On the Complexity of k-SAT

Journal of Computer and System Sciences 62, 367-375

DOI: 10.1006/jcss.2000.1727

Citation Report

\#	Article	IF	Citations
1	Exact Algorithms for NP-Hard Problems: A Survey. Lecture Notes in Computer Science, 2003, , 185-207.	1.0	365
2	Combinatorial Optimization â€" Eureka, You Shrink!. Lecture Notes in Computer Science, 2003, ,	1.0	10
3	The complexity of unique k-SAT: an isolation lemma for k-CNFs. , 0, , .		8
4	$(2+\mathrm{f}(\mathrm{n}))$-SAT and its properties. Discrete Applied Mathematics, 2004, 136, 3-11.	0.5	4
6	Exact algorithms for the Hamiltonian cycle problem in planar graphs. Operations Research Letters, 2006, 34, 269-274.	0.5	22
7	On miniaturized problems in parameterized complexity theory. Theoretical Computer Science, 2006, 351, 314-336.	0.5	8
8	Finding a long directed cycle. ACM Transactions on Algorithms, 2008, 4, 1-21.	0.9	20
9			54

10 An Efficient Test for Product States with Applications to Quantum Merlin-Arthur Games. , 2010, , 15
11 Hardness amplification in proof complexity. , 2010, , 21
12 On the complexity of circuit satisfiability. , 2010, , 8
14 Balanced families of perfect hash functions and their applications. ACM Transactions on Algorithms,
2010, 6, 1-12. 0.9 15
16 Improving exhaustive search implies superpolynomial lower bounds. , 2010, , .49
17 Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time. , 2011, , 153
18 Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal. , 2011, , .46
19 Guest column. ACM SIGACT News, 2011, 42, 54-76. 0.1 12
20 SIGACT news complexity theory column 71. ACM SIGACT News, 2011, 42, 53-54. 0.1 0
21 251-255.0.43

\#	Article	IF	Citations
22	A quasipolynomial-time algorithm for the quantum separability problem. , 2011, , .		24
23	A Fast Parallel Branch and Bound Algorithm for Treewidth. , 2011,		0
24	Fixed-Parameter Tractability of Treewidth and Pathwidth. Lecture Notes in Computer Science, 2012, , 196-227.	1.0	11
25	A new point of NP-hardness for unique games. , 2012, ,		19
26	On Problems as Hard as CNF-SAT. , 2012, , .		47
27	Parameterized Complexity and Subexponential-Time Computability. Lecture Notes in Computer Science, 2012, , 162-195.	1.0	3
28	Studies in Computational Aspects of Voting. Lecture Notes in Computer Science, 2012, , 318-363.	1.0	14
29	Computing a nonnegative matrix factorization -- provably. , 2012, , .		157
31	Max-Cut Parameterized above the Edwards-ErdÅ's Bound. Lecture Notes in Computer Science, 2012, , 242-253.	1.0	10
32	Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, 2012, , . Towards <mml:math xmlns:mml="http:/\|www.w3.org/1998/Math/MathML" altimg="si1.gif"	1.0	2
33	display="inline" overflow="scroll"><mml:mstyle mathvariant="italic">mml:miNP</mml:mi></mml:mstyle></mml:math>ấ"<mml:math xmlns:mml="http:/\|www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll\|"><mml:mstyle mathvariant="italic">mml:miP</mml:mi> </mml:mstyle></mml:math>	0.3	57
35	via proof complexity and search. Annals of Pure and Applied Logic, 2012, 163, 906-917. Improving Exhaustive Search Implies Superpolynomial Lower Bounds. SIAM Journal on Computing, 2013, 42, 1218-1244.	0.8	103
37	On exact algorithms for the permutation CSP. Theoretical Computer Science, 2013, 511, 109-116.	0.5	1
38	A Satisfiability Algorithm for Sparse Depth Two Threshold Circuits. , 2013,		24

39 Sensitivity of Boolean formulas. European Journal of Combinatorics, 2013, 34, 793-805. 0.5 0

40 Parameterized complexity of MaxSat Above Average. Theoretical Computer Science, 2013, 511, 77-84. $\quad 0.5$

An exponential time 2-approximation algorithm for bandwidth. Theoretical Computer Science, 2013, 511,
23-31.

\#	Article	IF	Citations
43	Fixed-parameter tractability and lower bounds for stabbing problems. Computational Geometry: Theory and Applications, 2013, 46, 839-860.	0.3	9
44	Partition Into Triangles on Bounded Degree Graphs. Theory of Computing Systems, 2013, 52, 687-718.	0.7	22
45	Sub-linear root detection, and new hardness results, for sparse polynomials over finite fields. , 2013, ,		3
46	Fast approximation algorithms for the diameter and radius of sparse graphs., 2013, ,		116
47	Testing Product States, Quantum Merlin-Arthur Games and Tensor Optimization. Journal of the ACM, 2013, 60, 1-43.	1.8	50
48	Improved Approximation for 3-Dimensional Matching via Bounded Pathwidth Local Search. , 2013, ,		40
49	Strong ETH holds for regular resolution. , 2013, , .		12
50	Quantum de finetti theorems under local measurements with applications. , 2013,		24
51	Known algorithms for $\mathrm{E}<\mathrm{scp}>$ dge</scp> $\mathrm{C}<\mathrm{scp}>$ lique</scp> $\mathrm{C}<\mathrm{scp}>$ over</scp> are probably optimal. , 2013, , .		6
52	Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems. , 2014,		162
53	Why Walking the Dog Takes Time: Frechet Distance Has No Strongly Subquadratic Algorithms Unless SETH Fails., 2014, , .		93
54	Tight Bounds for Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and) Tj	. 843	BT / Over
55	Finding orthogonal vectors in discrete structures. , 2014, , .		13
56	Better Approximation Algorithms for the Graph Diameter. , 2014, , .		41

57 Exponential Time Complexity of the Permanent and the Tutte Polynomial. ACM Transactions on
\# Article
61 Parameterized and Subexponential-Time Complexity of Satisfiability Problems and Applications. Lecture
Notes in Computer Science, 2014, , 637-651.

69A linear edge kernel for two-layer crossing minimization. Theoretical Computer Science, 2014, 554,	0.5
$74-81$.	

70 Hardness results for approximate pure Horn CNF formulae minimization. Annals of Mathematics and

$0.9 \quad 6$

Parameterized and subexponential-time complexity of satisfiability problems and applications.
71 Theoretical Computer Science, 2015, 607, 282-295.
$0.5 \quad 2$

Approximating the best Nash Equilibrium in <i>n⁰<|i>^(log <i>n</i>)-time breaks
72 the Exponential Time Hypothesis. , 2015, , .

A Satisfiability Algorithm for Some Class of Dense Depth Two Threshold Circuits. IEICE Transactions
 73 on Information and Systems, 2015, E98.D, 108-118.
 0.4
 2

$0.5 \quad 2$
Progress in Automation, Robotics and Measuring Techniques. Advances in Intelligent Systems and
74 Computing, 2015, , .

Faster exponential-time algorithms in graphs of bounded average degree. Information and Computation, 2015, 243, 75-85.

9

\#	Article	IF	Citations
79	Tight Hardness Results for LCS and Other Sequence Similarity Measures. , 2015, , .		90
80	Pure Nash Equilibria in Graphical Games and Treewidth. Algorithmica, 2015, 71, 581-604.	1.0	2
81	Sitting Closer to Friends than Enemies, Revisited. Theory of Computing Systems, 2015, 56, 394-405.	0.7	7
82	A complexity and approximation framework for the maximization scaffolding problem. Theoretical Computer Science, 2015, 595, 92-106.	0.5	21
83	Edge deletion problems: Branching facilitated by modular decomposition. Theoretical Computer Science, 2015, 573, 63-70.	0.5	15
84	Constructing NP-intermediate problems by blowing holes with parameters of various properties. Theoretical Computer Science, 2015, 581, 67-82.	0.5	3
85	Fixed-Parameter Complexity and Approximability of Norm Maximization. Discrete and Computational Geometry, 2015, 53, 276-295.	0.4	2
86	Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false). , 2015, ,		143

87 The Computational Benefit of Correlated Instances. , 2015, , 2
88 Nonnegative Matrix Factorization. , 2015, , 1
89 Matching Triangles and Basing Hardness on an Extremely Popular Conjecture., 2015, , 34
A Fast and Simple Subexponential Fixed Parameter Algorithm for One-Sided Crossing Minimization.Algorithmica, 2015, 72, 778-790.
1.0 41.020
92 On the Computational Intractability of Exact and Approximate Dictionary Learning. IEEE Signal
Processing Letters, 2015, 22, 45-49. 2.1 60Approximation and Fixed Parameter Subquadratic Algorithms for Radius and Diameter in SparseGraphs. , 2016, , .47
A domination algorithm for $\{0,1\}$ ấinstances of the travelling salesman problem. Random Structuresand Algorithms, 2016, 48, 427-453.
0.62Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower boundmade. , 2016, , .43

\#	Article	IF	Citations
97	Refining complexity analyses in planning by exploiting the exponential time hypothesis. Annals of Mathematics and Artificial Intelligence, 2016, 78, 157-175.	0.9	2
98	Subexponential Parameterized Algorithms for Planar and Apex-Minor-Free Graphs via Low Treewidth Pattern Covering. , 2016, , .		15
99	Sublinear Root Detection and New Hardness Results for Sparse Polynomials over Finite Fields. SIAM Journal on Computing, 2016, 45, 1433-1447.	0.8	4
100	How Limited Interaction Hinders Real Communication (and What It Means for Proof and Circuit) Tj	314	I6 16

101 Which Regular Expression Patterns Are Hard to Match?. , 2016, , .

102 Estimating Simple Graph Parameters in Sublinear Time. , 2016, , 650-653.

104 Large-Treewidth Graph Decompositions. , 2016, , 1057-1059.

105 Known Algorithms for Edge Clique Cover are Probably Optimal. SIAM Journal on Computing, 2016, 45, 67-83.
0.8
106 Non-negative embedding for fully unsupervised domain adaptation. Pattern Recognition Letters, 2016,
$77,35-41$.
$2.6 \quad 7$

107 Separating OR, SUM, and XOR circuits. Journal of Computer and System Sciences, 2016, 82, 793-801.
$0.9 \quad 2$

108 Deterministic and probabilistic binary search in graphs. , 2016, , .
17

109 Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, 2016, , . 1.0

110 Can Almost Everybody be Almost Happy?. , 2016, , .
24

111 Computing a Nonnegative Matrix Factorization---Provably. SIAM Journal on Computing, 2016, 45,
0.8

45

112 An Almost Optimal Algorithm for Computing Nonnegative Rank. SIAM Journal on Computing, 2016, 45,
156-173.
0.8

16

Bounding the Running Time of Algorithms for Scheduling and Packing Problems. SIAM Journal on
Discrete Mathematics, 2016, 30, 343-366.

[^0]| \# | Article | IF | |
| :---: | :---: | :---: | :---: |
| 115 | A faster fixed parameter algorithm for two-layer crossing minimization. Information Processing Letters, 2016, 116, 547-549. | 0.4 | 4 |
| 116 | Lower Bounds for Dynamic Connectivity. , 2016, , 1162-1167. | | 2 |
| 118 | A note on the complexity of computing the number of reachable vertices in a digraph. Information Processing Letters, 2016, 116, 628-630. | 0.4 | 4 |
| 119 | Assigning Channels Via the Meet-in-the-Middle Approach. Algorithmica, 2016, 74, 1435-1452. | 1.0 | 1 |
| 120 | Nondeterministic Extensions of the Strong Exponential Time Hypothesis and Consequences for Non-reducibility., 2016, , . | | 6 |
| 121 | Improving resolution width lower bounds for k-CNFs with applications to the Strong Exponential Time Hypothesis. Information Processing Letters, 2016, 116, 120-124. | 0.4 | 2 |
| 122 | Tight lower bounds for the Workflow Satisfiability Problem based on the Strong Exponential Time Hypothesis. Information Processing Letters, 2016, 116, 223-226. | 0.4 | 1 |
| 123 | Convexity in partial cubes: The hull number. Discrete Mathematics, 2016, 339, 866-876. | 0.4 | 2 |
| 124 | On the hardness of labeled correlation clustering problem: A parameterized complexity view. Theoretical Computer Science, 2016, 609, 583-593. | 0.5 | 3 |
| 125 | Algorithms and Almost Tight Results for $\$ \$ 3 \$ \$ 3$-Colorability of Small Diameter Graphs. Algorithmica, 2016, 74, 385-414. | 1.0 | 1 |
| 126 | A Tight Algorithm for Strongly Connected Steiner Subgraph on Two Terminals with Demands. Algorithmica, 2017, 77, 1216-1239. | 1.0 | 5 |
| 127 | The Graph Motif problem parameterized by the structure of the input graph. Discrete Applied Mathematics, 2017, 231, 78-94. | 0.5 | 1 |
| 128 | Fixed-parameter algorithms for DAG Partitioning. Discrete Applied Mathematics, 2017, 220, 134-160. | 0.5 | 3 |
| 129 | An initial study of time complexity in infinite-domain constraint satisfaction. Artificial Intelligence, 2017, 245, 115-133. | 3.9 | 6 |

130 Minimum Fill-In: Inapproximability and Almost Tight Lower Bounds. , 2017, , .
o

131 On the Satisfiability of Workflows with Release Points. , 2017, , . 4

132 Quantum de Finetti Theorems Under Local Measurements with Applications. Communications in
Mathematical Physics, 2017, 353, 469-506.
1.0

17

On optimal approximability results for computing the strong metric dimension. Discrete Applied
0.5

Dealing with 4-variables by resolution: An improved MaxSAT algorithm. Theoretical Computer Science, 2017, 670, 33-44.
137 Quantum computational supremacy. Nature, 2017, 549, 203-209.
139 Homomorphisms are a good basis for counting small subgraphs. , 2017, , 35Hitting forbidden subgraphs in graphs of bounded treewidth. Information and Computation, 2017, 256,62-82.
143 Maximum Minimal Vertex Cover Parameterized by Vertex Cover. SIAM Journal on Discrete Mathematics,2017, 31, 2440-2456.
11
144 Tissue P Systems with Small Cell Volume. Fundamenta Informaticae, 2017, 154, 261-275.0.35
145 Improving local search in a minimum vertex cover solver for classes of networks. , 2017, , 9
Strong partial clones and the time complexity of SAT problems. Journal of Computer and System 0.9 15
Sciences, 2017, 84, 52-78.A subexponential-time algorithm for the Maximum Independent Set Problem in <mml:math
147 xmlns:mm|="http://www.w3.org/1998/Math/MathML" altimg="sil.gif" display="inline"oraphs. Discrete Applied Mathematics, 2017. 231. 113-118.
On the Satisfiability of Quantum Circuits of Small Treewidth. Theory of Computing Systems, 2017, 61,

\#	Article	IF	Citations
154	A Dichotomy for Regular Expression Membership Testing. , 2017, , .		16
155	Finding Points in General Position. International Journal of Computational Geometry and Applications, 2017, 27, 277-296.	0.3	16
156	Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph. , 2017, , .		74
157	Massively-Parallel Similarity Join, Edge-Isoperimetry, and Distance Correlations on the Hypercube. , 2017, , .		1
158	ETH Hardness for Densest-<i>k</i>-Subgraph with Perfect Completeness. , 2017, , .		5
160	Scaffolding Problems Revisited: Complexity, Approximation and Fixed Parameter Tractable Algorithms, and Some Special Cases. Algorithmica, 2018, 80, 1771-1803.	1.0	8
161	Known Algorithms on Graphs of Bounded Treewidth Are Probably Optimal. ACM Transactions on Algorithms, 2018, 14, 1-30.	0.9	25
162	Adiabatic quantum computation. Reviews of Modern Physics, 2018, 90,	16.4	743
163	On residual approximation in solution extension problems. Journal of Combinatorial Optimization, 2018, 36, 1195-1220.	0.8	3
164	Fixing improper colorings of graphs. Theoretical Computer Science, 2018, 711, 66-78.	0.5	2
165	Complexity of Token Swapping and Its Variants. Algorithmica, 2018, 80, 2656-2682.	1.0	13
166	Multivariate Fine-Grained Complexity of Longest Common Subsequence., 2018, , 1216-1235.		13
167	The P3 infection time is W[1]-hard parameterized by the treewidth. Information Processing Letters, 2018, 132, 55-61.	0.4	3
168	Combinatorial Algorithms. Lecture Notes in Computer Science, 2018, ,	1.0	129
169	Threesomes, Degenerates, and Love Triangles. Journal of the ACM, 2018, 65, 1-25.	1.8	20
170	A Crossbred Algorithm for Solving Boolean Polynomial Systems. Lecture Notes in Computer Science, 2018, , 3-21.	1.0	21
171	Bounded-Depth Succinct Encodings and the Structure they Imply on Graphs. Theory of Computing Systems, 2018, 62, 1125-1143.	0.7	0
172			9

189 Sparse Recovery. , 0, , 71-88.

o
190 Sparse Coding. , 0, , 89-106. 0

$\#$	ARTICLE	Citations
195	What Is Known About Vertex Cover Kernelization?. Lecture Notes in Computer Science, 2018, , 330-356.	
196	Algorithms for nodeâ€weighted Steiner tree and maximumâ€weight connected subgraph. Networks, 2018,	8
$72,238-248$.		

197 Clique is hard on average for regular resolution. , 2018, , .

```
198 On the Fine-Grained Complexity of Rainbow Coloring. SIAM Journal on Discrete Mathematics, 2018, 32,
\(0.4 \quad 4\)
```

199 Local reduction. Information and Computation, 2018, 261, 281-295.
200 Fine-grained complexity for sparse graphs. , 2018, , 10
201 The Parameterized Complexity of the <i>k-Biclique Problem. Journal of the ACM, 2018, 65, 1-23. 1.8
203 Hardness of Approximation for $\langle\mathrm{i}\rangle \mathrm{H}\langle 1\rangle$ 0.4 4
204 Hardness of approximate nearest neighbor search., 2018, , 35
205 Matching Triangles and Basing Hardness on an Extremely Popular Conjecture. SIAM Journal on
Computing, 2018, 47, 1098-1122.
0.8 15A Faster Subquadratic Algorithm for Finding Outlier Correlations. ACM Transactions on Algorithms,2018, 14, 1-26.
$0.9 \quad 4$
207 Sharpness of the Satisfiability Threshold for Non-uniform Random k-SAT. Lecture Notes in Computer Science, 2018, , 273-291.0.831Edit Distance Cannot Be Computed in Strongly Subquadratic Time (Unless SETH is False). SIAM Journalon Computing, 2018, 47, 1087-1097.

0.9	7

210 A framework for ETH-tight algorithms and lower bounds in geometric intersection graphs. , 2018, , .12
211 Cliques enumeration and tree-like resolution proofs. Information Processing Letters, 2018, 135, 62-67. 0.4 2
212 Conditional Lower Bounds for All-Pairs Max-Flow. ACM Transactions on Algorithms, 2018, 14, 1-15. 0.9 7

\#	Article	IF	Citations
214	Dynamic Time Warping and Geometric Edit Distance. ACM Transactions on Algorithms, 2018, 14, 1-17.	0.9	45
215	Fixed-Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs. Algorithmica, 2019, 81, 1031-1052.	1.0	12
216	Computational complexity aspects of point visibility graphs. Discrete Applied Mathematics, 2019, 254, 283-290.	0.5	5
217	A substringâ€"substring LCS data structure. Theoretical Computer Science, 2019, 753, 16-34.	0.5	7
218	On the Parameterized Complexity of Approximating Dominating Set. Journal of the ACM, 2019, 66, 1-38.	1.8	9
219	A Fixed-Parameter Perspective on \#BIS. Algorithmica, 2019, 81, 3844-3864.	1.0	5
220	Maximal common subsequence algorithms. Theoretical Computer Science, 2019, 793, 132-139.	0.5	3
221	A Tight Lower Bound for Planar Steiner Orientation. Algorithmica, 2019, 81, 3200-3216.	1.0	3

222 Bridging between 0/1 and linear programming via random walks. , 2019, , 2
Structural parameters, tight bounds, and approximation for <mml:math
223 xmlns:mml="http:/|www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e529" 223 altimg $=$ "si18.gif" $>$ mml:mrow mml:mo (</mml:mo>mml:mik<|mml:mi>mml:mo, </mml:mo>mml:mir</mmif:mi>mml:mo) Discrete Applied Mathematics, 2019, 264, 90-117.
224 Packing Cycles Faster Than Erdos--Posa. SIAM Journal on Discrete Mathematics, 2019, 33, 1194-1215. 0.4 4
225 Bounded depth circuits with weighted symmetric gates: Satisfiability, lower bounds and compression.
Journal of Computer and System Sciences, 2019, 105, 87-103.
0.9 1
226 On Super Strong ETH. Lecture Notes in Computer Science, 2019, , 406-423. 1.0 2
227 Graph pattern detection: hardness for all induced patterns and faster non-induced cycles. , 2019, , 11
H-colouring Pt-free graphs in subexponential time. Discrete Applied Mathematics, 2019, 267, 184-189.
229 Survey., 2019, , 5
231 Faster <i>k</i>-SAT algorithms using biased-PPSZ. , 2019, , .12

```
235 On the parameterized complexity of the geodesic hull number. Theoretical Computer Science, 2019, 791,
10-27.
238 Fast exact algorithms for some connectivity problems parameterized by clique-width. Theoretical
240 Tight Lower Bounds for the Complexity of Multicoloring. ACM Transactions on Computation Theory,
An improved algorithm for the \(\$ \$(n, 3) \$ \$-M a x S A T ~ p r o b l e m: ~ a s k i n g ~ b r a n c h i n g s ~ t o ~ s a t i s f y ~ t h e ~ c l a u s e s . ~\) Journal of Combinatorial Optimization, 2019, , 1.
242 Algorithms and Complexity. Lecture Notes in Computer Science, 2019, , .
Saving colors and Max Coloring: Some fixed-parameter tractability results. Theoretical Computer
\(244 \begin{aligned} & \text { The Constant Inapproximability } \\ & \text { Computing, 2019, 48, 513-533. }\end{aligned}\)
\(1.0 \quad 2\)
245 Subquadratic Algorithms for Succinct Stable Matching. Algorithmica, 2019, 81, 2991-3024.
\(0.5 \quad 2\)
\(246 \begin{aligned} & \text { Domino sequencing: Scheduling with } \\ & \text { Research Letters, 2019, 47, 274-280. }\end{aligned}\)0.52Local Coloring: New Observations and New Reductions. Lecture Notes in Computer Science, 2019, ,51-62.
\(1.0 \quad 0\)
Parameterized aspects of triangle enumeration. Journal of Computer and System Sciences, 2019, 103,
61-77.0.97
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & \\
\hline 253 & Optimality Program in Segment and String Graphs. Algorithmica, 2019, 81, 3047-3073. & 1.0 & 7 \\
\hline 254 & Parameterized dichotomy of choosing committees based on approval votes in the presence of outliers. Theoretical Computer Science, 2019, 783, 53-70. & 0.5 & 2 \\
\hline 255 & Frontiers in Algorithmics. Lecture Notes in Computer Science, 2019, , . & 1.0 & 0 \\
\hline 256 & The Homogeneous Broadcast Problem in Narrow and Wide Strips II: Lower Bounds. Algorithmica, 2019, 81, 2963-2990. & 1.0 & 1 \\
\hline 257 & An Equivalence Class for Orthogonal Vectors. , 2019, , 21-40. & & 4 \\
\hline 258 & Tight Conditional Lower Bounds for Longest Common Increasing Subsequence. Algorithmica, 2019, 81, 3968-3992. & 1.0 & 1 \\
\hline 259 & A Survey on Graph Drawing Beyond Planarity. ACM Computing Surveys, 2020, 52, 1-37. & 16.1 & 60 \\
\hline 260 & Multi-resolution Hashing for Fast Pairwise Summations. , 2019, , & & 2 \\
\hline
\end{tabular}
261 Influence Maximization at Community Level: A New Challenge with Non-submodularity. , 2019, , . ..... 8
262 The Workflow Satisfiability Problem with User-Independent Constraints. , 2019, , . ..... 1
Finding Detours is Fixed-Parameter Tractable. SIAM Journal on Discrete Mathematics, 2019, 33,
263 2326-2345. ..... \(0.4 \quad 4\)Computing the chromatic number using graph decompositions via matrix rank. Theoretical Computer\(264 \begin{aligned} & \text { Computing the chromatic num } \\ & \text { Science, 2019, 795, 520-539. }\end{aligned}\)
0.5 ..... 2
Optimal Surveillance of Covert Networks by Minimizing Inverse Geodesic Length. Proceedings of the ..... 3.6 ..... 4
265 AAAI Conference on Artificial Intelligence, 2019, 33, 533-540.
Dynamic DFS in Undirected Graphs: Breaking the \(\$ \mathrm{O}(\mathrm{m}) \$\) Barrier. SIAM Journal on Computing, 2019, 48, ..... 0.8 ..... 6
266 1335-1363.Pattern Matching and Consensus Problems on Weighted Sequences and Profiles. Theory of Computing0.79Systems, 2019, 63, 506-542.
\(0.9 \quad 7\)

269 Efficiently Enumerating Hitting Sets of Hypergraphs Arising in Data Profiling. , 2019, , 130-143.

Temporal vertex cover with a sliding time window. Journal of Computer and System Sciences, 2020,278 Parameterized Complexity of Min-Power Asymmetric Connectivity. Theory of Computing Systems, 2020,64, 1158-1182.
```

286 Boolean functional synthesis: hardness and practical algorithms. Formal Methods in System Design,
2021, 57, 53-86.

```
\begin{tabular}{llll}
\(\#\) & ARTICLE & IF & CITATIONS \\
289 & \begin{tabular}{l} 
Explicit Correlation Amplifiers for Finding Outlier Correlations in Deterministic Subquadratic Time. \\
Algorithmica, 2020, 82, 3306-3337.
\end{tabular} & 1.0 & 0 \\
\hline 290 & The Optimal Design of Low-Latency Virtual Backbones. INFORMS Journal on Computing, 0,2 & 1.0 & 2
\end{tabular}

Tight Bounds for Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and) Tj ETQq0 00 rgBT /Over_ock 10 Tf


299 Minimum fill-in: Inapproximability and almost tight lower bounds. Information and Computation, 2020, 271, 104514.

Fine-grained complexity of graph homomorphism problem for bounded-treewidth graphs. , 2020, , 1578-1590.

302 Matching Cut in Graphs with Large Minimum Degree. Algorithmica, 2021, 83, 1238-1255.
1.0

9

\section*{303 Polynomial Treedepth Bounds in Linear Colorings. Algorithmica, 2021, 83, 361-386.}
1.0

0

The Double Exponential Runtime is Tight for 2-Stage Stochastic ILPs. Lecture Notes in Computer
1.0

Science, 2021, , 297-310.

Parameterized Analysis of Assignment Under Multiple Preferences. Lecture Notes in Computer Science, 2021, , 160-177.

A Fast Algorithm for SAT in Terms of Formula Length. Lecture Notes in Computer Science, 2021, , 436-452.

Learn to relax: Integrating 0-1 integer linear programming with pseudo-Boolean conflict-driven
search. Constraints, 2021, 26, 26-55.


\footnotetext{
A faster diameter problem algorithm for a chordal graph, with a connection to its center problem. Discrete Mathematics, 2021, 344, 112326.
}
\(0.4 \quad 0\)

The Traffic Grooming Problem in Optical Networks with Respect to ADMs and OADMs: Complexity and
325 Approximation. Algorithms, 2021, 14, 151.
1.2

2

326 Finding Temporal Paths Under Waiting Time Constraints. Algorithmica, 2021, 83, 2754-2802.
331 \begin{tabular}{ll} 
k-Approximate Quasiperiodicity Under Hamming and Edit Distance. Algorithmica, 0, , 1.
\end{tabular}

336 Improved Algorithms for Allen's Interval Algebra: a Dynamic Programming Approach. , 2021, , .
337 Discrete FrÃ@chet Distance under Translation. ACM Transactions on Algorithms, 2021, 17, 1-42.problems. Theoretical Computer Science, 2021, , .

339 Reducing graph transversals via edge contractions. Journal of Computer and System Sciences, 2021, 120, 62-74.

\footnotetext{
345 Waypoint routing on bounded treewidth graphs. Information Processing Letters, 2022, 173, 106165.
0.4
}

FPT and Kernelization Algorithms for the Induced Tree Problem. Lecture Notes in Computer Science,
347 The Perfect Matching Cut Problem Revisited. Lecture Notes in Computer Science, 2021, , 182-194.

349 A Tight Lower Bound for Edge-Disjoint Paths on Planar DAGs. Lecture Notes in Computer Science, 2021,

Subexponential Algorithms for Variants of Homomorphism Problem in String Graphs. Lecture Notes in Computer Science, 2019, , 1-13.
```

356 Comparing Temporal Graphs Using Dynamic Time Warping. Studies in Computational Intelligence, 2020,

```
356 , 469-480.
\(0.7 \quad 2\)358 On the Fine Grained Complexity of Finite Automata Non-emptiness of Intersection. Lecture Notes inComputer Science, 2020, , 69-82.

The Fine Details of Fast Dynamic Programming over Tree Decompositions. Lecture Notes in Computer
1.0

11

361 On the Complexity of Computing Two Nonlinearity Measures. Lecture Notes in Computer Science, 2014,
, 167-175.
\(1.0 \quad 5\)

Treewidth and the Computational Complexity of MAP Approximations. Lecture Notes in Computer
362 Science, 2014, , 271-285.
\(1.0 \quad 3\)

Optimisation of Digraphs-Based Realisations for Polynomials of One and Two Variables. Advances in
0.5

11
Intelligent Systems and Computing, 2015, , 73-83.

Dealing with 4-Variables by Resolution: AnÂlmproved MaxSAT Algorithm. Lecture Notes in Computer
1.0

5
364 Science, 2015, , 178-188.

Subquadratic Algorithms for Succinct Stable Matching. Lecture Notes in Computer Science, 2016, ,
294-308.
1.0

366 294-308.

Fine-Grained Parameterized Complexity Analysis of Graph Coloring Problems. Lecture Notes in
Computer Science, 2017, , \(345-356\).
1.0

14
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 369 & Parameterized Algorithms for Power-Efficient Connected Symmetric Wireless Sensor Networks. Lecture Notes in Computer Science, 2017, , 26-40. & 1.0 & 4 \\
\hline 370 & Structural Parameterizations ofÂDominating Set Variants. Lecture Notes in Computer Science, 2018, , 157-168. & 1.0 & 3 \\
\hline 371 & A Tight Lower Bound for Steiner Orientation. Lecture Notes in Computer Science, 2018, , 65-77. & 1.0 & 2 \\
\hline 372 & Diminishable Parameterized Problems and Strict Polynomial Kernelization. Lecture Notes in Computer Science, 2018, , 161-171. & 1.0 & 3 \\
\hline 373 & Whatâ€ \({ }^{T M}\) s Hard About Boolean Functional Synthesis?. Lecture Notes in Computer Science, 2018, , 251-269. & 1.0 & 12 \\
\hline 374 & Approximating Longest Directed Paths and Cycles. Lecture Notes in Computer Science, 2004, 222-233. & 1.0 & 36 \\
\hline 375 & The Time Complexity of Constraint Satisfaction. , 2008, , 190-201. & & 23 \\
\hline 376 & Firefighting on Trees: (lâ€\%oâ" â€\%ol/e)â€"Approximation, Fixed Parameter Tractability and a Subexponential Algorithm. Lecture Notes in Computer Science, 2008, , 258-269. & 1.0 & 29 \\
\hline 377 & Finding Long Paths, Cycles and Circuits. Lecture Notes in Computer Science, 2008, , 752-763. & 1.0 & 12 \\
\hline 378 & Variable Influences in Conjunctive Normal Forms. Lecture Notes in Computer Science, 2009, , 101-113. & 1.0 & 5 \\
\hline 379 & k-SAT Is No Harder Than Decision-Unique-k-SAT. Lecture Notes in Computer Science, 2009, , 59-70. & 1.0 & 5 \\
\hline 380 & Balanced Hashing, Color Coding and Approximate Counting. Lecture Notes in Computer Science, 2009, , 1-16. & 1.0 & 16 \\
\hline
\end{tabular}
381 An Exponential Time 2-Approximation Algorithm for Bandwidth. Lecture Notes in Computer Science, ..... 1.0 ..... 12
2009, , 173-184.The Parameterized Complexity of Some Geometric Problems in Unbounded Dimension. Lecture Notes in1.010Computer Science, 2009, , 198-209.
The Complexity of Satisfiability of Small Depth Circuits. Lecture Notes in Computer Science, 2009, , ..... 1.0 ..... 78
383 75-85.
\(1.0 \quad 3\)
384 The Complexity of Geometric Problems in High Dimension. Lecture Notes in Computer Science, 2010, , 40-49.1.037
Algorithms for Dominating Set in Disk Graphs: Breaking the logn Barrier. Lecture Notes in Computer Science, 2010, , 243-254.
389 On Variants of the Spanning Star Forest Problem. Lecture Notes in Computer Science, 2011, , 70-81.
\(390 \quad\)\begin{tabular}{l} 
Satisfiability Certificates Verifiable in Subexponential Time. Lecture Notes in Computer Science, 2011, , \\
19-32.
\end{tabular}
\(394 \begin{aligned} & \text { Approximating MAX SAT by Moderate } \\ & \text { Computer Science, 2012, , 202-213. }\end{aligned}\)
395 Finding Efficient Circuits for Ensemble Computation. Lecture Notes in Computer Science, 2012, ,369-382.
397 Sitting Closer to Friends Than Enemies, Revisited. Lecture Notes in Computer Science, 2012, , 296-307. ..... 18
398 A Fast and Simple Subexponential Fixed Parameter Algorithm for One-Sided Crossing Minimization.Lecture Notes in Computer Science, 2012, , 683-694.
399 Homomorphic Hashing for Sparse Coefficient Extraction. Lecture Notes in Computer Science, 2012, , ..... 147-158.
\(1.0 \quad 5\)
400 Finding a Maximum Induced Degenerate Subgraph Faster Than 2 n. Lecture Notes in Computer Science,2012, , 3-12.
401 Bisections above Tight Lower Bounds. Lecture Notes in Computer Science, 2012, , 184-193.1.04
402 Algorithms and Almost Tight Results for 3-Colorability of Small Diameter Graphs. Lecture Notes in1.0Computer Science, 2013, , 332-343.\(1.0 \quad 1\)
\(403 \begin{array}{ll} & \text { Upper and } \\ 394-402 .\end{array}\)Lift-and-Project Methods for Set Cover and Knapsack. Lecture Notes in Computer Science, 2013, ,1.0256-267.
406 Bounding the Running Time of Algori
407 Consequences of Faster Alignment of Sequences. Lecture Notes in Computer Science, 2014, , 39-51. ..... 1.0 ..... 53
408 Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis. Lecture Notes in Computer Science, 2014, , 408-419.
On the Equivalence among Problems ofÂBounded Width. Lecture Notes in Computer Science, 2015, ,
\(754-765\).
\(418 \quad \begin{aligned} & \text { Frã@chet Distance Under Translat } \\ & \text { Reachability., 2019, , 2902-2921. }\end{aligned}\) ..... 5
419 SETH-Based Lower Bounds for Subset Sum and Bicriteria Path. , 2019, , 41-57. ..... 12
420 Tight Lower Bounds on Graph Embedding Problems. Journal of the ACM, 2017, 64, 1-22. ..... 1.8 ..... 10
421 On Problems Equivalent to (min,+)-Convolution. ACM Transactions on Algorithms, 2019, 15, 1-25.0.924
422 Faster Pseudopolynomial Time Algorithms for Subset Sum. ACM Transactions on Algorithms, 2019, 15,1-20.
0.924
423 Automating cutting planes is NP-hard. , 2020, , .6
424 Constraint Branching in Workflow Satisfiability Problem. , 2020, , . ..... 3Time- and Space-optimal Algorithm for the Many-visits TSP. ACM Transactions on Algorithms, 2020, 16,1-22.
426 Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints. ACM 0.4 ..... 11
Transactions on Computation Theory, 2020, 12, 1-19.7.0
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 429 & Tree-Width and the Computational Complexity of MAP Approximations in Bayesian Networks. Journal of Artificial Intelligence Research, 0, 53, 699-720. & 7.0 & 30 \\
\hline 430 & Time and Space Bounds for Planning. Journal of Artificial Intelligence Research, 0, 60, 595-638. & 7.0 & 3 \\
\hline 432 & Quantum-inspired algorithms in practice. Quantum - the Open Journal for Quantum Science, 0, 4, 307. & 0.0 & 53 \\
\hline 433 & Additive-error fine-grained quantum supremacy. Quantum - the Open Journal for Quantum Science, 0, 4, 329. & 0.0 & 3 \\
\hline 435 & Title is missing!. Theory of Computing, 2015, 11, 221-235. & 0.3 & 42 \\
\hline 451 & The diameter of ATâ€free graphs. Journal of Graph Theory, 2022, 99, 594-614. & 0.5 & 4 \\
\hline 452 & Parameterized Maximum Path Coloring. Lecture Notes in Computer Science, 2012, 232-245. & 1.0 & 1 \\
\hline 453 & Test-Case Design by Feature Trees. Lecture Notes in Computer Science, 2012, , 458-473. & 1.0 & 6 \\
\hline 455 & Exponential Complexity of Satisfiability Testing for Linear-Size Boolean Formulas. Lecture Notes in Computer Science, 2013, , 110-121. & 1.0 & 1 \\
\hline 456 & Exact Complexity and Satisfiability. Lecture Notes in Computer Science, 2013, , 1-3. & 1.0 & 1 \\
\hline 459 & Simultaneous Approximation of Constraint Satisfaction Problems. Lecture Notes in Computer Science, 2015, , 193-205. & 1.0 & 0 \\
\hline 460 & The Computational Limit to Quantum Determinism and the Black Hole Information Loss Paradox. Physical Science International Journal, 2015, 7, 107-113. & 0.3 & 0 \\
\hline
\end{tabular}

462 Lower Bounds Based on the Exponential Time Hypothesis: Edge Clique Cover. , 2015, , 1-4.
0
464 Lower Bounds Based on the Exponential-Time Hypothesis. , 2015, , 467-521. ..... 41

Upper and Lower Bounds on the Time Complexity of Infinite-Domain CSPs. Lecture Notes in Computer
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 470 & New Insights for Power Edge Set Problem. Lecture Notes in Computer Science, 2017, , 180-194. & 1.0 & 3 \\
\hline 471 & LP-branching algorithms based on biased graphs. , 2017, & & 2 \\
\hline 472 & Parameterized Complexity of the Workflow Satisfiability Problem. , 2017, , 101-120. & & 1 \\
\hline 473 & Kernelization Lower Bounds for Finding Constant-Size Subgraphs. Lecture Notes in Computer Science, 2018, , 183-193. & 1.0 & 2 \\
\hline 474 & Efficient Computation of Sequence Mappability. Lecture Notes in Computer Science, 2018, , 12-26. & 1.0 & 3 \\
\hline 475 & Approximate Correlation Clustering Using Same-Cluster Queries. Lecture Notes in Computer Science, 2018, , 14-27. & 1.0 & 4 \\
\hline 476 & Tight Approximability of the Server Allocation Problem for Real-Time Applications. Lecture Notes in Computer Science, 2018, , 41-55. & 1.0 & 8 \\
\hline 477 & Cliquewidth III: The Odd Case of Graph Coloring Parameterized by Cliquewidth. , 2018, , 262-273. & & 2 \\
\hline
\end{tabular}
478 Beyond Outerplanarity. Lecture Notes in Computer Science, 2018, , 546-559. \(\quad 1.0 \quad 7\)
479 Improved Complexity for Power Edge SetÂProblem. Lecture Notes in Computer Science, 2018, , 128-141.
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & \\
\hline 504 & Four Shorts Stories on Surprising Algorithmic Uses of Treewidth. Lecture Notes in Computer Science, 2020, , 129-144. & 1.0 & 1 \\
\hline 505 & Three-in-a-tree in near linear time. , 2020, & & 6 \\
\hline 506 & Efficiently enumerating hitting sets of hypergraphs arising in data profiling. Journal of Computer and System Sciences, 2022, 124, 192-213. & 0.9 & 1 \\
\hline 507 & Hitting forbidden induced subgraphs on bounded treewidth graphs. Information and Computation, 2021, 281, 104812. & 0.5 & 4 \\
\hline 508 & Lower Bounds for Dominating Set in Ball Graphs and for Weighted Dominating Set in Unit-Ball Graphs. Lecture Notes in Computer Science, 2020, , 31-48. & 1.0 & 0 \\
\hline 509 & Using Resolution Proofs to Analyse CDCL Solvers. Lecture Notes in Computer Science, 2020, ,427-444. & 1.0 & 1 \\
\hline 510 & On the Complexity of Finding Large Odd Induced Subgraphs and Odd Colorings. Lecture Notes in Computer Science, 2020, , 67-79. & 1.0 & 0 \\
\hline 511 & Fine-grained complexity of rainbow coloring and its variants. Journal of Computer and System Sciences, 2022, 124, 140-158. & 0.9 & 1 \\
\hline 512 & A Framework for Exponential-Time-Hypothesis--Tight Algorithms and Lower Bounds in Geometric Intersection Graphs. SIAM Journal on Computing, 2020, 49, 1291-1331. & 0.8 & 8 \\
\hline 513 & Graph Pattern Detection: Hardness for all Induced Patterns and Faster Noninduced Cycles. SIAM Journal on Computing, 2021, 50, 1627-1662. & 0.8 & 2 \\
\hline
\end{tabular}
514 Tight Hardness Results for Consensus Problems on Circular Strings and Time Series. SIAM Journal on Discrete Mathematics, 2020, 34, 1854-1883.
515 Eccentricity Heuristics through Sublinear Analysis Lenses. , 2020, , 75-89.0An Optimal Algorithm for Bisection for Bounded-Treewidth Graph. Lecture Notes in Computer Science,2020, , 25-36.
\(1.0 \quad 0\)
517 Diminishable parameterized problems and strict polynomial kernelization. Computability, 2020, 9, 1-24. ..... 0.3 ..... 1

\footnotetext{
521 On the overall and delay complexity of the CLIQUES and Bron-Kerbosch algorithms. Theoretical
Computer Science, 2022, 899, 1-24.
}
523 A Polynomial Kernel for Diamond-Free Editing. Algorithmica, 2022, 84, 197-215. ..... 1.0
```530 An Improved Exponential-Time Approximation Algorithm for Fully-Alternating Games Against Nature. ,
```1
531 Counting Small Induced Subgraphs Satisfying Monotone Properties., 2020, , . ..... 2
532 Constant Depth Formula and Partial Function Versions of MCSP are Hard. , 2020, , . ..... 8On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds: Extended Abstract.,2020, , .1
534 Enhanced Fast Boolean Matching based on Sensitivity Signatures Pruning. , 2021, , . ..... 5SETH-based Lower Bounds for Subset Sum and Bicriteria Path. ACM Transactions on Algorithms, 2022,18, 1-22.
536 Subcubic certificates for CFL reachability. , 2022, 6, 1-29. ..... 6The complexity of dependency detection and discovery in relational databases. Theoretical ComputerScience, 2022, 900, 79-96.4
Tight Bounds for Approximate Near Neighbor Searching for Time Series under the FrÃ ©chet Distance. ,
2022, , 517-550. 538 Tight Bounds for4
On the Fine-Grained Complexity of the Unbounded SubsetSum and the Frobenius Problem. , 2022, , 3567-3582.2
540 Efficient Computation of Sequence Mappability. Algorithmica, 0, , 1.
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & \\
\hline 541 & Scheduling Lower Bounds via AND Subset Sum. Journal of Computer and System Sciences, 2022, , . & 0.9 & 3 \\
\hline 542 & A Refined Branching Algorithm for the Maximum Satisfiability Problem. Algorithmica, 2022, 84, 982-1006. & 1.0 & 2 \\
\hline 543 & Solving systems of Boolean multivariate equations with quantum annealing. Physical Review Research, 2022, 4, . & 1.3 & 1 \\
\hline 544 & Verification of multi-layered assignment problems. Autonomous Agents and Multi-Agent Systems, 2022, 36, 1 . & 1.3 & 1 \\
\hline 545 & Parallel Digraphs-building Computer Algorithm for Finding a Set of Characteristic Polynomial Realisations of Dynamic System. Journal of Automation, Mobile Robotics and Intelligent Systems, 0, , 38-51. & 0.4 & 6 \\
\hline 548 & Small-space and streaming pattern matching with \$k\$ edits. , 2022, , & & 2 \\
\hline 549 & Exact and Approximate Pattern Counting in Degenerate Graphs: New Algorithms, Hardness Results, and Complexity Dichotomies. , 2022, , . & & 2 \\
\hline 550 & k-Clustering with Fair Outliers. , 2022, & & 2 \\
\hline 551 & On the optimality of pseudo-polynomial algorithms for integer programming. Mathematical Programming, 0, , 1 . & 1.6 & 0 \\
\hline 552 & Hardness of Approximate Diameter: Now for Undirected Graphs. , 2022, , . & & 4 \\
\hline
\end{tabular}

553 Applications of Random Algebraic Constructions to Hardness of Approximation. , 2022, , . 0

554 Target Set Selection in Dense Graph Classes. SIAM Journal on Discrete Mathematics, 2022, 36, 536-572. 0.4

555 Differentiable Content Addressable Memory with Memristors. Advanced Electronic Materials, 2022, 8,
2.63

\section*{556 \\ On Treewidth and Stable Marriage: Parameterized Algorithms and Hardness Results (Complete) Tj ETQq1 10.784314 rgBT /Qverlock}
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & \\
\hline 561 & 4 vs 7 Sparse Undirected Unweighted Diameter Is SETH-hard at Time <i>n</i> <sup>4/3</sup>. ACM Transactions on Algorithms, 2022, 18, 1-14. & 0.9 & 1 \\
\hline 562 & Linearâ€time algorithms for eliminating claws in graphs. International Transactions in Operational Research, 2024, 31, 296-315. & 1.8 & 1 \\
\hline 563 & Counting Small Induced Subgraphs Satisfying Monotone Properties. SIAM Journal on Computing, 0, , FOCS20-139-FOCS20-174. & 0.8 & 1 \\
\hline 565 & Approximating the Geometric Edit Distance. Algorithmica, 0, , 1. & 1.0 & 0 \\
\hline 566 & Graph Square Roots of Small Distance from Degree One Graphs. Theory of Computing Systems, 0, , . & 0.7 & 0 \\
\hline 567 & A computation model with automatic functions and relations as primitive operations. Theoretical Computer Science, 2022, 924, 94-116. & 0.5 & 1 \\
\hline 568 & (Sub)linear Kernels for Edge Modification Problems Toward Structured Graph Classes. Algorithmica, 2022, 84, 3338-3364. & 1.0 & 2 \\
\hline 569 & On theÂComplexity ofÂFinding Shortest Variable Disjunction Branch-and-Bound Proofs. Lecture Notes in Computer Science, 2022, , 291-304. & 1.0 & 2 \\
\hline 572 & Computing Maximum Matchings in Temporal Graphs. SSRN Electronic Journal, 0, , . & 0.4 & 0 \\
\hline 573 & Graph Searches and Their End Vertices. Algorithmica, 2022, 84, 2642-2666. & 1.0 & 3 \\
\hline 574 & Constraint Satisfaction Problems with Global Modular Constraints: Algorithms and Hardness via Polynomial Representations. SIAM Journal on Computing, 2022, 51, 577-626. & 0.8 & 0 \\
\hline 575 & The double exponential runtime is tight for 2-stage stochastic ILPs. Mathematical Programming, 0, , & 1.6 & 0 \\
\hline 576 & Mean isoperimetry with control on outliers: Exact and approximation algorithms. Theoretical Computer Science, 2022, , . & 0.5 & 1 \\
\hline 577 & The inherent time complexity and an efficient algorithm for subsequence matching problem. Proceedings of the VLDB Endowment, 2022, 15, 1453-1465. & 2.1 & 1 \\
\hline
\end{tabular}

Proceedings of the VLDB Endowment, 2022, 15, 1453-1465.

Algorithms and certificates for Boolean CSP refutation: smoothed is no harder than random. , 2022, ,

579 Counting small induced subgraphs with hereditary properties. , 2022, . . 4

580 Hardness for triangle problems under even more believable hypotheses: reductions from real APSP, real 3SUM, and OV. , 2022, , .
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & \\
\hline 583 & On the Subexponential Time Complexity of CSP. Proceedings of the AAAI Conference on Artificial Intelligence, 2013, 27, 459-465. & 3.6 & 4 \\
\hline 584 & Algorithmic QUBO formulations for <i>k</i> -SAT and hamiltonian cycles., 2022, .. & & 5 \\
\hline 585 & Algorithms and Complexity on Indexing Founder Graphs. Algorithmica, 2023, 85, 1586-1623. & 1.0 & 3 \\
\hline 586 & Clustering with Fair-Center Representation., 2022, , . & & 3 \\
\hline 587 & The perfect matching cut problem revisited. Theoretical Computer Science, 2022, 931, 117-130. & 0.5 & 4 \\
\hline 588 & Parameterized complexity of stable roommates with ties and incomplete lists through the lens of graph parameters. Information and Computation, 2022, , 104943. & 0.5 & 1 \\
\hline 589 & The Computational Complexity of ReLU Network Training Parameterized by Data Dimensionality. Journal of Artificial Intelligence Research, 0, 74, 1775-1790. & 7.0 & 7 \\
\hline 590 & Swarm Control for Distributed Construction: A Computational Complexity Perspective. ACM Transactions on Human-Robot Interaction, 2023, 12, 1-45. & 3.2 & 0 \\
\hline 591 & Computing List Homomorphisms inÂGeometric Intersection Graphs. Lecture Notes in Computer Science, 2022, , 313-327. & 1.0 & 0 \\
\hline 592 & Further Improvements for Sat in Terms of Formula Length. SSRN Electronic Journal, 0, & 0.4 & 0 \\
\hline 593 & Combinatorial Algorithms for Subsequence Matching: A Survey. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 367, 11-27. & 0.8 & 5 \\
\hline 594 & Constant Depth Formula and Partial Function Versions of MCSP Are Hard. SIAM Journal on Computing, 0, , FOCS20-317-FOCS20-367. & 0.8 & 0 \\
\hline 595 & Parameterized Complexity of Diameter. Algorithmica, 0, , . & 1.0 & 0 \\
\hline 596 & Synthesizing Skolem Functions: A View from Theory and Practice. , 2021, , 1-36. & & 0 \\
\hline
\end{tabular}

597 All PSPACE-Complete Planning Problems Are Equal but Some Are More Equal than Others. , 2011, 2, 10-17.
6
```

5 9 8 Subsequences inÂBounded Ranges: Matching andÂAnalysis Problems. Lecture Notes in Computer Science,
2022, , 140-159.
$1.0 \quad 4$

```

599 Computing and Listing Avoidable Vertices and Paths. Lecture Notes in Computer Science, 2022, , 104-120. 1.01

601 Synthesizing Skolem Functions: A View from Theory and Practice., 2022, , 1187-1222.605 On theÂComplexity ofÂScheduling Problems withÂaÂFixed Number ofÂParallel Identical Machines. Lecture
    Notes in Computer Science, 2023, , 192-206.Solving Cut-Problems inÂQuadratic Time forÂGraphs withÂBounded Treewidth. Lecture Notes in
607 Fine-grained parameterized complexity analysis of graph coloring problems. Discrete Applied

615 NP-hardness of 2-to-2 Games. , 2022, , .
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & \\
\hline 625 & DAG-\$\$Sigma \$\$: A DAG-Based Sigma Protocol forÂRelations inÂCNF. Lecture Notes in Computer Science, 2022, , 340-370. & 1.0 & 0 \\
\hline 626 & Comparative Benchmark of a Quantum Algorithm for the Bin Packing Problem. , 2022, & & 5 \\
\hline 627 & The Maximum Zero-Sum Partition Problem. Communications in Computer and Information Science, 2022, , 73-85. & 0.4 & 0 \\
\hline 628 & Fine Grained Space Complexity andÂtheÂLinear Space Hypothesis (Preliminary Report). Communications in Computer and Information Science, 2022, , 180-191. & 0.4 & 1 \\
\hline 629 & Improved Merlinâ€"Arthur Protocols for Central Problems in Fine-Grained Complexity. Algorithmica, 0, ,. & 1.0 & 0 \\
\hline 630 & The 2CNF Boolean formula satisfiability problem and the linear space hypothesis. Journal of Computer and System Sciences, 2023, 136, 88-112. & 0.9 & 0 \\
\hline 631 & On the Complexity of String Matching for Graphs. ACM Transactions on Algorithms, 2023, 19, 1-25. & 0.9 & 5 \\
\hline 632 & Scrooge: a fast and memory-frugal genomic sequence aligner for CPUs, GPUs, and ASICs. Bioinformatics, 2023, 39, & 1.8 & 3 \\
\hline 633 & On Exponential-time Hypotheses, Derandomization, and Circuit Lower Bounds. Journal of the ACM, 2023, 70, 1-62. & 1.8 & 1 \\
\hline 635 & Algorithmic Applications of Hypergraph and Partition Containers. , 2023, , & & 1 \\
\hline
\end{tabular}
636 Planning and Learning in Partially Observable Systems via Filter Stability. , 2023, , . ..... 0
639 On Computing Large Temporal (Unilateral) Connected Components. Lecture Notes in Computer
Science, 2023, , 282-293. 1.0 ..... 0
645 The Complexity of Pattern Counting in Directed Graphs, Parameterised by the Outdegree. , 2023, , .0
646 First-Order Model Checking on Structurally Sparse Graph Classes. , 2023, , . ..... 3650 Non-interactive Universal Arguments. Lecture Notes in Computer Science, 2023, , 132-158.
656 Certified Core-Guided MaxSAT Solving. Lecture Notes in Computer Science, 2023, , 1-22. ..... 1.0 ..... 0
659 Optimal Wheeler Language Recognition. Lecture Notes in Computer Science, 2023, , 62-74. ..... 1.0

The Fine-Grained Complexity ofÂApproximately Counting Proper Connected Colorings (Extended) Tj ETQq0 00 rgBI. \(\mathrm{O}_{\mathrm{Overloch}} 10\) Tf 50```


[^0]:    114
    Lower bounds for the parameterized complexity of Minimum Fill-In and other completion problems. ,

