51, 4911-4921.	1.8	94
279	Selective CO2 uptake and inverse CO2/C2H2 selectivity in a dynamic bifunctional metal–organic framework. Chemical Science, 2012, 3, 2993.	3.7	117
280	Revealing the Structure–Property Relationships of Metal–Organic Frameworks for CO ₂ Capture from Flue Gas. Langmuir, 2012, 28, 12094-12099.	1.6	110
281	Finding MOFs for Highly Selective CO ₂ /N ₂ Adsorption Using Materials Screening Based on Efficient Assignment of Atomic Point Charges. Journal of the American Chemical Society, 2012, 134, 4313-4323.	6.6	187
282	Screening CO ₂ /N ₂ selectivity in metalâ€organic frameworks using Monte Carlo simulations and ideal adsorbed solution theory. Canadian Journal of Chemical Engineering, 2012, 90, 825-832.	0.9	46
283	Computer simulation of gas adsorption in modified COF-108: the impregnation of C ₆₀ into COF-108. Molecular Simulation, 2012, 38, 595-603.	0.9	1
284	A distributed point polarizable force field for carbon dioxide. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	10
285	The importance of secondary structure in determining CO2-protein binding patterns. Journal of Molecular Modeling, 2012, 18, 2527-2541.	0.8	4
286	A new and effective Bin–Monte Carlo scheme to study vapour–liquid equilibria and vapour–solid equilibria. Fluid Phase Equilibria, 2012, 325, 53-65.	1.4	14
287	Simulation study of single-gas permeation of carbon dioxide and methane in hybrid inorganic–organic membrane. Journal of Membrane Science, 2012, 387-388, 30-39.	4.1	8
288	Kinetic mobility and connectivity in nanopore networks. AICHE Journal, 2012, 58, 364-376.	1.8	3
289	Polymatic: a generalized simulated polymerization algorithm for amorphous polymers. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	208
290	Free energy calculations for molecular solids using <scp>GROMACS</scp> . Journal of Chemical Physics, 2013, 139, 034104.	1.2	46
291	Systematic development of predictive molecular models of high surface area activated carbons for adsorption applications. Carbon, 2013, 64, 262-280.	5.4	76
292	Recent Advances in Metal–Organic Frameworkâ€Based Mixed Matrix Membranes. Chemistry - an Asian Journal, 2013, 8, 1692-1704.	1.7	95
293	Adsorption in Metal-Organic Frameworks. , 2013, , 989-1006.		3
294	Monte Carlo simulation and experimental studies on the low temperature characterization of nitrogen adsorption on graphite. Carbon, 2013, 52, 158-170.	5.4	19
295	Many-body effects in some thermodynamic properties of supercritical CO2, CO2–Ar, and CO2–CH4 using HFD-like potentials from molecular dynamics simulation. Journal of Supercritical Fluids, 2013, 74, 61-69.	1.6	16

#	Article	IF	CITATIONS
296	TraPPE-zeo: Transferable Potentials for Phase Equilibria Force Field for All-Silica Zeolites. Journal of Physical Chemistry C, 2013, 117, 24375-24387.	1.5	124
297	Simulated swelling during low-temperature N ₂ adsorption in polymers of intrinsic microporosity. Physical Chemistry Chemical Physics, 2013, 15, 20161-20169.	1.3	40
298	Predicting Gas Separation Performances of Porous Coordination Networks Using Atomistic Simulations. Industrial & Simulatio	1.8	21
299	Modeling CO ₂ Adsorption in Zeolites Using DFT-Derived Charges: Comparing System-Specific and Generic Models. Journal of Physical Chemistry C, 2013, 117, 24446-24454.	1.5	21
300	New Functionalized Metal–Organic Frameworks MIL-47-X (X = â^'Cl, â^'Br, â^'CH ₃ ,) Tj ETQq0 0 0 r Adsorption Properties. Journal of Physical Chemistry C, 2013, 117, 22784-22796.	gBT /Over 1.5	lock 10 Tf 50 79
301	Novel 3D lanthanum oxalate metal-organic-framework: Synthetic, structural, luminescence and adsorption properties. Polyhedron, 2013, 52, 315-320.	1.0	24
302	Simulations of vapor–liquid phase equilibrium and interfacial tension in the CO ₂ –H ₂ O–NaCl system. AICHE Journal, 2013, 59, 3514-3522.	1.8	43
303	Porosity of closed carbon nanotubes compressed using hydraulic pressure. Adsorption, 2013, 19, 785-793.	1.4	4
304	A novel application of kinetic Monte Carlo method in the description of N2 vapour–liquid equilibria and adsorption. Chemical Engineering Science, 2013, 90, 161-169.	1.9	18
305	On the relative strength of adsorption of gases on carbon surfaces with functional groups: fluid–fluid, fluid–graphite and fluid–functional group interactions. Carbon, 2013, 61, 551-557.	5.4	21
306	Biomolecular Simulations with the Transferable Potentials for Phase Equilibria: Extension to Phospholipids. Journal of Physical Chemistry B, 2013, 117, 9910-9921.	1.2	14
307	Analysis of force fields and BET theory for polymers of intrinsic microporosity. Molecular Simulation, 2013, 39, 397-404.	0.9	48
308	Carbon materials as new nanovehicles in hot-melt drug deposition. Journal of Physics Condensed Matter, 2013, 25, 355002.	0.7	9
309	A Multiscale Study of MOFs as Adsorbents in H ₂ PSA Purification. Industrial & Engineering Chemistry Research, 2013, 52, 9946-9957.	1.8	63
310	The effect of SO2 on CO2 capture in zeolitic imidazolate frameworks. Physical Chemistry Chemical Physics, 2013, 15, 11856.	1.3	59
311	Methane storage capabilities of diamond analogues. Physical Chemistry Chemical Physics, 2013, 15, 20937.	1.3	10
312	Influence of the long-range corrections on the interfacial properties of molecular models using Monte Carlo simulation. Journal of Chemical Physics, 2013, 138, 034707.	1.2	52
313	Gas adsorption and diffusion in a highly CO ₂ selective metal–organic framework: molecular simulations. Molecular Simulation, 2013, 39, 14-24.	0.9	20

#	Article	IF	CITATIONS
314	Molecular dynamics simulations of metal-organic frameworks as membranes for gas mixtures separation. Journal of Membrane Science, 2013, 428, 241-250.	4.1	40
315	Density of States Partitioning Method for Calculating the Free Energy of Solids. Journal of Chemical Theory and Computation, 2013, 9, 165-171.	2.3	17
316	Molecular Simulation Studies of CO ₂ Adsorption by Carbon Model Compounds for Carbon Capture and Sequestration Applications. Environmental Science & Technology, 2013, 47, 95-101.	4.6	192
317	Effect of Spinâ€Crossoverâ€Induced Pore Contraction on CO ₂ –Host Interactions in the Porous Coordination Polymers [Fe(pyrazine)M(CN) ₄] (M = Ni, Pt). European Journal of Inorganic Chemistry, 2013, 2013, 511-519.	1.0	15
318	Molecular Dynamics Simulations of Gas Selectivity in Amorphous Porous Molecular Solids. Journal of the American Chemical Society, 2013, 135, 17818-17830.	6.6	91
319	A combined computational and experimental study of high pressure and supercritical CO2 adsorption on Basolite MOFs. Microporous and Mesoporous Materials, 2013, 175, 34-42.	2.2	45
320	Use of the Grand Canonical Transition-Matrix Monte Carlo Method to Model Gas Adsorption in Porous Materials. Journal of Physical Chemistry C, 2013, 117, 5861-5872.	1.5	34
321	Water Effects on Postcombustion CO ₂ Capture in Mg-MOF-74. Journal of Physical Chemistry C, 2013, 117, 3383-3388.	1.5	134
323	Understanding CO ₂ Dynamics in Metal–Organic Frameworks with Open Metal Sites. Angewandte Chemie - International Edition, 2013, 52, 4410-4413.	7.2	160
324	Molecular Simulation Studies on the Vapor–Liquid Phase Equilibria of Binary Mixtures of R-1234yf and R-1234ze(E) with R-32 and CO ₂ . Journal of Chemical & Engineering Data, 2013, 58, 1867-1873.	1.0	96
325	Carbon Dioxide Capture by PAFs and an Efficient Strategy To Fast Screen Porous Materials for Gas Separation. Journal of Physical Chemistry C, 2013, 117, 8353-8364.	1.5	62
326	Theoretical Investigations of CO ₂ and H ₂ Sorption in an Interpenetrated Square-Pillared Metal–Organic Material. Journal of Physical Chemistry C, 2013, 117, 9970-9982.	1.5	36
327	Structure-Solubility Correlation Model for Carbon Dioxide in Ionic Liquids. Industrial & Engineering Chemistry Research, 2013, 52, 954-962.	1.8	5
328	Screening metal–organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology. Physical Chemistry Chemical Physics, 2013, 15, 9093.	1.3	92
329	Molecular Simulation of Adsorption and Transport in Hierarchical Porous Materials. Langmuir, 2013, 29, 7864-7875.	1.6	64
330	High CO ₂ Selectivity of an Amine-Functionalized Metal Organic Framework in Adsorption-Based and Membrane-Based Gas Separations. Industrial & Engineering Chemistry Research, 2013, 52, 3462-3472.	1.8	47
331	Toward Effective CO ₂ /CH ₄ Separations by Sulfur-Containing PIMs via Predictive Molecular Simulations. Macromolecules, 2013, 46, 5371-5380.	2.2	58
332	Catenated metal-organic frameworks: Promising hydrogen purification materials and high hydrogen storage medium with further lithium doping. International Journal of Hydrogen Energy, 2013, 38, 9811-9818.	3.8	37

#	Article	IF	CITATIONS
333	Development of Computational Methodologies for Metal–Organic Frameworks and Their Application in Gas Separations. Chemical Reviews, 2013, 113, 8261-8323.	23.0	448
334	<i>Ab initio</i> potential energy surface for the nitrogen molecule pair and thermophysical properties of nitrogen gas. Molecular Physics, 2013, 111, 387-401.	0.8	90
335	Cooperative Carbon Capture Capabilities in Multivariate MOFs Decorated with Amino Acid Side Chains: A Computational Study. Journal of Physical Chemistry C, 2013, 117, 14717-14722.	1.5	13
336	MOFâ€FF – A flexible firstâ€principles derived force field for metalâ€organic frameworks. Physica Status Solidi (B): Basic Research, 2013, 250, 1128-1141.	0.7	162
337	Predicting the impact of functionalized ligands on CO2 adsorption in MOFs: A combined DFT and Grand Canonical Monte Carlo study. Microporous and Mesoporous Materials, 2013, 168, 225-238.	2.2	47
338	Molecular Simulation Studies on the Thermophysical Properties of the Refrigerant Blend R-445A. Journal of Chemical & Engineering Data, 2013, 58, 3470-3476.	1.0	25
339	Effect of Immobilized Amines on the Sorption Properties of Solid Materials: Impregnation versus Grafting. Langmuir, 2013, 29, 199-206.	1.6	44
340	Mail-Order Metal–Organic Frameworks (MOFs): Designing Isoreticular MOF-5 Analogues Comprising Commercially Available Organic Molecules. Journal of Physical Chemistry C, 2013, 117, 12159-12167.	1.5	64
341	Examining the Effects of Different Ring Configurations and Equatorial Fluorine Atom Positions on CO ₂ Sorption in [Cu(bpy) ₂ SiF ₆]. Crystal Growth and Design, 2013, 13, 4542-4548.	1.4	17
342	Transferable Potentials for Phase Equilibria. 10. Explicit-Hydrogen Description of Substituted Benzenes and Polycyclic Aromatic Compounds. Journal of Physical Chemistry B, 2013, 117, 273-288.	1.2	95
343	A Polarizable and Transferable PHAST CO ₂ Potential for Materials Simulation. Journal of Chemical Theory and Computation, 2013, 9, 5421-5429.	2.3	39
344	Identifying Promising Zeolite Frameworks for Separation Applications: A Building-Block-Based Approach. Journal of Physical Chemistry C, 2013, 117, 17099-17110.	1.5	19
345	A Polarizable and Transferable PHAST N ₂ Potential for Use in Materials Simulation. Journal of Chemical Theory and Computation, 2013, 9, 5550-5557.	2.3	16
346	Enhancement of Carbon Dioxide Adsorption by Lithium Decorating and Fullerene Encapsulating in Metal-Organic Frameworks. Advanced Materials Research, 0, 773, 927-931.	0.3	0
347	Molecular Simulation of CO2- and CO3-Brine-Mineral Systems. Reviews in Mineralogy and Geochemistry, 2013, 77, 189-228.	2.2	36
348	Variation and decomposition of the partial molar volume of small gas molecules in different organic solvents derived from molecular dynamics simulations. Journal of Chemical Physics, 2013, 139, 244506.	1.2	7
349	Predicting Lowâ€Pressure O ₂ Adsorption in Nanoporous Framework Materials for Sensing Applications. ChemPhysChem, 2013, 14, 3740-3750.	1.0	11
350	Fluid-solid equilibrium of carbon dioxide as obtained from computer simulations of several popular potential models: The role of the quadrupole. Journal of Chemical Physics, 2013, 138, 084506.	1.2	21

#	Article	IF	CITATIONS
351	Application of Molecular Simulations to CO2-Enhanced Oil Recovery: Phase Equilibria and Interfacial Phenomena. SPE Journal, 2013, 18, 319-330.	1.7	51
352	Selectivity and self-diffusion of CO2 and H2 in a mixture on a graphite surface. Frontiers in Chemistry, 2013, 1, 38.	1.8	24
353	6. Molecular Simulation of CO ₂ - and CO ₃ -Brine-Mineral Systems. , 2013, , 189-228.		0
354	Folding of graphene slit like pore walls—a simple method of improving CO ₂ separation from mixtures with CH ₄ or N ₂ . Journal of Physics Condensed Matter, 2014, 26, 485006.	0.7	7
355	Atomistic simulation of CO ₂ solubility in poly(ethylene oxide) oligomers. Molecular Physics, 2014, 112, 1540-1547.	0.8	4
356	Design and Applications of Nanomaterials for Sensors. Challenges and Advances in Computational Chemistry and Physics, 2014, , .	0.6	6
357	Thermodynamic characterization of two layers of CO2 on a graphite surface. Chemical Physics Letters, 2014, 612, 214-218.	1.2	8
358	Adapting SAFT-Î ³ perturbation theory to site-based molecular dynamics simulation. III. Molecules with partial charges at bulk phases, confined geometries and interfaces. Journal of Chemical Physics, 2014, 141, 094708.	1.2	6
359	Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: A systematic study of several common force fields. Journal of Chemical Physics, 2014, 141, 134504.	1.2	21
360	Computational screening of porous metalâ€organic frameworks and zeolites for the removal of SO ₂ and NO _x from flue gases. AICHE Journal, 2014, 60, 2314-2323.	1.8	112
361	Predictive simulations of the structural and adsorptive properties for PIM-1 variations. Molecular Simulation, 2014, 40, 599-609.	0.9	19
362	Adsorption-based characterization of hierarchical metal–organic frameworks. Adsorption, 2014, 20, 349-357.	1.4	7
363	Investigating the Gas Sorption Mechanism in an <i>rht</i> -Metal–Organic Framework through Computational Studies. Journal of Physical Chemistry C, 2014, 118, 439-456.	1.5	40
364	N2 in ZIF-8: Sorbate induced structural changes and self-diffusion. Microporous and Mesoporous Materials, 2014, 187, 1-6.	2.2	28
365	Adsorption and Separation of Xe in Metal–Organic Frameworks and Covalent–Organic Materials. Journal of Physical Chemistry C, 2014, 118, 10221-10229.	1.5	29
366	Methane and carbon dioxide adsorption and diffusion in amorphous, metal-decorated nanoporous silica. Molecular Simulation, 2014, 40, 618-633.	0.9	6
367	Adsorption and Dynamics in Hierarchical Metal–Organic Frameworks. Journal of Physical Chemistry C, 2014, 118, 7423-7433.	1.5	25
368	Noble Gas Adsorption in Metal–Organic Frameworks Containing Open Metal Sites. Journal of Physical Chemistry C, 2014, 118, 11685-11698.	1.5	165

#	Article	IF	CITATIONS
369	Porous M ^{II} /Pyrimidineâ€4,6â€Dicarboxylato Neutral Frameworks: Synthetic Influence on the Adsorption Capacity and Evaluation of CO ₂ â€Adsorbent Interactions. Chemistry - A European Journal, 2014, 20, 1554-1568.	1.7	22
370	An examination of the excess thermodynamic properties of flexible molecules from a molecular modelling perspective. Fluid Phase Equilibria, 2014, 361, 93-103.	1.4	6
371	Effects of temperature, pore dimensions and adsorbate on the transition from pore blocking to cavitation in an ink-bottle pore. Chemical Engineering Journal, 2014, 239, 274-283.	6.6	19
372	Recent developments in first-principles force fields for molecules in nanoporous materials. Journal of Materials Chemistry A, 2014, 2, 274-291.	5.2	126
373	Energetic investigation of the adsorption process of CH4, C2H6 and N2 on activated carbon: Numerical and statistical physics treatment. Physica B: Condensed Matter, 2014, 433, 55-61.	1.3	7
374	Validation of the CO ₂ /N ₂ O Analogy Using Molecular Simulation. Industrial & Engineering Chemistry Research, 2014, 53, 18081-18090.	1.8	28
375	Theoretical insights into nucleation of CO ₂ and CH ₄ hydrates for CO ₂ capture and storage. Physical Chemistry Chemical Physics, 2014, 16, 26929-26937.	1.3	8
376	Toward a Materials Genome Approach for Ionic Liquids: Synthesis Guided by Ab Initio Property Maps. Journal of Physical Chemistry B, 2014, 118, 13609-13620.	1.2	19
377	Computational exploration of a Zr-carboxylate based metal–organic framework as a membrane material for CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 1657-1661.	5.2	68
378	Structure and Dynamics of Carbon Dioxide, Nitrogen, Water, and Their Mixtures in Metal Organic Frameworks. Journal of Chemical & Engineering Data, 2014, 59, 2973-2981.	1.0	9
379	Transport properties of carbon dioxide and methane from molecular dynamics simulations. Journal of Chemical Physics, 2014, 141, 134101.	1.2	93
380	A Monte Carlo Simulation of the Adsorption of CO _{₂andSO_{2}Gases in Pure and Functionalized Single Walled Carbon Nanotubes. Separation Science and Technology, 2014, 49, 499-505.}	1.3	6
381	Molecular Dynamics Simulations of Acidic Gases at Interface of Quaternary Ammonium Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 22012-22020.	1.5	27
382	Molecular Dynamics Studies on Liquid-Phase Dynamics and Structures of Four Different Fluoropropenes and Their Binary Mixtures with R-32 and CO ₂ . Journal of Physical Chemistry B, 2014, 118, 240-254.	1.2	25
383	Carbon Dioxide Hydrate Phase Equilibrium and Cage Occupancy Calculations Using <i>Ab Initio</i> Intermolecular Potentials. Journal of Physical Chemistry B, 2014, 118, 577-589.	1.2	39
384	Atomistic Molecular Dynamics Simulations of CO ₂ Diffusivity in H ₂ O for a Wide Range of Temperatures and Pressures. Journal of Physical Chemistry B, 2014, 118, 5532-5541.	1.2	83
385	Computational Design of Metal–Organic Frameworks Based on Stable Zirconium Building Units for Storage and Delivery of Methane. Chemistry of Materials, 2014, 26, 5632-5639.	3.2	191
386	From Molecules to Materials: Computational Design of Nâ€Containing Porous Aromatic Frameworks for CO ₂ Capture. ChemPhysChem, 2014, 15, 1772-1778.	1.0	11

#	Article	IF	CITATIONS
387	Transport diffusivity of propane and propylene inside SWNTs from equilibrium molecular dynamics simulations. Physical Chemistry Chemical Physics, 2014, 16, 24697-24703.	1.3	8
388	Thermodynamic Properties of Supercritical Mixtures of Carbon Dioxide and Methane: A Molecular Simulation Study. Journal of Chemical & Engineering Data, 2014, 59, 3041-3054.	1.0	41
389	An online parameter and property database for the TraPPE force field. Molecular Simulation, 2014, 40, 101-105.	0.9	111
390	Monte Carlo simulations of phase behavior and microscopic structure for supercritical CO2 and thiophene mixtures. Journal of Supercritical Fluids, 2014, 95, 214-221.	1.6	5
391	Solubility of the Precombustion Gases CO ₂ , CH ₄ , CO, H ₂ , N ₂ , and H ₂ S in the Ionic Liquid [bmim][Tf ₂ N] from Monte Carlo Simulations. Journal of Physical Chemistry C, 2014, 118, 23599-23604.	1.5	67
392	Electrostatic Potential within the Free Volume Space of Imidazole-Based Solvents: Insights into Gas Absorption Selectivity. Journal of Physical Chemistry B, 2014, 118, 255-264.	1.2	26
393	Virtual Synthesis of Thermally Cross-Linked Copolymers from a Novel Implementation of Polymatic. Journal of Physical Chemistry B, 2014, 118, 1916-1924.	1.2	31
394	Molecular Dynamics Simulation of Anion Effect on Solubility, Diffusivity, and Permeability of Carbon Dioxide in Ionic Liquids. Industrial & Engineering Chemistry Research, 2014, 53, 10485-10490.	1.8	48
395	Water adsorption in UiO-66: the importance of defects. Chemical Communications, 2014, 50, 11329-11331.	2.2	227
396	Amorphous PAF-1: Guiding the Rational Design of Ultraporous Materials. Journal of Physical Chemistry C, 2014, 118, 19712-19722.	1.5	44
397	Theoretical Investigations of CO ₂ and CH ₄ Sorption in an Interpenetrated Diamondoid Metal–Organic Material. Langmuir, 2014, 30, 6454-6462.	1.6	35
398	A DIH-based equation for separation of CO2–CH4 in metal–organic frameworks and covalent–organic materials. Journal of Materials Chemistry A, 2014, 2, 11341.	5.2	28
399	Ionomers of Intrinsic Microporosity: In Silico Development of Ionic-Functionalized Gas-Separation Membranes. Langmuir, 2014, 30, 12039-12048.	1.6	21
400	Effects of electrostatic interactions on gas adsorption and permeability of MOF membranes. Molecular Simulation, 2014, 40, 557-570.	0.9	22
401	Optimization of Intermolecular Potential Parameters for the CO ₂ /H ₂ O Mixture. Journal of Physical Chemistry B, 2014, 118, 11504-11511.	1.2	35
402	Molecular Dynamics Studies of Graphite Exfoliation Using Supercritical CO2. Challenges and Advances in Computational Chemistry and Physics, 2014, , 171-183.	0.6	3
403	A Comparison of Advanced Monte Carlo Methods for Open Systems: CFCMC vs CBMC. Journal of Chemical Theory and Computation, 2014, 10, 942-952.	2.3	60
404	A computational study of the adsorption of n-perfluorohexane in zeolite BCR-704. Fluid Phase Equilibria, 2014, 366, 146-151.	1.4	14

#	Article	IF	CITATIONS
405	CO ₂ Adsorption in Fe ₂ (dobdc): A Classical Force Field Parameterized from Quantum Mechanical Calculations. Journal of Physical Chemistry C, 2014, 118, 12230-12240.	1.5	45
406	Force-Field Development from Electronic Structure Calculations with Periodic Boundary Conditions: Applications to Gaseous Adsorption and Transport in Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2014, 10, 1477-1488.	2.3	121
407	Gas adsorption/separation properties of metal directed self-assembly of two coordination polymers with 5-nitroisophthalate. Journal of Solid State Chemistry, 2014, 210, 280-286.	1.4	18
408	Interpreting Gas-Saturation Vapor-Pressure Measurements Using Virial Coefficients Derived from Molecular Models. Journal of Chemical & Engineering Data, 2014, 59, 3183-3192.	1.0	7
409	Revealing the structure–property relationship of covalent organic frameworks for CO ₂ capture from postcombustion gas: a multi-scale computational study. Physical Chemistry Chemical Physics, 2014, 16, 15189-15198.	1.3	69
410	Comprehensive Characterization of Interfacial Behavior for the Mixture CO ₂ + H ₂ O + CH ₄ : Comparison between Atomistic and Coarse Grained Molecular Simulation Models and Density Gradient Theory. Journal of Physical Chemistry C, 2014, 118, 24504-24519.	1.5	52
411	Estimating gas permeability and permselectivity of microporous polymers. Journal of Membrane Science, 2014, 468, 259-268.	4.1	40
412	Mechanism of N ₂ Reduction to NH ₃ by Aqueous Solvated Electrons. Journal of Physical Chemistry B, 2014, 118, 195-203.	1.2	49
413	Force field comparison and thermodynamic property calculation of supercritical CO2 and CH4 using molecular dynamics simulations. Fluid Phase Equilibria, 2014, 368, 80-90.	1.4	89
414	Gas Diffusion in a Porous Organic Cage: Analysis of Dynamic Pore Connectivity Using Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2014, 118, 12734-12743.	1.5	43
415	Computational Screening of Porous Coordination Networks for Adsorption and Membrane-Based Gas Separations. Journal of Physical Chemistry C, 2014, 118, 13988-13997.	1.5	27
416	The Adsorption Properties of Amorphous, Metal-Decorated Microporous Silsesquioxanes for Mixtures of Carbon Dioxide, Methane and Hydrogen. Journal of Physical Chemistry C, 2014, 118, 13008-13017.	1.5	5
417	Experimental and numerical study of CO2 adsorption on Ni/DOBDC metal-organic framework. Applied Thermal Engineering, 2014, 73, 1501-1509.	3.0	14
418	The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates. Journal of Chemical Physics, 2015, 143, 094506.	1.2	58
419	From Nanoscale Wetting Towards Enhanced Oil Recovery. , 2015, , .		2
420	Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in <i>rht</i> â€Metal–Organic Frameworks. ChemPhysChem, 2015, 16, 3170-3179.	1.0	14
421	Effect of Chain Topology of Polyethylenimine on Physisorption and Chemisorption of Carbon Dioxide. ChemPhysChem, 2015, 16, 1480-1490.	1.0	19
422	Molecular Simulation Studies of Flue Gas Purification by Bio-MOF. Energies, 2015, 8, 11531-11545.	1.6	8

#	Article	IF	CITATIONS
423	Effective Thermal Conductivity of MOF-5 Powder under a Hydrogen Atmosphere. Computation, 2015, 3, 558-573.	1.0	3
424	A â^¼32–70 K FORMATION TEMPERATURE RANGE FOR THE ICE GRAINS AGGLOMERATED BY COMET 67 P/CHURYUMOV–GERASIMENKO. Astrophysical Journal Letters, 2015, 805, L1.	3.0	22
425	Application of MD Simulations to Predict Membrane Properties of MOFs. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	21
426	CO ₂ –C ₄ H ₁₀ Mixtures Simulated in Silica Slit Pores: Relation between Structure and Dynamics. Journal of Physical Chemistry C, 2015, 119, 15274-15284.	1.5	86
427	Simulating the Reactions of CO2 in Aqueous Monoethanolamine Solution by Reaction Ensemble Monte Carlo Using the Continuous Fractional Component Method. Journal of Chemical Theory and Computation, 2015, 11, 2661-2669.	2.3	30
428	Computational exploration of the gas adsorption on the iron tetracarboxylate metal-organic framework MIL-102. Molecular Simulation, 2015, 41, 1357-1370.	0.9	14
429	In Silico Determination of Gas Permeabilities by Non-Equilibrium Molecular Dynamics: CO2 and He through PIM-1. Membranes, 2015, 5, 99-119.	1.4	44
430	Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations. Journal of the American Chemical Society, 2015, 137, 15760-15771.	6.6	164
431	Molecular Dynamics Evaluation of Dielectric Constant Mixing Rules for H2O–CO2 at Geologic Conditions. Journal of Solution Chemistry, 2015, 44, 2179-2193.	0.6	9
432	The interplay between molecular layering and clustering in adsorption of gases on graphitized thermal carbon black – Spill-over phenomenon and the important role of strong sites. Journal of Colloid and Interface Science, 2015, 446, 98-113.	5.0	26
433	New insights into the ideal adsorbed solution theory. Physical Chemistry Chemical Physics, 2015, 17, 7232-7247.	1.3	25
434	Transferable Next-Generation Force Fields from Simple Liquids to Complex Materials. Accounts of Chemical Research, 2015, 48, 548-556.	7.6	71
435	Simulation of Pore Width and Pore Charge Effects on Selectivities of CO2 vs. H2 from a Syngas-like Mixture in Carbon Mesopores. Energy Procedia, 2015, 64, 150-159.	1.8	9
436	Metal–Organic Frameworks from Divalent Metals and 1,4-Benzenedicarboxylate with Bidentate Pyridine- <i>N</i> -oxide Co-ligands. Crystal Growth and Design, 2015, 15, 891-899.	1.4	19
437	From Inorganic to Organic Strategy To Design Porous Aromatic Frameworks for High-Capacity Gas Storage. Journal of Physical Chemistry C, 2015, 119, 3260-3267.	1.5	15
438	Evaluation of Force Field Performance for High-Throughput Screening of Gas Uptake in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 3143-3152.	1.5	85
439	Adsorptive absorption: A preliminary experimental and modeling study on CO2 solubility. Chemical Engineering Science, 2015, 127, 260-268.	1.9	35
440	Force field development for organic molecules: Modifying dihedral and 1- <i>n</i> pair interaction parameters. Journal of Computational Chemistry, 2015, 36, 376-384.	1.5	9

#	Article	IF	CITATIONS
441	Computer simulation of CO2/CH4 mixture adsorption in wet microporous carbons. Colloid Journal, 2015, 77, 82-90.	0.5	9
442	Diffusion and Separation of H ₂ , CH ₄ , CO ₂ , and N ₂ in Diamond-Like Frameworks. Journal of Physical Chemistry C, 2015, 119, 6324-6330.	1.5	37
443	Molecular simulation of size-selective gas adsorption in idealised carbon nanotubes. Molecular Simulation, 2015, 41, 1388-1395.	0.9	5
444	Transient evaluation of a city bus air conditioning system with R-445A as drop-in – From the molecules to the system. International Journal of Thermal Sciences, 2015, 96, 355-361.	2.6	10
445	Transport Properties of Amine/Carbon Dioxide Reactive Mixtures and Implications to Carbon Capture Technologies. ACS Applied Materials & Interfaces, 2015, 7, 17603-17613.	4.0	7
446	Molecular Dynamics Simulation of Transport and Structural Properties of CO ₂ Using Different Molecular Models. Journal of Chemical & Engineering Data, 2015, 60, 2188-2196.	1.0	32
447	Analysis of CO ₂ Adsorption in Amine-Functionalized Porous Silicas by Molecular Simulations. Energy & Fuels, 2015, 29, 3855-3862.	2.5	36
448	Mutual and Self-Diffusivities in Binary Mixtures of [EMIM][B(CN) ₄] with Dissolved Gases by Using Dynamic Light Scattering and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2015, 119, 8583-8592.	1.2	31
449	Probing Lewis Acid–Base Interactions with Born–Oppenheimer Molecular Dynamics: The Electronic Absorption Spectrum of <i>p</i> -Nitroaniline in Supercritical CO ₂ . Journal of Physical Chemistry B, 2015, 119, 8397-8405.	1.2	7
450	Development of the Transferable Potentials for Phase Equilibria Model for Hydrogen Sulfide. Journal of Physical Chemistry B, 2015, 119, 7041-7052.	1.2	59
451	Molecular simulations of porous coordination network-based mixed matrix membranes for CO ₂ /N ₂ separations. Molecular Simulation, 2015, 41, 1396-1408.	0.9	9
452	Structural Properties and Dynamics of Thiophene in Sub/Supercritical Carbon Dioxide from Car–Parrinello Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2015, 119, 8573-8582.	1.2	5
453	Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line. Journal of Chemical Physics, 2015, 142, 124505.	1.2	96
454	CO ₂ capture in rht metal–organic frameworks: multiscale modeling from molecular simulation to breakthrough prediction. Journal of Materials Chemistry A, 2015, 3, 16327-16336.	5.2	20
455	What Determines CO ₂ Solubility in Ionic Liquids? A Molecular Simulation Study. Journal of Physical Chemistry B, 2015, 119, 10066-10078.	1.2	105
456	Extension of the TraPPE-UA force field to the simulation of vapor–liquid phase equilibria of vinyl acetate system. Journal of Molecular Liquids, 2015, 209, 520-525.	2.3	10
457	Ewald Summation for Molecular Simulations. Journal of Chemical Theory and Computation, 2015, 11, 3684-3695.	2.3	108
458	Ab Initio Derived Force Fields for Predicting CO ₂ Adsorption and Accessibility of Metal Sites in the Metal–Organic Frameworks M-MOF-74 (M = Mn, Co, Ni, Cu). Journal of Physical Chemistry C, 2015, 119, 16058-16071.	1.5	84

#	Article	IF	CITATIONS
459	Adsorption of CO2/CH4 and CO2/N2 mixtures in SBA-15 and CMK-5 in the presence of water: A computer simulation study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 474, 76-84.	2.3	21
460	Quantum-Chemical Characterization of the Properties and Reactivities of Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 6051-6111.	23.0	241
461	Molecular dynamics investigation on the deliquescence of NH ₄ Cl and NH ₄ NO ₃ nanoparticles under atmospheric conditions. RSC Advances, 2015, 5, 38345-38353.	1.7	3
462	Selective capture of trace sulfur gas by porous covalent-organic materials. Chemical Engineering Science, 2015, 135, 373-380.	1.9	25
463	Enhanced O ₂ Selectivity versus N ₂ by Partial Metal Substitution in Cu-BTC. Chemistry of Materials, 2015, 27, 2018-2025.	3.2	72
465	Existence of Ultrafine Crevices and Functional Groups along the Edge Surfaces of Graphitized Thermal Carbon Black. Langmuir, 2015, 31, 4196-4204.	1.6	18
466	Selective Gas Diffusion in Graphene Oxides Membranes: A Molecular Dynamics Simulations Study. ACS Applied Materials & Interfaces, 2015, 7, 9052-9059.	4.0	137
467	Computational Modeling of bio-MOFs for CO2/CH4 separations. Chemical Engineering Science, 2015, 130, 120-128.	1.9	30
468	Atomistic molecular dynamics simulations of H ₂ O diffusivity in liquid and supercritical CO ₂ . Molecular Physics, 2015, 113, 2805-2814.	0.8	38
469	Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nature Communications, 2015, 6, 8335.	5.8	214
470	Tuning the target composition of amine-grafted CPO-27-Mg for capture of CO2 under post-combustion and air filtering conditions: a combined experimental and computational study. Dalton Transactions, 2015, 44, 18970-18982.	1.6	26
471	A first principles approach to the electronic properties of liquid and supercritical CO2. Journal of Chemical Physics, 2015, 142, 024504.	1.2	15
472	Targeted capture and pressure/temperature-responsive separation in flexible metal–organic frameworks. Journal of Materials Chemistry A, 2015, 3, 22574-22583.	5.2	30
473	New High- and Low-Temperature Phase Changes of ZIF-7: Elucidation and Prediction of the Thermodynamics of Transitions. Journal of the American Chemical Society, 2015, 137, 13603-13611.	6.6	66
474	Molecular Simulation Study of the Solubility, Diffusivity and Permselectivity of Pure and Binary Mixtures of CO ₂ and CH ₄ in the Ionic Liquid 1- <i>n</i> Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Industrial & Engineering Chemistry Research, 2015, 54, 8821-8828.	1.8	37
475	Solubility of Natural Gas Species in Ionic Liquids and Commercial Solvents: Experiments and Monte Carlo Simulations. Journal of Chemical & Engineering Data, 2015, 60, 3039-3045.	1.0	26
476	Effect of Modified Metal Center in Ligand for CO ₂ Capture in Novel Zr-Based Porphyrinic Metal–Organic Frameworks: A Computational Investigation. Journal of Physical Chemistry C, 2015, 119, 21943-21951.	1.5	23
477	Calculation of the chemical potential and the activity coefficient of two layers of CO ₂ adsorbed on a graphite surface. Physical Chemistry Chemical Physics, 2015, 17, 1226-1233.	1.3	12

#	Article	IF	CITATIONS
478	Enhancement of CO ₂ Adsorption in Magnesium Alkoxide IRMOF-10. Journal of Physical Chemistry C, 2015, 119, 22001-22007.	1.5	9
479	Solubility of Gases in Water Confined in Nanoporous Materials: ZSM-5, MCM-41, and MIL-100. Journal of Physical Chemistry C, 2015, 119, 21547-21554.	1.5	53
480	Tunable Porosity through Cooperative Diffusion in a Multicomponent Porous Molecular Crystal. Journal of Physical Chemistry C, 2015, 119, 22577-22586.	1.5	15
481	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	6.6	149
482	Modelling Gas Adsorption in Porous Solids: Roles of Surface Chemistry and Pore Architecture. Journal of Chemical Sciences, 2015, 127, 1687-1699.	0.7	7
483	Effects of molecular simulation parameters on predicting gas separation performance of ZIFs. Journal of Chemical Technology and Biotechnology, 2015, 90, 1707-1718.	1.6	11
484	Computational screening of ZIFs for CO ₂ separations. Molecular Simulation, 2015, 41, 713-726.	0.9	28
485	Molecular dynamics as a tool to study heterogeneity in zeolites – Effect of Na+ cations on diffusion of CO2 and N2 in Na-ZSM-5. Chemical Engineering Science, 2015, 121, 300-312.	1.9	22
486	Competitive adsorption of a binary CO ₂ –CH ₄ mixture in nanoporous carbons: effects of edge-functionalization. Nanoscale, 2015, 7, 1002-1012.	2.8	145
487	Understanding Gas Adsorption Selectivity in IRMOF-8 Using Molecular Simulation. ACS Applied Materials & amp; Interfaces, 2015, 7, 624-637.	4.0	73
488	Charge Equilibration Based on Atomic Ionization in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 456-466.	1.5	37
489	Compressibility, thermal expansion coefficient and heat capacity of CH ₄ and CO ₂ hydrate mixtures using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2015, 17, 2869-2883.	1.3	82
490	Effect of functional groups on separating carbon dioxide from CO2/N2 gas mixtures using edge functionalized graphene nanoribbons. Chemical Engineering Science, 2015, 121, 279-291.	1.9	39
491	How Impurities Affect CO ₂ Capture in Metal–Organic Frameworks Modified with Different Functional Groups. ACS Sustainable Chemistry and Engineering, 2015, 3, 117-124.	3.2	27
492	Adsorption in micro and mesoporous slit carbons with oxygen surface functionalities. Microporous and Mesoporous Materials, 2015, 209, 141-149.	2.2	15
493	Computational Screening of MOF-Based Mixed Matrix Membranes for CO ₂ /N ₂ Separations. Journal of Nanomaterials, 2016, 2016, 1-12.	1.5	15
494	Molecular Simulations for Adsorption-Based CO2 Separation Using Metal Organic Frameworks. , 2016, , .		0
495	Transferable force-field for modelling of CO ₂ , N ₂ , O ₂ and Ar in all silica and Na ⁺ exchanged zeolites. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 045002.	0.8	53

ARTICLE IF CITATIONS # Pore size tuning of poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) hypercrosslinked 496 1.8 33 polymers: Insights from molecular simulations. Polymer, 2016, 99, 173-184. Minimal Basis Iterative Stockholder: Atoms in Molecules for Force-Field Development. Journal of 2.3 119 Chemical Theory and Computation, 2016, 12, 3894-3912. Thermodynamics and Kinetics of Gas Storage in Porous Liquids. Journal of Physical Chemistry B, 2016, 498 1.2 64 120, 7195-7200. Atomistic Molecular Dynamics Simulations of Carbon Dioxide Diffusivity in <i>n</i>-Hexane, <i>n</i>-Decane, <i>n</i>-Hexadecane, Cyclohexane, and Squalane. Journal of Physical Chemistry B, 499 1.2 2016, 120, 12890-12900. Modeling Carbon Dioxide Vibrational Frequencies in Ionic Liquids: II. Spectroscopic Map. Journal of 500 1.2 21 Physical Chemistry B, 2016, 120, 12633-12642. Carbon dioxide in an ionic liquid: Structural and rotational dynamics. Journal of Chemical Physics, 1.2 2016, 144, 104506. Lattice constants of pure methane and carbon dioxide hydrates at low temperatures. Implementing 502 quantum corrections to classical molecular dynamics studies. Journal of Chemical Physics, 2016, 144, 1.2 20 124512. Research of CO2 and N2 Adsorption Behavior in K-Illite Slit Pores by GCMC Method. Scientific Reports, 1.6 2016, 6, 37579. System-size corrections for self-diffusion coefficients calculated from molecular dynamics 504 simulations: The case of CO2, <i>n</i>-alkanes, and poly(ethylene glycol) dimethyl ethers. Journal of 1.2 101 Chemical Physics, 2016, 145, 074109. Physical Absorption of Green House Gases in Amines: The Influence of Functionality, Structure, and 1.2 Cross-Interactions. Journal of Physical Chemistry B, 2016, 120, 13136-13143. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study. Journal of Chemical 506 1.2 8 Physics, 2016, 145, 074701. Anisotropic parallel self-diffusion coefficients near the calcite surface: A molecular dynamics study. 1.2 Journal of Chemical Physics, 2016, 145, 084702. Adsorption Properties of MFM-400 and MFM-401 with CO₂ and Hydrocarbons: Selectivity 508 1.9 41 Derived from Directed Supramolecular Interactions. Inorganic Chemistry, 2016, 55, 7219-7228. A new method for the generation of realistic atomistic models of siliceous MCM-41. Microporous and 509 2.2 14 Mesoporous Materials, 2016, 228, 215-223. To what extent can mutual shifting of folded carbonaceous walls in slit-like pores affect their 510 0.7 1 adsorption properties?. Journal of Physics Condensed Matter, 2016, 28, 015002. Investigating polarization effects of CO2 adsorption in MgMOF-74. Journal of Computational Science, 2016, 15, 86-94. Lessons learned from theory and simulation of step potentials. Fluid Phase Equilibria, 2016, 416, 27-41. 512 1.4 8 Gate opening effect for carbon dioxide in ZIF-8 by molecular dynamics – Confirmed, but at high CO2 1.2 pressure. Chemical Physics Letters, 2016, 648, 178-181.

#	Article	IF	CITATIONS
514	Understanding adsorption of CO ₂ , N ₂ , CH ₄ and their mixtures in functionalized carbon nanopipe arrays. Physical Chemistry Chemical Physics, 2016, 18, 14007-14016.	1.3	23
515	Selective O ₂ Sorption at Ambient Temperatures via Node Distortions in Sc-MIL-100. Chemistry of Materials, 2016, 28, 3327-3336.	3.2	39
516	Adsorption in heterogeneous porous media: Hierarchical and composite solids. Microporous and Mesoporous Materials, 2016, 229, 145-154.	2.2	15
517	Nanoporous chalcogenides for adsorption and gas separation. Physical Chemistry Chemical Physics, 2016, 18, 13449-13458.	1.3	11
518	Monte Carlo simulations of phase equilibria and microstructure of thiophene/[Bmim][PF6]/CO2. Chemical Engineering Science, 2016, 149, 88-96.	1.9	4
519	Improving Carbon Dioxide Storage Capacity of Metal Organic Frameworks by Lithium Alkoxide Functionalization: A Molecular Simulation Study. Journal of Physical Chemistry C, 2016, 120, 10311-10319.	1.5	57
520	A Molecular Dynamics Simulation Study on Separation Selectivity of CO2/CH4 Mixture in Mesoporous Carbons. Energy Procedia, 2016, 86, 144-149.	1.8	12
521	CO ₂ Adsorption in M-IRMOF-10 (M = Mg, Ca, Fe, Cu, Zn, Ge, Sr, Cd, Sn, Ba). Journal of Physical Chemistry C, 2016, 120, 12819-12830.	1.5	21
522	Tuning the adsorption and separation properties of noble gases and N2 in CuBTC by ligand functionalization. RSC Advances, 2016, 6, 91093-91101.	1.7	11
523	Molecular simulation studies in hydrofluoroolefine (HFO) working fluids and their blends. Science and Technology for the Built Environment, 2016, 22, 1077-1089.	0.8	33
524	Ranking of MOF Adsorbents for CO ₂ Separations: A Molecular Simulation Study. Industrial & Engineering Chemistry Research, 2016, 55, 10404-10419.	1.8	56
525	Ideality contours and thermodynamic regularities in supercritical molecular fluids. Chemical Physics Letters, 2016, 658, 37-42.	1.2	24
526	Storage and Separation of Carbon Dioxide and Methane in Hydrated Covalent Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 23756-23762.	1.5	36
527	Molecular simulations of nitrogen-doped hierarchical carbon adsorbents for post-combustion CO ₂ capture. Physical Chemistry Chemical Physics, 2016, 18, 28747-28758.	1.3	21
528	Ligand and Metal Effects on the Stability and Adsorption Properties of an Isoreticular Series of MOFs Based on T‧haped Ligands and Paddleâ€Wheel Secondary Building Units. Chemistry - A European Journal, 2016, 22, 16147-16156.	1.7	43
529	Adsorption Behavior of Hydrocarbon on Illite. Energy & amp; Fuels, 2016, 30, 9114-9121.	2.5	94
530	High-throughput computational screening of 137953 metal–organic frameworks for membrane separation of a CO ₂ /N ₂ /CH ₄ mixture. Journal of Materials Chemistry A, 2016, 4, 15904-15912.	5.2	99
531	Probing gas adsorption in MOFs using an efficient <i>ab initio</i> widom insertion Monte Carlo method. Journal of Computational Chemistry, 2016, 37, 2808-2815.	1.5	8

#	Article	IF	CITATIONS
532	Gate Opening, Diffusion, and Adsorption of CO ₂ and N ₂ Mixtures in ZIF-8. Journal of Physical Chemistry C, 2016, 120, 23458-23468.	1.5	44
533	Phase behavior of multi-component hydrocarbon systems in nano-pores using gauge-GCMC molecular simulation. Fluid Phase Equilibria, 2016, 425, 324-334.	1.4	76
534	Capture of H2S and SO2 from trace sulfur containing gas mixture by functionalized UiO-66(Zr) materials: A molecular simulation study. Fluid Phase Equilibria, 2016, 427, 259-267.	1.4	56
535	Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane–carbon dioxide–water hydrate system. Physical Chemistry Chemical Physics, 2016, 18, 23538-23548.	1.3	39
536	Materials design by evolutionary optimization of functional groups in metal-organic frameworks. Science Advances, 2016, 2, e1600954.	4.7	82
537	High-Throughput Screening of Metal–Organic Frameworks for CO ₂ Capture in the Presence of Water. Langmuir, 2016, 32, 10368-10376.	1.6	124
538	CO ₂ adsorption-induced structural changes in coordination polymer ligands elucidated via molecular simulations and experiments. Dalton Transactions, 2016, 45, 17168-17178.	1.6	11
539	A comprehensive study of methane/carbon dioxide adsorptive selectivity in different bundle nanotubes. RSC Advances, 2016, 6, 69845-69854.	1.7	7
540	Catalytic hydrogenation of CO ₂ to methanol in a Lewis pair functionalized MOF. Catalysis Science and Technology, 2016, 6, 8392-8405.	2.1	75
541	Comparative Study of MOFs and Zeolites For CO2 Capture and Separation at Process Conditions. , 2016,		3
542	MOF., 2016, , .		0
543	Assessing the Surface Area of Porous Solids: Limitations, Probe Molecules, and Methods. Langmuir, 2016, 32, 12664-12675.	1.6	33
544	Molecular dynamics simulations of pure methane and carbon dioxide hydrates: lattice constants and derivative properties. Molecular Physics, 2016, 114, 2672-2687.	0.8	24
545	Molecular Simulation Study of the Adsorption and Diffusion of a Mixture of CO ₂ /CH ₄ in Activated Carbon: Effect of Textural Properties and Surface Chemistry. Journal of Chemical & Engineering Data, 2016, 61, 4139-4147.	1.0	40
546	In silico discovery of metal-organic frameworks for precombustion CO ₂ capture using a genetic algorithm. Science Advances, 2016, 2, e1600909.	4.7	231
547	Thermodynamic Properties of Supercritical CO ₂ /CH ₄ Mixtures from the Virial Equation of State. Journal of Chemical & Engineering Data, 2016, 61, 4296-4312.	1.0	9
548	Multiscale Computational Study on the Adsorption and Separation of CO ₂ /CH ₄ and CO ₂ /H ₂ on Li ⁺ â€Doped Mixedâ€Ligand Metal–Organic Framework Zn ₂ (NDC) ₂ (diPyNI). ChemPhysChem, 2016, 17, 4124-4133.	1.0	20
549	Molecular Dynamics Simulations of CO ₂ /N ₂ Separation through Two-Dimensional Graphene Oxide Membranes. Journal of Physical Chemistry C, 2016, 120, 26061-26066.	1.5	60

#	Article	IF	CITATIONS
550	Hierarchical atom type definitions and extensible allâ€atom force fields. Journal of Computational Chemistry, 2016, 37, 653-664.	1.5	24
551	Computing equation of state parameters of gases from Monte Carlo simulations. Fluid Phase Equilibria, 2016, 428, 174-181.	1.4	9
552	Adsorption of perfluorohexane in BAM-P109 type activated carbon via molecular simulation. Adsorption Science and Technology, 2016, 34, 79-92.	1.5	7
553	Predicting the adsorption of <i>n</i> -perfluorohexane (<i>n</i> -C ₆ F ₁₄) on BAM-P109 activated carbon using an <i>ab initio</i> force field. Adsorption Science and Technology, 2016, 34, 110-122.	1.5	1
554	Gibbs ensemble Monte Carlo simulation using an optimized potential model: pure acetic acid and a mixture of it with ethylene. Journal of Molecular Modeling, 2016, 22, 162.	0.8	6
555	Structural and Rotational Dynamics of Carbon Dioxide in 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids: The Effect of Chain Length. Journal of Physical Chemistry B, 2016, 120, 6698-6711.	1.2	27
556	Trinuclear Cageâ€Like Zn ^{II} Macrocyclic Complexes: Enantiomeric Recognition and Gas Adsorption Properties. Chemistry - A European Journal, 2016, 22, 598-609.	1.7	64
557	Molecular simulation of perfluorohexane adsorption in BAM-P109 activated carbon. Adsorption Science and Technology, 2016, 34, 42-63.	1.5	4
558	Applicability of using CO2 adsorption isotherms to determine BET surface areas of microporous materials. Microporous and Mesoporous Materials, 2016, 224, 294-301.	2.2	112
559	Molecular simulations of supercritical fluid systems. Journal of Supercritical Fluids, 2016, 108, 104-122.	1.6	56
560	Few-layered ultrathin covalent organic framework membranes for gas separation: a computational study. Journal of Materials Chemistry A, 2016, 4, 124-131.	5.2	83
561	Predicting finite-temperature properties of crystalline carbon dioxide from first principles with quantitative accuracy. Chemical Science, 2016, 7, 246-255.	3.7	64
562	Application of Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 215-224.	6.6	201
563	Gaussian-Charge Polarizable and Nonpolarizable Models for CO ₂ . Journal of Physical Chemistry B, 2016, 120, 984-994.	1.2	34
564	Direct Free Energy Calculation in the Continuous Fractional Component Gibbs Ensemble. Journal of Chemical Theory and Computation, 2016, 12, 1481-1490.	2.3	47
565	Response of Metal Sites toward Water Effects on Postcombustion CO ₂ Capture in Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2016, 4, 2387-2394.	3.2	24
566	Tuning the interaction strength and the adsorption of CO2 in metal organic frameworks by functionalization of the organic linkers. Microporous and Mesoporous Materials, 2016, 227, 144-151.	2.2	28
567	Understanding and solving disorder in the substitution pattern of amino functionalized MIL-47(V). Dalton Transactions, 2016, 45, 4309-4315.	1.6	5

#	Article	IF	Citations
568	In silico screening of 4764 computation-ready, experimental metal–organic frameworks for CO ₂ separation. Journal of Materials Chemistry A, 2016, 4, 2105-2114.	5.2	109
569	On the linear approximation of mixture internal energies of departure. Computers and Chemical Engineering, 2016, 85, 72-75.	2.0	4
570	Solvation free energy and solubility of acetaminophen and ibuprofen in supercritical carbon dioxide: Impact of the solvent model. Journal of Supercritical Fluids, 2016, 109, 166-176.	1.6	29
571	Systematic evaluation of materials for post-combustion CO 2 capture in a Temperature Swing Adsorption process. Chemical Engineering Journal, 2016, 284, 438-447.	6.6	118
572	SAFT- Î ³ force field for the simulation of molecular fluids 6: Binary and ternary mixtures comprising water, carbon dioxide, and n -alkanes. Journal of Chemical Thermodynamics, 2016, 93, 320-336.	1.0	71
573	Molecular simulation study of metal organic frameworks for methane capture from low-concentration coal mine methane gas. Journal of Porous Materials, 2016, 23, 107-122.	1.3	13
574	Effects of ionic liquid dispersion in metal-organic frameworks and covalent organic frameworks on CO2 capture: A computational study. Chemical Engineering Science, 2016, 140, 1-9.	1.9	53
575	Solubilities of CO2, CH4, C2H6, and SO2 in ionic liquids and Selexol from Monte Carlo simulations. Journal of Computational Science, 2016, 15, 74-80.	1.5	31
576	On the orientation of N ₂ and CO ₂ molecules adsorbed in slit pore models with oxidised graphitic surface. Molecular Simulation, 2016, 42, 186-195.	0.9	13
577	Self-diffusion coefficients of the binary (H 2 O + CO 2) mixture at high temperatures and pressures. Journal of Chemical Thermodynamics, 2016, 93, 424-429.	1.0	45
578	Microscopic Structure and Solubility Predictions of Multifunctional Solids in Supercritical Carbon Dioxide: A Molecular Simulation Study. Journal of Physical Chemistry B, 2017, 121, 1660-1674.	1.2	17
579	Phase Equilibria of Water/CO ₂ and Water/ <i>n</i> Alkane Mixtures from Polarizable Models. Journal of Physical Chemistry B, 2017, 121, 1386-1395.	1.2	26
580	Ginzburg-Landau free energy for molecular fluids: Determination and coarse-graining. Chemical Physics Letters, 2017, 669, 218-223.	1.2	1
581	The spinodal of single- and multi-component fluids and its role in the development of modern equations of state. Fluid Phase Equilibria, 2017, 436, 98-112.	1.4	39
582	Adsorbate-induced lattice deformation in IRMOF-74 series. Nature Communications, 2017, 8, 13945.	5.8	34
583	Polarizable Force Fields for CO ₂ and CH ₄ Adsorption in M-MOF-74. Journal of Physical Chemistry C, 2017, 121, 4659-4673.	1.5	87
584	Vapour–Liquid Equilibrium for N, N-Dimethylformamide + Benzene + Thiophene via Gibbs Ensemble Molecular Simulation. Transactions of Tianjin University, 2017, 23, 26-34.	3.3	0
585	Molecular Modeling of Thermodynamic and Transport Properties for CO ₂ and Aqueous Brines. Accounts of Chemical Research, 2017, 50, 751-758.	7.6	26

#	Article	IF	CITATIONS
586	A grand canonical Monte Carlo study of SO2 capture using functionalized bilayer graphene nanoribbons. Journal of Chemical Physics, 2017, 146, 044704.	1.2	12
587	Adsorption and molecular siting of CO ₂ , water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation. Chemical Science, 2017, 8, 3989-4000.	3.7	60
588	Computational Design of Metal–Organic Framework Arrays for Gas Sensing: Influence of Array Size and Composition on Sensor Performance. Journal of Physical Chemistry C, 2017, 121, 6033-6038.	1.5	50
589	Keys to linking GCMC simulations and shale gas adsorption experiments. Fuel, 2017, 199, 14-21.	3.4	84
590	CO ₂ Capture and Separations Using MOFs: Computational and Experimental Studies. Chemical Reviews, 2017, 117, 9674-9754.	23.0	837
591	Design of electric field controlled molecular gates mounted on metal–organic frameworks. Journal of Materials Chemistry A, 2017, 5, 8690-8696.	5.2	51
592	Adsorption energy as a metric for wettability at the nanoscale. Scientific Reports, 2017, 7, 46317.	1.6	14
593	A cobalt metalâ€organic framework with small pore size for adsorptive separation of CO ₂ over N ₂ and CH ₄ . AICHE Journal, 2017, 63, 4532-4540.	1.8	21
594	An improved model for N2 adsorption on graphitic adsorbents and graphitized thermal carbon black—The importance of the anisotropy of graphene. Journal of Chemical Physics, 2017, 146, .	1.2	16
595	Facile synthesis of 2D Zn(II) coordination polymer and its crystal structure, selective removal of methylene blue and molecular simulations. Journal of Molecular Structure, 2017, 1143, 355-361.	1.8	15
596	Effect of Water on the CO ₂ Adsorption Capacity of Amine-Functionalized Carbon Sorbents. Industrial & Engineering Chemistry Research, 2017, 56, 6317-6325.	1.8	18
597	Elasticity and Stability of Clathrate Hydrate: Role of Guest Molecule Motions. Scientific Reports, 2017, 7, 1290.	1.6	41
598	What are the key factors governing the nucleation of CO ₂ hydrate?. Physical Chemistry Chemical Physics, 2017, 19, 15657-15661.	1.3	75
599	Diffusion of CO 2 /CH 4 mixture in wet SBA-15 and CMK-5. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 524, 87-95.	2.3	6
600	CO ₂ capture in ionic liquid 1-alkyl-3-methylimidazolium acetate: a concerted mechanism without carbene. Physical Chemistry Chemical Physics, 2017, 19, 1361-1368.	1.3	28
601	Theoretical study of carbon dioxide adsorption and diffusion in MIL-127(Fe) metal organic framework. Chemical Physics, 2017, 491, 118-125.	0.9	13
602	Adsorption Behavior of Methane on Kaolinite. Industrial & Engineering Chemistry Research, 2017, 56, 6229-6238.	1.8	44
603	Molecular simulation of CO2/CH4 adsorption in brown coal: Effect of oxygen-, nitrogen-, and sulfur-containing functional groups. Applied Surface Science, 2017, 423, 33-42.	3.1	99

#	Article	IF	CITATIONS
604	Predictive models of gas sorption in a metal–organic framework with open-metal sites and small pore sizes. Physical Chemistry Chemical Physics, 2017, 19, 18587-18602.	1.3	24
605	Solvation free energy of solvation of biomass model cellobiose molecule: A molecular dynamics analysis. Journal of Molecular Liquids, 2017, 245, 97-102.	2.3	8
606	Adsorption and Separation of N ₂ /CH ₄ /CO ₂ /SO ₂ Gases in Disordered Carbons Obtained Using Hybrid Reverse Monte Carlo Simulations. Journal of Physical Chemistry C, 2017, 121, 13457-13473.	1.5	36
608	Behavior of the Enthalpy of Adsorption in Nanoporous Materials Close to Saturation Conditions. Journal of Chemical Theory and Computation, 2017, 13, 3326-3339.	2.3	41
610	Molecular Simulation Study of the Performance of Supported Ionic Liquid Phase Materials for the Separation of Carbon Dioxide from Methane and Hydrogen. Industrial & Engineering Chemistry Research, 2017, 56, 6775-6784.	1.8	37
611	Multicomponent Gas Storage in Organic Cage Molecules. Journal of Physical Chemistry C, 2017, 121, 12426-12433.	1.5	15
612	Transferable potentials for phase equilibria. Improved unitedâ€atom description of ethane and ethylene. AICHE Journal, 2017, 63, 5098-5110.	1.8	28
614	Understanding gas adsorption in MOF-5/graphene oxide composite materials. Physical Chemistry Chemical Physics, 2017, 19, 11639-11644.	1.3	24
615	Edge-functionalized nanoporous carbons for high adsorption capacity and selectivity of CO2 over N2. Applied Surface Science, 2017, 410, 259-266.	3.1	25
616	Computational study of ibuprofen removal from water by adsorption in realistic activated carbons. Journal of Colloid and Interface Science, 2017, 498, 323-334.	5.0	64
617	Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks: The significant role of functional groups. Fuel, 2017, 200, 244-251.	3.4	54
618	Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 33419-33428.	4.0	104
619	Thermodynamic Modeling with Equations of State: Present Challenges with Established Methods. Industrial & Engineering Chemistry Research, 2017, 56, 3503-3515.	1.8	95
620	A simple guiding principle for the temperature dependence of the solubility of light gases in imidazolium-based ionic liquids derived from molecular simulations. Physical Chemistry Chemical Physics, 2017, 19, 1770-1780.	1.3	29
621	Molecular Design of Zirconium Tetrazolate Metal–Organic Frameworks for CO ₂ Capture. Crystal Growth and Design, 2017, 17, 543-549.	1.4	36
622	Computation of thermodynamic properties in the continuous fractional component Monte Carlo Gibbs ensemble. Molecular Simulation, 2017, 43, 189-195.	0.9	20
623	Computational study of the interplay between intermolecular interactions and CO ₂ orientations in type I hydrates. Physical Chemistry Chemical Physics, 2017, 19, 3384-3393.	1.3	17
624	The effect of gme topology on multicomponent adsorption in zeolitic imidazolate frameworks. Physical Chemistry Chemical Physics, 2017, 19, 871-877.	1.3	10

#	Article	IF	CITATIONS
625	Heat capacities of supercritical fluid mixtures: Comparing experimental measurements with Monte Carlo molecular simulations for carbon dioxide-methanol mixtures. Journal of Supercritical Fluids, 2017, 123, 40-49.	1.6	7
626	Thermodynamic Properties and Fluid Phase Equilibria of Natural Gas Containing CO ₂ and H ₂ O at Extreme Pressures for Injection in the Brazilian Pre-Salt Reservoirs. , 2017, , .		0
627	Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO ₂ . Journal of Physical Chemistry B, 2017, 121, 11485-11491.	1.2	6
628	Molecular simulation study of CO2 and N2 absorption in a phosphonium based organic ionic plastic crystal. Journal of Chemical Physics, 2017, 147, 124703.	1.2	9
629	The study of isochoric subcritical water using power series: A potential of energy generation with ISCW reactor. AIP Conference Proceedings, 2017, , .	0.3	0
630	Exceptionally high performance of charged carbon nanotube arrays for CO2 separation from flue gas. Carbon, 2017, 125, 245-257.	5.4	17
631	Modeling Thermodynamic Properties of Propane or Tetrahydrofuran Mixed with Carbon Dioxide or Methane in Structure-II Clathrate Hydrates. Journal of Physical Chemistry C, 2017, 121, 23911-23925.	1.5	15
632	Molecular Modeling of MOF Membranes for Gas Separations. , 2017, , 97-143.		0
633	Balancing gravimetric and volumetric hydrogen density in MOFs. Energy and Environmental Science, 2017, 10, 2459-2471.	15.6	127
634	CO ₂ adsorption and separation in covalent organic frameworks with interlayer slipping. CrystEngComm, 2017, 19, 6950-6963.	1.3	51
635	A Molecular Simulation Study of Carbon Dioxide Uptake by a Deep Eutectic Solvent Confined in Slit Nanopores. Journal of Physical Chemistry C, 2017, 121, 24562-24575.	1.5	35
636	Injection of mixture of shale gases in a nanoscale pore of graphite and their displacement by CO2/N2 gases using molecular dynamics study. Journal of Molecular Liquids, 2017, 248, 439-446.	2.3	14
637	Investigating gas sorption in an rht -metal–organic framework with 1,2,3-triazole groups. Physical Chemistry Chemical Physics, 2017, 19, 29204-29221.	1.3	8
638	Probing Gas Adsorption in Metal–Organic Framework ZIF-8 by EPR of Embedded Nitroxides. Journal of Physical Chemistry C, 2017, 121, 19880-19886.	1.5	19
639	NLDFT Pore Size Distribution in Amorphous Microporous Materials. Langmuir, 2017, 33, 11138-11145.	1.6	134
640	A high-throughput computing procedure for predicting vapor-liquid equilibria of binary mixtures – Using carbon dioxide and n-alkanes as examples. Fluid Phase Equilibria, 2017, 452, 58-68.	1.4	8
641	Computational materials chemistry for carbon capture using porous materials. Journal Physics D: Applied Physics, 2017, 50, 463002.	1.3	7
642	CO2/N2 separation via multilayer nanoslit graphene oxide membranes: Molecular dynamics simulation study. Computational Materials Science, 2017, 140, 284-289.	1.4	46

#	Article	IF	CITATIONS
643	Adsorption and Diffusion of Fluids in Defective Carbon Nanotubes: Insights from Molecular Simulations. Langmuir, 2017, 33, 11834-11844.	1.6	9
644	N ₂ Capture Performances of the Hybrid Porous MIL-101(Cr): From Prediction toward Experimental Testing. Journal of Physical Chemistry C, 2017, 121, 22130-22138.	1.5	21
645	Theoretical Simulation of CH ₄ Separation from H ₂ in CAU-17 Materials. Journal of Physical Chemistry C, 2017, 121, 20197-20204.	1.5	6
646	Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies. Journal of Physical Chemistry C, 2017, 121, 23471-23479.	1.5	73
647	Thermallyâ€Triggered Crystal Dynamics and Permanent Porosity in the First Heptatungstateâ€Metalorganic Threeâ€Dimensional Hybrid Framework. Chemistry - A European Journal, 2017, 23, 14962-14974.	1.7	11
648	Estimation of adsorbed-phase density of methane in realistic overmature kerogen models using molecular simulations for accurate gas in place calculations. Journal of Natural Gas Science and Engineering, 2017, 46, 865-872.	2.1	36
649	Molecular dynamics simulation on the local density distribution and solvation structure of supercritical CO 2 around naphthalene. Journal of Supercritical Fluids, 2017, 130, 364-372.	1.6	15
650	Experimental and theoretical investigations of the gas adsorption sites in rht-metal–organic frameworks. CrystEngComm, 2017, 19, 4646-4665.	1.3	20
651	Product shape selectivity of MFI-type, MEL-type, and BEA-type zeolites in the catalytic hydroconversion of heptane. Journal of Catalysis, 2017, 353, 54-62.	3.1	44
652	Prediction of binary phase behavior for supercritical carbon dioxide + 1-pentanol, 2-pentanone, 1-octene or ethylbenzene via molecularÂsimulation. Journal of Molecular Liquids, 2017, 245, 91-96.	2.3	1
653	Biomethane storage in activated carbons: a grand canonical Monte Carlo simulation study. Molecular Simulation, 2017, 43, 1142-1152.	0.9	3
654	Diffusion of Carbon Dioxide and Nitrogen in the Smallâ€Pore Titanium Bis(phosphonate) Metal–Organic Framework MILâ€91 (Ti): A Combination of Quasielastic Neutron Scattering Measurements and Molecular Dynamics Simulations. ChemPhysChem, 2017, 18, 2739-2746.	1.0	11
655	Molecular Simulation of Ionic Polyimides and Composites with Ionic Liquids as Gas-Separation Membranes. Langmuir, 2017, 33, 11377-11389.	1.6	36
656	Methane and CO ₂ Adsorption Capacities of Kerogen in the Eagle Ford Shale from Molecular Simulation. Accounts of Chemical Research, 2017, 50, 1818-1828.	7.6	130
657	Thermodynamic and Transport Properties of Crown-Ethers: Force Field Development and Molecular Simulations. Journal of Physical Chemistry B, 2017, 121, 8367-8376.	1.2	15
658	Porous Carbon Materials Based on Graphdiyne Basis Units by the Incorporation of the Functional Groups and Li Atoms for Superior CO ₂ Capture and Sequestration. ACS Applied Materials & Interfaces, 2017, 9, 30002-30013.	4.0	37
659	Molecular dynamics study of CO ₂ absorption and desorption in zinc imidazolate frameworks. Molecular Systems Design and Engineering, 2017, 2, 457-469.	1.7	8
660	Pharmaceutical Removal from Water Effluents by Adsorption on Activated Carbons: A Monte Carlo Simulation Study. Langmuir, 2017, 33, 11146-11155.	1.6	36

#	ARTICLE	IF	CITATIONS
661	Computational evaluation of aluminophosphate zeotypes for	1.3	13
662	Monte Carlo Simulation of Supercritical Carbon Dioxide Adsorption in Carbon Slit Pores. Energy & amp; Fuels, 2017, 31, 9717-9724.	2.5	20
663	Nanopore wall-liquid interaction under scope of molecular dynamics study: Review. AIP Conference Proceedings, 2017, , .	0.3	1
664	CO2 packing polymorphism under pressure: Mechanism and thermodynamics of the I-III polymorphic transition. Journal of Chemical Physics, 2017, 147, 114502.	1.2	13
665	Gas Adsorption and Separation by the Al-Based Metal–Organic Framework MIL-160. Journal of Physical Chemistry C, 2017, 121, 26822-26832.	1.5	51
666	Accurate Characterization of the Pore Volume in Microporous Crystalline Materials. Langmuir, 2017, 33, 14529-14538.	1.6	155
667	Molecular Mechanism of Swing Effect in Zeolitic Imidazolate Framework ZIFâ€8: Continuous Deformation upon Adsorption. ChemPhysChem, 2017, 18, 2732-2738.	1.0	75
668	Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation. ACS Nano, 2017, 11, 7974-7987.	7.3	103
669	Flexible Force Field Parameterization through Fitting on the Ab Initio-Derived Elastic Tensor. Journal of Chemical Theory and Computation, 2017, 13, 3722-3730.	2.3	13
670	Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks. Journal of Physical Chemistry C, 2017, 121, 15135-15144.	1.5	23
671	Phase Diagram of Methane and Carbon Dioxide Hydrates Computed by Monte Carlo Simulations. Journal of Physical Chemistry B, 2017, 121, 7336-7350.	1.2	35
672	Investigation of methane adsorption on chlorite by grand canonical Monte Carlo simulations. Petroleum Science, 2017, 14, 37-49.	2.4	26
673	CO 2 Adsorption Capacity of FAU Zeolites in Presence of H 2 O: A Monte Carlo Simulation Study. Energy Procedia, 2017, 105, 4370-4376.	1.8	19
674	Computational investigation on CO2 adsorption in titanium carbide-derived carbons with residual titanium. Carbon, 2017, 111, 741-751.	5.4	14
675	Modelling adsorption in fluorinated TKL MOFs. Molecular Simulation, 2017, 43, 213-221.	0.9	1
676	Investigation on the selective adsorption and separation properties of coal mine methane in ZIF-68 by molecular simulations. Adsorption, 2017, 23, 163-174.	1.4	9
677	Molecular simulation of shale gas adsorption onto overmature type II model kerogen with control microporosity. Molecular Physics, 2017, 115, 1086-1103.	0.8	76
678	Solubility of sulfur compounds in commercial physical solvents and an ionic liquid from Monte Carlo simulations. Fluid Phase Equilibria, 2017, 433, 50-55.	1.4	29
#	Article	IF	CITATIONS
-----	---	------	-----------
679	Formation, dissolution and properties of surface nanobubbles. Journal of Colloid and Interface Science, 2017, 487, 123-129.	5.0	29
680	Large-Scale Refinement of Metalâ^'Organic Framework Structures Using Density Functional Theory. Chemistry of Materials, 2017, 29, 2521-2528.	3.2	103
681	Pharmaceuticals removal from water effluents by adsorption in activated carbons using Monte Carlo simulations. Computer Aided Chemical Engineering, 2017, 40, 2695-2700.	0.3	11
682	Schwarzites for Natural Gas Storage: A Grand-Canonical Monte Carlo Study. MRS Advances, 2018, 3, 115-120.	0.5	8
683	Molecular Dynamics Study of Combustion Reactions in Supercritical Environment. Part 3: Boxed MD Study of CH ₃ + HO ₂ → CH ₃ O + OH Reaction Kinetics. Journal of Physical Chemistry A, 2018, 122, 3337-3345.	1.1	6
684	Transport Properties of Shale Gas in Relation to Kerogen Porosity. Journal of Physical Chemistry C, 2018, 122, 6166-6177.	1.5	55
685	Adsorptive separation of carbon dioxide from flue gas using mesoporous MCM-41: A molecular simulation study. Korean Journal of Chemical Engineering, 2018, 35, 535-547.	1.2	15
686	Energetic evaluation of swing adsorption processes for CO 2 capture in selected MOFs and zeolites: Effect of impurities. Chemical Engineering Journal, 2018, 342, 458-473.	6.6	76
687	Benchmark Study of Hydrogen Storage in Metal–Organic Frameworks under Temperature and Pressure Swing Conditions. ACS Energy Letters, 2018, 3, 748-754.	8.8	147
688	A porous rhodium(III)-porphyrin metal-organic framework as an efficient and selective photocatalyst for CO2 reduction. Applied Catalysis B: Environmental, 2018, 231, 173-181.	10.8	126
689	Enthalpic Driving Force for the Selective Absorption of CO ₂ by an Ionic Liquid. Journal of Physical Chemistry Letters, 2018, 9, 1393-1397.	2.1	17
690	Transferability of CO ₂ Force Fields for Prediction of Adsorption Properties in All-Silica Zeolites. Journal of Physical Chemistry C, 2018, 122, 10892-10903.	1.5	12
691	The effect of crystallite size on pressure amplification in switchable porous solids. Nature Communications, 2018, 9, 1573.	5.8	92
692	A detailed atomistic molecular simulation study on adsorption-based separation of CO2 using a porous coordination polymer. RSC Advances, 2018, 8, 14144-14151.	1.7	6
693	Adsorptive Separation of CO ₂ from Multicomponent Mixtures of Flue Gas in Carbon Nanotube Arrays: A Grand Canonical Monte Carlo Study. Energy & Fuels, 2018, 32, 6090-6097.	2.5	17
694	Phase Transition Induced by Gas Adsorption in Metalâ€Organic Frameworks. Chemistry - A European Journal, 2018, 24, 8530-8534	1.7	15
695	Structural and dynamical properties predicted by reactive force fields simulations for four common pure fluids at liquid and gaseous non-reactive conditions. Molecular Simulation, 2018, 44, 826-839.	0.9	7
696	Molecular dynamics simulations of brine-surfactant lamellas surrounded by nitrogen at different reservoir conditions. Journal of Molecular Liquids, 2018, 256, 480-488.	2.3	2

#	Article	IF	CITATIONS
697	Differential retention and release of CO2 and CH4 in kerogen nanopores: Implications for gas extraction and carbon sequestration. Fuel, 2018, 220, 1-7.	3.4	63
698	Carbon flakes based metal organic frameworks for H2, CH4 and CO2 gas storage: a GCMC simulation study. New Journal of Chemistry, 2018, 42, 4240-4250.	1.4	11
699	Molecular Dynamics Study of Combustion Reactions in a Supercritical Environment. Part 2: Boxed MD Study of CO + OH → CO ₂ + H Reaction Kinetics. Journal of Physical Chemistry A, 2018, 122, 897-908.	1.1	12
700	Modulatorâ€Controlled Synthesis of Microporous STAâ€26, an Interpenetrated 8,3â€Connected Zirconium MOF with the <i>theâ€i</i> Topology, and its Reversible Lattice Shift. Chemistry - A European Journal, 2018, 24, 6115-6126.	1.7	23
701	Time Dependent Structural Evolution of Porous Organic Cage CC3. Crystal Growth and Design, 2018, 18, 921-927.	1.4	19
702	Effects of Force Field Selection on the Computational Ranking of MOFs for CO ₂ Separations. Industrial & Engineering Chemistry Research, 2018, 57, 2298-2309.	1.8	28
703	CO ₂ packing polymorphism under confinement in cylindrical nanopores. Molecular Systems Design and Engineering, 2018, 3, 243-252.	1.7	11
704	Characterization of hydroxylated amorphous silica: a numerical approach. Adsorption, 2018, 24, 267-278.	1.4	5
705	Coupled GCMC and LBM simulation method for visualizations of CO2/CH4 gas separation through Cu-BTC membranes. Journal of Membrane Science, 2018, 550, 448-461.	4.1	26
706	Modeling of Diffusion in MOFs. , 2018, , 63-97.		2
707	A promising metal–organic framework (MOF), MIL-96(Al), for CO ₂ separation under humid conditions. Journal of Materials Chemistry A, 2018, 6, 2081-2090.	5.2	78
708	Molecular Simulation of Vapor–Liquid Equilibria Using the Wolf Method for Electrostatic Interactions. Journal of Chemical & Engineering Data, 2018, 63, 1096-1102.	1.0	18
709	Simulations of hydrogen, carbon dioxide, and small hydrocarbon sorption in a nitrogen-rich <i>rht</i> -metal–organic framework. Physical Chemistry Chemical Physics, 2018, 20, 1761-1777.	1.3	15
710	MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9, 155.	5.8	825
711	High-throughput computational screening of metal-organic framework membranes for upgrading of natural gas. Journal of Membrane Science, 2018, 551, 47-54.	4.1	73
712			
	Solubility of CO2 in triglycerides using Monte Carlo simulations. Fluid Phase Equilibria, 2018, 476, 39-47.	1.4	10
713	Solubility of CO2 in triglycerides using Monte Carlo simulations. Fluid Phase Equilibria, 2018, 476, 39-47. Molecular Dynamics Simulation of <i>n</i> -Alkanes and CO ₂ Confined by Calcite Nanopores. Energy & amp; Fuels, 2018, 32, 1934-1941.	1.4 2.5	10 93

#	Article	IF	CITATIONS
715	GCMC simulations on the adsorption mechanisms of CH4 and CO2 in K-illite and their implications for shale gas exploration and development. Fuel, 2018, 224, 521-528.	3.4	55
716	Effects of incorporated oxygen and sulfur heteroatoms into ligands for CO2/N2 and CO2/CH4 separation in metal-organic frameworks: A molecular simulation study. Fuel, 2018, 226, 591-597.	3.4	29
717	Comparison of the Adsorption Transitions of Methane and Krypton on Graphite at Sub-Monolayer Coverage. Journal of Physical Chemistry C, 2018, 122, 7737-7748.	1.5	4
718	Enhanced CO ₂ Adsorption and Separation in Ionic-Liquid-Impregnated Mesoporous Silica MCM-41: A Molecular Simulation Study. Journal of Physical Chemistry C, 2018, 122, 8216-8227.	1.5	32
719	Two-dimensional graphitic C ₃ N ₅ materials: promising metal-free catalysts and CO ₂ adsorbents. Journal of Materials Chemistry A, 2018, 6, 7168-7174.	5.2	58
720	Solubility of Methane and Carbon Dioxide in the Aqueous Phase of the Ternary (Methane + Carbon) Tj ETQq1 1 0. of Chemical & amp; Engineering Data, 2018, 63, 1027-1035.	784314 rg 1.0	gBT /Overloc 15
721	Chemo-mechanical coupling in kerogen gas adsorption/desorption. Physical Chemistry Chemical Physics, 2018, 20, 12390-12395.	1.3	76
722	The equation of state of n-pentane in the atomistic model TraPPE–EH. Journal of Physics: Conference Series, 2018, 946, 012099.	0.3	2
723	Ionic-Functionalized Polymers of Intrinsic Microporosity for Gas Separation Applications. Langmuir, 2018, 34, 3949-3960.	1.6	22
724	A comprehensive analysis of the BET area for nanoporous materials. AICHE Journal, 2018, 64, 286-293.	1.8	51
725	Prediction of CO2-induced plasticization pressure in polyimides via atomistic simulations. Journal of Membrane Science, 2018, 547, 146-155.	4.1	40
726	A coherent definition of Henry constant and isosteric heat at zero loading for adsorption in solids – An absolute accessible volume. Chemical Engineering Journal, 2018, 334, 143-152.	6.6	18
727	Molecular simulations of adsorption and separation of ethylene/ethane and propylene/propane mixtures on Ni2(dobdc) and Ni2(m-dobdc) metal-organic frameworks. Molecular Simulation, 2018, 44, 389-395.	0.9	10
728	Transferability of cross-interaction pair potentials: Vapor-liquid phase equilibria of n-alkane/nitrogen mixtures using the TAMie force field. Fluid Phase Equilibria, 2018, 456, 124-130.	1.4	10
729	Automated analysis and benchmarking of GCMC simulation programs in application to gas adsorption. Molecular Simulation, 2018, 44, 309-321.	0.9	21
730	An ethane-trapping MOF PCN-250 for highly selective adsorption of ethane over ethylene. Chemical Engineering Science, 2018, 175, 110-117.	1.9	177
731	Current theoretical opinions and perspectives on the fundamental description of supercritical fluids. Journal of Supercritical Fluids, 2018, 134, 21-27.	1.6	26
732	Correlation between the porosity of γ-Al2O3 and the performance of CuO–ZnO–Al2O3 catalysts for CO2 hydrogenation into methanol. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 171-185.	0.8	9

#	Article	IF	CITATIONS
733	Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal–Organic Frameworks for Adsorption Applications. Journal of Chemical Theory and Computation, 2018, 14, 365-376.	2.3	18
734	Capturing the Details of N ₂ Adsorption in Zeolite X Using Stroboscopic Isotope Contrasted Neutron Total Scattering. Chemistry of Materials, 2018, 30, 296-302.	3.2	12
735	Gibbs ensemble Monte Carlo simulations of multicomponent natural gas mixtures. Molecular Simulation, 2018, 44, 377-383.	0.9	11
736	Chemical potentials of water, methanol, carbon dioxide and hydrogen sulphide at low temperatures using continuous fractional component Gibbs ensemble Monte Carlo. Molecular Simulation, 2018, 44, 405-414.	0.9	17
737	Performance of density functionals for modeling vapor liquid equilibria of CO ₂ and SO ₂ . Journal of Computational Chemistry, 2018, 39, 397-406.	1.5	12
738	An efficient kinetic Monte Carlo scheme for computing Helmholtz free energy and entropy in bulk fluids and adsorption systems. Chemical Engineering Journal, 2018, 334, 1410-1421.	6.6	11
739	CO2 solubility in small carboxylic acids: Monte Carlo simulations and PC-SAFT modeling. Fluid Phase Equilibria, 2018, 458, 1-8.	1.4	7
740	Understanding the Reactive Adsorption of H ₂ S and CO ₂ in Sodiumâ€Exchanged Zeolites. ChemPhysChem, 2018, 19, 512-518.	1.0	12
741	Heat capacities of supercritical fluids via Grand Canonical ensemble simulations. Molecular Simulation, 2018, 44, 147-155.	0.9	3
749	Monte Carlo simulations of the separation of a binary gas mixture (CH \langle sub \rangle 4 \langle sub \rangle +) Ti FTO ₀ 1 1 0.784314 re		ch 10 Tf 50 2
/ 12		BT /Overlo 1.3	17 11 50 5
743	Electric field induced rotation of halogenated organic linkers in isoreticular metal–organic frameworks for nanofluidic applications. Molecular Systems Design and Engineering, 2018, 3, 951-958.	1.7	16
743	Electric field induced rotation of halogenated organic linkers in isoreticular metal–organic frameworks for nanofluidic applications. Molecular Systems Design and Engineering, 2018, 3, 951-958. Influence of Functional Groups and Modification Sites of Metal-Organic Frameworks on CO2/CH4 Separation: A Monte Carlo Simulation Study. Chinese Journal of Chemical Physics, 2018, 31, 52-60.	1.7 0.6	16 3
743 744 745	Electric field induced rotation of halogenated organic linkers in isoreticular metal–organic frameworks for nanofluidic applications. Molecular Systems Design and Engineering, 2018, 3, 951-958. Influence of Functional Groups and Modification Sites of Metal-Organic Frameworks on CO2/CH4 Separation: A Monte Carlo Simulation Study. Chinese Journal of Chemical Physics, 2018, 31, 52-60. Ab Initio Evaluation of Henry Coefficients Using Importance Sampling. Journal of Chemical Theory and Computation, 2018, 14, 6359-6369.	1.7 0.6 2.3	16 3 12
743 744 745 746	Electric field induced rotation of halogenated organic linkers in isoreticular metal–organic frameworks for nanofluidic applications. Molecular Systems Design and Engineering, 2018, 3, 951-958. Influence of Functional Groups and Modification Sites of Metal-Organic Frameworks on CO2/CH4 Separation: A Monte Carlo Simulation Study. Chinese Journal of Chemical Physics, 2018, 31, 52-60. Ab Initio Evaluation of Henry Coefficients Using Importance Sampling. Journal of Chemical Theory and Computation, 2018, 14, 6359-6369. Adsorption of Molecular Nitrogen in Electrical Double Layers near Planar and Atomically Sharp Electrodes. Langmuir, 2018, 34, 14552-14561.	1.7 0.6 2.3 1.6	16 3 12 2
743 744 745 746 747	 Electric field induced rotation of halogenated organic linkers in isoreticular metal–organic frameworks for nanofluidic applications. Molecular Systems Design and Engineering, 2018, 3, 951-958. Influence of Functional Groups and Modification Sites of Metal-Organic Frameworks on CO2/CH4 Separation: A Monte Carlo Simulation Study. Chinese Journal of Chemical Physics, 2018, 31, 52-60. Ab Initio Evaluation of Henry Coefficients Using Importance Sampling. Journal of Chemical Theory and Computation, 2018, 14, 6359-6369. Adsorption of Molecular Nitrogen in Electrical Double Layers near Planar and Atomically Sharp Electrodes. Langmuir, 2018, 34, 14552-14561. Molecular Simulations Shed Light on Potential Uses of Ultrasound in Nitrogen Adsorption Experiments. Langmuir, 2018, 34, 15650-15657. 	1.7 0.6 2.3 1.6 1.6	16 3 12 2 12
743 744 745 746 747 748	 Electric field induced rotation of halogenated organic linkers in isoreticular metal–organic frameworks for nanofluidic applications. Molecular Systems Design and Engineering, 2018, 3, 951-958. Influence of Functional Groups and Modification Sites of Metal-Organic Frameworks on CO2/CH4 Separation: A Monte Carlo Simulation Study. Chinese Journal of Chemical Physics, 2018, 31, 52-60. Ab Initio Evaluation of Henry Coefficients Using Importance Sampling. Journal of Chemical Theory and Computation, 2018, 14, 6359-6369. Adsorption of Molecular Nitrogen in Electrical Double Layers near Planar and Atomically Sharp Electrodes. Langmuir, 2018, 34, 14552-14561. Molecular Simulations Shed Light on Potential Uses of Ultrasound in Nitrogen Adsorption Experiments. Langmuir, 2018, 34, 15650-15657. Computational Exploration of IRMOFs for Xenon Separation from Air. ACS Omega, 2018, 3, 18535-18541. 	1.7 0.6 2.3 1.6 1.6 1.6	16 3 12 2 12 9
743 744 745 745 746 747 748 749	 Electric field induced rotation of halogenated organic linkers in isoreticular metal–organic frameworks for nanofluidic applications. Molecular Systems Design and Engineering, 2018, 3, 951-958. Influence of Functional Groups and Modification Sites of Metal-Organic Frameworks on CO2/CH4 Separation: A Monte Carlo Simulation Study. Chinese Journal of Chemical Physics, 2018, 31, 52-60. Ab Initio Evaluation of Henry Coefficients Using Importance Sampling, Journal of Chemical Theory and Computation, 2018, 14, 6359-6369. Adsorption of Molecular Nitrogen in Electrical Double Layers near Planar and Atomically Sharp Electrodes. Langmuir, 2018, 34, 14552-14561. Molecular Simulations Shed Light on Potential Uses of Ultrasound in Nitrogen Adsorption Experiments. Langmuir, 2018, 34, 15650-15657. Computational Exploration of IRMOFs for Xenon Separation from Air. ACS Omega, 2018, 3, 18535-18541. CO2 capture and separation over N2 and CH4 in nanoporous MFM-300(In, Al, Ga, and In-3N): Insight from GCMC simulations. Journal of CO2 Utilization, 2018, 28, 145-151. 	1.7 0.6 2.3 1.6 1.6 1.6 3.3	16 3 12 2 12 9 16

#	Article	IF	CITATIONS
751	Biporous Metal–Organic Framework with Tunable CO ₂ /CH ₄ Separation Performance Facilitated by Intrinsic Flexibility. ACS Applied Materials & Interfaces, 2018, 10, 36144-36156.	4.0	33
752	Prediction of the monocomponent adsorption of H2S and mixtures with CO2 and CH4 on activated carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 342-350.	2.3	28
753	Henry Constant of Water Adsorption on Functionalized Graphite: Importance of the Potential Models of Water and Functional Group. Journal of Physical Chemistry C, 2018, 122, 24171-24181.	1.5	13
754	High CO ₂ Sensitivity and Reversibility on Nitrogen-Containing Polymer by Remarkable CO ₂ Adsorption on Nitrogen Sites. Journal of Physical Chemistry C, 2018, 122, 24143-24149.	1.5	18
755	In Silico Study of (Mn, Fe, Co, Ni, Zn)-BTC Metal–Organic Frameworks for Recovering Xenon from Exhaled Anesthetic Gas. ACS Sustainable Chemistry and Engineering, 2018, 6, 15001-15006.	3.2	17
756	Molecular Dynamic Simulations of Fibrous Distillation Membranes. International Communications in Heat and Mass Transfer, 2018, 98, 304-309.	2.9	10
757	Role of Guest Molecules in the Mechanical Properties of Clathrate Hydrates. Crystal Growth and Design, 2018, 18, 6729-6741.	1.4	28
758	Polarizable Force Field for CO ₂ in M-MOF-74 Derived from Quantum Mechanics. Journal of Physical Chemistry C, 2018, 122, 24488-24498.	1.5	29
759	On the Efficient Separation of Gas Mixtures with the Mixed-Linker Zeolitic-Imidazolate Framework-7-8. ACS Applied Materials & Interfaces, 2018, 10, 39631-39644.	4.0	32
760	Unusual Moisture-Enhanced CO ₂ Capture within Microporous PCN-250 Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 38638-38647.	4.0	57
761	Selective Capture of Phenol from Biofuel Using Protonated Faujasite Zeolites with Different Si/Al Ratios. Journal of Physical Chemistry C, 2018, 122, 26419-26429.	1.5	41
762	High-Throughput Screening of MOF Adsorbents and Membranes for H ₂ Purification and CO ₂ Capture. ACS Applied Materials & Interfaces, 2018, 10, 33693-33706.	4.0	133
763	Theoretical study on the edge-functionalization effect on nanoporous carbons for adsorption capacity and selectivity of CO2 over N2. IOP Conference Series: Materials Science and Engineering, 2018, 284, 012015.	0.3	0
764	Molecular simulation and experimental investigation of CO ₂ capture in a polymetallic cation-exchanged 13X zeolite. Journal of Materials Chemistry A, 2018, 6, 19570-19583.	5.2	48
765	Computational screening of hydrophobic metal–organic frameworks for the separation of H ₂ S and CO ₂ from natural gas. Journal of Materials Chemistry A, 2018, 6, 18898-18905.	5.2	84
766	Molecular Modeling of Carbon Dioxide Adsorption in Metal-Organic Frameworks. , 2018, , 99-149.		6
767	Carbon dioxide adsorption through carbon adsorbent structures: Effect of the porosity size, chemical potential and temperature. Computational Materials Science, 2018, 151, 255-272.	1.4	13
768	A molecular dynamics simulation study of PVT properties for H2O/H2/CO2 mixtures in near-critical and supercritical regions of water. International Journal of Hydrogen Energy, 2018, 43, 10980-10990.	3.8	32

#	Article	IF	CITATIONS
769	Modeling Amorphous Microporous Polymers for CO ₂ Capture and Separations. Chemical Reviews, 2018, 118, 5488-5538.	23.0	208
770	The Effect of Aluminum Short-Range Ordering on Carbon Dioxide Adsorption in Zeolites. Journal of Physical Chemistry C, 2018, 122, 12332-12340.	1.5	33
771	Catalytic Space Engineering of Porphyrin Metal–Organic Frameworks for Combined CO ₂ Capture and Conversion at a Low Concentration. ChemSusChem, 2018, 11, 2340-2347.	3.6	48
772	CO2 adsorption performance of functionalized metal-organic frameworks of varying topologies by molecular simulations. Chemical Engineering Science, 2018, 189, 65-74.	1.9	22
773	Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry A, 2018, 6, 11734-11742.	5.2	96
774	Peculiar Molecular Shape and Size Dependence of the Dynamics of Fluids Confined in a Small-Pore Metal–Organic Framework. Journal of Physical Chemistry Letters, 2018, 9, 3014-3020.	2.1	8
775	Using clathrate hydrates for gas storage and gas-mixture separations: experimental and computational studies at multiple length scales. Molecular Physics, 2018, 116, 2041-2060.	0.8	18
776	Interfacial Properties of Tetrahydrofuran and Carbon Dioxide Mixture from Computer Simulation. Journal of Physical Chemistry C, 2018, 122, 16142-16153.	1.5	7
777	Computational Screening of Metal–Organic Frameworks for Membrane-Based CO ₂ /N ₂ /H ₂ O Separations: Best Materials for Flue Gas Separation. Journal of Physical Chemistry C, 2018, 122, 17347-17357.	1.5	92
778	Li-modified nanoporous carbons for high-performance adsorption and separation of CO2 over N2: A combined DFT and GCMC computational study. Journal of CO2 Utilization, 2018, 26, 588-594.	3.3	17
779	A Grand Canonical Monte Carlo Study of the N ₂ , CO, and Mixed N ₂ –CO Clathrate Hydrates. Journal of Physical Chemistry C, 2018, 122, 18432-18444.	1.5	22
780	Investigating C ₂ H ₂ Sorption in α-[M ₃ (O ₂ CH) ₆] (M = Mg, Mn) Through Theoretical Studies. Crystal Growth and Design, 2018, 18, 5342-5352.	1.4	2
781	Molecular Mechanisms of the Effect of Water on CO2/CH4 Mixture Adsorption in Slitlike Carbon Pores. Colloid Journal, 2018, 80, 439-446.	0.5	6
782	A new approach for the prediction of partition functions using machine learning techniques. Journal of Chemical Physics, 2018, 149, 044118.	1.2	19
783	An Ultramicroporous Nickel-Based Metal–Organic Framework for Adsorption Separation of CO ₂ over N ₂ or CH ₄ . Energy & Fuels, 2018, 32, 8676-8682.	2.5	23
784	Nitroâ€Functionalized Bis(pyrazolate) Metal–Organic Frameworks as Carbon Dioxide Capture Materials under Ambient Conditions. Chemistry - A European Journal, 2018, 24, 13170-13180.	1.7	29
785	Alkyl amine functionalized triphenylamine-based covalent organic frameworks for high-efficiency CO2 capture and separation over N2. Materials Letters, 2018, 230, 28-31.	1.3	24
786	Molecular simulation of volume of mixing, Helmholtz free energy of mixing and entropy of mixing in bulk fluid mixtures. Molecular Simulation, 2018, 44, 1312-1324.	0.9	3

	C	ITATION REPORT	
#	Article	IF	CITATIONS
787	Computational Screening of MOFs for Acetylene Separation. Frontiers in Chemistry, 2018, 6, 36.	1.8	22
788	Singularity-free constraint on molecular dynamics beyond Lagrange multiplier. Molecular Simulation, 2018, 44, 965-972.	0.9	1
789	Bulk viscosity of molecular fluids. Journal of Chemical Physics, 2018, 148, 174504.	1.2	59
790	Computation of partial molar properties using continuous fractional component Monte Carlo. Molecular Physics, 2018, 116, 3331-3344.	0.8	28
791	How surfactant-decorated nanoparticles contribute to thermodynamic miscibility. Nanotechnology, 2018, 29, 475701.	1.3	10
792	The effect of topology in Lewis pair functionalized metal organic frameworks on CO ₂ adsorption and hydrogenation. Catalysis Science and Technology, 2018, 8, 4609-4617.	2.1	14
793	Vapor–Liquid Equilibria of Mixtures of Molecular Fluids Using the Activity Fraction Expanded Ensemble Simulation Method. Industrial & Engineering Chemistry Research, 2018, 57, 12235-12	2248. 1.8	2
794	Computational Screening of Alkali, Alkaline Earth, and Transition Metals Alkoxide-Functionalized Metal–Organic Frameworks for CO ₂ Capture. Journal of Physical Chemistry C, 2018, 19015-19024.	122, 1.5	15
795	Modulation of pore shape and adsorption selectivity by ligand functionalization in a series of "rob―like flexible metal–organic frameworks. Journal of Materials Chemistry A, 2018, 6, 1740	9-17416. ^{5.2}	13
796	Cationâ^'Anionâ^'CO ₂ Interactions in Imidazoliumâ€Based Ionic Liquid Sorbents. ChemPhysChem, 2018, 19, 2879-2884.	1.0	33
797	Plasticization behavior in polymers of intrinsic microporosity (PIM-1): A simulation study from combined Monte Carlo and molecular dynamics. Journal of Membrane Science, 2018, 565, 95-103.	4.1	62
798	Crystal Engineering of Covalent Organic Frameworks Based on Hydrazine and Hydroxy-1,3,5-Triformylbenzenes. Crystal Growth and Design, 2018, 18, 5682-5689.	1.4	37
799	Atomistic Simulation of Gas Uptake and Interface-Induced Disordering in Solid Phases of an Organic Ionic Plastic Crystal. Journal of Physical Chemistry B, 2018, 122, 8274-8283.	1.2	7
800	A Systematic Protocol for Benchmarking Guest–Host Interactions by Firstâ€Principles Computatio Capturing CO ₂ in Clathrate Hydrates. Chemistry - A European Journal, 2018, 24, 9353-9	ns: 9363. 1.7	13
801	Porous aluminophosphates as adsorbents for the separation of CO ₂ /CH ₄ a CH ₄ /N ₂ mixtures – a Monte Carlo simulation study. Sustainable Energy a Fuels, 2018, 2, 1749-1763.	nd and 2.5	14
802	Revisiting electrolyte thermodynamic models: Insights from molecular simulations. AICHE Journal, 2018, 64, 3728-3734.	1.8	19
803	Treatment of Flue Gas using Graphene Sponge: A Simulation Study. Journal of Physical Chemistry C, 2018, 122, 14654-14664.	1.5	12
804	Investigating adsorption- and diffusion selectivity of CO2 and CH4 from air on zeolitic imidazolate Framework-78 using molecular simulations. Microporous and Mesoporous Materials, 2019, 274, 266-276.	2.2	25

#	Article	IF	CITATIONS
805	Effects of functionalization on the performance of metal-organic frameworks for adsorption-driven heat pumps by molecular simulations. Chemical Engineering Science, 2019, 208, 115143.	1.9	5
806	The role of molecular modelling and simulation in the discovery and deployment of metal-organic frameworks for gas storage and separation. Molecular Simulation, 2019, 45, 1082-1121.	0.9	74
807	Design, Synthesis, and Characterization of Metal–Organic Frameworks for Enhanced Sorption of Chemical Warfare Agent Simulants. Journal of Physical Chemistry C, 2019, 123, 19748-19758.	1.5	33
808	Phase Behavior and Capillary Condensation Hysteresis of Carbon Dioxide in Mesopores. Langmuir, 2019, 35, 11291-11298.	1.6	42
809	Adsorption Kinetics of CO ₂ on a Reconstructed Calcite Surface: An Experiment-Simulation Collaborative Method. Energy & amp; Fuels, 2019, 33, 8946-8953.	2.5	8
810	Monte Carlo Simulations of Pure and Mixed Gas Solubilities of CO ₂ and CH ₄ in Nonideal Ionic Liquid–Ionic Liquid Mixtures. Industrial & Engineering Chemistry Research, 2019, 58, 22569-22578.	1.8	11
811	Direct Simulation of Ternary Mixture Separation in a ZIFâ€8 Membrane at Molecular Scale. Advanced Theory and Simulations, 2019, 2, 1900120.	1.3	10
812	The effect of CO ₂ loading on alkanolamine absorbents in aqueous solutions. Physical Chemistry Chemical Physics, 2019, 21, 18386-18392.	1.3	14
813	Acetylene Storage and Separation Using Metal–Organic Frameworks with Open Metal Sites. ACS Applied Materials & Interfaces, 2019, 11, 31499-31507.	4.0	43
814	Fick diffusion coefficients of binary fluid mixtures consisting of methane, carbon dioxide, and propane via molecular dynamics simulations based on simplified pair-specific ab initio-derived force fields. Fluid Phase Equilibria, 2019, 502, 112257.	1.4	11
815	Largeâ€Scale Screening and Design of Metal–Organic Frameworks for CH ₄ /N ₂ Separation. Chemistry - an Asian Journal, 2019, 14, 3688-3693.	1.7	24
816	Understanding Reduced CO ₂ Uptake of Ionic Liquid/Metal–Organic Framework (IL/MOF) Composites. ACS Applied Nano Materials, 2019, 2, 6022-6029.	2.4	45
817	Thermodynamic data for cryogenic carbon dioxide capture from natural gas: A review. Cryogenics, 2019, 102, 85-104.	0.9	54
818	CO2 sorption in triethyl(butyl)phosphonium 2-cyanopyrrolide ionic liquid via first principles simulations. Journal of Molecular Liquids, 2019, 292, 111323.	2.3	7
819	Powder X-ray structural studies and reference diffraction patterns for three forms of porous aluminum terephthalate, MIL-53(A1). Powder Diffraction, 2019, 34, 216-226.	0.4	4
820	Porous MOFâ€205 with multiple modifications for efficiently storing hydrogen and methane as well as separating carbon dioxide from hydrogen and methane. International Journal of Energy Research, 2019, 43, 7517.	2.2	9
821	Ionic liquid gated 2D-CAP membrane for highly efficient CO2/N2 and CO2/CH4 separation. Applied Surface Science, 2019, 494, 477-483.	3.1	14
822	Formalizing atom-typing and the dissemination of force fields with foyer. Computational Materials Science, 2019, 167, 215-227.	1.4	29

#	Article	IF	CITATIONS
823	Oil extraction mechanism in CO2 flooding from rough surface: Molecular dynamics simulation. Applied Surface Science, 2019, 494, 80-86.	3.1	35
824	Interfacial Tension and Liquid Viscosity of Binary Mixtures of n-Hexane, n-Decane, or 1-Hexanol with Carbon Dioxide by Molecular Dynamics Simulations and Surface Light Scattering. International Journal of Thermophysics, 2019, 40, 1.	1.0	35
825	The Physical Origin of the Venus Low Atmosphere Chemical Gradient. Astrophysical Journal, 2019, 880, 82.	1.6	6
826	Computational screening, synthesis and testing of metal–organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates. Molecular Systems Design and Engineering, 2019, 4, 1000-1013.	1.7	24
827	Mechanistic and Kinetic Study of CO2-CH4 Exchange Process in Methane Hydrates Using Molecular Dynamics Simulation. , 2019, , .		2
828	Electrostatic Potential Optimized Molecular Models for Molecular Simulations: CO, CO2, COS, H2S, N2, N2O, and SO2. Journal of Chemical Theory and Computation, 2019, 15, 6323-6332.	2.3	12
829	Role of Two-Electron Defects on the CeO ₂ Surface in CO Preferential Oxidation over CuO/CeO ₂ Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 18421-18433.	3.2	31
830	Reminiscent capillarity in subnanopores. Nature Communications, 2019, 10, 4642.	5.8	33
831	Study on Short-Circuit Impedance Characteristics in DN Traction Electric Lines. IOP Conference Series: Earth and Environmental Science, 2019, 310, 032053.	0.2	0
832	Highâ€Throughput Screening of Metal Organic Frameworks as Fillers in Mixed Matrix Membranes for Flue Gas Separation. Advanced Theory and Simulations, 2019, 2, 1900109.	1.3	19
833	Temperature field modeling of the plate during hot rolling based on inverse heat conduction problem. Journal of Physics: Conference Series, 2019, 1300, 012017.	0.3	0
834	Low Voltage Power Line Communication Routing Method based on Improved Genetic Algorithm. , 2019,		Ο
835	Computational Screening of Metal–Organic Framework Membranes for the Separation of 15 Gas Mixtures. Nanomaterials, 2019, 9, 467.	1.9	28
836	In Silico Design of Metal Organic Frameworks with Enhanced CO2 Separation Performances: Role of Metal Sites. Journal of Physical Chemistry C, 2019, 123, 28255-28265.	1.5	10
837	Nucleation of Capillary Bridges and Bubbles in Nanoconfined CO2. Langmuir, 2019, 35, 15401-15409.	1.6	8
838	Leveraging local MP2 to reduce basis set superposition errors: An efficient first-principles based force-field for carbon dioxide. Journal of Chemical Physics, 2019, 151, 184501.	1.2	4
839	Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials. Advanced Theory and Simulations, 2019, 2, 1900135.	1.3	41
840	Molecular dynamics of combustion reactions in supercritical carbon dioxide. Part 4: boxed MD study of formyl radical dissociation and recombination. Journal of Molecular Modeling, 2019, 25, 35.	0.8	6

#	Article	IF	CITATIONS
841	Sensitivity analysis of ship traffic in restricted two-way waterways considering the impact of LNG carriers. Ocean Engineering, 2019, 192, 106556.	1.9	9
842	Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nature Communications, 2019, 10, 3898.	5.8	191
843	Structure and water attachment rates of ice in the atmosphere: role of nitrogen. Physical Chemistry Chemical Physics, 2019, 21, 19594-19611.	1.3	8
844	Effect of CO2 and H2O on the behavior of shale gas confined inside calcite [104] slit-like nanopore: a molecular dynamics simulation study. Journal of Molecular Modeling, 2019, 25, 293.	0.8	18
845	Entropy of Simulated Liquids Using Multiscale Cell Correlation. Entropy, 2019, 21, 750.	1.1	15
846	Diffusion Kinetics of CO ₂ , CH ₄ , and their Binary Mixtures in Porous Organic Cage CC3 . Journal of Physical Chemistry C, 2019, 123, 24172-24180.	1.5	10
847	Impact of H2O and CO2 on methane storage in metal–organic frameworks. Adsorption, 2019, 25, 1633-1642.	1.4	8
848	CO2 induced swing effect at imidazolate of zeolitic imidazolate framework-90 using molecular simulations. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	1
849	Phase stability of the ice XVII-based CO2 chiral hydrate from molecular dynamics simulations. Journal of Chemical Physics, 2019, 151, 104502.	1.2	3
850	Adsorption of Methane, Nitrogen, and Carbon Dioxide in Atomic-Scale Fractal Nanopores by Monte Carlo Simulation I: Single-Component Adsorption. Energy & Fuels, 2019, 33, 10457-10475.	2.5	14
851	Analytical Prediction of Gas Permeation through Graphene Nanopores of Varying Sizes: Understanding Transitions across Multiple Transport Regimes. ACS Nano, 2019, 13, 11809-11824.	7.3	46
852	Experimental and Molecular Insights on Mitigation of Hydrocarbon Sieving in Niobrara Shale by CO2 Huff-n-Puff. , 2019, , .		1
853	Building a Consistent and Reproducible Database for Adsorption Evaluation in Covalent–Organic Frameworks. ACS Central Science, 2019, 5, 1663-1675.	5.3	89
854	Norepinephrine upregulates the expression of tyrosine hydroxylase and protects dopaminegic neurons against 6-hydrodopamine toxicity. Neurochemistry International, 2019, 131, 104549.	1.9	13
855	Vapour-liquid equilibrium of acetone-CO2 mixtures of different compositions at the vicinity of the critical point. Journal of CO2 Utilization, 2019, 34, 465-471.	3.3	9
856	Metal–Organic Frameworks Grafted by Univariate and Multivariate Heterocycles for Enhancing CO2 Capture: A Molecular Simulation Study. Industrial & Engineering Chemistry Research, 2019, 58, 2195-2205.	1.8	17
857	Predictions of Hg ⁰ and HgCl ₂ Adsorption Properties in UiO-66 from Flue Gas Using Molecular Simulations. Journal of Physical Chemistry C, 2019, 123, 5972-5979.	1.5	18
858	High-throughput computational prediction of the cost of carbon capture using mixed matrix membranes. Energy and Environmental Science, 2019, 12, 1255-1264.	15.6	62

#	Article	IF	CITATIONS
859	Characterizing Thermodynamic Properties of Pure Components and Binary Mixtures at Rocket Conditions Using Molecular Dynamics. , 2019, , .		1
860	Metal–Organic Frameworks for Helium Recovery from Natural Gas via N ₂ /He Separation: A Computational Screening. Journal of Physical Chemistry C, 2019, 123, 3469-3475.	1.5	15
861	Surface tension of oxygen–nitrogen mixture: molecular simulation. Molecular Simulation, 2019, 45, 958-966.	0.9	1
862	A study of Ar-N2 supercritical mixtures using neutron scattering, molecular dynamics simulations and quantum mechanical scattering calculations. Journal of Molecular Liquids, 2019, 290, 111168.	2.3	2
863	Computational prediction of promising pyrazine and bipyridine analogues of a fluorinated MOF platform, MFN-Ni-L (M = SI/AL; N = SIX/FIVE; L = pyr/bipyr), for CO2 capture under pre-humidified conditions. Physical Chemistry Chemical Physics, 2019, 21, 16127-16136.	1.3	13
864	Molecular simulations on CO2 adsorption and adsorptive separation in fullerene impregnated MOF-177, MOF-180 and MOF-200. Computational Materials Science, 2019, 168, 58-64.	1.4	40
865	Ethane-Selective Behavior Achieved on a Nickel-Based Metal–Organic Framework: Impact of Pore Effect and Hydrogen Bonds. Industrial & Engineering Chemistry Research, 2019, 58, 10516-10523.	1.8	15
866	Model Comparison of the CH ₄ /CO ₂ /Water System in Predicting Dynamic and Interfacial Properties. Journal of Chemical & Engineering Data, 2019, 64, 2464-2474.	1.0	21
867	Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage. Nature Communications, 2019, 10, 2345.	5.8	180
868	Enhancement of the predictive power of molecular dynamics simulations for the determination of self-diffusion coefficient and viscosity demonstrated for propane. Fluid Phase Equilibria, 2019, 496, 69-79.	1.4	5
869	Effects of potential models on nitrogen adsorption on triangular pore: An improved mixed model for energetic characterization of activated carbon. Applied Surface Science, 2019, 481, 1035-1043.	3.1	5
870	Cage Occupancies in Nitrogen Clathrate Hydrates from Monte Carlo Simulations. Journal of Physical Chemistry C, 2019, 123, 16757-16765.	1.5	9
871	Development of a General Evaluation Metric for Rapid Screening of Adsorbent Materials for Postcombustion CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2019, 7, 11529-11539.	3.2	74
872	Computational discovery of nanoporous materials for energy- and environment-related applications. Molecular Simulation, 2019, 45, 1122-1147.	0.9	23
873	Effects of Moisture Contents on Shale Gas Recovery and CO ₂ Sequestration. Langmuir, 2019, 35, 8716-8725.	1.6	53
874	Unlocking CO2 separation performance of ionic liquid/CuBTC composites: Combining experiments with molecular simulations. Chemical Engineering Journal, 2019, 373, 1179-1189.	6.6	44
875	Enhancement of oil flow in shale nanopores by manipulating friction and viscosity. Physical Chemistry Chemical Physics, 2019, 21, 12777-12786.	1.3	46
876	Prediction of experimental properties of CO2: improving actual force fields. Journal of Molecular Modeling, 2019, 25, 146.	0.8	11

~		~	
(15	ГАТ	DEI	
	IAL	NL	PORT

#	Article	IF	CITATIONS
877	Molecular Simulation Study on the Volume Swelling and the Viscosity Reduction of <i>n</i> -Alkane/CO ₂ Systems. Industrial & Engineering Chemistry Research, 2019, 58, 8871-8877.	1.8	26
878	A study on thermodynamic and transport properties of carbon dioxide using molecular dynamics simulation. Energy, 2019, 179, 1094-1102.	4.5	17
879	Semiâ€analytical nanoscaleâ€extended surface tension correlation. AICHE Journal, 2019, 65, e16622.	1.8	5
880	Molecular simulation of the constant composition expansion experiment in shale multi-scale systems. Fluid Phase Equilibria, 2019, 495, 59-68.	1.4	33
881	Large-Scale Computational Screening of Metal Organic Framework (MOF) Membranes and MOF-Based Polymer Membranes for H ₂ /N ₂ Separations. ACS Sustainable Chemistry and Engineering, 2019, 7, 9525-9536.	3.2	65
882	A corresponding-state framework for the structural transition of supercritical fluids across the Widom delta. Journal of Chemical Physics, 2019, 150, 154503.	1.2	15
883	CH4 and CO2 adsorption-induced deformation of carbon slit pores with implications for CO2 sequestration and enhanced CH4 recovery. Journal of CO2 Utilization, 2019, 32, 66-79.	3.3	13
884	Fick Diffusion Coefficients of the Gaseous CH ₄ –CO ₂ System from Molecular Dynamics Simulations Using TraPPE Force Fields at 101.325, 506.625, 1013.25, 2533.12, and 5066.25 kPa. Journal of Chemical & Engineering Data, 2019, 64, 3672-3681.	1.0	14
885	Adsorption of CO2 gas on graphene–polymer composites. Journal of CO2 Utilization, 2019, 32, 92-105.	3.3	38
886	Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C ₂ H ₆ ⇌ CH ₃ + CH ₃ . Journal of Physical Chemistry A, 2019, 123, 4776-4784.	1.1	6
887	Competitive Sorption of CO ₂ with Gas Mixtures in Nanoporous Shale for Enhanced Gas Recovery from Density Functional Theory. Langmuir, 2019, 35, 8144-8158.	1.6	41
888	Metal–Organic Frameworks with Metal–Catecholates for O ₂ /N ₂ Separation. Journal of Physical Chemistry C, 2019, 123, 12935-12946.	1.5	33
889	Fundamental Aspects of Supercritical Gas Adsorption. Green Energy and Technology, 2019, , 13-40.	0.4	1
890	Theoretical study of heterofullerene-linked metal–organic framework with lithium doping for CO2 capture and separation from CO2/CH4 and CO2/H2 mixtures. Microporous and Mesoporous Materials, 2019, 284, 385-392.	2.2	16
891	Nanoporous Materials for Gas Storage. Green Energy and Technology, 2019, , .	0.4	14
892	On the Nonwetting/Wetting Behavior of Carbon Dioxide on Graphite. Journal of Physical Chemistry C, 2019, 123, 9112-9120.	1.5	11
893	Effect of Ionic Liquid Impregnation in Highly Water-Stable Metal–Organic Frameworks, Covalent Organic Frameworks, and Carbon-Based Adsorbents for Post-combustion Flue Gas Treatment. Energy & Fuels, 2019, 33, 3421-3428.	2.5	27
894	Optimization of cryogenic carbon dioxide capture from natural gas. Materialwissenschaft Und Werkstofftechnik, 2019, 50, 248-253.	0.5	14

ARTICLE IF CITATIONS H2S separation from biogas by adsorption on functionalized MIL-47-X (X = â^'OH and â^' OCH3): A simulațion 895 16 study. Applied Surface Science, 2019, 479, 1006-1013. Impact of MOF defects on the binary adsorption of CO2 and water in UiO-66. Chemical Engineering 896 Science, 2019, 203, 346-357. A molecular dynamics study of the solvation of carbon dioxide and other compounds in the ionic 897 1.4 11 liquids [emim] [B(CN)4] and [emim] [NTf2]. Fluid Phase Equilibria, 2019, 491, 1-11. Polarizable Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibria: Ethers, <i>n</i>-Alkanes, and Nitrogen. Journal of Chemical Theory and Computation, 2019, 898 15, 2561-2573. New Thermodynamic Approach for Nonspherical Molecules Based on a Perturbation Theory for 899 1.8 9 Ellipsoids. Industrial & amp; Engineering Chemistry Research, 2019, 58, 6850-6859. Crystallization of gas-selective nanoporous graphene by competitive etching and growth: a modeling study. Scientific Reports, 2019, 9, 5202. 1.6 Utilization of zeolite as a potential multi-functional proppant for CO2 enhanced shale gas recovery 901 and CO2 sequestration: A molecular simulation study on the competitive adsorption of CH4 and CO2 3.4 17 in zeolite and organic matter. Fuel, 2019, 249, 119-129. Superior Performance of Mesoporous MOF MIL-100 (Fe) Impregnated with Ionic Liquids for 902 1.0 CO₂ Adsorption. Journal of Chemical & amp; Engineering Data, 2019, 64, 2221-2228. An Efficient Molecular Simulation Methodology for Chemical Reaction Equilibria in Electrolyte 903 Solutions: Application to CO₂ Reactive Absorption. Journal of Physical Chemistry A, 2019, 9 1.1 123, 4074-4086. On the Performance of Confined Deep Eutectic Solvents and Ionic Liquids for Separations of Carbon 904 1.6 Dioxide from Methane: Molecular Dynamics Simulations. Langmuir, 2019, 35, 3658-3671. Thermodynamic and molecular insights into the absorption of H₂S, CO₂, and 905 1.8 139 CH₄ in choline chloride plus urea mixtures. AICHE Journal, 2019, 65, e16574. Structural dynamics of a metal–organic framework induced by CO2 migration in its non-uniform 5.8 54 porous structure. Nature Communications, 2019, 10, 999. Engineering new defective phases of UiO family metalâ€"organic frameworks with water. Journal of 907 5.2 58 Materials Chemistry A, 2019, 7, 7459-7469. Molecular Refraction and Nonlinear Refractive Index of Supercritical Carbon Dioxide under 908 0.2 Clustering Conditions. Russian Journal of Physical Chemistry B, 2019, 13, 1214-1219. Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. 6. Computational 909 Kinetics of Reactions between Hydrogen Atom and Oxygen Molecule H + O₂ a‡Œ HO + O and H 7 1.1 + O₂ ⇌ HO₂. Journal of Physical Chemistry A, 2019, 123, 10772-10781. Application of a Digital Oil Model to Solvent-Based Enhanced Oil Recovery of Heavy Crude Oil. Energy 24 & Fuels, 2019, 33, 10868-10877. Computational screening of metalâ€"organic frameworks for biogas purification. Molecular Systems 911 1.7 15 Design and Engineering, 2019, 4, 1125-1135. Molecular analysis of selective gas adsorption within composites of ionic polyimides and ionic liquids as gas separation membranes. Chemical Physics, 2019, 516, 71-83.

#	Article	IF	CITATIONS
913	Molecular simulation studies on refrigerants past – present – future. Fluid Phase Equilibria, 2019, 485, 190-198.	1.4	27
914	Computational Tuning of the Paddlewheel tcb-MOF Family for Advanced Methane Sorption. ACS Applied Energy Materials, 2019, 2, 222-231.	2.5	4
915	GOMC: GPU Optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids. SoftwareX, 2019, 9, 20-27.	1.2	32
916	Enhanced oil recovery with CO2/N2 slug in low permeability reservoir: Molecular dynamics simulation. Chemical Engineering Science, 2019, 197, 204-211.	1.9	74
917	Predicting partial atomic charges in siliceous zeolites. Microporous and Mesoporous Materials, 2019, 277, 184-196.	2.2	8
918	Evaluating Charge Equilibration Methods To Generate Electrostatic Fields in Nanoporous Materials. Journal of Chemical Theory and Computation, 2019, 15, 382-401.	2.3	70
919	Solubility prediction in mixed solvents: A combined molecular simulation and experimental approach. Fluid Phase Equilibria, 2019, 484, 26-37.	1.4	4
920	Vapor–liquid equilibrium and molecular simulation data for carbon dioxide (CO2) + trans-1,3,3,3-tetrafluoroprop-1-ene (R-1234ze(E)) mixture at temperatures from 283.32 to 353.02â and pressures up to 7.6 MPa. International Journal of Refrigeration, 2019, 98, 362-371.	€īK8	25
921	Solvation and Dynamics of CO ₂ in Aqueous Alkanolamine Solutions. ACS Sustainable Chemistry and Engineering, 2019, 7, 1028-1037.	3.2	11
922	Molecular Simulations of MOF Membranes and Performance Predictions of MOF/Polymer Mixed Matrix Membranes for CO ₂ /CH ₄ Separations. ACS Sustainable Chemistry and Engineering, 2019, 7, 2739-2750.	3.2	69
923	Multiscale structures in particle–fluid systems: Characterization, modeling, and simulation. Chemical Engineering Science, 2019, 198, 198-223.	1.9	85
924	Automatic Prediction of Surface Phase Diagrams Using Ab Initio Grand Canonical Monte Carlo. Journal of Physical Chemistry C, 2019, 123, 2321-2328.	1.5	45
925	Molecular-Level Understanding of Translational and Rotational Motions of C ₂ H ₆ , C ₃ H ₈ , and <i>n</i> -C ₄ H ₁₀ and Their Binary Mixtures with CO ₂ in ZIF-10. Journal of Chemical & amore Engineering Data, 2019, 64, 484-496.	1.0	4
926	Self-diffusion coefficient and viscosity of methane and carbon dioxide via molecular dynamics simulations based on new ab initio-derived force fields. Fluid Phase Equilibria, 2019, 481, 15-27.	1.4	38
927	In-situ ion-activated carbon nanospheres with tunable ultramicroporosity for superior CO2 capture. Carbon, 2019, 143, 531-541.	5.4	96
928	Diffusion of Water and Carbon Dioxide and Mixtures Thereof in Mg-MOF-74. Journal of Physical Chemistry C, 2019, 123, 8212-8220.	1.5	19
929	The Origin of the Reproduction of Different Nitrogen Uptakes in Covalent Organic Frameworks (COFs). Chemistry - A European Journal, 2019, 25, 2303-2312.	1.7	13
930	Fingerprints of heterogeneities from carbon oxidative process: A reactive molecular dynamics study. Microporous and Mesoporous Materials, 2020, 304, 109061.	2.2	6

#	Article	IF	CITATIONS
931	Assessing the Quality of Molecular Simulations for Vapor–Liquid Equilibria: An Analysis of the TraPPE Database. Journal of Chemical & Engineering Data, 2020, 65, 1330-1344.	1.0	31
932	Chelation of transition metals into MOFs as a promising method for enhancing CO ₂ capture: A computational study. AICHE Journal, 2020, 66, e16835.	1.8	8
933	Recovery mechanisms of hydrocarbon mixtures in organic and inorganic nanopores during pressure drawdown and CO2 injection from molecular perspectives. Chemical Engineering Journal, 2020, 382, 122808.	6.6	68
934	Characterization of Cabot BP280 with argon and nitrogen adsorption at temperatures above and below the triple point – Energetic vs Structural heterogeneities. Microporous and Mesoporous Materials, 2020, 293, 109762.	2.2	7
935	Molecular simulation of equal density temperature in CCS under geological sequestration conditions. , 2020, 10, 90-102.		4
936	Adsorption Isotherm Predictions for Multiple Molecules in MOFs Using the Same Deep Learning Model. Journal of Chemical Theory and Computation, 2020, 16, 1271-1283.	2.3	76
937	The effect of atomic point charges on adsorption isotherms of CO2 and water in metal organic frameworks. Adsorption, 2020, 26, 663-685.	1.4	36
938	Monte Carlo Simulation of the Adsorption and Displacement of CH ₄ by CO ₂ Injection in Shale Organic Carbon Slit Micropores for CO ₂ Enhanced Shale Gas Recovery. Energy & Fuels, 2020, 34, 150-163.	2.5	16
939	Mechano-chemical stability and water effect on gas selectivity in mixed-metal zeolitic imidazolate frameworks: a systematic investigation from van der Waals corrected density functional theory. Physical Chemistry Chemical Physics, 2020, 22, 1598-1610.	1.3	1
940	Application of computational chemistry for adsorption studies on metal–organic frameworks used for carbon capture. Physical Sciences Reviews, 2020, 5, .	0.8	0
941	Revealing the potential application of chiral covalent organic frameworks in CO ₂ adsorption and separation. New Journal of Chemistry, 2020, 44, 95-101.	1.4	16
942	Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: Insights from GCMC simulations and the ideal adsorbed solution theory (IAST). Chemical Engineering Journal, 2020, 386, 123945.	6.6	39
943	Solubility of pharmaceutical compounds in supercritical carbon dioxide: Application, experimental, and mathematical modeling. , 2020, , 185-254.		1
944	Biogas purification via sll hydrates in the presence of THF and DMSO solutions using MD simulations. Journal of Molecular Liquids, 2020, 297, 111904.	2.3	8
945	Ensemble Learning of Partition Functions for the Prediction of Thermodynamic Properties of Adsorption in Metal–Organic and Covalent Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 1907-1917.	1.5	13
946	A Strong Test of Atomically Detailed Models of Molecular Adsorption in Zeolites Using Multilaboratory Experimental Data for CO2 Adsorption in Ammonium ZSM-5. Journal of Physical Chemistry Letters, 2020, 11, 471-477.	2.1	24
947	A computational study to design zeolite-templated carbon materials with high performance for CO2/N2 separation. Microporous and Mesoporous Materials, 2020, 295, 109947.	2.2	12
948	Machine Learning Enabled Tailor-Made Design of Application-Specific Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 734-743.	4.0	42

#	Article	IF	CITATIONS
949	Microsecond simulation study on the replacement of methane in methane hydrate by carbon dioxide, nitrogen, and carbon dioxide–nitrogen mixtures. Fuel, 2020, 263, 116640.	3.4	35
950	Adsorption of CO2 on high silica MFI and DDR zeolites: Structural defects and differences between adsorbent samples. Microporous and Mesoporous Materials, 2020, 294, 109818.	2.2	13
951	Isotherm parameter library and evaluation software for CO2 capture adsorbents. Computers and Chemical Engineering, 2020, 143, 107105.	2.0	9
952	Interfacial CO ₂ -mediated nanoscale oil transport: from impediment to enhancement. Physical Chemistry Chemical Physics, 2020, 22, 23057-23063.	1.3	15
953	Pore size effect on selective gas transport in shale nanopores. Journal of Natural Gas Science and Engineering, 2020, 83, 103543.	2.1	12
954	Understanding the effect of H ₂ O on CO ₂ adsorption capture: mechanism explanation, quantitative approach and application. Sustainable Energy and Fuels, 2020, 4, 5970-5986.	2.5	20
955	Too Many Materials and Too Many Applications: An Experimental Problem Waiting for a Computational Solution. ACS Central Science, 2020, 6, 1890-1900.	5.3	63
956	Molecular dynamics simulation of carbon dioxide diffusion in NaA zeolite: assessment of surface effects and evaluation of bulk-like properties. Physical Chemistry Chemical Physics, 2020, 22, 22529-22536.	1.3	8
957	Can COFs replace MOFs in flue gas separation? high-throughput computational screening of COFs for CO ₂ /N ₂ separation. Journal of Materials Chemistry A, 2020, 8, 14609-14623.	5.2	69
958	Insensitivity in the pore size distribution of ultramicroporous carbon materials by CO2 adsorption. Carbon, 2020, 168, 508-514.	5.4	14
959	Investigations on 6FDA/BPDA-DAM polymer melt properties and CO2 adsorption using molecular dynamics simulations. Journal of Membrane Science, 2020, 613, 118377.	4.1	14
960	Computation of gas solubilities in choline chloride urea and choline chloride ethylene glycol deep eutectic solvents using Monte Carlo simulations. Journal of Molecular Liquids, 2020, 316, 113729.	2.3	31
961	Modeling Adsorption in Silica Pores via Minkowski Functionals and Molecular Electrostatic Moments. Energies, 2020, 13, 5976.	1.6	2
962	The Role of Binary Mixtures of Ionic Liquids in ZIF-8 for Selective Gas Storage and Separation: A Perspective from Computational Approaches. Journal of Physical Chemistry C, 2020, 124, 26203-26213.	1.5	14
963	Molecular Dynamics Simulation Study of N ₂ /CO ₂ Displacement Process of Methane Hydrate. ChemistrySelect, 2020, 5, 13936-13950.	0.7	5
964	Effects of Molecular Cross-Sectional Areas of Adsorbed Nitrogen on the Brunauer–Emmett–Teller Analysis for Carbon-Based Slit Pores. Langmuir, 2020, 36, 14656-14665.	1.6	12
965	Next-Generation Accurate, Transferable, and Polarizable Potentials for Material Simulations. Journal of Chemical Theory and Computation, 2020, 16, 7632-7644.	2.3	5
966	Tuning CO ₂ Capture at the Gas/Amine Solution Interface by Changing the Solvent Polarity. Journal of Physical Chemistry B, 2020, 124, 10245-10256.	1.2	11

#	Article	IF	CITATIONS
967	Molecular simulation of enhanced CH4 recovery and CO2 storage by CO2–N2 mixture injection in deformable organic micropores. Journal of Natural Gas Science and Engineering, 2020, 84, 103658.	2.1	6
968	CO2 Adsorption in Metal-Organic Framework Mg-MOF-74: Effects of Inter-Crystalline Space. Nanomaterials, 2020, 10, 2274.	1.9	18
969	Entropy in Molecular Fluids: Interplay between Interaction Complexity and Criticality. Journal of Physical Chemistry B, 2020, 124, 11463-11471.	1.2	2
970	Adsorption of CO and N2 molecules at the surface of solid water. A grand canonical Monte Carlo study. Journal of Chemical Physics, 2020, 153, 204502.	1.2	3
971	Role of particle size and surface functionalisation on the flexibility behaviour of switchable metal–organic framework DUT-8(Ni). Journal of Materials Chemistry A, 2020, 8, 22703-22711.	5.2	14
972	Porous carbon nanotube networks and pillared graphene materials exhibiting high SF6 adsorption uptake and separation selectivity of SF6/N2 fluid mixtures: A comparative molecular simulation study. Microporous and Mesoporous Materials, 2020, 307, 110464.	2.2	16
973	Separation of noble gases through nano porous material membranes. Annals of Nuclear Energy, 2020, 148, 107730.	0.9	2
974	Energy-consumption analysis of carbon-based material for CO2 capture process. Fluid Phase Equilibria, 2020, 510, 112504.	1.4	3
975	A Comparative Assessment of Emerging Solvents and Adsorbents for Mitigating CO2 Emissions From the Industrial Sector by Using Molecular Modeling Tools. Frontiers in Energy Research, 2020, 8, .	1.2	20
976	Revealing the effect of structure curations on the simulated CO ₂ separation performances of MOFs. Materials Advances, 2020, 1, 341-353.	2.6	17
977	Prediction of thermodynamic properties of organic mixtures: Combining molecular simulations with classical thermodynamics. Fluid Phase Equilibria, 2020, 523, 112759.	1.4	7
978	Carbon dioxide and propane nucleation: the emergence of a nucleation barrier. Physical Chemistry Chemical Physics, 2020, 22, 15986-15998.	1.3	7
979	Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coordination Chemistry Reviews, 2020, 422, 213470.	9.5	124
980	Heterometallic Metal Organic Frameworks for Air Separation: A Computational Study. Industrial & Engineering Chemistry Research, 2020, 59, 15718-15731.	1.8	14
981	Message Passing Neural Networks for Partial Charge Assignment to Metal–Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 19070-19082.	1.5	42
982	Underlying mechanism of CO2 uptake onto biomass-based porous carbons: Do adsorbents capture CO2 chiefly through narrow micropores?. Fuel, 2020, 282, 118727.	3.4	75
983	High-throughput screening of hypothetical aluminosilicate zeolites for CO2 capture from flue gas. Journal of CO2 Utilization, 2020, 42, 101346.	3.3	14
984	Dynamics of respiratory droplets carrying SARS-CoV-2 virus in closed atmosphere. Results in Physics, 2020, 19, 103482.	2.0	20

			0
#		IF	CITATIONS
985	Selection of a suitable ZIF-8/ionic liquid (IL) based composite for selective CO ₂ capture: the role of anions at the interface. RSC Advances, 2020, 10, 39160-39170.	1.7	27
986	Selective adsorption of propene over propane on Li-decorated poly (triazine imide). Green Energy and Environment, 2022, 7, 307-313.	4.7	4
987	Monte Carlo simulations of simple gases adsorbed onto graphite and molecular models of activated carbon. Adsorption, 2020, 26, 1301-1322.	1.4	7
988	Enhanced Thermal Conductivity in a Diamine-Appended Metal–Organic Framework as a Result of Cooperative CO ₂ Adsorption. ACS Applied Materials & Interfaces, 2020, 12, 44617-44621.	4.0	10
989	Molecular insight into the anion effect and free volume effect of CO ₂ solubility in multivalent ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 20618-20633.	1.3	27
990	Accurately Predicting CO ₂ Reactive Absorption Properties in Aqueous Alkanolamine Solutions by Molecular Simulation Requiring No Solvent Experimental Data. Industrial & Engineering Chemistry Research, 2020, 59, 18254-18268.	1.8	6
991	Computational Selection of High-Performing Covalent Organic Frameworks for Adsorption and Membrane-Based CO ₂ /H ₂ Separation. Journal of Physical Chemistry C, 2020, 124, 22577-22590.	1.5	36
992	Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials. Chemistry of Materials, 2020, 32, 7822-7831.	3.2	27
993	A potential for molecular simulation of compounds with linear moieties. Journal of Chemical Physics, 2020, 153, 084503.	1.2	5
994	Adsorption-induced clustering of CO ₂ on graphene. Physical Chemistry Chemical Physics, 2020, 22, 21031-21041.	1.3	18
995	High-efficiency CO2 capture and separation over N2 in penta-graphene pores: insights from GCMC and DFT simulations. Journal of Materials Science, 2020, 55, 16603-16611.	1.7	11
996	Screening Study of the Effects of Impurity Gases on Hydrogen Storage in Metal-Organic Frameworks. Journal of Energy Engineering - ASCE, 2020, 146, 04020065.	1.0	3
997	Homogeneous nucleation of carbon dioxide in supersonic nozzles I: experiments and classical theories. Physical Chemistry Chemical Physics, 2020, 22, 19282-19298.	1.3	11
998	A biocompatible ZnNa2-based metal–organic framework with high ibuprofen, nitric oxide and metal uptake capacity. Materials Advances, 2020, 1, 2248-2260.	2.6	8
999	Multiscale Simulation of Vinyl Acetate Systems Applied in the Industrial Gas Separation Column. Industrial & Engineering Chemistry Research, 2020, 59, 20428-20436.	1.8	0
1000	Molecular-Scale Considerations of Enhanced Oil Recovery in Shale. Energies, 2020, 13, 6619.	1.6	5
1001	Molecular Selectivity of CO–N ₂ Mixed Hydrates: Raman Spectroscopy and GCMC Studies. Journal of Physical Chemistry C, 2020, 124, 11886-11891.	1.5	7
1002	Experimental and Molecular Insights on Mitigation of Hydrocarbon Sieving in Niobrara Shale by CO2 Huff â€~n' Puff. SPE Journal, 2020, 25, 1803-1811.	1.7	14

ARTICLE IF CITATIONS Thermodynamics of mixing methanol with supercritical CO₂ as seen from computer 1003 4 1.3 simulations and thermodynamic integration. Physical Chemistry Chemical Physics, 2020, 22, 11652-11662. Selective Separation of CO₂ from Flue Gas Using Carbon and Boron Nitride Nanotubes as 1004 2.5 a Membrane. Energy & amp; Fuels, 2020, 34, 7223-7231. Computational Design of a Photoresponsive Metal–Organic Framework for Post Combustion Carbon 1005 1.5 18 Capture. Journal of Physical Chemistry C, 2020, 124, 13162-13167. On competitive gas adsorption and absorption phenomena in thin films of ionic liquids. Journal of 1006 Materials Chemistry A, 2020, 8, 11781-11799. Switching Xe/Kr adsorption selectivity in modified SBMOF-1: a theoretical study. RSC Advances, 2020, 1007 1.7 18 10, 17195-17204. Atomistic structure generation of covalent triazine-based polymers by molecular simulation. RSC 1008 1.7 Advances, 2020, 10, 4258-4263. Semiconductive microporous hydrogen-bonded organophosphonic acid frameworks. Nature 1009 5.8 50 Communications, 2020, 11, 3180. The role of brine in gas adsorption and dissolution in kerogen nanopores for enhanced gas recovery 1010 6.6 and CO2 sequestration. Chemical Engineering Journal, 2020, 399, 125704. Molecular models for phase equilibria of alkanes with air components and combustion products I. 1011 9 1.4 Alkane mixtures with nitrogen, CO2 and water. Fluid Phase Equilibria, 2020, 514, 112553. Adsorption based realistic molecular model of amorphous kerogen. RSC Advances, 2020, 10, 1.7 23312-23320. Strain-controlled graphdiyne membrane for CO2/CH4 separation: First-principle and molecular 1013 1.7 13 dynamic simulation. Chinese Journal of Chemical Engineering, 2020, 28, 1898-1903. Linking Fluid Densimetry and Molecular Simulation: Adsorption Behavior of Carbon Dioxide on Planar 1.8 Gold Surfaces. Industrial & amp; Engineering Chemistry Research, 2020, 59, 13283-13289. Role of partial charge assignment methods in high-throughput screening of MOF adsorbents and 1015 membranes for CO₂/CH₄ separation. Molecular Systems Design and 1.7 31 Engineering, 2020, 5, 532-543. A Positive Charge in the Outer Coordination Sphere of an Artificial Enzyme Increases CO₂ 1.1 Hydrogenation. Organometallics, 2020, 39, 1532-1544. Data-Driven Many-Body Models for Molecular Fluids: CO₂/H₂O Mixtures as a 1017 2.344 Case Study. Journal of Chemical Theory and Computation, 2020, 16, 2246-2257. Use of a New Size-Weighted Combining Rule to Predict Adsorption in Siliceous Zeolites. Journal of Chemical & amp; Engineering Data, 2020, 65, 1379-1395. Quantitative distinction of thermodynamic soluble and miscible states. AICHE Journal, 2020, 66, e16977. 1019 1.8 2 In Silico Discovery of Covalent Organic Frameworks for Carbon Capture. ACS Applied Materials & amp; Interfaces, 2020, 12, 21559-21568.

ARTICLE IF CITATIONS Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and 1021 18.7 449 applications. Chemical Society Reviews, 2020, 49, 2751-2798. Molecular Dynamics Simulation of the Stability of Spherical Nanoclusters of Methane and Carbon Dioxide Hydrates. Colloid Journal, 2020, 82, 180-187. Molecular dynamics simulation of bis(2-chloroethyl) sulfide gas separation by metal-organic and 1023 2.2 3 porous aromatic frameworks. Microporous and Mesoporous Materials, 2020, 306, 110402. Molecular models for phase equilibria of alkanes with air components and combustion products II. 1024 1.4 Alkane – Oxygen mixtures. Fluid Phase Equilibria, 2020, 520, 112650. Deformation of Shale and Coal Organic Carbon Slit Micropores Induced by CO₂-Enhanced 1025 2.5 9 Gas Recovery: A Monte Carlo Simulation Study. Energy & amp; Fuels, 2020, 34, 1564-1580. Comparative analysis of calculation method of adsorption isosteric heat: Case study of CO2 capture 2.2 using MOFs. Microporous and Mesoporous Materials, 2020, 298, 110053. Simulation of Adsorption–Desorption Behavior in Coal Seam Gas Reservoirs at the Molecular Level: A 1027 2.5 32 Comprehensive Review. Energy & amp; Fuels, 2020, 34, 2619-2642. The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced 7.8 174 Functional Materials, 2020, 30, 1909062. Computer simulation study of fluorocarbon phosphate surfactant based aqueous reverse micelle in 1029 supercritical CO₂: roles of surfactant functional groups, ionic strength, and phase 1.3 3 changes in CO₂. Physical Chemistry Chemical Physics, 2020, 22, 3434-3445. Theory and Simulation in Physics for Materials Applications. Springer Series in Materials Science, 0.4 2020, , . Effects of nitrogen and oxygen functional groups and pore width of activated carbon on carbon 1031 71 6.6 dioxide capture: Temperature dependence. Chemical Engineering Journal, 2020, 389, 124413. Vapour–liquid phase equilibria and interfacial properties of fatty acid methyl esters from molecular 1.3 dynamics simulations. Physical Chemistry Chemical Physics, 2020, 22, 4974-4983. Effect of ultramicropores on the mechanisms of H2S retention from biogas. Chemical Engineering 1033 2.7 11 Research and Design, 2020, 154, 241-249. Thermodynamic models for H2O–CO2–H2 mixtures in near-critical and supercritical regions of water. International Journal of Hydrogen Energy, 2020, 45, 4297-4304. 1034 3.8 16 Anion Effect on Gas Absorption in Imidazolium-Based Ionic Liquids. Journal of Chemical Information 1035 2.515 and Modeling, 2020, 60, 661-666. Solubility of Nitrogen in Methane, Ethane, and Mixtures of Methane and Ethane at Titan-Like 1.2 Conditions: A Molecular Dynamics Study. ACS Earth and Space Chemistry, 2020, 4, 241-248. Adsorption simulation of open-ended single-walled carbon nanotubes for various gases. AIP Advances, 1037 0.6 7 2020, 10, . Experimental and numerical study of SO2 removal from a CO2/SO2 gas mixture in a Cu-BTC metal 1.3 organic framework. Journal of Molecular Graphics and Modelling, 2020, 96, 107533.

#	Article	IF	CITATIONS
1039	Insights into the Gas Adsorption Mechanisms in Metal–Organic Frameworks from Classical Molecular Simulations. Topics in Current Chemistry, 2020, 378, 14.	3.0	16
1040	3D Graphene as an Unconventional Support Material for Ionic Liquid Membranes: Computational Insights into Gas Separations. Industrial & Engineering Chemistry Research, 2020, 59, 2203-2210.	1.8	12
1041	Conformal Sites Theory for Adsorbed Films on Energetically Heterogeneous Surfaces. Langmuir, 2020, 36, 1822-1838.	1.6	7
1042	Unlocking the Effect of H ₂ O on CO ₂ Separation Performance of Promising MOFs Using Atomically Detailed Simulations. Industrial & Engineering Chemistry Research, 2020, 59, 3141-3152.	1.8	26
1043	Adsorption characteristics of CH4 and CO2 in organic-inorganic slit pores. Fuel, 2020, 265, 116969.	3.4	58
1044	Insights into recovery of multi-component shale gas by CO2 injection: A molecular perspective. Fuel, 2020, 267, 117247.	3.4	42
1045	Performance of Activated Carbons Derived from Date Seeds in CO ₂ Swing Adsorption Determined by Combining Experimental and Molecular Simulation Data. Industrial & Engineering Chemistry Research, 2020, 59, 7161-7173.	1.8	25
1046	Molecular simulation of the adsorption-induced deformation during CO2 sequestration in shale and coal carbon slit pores. Fuel, 2020, 272, 117693.	3.4	16
1047	CO2 separation from flue gas mixture using [BMIM][BF4]/MOF composites: Linking high-throughput computational screening with experiments. Chemical Engineering Journal, 2020, 394, 124916.	6.6	46
1048	Interfacial analysis of mixed-matrix membranes under exposure to high-pressure CO2. Journal of Membrane Science, 2020, 607, 118147.	4.1	16
1049	Low Temperature Calorimetry Coupled with Molecular Simulations for an In-Depth Characterization of the Guest-Dependent Compliant Behavior of MOFs. Chemistry of Materials, 2020, 32, 3489-3498.	3.2	8
1050	The Henry constant and isosteric heat at zero loading for adsorption on energetically heterogeneous solids absolute versus excess. Chemical Engineering Journal, 2020, 395, 125035.	6.6	7
1051	Molecular Mechanism for Azeotrope Formation in Ethanol/Benzene Binary Mixtures through Gibbs Ensemble Monte Carlo Simulation. Journal of Physical Chemistry B, 2020, 124, 3371-3386.	1.2	13
1052	Separation of CF ₄ /N ₂ , C ₂ F ₆ /N ₂ , and SF ₆ /N ₂ Mixtures in Amorphous Activated Carbons Using Molecular Simulations. ACS Applied Materials & Interfaces, 2020, 12, 20044-20055.	4.0	19
1053	Defining New Limits in Gas Separations Using Modified ZIF Systems. ACS Applied Materials & Interfaces, 2020, 12, 20536-20547.	4.0	22
1054	Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368, 297-303.	6.0	429
1055	Molecular characterization of carbon dioxide, methane, and water adsorption in micropore space of kerogen matrix. Fuel, 2021, 283, 119254.	3.4	40
1056	Methane and carbon dioxide in dualâ€porosity organic matter: Molecular simulations of adsorption and diffusion. AICHE Journal, 2021, 67, e16655.	1.8	14

#	Article	IF	CITATIONS
1057	Properties of supercritical N 2 , O 2 , CO 2 , and NH 3 mixtures from the virial equation of state. AICHE Journal, 2021, 67, e17072.	1.8	3
1058	First-row transition-metal-doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4/H2. Materials Today Physics, 2021, 16, 100301.	2.9	17
1059	Pore size characterization of micro-mesoporous carbons using CO2 adsorption. Carbon, 2021, 173, 842-848.	5.4	25
1060	Insights into quaternary ammonium-based ionic liquids series with tetrafluoroborate anion for CO2 capture. Journal of Molecular Liquids, 2021, 327, 114857.	2.3	12
1061	Pore engineering of ZIF-8 with ionic liquids for membrane-based CO2 separation: bearing functional group effect. Green Chemical Engineering, 2021, 2, 104-110.	3.3	17
1062	Review on Pore Structure Characterization and Microscopic Flow Mechanism of CO ₂ Flooding in Porous Media. Energy Technology, 2021, 9, .	1.8	60
1063	New insight into absorption characteristics of CO2 on the surface of calcite, dolomite, and magnesite. Applied Surface Science, 2021, 540, 148320.	3.1	50
1064	Determination of CH4, C2H6 and CO2 adsorption in shale kerogens coupling sorption-induced swelling. Chemical Engineering Journal, 2021, 410, 127690.	6.6	31
1065	Molecular insight of flow property for gas-water mixture (CO2/CH4-H2O) in shale organic matrix. Fuel, 2021, 288, 119720.	3.4	25
1066	Natural gas density under extremely high pressure and high temperature: Comparison of molecular dynamics simulation with corresponding state model. Chinese Journal of Chemical Engineering, 2021, 31, 2-9.	1.7	2
1067	Insight on the stability of polycrystalline natural gas hydrates by molecular dynamics simulations. Fuel, 2021, 289, 119946.	3.4	23
1068	Gibbs Ensemble Monte Carlo for Reactive Force Fields to Determine the Vapor–Liquid Equilibrium of CO ₂ and H ₂ O. Journal of Chemical Theory and Computation, 2021, 17, 322-329.	2.3	6
1069	Investigation of the MOF adsorbents and the gas adsorptive separation mechanisms. Journal of Environmental Chemical Engineering, 2021, 9, 104790.	3.3	46
1070	Effects of functional groups for CO2 capture using metal organic frameworks. Frontiers of Chemical Science and Engineering, 2021, 15, 437-449.	2.3	26
1071	A Carbocationic Triarylmethaneâ€Based Porous Covalent Organic Network. Chemistry - A European Journal, 2021, 27, 2342-2347.	1.7	10
1072	Sulfonyl <scp>PIM</scp> â€l: A diverse separation membrane with dilation resistance. AICHE Journal, 2021, 67, e17006.	1.8	4
1073	Characterization of non-graphitized carbon blacks: a model with surface crevices. Physical Chemistry Chemical Physics, 2021, 23, 12569-12581.	1.3	5
1074	Predicting Gas Separation through Graphene Nanopore Ensembles with Realistic Pore Size Distributions. ACS Nano, 2021, 15, 1727-1740.	7.3	28

#	Article	IF	CITATIONS
1075	A high-throughput screening of metal–organic framework based membranes for biogas upgrading. Faraday Discussions, 2021, 231, 235-257.	1.6	12
1076	Effect of axial molecules and linker length on CO ₂ adsorption and selectivity of CAU-8: a combined DFT and GCMC simulation study. RSC Advances, 2021, 11, 12460-12469.	1.7	0
1077	Techno-economic analysis of metal–organic frameworks for adsorption heat pumps/chillers: from directional computational screening, machine learning to experiment. Journal of Materials Chemistry A, 2021, 9, 7656-7666.	5.2	20
1078	Size dependence of the dissociation process of spherical hydrate particles <i>via</i> microsecond molecular dynamics simulations. Physical Chemistry Chemical Physics, 2021, 23, 11180-11185.	1.3	10
1079	Homogeneous nucleation of carbon dioxide in supersonic nozzles II: molecular dynamics simulations and properties of nucleating clusters. Physical Chemistry Chemical Physics, 2021, 23, 4517-4529.	1.3	12
1080	Correlating MOF-808 parameters with mixed-matrix membrane (MMM) CO ₂ permeation for a more rational MMM development. Journal of Materials Chemistry A, 2021, 9, 12782-12796.	5.2	26
1081	Zr-MOFs for CF ₄ /CH ₄ , CH ₄ /H ₂ , and CH ₄ /N ₂ separation: towards the goal of discovering stable and effective adsorbents. Molecular Systems Design and Engineering, 2021, 6, 627-642.	1.7	13
1082	CH4 and CO2 Adsorption Mechanism in Kaolinite Slit Nanopores as Studied by the Grand Canonical Monte Carlo Method. Journal of Nanoscience and Nanotechnology, 2021, 21, 108-119.	0.9	2
1083	Molecular dynamics simulations of a hydrophilic MIL-160-based membrane demonstrate pressure-dependent selective uptake of industrially relevant greenhouse gases. Materials Advances, 2021, 2, 5922-5934.	2.6	3
1084	Computational determination of coordination structure impact on adsorption and acidity of pristine and sulfated MOF-808. Materials Advances, 2021, 2, 4246-4254.	2.6	9
1085	Equilibrium and Kinetics of CO2 Adsorption by Coconut Shell Activated Carbon Impregnated with Sodium Hydroxide. Processes, 2021, 9, 201.	1.3	12
1086	The development of a comprehensive toolbox based on multi-level, high-throughput screening of MOFs for CO/N ₂ separations. Chemical Science, 2021, 12, 12068-12081.	3.7	8
1087	Recent advances in simulating gas permeation through MOF membranes. Materials Advances, 2021, 2, 5300-5317.	2.6	22
1088	Investigations of CO ₂ Capture from Gas Mixtures Using Porous Liquids. Langmuir, 2021, 37, 1255-1266.	1.6	10
1089	High-Throughput Screening of Metal-Organic Frameworks for the Impure Hydrogen Storage Supplying to a Fuel Cell Vehicle. Transport in Porous Media, 2021, 140, 727-742.	1.2	3
1090	Ranking the Efficiency of Gas Hydrate Anti-agglomerants through Molecular Dynamic Simulations. Journal of Physical Chemistry B, 2021, 125, 1487-1502.	1.2	8
1091	Molecular dynamics simulation and in-situ MRI observation of organic exclusion during CO2 hydrate growth. Chemical Physics Letters, 2021, 764, 138287.	1.2	16
1092	Quasi-Universal Solubility Behavior of Light Gases in Imidazolium-Based Ionic Liquids with Varying Anions: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2021, 125, 1647-1659.	1.2	15

#	Article	IF	CITATIONS
1093	Water–Gas Shift Reaction to Capture Carbon Dioxide and Separate Hydrogen on Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2021, 13, 11026-11038.	4.0	10
1094	Molecular Sieving Properties of Nanoporous Mixed-Linker ZIF-62: Associated Structural Changes upon Gas Adsorption Application. ACS Applied Nano Materials, 2021, 4, 3519-3528.	2.4	8
1095	ls Porosity at the MOF/Polymer Interface Necessarily an Obstacle to Optimal Gas-Separation Performances in Mixed Matrix Membranes?. , 2021, 3, 344-350.		24
1096	Molecular Dynamics Simulations Study on the Shear Viscosity, Density, and Equilibrium Interfacial Tensions of CO ₂ + Brines and Brines + CO ₂ + <i>n</i> -Decane Systems. Journal of Physical Chemistry B, 2021, 125, 2707-2718.	1.2	11
1097	Computer simulations for the adsorption and separation of CH4/H2/CO2/N2 gases by hybrid ultramicroporous materials. Materials Today Communications, 2021, 26, 101987.	0.9	4
1098	Fast and Accurate Machine Learning Strategy for Calculating Partial Atomic Charges in Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2021, 17, 3052-3064.	2.3	53
1099	Aqueous films on pore surfaces mediate adsorption and transport of gases through crowded nanopores. Journal of Chemical Physics, 2021, 154, 094706.	1.2	4
1100	Tracking CO2 capture and separation over N2 in a flexible metal–organic framework: insights from GCMC and DFT simulations. Journal of Materials Science, 2021, 56, 10414-10423.	1.7	8
1101	The Finite Pore Volume GAB Adsorption Isotherm Model as a Simple Tool to Estimate a Diameter of Cylindrical Nanopores. Molecules, 2021, 26, 1509.	1.7	23
1102	Unveiling Carbon Dioxide and Ethanol Diffusion in Carbonated Water-Ethanol Mixtures by Molecular Dynamics Simulations. Molecules, 2021, 26, 1711.	1.7	2
1103	Doubling CO2/N2 separation performance of CuBTC by incorporation of 1-n-ethyl-3-methylimidazolium diethyl phosphate. Microporous and Mesoporous Materials, 2021, 316, 110947.	2.2	19
1104	Multilevel screening of computationâ€ready, experimental metalâ€organic frameworks for natural gas purification. AICHE Journal, 2021, 67, e17279.	1.8	6
1105	Phonons and Adsorption-Induced Deformations in ZIFs: Is It Really a Gate Opening?. Journal of Physical Chemistry C, 2021, 125, 7999-8005.	1.5	10
1106	Calcium-Based Metal–Organic Framework for Efficient Capture of Sulfur Hexafluoride at Low Concentrations. Industrial & Engineering Chemistry Research, 2021, 60, 5976-5983.	1.8	30
1107	Optimal Performance of Nanoporous Carbons on Adsorptive Separation of CO ₂ from Flue Gas. Energy & Fuels, 2021, 35, 8069-8080.	2.5	5
1108	A Transferable Force Field for Predicting Adsorption and Diffusion of Hydrocarbons and Small Molecules in Silica Zeolites with Coupled-Cluster Accuracy. Journal of Physical Chemistry C, 2021, 125, 8418-8429.	1.5	11
1109	Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nature Catalysis, 2021, 4, 322-331.	16.1	216
1110	CO ₂ Capture by Hydroxylated Azineâ€Based Covalent Organic Frameworks. Chemistry - A European Journal, 2021, 27, 8048-8055.	1.7	21

#	Article	IF	CITATIONS
1111	Toward In Silico Prediction of CO ₂ Diffusion in Champagne Wines. ACS Omega, 2021, 6, 11231-11239.	1.6	3
1112	Efficient CH4/CO2 Gas Mixture Separation through Nanoporous Graphene Membrane Designs. Energies, 2021, 14, 2488.	1.6	6
1113	Comprehensive Review about Methane Adsorption in Shale Nanoporous Media. Energy & Fuels, 2021, 35, 8456-8493.	2.5	38
1114	Utilization of zeolite as a potential multi-functional proppant for CO2 enhanced shale gas recovery and CO2 sequestration: A molecular simulation study of the impact of water on adsorption in zeolite and organic matter. Fuel, 2021, 292, 120312.	3.4	9
1115	3.Al-Based Metal-Organic Framework MFM-300 and MIL-160 for SO2 Capture: A Molecular Simulation Study. Fluid Phase Equilibria, 2021, 536, 112963.	1.4	12
1116	Monte Carlo Simulations of Nanopore Compartmentalization Yield Fingerprint Adsorption Isotherms as a Rationale for Advanced Structure Characterization of Metal–Organic Frameworks. ACS Applied Nano Materials, 2021, 4, 5531-5540.	2.4	4
1117	Diffusion coefficients of CO ₂ –SO ₂ –water and CO ₂ –N ₂ –water systems and their impact on the CO ₂ sequestration process: Molecular dynamics and dissolution process simulations. , 2021, 11, 764-779.		10
1118	Unraveling the Guestâ€Induced Switchability in the Metalâ€Organic Framework DUTâ€13(Zn)**. Chemistry - A European Journal, 2021, 27, 9708-9715.	1.7	8
1119	Competitive and Synergistic Adsorption of Mixtures of Polar and Nonpolar Gases in Carbonaceous Nanopores. Langmuir, 2021, 37, 6754-6764.	1.6	8
1120	Molecular Sieving of Acetylene from Ethylene in a Rigid Ultraâ€microporous Metal Organic Framework Chemistry - A European Journal, 2021, 27, 9446-9453.	1.7	20
1121	Prediction of Adsorption and Diffusion Behaviors of CO2 and CH4 in All-Silica Zeolites Using Molecular Simulation. Membranes, 2021, 11, 392.	1.4	4
1122	Molecular dynamics simulations of homogeneous nucleation of liquid phase in highly supersaturated propylene glycol vapors. Journal of Aerosol Science, 2021, 154, 105743.	1.8	0
1123	Ionic liquid incorporation in zeolitic imidazolate framework-3 for improved CO2 separation: A computational approach. Applied Surface Science, 2021, 562, 150173.	3.1	15
1124	Molecular Simulations of CO2/CH4, CO2/N2 and N2/CH4 Binary Mixed Hydrates. Colloid Journal, 2021, 83, 372-378.	0.5	3
1125	Effect of ionic liquids in carbon nanotube bundles on CO2, H2S, and N2 separation from CH4: A computational study. Journal of Chemical Physics, 2021, 154, 194504.	1.2	4
1126	Multifunctional strain-controlled graphdiyne membrane for gas separation: a theoretical study. Molecular Simulation, 0, , 1-6.	0.9	0
1127	Dynamic fluid states in organic-inorganic nanocomposite: Implications for shale gas recovery and CO2 sequestration. Chemical Engineering Journal, 2021, 411, 128423.	6.6	102
1128	Salting-out effect promoting highly efficient ambient ammonia synthesis. Nature Communications, 2021, 12, 3198.	5.8	105

#	Article	IF	CITATIONS
1129	Identifying Promising Covalent-Organic Frameworks for Decarburization and Desulfurization from Biogas via Computational Screening. ACS Sustainable Chemistry and Engineering, 2021, 9, 8858-8867.	3.2	10
1130	Adsorption and the Chemical Reaction N ₂ O ₄ ↔ 2NO ₂ in the Presence of N ₂ in a Gas Phase Connected with a Carbon Nanotube. ACS Omega, 2021, 6, 17342-17352.	1.6	6
1131	Computer-Aided Discovery of MOFs with Calixarene-Analogous Microenvironment for Exceptional SF ₆ Capture. Chemistry of Materials, 2021, 33, 5108-5114.	3.2	37
1132	Understanding Gas Solubility of Pure Component and Binary Mixtures within Multivalent Ionic Liquids from Molecular Simulations. Journal of Physical Chemistry B, 2021, 125, 8165-8174.	1.2	9
1133	Metal Exchange Boosts the CO2 Selectivity of Metal Organic Frameworks Having Zn-Oxide Nodes. Journal of Physical Chemistry C, 2021, 125, 17311-17322.	1.5	3
1134	Monte Carlo Molecular Simulation Study of Carbon Dioxide Sequestration into Dry and Wet Calcite Pores Containing Methane. Energy & Fuels, 2021, 35, 11393-11402.	2.5	7
1135	The synergistic effects of surface functional groups and pore sizes on CO2 adsorption by GCMC and DFT simulations. Chemical Engineering Journal, 2021, 415, 128824.	6.6	51
1136	Structure and single particle dynamics of the vapour-liquid interface of acetone-CO2 mixtures. Journal of Molecular Liquids, 2021, 334, 116091.	2.3	1
1137	The structure of CO2 and CH4 at the interface of a poly(urethane urea) oligomer model from the microscopic point of view. Journal of Chemical Physics, 2021, 155, 044704.	1.2	3
1138	Bulk and Interfacial Properties of the Decane + Brine System in the Presence of Carbon Dioxide, Methane, and Their Mixture. Industrial & Engineering Chemistry Research, 2021, 60, 11525-11534.	1.8	11
1139	Significant Improvement in CO2 Absorption by Deep Eutectic Solvents as Immobilized Sorbents: Computational Analysis. Journal of Physical Chemistry B, 2021, 125, 10035-10046.	1.2	14
1140	Molecular Origin of Wettability Alteration of Subsurface Porous Media upon Gas Pressure Variations. ACS Applied Materials & Interfaces, 2021, 13, 41330-41338.	4.0	21
1141	Construction of a Porous Metal–Organic Framework with a High Density of Open Cr Sites for Record N ₂ /O ₂ Separation. Advanced Materials, 2021, 33, e2100866.	11.1	18
1142	Assessment of CO2 adsorption capacity in Wollastonite using atomistic simulation. Journal of CO2 Utilization, 2021, 50, 101564.	3.3	6
1143	Effects of Pore Connectivity on the Sorption of Fluids in Nanoporous Material: Ethane and CO2 Sorption in Silicalite. ChemEngineering, 2021, 5, 55.	1.0	5
1144	Atomic Heat Contributions for Carbon Dioxide Adsorption in IRMOF-1. Industrial & Engineering Chemistry Research, 2021, 60, 12650-12662.	1.8	5
1145	Insertion of Oxygen and Nitrogen in the Siliceous Zeolite TON at High Pressure. Journal of Physical Chemistry C, 2021, 125, 19517-19524.	1.5	0
1146	The Role of Surface Hydrophobicity on the Structure and Dynamics of CO2 and CH4 Confined in Silica Nanopores. Frontiers in Climate, 2021, 3, .	1.3	11

#	Article	IF	CITATIONS
1147	Performance of adsorption isotherms kernels of CO2 models for Î ³ -alumina characterization. Adsorption, 2021, 27, 1035-1042.	1.4	0
1148	Force-Field-Based Computational Study of the Thermodynamics of a Large Set of Aqueous Alkanolamine Solvents for Post-Combustion CO ₂ Capture. Journal of Chemical Information and Modeling, 2021, 61, 4497-4513.	2.5	5
1149	Water Bridges Substitute for Defects in Amine-Functionalized UiO-66, Boosting CO ₂ Adsorption. Langmuir, 2021, 37, 10439-10449.	1.6	12
1150	Performance-Based Screening of Porous Materials for Carbon Capture. Chemical Reviews, 2021, 121, 10666-10741.	23.0	115
1151	Wetting/non-wetting behaviour of quadrupolar molecules (N2, C2H4, CO2) on planar substrates. Chemical Engineering Journal, 2021, 419, 129502.	6.6	7
1152	Computation of drug solvation free energy in supercritical CO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>: Alternatives to all-atom computer simulations. Fluid Phase Equilibria. 2021. 544-545. 113096.</mml:math 	1.4	1
1153	Vapor-liquid equilibrium and criticality of CO2 and n-heptane in shale organic pores by the Monte Carlo simulation. Fuel, 2021, 299, 120909.	3.4	18
1154	Simultaneous measurement of the density and viscosity for n-DecaneÂ+ÂCO2 binary mixtures at temperature between (303.15 to 373.15) K and pressures up to 80ÂMPa. Journal of Molecular Liquids, 2021, 338, 116646.	2.3	12
1155	Vertical compositional variations of liquid hydrocarbons in Titan's alkanofers. Astronomy and Astrophysics, 2021, 653, A80.	2.1	3
1156	Optimization of membrane-cryogenic hybrid propane recovery process: From molecular to process simulation. Journal of Cleaner Production, 2021, 321, 129049.	4.6	8
1157	MOF-based MMMs breaking the upper bounds of polymers for a large variety of gas separations. Separation and Purification Technology, 2022, 281, 119811.	3.9	30
1158	Molecular insights into the separation mechanism of imidazole-based ionic liquid supported membranes. Journal of Molecular Liquids, 2021, 340, 117173.	2.3	11
1159	Synergistic and competitive effect of H2O on CO2 adsorption capture: Mechanism explanations based on molecular dynamic simulation. Journal of CO2 Utilization, 2021, 52, 101662.	3.3	16
1160	Meso-scale simulation on mechanism of Na+-gated water-conducting nanochannels in zeolite NaA. Journal of Membrane Science, 2021, 635, 119462.	4.1	5
1161	Pore size analysis of carbons with heterogeneous kernels from reactive molecular dynamics model and quenched solid density functional theory. Carbon, 2021, 183, 672-684.	5.4	7
1162	An ultra-high sensitive ethanol sensor through amending surface-functionalized groups by novel acidic synthesis methods. Sensors and Actuators B: Chemical, 2021, 347, 130654.	4.0	7
1163	Adsorptive separation of Xe/Kr using nanoporous carbons in the presence of I2 and CH3I. Separation and Purification Technology, 2021, 275, 119161.	3.9	8
1164	Effect of functional group in the zeolitic imidazolate framework for selective CH4/CO and CO/N2 separation: A theoretical study. Materials Letters, 2021, 303, 130575.	1.3	8

#	Article	IF	CITATIONS
1165	Molecular insights into CO2 hydrate formation in the presence of hydrophilic and hydrophobic solid surfaces. Energy, 2021, 234, 121260.	4.5	42
1166	The miscible behaviors and mechanism of CO2/CH4/C3H8/N2 and crude oil in nanoslits: A molecular dynamics simulation study. Fuel, 2021, 304, 121461.	3.4	26
1167	Multi-objective optimization of alkali/alkaline earth metals doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4. Materials Today Physics, 2021, 21, 100539.	2.9	4
1168	Impact of adsorbent carbons and carbon surface conductivity on adsorption capacity of CO2, CH4, N2 and gas separation. Computational Materials Science, 2021, 199, 110572.	1.4	9
1169	Coulombic effect on permeation of CO2 in metal-organic framework membranes. Journal of Membrane Science, 2021, 639, 119742.	4.1	23
1170	Flue gas separation at organic-inorganic interface under geological conditions. Surfaces and Interfaces, 2021, 27, 101462.	1.5	10
1171	CO2/CH4 mixed-gas separation in PIM-1 at high pressures: Bridging atomistic simulations with process modeling. Journal of Membrane Science, 2021, 640, 119838.	4.1	20
1172	Machine learning and in-silico screening of metal–organic frameworks for O2/N2 dynamic adsorption and separation. Chemical Engineering Journal, 2022, 427, 131604.	6.6	42
1173	Accelerating discovery of COFs for CO2 capture and H2 purification using structurally guided computational screening. Chemical Engineering Journal, 2022, 427, 131574.	6.6	26
1174	Evaluating equilibrium and kinetics of CO2 and N2 adsorption into amine-functionalized metal-substituted MIL-101 frameworks using molecular simulation. Fuel, 2022, 308, 121965.	3.4	12
1175	Molecular dynamics simulation to explore the synergistic inhibition effect of kinetic and thermodynamic hydrate inhibitors. Energy, 2022, 238, 121697.	4.5	37
1176	Mechanisms for kerogen wettability transition from water-wet to CO2-wet: Implications for CO2 sequestration. Chemical Engineering Journal, 2022, 428, 132020.	6.6	40
1177	In silico design of a new Zn–triazole based metal–organic framework for CO2 and H2O adsorption. Journal of Chemical Physics, 2021, 154, 024303.	1.2	5
1178	Effect of Amine Functionalization of MOF Adsorbents for Enhanced CO2 Capture and Separation: A Molecular Simulation Study. Frontiers in Chemistry, 2020, 8, 574622.	1.8	16
1179	Resolving the organization of CO2 molecules confined in silica nanopores using in situ small-angle neutron scattering and molecular dynamics simulations. Environmental Science: Nano, 2021, 8, 2006-2018.	2.2	3
1180	How Molecular Modelling Tools Can Help in Mitigating Climate Change. Molecular Modeling and Simulation, 2021, , 181-220.	0.2	2
1181	Computational Screening of MOFs for CO2 Capture. , 2021, , 205-238.		0
1182	A high-throughput computational screening of potential adsorbents for a thermal compression CO ₂ Brayton cycle. Sustainable Energy and Fuels, 2021, 5, 1415-1428.	2.5	3

#	Article	IF	CITATIONS
1183	Predicting gas selectivity in organic ionic plastic crystals by free energy calculations. RSC Advances, 2021, 11, 19623-19629.	1.7	1
1184	Surface Area and Porosity of Co ₃ (ndc) ₃ (dabco) Metal–Organic Framework and Its Methane Storage Capacity: A Combined Experimental and Simulation Study. Journal of Physical Chemistry C, 2021, 125, 2411-2423.	1.5	7
1185	Applications of Molecular Simulations to Studies on Working Fluids. Molecular Modeling and Simulation, 2017, , 257-289.	0.2	1
1186	Wedge pore modelling of gas adsorption in activated carbon: Consistent pore size distributions. Carbon, 2020, 166, 414-426.	5.4	7
1187	Hydrophilicity/hydrophobicity driven CO2 solubility in kaolinite nanopores in relation to carbon sequestration. Chemical Engineering Journal, 2020, 398, 125449.	6.6	38
1188	Thermodynamic properties and fluid phase equilibrium of natural gas containing CO2 and H2O at extreme pressures typically found in pre-salt reservoirs. Journal of Natural Gas Science and Engineering, 2020, 79, 103337.	2.1	8
1189	High CO 2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand. Microporous and Mesoporous Materials, 2018, 256, 25-31.	2.2	81
1190	Bulk and Interfacial Properties of Alkanes in the Presence of Carbon Dioxide, Methane, and Their Mixture. Industrial & Engineering Chemistry Research, 2021, 60, 729-738.	1.8	17
1191	Solubility of Carbon Dioxide, Hydrogen Sulfide, Methane, and Nitrogen in Monoethylene Glycol; Experiments and Molecular Simulation. Journal of Chemical & Engineering Data, 2021, 66, 524-534.	1.0	7
1192	Computational Evaluation of Carriers in Facilitated Transport Membranes for Postcombustion Carbon Capture. Journal of Physical Chemistry C, 2020, 124, 25322-25330.	1.5	25
1193	13 The Role of Molecular Thermodynamics in Developing Industrial Processes and Novel Products That Meet the Needs for a Sustainable Future. Green Chemistry and Chemical Engineering, 2017, , 633-660.	0.0	2
1194	On the Application of Classical Molecular Simulations of Adsorption in Metal–Organic Frameworks. , 2015, , 53-112.		5
1195	Molecular Simulations to Research Supercritical Fuel Properties. , 2020, , 409-460.		3
1196	Large-Scale Screening and Machine Learning to Predict the Computation-Ready, Experimental Metal-Organic Frameworks for CO2 Capture from Air. Applied Sciences (Switzerland), 2020, 10, 569.	1.3	41
1197	Theoretical study of the effect of halogen substitution in molecular porous materials for CO ₂ and C ₂ H ₂ sorption. AIMS Materials Science, 2018, 5, 226-245.	0.7	1
1198	Enhanced water stability and high CO ₂ storage capacity of a Lewis basic sites-containing zirconium metal–organic framework. Dalton Transactions, 2021, 50, 16587-16592.	1.6	8
1199	Competitive adsorption characteristics based on partial pressure and adsorption mechanism of CO2/CH4 mixture in shale pores. Chemical Engineering Journal, 2022, 430, 133172.	6.6	40
1200	Lower Closure Point for Nitrogen or Argon Adsorption in Mesoporous Solids: Window-Induced Evaporation or Surface-Induced Cavitation?. Industrial & Engineering Chemistry Research, 2021, 60, 15343-15351.	1.8	6

#	Article	IF	CITATIONS
1201	Insights from molecular dynamics on CO2 diffusion coefficient in saline water over a wide range of temperatures, pressures, and salinity: CO2 geological storage implications. Journal of Molecular Liquids, 2022, 345, 117868.	2.3	17
1202	Screening of zeolites for H2S adsorption in mixed gases: GCMC and DFT simulations. Microporous and Mesoporous Materials, 2021, 328, 111495.	2.2	10
1203	Molecular simulations of adsorption and separation of natural gas on zeolitic imidazolate frameworks. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 176802.	0.2	2
1204	Molecular Modeling of Metal–Organic Frameworks for Carbon Dioxide Separation Applications. , 2015, , 339-379.		0
1205	Thermophysical and Structural Properties from Molecular Simulation. Molecular Modeling and Simulation, 2017, , 191-256.	0.2	0
1206	Nitrogen Gas on Graphene: Pairwise Interaction Potentials. Lecture Notes in Computer Science, 2018, , 563-578.	1.0	3
1207	Grand Canonical Monte Carlo Modeling of Anesthetic Xe Separation From Exhale Gas Mixtures Using Metal Organic Frameworks. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	0.1	1
1208	Application of grand-canonical ensemble Monte Carlo simulation in metals using cavity-biased method. Molecular Simulation, 2020, 46, 736-742.	0.9	1
1209	Interfacial behavior of the decane + brine + surfactant system in the presence of carbon dioxide, methane, and their mixture. Soft Matter, 2021, 17, 10545-10554.	1.2	8
1210	Molecular dynamics insight into the adsorption and distribution of bitumen subfractions on Na-montmorillonite surface. Fuel, 2022, 310, 122380.	3.4	8
1211	The Effect of Composition on CO2 Freeze-Out and Critical Locus of Binary CO2–CH4 Mixture. Lecture Notes in Mechanical Engineering, 2020, , 1-10.	0.3	0
1212	Assessing the Versatility of Molecular Modelling as a Strategy for Predicting Gas Adsorption Properties of Chalcogels. Springer Series in Materials Science, 2020, , 23-37.	0.4	0
1214	Biological Metal–Organic Frameworks (Bio-MOFs) for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2021, 60, 37-51.	1.8	46
1215	Molecular dynamics investigation on isobaric heat capacity of working fluid in supercritical CO2 Brayton cycle: Effect of trace gas. Journal of CO2 Utilization, 2022, 55, 101790.	3.3	10
1216	Molecular dynamics simulations of structures, dynamics, competitive interaction mechanisms for CH4, CO2, and SO2 in ionic liquid mixtures of [Cnmim][Nf2T] and [Cnmim][BF4]. Fluid Phase Equilibria, 2022, 554, 113342.	1.4	5
1217	Computational insights into efficient CO2 and H2S capture through zirconium MOFs. Journal of CO2 Utilization, 2022, 55, 101811.	3.3	8
1218	Sticky layers affect oil transport through the nanopores of realistic shale kerogen. Fuel, 2022, 310, 122480.	3.4	54
1219	Ranking Anti-Agglomerant Efficiency for Gas Hydrates Through Molecular Dynamic Simulations. , 2021,		0

ARTICLE IF CITATIONS Experimental and computational investigation of hydrophilic monomeric substances as novel CO2 1220 4.5 10 hydrate inhibitors and potential synergists. Energy, 2022, 244, 123136. A systematic examination of the impacts of MOF flexibility on intracrystalline molecular diffusivities. 5.2 Journal of Materials Chemistry A, 2022, 10, 4242-4253. Molecular dynamics of liquid–liquid equilibrium and interfacial properties of aqueous solutions of 1222 1.3 1 methyl esters. Physical Chemistry Chemical Physics, 2022, 24, 5371-5382. Multi-scale computational screening to accelerate discovery of IL/COF composites for CO2/N2 3.9 separation. Separation and Purification Technology, 2022, 287, 120578. The Decisive Role of Spin States and Spin Coupling in Dictating Selective O₂ Adsorption in 1224 1.7 5 Chromium(II) Metal–Organic Frameworks**. Chemistry - A European Journal, 2022, 28, . Molecular simulation of methane steam reforming reaction for hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 7569-7585. 3.8 MOF adsorbents for flue gas separation: Comparison of material ranking approaches. Chemical 1226 2.7 11 Engineering Research and Design, 2022, 179, 308-318. Molecular dynamics investigation on shear viscosity of the mixed working fluid for supercritical CO2 1.6 Brayton cycle. Journal of Supercritical Fluids, 2022, 182, 105533. Effective and efficient transport mechanism of CO2 in subnano-porous crystalline membrane of 1228 3 4.1 syndiotactic polystyrene. Journal of Membrane Science, 2022, 646, 120202. Study on CO2 capture in humid flue gas using amine-modified ZIF-8. Separation and Purification 24 Technology, 2022, 287, 120535. The Search for Efficient and Stable Metal-Organic Frameworks for Photocatalysis: Atmospheric 1230 3.15 Fixation of Nitrogen. Applied Surface Science, 2022, 583, 152376. A Step in Carbon Capture from Wet Gases: Understanding the Effect of Water on CO₂ 1.5 Adsorption and Diffusion in UiO-66. Journal of Physical Chemistry C, 2022, 126, 3211-3220. Hypothetical yet effective: Computational identification of high-performing MOFs for CO2 capture. 1232 2.0 11 Computers and Chemical Engineering, 2022, 160, 107705. Molecular investigation on COâ,,-CHâ,,, displacement and kerogen deformation in enhanced shale gas 3.4 recovery. Fuel, 2022, 315, 123208. Defect-engineered MOF-801 for cycloaddition of CO₂ with epoxides. Journal of Materials 1234 5.242 Chemistry A, 2022, 10, 10051-10061. CF₄ Capture and Separation of CF₄â€"SF₆ and CF₄–N₂ Fluid Mixtures Using Selected Carbon Nanoporous Materials and Metal–Organic Frameworks: A Computational Study. ACS Omega, 2022, 7, 6691-6699. Computational Prediction of Water Sorption in Facilitated Transport Membranes. Journal of Physical 1236 1.59 Chemistry C, 2022, 126, 3661-3670. Impact of Impure Gas on CO2 Capture from Flue Gas Using Carbon Nanotubes: A Molecular Simulation Study. Molecules, 2022, 27, 1627.

#	Article	IF	Citations
1238	Putting Forward NUS-8-CO ₂ H/PIM-1 as a Mixed Matrix Membrane for CO ₂ Capture. ACS Applied Materials & Interfaces, 2022, 14, 16820-16829.	4.0	14
1239	Phase Properties and Wetting Transitions of Simple Gases on Graphite─Characteristic Temperatures of Monolayer Adsorbate. Journal of Chemical & Engineering Data, 0, , .	1.0	2
1241	Solubility of Gases in Choline Chloride-Based Deep Eutectic Solvents from Molecular Dynamics Simulation. Industrial & Engineering Chemistry Research, 2022, 61, 4659-4671.	1.8	9
1242	Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases. Journal of Chemical Physics, 2022, 156, 104503.	1.2	12
1243	Effect of the Water Film Rupture on the Oil Displacement by Supercritical CO ₂ in the Nanopore: Molecular Dynamics Simulations. Energy & Fuels, 2022, 36, 4348-4357.	2.5	4
1244	Machine learning aided high-throughput prediction of ionic liquid@MOF composites for membrane-based CO2 capture. Journal of Membrane Science, 2022, 650, 120399.	4.1	24
1245	CO2-favored metal–organic frameworks SU-101(M) (MÂ=ÂBi, In, Ga, and Al) with inverse and high selectivity of CO2 from C2H2 and C2H4. Separation and Purification Technology, 2022, 290, 120804.	3.9	20
1246	Adaptive intermolecular interaction parameters for accurate Mixture Density Functional Theory calculations. Chemical Engineering Science, 2022, 254, 117628.	1.9	4
1247	Adsorptive purification of CO2/H2 gas mixtures of spent disposable wooden chopstick-derived activated carbon: Optimal synthesis condition. Separation and Purification Technology, 2022, 291, 120948.	3.9	13
1248	Entropy driving highly selective CO2 separation in nanoconfined ionic liquids. Chemical Engineering Journal, 2022, 440, 135918.	6.6	13
1249	Porous aromatic frameworks with metallized catecholate ligands for CO2 capture from gas mixtures: A molecular simulation study. Fuel, 2022, 319, 123768.	3.4	7
1250	Precise regulation of CO2 packing pattern in s-block metal doped single-layer covalent organic frameworks for high-performance CO2 capture and separation. Chemical Engineering Journal, 2022, 441, 135903.	6.6	7
1251	<i>In Situ</i> Mapping and Local Negative Uptake Behavior of Adsorbates in Individual Pores of Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 20747-20757.	6.6	5
1252	Can Chargeâ€Modulated Metalâ€Organic Frameworks Achieve Highâ€Performance CO ₂ Capture and Separation over H ₂ , N ₂ , and CH ₄ ?. ChemSusChem, 2022, 15, .	3.6	8
1253	Incorporating Flexibility Effects into Metal–Organic Framework Adsorption Simulations Using Different Models. ACS Applied Materials & Interfaces, 2021, 13, 61305-61315.	4.0	17
1254	Adsorption and diffusion of methane and light gases in 3D nano-porous graphene sponge. Molecular Simulation, 2022, 48, 882-890.	0.9	2
1255	Diversifying Databases of Metal Organic Frameworks for High-Throughput Computational Screening. ACS Applied Materials & Interfaces, 2021, 13, 61004-61014.	4.0	50
1256	Grand canonical Monte Carlo (GCMC) study on adsorption performance of metal organic frameworks (MOFs) for carbon capture. Sustainable Materials and Technologies, 2022, 32, e00383.	1.7	10

#	Article	IF	CITATIONS
1257	Molecular simulations for improved process modeling of an acid gas removal unit. Fluid Phase Equilibria, 2022, 560, 113478.	1.4	7
1258	Bulk and Interfacial Properties of Brine or Alkane in the Presence of Carbon Dioxide, Methane, and Their Mixture. Industrial & Engineering Chemistry Research, 2022, 61, 5016-5029.	1.8	9
1259	Unveiling the Molecular Origin of Vapor-Liquid Phase Transition of Bulk and Confined Fluids. Molecules, 2022, 27, 2656.	1.7	1
1260	Dipole-dipole interactions of sulfone groups as a tool for self-assembly of a 2D Covalent Organic Framework derived from a non-linear diboronic acid. Microporous and Mesoporous Materials, 2022, 337, 111914.	2.2	2
1261	Graph neural network predictions of metal organic framework CO <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e488" altimg="si38.svg"><mmi:msub><mmi:mrow /><mmi:mrow><mmi:mn>2</mmi:mn></mmi:mrow></mmi:mrow </mmi:msub> adsorption properties. Computational Materials Science, 2022, 210, 111388.</mmi:math 	1.4	19
1262	Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms. Renewable and Sustainable Energy Reviews, 2022, 162, 112441.	8.2	35
1265	The Applications of Molecular Dynamics Simulation in Supercritical Carbon Dioxide: A Review. SSRN Electronic Journal, 0, , .	0.4	0
1266	Effects of pore connectivity and tortuosity on the dynamics of fluids confined in sub-nanometer pores. Physical Chemistry Chemical Physics, 2022, 24, 11836-11847.	1.3	7
1267	High-Throughput Screening of COF Membranes and COF/Polymer MMMs for Helium Separation and Hydrogen Purification. ACS Applied Materials & Interfaces, 2022, 14, 21738-21749.	4.0	38
1268	Molecular Dynamic Simulations of Clathrate Hydrate Structures I: Lattice Constant and Thermal Expansion. Journal of Low Temperature Physics, 2022, 207, 227-240.	0.6	8
1269	Solubilities and Transport Properties of CO ₂ , Oxalic Acid, and Formic Acid in Mixed Solvents Composed of Deep Eutectic Solvents, Methanol, and Propylene Carbonate. Journal of Physical Chemistry B, 2022, 126, 3572-3584.	1.2	13
1270	Simulation of the carbon dioxide hydrate-water interfacial energy. Journal of Colloid and Interface Science, 2022, 623, 354-367.	5.0	9
1271	Machine-Learning-Assisted High-Throughput computational screening of Metal–Organic framework membranes for hydrogen separation. Chemical Engineering Journal, 2022, 446, 136783.	6.6	27
1272	Discovery of Highâ€Performing Metal–Organic Frameworks for Onâ€Board Methane Storage and Delivery via LNG–ANG Coupling: Highâ€Throughput Screening, Machine Learning, and Experimental Validation. Advanced Science, 2022, 9, e2201559.	5.6	14
1273	Experimental studies, molecular simulation and process modellingsimulation of adsorption-based post-combustion carbon capture for power plants: A state-of-the-art review. Applied Energy, 2022, 317, 119156.	5.1	32
1274	The role of cross-association between carbon dioxide and hydrogen sulfide using the SAFT-VR Mie equationÂof state. Fluid Phase Equilibria, 2022, 559, 113493.	1.4	5
1275	A Simple Model with Wide Applicability for the Determination of Binary Interaction Parameters for Mixtures of <i>n</i> -Alkanes with Carbon Dioxide and Nitrogen. Industrial & Engineering Chemistry Research, 2022, 61, 12229-12238.	1.8	4
1276	Kinetics of CO2 gas bubbling for the separation of residual solvent from waste solids: Effects of bubble size. Journal of Environmental Chemical Engineering, 2022, 10, 107981.	3.3	2

#	Article	IF	CITATIONS
1277	Influence of Polymer Chain Length on Structural Properties of Carbon Molecular Sieving Membranes and Their Effects on Co2, Ch4 and N2 Adsorption: A Molecular Simulation Study. SSRN Electronic Journal, 0, , .	0.4	0
1278	Enhancing CH ₄ Capture from Coalbed Methane through Tuning van der Waals Affinity within Isoreticular Al-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 25374-25384.	4.0	32
1279	Nitrogen Atom-Doped Layered Graphene for High-Performance CO2/N2 Adsorption and Separation. Energies, 2022, 15, 3713.	1.6	5
1280	Multi-Level Computational Screening of <i>in Silico</i> Designed MOFs for Efficient SO ₂ Capture. Journal of Physical Chemistry C, 2022, 126, 9875-9888.	1.5	2
1281	Molecular Simulations Probing the Adsorption and Diffusion of Ammonia, Nitrogen, Hydrogen, and Their Mixtures in Bulk MFI Zeolite and MFI Nanosheets at High Temperature and Pressure. Journal of Chemical & Engineering Data, 2022, 67, 1779-1791.	1.0	4
1282	Molecular models for O2 and N2 from the second virial coefficient. Journal of Molecular Liquids, 2022, 360, 119419.	2.3	1
1283	Leveraging Nitrogen Linkages in the Formation of a Porous Thorium–Organic Nanotube Suitable for Iodine Capture. Inorganic Chemistry, 2022, 61, 9480-9492.	1.9	14
1284	The effects of potential model of CO ₂ on its bulk phase properties and adsorption on surfaces and in pores. Molecular Simulation, 2022, 48, 1304-1314.	0.9	1
1285	Enhancing of CO Uptake in Metal-Organic Frameworks by Linker Functionalization: A Multi-Scale Theoretical Study. Chemistry, 2022, 4, 603-614.	0.9	4
1286	Interfacial Properties of Linear Alkane/Nitrogen Binary Mixtures: Molecular Dynamics Vapor–Liquid Equilibrium Simulations. Journal of Physical Chemistry B, 2022, 126, 4379-4388.	1.2	1
1287	Exploring covalent organic frameworks for H2S+CO2 separation from natural gas using efficient computational approaches. Journal of CO2 Utilization, 2022, 62, 102077.	3.3	4
1288	Widom line of supercritical CO2 calculated by equations of state and molecular dynamics simulation. Journal of CO2 Utilization, 2022, 62, 102075.	3.3	5
1289	Models used for permeability predictions of nanoporous materials revisited for H2/CH4 and H2/CO2 mixtures. Separation and Purification Technology, 2022, 297, 121463.	3.9	2
1290	Diffusion of fluids confined in carbonate minerals: A molecular dynamics simulation study for carbon dioxide and methane–ethane mixture within calcite. Fuel, 2022, 325, 124800.	3.4	4
1291	Effect of sorption-induced deformation on methane flow in kerogen slit pores. Fuel, 2022, 325, 124886.	3.4	14
1292	Towards a Robust Evaluation of Nanoporous Materials for Carbon Capture Applications. SSRN Electronic Journal, 0, , .	0.4	1
1293	A Computational Study on Phenyldiboronic Acid-Pillared Graphene Oxide Frameworks for Gas Storage and Separation. ACS Applied Nano Materials, 2022, 5, 9286-9297.	2.4	2
1294	An Integrated Computational–Experimental Hierarchical Approach for the Rational Design of an IL/UiOâ€66 Composite Offering Infinite CO ₂ Selectivity. Advanced Functional Materials, 2022, 32, .	7.8	16

#	Article	IF	CITATIONS
1295	Gate Opening without Volume Change Triggers Cooperative Gas Interactions, Underpins an Isotherm Step in Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 10810-10821.	1.9	2
1296	Interlayer Expansion in a Layered Metal–Organic Framework Enhances CO2 Capture and CO2/N2 Separation. ChemPhysChem, 0, , .	1.0	0
1297	Nonisothermal nucleation in the gas phase is driven by cool subcritical clusters. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
1298	Rational Design of Smart Metal–Organic Frameworks for Light-Modulated Gas Transport. ACS Applied Materials & Interfaces, 2022, 14, 32009-32017.	4.0	5
1299	Large-Scale Screening and Machine Learning for Metal–Organic Framework Membranes to Capture CO2 from Flue Gas. Membranes, 2022, 12, 700.	1.4	5
1300	Connecting entropy scaling and density scaling. Journal of Chemical Physics, 2022, 157, .	1.2	3
1301	Molecular dynamics simulation of the transport properties and condensation mechanism of carbon dioxide. Journal of Natural Gas Science and Engineering, 2022, 105, 104692.	2.1	4
1302	Modeling adsorption of simple fluids and hydrocarbons on nanoporous carbons. Carbon, 2022, 197, 526-533.	5.4	2
1303	Quantifying the anion effect of gas solubility within ionic liquids using the solvation affinity index. Chemical Engineering Science, 2022, 260, 117851.	1.9	2
1304	Molecular simulation on CO2 adsorption in partially water-saturated kaolinite nanopores in relation to carbon geological sequestration. Chemical Engineering Journal, 2022, 450, 138002.	6.6	11
1305	Insights into the performance of hybrid graphene oxide/MOFs for CO2 capture at process conditions by molecular simulations. Chemical Engineering Journal, 2022, 449, 137884.	6.6	10
1306	Unveiling the potential of <scp>MXenes</scp> for <scp>H₂</scp> purification and <scp>CO₂</scp> capture as an emerging family of nanomaterials. AICHE Journal, 2022, 68, .	1.8	9
1307	Molecular Understanding of Enhanced Hydrocarbon Recovery Processes: Role of Local Self-Diffusion Coefficients of Complex Mixtures. Energy & Fuels, 0, , .	2.5	2
1308	Water effect on adsorption carbon capture in metal-organic framework: A molecular simulation. Carbon Capture Science & Technology, 2022, 4, 100061.	4.9	8
1309	Atomistic-Scale Energetic Heterogeneity on a Membrane Surface. SSRN Electronic Journal, 0, , .	0.4	0
1310	Molecular dynamics simulations and COSMO-RS method for CO2Âcapture in imidazolium and pyrrolidinium-based room-temperature ionic liquids. Journal of Molecular Modeling, 2022, 28, .	0.8	5
1311	Assessing the effect of a liquid water layer on the adsorption of hydrate anti-agglomerants using molecular simulations. Journal of Chemical Physics, 2022, 157, .	1.2	2
1312	Combining Computational Screening and Machine Learning to Predict Metal–Organic Framework Adsorbents and Membranes for Removing CH4 or H2 from Air. Membranes, 2022, 12, 830.	1.4	3

#	Article	IF	CITATIONS
1313	Estimation of the minimum miscibility pressure for CO2–crude-oil systems by molecular dynamics simulation. Petroleum Research, 2023, 8, 1-10.	1.6	3
1314	Adsorptive separation of carbon dioxide at ambient temperatures in activated carbon. Carbon Capture Science & Technology, 2022, 4, 100062.	4.9	3
1315	Enhancing the natural gas upgrading and acetylene extraction performance of stable zirconium-organic frameworks PCN-605 by ligand functionalization. Journal of Environmental Chemical Engineering, 2022, 10, 108383.	3.3	0
1316	Research progress of molecular dynamics simulation on the formation-decomposition mechanism and stability of CO2 hydrate in porous media: A review. Renewable and Sustainable Energy Reviews, 2022, 167, 112820.	8.2	8
1317	Spontaneous formation of nitrogen – doped hierarchical porous microcrystalline nanosheets with improved CO2 capture at low and medium pressures. Separation and Purification Technology, 2022, 301, 121809.	3.9	1
1318	High-throughput virtual screening of metal–organic frameworks for xenon recovery from exhaled anesthetic gas mixture. Chemical Engineering Journal, 2023, 451, 138218.	6.6	9
1319	Molecular insights into the CO2 separation mechanism of GO supported deep eutectic solvent membrane. Journal of Molecular Liquids, 2022, 366, 120248.	2.3	6
1320	Insights into the heat contributions and mechanism of CO2 adsorption on metal–organic framework MIL-100 (Cr, Fe): Experiments and molecular simulations. Fuel, 2023, 331, 125863.	3.4	9
1321	Transport properties of mixtures of acid gases with aqueous monoethanolamine solutions: A molecular dynamics study. Fluid Phase Equilibria, 2023, 564, 113587.	1.4	4
1322	Discovery of highly radon-selective metal-organic frameworks through high-throughput computational screening and experimental validation. Chemical Engineering Journal, 2023, 452, 139189.	6.6	4
1323	Evaluating the Potential of Nuig2 Metal-Organic Framework for Adsorption and Separation of Short Linear Alkanes at Low Pressure. SSRN Electronic Journal, 0, , .	0.4	0
1324	Molecular insight into CO ₂ /N ₂ separation using a 2D-COF supported ionic liquid membrane. Physical Chemistry Chemical Physics, 2022, 24, 23690-23698.	1.3	5
1325	Kinetics of Zeolite-Catalyzed Heptane Hydroisomerization and Hydrocracking with Cbmc-Modeled Adsorption Terms: Zeolite Beta as a Large Pore Base Case. SSRN Electronic Journal, 0, , .	0.4	0
1326	Computational investigation of multifunctional MOFs for adsorption and membrane-based separation of CF ₄ /CH ₄ , CH ₄ /A ₂ , CH ₄ , CH ₂ , and N ₂ /H ₂ mixtures. Molecular Systems Design and Engineering, 2022, 7, 1707-1721	1.7	4
1327	Effect of nitrogen molecules on the growth kinetics at the interface between a (111) plane of cubic ice and water. Journal of Chemical Physics, 2022, 157, 124701.	1.2	1
1328	Experimental Measurements and Molecular Simulation of Carbon Dioxide Adsorption on Carbon Surface. , 2022, , .		0
1329	Bulk and Interfacial Properties of the Alkane + Nitrogen System. Journal of Chemical & Engineering Data, 2022, 67, 3138-3145.	1.0	2
1330	Brunauer–Emmett–Teller Areas from Nitrogen and Argon Isotherms Are Similar. Langmuir, 2022, 38, 11631-11640.	1.6	4
#	Article	IF	Citations
------	--	-----	-----------
1331	Molecular dynamics simulations of interfacial structure, dynamics, and interfacial tension of tetrabutylammonium bromide aqueous solution in the presence of methane and carbon dioxide. Journal of Chemical Physics, 2022, 157, .	1.2	3
1332	Transport Diffusion Behaviors and Mechanisms of CO ₂ /CH ₄ in Shale Nanopores: Insights from Molecular Dynamics Simulations. Energy & Fuels, 2022, 36, 11903-11912.	2.5	8
1333	Carbon dioxide-enhanced metal release from kerogen. Scientific Reports, 2022, 12, .	1.6	0
1334	Temperature Extrapolation of Henry's Law Constants and the Isosteric Heat of Adsorption. Journal of Physical Chemistry B, 2022, 126, 7999-8009.	1.2	1
1335	An enhancement of CO2 capture in a type-III porous liquid by 2-Methylimidazole zinc salt (ZIF-8). Journal of Molecular Liquids, 2022, 367, 120523.	2.3	7
1336	Effect of Branching on Mutual Solubility of Alkane–CO ₂ Systems by Molecular Simulations. Journal of Physical Chemistry B, 2022, 126, 8300-8308.	1.2	5
1337	Experimentsâ€Guided Modeling of MCMâ€41: Impact of Pore Symmetry on Gas Adsorption. Advanced Materials Interfaces, 2022, 9, .	1.9	4
1338	Mapping the Porous and Chemical Structure–Function Relationships of Trace CH ₃ 1 Capture by Metal–Organic Frameworks using Machine Learning. ACS Applied Materials & Interfaces, 2022, 14, 47209-47221.	4.0	7
1339	Simulation of the CO ₂ hydrate–water interfacial energy: The mold integration–guest methodology. Journal of Chemical Physics, 2022, 157, 134709.	1.2	5
1340	effects on CO <mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>4.1</td><td>2</td></mmi:math>	4.1	2
1341	Kinetics of zeolite-catalyzed heptane hydroisomerization and hydrocracking with CBMC-modeled adsorption terms: Zeolite Beta as a large pore base case. Journal of Catalysis, 2022, 415, 37-50.	3.1	5
1342	Atomistic-Scale Energetic Heterogeneity on a Membrane Surface. Membranes, 2022, 12, 977.	1.4	2
1343	Computational Study of Two Three-Dimensional Co(II)-Based Metal–Organic Frameworks as Quercetin Anticancer Drug Carriers. Crystal Growth and Design, 2022, 22, 7221-7233.	1.4	7
1344	Functionalized 3D Covalent Organic Frameworks for Highâ€Performance CO ₂ Capture and Separation over N ₂ . Advanced Theory and Simulations, 0, , 2200588.	1.3	1
1345	Impact of Loading-Dependent Intrinsic Framework Flexibility on Adsorption in UiO-66. Journal of Physical Chemistry C, 2022, 126, 17699-17711.	1.5	7
1346	Molecular Modeling and Adsorption Characterization of Micro-Mesoporous Kerogen Nanostructures. Energy & Fuels, 2022, 36, 13037-13049.	2.5	1
1347	Interpretable Graph Transformer Network for Predicting Adsorption Isotherms of Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2022, 62, 5446-5456.	2.5	11
1348	Discovering the impact of targeted defects in SP-MOF for CO2 capture from flue gas in presence of humidity through computational modelling. Journal of CO2 Utilization, 2022, 66, 102264.	3.3	3

#	Article	IF	CITATIONS
1349	Evaluation and screening of porous materials containing fluorine for carbon dioxide capture and separation. Computational Materials Science, 2023, 216, 111872.	1.4	1
1350	Combined experimental and molecular dynamic simulation study on low pressure solubility of CO2 in Thymol - Decanol based hydrophobic deep eutectic solvent and its binary mixtures with ethylene glycol. Separation and Purification Technology, 2023, 306, 122575.	3.9	2
1351	Force field comparison and thermodynamic property calculations for the phase behavior of H2S+CO2 using Monte Carlo simulations. Fluid Phase Equilibria, 2023, 565, 113663.	1.4	0
1352	In Silico Screening of Metal-Organic Frameworks for Formaldehyde Capture with and without Humidity by Molecular Simulation. International Journal of Molecular Sciences, 2022, 23, 13672.	1.8	1
1353	Microscopic Study on the Performance Optimization of Porous Ionic Liquids for CO ₂ Capture by Selection of Crown Ether Solvents. ACS Sustainable Chemistry and Engineering, 2022, 10, 15263-15272.	3.2	2
1354	A Theoretical Perspective to Decipher the Origin of High Hydrogen Storage Capacity in Mn(II) Metalâ€Organic Framework. ChemPhysChem, 0, , .	1.0	0
1355	Connection between empty volume and solubility of light gases in [CnMIM][NTf2] ionic liquids. Journal of Molecular Liquids, 2022, 368, 120740.	2.3	1
1356	Investigation of the effect of pristine and functionalized carbon nanotubes in cellulose acetate butyrate for mixed-gas separation: A molecular simulation study. Journal of Molecular Liquids, 2022, 368, 120788.	2.3	2
1357	Structural stability evolutions of CH4 and CO2 hydrate-sand nanoparticle systems. Journal of Molecular Liquids, 2023, 370, 121041.	2.3	0
1358	Molecular guest exchange and subsequent structural transformation in CH4 – CO2 replacement occurring in sH hydrates as revealed by 13C NMR spectroscopy and molecular dynamic simulations. Chemical Engineering Journal, 2023, 455, 140937.	6.6	6
1359	Understanding the role of quaternary ammonium cations on the interaction of bitumen with clay:A molecular modeling study. Construction and Building Materials, 2023, 364, 129970.	3.2	2
1360	Selective adsorption of sulphur dioxide and hydrogen sulphide by metal–organic frameworks. Physical Chemistry Chemical Physics, 2023, 25, 954-965.	1.3	3
1361	Computer-aided Screening of High Performance Covalent-Organic Frameworks for Removal of SO2 from Flue Gases. Fluid Phase Equilibria, 2023, 567, 113710.	1.4	1
1362	Densities, Viscosities, Thermal Expansivities, and Isothermal Compressibilities of Carbonated Hydroalcoholic Solutions for Applications in Sparkling Beverages. Journal of Physical Chemistry B, 2022, 126, 10194-10205.	1.2	1
1363	Eleven NanoHUB Simulation Tools Using RASPA Software To Demonstrate Classical Atomistic Simulations of Fluids and Nanoporous Materials. ACS Omega, 2022, 7, 44470-44484.	1.6	1
1364	Multi-Scale Computer-Aided Design of Covalent Organic Frameworks for CO ₂ Capture in Wet Flue Gas. ACS Applied Materials & Interfaces, 2022, 14, 56353-56362.	4.0	9
1365	In Silico Screening of Metalâ^'Organic Frameworks and Zeolites for He/N2 Separation. Molecules, 2023, 28, 20.	1.7	2
1366	Assessment of Acid Gas Adsorption Selectivities in MIL-125-NH ₂ . Journal of Physical Chemistry C, 2022, 126, 21414-21425.	1.5	0

#	Article	IF	CITATIONS
1367	Improving CO ₂ capture in porous 3D-graphene by cationic nitrogen doping. Journal of Applied Physics, 2022, 132, 214901.	1.1	1
1368	Adsorption, Diffusion, and Transport of C ₁ to C ₃ Alkanes and Carbon Dioxide in Dual-Porosity Kerogens: Insights from Molecular Simulations. Energy & Fuels, 2023, 37, 492-508.	2.5	5
1369	Thermodynamics and transport properties of CBD and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si8.svg"><mml:mrow><mml:mi mathvariant="normal">Î"<mml:mn>9</mml:mn></mml:mi </mml:mrow>-THC: A first attempt using molecular dynamics. Journal of Molecular Liquids, 2023, 371, 121048.</mml:math 	2.3	1
1370	Computational Characterization of Zr-Oxide MOFs for Adsorption Applications. ACS Applied Materials & amp; Interfaces, 2022, 14, 56938-56947.	4.0	10
1371	An Amine-Functionalized Ultramicroporous Metal–Organic Framework for Postcombustion CO ₂ Capture. ACS Applied Materials & Interfaces, 2022, 14, 56707-56714.	4.0	7
1372	Comprehensive review on physical properties of supercritical carbon dioxide calculated by molecular simulation. Korean Journal of Chemical Engineering, 2023, 40, 11-36.	1.2	4
1373	Corrosive Influence of Carbon Dioxide on Crack Initiation in Quartz: Comparison with Liquid Water and Vacuum Environments. Journal of Geophysical Research: Solid Earth, 0, , .	1.4	1
1374	MOFX-DB: An Online Database of Computational Adsorption Data for Nanoporous Materials. Journal of Chemical & Engineering Data, 2023, 68, 483-498.	1.0	11
1375	Design of CO ₂ Thickeners and Role of Aromatic Rings in Enhanced Oil Recovery Using Molecular Dynamics. Langmuir, 0, , .	1.6	2
1376	Hydrate Nucleation in Water Nanodroplets: Key Factors and Molecular Mechanisms. Energy & Fuels, 2023, 37, 1044-1056.	2.5	3
1377	Interfacial tension of carbon dioxide - water under conditions of CO2 geological storage and enhanced geothermal systems: A molecular dynamics study on the effect of temperature. Fuel, 2023, 337, 127219.	3.4	7
1378	Engineering gas separation property of metal–organic framework membranes via polymer insertion. Separation and Purification Technology, 2023, 310, 123115.	3.9	4
1379	Development of Porous Crystalline Materials for Selective Binding of O ₂ from Air. Journal of Physical Chemistry C, 2023, 127, 776-787.	1.5	2
1380	Molecular Simulation Study of CO2 Adsorption on Lanthanum-Based Metal Organic Framework. Russian Journal of Physical Chemistry A, 2022, 96, 3007-3014.	0.1	0
1381	Displacement Characteristics of CO ₂ to CH ₄ in Heterogeneous Surface Slit Pores. Energy & Fuels, 2023, 37, 2926-2944.	2.5	41
1382	Investigation of Guest-Induced Flexibility in Pyrazine Derivative of ALFFIVE MOF via Molecular Simulation. Langmuir, 2023, 39, 1373-1385.	1.6	2
1383	Molecular Simulation of CO2 and H2 Encapsulation in a Nanoscale Porous Liquid. Nanomaterials, 2023, 13, 409.	1.9	2
1384	Activated carbon characterization with heterogenous kernel using CO2 at high pressure. Adsorption, 0, , .	1.4	1

#	Article	IF	CITATIONS
1385	Computational Investigation of Dual Filler-Incorporated Polymer Membranes for Efficient CO ₂ and H ₂ Separation: MOF/COF/Polymer Mixed Matrix Membranes. Industrial & Engineering Chemistry Research, 2023, 62, 2924-2936.	1.8	9
1386	Truchet-tile structure of a topologically aperiodic metal–organic framework. Science, 2023, 379, 357-361.	6.0	16
1387	Molecular Simulation of Hydrogen-Shale Gas System Phase Behavior under Multiscale Conditions: A Molecular-Level Analysis of Hydrogen Storage in Shale Gas Reservoirs. Energy & Fuels, 2023, 37, 2449-2456.	2.5	8
1388	Newâ€Generation Anionâ€Pillared Metal–Organic Frameworks with Customized Cages for Highly Efficient CO ₂ Capture. Advanced Functional Materials, 2023, 33, .	7.8	29
1389	Molecular insights into the natural gas regulating tight oil movability. Energy, 2023, 270, 126895.	4.5	3
1390	Investigating the Influence of Pore Shape on Shale Gas Recovery with CO2 Injection Using Molecular Simulation. Energies, 2023, 16, 1529.	1.6	0
1391	Molecular dynamics investigation on the vapor–liquid interface behavior of long-chain alkanes, alcohols, and their mixtures. Journal of Molecular Liquids, 2023, 375, 121283.	2.3	3
1392	Revealing acetylene separation performances of anion-pillared MOFs by combining molecular simulations and machine learning. Chemical Engineering Journal, 2023, 464, 142731.	6.6	6
1393	Computational evaluation of RHO-ZIFs for CO2 capture: From adsorption mechanism to swing adsorption separation. Separation and Purification Technology, 2023, 313, 123469.	3.9	4
1394	Selective adsorption and transport of CO2–CH4 mixture under nano-confinement. Energy, 2023, 273, 127224.	4.5	6
1395	Molecular dynamics predictions of transport properties for carbon dioxide hydrates under pre-nucleation conditions using TIP4P/Ice water and EPM2, TraPPE, and Zhang carbon dioxide potentials. Journal of Molecular Liquids, 2023, 379, 121674.	2.3	4
1396	Theoretical studies on the role of water in ionic liquids at ZIF (IL@ZIF) complex and its effect on selective CO2 separation. Materials Today Sustainability, 2023, 22, 100376.	1.9	2
1397	Molecular simulation on CO2/H2S co-adsorption in organic and inorganic shale nanopores. Applied Surface Science, 2023, 624, 157167.	3.1	9
1398	On the Capabilities of Optical Diagnostics Methods to Monitor the State of Supercritical Fluids near the Widom Line. Russian Journal of Physical Chemistry B, 2022, 16, 1361-1370.	0.2	0
1399	Computational screening and machine learning of hydrophobic metal-organic frameworks for removal of chemical warfare agents from air. Applied Materials Today, 2023, 31, 101738.	2.3	1
1400	Molecular Composites Based on Ionic Liquids. , 2022, , 918-925.		0
1401	Investigating the validity of the Bosanquet equation for predicting the self-diffusivities of fluids inside nanotubes using equilibrium molecular dynamics simulations. AIP Advances, 2023, 13, 025338.	0.6	1
1402	MoSDeF-GOMC: Python Software for the Creation of Scientific Workflows for the Monte Carlo Simulation Engine GOMC. Journal of Chemical Information and Modeling, 2023, 63, 1218-1228.	2.5	1

#	Article	IF	CITATIONS
1403	Enhancing selective adsorption of CO2 through encapsulating FeTPPs into Cu-BTC. Chemical Engineering Journal, 2023, 461, 141977.	6.6	12
1404	Metal-Decorated InN Monolayer Senses N ₂ against CO ₂ . ACS Applied Materials & Interfaces, 2023, 15, 12534-12544.	4.0	34
1405	Molecular Dynamics Study on Mechanical Properties of CO ₂ –N ₂ Heteroclathrate Hydrates. Crystal Growth and Design, 2023, 23, 2239-2247.	1.4	1
1406	Quantum Informed Machine-Learning Potentials for Molecular Dynamics Simulations of CO ₂ 's Chemisorption and Diffusion in Mg-MOF-74. ACS Nano, 2023, 17, 5579-5587.	7.3	13
1408	Thermodiffusion of CO ₂ in Water by Nonequilibrium Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2023, 127, 2749-2760.	1.2	2
1410	Molecular Dynamics Method for Supercritical CO2 Heat Transfer: A Review. Energies, 2023, 16, 2902.	1.6	1
1411	Role of molecular modelling in the development of metal-organic framework for gas adsorption applications. Journal of Chemical Sciences, 2023, 135, .	0.7	4
1412	Molecular simulation of confined ethalineâ€based deep eutectic solvents for separations of carbon dioxide from methane. AICHE Journal, 0, , .	1.8	0
1413	Confining CO ₂ inside <scp>sl</scp> clathrateâ€hydrates: The impact of the CO ₂ –water interaction on quantized dynamics. Journal of Computational Chemistry, 2023, 44, 1587-1598.	1.5	2
1414	Selective sorption of oxygen and nitrous oxide by an electron donor-incorporated flexible coordination network. Communications Chemistry, 2023, 6, .	2.0	3
1415	An investigation for H2/N2 adsorptive separation in SIFSIX-2-Cu-i. International Journal of Hydrogen Energy, 2023, , .	3.8	1
1416	CRAFTED: An exploratory database of simulated adsorption isotherms of metal-organic frameworks. Scientific Data, 2023, 10, .	2.4	10
1468	Computational Insights of Dimensional Organic Materials. , 2023, , 382-473.		2
1544	Confinement-induced clustering of H ₂ and CO ₂ gas molecules in hydrated nanopores. Physical Chemistry Chemical Physics, 2024, 26, 10506-10514.	1.3	0
1557	CO2/CH4 adsorption characteristics 2024 165-245		0

CO2/CH4 adsorption characteristics. , 2024, , 165-245. 1557