On the Complexity of k-SAT

Journal of Computer and System Sciences 62, 367-375

DOI: 10.1006/jcss.2000.1727

Citation Report

#	Article	IF	CITATIONS
1	Exact Algorithms for NP-Hard Problems: A Survey. Lecture Notes in Computer Science, 2003, , 185-207.	1.0	365
2	Combinatorial Optimization — Eureka, You Shrink!. Lecture Notes in Computer Science, 2003, , .	1.0	10
3	The complexity of unique k-SAT: an isolation lemma for k-CNFs. , 0, , .		8
4	(2+f(n))-SAT and its properties. Discrete Applied Mathematics, 2004, 136, 3-11.	0.5	4
6	Exact algorithms for the Hamiltonian cycle problem in planar graphs. Operations Research Letters, 2006, 34, 269-274.	0.5	22
7	On miniaturized problems in parameterized complexity theory. Theoretical Computer Science, 2006, 351, 314-336.	0.5	8
8	Finding a long directed cycle. ACM Transactions on Algorithms, 2008, 4, 1-21.	0.9	20
9	On the possibility of faster SAT algorithms. , 2010, , .		54
10	An Efficient Test for Product States with Applications to Quantum Merlin-Arthur Games., 2010,,.		15
11	Hardness amplification in proof complexity. , 2010, , .		21
12	On the complexity of circuit satisfiability. , 2010, , .		8
14	Balanced families of perfect hash functions and their applications. ACM Transactions on Algorithms, 2010, 6, 1-12.	0.9	15
16	Improving exhaustive search implies superpolynomial lower bounds. , 2010, , .		49
17	Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time. , 2011, , .		153
18	Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal. , 2011, , .		46
19	Guest column. ACM SIGACT News, 2011, 42, 54-76.	0.1	12
20	SIGACT news complexity theory column 71. ACM SIGACT News, 2011, 42, 53-54.	0.1	0
21	Dominating set based exact algorithms for 3-coloring. Information Processing Letters, 2011, 111, 251-255.	0.4	3

#	Article	IF	Citations
22	A quasipolynomial-time algorithm for the quantum separability problem. , 2011, , .		24
23	A Fast Parallel Branch and Bound Algorithm for Treewidth. , 2011, , .		0
24	Fixed-Parameter Tractability of Treewidth and Pathwidth. Lecture Notes in Computer Science, 2012 , , $196-227$.	1.0	11
25	A new point of NP-hardness for unique games. , 2012, , .		19
26	On Problems as Hard as CNF-SAT. , 2012, , .		47
27	Parameterized Complexity and Subexponential-Time Computability. Lecture Notes in Computer Science, 2012, , 162-195.	1.0	3
28	Studies in Computational Aspects of Voting. Lecture Notes in Computer Science, 2012, , 318-363.	1.0	14
29	Computing a nonnegative matrix factorization provably. , 2012, , .		157
31	Max-Cut Parameterized above the Edwards-Erdős Bound. Lecture Notes in Computer Science, 2012, , 242-253.	1.0	10
32	Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, 2012, , . Towards <mml:math <="" altimg="si1.gif" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.0</td><td>2</td></mml:math>	1.0	2
33	display="inline" overflow="scroll"> <mml:mstyle mathvariant="italic"><mml:mi>NP</mml:mi>â€"<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mstyle mathvariant="italic"><mml:mi>P</mml:mi></mml:mstyle></mml:math </mml:mstyle 	0.3	57
35	via proof complexity and search. Annals of Pure and Applied Logic, 2012, 163, 906-917. Improving Exhaustive Search Implies Superpolynomial Lower Bounds. SIAM Journal on Computing, 2013, 42, 1218-1244.	0.8	103
37	On exact algorithms for the permutation CSP. Theoretical Computer Science, 2013, 511, 109-116.	0.5	1
38	A Satisfiability Algorithm for Sparse Depth Two Threshold Circuits. , 2013, , .		24
39	Sensitivity of Boolean formulas. European Journal of Combinatorics, 2013, 34, 793-805.	0.5	0
40	Parameterized complexity of MaxSat Above Average. Theoretical Computer Science, 2013, 511, 77-84.	0.5	5
41	An exponential time 2-approximation algorithm for bandwidth. Theoretical Computer Science, 2013, 511, 23-31.	0.5	2
42	Parameterized maximum path coloring. Theoretical Computer Science, 2013, 511, 42-53.	0.5	1

#	Article	IF	CITATIONS
43	Fixed-parameter tractability and lower bounds for stabbing problems. Computational Geometry: Theory and Applications, 2013, 46, 839-860.	0.3	9
44	Partition Into Triangles on Bounded Degree Graphs. Theory of Computing Systems, 2013, 52, 687-718.	0.7	22
45	Sub-linear root detection, and new hardness results, for sparse polynomials over finite fields. , 2013, , .		3
46	Fast approximation algorithms for the diameter and radius of sparse graphs. , 2013, , .		116
47	Testing Product States, Quantum Merlin-Arthur Games and Tensor Optimization. Journal of the ACM, 2013, 60, 1-43.	1.8	50
48	Improved Approximation for 3-Dimensional Matching via Bounded Pathwidth Local Search. , 2013, , .		40
49	Strong ETH holds for regular resolution. , 2013, , .		12
50	Quantum de finetti theorems under local measurements with applications. , 2013, , .		24
51	Known algorithms for E <scp>dge</scp> C <scp>lique</scp> C <scp>over</scp> are probably optimal., 2013,,.		6
52	Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems. , 2014, , .		162
53	Why Walking the Dog Takes Time: Frechet Distance Has No Strongly Subquadratic Algorithms Unless SETH Fails. , 2014 , , .		93
54	Tight Bounds for Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and) Tj ETQq1	1 0.784314	rgBT Overlo
55	Finding orthogonal vectors in discrete structures. , 2014, , .		13
56	Better Approximation Algorithms for the Graph Diameter. , 2014, , .		41
57	Exponential Time Complexity of the Permanent and the Tutte Polynomial. ACM Transactions on Algorithms, 2014, 10, 1-32.	0.9	52
58	Clustering and Partition Based Divide and Conquer for SAT Solving. , 2014, , .		1
59	Faster decision of first-order graph properties. , 2014, , .		12
60	Weighted Coloring in Trees. SIAM Journal on Discrete Mathematics, 2014, 28, 2029-2041.	0.4	11

#	Article	IF	CITATIONS
61	Parameterized and Subexponential-Time Complexity of Satisfiability Problems and Applications. Lecture Notes in Computer Science, 2014, , 637-651.	1.0	0
62	Computer Science - Theory and Applications. Lecture Notes in Computer Science, 2014, , .	1.0	3
63	Covering Problems for Partial Words and for Indeterminate Strings. Lecture Notes in Computer Science, 2014, , 220-232.	1.0	5
64	The complexity of LSH feasibility. Theoretical Computer Science, 2014, 530, 89-101.	0.5	3
65	Solving the 2-Disjoint Connected Subgraphs Problem Faster than 2 n. Algorithmica, 2014, 70, 195-207.	1.0	38
66	Scheduling Partially Ordered Jobs Faster than 2 n. Algorithmica, 2014, 68, 692-714.	1.0	4
67	New NP-Hardness Results for 3-Coloring and 2-to-1 Label Cover. ACM Transactions on Computation Theory, 2014, 6, 1-20.	0.4	0
68	Algorithms for Circuits and Circuits for Algorithms. , 2014, , .		7
69	A linear edge kernel for two-layer crossing minimization. Theoretical Computer Science, 2014, 554, 74-81.	0.5	6
70	Hardness results for approximate pure Horn CNF formulae minimization. Annals of Mathematics and Artificial Intelligence, 2014, 71, 327-363.	0.9	6
71	Parameterized and subexponential-time complexity of satisfiability problems and applications. Theoretical Computer Science, 2015, 607, 282-295.	0.5	2
72	Approximating the best Nash Equilibrium in $\langle i\rangle n\langle sup\rangle \langle sup\rangle \langle i\rangle \langle sup\rangle \langle $		23
73	A Satisfiability Algorithm for Some Class of Dense Depth Two Threshold Circuits. IEICE Transactions on Information and Systems, 2015, E98.D, 108-118.	0.4	2
74	Progress in Automation, Robotics and Measuring Techniques. Advances in Intelligent Systems and Computing, 2015, , .	0.5	2
75	Faster exponential-time algorithms in graphs of bounded average degree. Information and Computation, 2015, 243, 75-85.	0.5	9
76	The Discrete and Semicontinuous Fr $ ilde{A}$ ©chet Distance with Shortcuts via Approximate Distance Counting and Selection. ACM Transactions on Algorithms, 2015, 11, 1-29.	0.9	3
77	Quadratic Conditional Lower Bounds for String Problems and Dynamic Time Warping. , 2015, , .		81
78	Parameterizing the Permanent: Genus, Apices, Minors, Evaluation Mod 2k., 2015, , .		5

#	Article	IF	Citations
79	Tight Hardness Results for LCS and Other Sequence Similarity Measures. , 2015, , .		90
80	Pure Nash Equilibria in Graphical Games and Treewidth. Algorithmica, 2015, 71, 581-604.	1.0	2
81	Sitting Closer to Friends than Enemies, Revisited. Theory of Computing Systems, 2015, 56, 394-405.	0.7	7
82	A complexity and approximation framework for the maximization scaffolding problem. Theoretical Computer Science, 2015, 595, 92-106.	0.5	21
83	Edge deletion problems: Branching facilitated by modular decomposition. Theoretical Computer Science, 2015, 573, 63-70.	0.5	15
84	Constructing NP-intermediate problems by blowing holes with parameters of various properties. Theoretical Computer Science, 2015, 581, 67-82.	0.5	3
85	Fixed-Parameter Complexity and Approximability of Norm Maximization. Discrete and Computational Geometry, 2015, 53, 276-295.	0.4	2
86	Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false). , 2015, , .		143
87	The Computational Benefit of Correlated Instances. , 2015, , .		2
88	Nonnegative Matrix Factorization. , 2015, , .		1
89	Matching Triangles and Basing Hardness on an Extremely Popular Conjecture. , 2015, , .		34
90	A Fast and Simple Subexponential Fixed Parameter Algorithm for One-Sided Crossing Minimization. Algorithmica, 2015, 72, 778-790.	1.0	4
91	Max-Cut Parameterized Above the Edwards-Erdős Bound. Algorithmica, 2015, 72, 734-757.	1.0	20
92	On the Computational Intractability of Exact and Approximate Dictionary Learning. IEEE Signal Processing Letters, 2015, 22, 45-49.	2.1	60
93	Approximation and Fixed Parameter Subquadratic Algorithms for Radius and Diameter in Sparse Graphs. , 2016, , .		47
94	A domination algorithm for {0,1}â€instances of the travelling salesman problem. Random Structures and Algorithms, 2016, 48, 427-453.	0.6	2
95	On Problems as Hard as CNF-SAT. ACM Transactions on Algorithms, 2016, 12, 1-24.	0.9	52
96	Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower bound made. , 2016, , .		43

#	Article	IF	CITATIONS
97	Refining complexity analyses in planning by exploiting the exponential time hypothesis. Annals of Mathematics and Artificial Intelligence, 2016, 78, 157-175.	0.9	2
98	Subexponential Parameterized Algorithms for Planar and Apex-Minor-Free Graphs via Low Treewidth Pattern Covering. , 2016, , .		15
99	Sublinear Root Detection and New Hardness Results for Sparse Polynomials over Finite Fields. SIAM Journal on Computing, 2016, 45, 1433-1447.	0.8	4
100	How Limited Interaction Hinders Real Communication (and What It Means for Proof and Circuit) Tj ETQq1 1 0.78	4314 rgBT	/Oyerlock 1
101	Which Regular Expression Patterns Are Hard to Match?., 2016,,.		34
102	Estimating Simple Graph Parameters in Sublinear Time. , 2016, , 650-653.		0
103	Edit Distance Under Block Operations. , 2016, , 611-614.		0
104	Large-Treewidth Graph Decompositions. , 2016, , 1057-1059.		0
105	Known Algorithms for Edge Clique Cover are Probably Optimal. SIAM Journal on Computing, 2016, 45, 67-83.	0.8	42
106	Non-negative embedding for fully unsupervised domain adaptation. Pattern Recognition Letters, 2016, 77, 35-41.	2.6	7
107	Separating OR, SUM, and XOR circuits. Journal of Computer and System Sciences, 2016, 82, 793-801.	0.9	2
108	Deterministic and probabilistic binary search in graphs. , 2016, , .		17
109	Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, 2016, , .	1.0	0
110	Can Almost Everybody be Almost Happy?. , 2016, , .		24
111	Computing a Nonnegative Matrix FactorizationProvably. SIAM Journal on Computing, 2016, 45, 1582-1611.	0.8	45
112	An Almost Optimal Algorithm for Computing Nonnegative Rank. SIAM Journal on Computing, 2016, 45, 156-173.	0.8	16
113	Bounding the Running Time of Algorithms for Scheduling and Packing Problems. SIAM Journal on Discrete Mathematics, 2016, 30, 343-366.	0.4	13
114	Lower bounds for the parameterized complexity of Minimum Fill-In and other completion problems. , 2016, , .		5

#	Article	IF	CITATIONS
115	A faster fixed parameter algorithm for two-layer crossing minimization. Information Processing Letters, 2016, 116, 547-549.	0.4	4
116	Lower Bounds for Dynamic Connectivity. , 2016, , 1162-1167.		2
118	A note on the complexity of computing the number of reachable vertices in a digraph. Information Processing Letters, 2016 , 116 , 628 - 630 .	0.4	4
119	Assigning Channels Via the Meet-in-the-Middle Approach. Algorithmica, 2016, 74, 1435-1452.	1.0	1
120	Nondeterministic Extensions of the Strong Exponential Time Hypothesis and Consequences for Non-reducibility. , 2016, , .		64
121	Improving resolution width lower bounds for k -CNFs with applications to the Strong Exponential Time Hypothesis. Information Processing Letters, 2016, 116, 120-124.	0.4	2
122	Tight lower bounds for the Workflow Satisfiability Problem based on the Strong Exponential Time Hypothesis. Information Processing Letters, 2016, 116, 223-226.	0.4	11
123	Convexity in partial cubes: The hull number. Discrete Mathematics, 2016, 339, 866-876.	0.4	21
124	On the hardness of labeled correlation clustering problem: A parameterized complexity view. Theoretical Computer Science, 2016, 609, 583-593.	0.5	3
125	Algorithms and Almost Tight Results for \$\$3\$\$ 3 -Colorability of Small Diameter Graphs. Algorithmica, 2016, 74, 385-414.	1.0	10
126	A Tight Algorithm for Strongly Connected Steiner Subgraph on Two Terminals with Demands. Algorithmica, 2017, 77, 1216-1239.	1.0	5
127	The Graph Motif problem parameterized by the structure of the input graph. Discrete Applied Mathematics, 2017, 231, 78-94.	0.5	10
128	Fixed-parameter algorithms for DAG Partitioning. Discrete Applied Mathematics, 2017, 220, 134-160.	0.5	3
129	An initial study of time complexity in infinite-domain constraint satisfaction. Artificial Intelligence, 2017, 245, 115-133.	3.9	6
130	Minimum Fill-In: Inapproximability and Almost Tight Lower Bounds. , 2017, , .		0
131	On the Satisfiability of Workflows with Release Points. , 2017, , .		4
132	Quantum de Finetti Theorems Under Local Measurements with Applications. Communications in Mathematical Physics, 2017, 353, 469-506.	1.0	17
133	On optimal approximability results for computing the strong metric dimension. Discrete Applied Mathematics, 2017, 221, 18-24.	0.5	6

#	Article	IF	CITATIONS
134	Dealing with 4-variables by resolution: An improved MaxSAT algorithm. Theoretical Computer Science, 2017, 670, 33-44.	0.5	6
135	Exact exponential algorithms to find tropical connected sets of minimum size. Theoretical Computer Science, 2017, 676, 33-41.	0.5	2
136	Combinatorial Optimization and Graph Algorithms. , 2017, , .		0
137	Quantum computational supremacy. Nature, 2017, 549, 203-209.	13.7	497
138	Counting Thin Subgraphs via Packings Faster than Meet-in-the-Middle Time. ACM Transactions on Algorithms, 2017, 13, 1-26.	0.9	2
139	Homomorphisms are a good basis for counting small subgraphs. , 2017, , .		35
140	Hitting forbidden subgraphs in graphs of bounded treewidth. Information and Computation, 2017, 256, 62-82.	0.5	5
141	Covering problems for partial words and for indeterminate strings. Theoretical Computer Science, 2017, 698, 25-39.	0.5	7
142	Strong ETH and Resolution via Games and the Multiplicity of Strategies. Algorithmica, 2017, 79, 29-41.	1.0	1
143	Maximum Minimal Vertex Cover Parameterized by Vertex Cover. SIAM Journal on Discrete Mathematics, 2017, 31, 2440-2456.	0.4	11
144	Tissue P Systems with Small Cell Volume. Fundamenta Informaticae, 2017, 154, 261-275.	0.3	5
145	Improving local search in a minimum vertex cover solver for classes of networks. , 2017, , .		9
146	Strong partial clones and the time complexity of SAT problems. Journal of Computer and System Sciences, 2017, 84, 52-78.	0.9	15
147	A subexponential-time algorithm for the Maximum Independent Set Problem in <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mi>t<th>ni><th>:mrow></th></th></mml:mi></mml:mrow></mml:mrow></mml:math>	ni> <th>:mrow></th>	:mrow>
148	On the Satisfiability of Quantum Circuits of Small Treewidth. Theory of Computing Systems, 2017, 61, 656-688.	0.7	0
149	Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs. SIAM Journal on Computing, 2017, 46, 1712-1744.	0.8	23
150	Fine-Grained Complexity of Analyzing Compressed Data: Quantifying Improvements over Decompress-and-Solve., 2017,,.		7
153	Evaluating balance on social networks from their simple cycles. Journal of Complex Networks, 0, , .	1.1	3

#	Article	IF	CITATIONS
154	A Dichotomy for Regular Expression Membership Testing. , 2017, , .		16
155	Finding Points in General Position. International Journal of Computational Geometry and Applications, 2017, 27, 277-296.	0.3	16
156	Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph., 2017,,.		74
157	Massively-Parallel Similarity Join, Edge-Isoperimetry, and Distance Correlations on the Hypercube. , 2017, , .		1
158	ETH Hardness for Densest- <i>k</i> -Subgraph with Perfect Completeness., 2017,,.		5
160	Scaffolding Problems Revisited: Complexity, Approximation and Fixed Parameter Tractable Algorithms, and Some Special Cases. Algorithmica, 2018, 80, 1771-1803.	1.0	8
161	Known Algorithms on Graphs of Bounded Treewidth Are Probably Optimal. ACM Transactions on Algorithms, 2018, 14, 1-30.	0.9	25
162	Adiabatic quantum computation. Reviews of Modern Physics, 2018, 90, .	16.4	743
163	On residual approximation in solution extension problems. Journal of Combinatorial Optimization, 2018, 36, 1195-1220.	0.8	3
164	Fixing improper colorings of graphs. Theoretical Computer Science, 2018, 711, 66-78.	0.5	2
165	Complexity of Token Swapping and Its Variants. Algorithmica, 2018, 80, 2656-2682.	1.0	13
166	Multivariate Fine-Grained Complexity of Longest Common Subsequence. , 2018, , 1216-1235.		13
167	The P3 infection time is $W[1]$ -hard parameterized by the treewidth. Information Processing Letters, 2018, 132, 55-61.	0.4	3
168	Combinatorial Algorithms. Lecture Notes in Computer Science, 2018, , .	1.0	129
169	Threesomes, Degenerates, and Love Triangles. Journal of the ACM, 2018, 65, 1-25.	1.8	20
170	A Crossbred Algorithm for Solving Boolean Polynomial Systems. Lecture Notes in Computer Science, 2018, , 3-21.	1.0	21
171	Bounded-Depth Succinct Encodings and the Structure they Imply on Graphs. Theory of Computing Systems, 2018, 62, 1125-1143.	0.7	0
172	An ETH-Tight Exact Algorithm for Euclidean TSP. , 2018, , .		9

#	Article	IF	CITATIONS
173	Complexity and lowers bounds for Power Edge Set Problem. Journal of Discrete Algorithms, 2018, 52-53, 70-91.	0.7	3
174	A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank. , 2018, , 1080-1099.		5
175	Tight cell probe bounds for succinct Boolean matrix-vector multiplication. , 2018, , .		11
176	On the parameterized complexity of approximating dominating set. , 2018, , .		10
177	Extensor-coding., 2018,,.		7
178	Fine-grained reductions from approximate counting to decision. , 2018, , .		5
179	More consequences of falsifying SETH and the orthogonal vectors conjecture. , 2018, , .		16
180	Some Open Problems in Fine-Grained Complexity. ACM SIGACT News, 2018, 49, 29-35.	0.1	2
181	Simultaneous Feedback Vertex Set. ACM Transactions on Computation Theory, 2018, 10, 1-25.	0.4	5
182	String Processing and Information Retrieval. Lecture Notes in Computer Science, 2018, , .	1.0	2
183	Tight Hardness for Shortest Cycles and Paths in Sparse Graphs. , 2018, , 1236-1252.		24
186	Nonnegative Matrix Factorization. , 0, , 4-28.		1
187	Tensor Decompositions: Algorithms. , 0, , 29-47.		0
188	Tensor Decompositions: Applications. , 0, , 48-70.		0
189	Sparse Recovery. , 0, , 71-88.		0
190	Sparse Coding. , 0, , 89-106.		0
191	Gaussian Mixture Models. , 0, , 107-131.		2
192	Matrix Completion., 0,, 132-142.		0

#	Article	IF	Citations
195	What Is Known About Vertex Cover Kernelization?. Lecture Notes in Computer Science, 2018, , 330-356.	1.0	8
196	Algorithms for nodeâ€weighted Steiner tree and maximumâ€weight connected subgraph. Networks, 2018, 72, 238-248.	1.6	11
197	Clique is hard on average for regular resolution. , 2018, , .		11
198	On the Fine-Grained Complexity of Rainbow Coloring. SIAM Journal on Discrete Mathematics, 2018, 32, 1672-1705.	0.4	4
199	Local reduction. Information and Computation, 2018, 261, 281-295.	0.5	1
200	Fine-grained complexity for sparse graphs. , 2018, , .		10
201	The Parameterized Complexity of the <i>k</i> -Biclique Problem. Journal of the ACM, 2018, 65, 1-23.	1.8	18
203	Hardness of Approximation for $\langle i \rangle H \langle i \rangle$ -free Edge Modification Problems. ACM Transactions on Computation Theory, 2018, 10, 1-32.	0.4	4
204	Hardness of approximate nearest neighbor search. , 2018, , .		35
205	Matching Triangles and Basing Hardness on an Extremely Popular Conjecture. SIAM Journal on Computing, 2018, 47, 1098-1122.	0.8	15
206	A Faster Subquadratic Algorithm for Finding Outlier Correlations. ACM Transactions on Algorithms, 2018, 14, 1-26.	0.9	4
207	Sharpness of the Satisfiability Threshold for Non-uniform Random k-SAT. Lecture Notes in Computer Science, 2018, , 273-291.	1.0	3
208	Edit Distance Cannot Be Computed in Strongly Subquadratic Time (Unless SETH is False). SIAM Journal on Computing, 2018, 47, 1087-1097.	0.8	31
209	Subtree Isomorphism Revisited. ACM Transactions on Algorithms, 2018, 14, 1-23.	0.9	7
210	A framework for ETH-tight algorithms and lower bounds in geometric intersection graphs. , 2018, , .		12
211	Cliques enumeration and tree-like resolution proofs. Information Processing Letters, 2018, 135, 62-67.	0.4	2
212	Conditional Lower Bounds for All-Pairs Max-Flow. ACM Transactions on Algorithms, 2018, 14, 1-15.	0.9	7
213	Block interpolation: A framework for tight exponential-time counting complexity. Information and Computation, 2018, 261, 265-280.	0.5	7

#	ARTICLE	IF	CITATIONS
214	Dynamic Time Warping and Geometric Edit Distance. ACM Transactions on Algorithms, 2018, 14, 1-17.	0.9	45
215	Fixed-Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs. Algorithmica, 2019, 81, 1031-1052.	1.0	12
216	Computational complexity aspects of point visibility graphs. Discrete Applied Mathematics, 2019, 254, 283-290.	0.5	5
217	A substring–substring LCS data structure. Theoretical Computer Science, 2019, 753, 16-34.	0.5	7
218	On the Parameterized Complexity of Approximating Dominating Set. Journal of the ACM, 2019, 66, 1-38.	1.8	9
219	A Fixed-Parameter Perspective on #BIS. Algorithmica, 2019, 81, 3844-3864.	1.0	5
220	Maximal common subsequence algorithms. Theoretical Computer Science, 2019, 793, 132-139.	0.5	3
221	A Tight Lower Bound for Planar Steiner Orientation. Algorithmica, 2019, 81, 3200-3216.	1.0	3
222	Bridging between 0/1 and linear programming via random walks. , 2019, , .		2
223	Structural parameters, tight bounds, and approximation for <mml:math altimg="si18.gif" display="inline" id="d1e529" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< td=""><td>:/mmt:mi>·</td><td>(mml:mo>) (</td></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	:/mmt:mi>·	(mml:mo>) (
224	Packing Cycles Faster Than Erdos-Posa. SIAM Journal on Discrete Mathematics, 2019, 33, 1194-1215.	0.4	4
225	Bounded depth circuits with weighted symmetric gates: Satisfiability, lower bounds and compression. Journal of Computer and System Sciences, 2019, 105, 87-103.	0.9	1
226	On Super Strong ETH. Lecture Notes in Computer Science, 2019, , 406-423.	1.0	2
227	Graph pattern detection: hardness for all induced patterns and faster non-induced cycles. , 2019, , .		11
228	H-colouring Pt-free graphs in subexponential time. Discrete Applied Mathematics, 2019, 267, 184-189.	0.5	15
229	Fine-Grained Complexity of Constraint Satisfaction Problems through Partial Polymorphisms: A Survey. , 2019, , .		5
231	Faster <i>k</i> -SAT algorithms using biased-PPSZ. , 2019, , .		12
233	Algorithms and Complexity Results for the Capacitated Vertex Cover Problem. Lecture Notes in Computer Science, 2019, , 473-489.	1.0	1

#	Article	IF	Citations
234	Parameterized Complexity of Diameter. Lecture Notes in Computer Science, 2019, , 50-61.	1.0	3
235	On the parameterized complexity of the geodesic hull number. Theoretical Computer Science, 2019, 791, 10-27.	0.5	3
236	On the complexity of restoring corrupted colorings. Journal of Combinatorial Optimization, 2019, 37, 1150-1169.	0.8	1
238	Fast exact algorithms for some connectivity problems parameterized by clique-width. Theoretical Computer Science, 2019, 782, 30-53.	0.5	10
239	A PTAS for â,, "p-Low Rank Approximation. , 2019, , 747-766.		7
240	Tight Lower Bounds for the Complexity of Multicoloring. ACM Transactions on Computation Theory, 2019, 11, 1-19.	0.4	4
241	An improved algorithm for the $(n, 3)$ -MaxSAT problem: asking branchings to satisfy the clauses. Journal of Combinatorial Optimization, 2019, , 1.	0.8	1
242	Algorithms and Complexity. Lecture Notes in Computer Science, 2019, , .	1.0	0
243	Saving colors and Max Coloring: Some fixed-parameter tractability results. Theoretical Computer Science, 2019, 758, 30-41.	0.5	2
244	The Constant Inapproximability of the Parameterized Dominating Set Problem. SIAM Journal on Computing, 2019, 48, 513-533.	0.8	8
245	Subquadratic Algorithms for Succinct Stable Matching. Algorithmica, 2019, 81, 2991-3024.	1.0	2
246	Domino sequencing: Scheduling with state-based sequence-dependent setup times. Operations Research Letters, 2019, 47, 274-280.	0.5	2
247	Local Coloring: New Observations and New Reductions. Lecture Notes in Computer Science, 2019, , 51-62.	1.0	0
248	Parameterized aspects of triangle enumeration. Journal of Computer and System Sciences, 2019, 103, 61-77.	0.9	7
249	A General Purpose Algorithm for Counting Simple Cycles and Simple Paths of Any Length. Algorithmica, 2019, 81, 2716-2737.	1.0	8
250	Limitations of Semidefinite Programs for Separable States and Entangled Games. Communications in Mathematical Physics, 2019, 366, 423-468.	1.0	8
251	Longest Common Substring with Approximately k Mismatches. Algorithmica, 2019, 81, 2633-2652.	1.0	6
252	Characterizing polynomial Ramsey quantifiers. Mathematical Structures in Computer Science, 2019, 29, 896-908.	0.5	0

#	Article	IF	Citations
253	Optimality Program in Segment and String Graphs. Algorithmica, 2019, 81, 3047-3073.	1.0	7
254	Parameterized dichotomy of choosing committees based on approval votes in the presence of outliers. Theoretical Computer Science, 2019, 783, 53-70.	0.5	2
255	Frontiers in Algorithmics. Lecture Notes in Computer Science, 2019, , .	1.0	0
256	The Homogeneous Broadcast Problem in Narrow and Wide Strips II: Lower Bounds. Algorithmica, 2019, 81, 2963-2990.	1.0	1
257	An Equivalence Class for Orthogonal Vectors. , 2019, , 21-40.		4
258	Tight Conditional Lower Bounds for Longest Common Increasing Subsequence. Algorithmica, 2019, 81, 3968-3992.	1.0	1
259	A Survey on Graph Drawing Beyond Planarity. ACM Computing Surveys, 2020, 52, 1-37.	16.1	60
260	Multi-resolution Hashing for Fast Pairwise Summations. , 2019, , .		2
261	Influence Maximization at Community Level: A New Challenge with Non-submodularity., 2019,,.		8
262	The Workflow Satisfiability Problem with User-Independent Constraints. , 2019, , .		1
263	Finding Detours is Fixed-Parameter Tractable. SIAM Journal on Discrete Mathematics, 2019, 33, 2326-2345.	0.4	4
264	Computing the chromatic number using graph decompositions via matrix rank. Theoretical Computer Science, 2019, 795, 520-539.	0.5	2
265	Optimal Surveillance of Covert Networks by Minimizing Inverse Geodesic Length. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 533-540.	3.6	4
266	Dynamic DFS in Undirected Graphs: Breaking the \$O(m)\$ Barrier. SIAM Journal on Computing, 2019, 48, 1335-1363.	0.8	6
267	Pattern Matching and Consensus Problems on Weighted Sequences and Profiles. Theory of Computing Systems, 2019, 63, 506-542.	0.7	9
268	Clique-width III. ACM Transactions on Algorithms, 2019, 15, 1-27.	0.9	7
269	Efficiently Enumerating Hitting Sets of Hypergraphs Arising in Data Profiling., 2019, , 130-143.		10
270	When Can Graph Hyperbolicity be Computed in Linear Time?. Algorithmica, 2019, 81, 2016-2045.	1.0	2

#	Article	IF	CITATIONS
271	Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP. Algorithmica, 2019, 81, 541-556.	1.0	2
272	Resolution and linear CNF formulas: Improved (n,3)-MaxSAT algorithms. Theoretical Computer Science, 2019, 774, 113-123.	0.5	5
273	Temporal vertex cover with a sliding time window. Journal of Computer and System Sciences, 2020, 107, 108-123.	0.9	34
274	Efficient algorithms for measuring the funnel-likeness of DAGs. Journal of Combinatorial Optimization, 2020, 39, 216-245.	0.8	7
275	Subexponential algorithms for variants of the homomorphism problem in string graphs. Journal of Computer and System Sciences, 2020, 109, 126-144.	0.9	11
276	New Algorithms and Lower Bounds for All-Pairs Max-Flow in Undirected Graphs. , 2020, , 48-61.		8
277	Structurally parameterized d-scattered set. Discrete Applied Mathematics, 2020, , .	0.5	3
278	Parameterized Complexity of Min-Power Asymmetric Connectivity. Theory of Computing Systems, 2020, 64, 1158-1182.	0.7	4
279	Finer Tight Bounds for Coloring on Clique-Width. SIAM Journal on Discrete Mathematics, 2020, 34, 1538-1558.	0.4	5
280	Minimum Label s-t Cut has large integrality gaps. Information and Computation, 2020, 275, 104543.	0.5	0
281	On the complexity of detecting hazards. Information Processing Letters, 2020, 162, 105980.	0.4	1
282	Path Contraction Faster than \$2^n\$. SIAM Journal on Discrete Mathematics, 2020, 34, 1302-1325.	0.4	5
283	From Gap-Exponential Time Hypothesis to Fixed Parameter Tractable Inapproximability: Clique, Dominating Set, and More. SIAM Journal on Computing, 2020, 49, 772-810.	0.8	6
284	On the exact complexity of polyomino packing. Theoretical Computer Science, 2020, 839, 13-20.	0.5	0
285	Comparing temporal graphs using dynamic time warping. Social Network Analysis and Mining, 2020, 10, 1.	1.9	2
286	Boolean functional synthesis: hardness and practical algorithms. Formal Methods in System Design, 2021, 57, 53-86.	0.9	6
287	Database-independent molecular formula annotation using Gibbs sampling through ZODIAC. Nature Machine Intelligence, 2020, 2, 629-641.	8.3	103
288	Manipulating Districts to Win Elections: Fine-Grained Complexity. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 1902-1909.	3.6	3

#	Article	IF	CITATIONS
289	Explicit Correlation Amplifiers for Finding Outlier Correlations in Deterministic Subquadratic Time. Algorithmica, 2020, 82, 3306-3337.	1.0	0
290	The Optimal Design of Low-Latency Virtual Backbones. INFORMS Journal on Computing, 0, , .	1.0	2
291	Parameterized Complexity and Approximability of Directed Odd Cycle Transversal., 2020,, 2181-2200.		19
292	The Inverse Voronoi Problem in Graphs I: Hardness. Algorithmica, 2020, 82, 3018-3040.	1.0	3
293	Tight Bounds for Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5
294	Parsimonious formulations for low-diameter clusters. Mathematical Programming Computation, 2020, 12, 493-528.	3.2	8
295	On Cycle Transversals and Their Connected Variants in the Absence of a Small Linear Forest. Algorithmica, 2020, 82, 2841-2866.	1.0	10
296	Dual Parameterization of Weighted Coloring. Algorithmica, 2020, 82, 2316-2336.	1.0	1
297	Approximation and Online Algorithms. Lecture Notes in Computer Science, 2020, , .	1.0	0
298	Why Did the Shape of Your Network Change? (On Detecting Network Anomalies via Non-local) Tj ETQq1 1 0.784	314 rgBT / 1.0	Oyerlock 10
299	Minimum fill-in: Inapproximability and almost tight lower bounds. Information and Computation, 2020, 271, 104514.	0.5	5
300	Fine-grained complexity of graph homomorphism problem for bounded-treewidth graphs. , 2020, , 1578-1590.		1
302	Matching Cut in Graphs with Large Minimum Degree. Algorithmica, 2021, 83, 1238-1255.	1.0	9
303	Polynomial Treedepth Bounds in Linear Colorings. Algorithmica, 2021, 83, 361-386.	1.0	0
304	The Double Exponential Runtime is Tight for 2-Stage Stochastic ILPs. Lecture Notes in Computer Science, 2021, , 297-310.	1.0	3
306	Parameterized Analysis of Assignment Under Multiple Preferences. Lecture Notes in Computer Science, 2021, , 160-177.	1.0	4
307	A Fast Algorithm for SAT in Terms of Formula Length. Lecture Notes in Computer Science, 2021, , 436-452.	1.0	3
308	Learn to relax: Integrating 0-1 integer linear programming with pseudo-Boolean conflict-driven search. Constraints, 2021, 26, 26-55.	0.4	4

#	Article	IF	CITATIONS
309	Fine-Grained Complexity of the Graph Homomorphism Problem for Bounded-Treewidth Graphs. SIAM Journal on Computing, 2021, 50, 487-508.	0.8	5
311	On Hardness of Approximation of Parameterized Set Cover and Label Cover: Threshold Graphs from Error Correcting Codes., 2021,, 210-223.		0
312	Graphs Cannot Be Indexed in Polynomial Time for Sub-quadratic Time String Matching, Unless SETH Fails. Lecture Notes in Computer Science, 2021, , 608-622.	1.0	12
313	Subpath Queries on Compressed Graphs: A Survey. Algorithms, 2021, 14, 14.	1.2	2
314	Finding Cuts of Bounded Degree: Complexity, FPT and Exact Algorithms, and Kernelization. Algorithmica, 2021, 83, 1677-1706.	1.0	4
315	On the approximability of robust network design. Theoretical Computer Science, 2021, 860, 41-50.	0.5	2
316	Parameterized Counting of Partially Injective Homomorphisms. Algorithmica, 2021, 83, 1829-1860.	1.0	1
317	Fine-Grained Time Complexity of Constraint Satisfaction Problems. ACM Transactions on Computation Theory, 2021, 13, 1-32.	0.4	4
318	Four decades of research on the open-shop scheduling problem to minimize the makespan. European Journal of Operational Research, 2021, 295, 399-426.	3.5	44
319	A note on the concrete hardness of the shortest independent vector in lattices. Information Processing Letters, 2021, 167, 106065.	0.4	4
320	Finding a maximum minimal separator: Graph classes and fixed-parameter tractability. Theoretical Computer Science, 2021, 865, 131-140.	0.5	0
321	A (probably) optimal algorithm for Bisection on bounded-treewidth graphs. Theoretical Computer Science, 2021, , .	0.5	2
322	A unifying model for locally constrained spanning tree problems. Journal of Combinatorial Optimization, 2021, 42, 125-150.	0.8	1
323	On the Complexity of Finding Large Odd Induced Subgraphs and Odd Colorings. Algorithmica, 2021, 83, 2351-2373.	1.0	2
324	A faster diameter problem algorithm for a chordal graph, with a connection to its center problem. Discrete Mathematics, 2021, 344, 112326.	0.4	0
325	The Traffic Grooming Problem in Optical Networks with Respect to ADMs and OADMs: Complexity and Approximation. Algorithms, 2021, 14, 151.	1.2	2
326	Finding Temporal Paths Under Waiting Time Constraints. Algorithmica, 2021, 83, 2754-2802.	1.0	21
327	Modern Lower Bound Techniques in Database Theory and Constraint Satisfaction. , 2021, , .		1

#	Article	IF	Citations
328	Clique Is Hard on Average for Regular Resolution. Journal of the ACM, 2021, 68, 1-26.	1.8	1
329	Parameterized Approximation Algorithms for Bidirected Steiner Network Problems. ACM Transactions on Algorithms, 2021, 17, 1-68.	0.9	3
330	Subcubic algorithms for Gomory–Hu tree in unweighted graphs. , 2021, , .		9
331	k-Approximate Quasiperiodicity Under Hamming and Edit Distance. Algorithmica, 0, , 1.	1.0	O
332	Fine-Grained Reductions from Approximate Counting to Decision. ACM Transactions on Computation Theory, 2021, 13, 1-24.	0.4	4
333	Acyclic orders, partition schemes and CSPs: Unified hardness proofs and improved algorithms. Artificial Intelligence, 2021, 296, 103505.	3.9	1
334	Coloring invariants of knots and links are often intractable. Algebraic and Geometric Topology, 2021, 21, 1479-1510.	0.1	1
335	Quantum verification of NP problems with single photons and linear optics. Light: Science and Applications, 2021, 10, 169.	7.7	4
336	Improved Algorithms for Allen's Interval Algebra: a Dynamic Programming Approach. , 2021, , .		0
337	Discrete Fréchet Distance under Translation. ACM Transactions on Algorithms, 2021, 17, 1-42.	0.9	5
338	The exponential-time hypothesis and the relative complexity of optimization and logical reasoning problems. Theoretical Computer Science, $2021,\ldots$	0.5	1
339	Reducing graph transversals via edge contractions. Journal of Computer and System Sciences, 2021, 120, 62-74.	0.9	2
340	Approximation and hardness of Shift-Bribery. Artificial Intelligence, 2021, 298, 103520.	3.9	4
341	Many-visits TSP revisited. Journal of Computer and System Sciences, 2022, 124, 112-128.	0.9	3
342	Sliding window temporal graph coloring. Journal of Computer and System Sciences, 2021, 120, 97-115.	0.9	9
343	A fully polynomial parameterized algorithm for counting the number of reachable vertices in a digraph. Information Processing Letters, 2021, 171, 106137.	0.4	0
344	An improved upper bound for SAT. Theoretical Computer Science, 2021, 887, 51-62.	0.5	3
345	Waypoint routing on bounded treewidth graphs. Information Processing Letters, 2022, 173, 106165.	0.4	0

#	Article	lF	Citations
346	FPT and Kernelization Algorithms for the Induced Tree Problem. Lecture Notes in Computer Science, 2021, , 158-172.	1.0	3
347	The Perfect Matching Cut Problem Revisited. Lecture Notes in Computer Science, 2021, , 182-194.	1.0	0
348	More Applications of the \$d\$-Neighbor Equivalence: Acyclicity and Connectivity Constraints. SIAM Journal on Discrete Mathematics, 2021, 35, 1881-1926.	0.4	5
349	A Tight Lower Bound for Edge-Disjoint Paths on Planar DAGs. Lecture Notes in Computer Science, 2021, , 187-201.	1.0	1
350	A Multistage View on 2-Satisfiability. Lecture Notes in Computer Science, 2021, , 231-244.	1.0	3
354	Optimality Program in Segment andÂString Graphs. Lecture Notes in Computer Science, 2018, , 79-90.	1.0	2
355	Subexponential Algorithms for Variants of Homomorphism Problem in String Graphs. Lecture Notes in Computer Science, 2019, , 1-13.	1.0	2
356	Comparing Temporal Graphs Using Dynamic Time Warping. Studies in Computational Intelligence, 2020, , 469-480.	0.7	2
358	On the Fine Grained Complexity of Finite Automata Non-emptiness of Intersection. Lecture Notes in Computer Science, 2020, , 69-82.	1.0	3
359	Fixed-Parameter and Approximation Algorithms: A New Look. Lecture Notes in Computer Science, 2013, , 110-122.	1.0	14
360	The Fine Details of Fast Dynamic Programming over Tree Decompositions. Lecture Notes in Computer Science, 2013, , 41-53.	1.0	11
361	On the Complexity of Computing Two Nonlinearity Measures. Lecture Notes in Computer Science, 2014, , 167-175.	1.0	5
362	Treewidth and the Computational Complexity of MAP Approximations. Lecture Notes in Computer Science, 2014, , 271-285.	1.0	3
363	Optimisation of Digraphs-Based Realisations for Polynomials of One and Two Variables. Advances in Intelligent Systems and Computing, 2015, , 73-83.	0.5	11
364	Dealing with 4-Variables by Resolution: AnÂlmproved MaxSAT Algorithm. Lecture Notes in Computer Science, 2015, , 178-188.	1.0	5
366	Subquadratic Algorithms for Succinct Stable Matching. Lecture Notes in Computer Science, 2016, , 294-308.	1.0	7
367	Fine-Grained Parameterized Complexity Analysis of Graph Coloring Problems. Lecture Notes in Computer Science, 2017, , 345-356.	1.0	14
368	CNFgen: A Generator of Crafted Benchmarks. Lecture Notes in Computer Science, 2017, , 464-473.	1.0	12

#	Article	IF	CITATIONS
369	Parameterized Algorithms for Power-Efficient Connected Symmetric Wireless Sensor Networks. Lecture Notes in Computer Science, 2017, , 26-40.	1.0	4
370	Structural Parameterizations ofÂDominating Set Variants. Lecture Notes in Computer Science, 2018, , 157-168.	1.0	3
371	A Tight Lower Bound for Steiner Orientation. Lecture Notes in Computer Science, 2018, , 65-77.	1.0	2
372	Diminishable Parameterized Problems and Strict Polynomial Kernelization. Lecture Notes in Computer Science, 2018, , 161-171.	1.0	3
373	What's Hard About Boolean Functional Synthesis?. Lecture Notes in Computer Science, 2018, , 251-269.	1.0	12
374	Approximating Longest Directed Paths and Cycles. Lecture Notes in Computer Science, 2004, , 222-233.	1.0	36
375	The Time Complexity of Constraint Satisfaction. , 2008, , 190-201.		23
376	Firefighting on Trees: (1 â^' 1/e)–Approximation, Fixed Parameter Tractability and a Subexponential Algorithm. Lecture Notes in Computer Science, 2008, , 258-269.	1.0	29
377	Finding Long Paths, Cycles and Circuits. Lecture Notes in Computer Science, 2008, , 752-763.	1.0	12
378	Variable Influences in Conjunctive Normal Forms. Lecture Notes in Computer Science, 2009, , 101-113.	1.0	5
379	k-SAT Is No Harder Than Decision-Unique-k-SAT. Lecture Notes in Computer Science, 2009, , 59-70.	1.0	5
380	Balanced Hashing, Color Coding and Approximate Counting. Lecture Notes in Computer Science, 2009, , 1-16.	1.0	16
381	An Exponential Time 2-Approximation Algorithm for Bandwidth. Lecture Notes in Computer Science, 2009, , 173-184.	1.0	12
382	The Parameterized Complexity of Some Geometric Problems in Unbounded Dimension. Lecture Notes in Computer Science, 2009, , 198-209.	1.0	10
383	The Complexity of Satisfiability of Small Depth Circuits. Lecture Notes in Computer Science, 2009, , 75-85.	1.0	78
384	The Complexity of Geometric Problems in High Dimension. Lecture Notes in Computer Science, 2010, , 40-49.	1.0	3
386	Algorithms for Dominating Set in Disk Graphs: Breaking the logn Barrier. Lecture Notes in Computer Science, 2010, , 243-254.	1.0	37
387	Inclusion/Exclusion Branching for Partial Dominating Set and Set Splitting. Lecture Notes in Computer Science, 2010, , 204-215.	1.0	5

#	Article	IF	CITATIONS
388	On the Exact Complexity of Evaluating Quantified k-CNF. Lecture Notes in Computer Science, 2010, , 50-59.	1.0	2
389	On Variants of the Spanning Star Forest Problem. Lecture Notes in Computer Science, 2011, , 70-81.	1.0	2
390	Satisfiability Certificates Verifiable in Subexponential Time. Lecture Notes in Computer Science, 2011, , 19-32.	1.0	1
392	Parameterized Complexity of MaxSat above Average. Lecture Notes in Computer Science, 2012, , 184-194.	1.0	7
393	Solving the 2-Disjoint Connected Subgraphs Problem Faster Than 2 n. Lecture Notes in Computer Science, 2012, , 195-206.	1.0	3
394	Approximating MAX SAT by Moderately Exponential and Parameterized Algorithms. Lecture Notes in Computer Science, 2012, , 202-213.	1.0	3
395	Finding Efficient Circuits for Ensemble Computation. Lecture Notes in Computer Science, 2012, , 369-382.	1.0	5
397	Sitting Closer to Friends Than Enemies, Revisited. Lecture Notes in Computer Science, 2012, , 296-307.	1.0	18
398	A Fast and Simple Subexponential Fixed Parameter Algorithm for One-Sided Crossing Minimization. Lecture Notes in Computer Science, 2012, , 683-694.	1.0	5
399	Homomorphic Hashing for Sparse Coefficient Extraction. Lecture Notes in Computer Science, 2012, , 147-158.	1.0	7
400	Finding a Maximum Induced Degenerate Subgraph Faster Than 2 n. Lecture Notes in Computer Science, 2012, , 3-12.	1.0	13
401	Bisections above Tight Lower Bounds. Lecture Notes in Computer Science, 2012, , 184-193.	1.0	4
402	Algorithms and Almost Tight Results for 3-Colorability of Small Diameter Graphs. Lecture Notes in Computer Science, 2013, , 332-343.	1.0	4
403	Upper and Lower Bounds for Weak Backdoor Set Detection. Lecture Notes in Computer Science, 2013, , 394-402.	1.0	1
405	Lift-and-Project Methods for Set Cover and Knapsack. Lecture Notes in Computer Science, 2013, , 256-267.	1.0	3
406	Bounding the Running Time of Algorithms for Scheduling and Packing Problems. Lecture Notes in Computer Science, 2013, , 439-450.	1.0	11
407	Consequences of Faster Alignment of Sequences. Lecture Notes in Computer Science, 2014, , 39-51.	1.0	53
408	Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis. Lecture Notes in Computer Science, 2014, , 408-419.	1.0	3

#	Article	IF	CITATIONS
409	Local Reductions. Lecture Notes in Computer Science, 2015, , 749-760.	1.0	9
410	A Dichotomy Result for Ramsey Quantifiers. Lecture Notes in Computer Science, 2015, , 69-80.	1.0	1
411	Precise Upper and Lower Bounds for the Monotone Constraint Satisfaction Problem. Lecture Notes in Computer Science, 2015, , 357-368.	1.0	2
412	On the Equivalence among Problems ofÂBounded Width. Lecture Notes in Computer Science, 2015, , 754-765.	1.0	1
413	On Directed Steiner Trees with Multiple Roots. Lecture Notes in Computer Science, 2016, , 257-268.	1.0	4
416	Settling the Complexity of Computing Approximate Two-Player Nash Equilibria. , 2016, , .		51
417	Sublinear-Time Algorithms for Computing & Embedding Gap Edit Distance. , 2020, , .		7
418	Fréchet Distance Under Translation: Conditional Hardness and an Algorithm via Offline Dynamic Grid Reachability. , 2019, , 2902-2921.		5
419	SETH-Based Lower Bounds for Subset Sum and Bicriteria Path. , 2019, , 41-57.		12
420	Tight Lower Bounds on Graph Embedding Problems. Journal of the ACM, 2017, 64, 1-22.	1.8	10
421	On Problems Equivalent to (min,+)-Convolution. ACM Transactions on Algorithms, 2019, 15, 1-25.	0.9	24
422	Faster Pseudopolynomial Time Algorithms for Subset Sum. ACM Transactions on Algorithms, 2019, 15, 1-20.	0.9	24
423	Automating cutting planes is NP-hard. , 2020, , .		6
424	Constraint Branching in Workflow Satisfiability Problem. , 2020, , .		3
425	Time- and Space-optimal Algorithm for the Many-visits TSP. ACM Transactions on Algorithms, 2020, 16, 1-22.	0.9	8
426	Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints. ACM Transactions on Computation Theory, 2020, 12, 1-19.	0.4	11
427	A Refined View of Causal Graphs and Component Sizes: SP-Closed Graph Classes and Beyond. Journal of Artificial Intelligence Research, 0, 47, 575-611.	7.0	5
428	On the Subexponential-Time Complexity of CSP. Journal of Artificial Intelligence Research, 0, 52, 203-234.	7.0	4

#	Article	IF	CITATIONS
429	Tree-Width and the Computational Complexity of MAP Approximations in Bayesian Networks. Journal of Artificial Intelligence Research, 0, 53, 699-720.	7.0	30
430	Time and Space Bounds for Planning. Journal of Artificial Intelligence Research, 0, 60, 595-638.	7.0	3
432	Quantum-inspired algorithms in practice. Quantum - the Open Journal for Quantum Science, 0, 4, 307.	0.0	53
433	Additive-error fine-grained quantum supremacy. Quantum - the Open Journal for Quantum Science, 0, 4, 329.	0.0	3
435	Title is missing!. Theory of Computing, 2015, 11, 221-235.	0.3	42
451	The diameter of ATâ€free graphs. Journal of Graph Theory, 2022, 99, 594-614.	0.5	4
452	Parameterized Maximum Path Coloring. Lecture Notes in Computer Science, 2012, , 232-245.	1.0	1
453	Test-Case Design by Feature Trees. Lecture Notes in Computer Science, 2012, , 458-473.	1.0	6
455	Exponential Complexity of Satisfiability Testing for Linear-Size Boolean Formulas. Lecture Notes in Computer Science, 2013, , 110-121.	1.0	1
456	Exact Complexity and Satisfiability. Lecture Notes in Computer Science, 2013, , 1-3.	1.0	1
459	Simultaneous Approximation of Constraint Satisfaction Problems. Lecture Notes in Computer Science, 2015, , 193-205.	1.0	0
460	The Computational Limit to Quantum Determinism and the Black Hole Information Loss Paradox. Physical Science International Journal, 2015, 7, 107-113.	0.3	0
462	Lower Bounds Based on the Exponential Time Hypothesis: Edge Clique Cover. , 2015, , 1-4.		0
464	Lower Bounds Based on the Exponential-Time Hypothesis. , 2015, , 467-521.		41
465	Upper and Lower Bounds on the Time Complexity of Infinite-Domain CSPs. Lecture Notes in Computer Science, 2015, , 183-199.	1.0	0
467	Complexity of Polyadic Quantifiers. Studies in Linguistics and Philosophy, 2016, , 101-121.	0.0	1
468	Exact Algorithms and Strong Exponential Time Hypothesis. , 2016, , 657-661.		1
469	Lower Bounds Based on the Exponential Time Hypothesis: Edge Clique Cover. , 2016, , 1159-1162.		0

#	Article	IF	Citations
470	New Insights for Power Edge Set Problem. Lecture Notes in Computer Science, 2017, , 180-194.	1.0	3
471	LP-branching algorithms based on biased graphs. , 2017, , .		2
472	Parameterized Complexity of the Workflow Satisfiability Problem., 2017,, 101-120.		1
473	Kernelization Lower Bounds for Finding Constant-Size Subgraphs. Lecture Notes in Computer Science, 2018, , 183-193.	1.0	2
474	Efficient Computation of Sequence Mappability. Lecture Notes in Computer Science, 2018, , 12-26.	1.0	3
475	Approximate Correlation Clustering Using Same-Cluster Queries. Lecture Notes in Computer Science, 2018, , 14-27.	1.0	4
476	Tight Approximability of the Server Allocation Problem for Real-Time Applications. Lecture Notes in Computer Science, 2018, , 41-55.	1.0	8
477	Cliquewidth III: The Odd Case of Graph Coloring Parameterized by Cliquewidth. , 2018, , 262-273.		2
478	Beyond Outerplanarity. Lecture Notes in Computer Science, 2018, , 546-559.	1.0	7
479	Improved Complexity for Power Edge SetÂProblem. Lecture Notes in Computer Science, 2018, , 128-141.	1.0	3
480	Incremental Strong Connectivity andÂ2-Connectivity in Directed Graphs. Lecture Notes in Computer Science, 2018, , 529-543.	1.0	0
481	The Precise Complexity of Finding Rainbow Even Matchings. Lecture Notes in Computer Science, 2019, , 190-201.	1.0	O
482	Parameterized Complexity of Min-Power Asymmetric Connectivity. Lecture Notes in Computer Science, 2019, , 85-96.	1.0	0
483	Efficient Implementation of Color Coding Algorithm for Subgraph Isomorphism Problem. Lecture Notes in Computer Science, 2019, , 283-299.	1.0	2
484	Weighted Shortest Common Supersequence Problem Revisited. Lecture Notes in Computer Science, 2019, , 221-238.	1.0	0
485	The Exponential-Time Complexity of Counting (Quantum) Graph Homomorphisms. Lecture Notes in Computer Science, 2019, , 364-378.	1.0	2
498	Bayesian Nash equilibrium. , 2019, , .		0
499	Market equilibrium., 2019, , .		0

#	Article	IF	CITATIONS
504	Four Shorts Stories on Surprising Algorithmic Uses of Treewidth. Lecture Notes in Computer Science, 2020, , 129-144.	1.0	1
505	Three-in-a-tree in near linear time. , 2020, , .		6
506	Efficiently enumerating hitting sets of hypergraphs arising in data profiling. Journal of Computer and System Sciences, 2022, 124, 192-213.	0.9	1
507	Hitting forbidden induced subgraphs on bounded treewidth graphs. Information and Computation, 2021, 281, 104812.	0.5	4
508	Lower Bounds for Dominating Set in Ball Graphs and for Weighted Dominating Set in Unit-Ball Graphs. Lecture Notes in Computer Science, 2020, , 31-48.	1.0	0
509	Using Resolution Proofs to Analyse CDCL Solvers. Lecture Notes in Computer Science, 2020, , 427-444.	1.0	1
510	On the Complexity of Finding Large Odd Induced Subgraphs and Odd Colorings. Lecture Notes in Computer Science, 2020, , 67-79.	1.0	0
511	Fine-grained complexity of rainbow coloring and its variants. Journal of Computer and System Sciences, 2022, 124, 140-158.	0.9	1
512	A Framework for Exponential-Time-HypothesisTight Algorithms and Lower Bounds in Geometric Intersection Graphs. SIAM Journal on Computing, 2020, 49, 1291-1331.	0.8	8
513	Graph Pattern Detection: Hardness for all Induced Patterns and Faster Noninduced Cycles. SIAM Journal on Computing, 2021, 50, 1627-1662.	0.8	2
514	Tight Hardness Results for Consensus Problems on Circular Strings and Time Series. SIAM Journal on Discrete Mathematics, 2020, 34, 1854-1883.	0.4	4
515	Eccentricity Heuristics through Sublinear Analysis Lenses. , 2020, , 75-89.		0
516	An Optimal Algorithm for Bisection for Bounded-Treewidth Graph. Lecture Notes in Computer Science, 2020, , 25-36.	1.0	0
517	Diminishable parameterized problems and strict polynomial kernelization. Computability, 2020, 9, 1-24.	0.3	1
518	Eight Oxford Questions: Quantum Mechanics Under a New Light. Fundamental Theories of Physics, 2021, , 361-384.	0.1	0
519	Counting Homomorphisms to \$K_4\$-Minor-Free Graphs, Modulo 2. SIAM Journal on Discrete Mathematics, 2021, 35, 2749-2814.	0.4	0
520	Practical complexities of probabilistic algorithms for solving BooleanÂpolynomial systems. Discrete Applied Mathematics, 2022, 309, 13-31.	0.5	2
521	On the overall and delay complexity of the CLIQUES and Bron-Kerbosch algorithms. Theoretical Computer Science, 2022, 899, 1-24.	0.5	3

#	Article	IF	Citations
522	Structural Parameterizations of Clique Coloring. Algorithmica, 0, , 1.	1.0	0
523	A Polynomial Kernel for Diamond-Free Editing. Algorithmica, 2022, 84, 197-215.	1.0	2
525	Faster Exponential Algorithm for Permutation Pattern Matching. , 2022, , 279-284.		1
526	Enumeration of Maximal Common Subsequences Between Two Strings. Algorithmica, 2022, 84, 757-783.	1.0	3
527	The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems. ACM Transactions on Computation Theory, 2022, 14, 1-54.	0.4	0
528	Length-bounded cuts: Proper interval graphs and structural parameters. Journal of Computer and System Sciences, 2022, 126, 21-43.	0.9	1
529	New Techniques for Proving Fine-Grained Average-Case Hardness., 2020,,.		4
530	An Improved Exponential-Time Approximation Algorithm for Fully-Alternating Games Against Nature. , 2020, , .		1
531	Counting Small Induced Subgraphs Satisfying Monotone Properties. , 2020, , .		2
532	Constant Depth Formula and Partial Function Versions of MCSP are Hard. , 2020, , .		8
533	On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds: Extended Abstract. , 2020, , .		1
534	Enhanced Fast Boolean Matching based on Sensitivity Signatures Pruning., 2021,,.		5
535	SETH-based Lower Bounds for Subset Sum and Bicriteria Path. ACM Transactions on Algorithms, 2022, 18, 1-22.	0.9	5
536	Subcubic certificates for CFL reachability. , 2022, 6, 1-29.		6
537	The complexity of dependency detection and discovery in relational databases. Theoretical Computer Science, 2022, 900, 79-96.	0.5	7
538	Tight Bounds for Approximate Near Neighbor Searching for Time Series under the Fréchet Distance. , 2022, , 517-550.		4
539	On the Fine-Grained Complexity of the Unbounded SubsetSum and the Frobenius Problem. , 2022, , 3567-3582.		2
540	Efficient Computation of Sequence Mappability. Algorithmica, 0, , 1.	1.0	O

#	Article	IF	CITATIONS
541	Scheduling Lower Bounds via AND Subset Sum. Journal of Computer and System Sciences, 2022, , .	0.9	3
542	A Refined Branching Algorithm for the Maximum Satisfiability Problem. Algorithmica, 2022, 84, 982-1006.	1.0	2
543	Solving systems of Boolean multivariate equations with quantum annealing. Physical Review Research, 2022, 4, .	1.3	1
544	Verification of multi-layered assignment problems. Autonomous Agents and Multi-Agent Systems, 2022, 36, 1.	1.3	1
545	Parallel Digraphs-building Computer Algorithm for Finding a Set of Characteristic Polynomial Realisations of Dynamic System. Journal of Automation, Mobile Robotics and Intelligent Systems, 0, , 38-51.	0.4	6
548	Small-space and streaming pattern matching with \$k\$ edits. , 2022, , .		2
549	Exact and Approximate Pattern Counting in Degenerate Graphs: New Algorithms, Hardness Results, and Complexity Dichotomies. , 2022, , .		2
550	k-Clustering with Fair Outliers. , 2022, , .		2
551	On the optimality of pseudo-polynomial algorithms for integer programming. Mathematical Programming, 0, , 1.	1.6	0
552	Hardness of Approximate Diameter: Now for Undirected Graphs. , 2022, , .		4
553	Applications of Random Algebraic Constructions to Hardness of Approximation. , 2022, , .		0
554	Target Set Selection in Dense Graph Classes. SIAM Journal on Discrete Mathematics, 2022, 36, 536-572.	0.4	3
555	Differentiable Content Addressable Memory with Memristors. Advanced Electronic Materials, 2022, 8,	2.6	3
556	On Treewidth and Stable Marriage: Parameterized Algorithms and Hardness Results (Complete) Tj ETQq $1\ 1\ 0.7$	784314 rgBT 0.4	 Qverlock 10
557	Remarks on Parameterized Complexity of Variations of the Maximum-Clique Transversal Problem on Graphs. Symmetry, 2022, 14, 676.	1.1	4
558	CNF Satisfiability in a Subspace and Related Problems. Algorithmica, 2022, 84, 3276-3299.	1.0	1
559	Completeness, approximability and exponential time results for counting problems with easy decision version. Theoretical Computer Science, 2022, , .	0.5	1
560	Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time. ACM Transactions on Algorithms, 2022, 18, 1-31.	0.9	9

#	Article	IF	CITATIONS
561	4 vs 7 Sparse Undirected Unweighted Diameter Is SETH-hard at Time $\langle i \rangle n \langle i \rangle \langle sup \rangle 4/3 \langle sup \rangle$. ACM Transactions on Algorithms, 2022, 18, 1-14.	0.9	1
562	Linearâ€time algorithms for eliminating claws in graphs. International Transactions in Operational Research, 2024, 31, 296-315.	1.8	1
563	Counting Small Induced Subgraphs Satisfying Monotone Properties. SIAM Journal on Computing, 0, , FOCS20-139-FOCS20-174.	0.8	1
565	Approximating the Geometric Edit Distance. Algorithmica, 0, , 1.	1.0	0
566	Graph Square Roots of Small Distance from Degree One Graphs. Theory of Computing Systems, 0, , .	0.7	0
567	A computation model with automatic functions and relations as primitive operations. Theoretical Computer Science, 2022, 924, 94-116.	0.5	1
568	(Sub)linear Kernels for Edge Modification Problems Toward Structured Graph Classes. Algorithmica, 2022, 84, 3338-3364.	1.0	2
569	On theÂComplexity ofÂFinding Shortest Variable Disjunction Branch-and-Bound Proofs. Lecture Notes in Computer Science, 2022, , 291-304.	1.0	2
572	Computing Maximum Matchings in Temporal Graphs. SSRN Electronic Journal, 0, , .	0.4	0
573	Graph Searches and Their End Vertices. Algorithmica, 2022, 84, 2642-2666.	1.0	3
574	Constraint Satisfaction Problems with Global Modular Constraints: Algorithms and Hardness via Polynomial Representations. SIAM Journal on Computing, 2022, 51, 577-626.	0.8	0
575	The double exponential runtime is tight for 2-stage stochastic ILPs. Mathematical Programming, 0, , .	1.6	0
576	Mean isoperimetry with control on outliers: Exact and approximation algorithms. Theoretical Computer Science, 2022, , .	0.5	1
577	The inherent time complexity and an efficient algorithm for subsequence matching problem. Proceedings of the VLDB Endowment, 2022, 15, 1453-1465.	2.1	1
578	Algorithms and certificates for Boolean CSP refutation: smoothed is no harder than random. , 2022, , .		2
579	Counting small induced subgraphs with hereditary properties. , 2022, , .		4
580	Hardness for triangle problems under even more believable hypotheses: reductions from real APSP, real 3SUM, and OV., 2022,,.		1
581	Approximately Counting Answers to Conjunctive Queries with Disequalities and Negations., 2022,,.		1

#	Article	IF	CITATIONS
583	On the Subexponential Time Complexity of CSP. Proceedings of the AAAI Conference on Artificial Intelligence, 2013, 27, 459-465.	3.6	4
584	Algorithmic QUBO formulations for <i>k</i> -SAT and hamiltonian cycles. , 2022, , .		5
585	Algorithms and Complexity on Indexing Founder Graphs. Algorithmica, 2023, 85, 1586-1623.	1.0	3
586	Clustering with Fair-Center Representation. , 2022, , .		3
587	The perfect matching cut problem revisited. Theoretical Computer Science, 2022, 931, 117-130.	0.5	4
588	Parameterized complexity of stable roommates with ties and incomplete lists through the lens of graph parameters. Information and Computation, 2022, , 104943.	0.5	1
589	The Computational Complexity of ReLU Network Training Parameterized by Data Dimensionality. Journal of Artificial Intelligence Research, 0, 74, 1775-1790.	7.0	7
590	Swarm Control for Distributed Construction: A Computational Complexity Perspective. ACM Transactions on Human-Robot Interaction, 2023, 12, 1-45.	3.2	0
591	Computing List Homomorphisms inÂGeometric Intersection Graphs. Lecture Notes in Computer Science, 2022, , 313-327.	1.0	0
592	Further Improvements for Sat in Terms of Formula Length. SSRN Electronic Journal, 0, , .	0.4	0
593	Combinatorial Algorithms for Subsequence Matching: A Survey. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 367, 11-27.	0.8	5
594	Constant Depth Formula and Partial Function Versions of MCSP Are Hard. SIAM Journal on Computing, 0, , FOCS20-317-FOCS20-367.	0.8	0
595	Parameterized Complexity of Diameter. Algorithmica, 0, , .	1.0	0
596	Synthesizing Skolem Functions: A View from Theory and Practice. , 2021, , 1-36.		0
597	All PSPACE-Complete Planning Problems Are Equal but Some Are More Equal than Others. , 2011, 2, 10-17.		6
598	Subsequences inÂBounded Ranges: Matching andÂAnalysis Problems. Lecture Notes in Computer Science, 2022, , 140-159.	1.0	4
599	Computing and Listing Avoidable Vertices and Paths. Lecture Notes in Computer Science, 2022, , 104-120.	1.0	1
601	Synthesizing Skolem Functions: A View from Theory and Practice. , 2022, , 1187-1222.		0

#	Article	IF	CITATIONS
602	Moderate exponential-time algorithms for scheduling problems. 4or, 2022, 20, 533-566.	1.0	1
603	Maximizing Convergence Time in Network Averaging Dynamics Subject to Edge Removal. SIAM Journal on Optimization, 2022, 32, 2718-2744.	1.2	O
604	Preserving Consistency forÂLiquid Knapsack Voting. Lecture Notes in Computer Science, 2022, , 221-238.	1.0	0
605	On theÂComplexity ofÂScheduling Problems withÂaÂFixed Number ofÂParallel Identical Machines. Lecture Notes in Computer Science, 2023, , 192-206.	1.0	O
606	Solving Cut-Problems inÂQuadratic Time forÂGraphs withÂBounded Treewidth. Lecture Notes in Computer Science, 2023, , 33-46.	1.0	0
607	Fine-grained parameterized complexity analysis of graph coloring problems. Discrete Applied Mathematics, 2023, 327, 33-46.	0.5	1
608	Solving the Workflow Satisfiability Problem Using General Purpose Solvers. IEEE Transactions on Dependable and Secure Computing, 2023, 20, 4474-4485.	3.7	1
609	Solving Boolean Satisfiability with Stochastic Nanomagnets. , 2022, , .		1
610	Monotonicity Testing and Directed Isoperimetric Inequalities. , 2022, , .		0
614	Conclusions and Open Problems. , 2022, , .		0
615	NP-hardness of 2-to-2 Games., 2022,,.		0
617	The Biased Long Code and Hardness of Vertex Cover. , 2022, , .		0
618	Pseudo-random Sets in the Grassmann Graph Have Near-Perfect Expansion. , 2022, , .		2
620	Subexponential Parameterized Algorithms for Planar and Apex-Minor-Free Graphs via Low Treewidth Pattern Covering. SIAM Journal on Computing, 2022, 51, 1866-1930.	0.8	2
621	Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries. ACM Transactions on Database Systems, 2023, 48, 1-45.	1.5	1
622	An FPT Algorithm forÂBipartite Vertex Splitting. Lecture Notes in Computer Science, 2023, , 261-268.	1.0	4
623	Exact capacitated domination: On the computational complexity of uniqueness. Discrete Applied Mathematics, 2023, 332, 155-169.	0.5	0
624	Complexity of C-coloring in hereditary classes of graphs. Information and Computation, 2023, 292, 105015.	0.5	0

#	ARTICLE	IF	Citations
625	DAG-\$\$Sigma \$\$: A DAG-Based Sigma Protocol forÂRelations inÂCNF. Lecture Notes in Computer Science, 2022, , 340-370.	1.0	0
626	Comparative Benchmark of a Quantum Algorithm for the Bin Packing Problem. , 2022, , .		5
627	The Maximum Zero-Sum Partition Problem. Communications in Computer and Information Science, 2022, , 73-85.	0.4	0
628	Fine Grained Space Complexity andÂtheÂLinear Space Hypothesis (Preliminary Report). Communications in Computer and Information Science, 2022, , 180-191.	0.4	1
629	Improved Merlin–Arthur Protocols for Central Problems in Fine-Grained Complexity. Algorithmica, 0,	1.0	0
630	The 2CNF Boolean formula satisfiability problem and the linear space hypothesis. Journal of Computer and System Sciences, 2023, 136, 88-112.	0.9	0
631	On the Complexity of String Matching for Graphs. ACM Transactions on Algorithms, 2023, 19, 1-25.	0.9	5
632	Scrooge: a fast and memory-frugal genomic sequence aligner for CPUs, GPUs, and ASICs. Bioinformatics, 2023, 39, .	1.8	3
633	On Exponential-time Hypotheses, Derandomization, and Circuit Lower Bounds. Journal of the ACM, 2023, 70, 1-62.	1.8	1
635	Algorithmic Applications of Hypergraph and Partition Containers. , 2023, , .		1
636	Planning and Learning in Partially Observable Systems via Filter Stability., 2023,,.		0
639	On Computing Large Temporal (Unilateral) Connected Components. Lecture Notes in Computer Science, 2023, , 282-293.	1.0	0
645	The Complexity of Pattern Counting in Directed Graphs, Parameterised by the Outdegree. , 2023, , .		0
646	First-Order Model Checking on Structurally Sparse Graph Classes. , 2023, , .		3
650	Non-interactive Universal Arguments. Lecture Notes in Computer Science, 2023, , 132-158.	1.0	0
656	Certified Core-Guided MaxSAT Solving. Lecture Notes in Computer Science, 2023, , 1-22.	1.0	0
659	Optimal Wheeler Language Recognition. Lecture Notes in Computer Science, 2023, , 62-74.	1.0	1
661	Complexity Results for Matching Cut Problems inÂGraphs Without Long Induced Paths. Lecture Notes in Computer Science, 2023, , 417-431.	1.0	0

#	Article	IF	CITATIONS
662	Proportionally Fair Matching withÂMultiple Groups. Lecture Notes in Computer Science, 2023, , 1-15.	1.0	0
668	Exponential Time Complexity ofÂtheÂComplex Weighted Boolean #CSP. Lecture Notes in Computer Science, 2024, , 83-96.	1.0	O
669	The Fine-Grained Complexity ofÂApproximately Counting Proper Connected Colorings (Extended) Tj ETQq0 0 0	rgBT /Over 1.0	lock 10 Tf 50
673	Why we couldn't prove SETH hardness of the Closest Vector Problem for even norms!. , 2023, , .		0
674	Clique Is Hard on Average for Unary Sherali-Adams. , 2023, , .		0
675	Optimal Algorithms for Bounded Weighted Edit Distance. , 2023, , .		O
676	Improved Hardness of Approximating k-Clique under ETH. , 2023, , .		0
677	The Complexity of Dynamic Least-Squares Regression. , 2023, , .		O
678	Efficient Algorithms for Semirandom Planted CSPs at the Refutation Threshold. , 2023, , .		0
679	Approximating Edit Distance in the Fully Dynamic Model. , 2023, , .		O