Antibacterial action of chitosan and carboxymethylated

Journal of Applied Polymer Science 79, 1324-1335 DOI: 10.1002/1097-4628(20010214)79:7<1324::aid-app210>3.0.co;2-l

Citation Report

#	Article	IF	CITATIONS
1	The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts. Biomaterials, 2002, 23, 4609-4614.	5.7	208
2	Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydrate Polymers, 2002, 50, 35-40.	5.1	265
3	Chitosans depolymerized with the aid of papain and stabilized as glycosylamines. Carbohydrate Polymers, 2002, 50, 69-78.	5.1	38
4	Title is missing!. Journal of Polymer Research, 2002, 9, 135-140.	1.2	26
5	Chitosan as Antimicrobial Agent:Â Applications and Mode of Action. Biomacromolecules, 2003, 4, 1457-1465.	2.6	2,503
6	Review of Chitosan and Its Derivatives as Antimicrobial Agents and Their Uses as Textile Chemicals. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2003, 43, 223-269.	2.2	398
7	Hydrogels of polysaccharide derivatives crosslinked with irradiation at paste-like condition. Nuclear Instruments & Methods in Physics Research B, 2003, 208, 320-324.	0.6	118
8	Antioxidant Activity of Graft Chitosan Derivatives. Macromolecular Bioscience, 2003, 3, 320-323.	2.1	14
9	Rheological study onO?carboxymethylated chitosan/cellulose polyblends from LiCl/N,N-dimethylacetamide solution. Journal of Applied Polymer Science, 2003, 88, 1719-1725.	1.3	7
10	Radiation synthesis and characteristic of the hydrogels based on carboxymethylated chitin derivatives. Carbohydrate Polymers, 2003, 51, 169-175.	5.1	124
11	Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydrate Polymers, 2003, 53, 355-359.	5.1	677
12	Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydrate Polymers, 2003, 53, 439-446.	5.1	215
13	Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresource Technology, 2003, 88, 179-184.	4.8	264
14	The effect of citric acid addition on chitosan/hydroxyapatite composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 214, 111-118.	2.3	54
15	Antimicrobial Activity of Native Chitosan, Degraded Chitosan, and O-Carboxymethylated Chitosan. Journal of Food Protection, 2003, 66, 1495-1498.	0.8	95
16	Molecular Weight of Chitosan Influences Antimicrobial Activity in Oil-in-Water Emulsions. Journal of Food Protection, 2004, 67, 952-959.	0.8	81
17	Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials, 2004, 25, 1947-1957.	5.7	267
18	A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials, 2004, 25, 3973-3981.	5.7	183

#	Article	IF	CITATIONS
19	Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydrate Polymers, 2004, 57, 83-88.	5.1	151
20	Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydrate Research, 2004, 339, 313-319.	1.1	571
21	Synthesis and Fungicidal Activity of NewN,O-Acyl Chitosan Derivatives. Biomacromolecules, 2004, 5, 589-595.	2.6	152
22	Low molecular weight chitosans: preparation with the aid of papain and characterization. Biochimica Et Biophysica Acta - General Subjects, 2004, 1670, 137-146.	1.1	104
23	Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 35-52.	2.0	836
24	Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 19-34.	2.0	1,792
25	Preparation and characterization of carboxymethylchitosan. Polimeros, 2005, 15, 79-83.	0.2	88
26	Preparation and important functional properties of water-soluble chitosan produced through Maillard reaction. Bioresource Technology, 2005, 96, 1473-1482.	4.8	121
27	The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydrate Polymers, 2005, 60, 421-430.	5.1	253
28	Graft copolymerized chitosan—present status and applications. Carbohydrate Polymers, 2005, 62, 142-158.	5.1	550
29	Synthesis and characterization of tat-mediated O-CMC magnetic nanoparticles having anticancer function. Journal of Magnetism and Magnetic Materials, 2005, 295, 37-43.	1.0	21
30	Feasibility evaluation of chitosan coatings on polyethylene tubing for biliary stent applications. Journal of Applied Polymer Science, 2005, 97, 893-902.	1.3	20
31	Anti-bacterial and swelling properties of acrylic acid grafted and collagen/chitosan immobilized polypropylene non-woven fabrics. Journal of Applied Polymer Science, 2005, 98, 391-400.	1.3	38
32	Preparation and Characterization of Microwave-treated Carboxymethyl Chitin and Carboxymethyl Chitosan Films for Potential Use in Wound Care Application. Macromolecular Bioscience, 2005, 5, 1001-1012.	2.1	78
33	Fungicidal and Insecticidal Activity of O-Acyl Chitosan Derivatives. Polymer Bulletin, 2005, 54, 279-289.	1.7	71
34	Chitosan- metal complexes as antimicrobial agent: Synthesis, characterization and Structure-activity study. Polymer Bulletin, 2005, 55, 105-113.	1.7	293
35	Novel core-shell particles with poly(n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles. Polymer, 2005, 46, 10538-10543.	1.8	164
36	The preparation of nano-scope chitosan-oligomer copper complexes and their interaction with DNA. Polymers for Advanced Technologies, 2005, 16, 638-641.	1.6	7

#	Article	IF	CITATIONS
37	Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Management Science, 2005, 61, 951-960.	1.7	143
38	Immunohistochemical and Electron Microscopic Study of the Biodegradation Processes of Chitin and Chitosan Implanted in Rat Alveolar Bone. Oral Medicine & Pathology, 2005, 10, 131-138.	0.3	4
39	Applications of Functionalized Chitosan in Catalysisâ€. Industrial & Engineering Chemistry Research, 2005, 44, 8499-8520.	1.8	239
40	Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Biochemical Journal, 2005, 391, 167-175.	1.7	205
41	Adhesion Dynamics, Morphology, and Organization of 3T3 Fibroblast on Chitosan and Its Derivative:Â The Effect ofO-Carboxymethylation. Biomacromolecules, 2005, 6, 2607-2614.	2.6	53
42	Chitosan Derivatives Killed Bacteria by Disrupting the Outer and Inner Membrane. Journal of Agricultural and Food Chemistry, 2006, 54, 6629-6633.	2.4	268
43	Enhancement of fungicidal and insecticidal activity by reductive alkylation of chitosan. Pest Management Science, 2006, 62, 890-897.	1.7	48
44	Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers, 2006, 64, 60-65.	5.1	406
45	Antimicrobial activity of chitosan N-betainates. Carbohydrate Polymers, 2006, 65, 114-118.	5.1	112
46	Synthesis of pH-sensitive PVP/CM-chitosan hydrogels with improved surface property by irradiation. Carbohydrate Polymers, 2006, 64, 473-480.	5.1	108
47	Adsorption kinetics of Cu(II) ions using N,O-carboxymethyl-chitosan. Journal of Hazardous Materials, 2006, 131, 103-111.	6.5	190
48	Immobilization of horseradish peroxidase on O-carboxymethylated chitosan/sol–gel matrix. Reactive and Functional Polymers, 2006, 66, 863-870.	2.0	36
49	Adsorption properties of carboxymethyl-chitosan and cross-linked carboxymethyl-chitosan resin with Cu(II) as template. Separation and Purification Technology, 2006, 49, 197-204.	3.9	103
50	Antibacterial effects of Chitosan solution® against Legionella pneumophila, Escherichia coli, and Staphylococcus aureus. International Journal of Food Microbiology, 2006, 112, 96-101.	2.1	59
51	Blend films ofO-carboxymethyl chitosan and cellulose inN-methylmorpholine-N-oxide monohydrate. Journal of Applied Polymer Science, 2006, 102, 4601-4605.	1.3	15
52	Materials for Peripheral Nerve Regeneration. Macromolecular Bioscience, 2006, 6, 13-26.	2.1	245
53	Improvement of Aquaculture Wastewater using Chitosan of Different Degrees Of Deacetylation. Environmental Technology (United Kingdom), 2006, 27, 1199-1208.	1.2	50
54	Physicochemical and antimicrobial properties of boron-complexed polyglycerol–chitosan dendrimers. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 689-707.	1.9	35

#	Article	IF	CITATIONS
55	Environmentally sensitive polymer gel and its application in the textiles field. , 2007, , 252-278.		3
56	Experimental Study of Biomimetic Mineralization on the Surface of Piezoelectric Pulp-Cap Film. Key Engineering Materials, 2007, 336-338, 1707-1710.	0.4	0
57	Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends in Food Science and Technology, 2007, 18, 117-131.	7.8	910
58	Reversed chitosan–alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65, 215-232.	2.0	250
59	Low molecular weight chitosans—Preparation with the aid of pronase, characterization and their bactericidal activity towards Bacillus cereus and Escherichia coli. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 495-505.	1.1	52
60	Synthesis, Characterization of Copper‣oaded Carboxymethylâ€Chitosan Nanoparticles with Effective Antibacterial Activity. Macromolecular Symposia, 2007, 254, 160-166.	0.4	27
61	Polyelectrolyte Complexes between (Cross-linked)N-Carboxyethylchitosan and (Quaternized) Poly[2-(dimethylamino)ethyl methacrylate]:Â Preparation, Characterization, and Antibacterial Properties. Biomacromolecules, 2007, 8, 976-984.	2.6	75
62	Biocompatible MWCNT scaffolds for immobilization and proliferation of E. coli. Journal of Materials Chemistry, 2007, 17, 2992-2995.	6.7	74
63	Biomaterial Strategies to Reduce Implant-Associated Infections. International Journal of Artificial Organs, 2007, 30, 828-841.	0.7	39
64	Calcium-carboxymethyl chitosan hydrogel beads for protein drug delivery system. Journal of Applied Polymer Science, 2007, 103, 3164-3168.	1.3	65
65	Pervaporation separation of water/isopropanol mixtures through crosslinked carboxymethyl chitosan/polysulfone hollow-fiber composite membranes. Journal of Applied Polymer Science, 2007, 103, 1959-1965.	1.3	28
66	Simultaneous x-linking and antimicrobial finishing of cotton fabric. Journal of Applied Polymer Science, 2007, 103, 178-185.	1.3	105
67	Antibacterial effects of chitosan and its water-soluble derivatives onE. coli, plasmids DNA, and mRNA. Journal of Applied Polymer Science, 2007, 103, 3521-3528.	1.3	36
68	Rheological characterization of chitosan matrices: Influence of biopolymer concentration. Journal of Applied Polymer Science, 2007, 105, 2121-2128.	1.3	26
69	Preparation of nanoparticles composed of chitosan and its derivatives as delivery systems for macromolecules. Journal of Applied Polymer Science, 2007, 105, 552-561.	1.3	85
70	Synthesis and characterization of carboxymethyl chitosan containing functional ultraviolet absorber substituent. Journal of Applied Polymer Science, 2007, 106, 4098-4103.	1.3	12
71	Acyclovir Delivery Matrices Based on Poly(Ethylene Glycol)/Chitosan Semi-Interpenetrating Networks. Journal of Pharmaceutical Sciences, 2007, 96, 1653-1657.	1.6	9
72	Synthesis, biodegradability and cytotoxicity of water-soluble isobutylchitosan. Carbohydrate Polymers, 2007, 67, 40-45.	5.1	45

#	Article	IF	CITATIONS
73	Radiation-induced degradation of carboxymethylated chitosan in aqueous solution. Carbohydrate Polymers, 2007, 67, 305-312.	5.1	48
74	Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity. Carbohydrate Polymers, 2007, 69, 142-147.	5.1	117
75	Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydrate Polymers, 2007, 69, 164-171.	5.1	137
76	Analysis of natural carbohydrate biopolymer-high molecular chitosan and carboxymethyl chitosan by capillary zone electrophoresis. Carbohydrate Polymers, 2007, 68, 511-516.	5.1	21
77	Degradation of covalently cross-linked carboxymethyl chitosan and its potential application for peripheral nerve regeneration. European Polymer Journal, 2007, 43, 3807-3818.	2.6	156
78	The swelling behavior of chitosan hydrogels membranes obtained by UV- and γ-radiation. Nuclear Instruments & Methods in Physics Research B, 2007, 265, 418-424.	0.6	34
79	Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine against Candida albicans, Candida krusei and Candida glabrata. International Journal of Pharmaceutics, 2007, 353, 139-48.	2.6	157
80	Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pesticide Biochemistry and Physiology, 2007, 87, 220-228.	1.6	191
81	Oligochitosan inhibits Phytophthora capsici by penetrating the cell membrane and putative binding to intracellular targets. Pesticide Biochemistry and Physiology, 2007, 88, 167-175.	1.6	41
82	Rheological behavior of chitosan derivative/cellulose polyblends from N-methylmorpholine N-oxide/H2O solution. Journal of Materials Science, 2007, 42, 6510-6514.	1.7	11
83	Fibroblast interaction with carboxymethylchitosan-based hydrogels. Journal of Materials Science: Materials in Medicine, 2007, 18, 943-949.	1.7	14
84	Study on poly(vinyl alcohol)/carboxymethyl-chitosan blend film as local drug delivery system. Journal of Materials Science: Materials in Medicine, 2007, 18, 1125-1133.	1.7	64
85	Synthesis and characterization of chitosan-based biomaterials modified with different active groups and their relationship with cytotoxicity. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 695-700.	0.4	8
86	Radiation-induced changes in carboxymethylated chitosan. Radiation Physics and Chemistry, 2007, 76, 1679-1683.	1.4	20
87	Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran. Biomaterials, 2008, 29, 3905-3913.	5.7	136
88	Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro. Carbohydrate Research, 2008, 343, 566-570.	1.1	200
89	Preparation and function of composite asymmetric chitosan/CM-chitosan membrane. Journal of Materials Science: Materials in Medicine, 2008, 19, 1413-1417.	1.7	15
90	Synthesis and properties of O-carboxymethyl chitosan/methoxy poly(ethylene glycol) graft copolymers. Journal of Materials Science: Materials in Medicine, 2008, 19, 869-876.	1.7	13

#	Article	IF	CITATIONS
91	Preparation and properties of 2-(2-aminoethoxy) ethyl chitosan/cellulose fiber using N-methylmorpholine-N-oxide process. Fibers and Polymers, 2008, 9, 400-404.	1.1	10
92	Preparation of H-oleoyl-carboxymethyl-chitosan and the function as a coagulation agent for residual oil in aqueous system. Frontiers of Materials Science in China, 2008, 2, 105-112.	0.5	29
93	Preparation and antibacterial activity of chitosan microshperes in a solid dispersing system. Frontiers of Materials Science in China, 2008, 2, 214-220.	0.5	60
94	Chemical modification of chitosan: synthesis and biological activity of new heterocyclic chitosan derivatives. Polymer International, 2008, 57, 254-261.	1.6	57
95	Molecular modeling simulation and experimental measurements to characterize chitosan and poly(vinyl pyrrolidone) blend interactions. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1258-1264.	2.4	41
96	Water absorbing and antibacterial properties of <i>N</i> â€isopropyl acrylamide grafted and collagen/chitosan immobilized polypropylene nonwoven fabric and its application on wound healing enhancement. Journal of Biomedical Materials Research - Part A, 2008, 84A, 1006-1017.	2.1	64
97	Investigation of particleâ€functionalized tissue engineering scaffolds using Xâ€ray tomographic microscopy. Biotechnology and Bioengineering, 2008, 100, 820-829.	1.7	6
98	Improved antimicrobial activity of polypropylene and cotton nonwoven fabrics by surface treatment and modification with chitosan. Journal of Applied Polymer Science, 2008, 108, 2290-2296.	1.3	54
99	Properties of polyacrylonitrileâ€ <i>N</i> â€(2â€hydroxy) propylâ€3â€ŧrimethylammonium chitosan chloride blend films and fibers. Journal of Applied Polymer Science, 2008, 109, 545-554.	1.3	26
100	An improvement on water absorbing and permeating properties: Heparin immobilizing on acrylic acidâ€grafted and collagen/chitosanâ€immobilized wound dressing. Journal of Applied Polymer Science, 2008, 109, 1431-1438.	1.3	6
101	Rheological properties of progesterone microemulsions: Influence of xanthan and chitosan biopolymer concentration. Journal of Applied Polymer Science, 2008, 110, 1225-1235.	1.3	12
102	Study on CM-chitosan/activated carbon hybrid gel films formed with EB irradiation. Radiation Physics and Chemistry, 2008, 77, 622-629.	1.4	11
103	Chitosan-modifications and applications: Opportunities galore. Reactive and Functional Polymers, 2008, 68, 1013-1051.	2.0	896
104	Relevance of molecular weight of chitosan-N-2-hydroxypropyl trimethyl ammonium chloride and their antioxidant activities. European Journal of Medicinal Chemistry, 2008, 43, 336-340.	2.6	45
105	Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids and Surfaces B: Biointerfaces, 2008, 65, 197-202.	2.5	250
106	Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technology, 2008, 99, 2806-2814.	4.8	318
107	Antibacterial activity of oleoyl-chitosan nanoparticles: A novel antibacterial dispersion system. Carbohydrate Polymers, 2008, 74, 114-120.	5.1	48
108	Chitosan glucose complex – A novel food preservative. Food Chemistry, 2008, 106, 521-528.	4.2	121

ARTICLE IF CITATIONS Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and 109 0.8 306 Staphylococcus aureus. Ultramicroscopy, 2008, 108, 1128-1134. Construction of Multifunctional DDS:Transferrin-Mediated Tat and Drug-Loaded Magnetic Nanoparticles. ACS Symposium Series, 2008, , 153-173. Storability of Antimicrobial Chitosanâ€Lysozyme Composite Coating and Filmâ€Forming Solutions. Journal 111 1.5 21 of Food Science, 2008, 73, M321-9. Control of Listeria monocytogenes on ham steaks by antimicrobials incorporated into chitosan-coated plastic films. Food Microbiology, 2008, 25, 260-268. Edible chitosan films on ready-to-eat roast beef for the control of Listeria monocytogenes. Food 113 2.1 121 Microbiology, 2008, 25, 534-537. Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiology, 2008, 25, 922-928. 2.1 238 Carboxymethyl Chitosan as a Matrix Material for Platinum, Gold, and Silver Nanoparticles. 115 2.6 186 Biomacromolecules, 2008, 9, 2682-2685. New Bioactive Biomaterials Based on Quaternized Chitosan. Journal of Agricultural and Food 2.4 118 Chemistry, 2008, 56, 1582-1588. Chitosan derivatives obtained by chemical modifications for biomedical and environmental 117 672 3.6 applications. International Journal of Biological Macromolecules, 2008, 43, 401-414. A novel thermoresponsive hydrogel based on chitosan. European Journal of Pharmaceutics and 141 Biopharmaceutics, 2008, 68, 19-25. FUNCTIONALIZED CHITOSAN AND ITS USE IN PHARMACEUTICAL, BIOMEDICAL, AND BIOTECHNOLOGICAL 119 1.5 66 RESEARCH. Chemical Engineering Communications, 2008, 195, 1269-1291. Recent Advances in Drugs and Prodrugs Design of Chitosan. Current Pharmaceutical Design, 2008, 14, 120 1311-1326. Cu(II)-Cross-linked Chitosan Membrane (CCCM): Preparation, Characterization and Urea Removal Study 123 0.7 3 Using the Diffusion-Cell Model (DCM). Designed Monomers and Polymers, 2009, 12, 43-55. Functional Characterization of Chitin and Chitosan. Current Chemical Biology, 2009, 3, 203-230. 124 0.2 Chitosan and its antimicrobial potential – a critical literature survey. Microbial Biotechnology, 2009, 125 2.0 629 2, 186-201. Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area. Food Hydrocolloids, 2009, 23, 913-921. Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the 127 cell membrane and putative binding to extracellular or intracellular targets. International Journal 2.1114 of Food Microbiology, 2009, 132, 127-133. Rheological, microstructural, and <i>in vitro</i> characterization of hybrid chitosanâ€polylactic 2.1 acid/hydroxyapatite composites. Journal of Biomedical Materials Research - Part A, 2009, 88A, 916-922.

#	Article	IF	CITATIONS
129	Gentamicinâ€impregnated chitosan/nanohydroxyapatite/ethyl cellulose microspheres granules for chronic osteomyelitis therapy. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1020-1031.	2.1	24
130	Effect of chitosan coating in preventing deterioration and preserving the quality of freshâ€cut papaya â€~Maradol'. Journal of the Science of Food and Agriculture, 2009, 89, 15-23.	1.7	162
131	Antioxidant and antibacterial activities of eugenol and carvacrolâ€grafted chitosan nanoparticles. Biotechnology and Bioengineering, 2009, 104, 30-39.	1.7	198
132	Preparation and characterization of CMCS/PVA blend membranes and its sorption and pervaporation performance (I). Journal of Applied Polymer Science, 2009, 114, 3369-3378.	1.3	15
133	Applications of biopolymers I: chitosan. Monatshefte Für Chemie, 2009, 140, 1403-1420.	0.9	234
134	The kinetics of chitosan depolymerisation at different temperatures. Polymer Degradation and Stability, 2009, 94, 1344-1348.	2.7	17
135	Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydrate Polymers, 2009, 76, 17-22.	5.1	153
136	Quaternization of N-aryl chitosan derivatives: synthesis, characterization, and antibacterial activity. Carbohydrate Research, 2009, 344, 2502-2511.	1.1	144
137	Preparation, characterization, and antibacterial activity of oleic acid-grafted chitosan oligosaccharide nanoparticles. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2009, 4, 321-327.	0.2	36
138	Study of antimicrobial activity of aloevera, chitosan, and curcumin on cotton, wool, and rabbit hair. Fibers and Polymers, 2009, 10, 161-166.	1.1	84
139	A novel pHâ€sensitive and freezeâ€thawed carboxymethyl chitosan/poly(vinyl alcohol) blended hydrogel for protein delivery. Polymer International, 2009, 58, 1120-1125.	1.6	14
140	Antimicrobial activity of chitosan attached to ethylene copolymer films. Packaging Technology and Science, 2009, 22, 125-138.	1.3	42
141	APPLICATION OF CHITOSAN TO MAINTAIN THE QUALITY OF KAMABOKO GELS MADE FROM GRASS CARP (CTENOPHARYNGODON IDELLUS) DURING STORAGE. Journal of Food Processing and Preservation, 2009, 33, 218-230.	0.9	11
142	Inactivation of <i>Escherichia coli</i> Kâ€l 2 in Apple Juice Using Combination of Highâ€Pressure Homogenization and Chitosan. Journal of Food Science, 2009, 74, M8-M14.	1.5	45
143	Electrospinning of poly(vinyl alcohol)–water-soluble quaternized chitosan derivative blend. Carbohydrate Research, 2009, 344, 2496-2501.	1.1	100
144	Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 2009, 114, 1173-1182.	4.2	1,165
145	Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation. Ultramicroscopy, 2009, 109, 854-860.	0.8	78
146	Characteristics and properties of carboxymethylchitosan. Carbohydrate Polymers, 2009, 75, 214-221.	5.1	135

#	Article	IF	CITATIONS
147	Synthesis and Characterization of Chitosan Biguanidine Hydrochloride under Microwave Irradiation. Polymer Journal, 2009, 41, 1030-1035.	1.3	19
148	New chitosan derivatives with potential antimicrobial activity. Russian Journal of Marine Biology, 2009, 35, 498-503.	0.2	3
149	Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner. Fungal Genetics and Biology, 2009, 46, 585-594.	0.9	129
150	Delivery of Antibacterial Nanoparticles into Dentinal Tubules Using High-intensity Focused Ultrasound. Journal of Endodontics, 2009, 35, 1028-1033.	1.4	81
151	Antibacterial activity of quaternary ammonium chitosan containing mono or disaccharide moieties: Preparation and characterization. International Journal of Biological Macromolecules, 2009, 44, 419-427.	3.6	150
152	Preparation, characterization and antifungal properties of 2-(α-arylamino phosphonate)-chitosan. International Journal of Biological Macromolecules, 2009, 45, 255-259.	3.6	38
153	Polysaccharide-Based Polyelectrolyte Complex Nanoparticles from Chitosan, Heparin, and Hyaluronan. Biomacromolecules, 2009, 10, 1402-1409.	2.6	205
154	Surface Functionalization of Titanium with Carboxymethyl Chitosan and Immobilized Bone Morphogenetic Protein-2 for Enhanced Osseointegration. Biomacromolecules, 2009, 10, 1603-1611.	2.6	155
155	Chitosan and its salts for mucosal and transmucosal delivery. Expert Opinion on Drug Delivery, 2009, 6, 923-939.	2.4	76
156	Inhibition ofListeria monocytogenesby a combination of chitosan and divergicin M35. Canadian Journal of Microbiology, 2009, 55, 347-355.	0.8	25
157	Robust "one-component―chitosan-based ultrathin films fabricated using layer-by-layer technique. Soft Matter, 2009, 5, 4726.	1.2	39
158	Application of Natural Antimicrobials for Food Preservation. Journal of Agricultural and Food Chemistry, 2009, 57, 5987-6000.	2.4	618
159	The Application of Water-soluble and Reactive Chitosan on Antimicrobial Activity and Salt-free Dyeing of Reactive Dyes. Research Journal of Textile and Apparel, 2009, 13, 9-18.	0.6	6
160	A review of the antimicrobial activity of chitosan. Polimeros, 2009, 19, 241-247.	0.2	982
161	Chemical Modifications of Chitosan Intended for Biomedical Applications. , 2010, , 173-184.		3
162	Radiation Functionalization and Applications of Chitosan and Its Derivatives. , 2010, , 415-445.		0
163	Anti-inflammatory effect of chitosan oligosaccharides in RAW 264.7 cells. Open Life Sciences, 2010, 5, 95-102.	0.6	42
164	Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. Journal of Pharmacy and Pharmacology, 2010, 61, 1609-1616.	1.2	73

#	Article	IF	CITATIONS
165	The effects of physical and chemical interactions in the formation of cellulose aerogels. Polymer Bulletin, 2010, 65, 951-960.	1.7	32
166	Controlling chitosan molecular weight via bio-chitosanolysis. Carbohydrate Polymers, 2010, 82, 539-542.	5.1	25
167	Synthesis of poly(methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property. Colloids and Surfaces B: Biointerfaces, 2010, 77, 219-226.	2.5	66
168	Development of viscosity transfer standards from Chitosan/gelatin mixtures. Mapan - Journal of Metrology Society of India, 2010, 25, 251-257.	1.0	1
169	Investigation of Mg(OH)2 nanoparticles as an antibacterial agent. Journal of Nanoparticle Research, 2010, 12, 2101-2109.	0.8	120
170	Flow behaviour, linear viscoelasticity and surface properties of chitosan aqueous solutions. Food Hydrocolloids, 2010, 24, 659-666.	5.6	74
171	Engineering Nanoassemblies of Polysaccharides. Advanced Materials, 2010, 22, 2998-3016.	11.1	139
172	Semitransparent chitosanâ€TiO ₂ nanotubes composite film for food package applications. Journal of Applied Polymer Science, 2010, 116, 3503-3515.	1.3	38
173	Exploring the Factors Affecting the Solubility of Chitosan in Water. Macromolecular Chemistry and Physics, 2010, 211, 426-433.	1.1	176
174	Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Materials Science, 2010, 55, 675-709.	16.0	454
175	N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a novel delivery system for Parathyroid Hormone-Related Protein 1–34. International Journal of Pharmaceutics, 2010, 393, 269-273.	2.6	35
176	An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion. Biomaterials, 2010, 31, 8854-8863.	5.7	157
177	Layer-by-layer assembly of polysaccharide-based nanostructured surfaces containing polyelectrolyte complex nanoparticles. Colloids and Surfaces B: Biointerfaces, 2010, 77, 60-68.	2.5	47
178	Surface modification on polyurethanes by using bioactive carboxymethylated fungal glucan from Poria cocos. Colloids and Surfaces B: Biointerfaces, 2010, 81, 629-633.	2.5	25
179	Wet-spun alginate/chitosan whiskers nanocomposite fibers: Preparation, characterization and release characteristic of the whiskers. Carbohydrate Polymers, 2010, 79, 738-746.	5.1	88
180	In vitro evaluation of novel chitosan derivatives sheet and paste cytocompatibility on human dermal fibroblasts. Carbohydrate Polymers, 2010, 79, 1094-1100.	5.1	44
181	A new foaming technique for production of superabsorbents from carboxymethyl chitosan. Carbohydrate Polymers, 2010, 80, 1091-1101.	5.1	53
182	Synthesis, characteristic and antibacterial activity of N,N,N-trimethyl chitosan and its carboxymethyl derivatives. Carbohydrate Polymers, 2010, 81, 931-936.	5.1	161

ARTICLE IF CITATIONS Evaluation of zeta potential difference as an indicator for antibacterial strength of low molecular 183 5.1 52 weight chitosan. Carbohydrate Polymers, 2010, 82, 913-919. A novel in situ-formed hydrogel wound dressing by the photocross-linking of a chitosan derivative. 184 1.5 Wound Repair and Regeneration, 2010, 18, 70-79. Antibacterial activity of chitosans with different degrees of deacetylation and viscosities. 185 1.3 73 International Journal of Food Science and Technology, 2010, 45, 676-682. Lethal effect of chitosan-Ag (I) films on<i>Staphylococcus aureus</i>as evaluated by electron microscopy. Journal of Applied Microbiology, 2010, 108, 633-646. 186 1.4 Chemically modified chitosans as antimicrobial agents against some plant pathogenic bacteria and 187 0.7 33 fungi. Plant Protection Science, 2010, 46, 149-158. Antibacterial activity of chitosan and the interpolyelectrolyte complexes of poly(acrylic) Tj ETQq1 1 0.784314 rgBT (Qverlock 10 Tf 50 188 189 Cellulose Fibres Funcionalised by Chitosan: Characterization and Application., 2010,,. 14 Preparation of Chitosan Biguanidine Hydrochloride and Application in Antimicrobial Finish of Wool Fabric. Journal of Engineered Fibers and Fabrics, 2010, 5, 155892501000500. Adsorption characteristics of residual oil on amphiphilic chitosan derivative. Water Science and 191 1.2 6 Technology, 2010, 61, 2363-2374. Chitin, Chitosan and Derivatives for Wound Healing and Tissue Engineering. Advances in Biochemical 54 Engineering/Biotechnology, 2010, 125, 1-27. Beads as Drug Carriers. , 2010, , 191-230. 193 2 Fabrication of Biocompatible Temperature- and pH-Responsive Magnetic Nanoparticles and Their Reversible Agglomeration in Aqueous Milieu. Industrial & amp; Engineering Chemistry Research, 2010, 194 1.8 49,8518-8525 BIOMIMETIC ELECTROSPUN GELATINâ€"CHITOSAN POLYURETHANE FOR HEART VALVE LEAFLETS. Journal of 195 0.3 28 Mechanics in Medicine and Biology, 2010, 10, 563-576. Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnology and Genetic Engineering Reviews, 2010, 27, 257-284. 2.4 174 The use of chitosan in antimicrobial films for food protection.. CAB Reviews: Perspectives in 197 12 0.6 Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-11. Multichain Aggregates in Dilute Solutions of Associating Polyelectrolyte Keeping a Constant Size at 63 the Increase in the Chain Length of Individual Macromolecules. Biomacromolecules, 2010, 11, 3457-3466. Generation of chitin-derived oligosaccharides toxic to pathogenic bacteria using ChiA74, an 199 1.0 16 endochitinase native to Bacillus thuringiensis. Letters in Applied Microbiology, 2010, 51, no-no. Calcium Carbonate/Carboxymethyl Chitosan Hybrid Microspheres and Nanospheres for Drug Delivery. 1.5 Journal of Physical Chemistry C, 2010, 114, 18940-18945.

#	Article	IF	CITATIONS
201	Novel Antibacterial Nanofibers of Chitosan and Polyurethane Prepared by Electrospinning. Advanced Materials Research, 2010, 150-151, 1452-1456.	0.3	6
202	Modification of microstructural morphology and physical performance of chitosan films. International Journal of Biological Macromolecules, 2010, 46, 179-186.	3.6	39
203	Inhibition of microbial pathogens by fungal chitosan. International Journal of Biological Macromolecules, 2010, 47, 10-14.	3.6	119
204	Chitosan Hydrogel Containing Capsaicinoids-Loaded Nanocapsules: An Innovative Formulation for Topical Delivery. Soft Materials, 2010, 8, 370-385.	0.8	36
205	Effect of PEGylation on the Toxicity and Permeability Enhancement of Chitosan. Biomacromolecules, 2010, 11, 2854-2865.	2.6	92
206	Chitosan Nanoparticles: Preparation and Application in Antibacterial Paper. Journal of Macromolecular Science - Physics, 2010, 49, 994-1001.	0.4	24
207	Pharmacokinetics and Biodegradation Mechanisms of a Versatile Carboxymethyl Derivative of Chitosan in Rats: In Vivo and In Vitro Evaluation. Biomacromolecules, 2010, 11, 1527-1533.	2.6	58
208	Effect of pH on Gelation Behavior of Hydrolyzed Polyacrylamide andO-carboxymethyl Chitosan Mixed System. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 595-601.	1.2	4
209	Antibacterial and Physiochemical Behavior of Prepared Chitosan/pyridine-3,5-di-carboxylic Acid Complex for Biomedical Applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 246-253.	1.2	15
210	Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , .	0.7	15
211	Biological Control of Plant-Parasitic Nematodes:. , 2011, , .		25
212	Environmentally Friendly Antibacterial Cotton Textiles Finished with Siloxane Sulfopropylbetaine. ACS Applied Materials & Interfaces, 2011, 3, 1154-1162.	4.0	139
213	Pd–Fe nanoparticles stabilized by chitosan derivatives for perchloroethene dechlorination. Environment International, 2011, 37, 1044-1052.	4.8	65
214	Chitosan–cobalt(II) and nickel(II) chelates as antibacterial agents. International Journal of Biological Macromolecules, 2011, 48, 301-303.	3.6	34
215	A physico-chemical and biological study of novel chitosan–chloroquinoline derivative for biomedical applications. International Journal of Biological Macromolecules, 2011, 49, 356-361.	3.6	67
216	Structural features and bioactivities of the chitosan. International Journal of Biological Macromolecules, 2011, 49, 543-547.	3.6	19
217	Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. LWT - Food Science and Technology, 2011, 44, 2324-2327.	2.5	178
218	Antioxidative effect of folate–modified chitosan nanoparticles. Asian Pacific Journal of Tropical Biomedicine, 2011, 1, 29-38.	0.5	34

#	Article	IF	CITATIONS
219	Plasma-Modified Biomaterials for Self-Antimicrobial Applications. ACS Applied Materials & Interfaces, 2011, 3, 2851-2860.	4.0	61
220	Nitric oxide mediated Staphylococcus aureus pathogenesis and protective role of nanoconjugated vancomycin. Asian Pacific Journal of Tropical Biomedicine, 2011, 1, 102-109.	0.5	31
221	Preparation and Properties of Viscose Rayon/O-carboxymethyl Chitosan Antibacterial Fibers. Journal of Engineered Fibers and Fabrics, 2011, 6, 155892501100600.	0.5	4
222	The Development, Characterization and Application of Water Soluble Chitosan. , 0, , .		13
223	Influence of the Chemical Structure and Physicochemical Properties of Chitin- and Chitosan-Based Materials on Their Biomedical Activity. , 2011, , .		10
224	Internalization ofStaphylococcus aureusin Lymphocytes Induces Oxidative Stress and DNA Fragmentation: Possible Ameliorative Role of Nanoconjugated Vancomycin. Oxidative Medicine and Cellular Longevity, 2011, 2011, 1-15.	1.9	17
227	Potential Applications of Chitosan as a Marine Cosmeceutical. , 2011, , 319-334.		2
229	Control of <i>Listeria Monocytogenes</i> on Coldâ€Smoked Salmon Using Chitosanâ€Based Antimicrobial Coatings and Films. Journal of Food Science, 2011, 76, M22-6.	1.5	36
230	Antibacterial activity and cytocompatibility of chitosan-N-hydroxy-2,3-propyl-N methyl-N,N-diallylammonium methyl sulfate. Colloids and Surfaces B: Biointerfaces, 2011, 88, 448-454.	2.5	24
231	Effects on Salmonella shell contamination and trans-shell penetration of coating hens' eggs with chitosan. International Journal of Food Microbiology, 2011, 145, 43-48.	2.1	51
232	Characteristics of deacetylation and depolymerization of β-chitin from jumbo squid (Dosidicus gigas) pens. Carbohydrate Research, 2011, 346, 1876-1884.	1.1	52
233	Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction. Molecules, 2011, 16, 8504-8514.	1.7	75
234	Chitosan-Derivative Based Hydrogels as Drug Delivery Platforms: Applications in Drug Delivery and Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 351-376.	0.7	6
235	Chitooligosaccharides: Synthesis, characterization and applications. Polymer Science - Series A, 2011, 53, 583-612.	0.4	229
236	Antimicrobial textile treated with chitosan from Aspergillus niger mycelial waste. International Journal of Biological Macromolecules, 2011, 49, 241-245.	3.6	59
237	Water-soluble derivatives of chitosan as a target delivery system of 99mTc to some organs in vivo for nuclear imaging and biodistribution. Journal of Radioanalytical and Nuclear Chemistry, 2011, 290, 557-567.	0.7	32
238	Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment. Journal of Nanoparticle Research, 2011, 13, 2749-2758.	0.8	54
239	Biochemical activities of N,O-carboxymethyl chitosan from squid cartilage. Carbohydrate Polymers, 2011, 85, 832-837.	5.1	68

ARTICLE IF CITATIONS # pH-dependent mode of antibacterial actions of low molecular weight water-soluble chitosan 240 1.0 33 (LMWSC) against various pathogens. Macromolecular Research, 2011, 19, 853-860. Antimicrobial activity of chitosan nanofibers obtained by electrospinning. Polymer International, 2011, 241 1.6 60, 1663-1669. Antibacterial and swelling properties of <i>N</i>â€isopropyl acrylamide grafted and 242 collagen/chitosanâ€immobilized polypropylene nonwoven fabrics. Journal of Biomedical Materials 7 1.6 Research - Part B Applied Biomaterials, 2011, 96B, 16-24. Molecular weightâ€dependent antifungal activity and action mode of chitosan against <i>Fulvia 243 fulva</i> (cooke) ciffrri. Journal of Applied Polymer Science, 2011, 119, 3127-3135. Influence of chitosan posttreatment parameters on the fixation of pigment-based inks on 244 1.3 5 ink-jet-printed cotton fabrics. Journal of Applied Polymer Science, 2011, 119, 2495-2501. Synthesis and property studies of <i>N</i>â€carboxymethyl chitosan. Journal of Applied Polymer Science, 2011, 119, 3282-3285. 1.3 The preparation and characterization of a novel amphiphilic oleoyl-carboxymethyl chitosan 246 5.1 48 self-assembled nanoparticles. Carbohydrate Polymers, 2011, 83, 130-136. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to 947 5.1 302 cancer cells. Carbohydrate Polymers, 2011, 83, 452-461. Preparation and characterizations of a novel deoxycholic acidâ€"O-carboxymethylated chitosanâ€"folic 248 5.1 106 acid conjugates and self-aggregates. Carbohydrate Polymers, 2011, 84, 1192-1200. Selective mono-N-2-carboxyethylation of chitosan in the presence of magnesium halides. Carbohydrate 249 5.1 Polymers, 2011, 86, 783-788. Synthesis, characterization and properties of carboxymethyl kappa carrageenan. Carbohydrate 250 5.174 Polymers, 2011, 86, 1167-1174. Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot 1.1 94 pathogen Burkholdéria seminalis. Carbohydrate Research, 2011, 346, 1294-1301. Effects of combined treatment of electrolysed water and chitosan on the quality attributes and myofibril degradation in farmed obscure puffer fish (Takifugu obscurus) during refrigerated storage. 252 4.2 59 Food Chemistry, 2011, 129, 1660-1666. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 2011, 36, 981-1014. 11.8 2,262 Physicochemical and functional characteristics of radiation-processed shrimp chitosan. Radiation 254 1.4 45 Physics and Chemistry, 2011, 80, 837-841. In vitro antibacterial activity of nanoconjugated vancomycin against plasmid mediated intraspecies and interspecies transfer of vancomycin resistance. Journal of Basic and Clinical Physiology and Pharmacology, 2011, 22, 121-129. Antiproliferative activity of nanofibers containing quaternized chitosan and/or doxorubicin against 256 MCF-7 human breast carcinoma cell line by apoptosis. Journal of Bioactive and Compatible Polymers, 0.8 28 2011, 26, 539-551. Chitosan polysaccharide in food packaging applications., 2011, , 571-593.

#	Article	IF	CITATIONS
258	New Insights on the Mode of Action of Fungal Pathogens of Invertebrates for Improving Their Biocontrol Performance. , 2011, , 203-225.		2
259	A Biopolymer Chitosan and Its Derivatives as Promising Antimicrobial Agents against Plant Pathogens and Their Applications in Crop Protection. International Journal of Carbohydrate Chemistry, 2011, 2011, 1-29.	1.5	276
260	Preparation, Characterization and Antibacterial Activity of Chitosan Schiffbases. Advanced Materials Research, 0, 287-290, 1947-1951.	0.3	5
261	Preparation, charactarization and anti-inflammatory activity of celecoxib chitosan gel formulations. Journal of Drug Delivery Science and Technology, 2011, 21, 201-206.	1.4	20
262	Staphylococcus aureusinfection induced redox signaling and DNA fragmentation in T-lymphocytes: possible ameliorative role of nanoconjugated vancomycin. Toxicology Mechanisms and Methods, 2012, 22, 193-204.	1.3	10
264	<i>Staphylococcus aureus</i> Infection Induced Oxidative Imbalance in Neutrophils: Possible Protective Role of Nanoconjugated Vancomycin. ISRN Pharmacology, 2012, 2012, 1-11.	1.6	16
265	Recyclable Crosslinked O-Carboxymethyl Chitosan for Removal of Cationic Dye from Aqueous Solutions. Hydrology Current Research, 2012, 03, .	0.4	5
266	Chitosan and Its Derivatives for Treatment of Diabetic Complications. , 2012, , 191-200.		0
267	Solid-State Spectroscopic Characterization of α-Chitins Deacetylated in Homogeneous Solutions. Journal of Physical Chemistry B, 2012, 116, 4584-4592.	1.2	25
269	Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	191
270	Chitosan conjugates with biologically active compounds: design strategies, properties, and targeted drug delivery. Russian Chemical Bulletin, 2012, 61, 781-795.	0.4	32
271	In vitro antimicrobial activity of nanoconjugated vancomycin against drug resistant Staphylococcus aureus. International Journal of Pharmaceutics, 2012, 436, 659-676.	2.6	78
272	Photocurable O-carboxymethyl chitosan derivatives for biomedical applications: Synthesis, in vitro biocompatibility, and their wound healing effects. Macromolecular Research, 2012, 20, 1144-1149.	1.0	14
273	A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers. Applied Surface Science, 2012, 258, 8867-8873.	3.1	113
274	Synthesis and characterization of quaternized carboxymethyl chitosan/poly(amidoamine) dendrimer core–shell nanoparticles. Materials Science and Engineering C, 2012, 32, 2026-2036.	3.8	41
275	Antifungal property of quaternized chitosan and its derivatives. International Journal of Biological Macromolecules, 2012, 50, 263-269.	3.6	77
276	Carboxyalkylation of chitosan in the gel state. Carbohydrate Polymers, 2012, 90, 1176-1181.	5.1	24
277	Preparation, characterization and properties of aminoethyl chitin hydrogels. Carbohydrate Polymers, 2012, 90, 1614-1619.	5.1	21

#	Article	IF	CITATIONS
278	Developments in functional finishing of cotton fibres – wrinkle-resistant, flame-retardant and antimicrobial treatments. Textile Progress, 2012, 44, 175-249.	1.3	51
279	Carboxymethyl Chitosan-Functionalized Magnetic Nanoparticles for Disruption of Biofilms of Staphylococcus aureus and Escherichia coli. Industrial & Engineering Chemistry Research, 2012, 51, 13164-13172.	1.8	33
280	Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration. International Journal of Biological Macromolecules, 2012, 51, 343-350.	3.6	85
281	Is Chitosan a New Panacea? Areas of Application. , 0, , .		18
282	Improved Antimicrobial Potency through Synergistic Action of Chitosan Microparticles and Low Electric Field. Applied Biochemistry and Biotechnology, 2012, 168, 531-541.	1.4	7
283	Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Science and Technology International, 2012, 18, 3-34.	1.1	153
285	Effects of molecular weights on the absorption, distribution and urinary excretion of intraperitoneally administrated carboxymethyl chitosan in rats. Journal of Materials Science: Materials in Medicine, 2012, 23, 2945-2952.	1.7	22
286	Exploring <i>N</i> -Imidazolyl- <i>O</i> -Carboxymethyl Chitosan for High Performance Gene Delivery. Biomacromolecules, 2012, 13, 146-153.	2.6	74
287	Folate-mediated targeted and intracellular delivery of paclitaxel using a novel deoxycholic acid-O-carboxymethylated chitosan–folic acid micelles. International Journal of Nanomedicine, 2012, 7, 325.	3.3	71
288	Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis. Journal of Applied Oral Science, 2012, 20, 620-627.	0.7	56
289	Antibacterial Finishing of Tencel/Cotton Nonwoven Fabric Using Ag Nanoparticles-Chitosan Composite. Journal of Engineered Fibers and Fabrics, 2012, 7, 155892501200700.	0.5	5
290	Antibacterial activity of shrimp chitosan against some local food spoilage bacteria and food borne pathogens. Bangladesh Journal of Microbiology, 2012, 28, 45-47.	0.2	2
292	Production, Characterization and Antibacterial Activity of Mucor rouxii DSM-119 Chitosan. Journal of Textile Science & Engineering, 2012, 01, .	0.2	2
293	Nanomaterialâ€Based Treatments for Medical Deviceâ€Associated Infections. ChemPhysChem, 2012, 13, 2481-2494.	1.0	50
294	Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS) using chemogenomics. BMC Genomics, 2012, 13, 267.	1.2	50
295	Synthesis and characterization of antibacterial semi-interpenetrating carboxymethyl chitosan/poly (acrylonitrile) hydrogels. Cellulose, 2012, 19, 947-958.	2.4	33
296	Highly Sensitive Detection of Residual Chlorpromazine Hydrochloride with Solid Substrate Room Temperature Phosphorimetry. Journal of Fluorescence, 2012, 22, 1087-1094.	1.3	3
297	Preparation, characterization and antimicrobial activity of 6-amino-6-deoxychitosan. Carbohydrate Polymers, 2012, 87, 202-209.	5.1	36

ARTICLE IF CITATIONS Characterization and antimicrobial activity of water-soluble N-(4-carboxybutyroyl) chitosans against 298 5.1 37 some plant pathogenic bacteria and fungi. Carbohydrate Polymers, 2012, 87, 250-256. Molecular weight and pH aspects of the efficacy of oligochitosan against methicillin-resistant 299 5.1 Staphylococcus aureus (MRSA). Carbohydrate Polymers, 2012, 87, 545-550. Study on antibacterial activity of O-carboxymethyl chitosan sodium salt and spinnability of 300 O-carboxymethyl chitosan sodium salt/cellulose polyblends in N-methylmorpholine-N-oxide system. 5.115 Carbohydrate Polymers, 2012, 89, 104-110. In vitro evaluation of mucoadhesion and permeation enhancement of polymeric amphiphilic 5.1 nanoparticles. Carbohydrate Polymers, 2012, 89, 453-460. Preparation and characterization of dispersible chitosan particles with borate crosslinking and their 302 1.1 34 antimicrobial and antifungal activity. Carbohydrate Research, 2012, 349, 52-58. The effect of chlorotrimethylsilane on bonding of nano hydroxyapatite with a chitosan–polyacrylamide matrix. Carbohydrate Research, 2012, 352, 143-150. 1.1 Effect of chitosan edible coating on the quality of double filleted Indian oil sardine (Sardinella) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 502 304 Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food 5.6 Hydrocolloids, 2012, 29, 48-56. Influence of chitosan and porosity on heat and mass transfer in chitosan-treated porous fibrous 306 2.5 3 material. International Journal of Heat and Mass Transfer, 2012, 55, 1997-2007. PEGylated chitosan derivatives: Synthesis, characterizations and pharmaceutical applications. 11.8 204 Progress in Polymer Science, 2012, 37, 659-685. Chitosan and its hydrophobic derivatives: Preparation and aggregation in dilute aqueous solutions. 308 108 0.4 Polymer Science - Series A, 2012, 54, 552-572. Citric acid used as a crosslinking agent for the grafting of chitosan onto woolen fabric. Journal of 1.3 Applied Polymer Science, 2012, 123, 3345-3353. Study of chitosan and its derivatives as preservatives for field natural rubber latex. Journal of 310 1.3 13 Applied Polymer Science, 2012, 123, 913-921. Inhibition of escherichia coli and proteus mirabilis adhesion and biofilm formation on medical grade 1.7 silicone surface. Biotechnology and Bioengineering, 2012, 109, 336-345. Preparation and antibacterial activity of Schiff bases from O-carboxymethyl chitosan and 312 59 1.7 para-substituted benzaldehydes. Polymer Bulletin, 2012, 68, 1215-1226. Oâ€carboxymethyl chitosan entrapped by silica: preparation and adsorption behaviour toward neodymium (III) ions. Journal of Chemical Technology and Biotechnology, 2013, 88, 317-325. Peptide decorated calcium phosphate/carboxymethyl chitosan hybrid nanoparticles with improved 314 2.6 40 drug delivery efficiency. International Journal of Pharmaceutics, 2013, 446, 205-210.

315	Synthesis and characterization of gold nanoparticles supported on thiol functionalized chitosan for solvent-free oxidation of cyclohexene with molecular oxygen. Journal of Molecular Catalysis A, 2013, 379, 340-349.	4.8	22	
-----	--	-----	----	--

#	Article	IF	CITATIONS
316	An innovative bioremediation strategy using a bacterial consortium entrapped inÂchitosan beads. Journal of Environmental Management, 2013, 127, 10-17.	3.8	55
317	Temperature-sensitive hydrogels by graft polymerization of chitosan and N-isopropylacrylamide for drug release. Pharmaceutical Development and Technology, 2013, 18, 1026-1034.	1.1	9
318	Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements. Acta Biomaterialia, 2013, 9, 9086-9097.	4.1	57
319	Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Materials Science and Engineering C, 2013, 33, 4816-4824.	3.8	115
320	Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chemistry, 2013, 15, 3404.	4.6	129
321	Evaluation of diffusion and dilution methods to determine the antimicrobial activity of water-soluble chitosan derivatives. Journal of Applied Microbiology, 2013, 114, 956-963.	1.4	66
322	Comparison of physicochemical, binding, antioxidant and antibacterial properties of chitosans prepared from ground and entire crab leg shells. International Journal of Food Science and Technology, 2013, 48, 136-142.	1.3	23
323	Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocolloids, 2013, 31, 166-171.	5.6	149
324	Encapsulation of paclitaxel into lauric acid-O-carboxymethyl chitosan-transferrin micelles for hydrophobic drug delivery and site-specific targeted delivery. International Journal of Pharmaceutics, 2013, 457, 124-135.	2.6	77
325	An amelogenin–chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomaterialia, 2013, 9, 7289-7297.	4.1	113
326	Chitosan based edible films and coatings: A review. Materials Science and Engineering C, 2013, 33, 1819-1841.	3.8	883
327	Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Advanced Drug Delivery Reviews, 2013, 65, 865-879.	6.6	373
328	Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against <i>Staphylococcus aureus</i> . Nanotechnology, 2013, 24, 015101.	1.3	124
329	Green Chemistry Approaches to Develop Antimicrobial Textiles Based on Sustainable Biopolymers—A Review. Industrial & Engineering Chemistry Research, 2013, 52, 5245-5260.	1.8	226
330	Enhancing antibacterial activity of surface-grafted chitosan with immobilized lysozyme on bioinspired stainless steel substrates. Colloids and Surfaces B: Biointerfaces, 2013, 106, 11-21.	2.5	59
331	Synthesis of Mesoporous Calcium Phosphate Microspheres by Chemical Transformation Process: Their Stability and Encapsulation of Carboxymethyl Chitosan. Crystal Growth and Design, 2013, 13, 3201-3207.	1.4	30
332	Industrial method of cotton fabric finishing with chitosan–ZnO composite for anti-bacterial and thermal stability. Industrial Crops and Products, 2013, 47, 160-167.	2.5	77
333	Preparation of highly regioselective amphiprotic chitosan derivative via "click chemistry― International Journal of Biological Macromolecules, 2013, 52, 72-76.	3.6	18

	CITATION	LPOKI	
#	Article	IF	Citations
334	Chitosan-Thioglycolic Acid as a Versatile Antimicrobial Agent. Biomacromolecules, 2013, 14, 1010-1017.	2.6	71
335	Preparation of Hydroxypropyl Chitosan Nanoparticles and their Application in Antheraea Pernyi Silk Treatment. Advanced Materials Research, 0, 796, 380-384.	0.3	5
336	CHAPTER 2. Antimicrobial Activity of Chitosan in Food, Agriculture and Biomedicine. RSC Polymer Chemistry Series, 2013, , 22-53.	0.1	10
337	Biomedical applications of carboxymethyl chitosans. Carbohydrate Polymers, 2013, 91, 452-466.	5.1	267
338	Fabrication of Electrospun Chitosan and Chitosan/Poly(ethylene oxide) Nanofiber Webs and Assessment of Their Antimicrobial Activity. International Polymer Processing, 2013, 28, 143-150.	0.3	19
339	Sodium Carboxymethyl Chitosan as a Fixative for Eau de Cologne. Tropical Journal of Pharmaceutical Research, 2013, 12, .	0.2	2
340	Development of Dorzolamide Loaded <i>6-O</i> -Carboxymethyl Chitosan Nanoparticles for Open Angle Glaucoma. Journal of Drug Delivery, 2013, 2013, 1-15.	2.5	37
341	Study on the Synthesis and Antibacterial Properties of Silver-Chitosan Composite. Polymers and Polymer Composites, 2013, 21, 519-524.	1.0	0
342	Bioactive Labels for Fresh Fruits and Vegetables. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Food Science and Technology, 2013, 70, 75.	0.1	4
344	Inhibition of Campylobacter jejuni on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized oriental mustard extract. International Journal of Food Microbiology, 2014, 187, 77-82.	2.1	61
345	Antimicrobial Activity of Chitosan-Carbon Nanotube Hydrogels. Materials, 2014, 7, 3946-3955.	1.3	97
346	-Based Edible Films. , 2014, , 1-37.		2
347	In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 635-642.	2.0	25
348	Utilization of carboxymethyl chitosan in cosmetics. International Journal of Cosmetic Science, 2014, 36, 12-21.	1.2	157
349	Influence of microwave heating time on the structure and properties of chitosan films. Journal of Applied Polymer Science, 2014, 131, .	1.3	13
350	Industrial Applications of Marine Carbohydrates. Advances in Food and Nutrition Research, 2014, 73, 145-181.	1.5	16
351	Size and pH effects of chitooligomers on antibacterial activity against Staphylococcus aureus. International Journal of Biological Macromolecules, 2014, 64, 302-305.	3.6	49
352	Antimicrobial and inhibitory enzyme activity of N-(benzyl) and quaternary N-(benzyl) chitosan derivatives on plant pathogens. Carbohydrate Polymers, 2014, 111, 670-682.	5.1	95

#	Article	IF	Citations
353	Effect of concentration and molecular weight of chitosan and its derivative on the free radical scavenging ability. Journal of Biomedical Materials Research - Part A, 2014, 102, 911-916.	2.1	26
354	Synergistic combination of marine oligosaccharides and azithromycin against Pseudomonas aeruginosa. Microbiological Research, 2014, 169, 759-767.	2.5	52
355	Strategies to improve chitosan hemocompatibility: A review. European Polymer Journal, 2014, 53, 171-188.	2.6	193
356	Preparation, physical–chemical and biological characterization of chitosan nanoparticles loaded with lysozyme. International Journal of Biological Macromolecules, 2014, 67, 124-131.	3.6	59
357	Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT - Food Science and Technology, 2014, 57, 106-115.	2.5	159
358	Reinforcement on the mechanical-, thermal-, and water-resistance properties of the wood flour/chitosan/poly(vinyl chloride) composites by physical and chemical modification. Journal of Applied Polymer Science, 2014, 131, n/a-n/a.	1.3	11
359	Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: Molecular weight–activity relationship. European Journal of Medicinal Chemistry, 2014, 74, 169-178.	2.6	84
360	Polysaccharide biomaterials for drug delivery and regenerative engineering. Polymers for Advanced Technologies, 2014, 25, 448-460.	1.6	236
361	Spray-dried O-carboxymethyl chitosan as potential hydrophilic matrix tablet for sustained release of drug. Drug Development and Industrial Pharmacy, 2014, 40, 503-510.	0.9	9
362	Polymeric Nanoarchitectures on Ti-Based Implants for Antibacterial Applications. ACS Applied Materials & amp; Interfaces, 2014, 6, 17323-17345.	4.0	84
363	Synthesis and Characterization of Chitosan-Grafted BPPO Ultrafiltration Composite Membranes with Enhanced Antifouling and Antibacterial Properties. Industrial & Engineering Chemistry Research, 2014, 53, 14974-14981.	1.8	27
364	Synthesis and characterization of chitosan quaternary ammonium salt and its application as drug carrier for ribavirin. Drug Delivery, 2014, 21, 548-552.	2.5	34
365	Structure and antimicrobial mechanism of É≻polylysine–chitosan conjugates through Maillard reaction. International Journal of Biological Macromolecules, 2014, 70, 427-434.	3.6	75
366	Preparation and properties of polyester fabrics grafted with O-carboxymethyl chitosan. Carbohydrate Polymers, 2014, 113, 344-352.	5.1	53
367	Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnology Advances, 2014, 32, 1301-1316.	6.0	260
368	Manufacture and performance of O-carboxymethyl chitosan sodium salt/cellulose fibers in N-methylmorpholine-N-oxide system. Fibers and Polymers, 2014, 15, 1575-1582.	1.1	2
369	Synthesis and antifungal property of N-(aryl) and quaternary N-(aryl) chitosan derivatives against Botrytis cinerea. Cellulose, 2014, 21, 3121-3137.	2.4	27
370	Graphene functionalized porous Au-paper based electrochemiluminescence device for detection of DNA using luminescent silver nanoparticles coated calcium carbonate/carboxymethyl chitosan hybrid microspheres as labels. Biosensors and Bioelectronics, 2014, 59, 307-313.	5.3	52

#	Article	IF	CITATIONS
371	New chitin, chitosan, and O-carboxymethyl chitosan sources from resting eggs of Daphnia longispina (Crustacea); with physicochemical characterization, and antimicrobial and antioxidant activities. Biotechnology and Bioprocess Engineering, 2014, 19, 58-69.	1.4	83
372	Green and facile synthesis of water-soluble ZnS quantum dots nanohybrids using chitosan derivative ligands. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	18
374	The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. Journal of Controlled Release, 2014, 186, 54-87.	4.8	207
375	Preparation of carboxymethyl-quaternized oligochitosan and its scale inhibition and antibacterial activity. Journal of Water Reuse and Desalination, 2014, 4, 65-75.	1.2	7
376	Manufacture and performance of ethylamine hydroxyethyl chitosan/cellulose fiber in N -methylmorpholine- N -oxide system. Reactive and Functional Polymers, 2015, 91-92, 62-70.	2.0	8
378	Antimcriobial Activity and Mechanism of Chitosan with Different Molecular Weight. , 2015, , .		2
379	Effect of a fungal chitosan preparation on <i>Brettanomyces bruxellensis,</i> a wine contaminant. Journal of Applied Microbiology, 2015, 118, 123-131.	1.4	39
380	Efficient water soluble nanostructured ZnO grafted O-carboxymethyl chitosan/curcumin-nanocomposite for cancer therapy. Process Biochemistry, 2015, 50, 678-688.	1.8	81
381	Studies on encapsulation of Rifampicin and its release from chitosan-dextran sulfate capsules. Korean Journal of Chemical Engineering, 2015, 32, 118-124.	1.2	12
382	Chitosan as an antimicrobial in food products. , 2015, , 153-181.		13
383	A Review on Antimicrobial Chitosan-Silver Nanocomposites: A Roadmap Toward Pathogen Targeted Synthesis. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 448-458.	1.8	44
384	Antibacterial wound dressing: plasma treatment effect on chitosan impregnation and in situ synthesis of silver chloride on cellulose surface. RSC Advances, 2015, 5, 17690-17699.	1.7	53
385	Evaluations of the Chemical Stability and Cytotoxicity of CuInS ₂ and CuInS ₂ /ZnS Core/Shell Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 2852-2860.	1.5	77
386	Chitosan finishing nonwoven textiles loaded with silver and iodide for antibacterial wound dressing applications. Biomedical Materials (Bristol), 2015, 10, 015023.	1.7	28
387	Antibacterial activity of combination of synthetic and biopolymer non-woven structures. Journal of Complementary and Integrative Medicine, 2015, 12, 289-294.	0.4	6
388	Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering. International Journal of Biological Macromolecules, 2015, 80, 481-488.	3.6	114
389	Targeting delivery of tocopherol and doxorubicin grafted-chitosan polymeric micelles for cancer therapy: In vitro and in vivo evaluation. Colloids and Surfaces B: Biointerfaces, 2015, 133, 254-262.	2.5	44
390	Novel pH sensitive composite hydrogel based on functionalized chitosan/clay for the controlled release of a calcium channel blocker. Designed Monomers and Polymers, 2015, 18, 413-423.	0.7	13

		CITATION REPORT	
#	Article	IF	CITATIONS
391	Preparation and characterization of quaternary ammonium chitosan hydrogel with significant antibacterial activity. International Journal of Biological Macromolecules, 2015, 79, 830-836.	3.6	118
392	Michael reaction of chitosan with acrylamides in an aqueous alkali–urea solution. Polymer B 2015, 72, 2075-2087.	ulletin, 1.7	8
393	Antibacterial Properties Associated with Chitosan Nanoparticle Treatment on Root Dentin and 2ÂTypesÂofÂEndodontic Sealers. Journal of Endodontics, 2015, 41, 1353-1358.	1.4	71
394	Investigation of Anti-Alga Properties and Anti-Bacteria Effects of Composite Nanofiltration Membranes Based on Chitosan Derivatives. International Journal of Environmental Science and Development, 2015, 6, 174-177.	d 0.2	0
395	Nanoparticles for Endodontic Disinfection. , 2015, , 97-119.		6
397	Ultrasonic fabrication of TiO ₂ /chitosan hybrid nanoporous microspheres with antimicrobial properties. RSC Advances, 2015, 5, 20265-20269.	1.7	16
398	Chitosan-Based Edible Films. , 2015, , 829-870.		3
399	O-carboxymethyl functionalization of chitosan: Complexation and adsorption of Cd (II) and Cr heavy metal pollutant ions. Reactive and Functional Polymers, 2015, 97, 37-47.	(VI) as 2.0	126
400	Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomaterialia, 2015, 26 236-248.	5, 4.1	453
401	Electrokinetic properties of fibres functionalised by chitosan and chitosan nanoparticles. Cellu 2015, 22, 3811-3823.	lose, 2.4	27
402	Hydrophobically Modified Chitosan-Grafted Magnetic Nanoparticles for Bacteria Removal. Indu & Engineering Chemistry Research, 2015, 54, 9270-9277.	ustrial 1.8	28
403	Chitosan as a starting material for wound healing applications. European Journal of Pharmaceu and Biopharmaceutics, 2015, 97, 417-426.	utics 2.0	412
404	Preparation and application of magnetic graphene oxide coated with a modified chitosan pH-s hydrogel: an efficient biocompatible adsorbent for catechin. RSC Advances, 2015, 5, 9396-940	ensitive 1.7 D4.	45
405	Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agrono for Sustainable Development, 2015, 35, 569-588.	my 2.2	251
406	Physical properties and antibacterial activity of chitosan/acemannan mixed systems. Carbohyd Polymers, 2015, 115, 707-714.	rate 5.1	35
407	Preparation and optimization of N-trimethyl-O-carboxymethyl chitosan nanoparticles for delive low-molecular-weight heparin. Pharmaceutical Development and Technology, 2016, 21, 14-25.		13
408	Synthesis of Novel Pyrimethanil Grafted Chitosan Derivatives with Enhanced Antifungal Activit BioMed Research International, 2016, 2016, 1-8.	y. 0.9	5
409	Bio-inspired antimicrobial polymers. , 2016, , 87-127.		1

	CITATION R	CITATION REPORT		
#	Article	IF	Citations	
410	Chitosan and Its Derivatives as Active Ingredients Against Plant Pests and Diseases. , 2016, , 179-219.		10	
411	Preparation, Characterization, and Insecticidal Activity of Avermectin-Grafted-Carboxymethyl Chitosan. BioMed Research International, 2016, 2016, 1-8.	0.9	17	
412	Applications of chitosan as a functional food. , 2016, , 425-464.		8	
413	Chitosan: properties and roles in postharvest quality preservation of horticultural crops. , 2016, , 269-296.		8	
414	Biopolymers as wound healing materials. , 2016, , 261-287.		31	
415	Chitosan Effects on Plant Systems. International Journal of Molecular Sciences, 2016, 17, 996.	1.8	322	
416	Omics for Investigating Chitosan as an Antifungal and Gene Modulator. Journal of Fungi (Basel,) Tj ETQq0 0 0 rg	;BT /Overlo	ock 10 Tf 50 5 25	
417	Preparation of a Novel Chitosan Based Biopolymer Dye and Application in Wood Dyeing. Polymers, 2016, 8, 338.	2.0	55	
418	Chitin Nanofibers as Reinforcing and Antimicrobial Agents in Carboxymethyl Cellulose Films: Influence of Partial Deacetylation. ACS Sustainable Chemistry and Engineering, 2016, 4, 4385-4395.	3.2	116	
419	Ultrafast optical nonlinearity and photoacoustic studies on chitosan–boron nitride nanotube composite films. Optics Communications, 2016, 371, 47-50.	1.0	1	
420	Effect of Different Composition on Particle Size Chitosan-PMAA-PNIPAM Hydrogel. Procedia Chemistry, 2016, 19, 388-393.	0.7	5	
421	A review of chitosan and its derivatives in bone tissue engineering. Carbohydrate Polymers, 2016, 151, 172-188.	5.1	493	
422	Characterization of β-glucosidase immobilized on chitosan-multiwalled carbon nanotubes (MWCNTS) and their application on tea extracts for aroma enhancement. International Journal of Biological Macromolecules, 2016, 89, 406-414.	3.6	54	
423	Effect of chitosan molecular weight as micro and nanoparticles on antibacterial activity against some soft rot pathogenic bacteria. LWT - Food Science and Technology, 2016, 71, 347-355.	2.5	65	
424	Enhancement of bioactivity and bioavailability of curcumin with chitosan based materials. Korean Journal of Chemical Engineering, 2016, 33, 3316-3329.	1.2	14	
425	Production and characterization of polycaprolactone- hyaluronic acid/chitosan- zein electrospun bilayer nanofibrous membrane for tissue regeneration. International Journal of Biological Macromolecules, 2016, 93, 1100-1110.	3.6	127	
426	Chitosan and Nano Chitosan: Properties and Application to Textiles. , 2016, , 692-775.		0	
427	Antibacterial Nanoparticles in Endodontics: AÂReview. Journal of Endodontics, 2016, 42, 1417-1426.	1.4	170	

#	Article	IF	CITATIONS
428	Rheological behavior and spinnability of ethylamine hydroxyethyl chitosan/cellulose co-solution in N-methylmorpholine-N-oxide system. Fibers and Polymers, 2016, 17, 778-788.	1.1	6
429	Longâ€ŧerm antibiofilm activity of carboxymethyl chitosan on mixed biofilm on silicone. Laryngoscope, 2016, 126, E404-E408.	1.1	21
430	Chitosan Based Nanomaterials in Plant Growth and Protection. SpringerBriefs in Plant Science, 2016, ,	0.4	23
431	BMSCs-laden gelatin/sodium alginate/carboxymethyl chitosan hydrogel for 3D bioprinting. RSC Advances, 2016, 6, 108423-108430.	1.7	84
432	Polymer Inorganic Nanocomposites: A Sustainable Antimicrobial Agents. Fungal Biology, 2016, , 265-289.	0.3	1
433	Flexible Hierarchical ZrO ₂ Nanoparticle-Embedded SiO ₂ Nanofibrous Membrane as a Versatile Tool for Efficient Removal of Phosphate. ACS Applied Materials & Interfaces, 2016, 8, 34668-34676.	4.0	81
434	Reusable Green Aerogels from Cross-Linked Hairy Nanocrystalline Cellulose and Modified Chitosan for Dye Removal. Langmuir, 2016, 32, 11771-11779.	1.6	145
435	Antimicrobial properties of chitosan and chitosan derivatives. , 2016, , 345-367.		2
436	Carboxymethyl chitosan-modified magnetic-cored dendrimer as an amphoteric adsorbent. Journal of Hazardous Materials, 2016, 317, 608-616.	6.5	100
437	Experimental design for determining quantitative structure activity relationship for antibacterial chitosan derivatives. Journal of Materials Chemistry B, 2016, 4, 4762-4770.	2.9	27
438	Thiol Reactive Maleimido-Containing Tannic Acid for the Bioinspired Surface Anchoring and Post-Functionalization of Antifouling Coatings. ACS Sustainable Chemistry and Engineering, 2016, 4, 4264-4272.	3.2	39
439	O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake. Food Hydrocolloids, 2016, 53, 261-269.	5.6	110
440	Synthesis, characterization, and biocompatible properties of alanine-grafted chitosan copolymers. Journal of Biomaterials Applications, 2016, 30, 1350-1361.	1.2	12
441	Imidazolyl derivative of chitosan with high substitution degree: Synthesis, characterization and sorption properties. Carbohydrate Polymers, 2016, 138, 252-258.	5.1	14
442	Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydrate Polymers, 2016, 138, 259-264.	5.1	206
443	Carboxymethyl chitosan functionalization of Bi2S3 quantum dots: Towards eco-friendly fluorescent core-shell nanoprobes. Carbohydrate Polymers, 2016, 146, 455-466.	5.1	34
444	Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. International Journal of Biological Macromolecules, 2016, 88, 273-279.	3.6	141
445	Oleoyl-carboxymethyl chitosan as a new carrier agent for the rotenone pesticide. Environmental Chemistry Letters, 2016, 14, 417-422.	8.3	6

#	Article	IF	CITATIONS
446	Structure, morphology and properties of genipin-crosslinked carboxymethylchitosan porous membranes. Carbohydrate Polymers, 2016, 143, 155-163.	5.1	39
447	The stability of green nanoparticles in increased pH and salinity for applications in oil spill-treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 493, 99-107.	2.3	32
448	Environmentally friendly surface modification of polyethylene terephthalate (PET) fabric by low-temperature oxygen plasma and carboxymethyl chitosan. Journal of Cleaner Production, 2016, 118, 187-196.	4.6	64
449	A carboxymethyl chitosan and peptide-decorated polyetheretherketone ternary biocomposite with enhanced antibacterial activity and osseointegration as orthopedic/dental implants. Journal of Materials Chemistry B, 2016, 4, 1878-1890.	2.9	55
450	Postharvest Management Approaches for Maintaining Quality of Fresh Produce. , 2016, , .		5
451	Active Carbohydrates. , 2016, , 141-156.		0
452	Antimicrobial nanostructured polyurethane scaffolds. , 2016, , 503-521.		4
453	Comparison of antimicrobial activities of newly obtained low molecular weight scorpion chitosan and medium molecular weight commercial chitosan. Journal of Bioscience and Bioengineering, 2016, 121, 678-684.	1.1	45
454	Biomimetic Mineralized Hierarchical Graphene Oxide/Chitosan Scaffolds with Adsorbability for Immobilization of Nanoparticles for Biomedical Applications. ACS Applied Materials & Interfaces, 2016, 8, 1707-1717.	4.0	113
455	Polysaccharide-based antibiofilm surfaces. Acta Biomaterialia, 2016, 30, 13-25.	4.1	167
456	Pyridine-grafted chitosan derivative as an antifungal agent. Food Chemistry, 2016, 196, 381-387.	4.2	60
457	Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Materials Science and Engineering C, 2016, 58, 180-186.	3.8	67
458	Succinyl pullulan-crosslinked carboxymethyl chitosan sponges for potential wound dressing. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 61-70.	1.8	18
459	Polymer–gold nanoparticle composite films for topical application: Evaluation of physical properties and antibacterial activity. Polymer Composites, 2017, 38, 2829-2840.	2.3	14
460	Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate Polymers, 2017, 164, 268-283.	5.1	590
461	Experimental evaluation of new chitin–chitosan graft for duraplasty. Journal of Materials Science: Materials in Medicine, 2017, 28, 34.	1.7	18
462	A novel ionic amphiphilic chitosan derivative as a stabilizer of nanoemulsions: Improvement of antimicrobial activity of Cymbopogon citratus essential oil. Colloids and Surfaces B: Biointerfaces, 2017, 152, 385-392.	2.5	48
463	Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. Carbohydrate Polymers, 2017, 165, 455-461.	5.1	104

ARTICLE IF CITATIONS Comparison of chitosan microsphere versus O-carboxymethyl chitosan microsphere for drug delivery 0.8 9 464 systems. Journal of Bioactive and Compatible Polymers, 2017, 32, 469-486. Effect of animal products and extracts on wound healing promotion in topical applications: a review. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 703-729. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel 466 4.4 1,156 dressings. Journal of Advanced Research, 2017, 8, 217-233. Chitosan-based silver nanoparticles: A study of the antibacterial, antileishmanial and cytotoxic 0.8 effects. Journal of Bioactive and Compatible Polymers, 2017, 32, 397-410. Antifouling and antimicrobial biomaterials: an overview. Apmis, 2017, 125, 392-417. 468 0.9 223 Exploring the effect of formulation parameters on the particle size of carboxymethyl chitosan nanoparticles prepared via reverse micellar crosslinking. Journal of Microencapsulation, 2017, 34, 1.2 270-279. Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads 470 3.6 193 (CS/PVA/ZnO). International Journal of Biological Macromolecules, 2017, 103, 234-241. Old drug, new wrapping â[^] A possible comeback for chloramphenicol?. International Journal of Pharmaceutics, 2017, 526, 538-546. 471 2.6 36 Antimicrobial and antitumor activities of 1,2,4-triazoles/polypyrrole chitosan core shell 472 0.9 9 nanoparticles. Journal of Physical Organic Chemistry, 2017, 30, e3702. Materials for 3D printing in medicine., 2017, , 43-71. Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO 475 3.6 97 nanocomposite hydrogels. International Journal of Biological Macromolecules, 2017, 101, 690-695. Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable 3.8 34 antimicrobial materials. Materials Science and Engineering C, 2017, 73, 544-551. Enhanced electrokinetic properties and antimicrobial activities of biodegradable 477 5.1 22 chitosan/organo-bentonite composites. Carbohydrate Polymers, 2017, 161, 71-81. Thiol-ol Chemistry for Grafting of Natural Polymers to Form Highly Stable and Efficacious 44 Antibacterial Coatings. ACS Applied Materials & amp; Interfaces, 2017, 9, 1847-1857. Poly(methyl 6-acryloyl- \hat{l}^2 -d-glucosaminoside) as a Cationic Glycomimetic of Chitosan. Biomacromolecules, 2017, 18, 4133-4140. 479 2.6 11 Adhesive Properties of Pectin–Chitosan Composite Gels. Chemistry of Natural Compounds, 2017, 53, 480 823-829. Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as 481 299 5.1antimicrobial agents: A review. Carbohydrate Polymers, 2017, 176, 257-265. Synergetic suppression of soybean cyst nematodes by chitosan and Hirsutella minnesotensis via the 1.4 assembly of the soybean rhizosphere microbial communities. Biological Control, 2017, 115, 85-94.

#	Article	IF	CITATIONS
483	Encapsulation of orange and lavender essential oils in chitosan nanospherical particles and its application in leather for aroma enrichment. Surfaces and Interfaces, 2017, 9, 124-132.	1.5	34
484	Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules, 2017, 18, 3846-3868.	2.6	648
485	Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. International Journal of Biological Macromolecules, 2017, 105, 478-488.	3.6	79
486	pH-responsive carboxymethyl chitosan-derived micelles as apatinib carriers for effective anti-angiogenesis activity: Preparation and in vitro evaluation. Carbohydrate Polymers, 2017, 176, 107-116.	5.1	23
487	Biomedical Applications of Chitosan. , 2017, , 1-12.		0
488	Optimization of high purity chitin and chitosan production from Illex argentinus pens by a combination of enzymatic and chemical processes. Carbohydrate Polymers, 2017, 174, 262-272.	5.1	32
489	Developing self-healable and antibacterial polyacrylate coatings with high mechanical strength through crosslinking by multi-amine hyperbranched polysiloxane via dynamic vinylogous urethane. Journal of Materials Chemistry A, 2017, 5, 16889-16897.	5.2	55
490	Chitosan coating effect on vase life of flowering stems of Heliconia bihai (L.) L. cv. Halloween. Postharvest Biology and Technology, 2017, 132, 179-187.	2.9	9
491	Antimicrobial applications of chitosan. , 2017, , 245-274.		14
492	Preparation, characterization, and antifungal activity of hymexazol-linked chitosan derivatives. Chinese Journal of Oceanology and Limnology, 2017, 35, 1079-1085.	0.7	2
493	Utilization of chitosan-caged liposomes to push the boundaries of therapeutic delivery. Carbohydrate Polymers, 2017, 157, 991-1012.	5.1	53
494	Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity. Carbohydrate Polymers, 2017, 155, 192-200.	5.1	127
495	Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 123-142.	1.7	73
496	Synthesis, Characterization and Application of Biodegradable Crosslinked Carboxymethyl Chitosan/Poly(Ethylene Glycol) Clay Nanocomposites. Journal of Polymers and the Environment, 2017, 25, 667-682.	2.4	16
497	Advances in Biomaterials for the Treatment of Articular Cartilage Defects. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 97-126.	0.7	0
498	Chitosan/banana peel powder nanocomposites for wound dressing application: Preparation and characterization. Materials Science and Engineering C, 2017, 72, 543-550.	3.8	71
499	Scientific potential of chitosan blending with different polymeric materials: A review. Journal of Plastic Film and Sheeting, 2017, 33, 384-412.	1.3	31
500	Encapsulation of probiotic <i>Lactobacillus acidophilus</i> by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. International Journal of Food Science and Technology, 2017, 52, 519-530.	1.3	41

ARTICLE IF CITATIONS Fundamentals of chitosan for biomedical applications., 2017,, 3-30. 501 48 Antibacterial properties of chitosan., 2017, , 31-44. 9 Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing 503 1.6 128 Materials. Bioengineering, 2017, 4, 1. Extraction of chitosan and its oligomers from shrimp shell waste, their characterization and 504 108 antimicrobial effect. Veterinary World, 2017, 10, 170-175. Synthesis, Characterization, and the Antioxidant Activity of Double Quaternized Chitosan Derivatives. 505 1.7 32 Molecules, 2017, 22, 501. Chitosan/Cyclodextrin/TPP Nanoparticles Loaded with Quercetin as Novel Bacterial Quorum Sensing Inhibitors. Molecules, 2017, 22, 1975. 1.7 Modeling the Inhibition of Vibrio cholerae Non-01 in Trypticase Soy Broth by Chitosan of Low and High 507 1.2 1 Molecular Weight. Frontiers in Marine Science, 2017, 4, . Eco-Friendly and Biodegradable Biopolymer Chitosan/Y2O3 Composite Materials in Flexible Organic 508 1.3 40 Thin-Film Transistors. Materials, 2017, 10, 1026. Antibiofilm and antibacterial effects of specific chitosan molecules on Staphylococcus aureus 509 1.1 58 isolates associated with bovine mastitis. PLoS ONE, 2017, 12, e0176988. Conferring Antibacterial Properties on Sesbania Gum via Microwave-Assisted Graft Copolymerization 2.4 of DADMĂC. Journal of Polymers and the Environment, 2018, 26, 3272-3282. Synthesis, characterization and biological evaluation of chitosan film incorporated with Î²-Carotene 511 3.3 52 loaded starch nanocrystals. Food Packaging and Shelf Life, 2018, 16, 69-76. Amino acid-inspired electrochemical recognition of phenylalanine enantiomers using amphoteric 1.4 chitosan. New Journal of Chemistry, 2018, 42, 6817-6823. Levofloxacin-Loaded Nanoparticles Decrease Emergence of Fluoroquinolone Resistance in Escherichia 513 0.9 24 coli. Microbial Drug Resistance, 2018, 24, 1098-1107. Development and In vitro Anticancer Evaluation of Selfâ€Assembled Supramolecular pH Responsive 514 Hydrogels of Carboxymethyl Chitosan and Polyoxometalate. ChemistrySelect, 2018, 3, 1472-1479. Extraction of crude chitosans from squid (Illex argentinus) pen by a compressional 515 puffing-pretreatment process and evaluation of their antibacterial activity. Food Chemistry, 2018, 254, 4.2 28 217-223. Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based 5.1 244 composites. Carbohydrate Polymers, 2018, 189, 379-398. 517 Recent advances in nanomedicine for sepsis treatment. Therapeutic Delivery, 2018, 9, 435-450. 1.2 23 Highly efficient antimicrobial electrospun PVP/CS/PHMGH nanofibers membrane: preparation, 1.3 antimicrobial activity and in vitro evaluations. Research on Chemical Intermediates, 2018, 44, 4957-4970.

#	Article	IF	CITATIONS
519	Preparation of Zwitterionic Polymer-Functionalized Cotton Fabrics and the Performance of Anti-Biofouling and Long-Term Biofilm Resistance. Colloids and Interface Science Communications, 2018, 24, 98-104.	2.0	32
520	Study on the dynamics of chitosan/cotton fiber in an airflow around two rotating cylinders. Textile Reseach Journal, 2018, 88, 2035-2043.	1.1	2
521	Antimicrobial polymeric nanoparticles. Progress in Polymer Science, 2018, 76, 40-64.	11.8	214
522	Grafting Modification of Chitosan. , 2018, , 295-364.		17
523	Effects of chitosan quaternary ammonium salt on the physicochemical properties of sodium carboxymethyl cellulose-based films. Carbohydrate Polymers, 2018, 184, 37-46.	5.1	67
524	Processing and antibacterial properties of chitosan-coated alginate fibers. Carbohydrate Polymers, 2018, 190, 31-42.	5.1	79
525	Functional characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk. LWT - Food Science and Technology, 2018, 89, 638-647.	2.5	102
526	Graphene oxide/poly(ethylene glycol)/chitosan gel with slowâ€release lubrication applied on textured surface. Journal of Applied Polymer Science, 2018, 135, 45818.	1.3	9
527	Screening of novel RGD peptides to modify nanoparticles for targeted cancer therapy. Biomaterials Science, 2018, 6, 125-135.	2.6	33
528	Characterization of Bio-composite Apatite/Chitosan Cement and its Antibacterial Activity. Oriental Journal of Chemistry, 2018, 34, 1765-1773.	0.1	2
529	Corrosion and hydrogen evolution rate control for X-65 carbon steel based on chitosan polymeric ionic liquids: experimental and quantum chemical studies. RSC Advances, 2018, 8, 37891-37904.	1.7	34
530	Chitosan Oleate Salt as an Amphiphilic Polymer for the Surface Modification of Poly-Lactic-Glycolic Acid (PLGA) Nanoparticles. Preliminary Studies of Mucoadhesion and Cell Interaction Properties. Marine Drugs, 2018, 16, 447.	2.2	9
531	Carboxymethyl chitosan: Properties and biomedical applications. International Journal of Biological Macromolecules, 2018, 120, 1406-1419.	3.6	455
532	Antioxidant/Antibacterial Electrospun Nanocoatings Applied onto PLA Films. Materials, 2018, 11, 1973.	1.3	28
533	Novel Antibacterial Coatings for Biofouling and Biocorrosion Inhibition. Interface Science and Technology, 2018, , 257-372.	1.6	3
534	Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection. Biosensors and Bioelectronics, 2018, 121, 80-89.	5.3	76
535	Antimicrobial activities of high molecular weight waterâ€soluble chitosans against selected gramâ€negative and gramâ€positive foodborne pathogens. International Journal of Food Science and Technology, 2018, 53, 2349-2356.	1.3	7
536	Behavior of a Chitosan–Drug System during Diffusion Processes. Polymer Science - Series A, 2018, 60, 303-310.	0.4	4

#	Article	IF	CITATIONS
537	Chitosan hydrogelâ€coated cotton fabric: Antibacterial, pHâ€responsiveness, and physical properties. Journal of Applied Polymer Science, 2018, 135, 46645.	1.3	31
538	Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydrate Polymers, 2018, 199, 445-460.	5.1	553
539	Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineering. International Journal of Biological Macromolecules, 2018, 118, 1257-1266.	3.6	147
540	Silver/poly(vinyl alcohol)/chitosan/graphene hydrogels – Synthesis, biological and physicochemical properties and silver release kinetics. Composites Part B: Engineering, 2018, 154, 175-185.	5.9	60
541	Comparative antibacterial effects of cellulose nanofiber, chitosan nanofiber, chitosan/cellulose combination and chitosan alone against bacterial contamination of Iranian banknotes. International Journal of Biological Macromolecules, 2018, 118, 1045-1054.	3.6	37
542	Association of Alpha Tocopherol and Ag Sulfadiazine Chitosan Oleate Nanocarriers in Bioactive Dressings Supporting Platelet Lysate Application to Skin Wounds. Marine Drugs, 2018, 16, 56.	2.2	19
543	Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polymers, 2018, 10, 31.	2.0	227
544	Inhibition of Amphiphilic N-Alkyl-O-carboxymethyl Chitosan Derivatives on Alternaria macrospora. BioMed Research International, 2018, 2018, 1-9.	0.9	4
545	Inhibitory effects of chitosan on Cronobacter malonaticus cells and biofilm formation. LWT - Food Science and Technology, 2018, 97, 302-307.	2.5	4
546	Pulsatile release from a flat self-oscillating chitosan macrogel. Journal of Materials Chemistry B, 2018, 6, 5003-5010.	2.9	21
547	Fabrication of silver nanoparticles loaded flowerlike CeF 3 architectures and their antibacterial activity. Journal of Physics and Chemistry of Solids, 2018, 120, 154-160.	1.9	7
548	Nanoantimicrobials Mechanism of Action. Nanotechnology in the Life Sciences, 2018, , 281-322.	0.4	2
549	Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences, 2018, , .	0.4	41
550	Engineering of chitosan-derived nanoparticles to enhance antimicrobial activity against foodborne pathogen Escherichia coli O157:H7. Carbohydrate Polymers, 2018, 197, 623-630.	5.1	52
551	Fabrication and characterization of chicken feather keratin/polysaccharides blended polymer coated nonwoven dressing materials for wound healing applications. Materials Science and Engineering C, 2018, 92, 26-33.	3.8	43
552	The evaluation of the inÂvitro antimicrobial properties of fibers functionalized by chitosan nanoparticles. Textile Reseach Journal, 2019, 89, 748-761.	1.1	10
553	Bioresorbable antibacterial PCLâ€PLAâ€nHA composite membranes for oral and maxillofacial defects. Polymer Composites, 2019, 40, 1564-1575.	2.3	27
554	Stereocomplex Crystallite-Based Eco-Friendly Nanofiber Membranes for Removal of Cr(VI) and Antibacterial Effects. ACS Sustainable Chemistry and Engineering, 2019, 7, 16072-16083.	3.2	27

	CITATION R	EPORT	
#	ARTICLE	IF	CITATIONS
555	Recent progress in biomedical applications of chitosan and its nanocomposites in aquaculture: A review. Research in Veterinary Science, 2019, 126, 68-82.	0.9	68
556	Facile preparation of acid/CO2 stimuli-responsive sheddable nanoparticles based on carboxymethylated chitosan. Frontiers of Materials Science, 2019, 13, 296-304.	1.1	1
557	An overview on the potential biomedical applications of polysaccharides. , 2019, , 33-94.		4
558	Development of antimicrobial activity and mechanical performances of cotton fabric treated with silver nano particles (AgNPs). AIP Conference Proceedings, 2019, , .	0.3	10
559	Functional and Nutraceutical Ingredients From Marine Resources. , 2019, , 101-171.		3
560	Buoyancy Effect on the Winter South China Sea Western Boundary Current. Journal of Geophysical Research: Oceans, 2019, 124, 6871-6885.	1.0	4
561	Clarithromycin-Loaded Poly (Lactic-co-glycolic Acid) (PLGA) Nanoparticles for Oral Administration: Effect of Polymer Molecular Weight and Surface Modification with Chitosan on Formulation, Nanoparticle Characterization and Antibacterial Effects. Polymers, 2019, 11, 1632.	2.0	42
562	Preparation and Properties of Minocycline-Loaded Carboxymethyl Chitosan Gel/Alginate Nonwovens Composite Wound Dressings. Marine Drugs, 2019, 17, 575.	2.2	23
563	Food Safety through Natural Antimicrobials. Antibiotics, 2019, 8, 208.	1.5	114
564	Quaternized Chitosan-Coated Montmorillonite Interior Antimicrobial Metal–Antibiotic <i>in Situ</i> Coordination Complexation for Mixed Infections of Wounds. Langmuir, 2019, 35, 15275-15286.	1.6	17
567	Effectiveness of chitosan from crab shell as antibiotic for Escherichia coli. IOP Conference Series: Earth and Environmental Science, 2019, 305, 012010.	0.2	0
568	Effect of the ultrastructure of chitosan nanoparticles in colloidal stability, quorum quenching and antibacterial activities. Journal of Colloid and Interface Science, 2019, 556, 592-605.	5.0	10
569	Evaluation of Antimicrobial Action of Chitosan and Acetic Acid on Broiler Cecal Bacterial Profiles in Anaerobic Cultures Inoculated With Salmonella Typhimurium. Journal of Applied Poultry Research, 2019, 28, 176-183.	0.6	4
570	Chitosan based-asymmetric membranes for wound healing: A review. International Journal of Biological Macromolecules, 2019, 127, 460-475.	3.6	186
571	Chitosan-Based (Nano)Materials for Novel Biomedical Applications. Molecules, 2019, 24, 1960.	1.7	230
572	Structure and dynamics of gold nanoparticles decorated with chitosan–gentamicin conjugates: ReaxFF molecular dynamics simulations to disclose drug delivery. Physical Chemistry Chemical Physics, 2019, 21, 13099-13108.	1.3	32
573	The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Scientific Reports, 2019, 9, 8164.	1.6	70
575	Comparison of high and low molecular weight chitosan as in-vitro boosting agent for photodynamic therapy against Helicobacter pylori using methylene blue and endoscopic light. Photodiagnosis and Photodynamic Therapy, 2019, 26, 111-115.	1.3	7

			-
#	ARTICLE	IF	CITATIONS
576	Functionalization of Polymer Materials for Medical Applications Using Chitosan Nanolayers. , 2019, , 333-358.		2
577	Antioxidant and antibacterial properties of coating with chitosan–citrus essential oil and effect on the quality of Pacific mackerel during chilled storage. Food Science and Nutrition, 2019, 7, 1131-1143.	1.5	20
578	Novel binary grafted chitosan nanocarrier for sustained release of curcumin. International Journal of Biological Macromolecules, 2019, 131, 184-191.	3.6	36
579	Functionalization of chitosan polymer and their applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 450-475.	1.2	65
580	Evaluation of antibacterial textile covered by layer-by-layer coating and loaded with chlorhexidine for wound dressing application. Materials Science and Engineering C, 2019, 100, 554-563.	3.8	44
581	Novel Biocide Based on Cationic Derivative of Psyllium: Surface Modification and Antibacterial Activity. Journal of Polymers and the Environment, 2019, 27, 1178-1190.	2.4	17
582	Preparation and Performances of Warp-Knitted Hernia Repair Mesh Fabricated with Chitosan Fiber. Polymers, 2019, 11, 595.	2.0	12
583	Bio-Based Polymers with Antimicrobial Properties towards Sustainable Development. Materials, 2019, 12, 641.	1.3	123
585	Bactericidal Efficacy of New Types of Magnesium Hydroxide and Calcium Carbonate Nanoparticles. Molecular Genetics, Microbiology and Virology, 2019, 34, 252-262.	0.0	6
586	Broad-Spectrum Bioactivity of Chitosan N-acetylglucosaminohydrolase (Chitosan NAGH) Extracted from Bacillus ligniniphilus. Journal of AOAC INTERNATIONAL, 2019, 102, 1221-1227.	0.7	1
588	Poly Sulfoxyamine Grafted Chitosan as Bactericidal Dressing for Wound Healing. Asian Journal of Chemistry, 2019, 32, 127-132.	0.1	4
590	Sustainable control strategies for plant protection and food packaging sectors by natural substances and novel nanotechnological approaches. Journal of the Science of Food and Agriculture, 2019, 99, 986-1000.	1.7	73
591	Investigation of polyvinyl alcohol nanocomposite hydrogels containing chitosan nanoparticles as wound dressing. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 628-638.	1.8	21
592	Amphiphilic quaternary ammonium chitosans self-assemble onto bacterial and fungal biofilms and kill adherent microorganisms. Colloids and Surfaces B: Biointerfaces, 2019, 174, 1-8.	2.5	19
593	Size controllable one step synthesis of gold nanoparticles using carboxymethyl chitosan. International Journal of Biological Macromolecules, 2019, 122, 770-783.	3.6	27
594	Freeze-casting porous chitosan ureteral stents for improved drainage. Acta Biomaterialia, 2019, 84, 231-241.	4.1	52
595	Ecofriendly nanomaterials for controlling gray mold of table grapes and maintaining postharvest quality. European Journal of Plant Pathology, 2019, 154, 377-388.	0.8	53
596	Synthesis and characterization of simple and binary drug delivery systems for sustainable release of ciprofloxacin. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 751-761.	1.8	4

#	Article	IF	CITATIONS
597	Layer-by-layer immobilization of amphoteric carboxymethyl chitosan onto biocompatible silk fibroin nanofibrous mats. Carbohydrate Polymers, 2019, 210, 9-16.	5.1	66
598	Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. Journal of Drug Delivery Science and Technology, 2019, 49, 66-81.	1.4	149
599	Action of N-Succinyl and N,O-Dicarboxymethyl Chitosan Derivatives on Chlorophyll Photosynthesis and Fluorescence in Drought-Sensitive Maize. Journal of Plant Growth Regulation, 2019, 38, 619-630.	2.8	26
600	Effect of deacetylation degree on properties of Chitosan films using electrostatic spraying technique. Food Control, 2019, 97, 25-31.	2.8	23
601	Modification of chitosan grafted with collagen peptide by enzyme crosslinking. Carbohydrate Polymers, 2019, 206, 468-475.	5.1	31
602	Antibacterial properties of chitosan chloride-graphene oxide composites modified quartz sand filter media in water treatment. International Journal of Biological Macromolecules, 2019, 121, 760-773.	3.6	44
603	A chitosan supported peroxidovanadium(V) complex: Synthesis, characterization and application as an eco-compatible heterogeneous catalyst for selective sulfoxidation in water. Polyhedron, 2019, 159, 192-205.	1.0	11
604	Osteogenic effectiveness of photo-immobilized bone morphogenetic protein-2 using different azidophenyl-natural polymer carriers in rat calvarial defect model. International Journal of Biological Macromolecules, 2019, 121, 333-341.	3.6	4
605	Antifungal activity and possible mechanisms of submicron chitosan dispersions against Alteraria alternata. Postharvest Biology and Technology, 2020, 161, 110883.	2.9	20
606	Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydrate Polymers, 2020, 227, 115331.	5.1	111
607	Seaweed (Turbinaria ornata)-assisted green synthesis of magnesium hydroxide [Mg(OH)2] nanomaterials and their anti-mycobacterial activity. Materials Chemistry and Physics, 2020, 239, 122007.	2.0	26
608	Accelerating dermal wound healing and mitigating excessive scar formation using LBL modified nanofibrous mats. Materials and Design, 2020, 185, 108265.	3.3	67
609	High-Throughput Synthesis, Analysis, and Optimization of Injectable Hydrogels for Protein Delivery. Biomacromolecules, 2020, 21, 214-229.	2.6	29
610	Preparation and characterization of chitosan from crab shell (Portunus trituberculatus) by NaOH/urea solution freeze-thaw pretreatment procedure. International Journal of Biological Macromolecules, 2020, 147, 931-936.	3.6	31
611	A chitosan modified asymmetric small-diameter vascular graft with anti-thrombotic and anti-bacterial functions for vascular tissue engineering. Journal of Materials Chemistry B, 2020, 8, 568-577.	2.9	44
612	Preparation of PLGA-chitosan based nanocarriers for enhancing antibacterial effect of ciprofloxacin in root canal infection. Drug Delivery, 2020, 27, 26-39.	2.5	83
613	Development, Validation, and Performance of Chitosanâ€Based Coatings Using Catechol Coupling. Macromolecular Bioscience, 2020, 20, e1900253.	2.1	6
614	Mechanical and antibacterial properties of the chitosan coated cellulose paper for packaging applications: Effects of molecular weight types and concentrations of chitosan. International Journal of Biological Macromolecules, 2020, 155, 1510-1519.	3.6	51

_	_
CITATION	REDUBL
CHAILON	REPORT

#	ARTICLE	IF	CITATIONS
615	Synthesis of Dimethyl Octyl Aminoethyl Ammonium Bromide and Preparation of Antibacterial ABS Composites for Fused Deposition Modeling. Polymers, 2020, 12, 2229.	2.0	5
616	Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. European Polymer Journal, 2020, 139, 110016.	2.6	98
617	Prospection of recent chitosan biomedical trends: Evidence from patent analysis (2009–2020). International Journal of Biological Macromolecules, 2020, 165, 1924-1938.	3.6	52
618	Chitosan quaternary ammonium salt induced mitochondrial membrane permeability transition pore opening study in a spectroscopic perspective. International Journal of Biological Macromolecules, 2020, 165, 314-320.	3.6	11
619	An in vitro evaluation of zinc silicate fortified chitosan scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2020, 164, 4252-4262.	3.6	21
620	Graphene–Chitosan Hybrid Dental Implants with Enhanced Antibacterial and Cell-Proliferation Properties. Applied Sciences (Switzerland), 2020, 10, 4888.	1.3	14
621	Effect of chitosan on adult longevity when fed, in no hoice experiments, to Musca domestica L., Tabanus nigrovittatus Macquart, and Phormia regina (Meigen) adults and its consumption in adult Musca domestica L. Pest Management Science, 2020, 76, 4293-4300.	1.7	4
622	Preparation, characterization and antibacterial activity of a novel soluble polymer derived from xanthone and O-carboxymethyl-N, N, N-trimethyl chitosan. International Journal of Biological Macromolecules, 2020, 164, 836-844.	3.6	9
623	A Review on Chitosan's Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. Materials, 2020, 13, 4995.	1.3	82
624	An Overview of Current Knowledge on the Properties, Synthesis and Applications of Quaternary Chitosan Derivatives. Polymers, 2020, 12, 2878.	2.0	44
625	Maillard reaction between chitosan and xylan in ionic liquids. Ferroelectrics, 2020, 562, 39-45.	0.3	11
626	Crosslinking of Chitosan with Dialdehyde Chitosan as a New Approach for Biomedical Applications. Materials, 2020, 13, 3413.	1.3	62
627	The antibacterial structure-activity relationship for common chitosan derivatives. International Journal of Biological Macromolecules, 2020, 165, 1686-1693.	3.6	23
628	Functionalizing a Polyelectrolyte Complex with Chitosan Derivatives to Tailor Membrane Surface Properties. Langmuir, 2020, 36, 12784-12794.	1.6	3
631	The Application of Polysaccharides and Their Derivatives in Pigment, Barrier, and Functional Paper Coatings. Polymers, 2020, 12, 1837.	2.0	35
632	Synergistic antimicrobial action of phyco-synthesized silver nanoparticles and nano-fungal chitosan composites against drug resistant bacterial pathogens. Biotechnology and Biotechnological Equipment, 2020, 34, 631-639.	0.5	12
633	Enhancing Mechanical Properties and Biological Performances of Injectable Bioactive Glass by Gelatin and Chitosan for Bone Small Defect Repair. Biomedicines, 2020, 8, 616.	1.4	22
634	Composite Materials Based on Natural Polysaccharides and Polyguanidines. Key Engineering Materials, 0, 869, 577-582.	0.4	0

#	Article	IF	CITATIONS
635	Novel chitosan derivatives of 2-imidazolecarboxaldehyde and 2-thiophenecarboxaldehyde and their antibacterial activity. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 703-710.	1.2	26
636	Chitosan nanocomposites for food packaging applications. , 2020, , 393-435.		8
637	A facile heparin/carboxymethyl chitosan coating mediated by polydopamine on implants for hemocompatibility and antibacterial properties. Applied Surface Science, 2020, 528, 146539.	3.1	38
638	Anti-Pathogenic Functions of Non-Digestible Oligosaccharides In Vitro. Nutrients, 2020, 12, 1789.	1.7	45
639	A comprehensive review of the polymerâ€based hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications. Polymer Engineering and Science, 2020, 60, 1393-1419.	1.5	23
640	Applications of chitosan-based biomaterials: a focus on dependent antimicrobial properties. Marine Life Science and Technology, 2020, 2, 398-413.	1.8	34
641	Multi-Responsive Lanthanide-Based Hydrogel with Encryption, Naked Eye Sensing, Shape Memory, Self-Healing, and Antibacterial Activity. ACS Applied Materials & Interfaces, 2020, 12, 28539-28549.	4.0	71
642	Synthesis of Hybrid Chitosan Silver Nanoparticles Loaded with Doxorubicin with Promising Anti-cancer Activity. BioNanoScience, 2020, 10, 758-765.	1.5	18
643	Sulfoethylation of polysaccharides—A comparative study. Carbohydrate Polymers, 2020, 246, 116533.	5.1	3
644	Inflammation targeted chitosan-based hydrogel for controlled release of diclofenac sodium. International Journal of Biological Macromolecules, 2020, 162, 175-187.	3.6	109
645	Current state of chitin purification and chitosan production from insects. Journal of Chemical Technology and Biotechnology, 2020, 95, 2775-2795.	1.6	165
646	Near-Infrared Light Triggered Phototherapy and Immunotherapy for Elimination of Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilm Infection on Bone Implant. ACS Nano, 2020, 14, 8157-8170.	7.3	133
647	Novel biocompatible and antimicrobial supramolecular O-carboxymethyl chitosan biguanidine/zinc physical hydrogels. International Journal of Biological Macromolecules, 2020, 163, 649-656.	3.6	34
648	An analysis of the microencapsulation of ceftiofur in chitosan particles using the spray drying technology. Carbohydrate Polymers, 2020, 234, 115922.	5.1	6
649	Novel Starch/Chitosan/Aloe Vera Composites as Promising Biopackaging Materials. Journal of Polymers and the Environment, 2020, 28, 1021-1039.	2.4	66
650	3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports, 2020, 140, 100543.	14.8	494
651	Development of novel dental restorative composites with dibasic calcium phosphate loaded chitosan fillers. Dental Materials, 2020, 36, 551-559.	1.6	32
652	The potential role of chitosanâ€based nanoparticles as drug delivery systems in pancreatic cancer. IUBMB Life, 2020, 72, 872-883.	1.5	17

#	Article	IF	CITATIONS
653	In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. International Journal of Biological Macromolecules, 2020, 148, 501-509.	3.6	144
654	Fabrication of Chitosan Nanofiltration Membranes by the Film Casting Strategy for Effective Removal of Dyes/Salts in Textile Wastewater. ACS Sustainable Chemistry and Engineering, 2020, 8, 2512-2522.	3.2	120
655	Crab vs. Mushroom: A Review of Crustacean and Fungal Chitin in Wound Treatment. Marine Drugs, 2020, 18, 64.	2.2	106
656	N-Aminorhodanine modified chitosan hydrogel for antibacterial and copper ions removal from aqueous solutions. International Journal of Biological Macromolecules, 2020, 158, 32-42.	3.6	46
657	Application of heterogeneous photo-fenton process using chitosan beads for textile wastewater treatment. Journal of Environmental Chemical Engineering, 2020, 8, 103893.	3.3	12
658	Mucoadhesive Chitosan Delivery System with Chelidonii Herba Lyophilized Extract as a Promising Strategy for Vaginitis Treatment. Journal of Clinical Medicine, 2020, 9, 1208.	1.0	17
659	Multivariate optimisation of Cr (VI), Co (III) and Cu (II) adsorption onto nanobentonite incorporated nanocellulose/chitosan aerogel using response surface methodology. Journal of Water Process Engineering, 2020, 36, 101283.	2.6	112
660	Applications of Chitosan in Pulmonary Drug Delivery. , 0, , .		5
661	O-Carboxymethylated chitosan; A promising tool with in-vivo anti-inflammatory and analgesic properties in albino rats. International Journal of Biological Macromolecules, 2020, 156, 531-536.	3.6	30
662	Correlation between the cross-linking and degradation activation energy of cotton fabric treated with chitosan kinetic study by â€model-free' multiple heating rate methods. Journal of Thermal Analysis and Calorimetry, 2021, 143, 3267-3274.	2.0	1
663	Chitosan-based nanoparticles against bacterial infections. Carbohydrate Polymers, 2021, 251, 117108.	5.1	184
664	Fabrication of chitosan oligomer-coated electrospun polycaprolactone membrane for wound dressing application. Materials Science and Engineering C, 2021, 120, 111724.	3.8	35
666	<scp>MWCNTs</scp> reinforced conductive, selfâ€healing polyvinyl alcohol/carboxymethyl chitosan/oxidized sodium alginate hydrogel as the strain sensor. Journal of Applied Polymer Science, 2021, 138, 49800.	1.3	25
667	The effect of chitosan coatings enriched with the extracts and essential oils of Elettaria Cardamomum on the shelf-life of chicken drumsticks vacuum-packaged at 4°C. Journal of Food Science and Technology, 2021, 58, 2924-2935.	1.4	15
668	Biomedical Applications of Chitosan and its Derivatives - A Review. International Journal of Current Microbiology and Applied Sciences, 2021, 10, 3636-3643.	0.0	0
669	Advances in the application of chitosan as a sustainable bioactive material in food preservation. Critical Reviews in Food Science and Nutrition, 2022, 62, 3782-3797.	5.4	34
670	Nanotheranostics and biocompatibility. , 2021, , 51-60.		0
671	Matrix Co-Relation for PLA-HAp-CS Based Scaffold for Rapid Joining Using Friction Stir Spot Welding. , 2021, , .		0

ARTICLE IF CITATIONS Synthesis and applications of chitosan and its composites., 2021, , 439-459. 672 0 Potential of Exopolysaccharide from Porphyridium marinum to Contend with Bacterial Proliferation, 2.2 Biofilm Formation, and Breast Cancer. Marine Drugs, 2021, 19, 66. Optimization of FDM for Fabrication of PLA-HAp-CS Based Functional Prototypes/Scaffolds Using 674 0 Matrix Co-Relation., 2021, , . An overview of chitosan and its application in infectious diseases. Drug Delivery and Translational 3.0 Research, 2021, 11, 1340-1351. Bloodâ€Compatible Materials: Vascular Endotheliumâ€Mimetic Surfaces that Mitigate Multiple 676 3.9 6 Cellâ€Material Interactions. Advanced Healthcare Materials, 2021, 10, e2001748. Synthesis, Attractiveness and Effectiveness of Chitosan-Tapioca Encapsulates in Atta Sexdens (Hymenoptera: Formicidae). Journal of Polymers and the Environment, 2021, 29, 2869-2880. 2.4 Isolation and characterization of chitosan from Ugandan edible mushrooms, Nile perch scales and 678 1.6 36 banana weevils for biomedical applications. Scientific Reports, 2021, 11, 4116. Non-Digestible Oligosaccharides and Short Chain Fatty Acids as Therapeutic Targets against 1.5 Enterotoxin-Producing Bacteria and Their Toxins. Toxins, 2021, 13, 175. Biological membrane fouling control with the integrated and separated processes of MIEX and UF. 680 3.9 7 Separation and Purification Technology, 2021, 259, 118151. Evaluation of Anti-Biofilm Activity of Mouthrinses Containing Tannic Acid or Chitosan on Dentin In 1.7 Situ. Molecules, 2021, 26, 1351 Smart flame retardant coating containing carboxymethyl chitosan nanoparticles decorated graphene 682 2.4 58 for obtaining multifunctional textiles. Cellulose, 2021, 28, 5087-5105. Thymine-modified chitosan with broad-spectrum antimicrobial activities for wound healing. 5.1 38 Carbohydrate Polymers, 2021, 257, 117'630. Self-microemulsification-assisted incorporation of tacrolimus into hydrophilic nanofibers for facilitated treatment of 2,4-dinitrochlorobenzene induced atopic dermatitis like lesions. Journal of 684 1.4 5 Drug Delivery Science and Technology, 2021, 62, 102326. Antivirulence Properties of a Low-Molecular-Weight Quaternized Chitosan Derivative against 1.6 Pseudomonas aeruginosa. Microorganisms, 2021, 9, 912. Factor XIII Cross-Linked Adhesive Chitosan Hydrogels. ACS Biomaterials Science and Engineering, 2021, 686 2.6 8 7, 2198-2203. Recent development on physical and biological properties of chitosan-based composite films with natural extracts: A review. Journal of Bioactive and Compatible Polymers, 2021, 36, 225-236. PLA-Based Materials Containing Bio-Plasticizers and Chitosan Modified with Rosehip Seed Oil for 688 2.0 20 Ecological Packaging. Polymers, 2021, 13, 1610. Immobilizing Redox Enzyme on Amino Functional Group-Integrated Tailor-Made Polyester Textile: High Loading, Stability, and Application in a Bio-Fenton System. ACS Sustainable Chemistry and Engineering, 2021, 9, 8879-8894. 689 3.2

	CITAT	CITATION REPORT		
#	Article	IF	Citations	
690	Calcium Carbonate–Carboxymethyl Chitosan Hybrid Materials. Materials, 2021, 14, 3336.	1.3	9	
691	Evaluation of the Antibacterial and Antifungal Activities of Chitosan Prepared from the American Cockroach, (Periplaneta americana). Egyptian Academic Journal of Biological Sciences E Medical Entomology & Parasitology, 2021, 13, 39-46.	0.0	0	
692	Chitosan – A Novel Biopolymer AS A Potential Drug Delivery Vehicle. International Journal of Pharmaceutical Sciences Review and Research, 2021, 68, .	0.1	0	
693	Chitosan-based systems aimed at local application for vaginal infections. Carbohydrate Polymers, 2021, 261, 117919.	5.1	30	
694	Molecular docking of secondary metabolites from Indonesian marine and terrestrial organisms targeting SARS-CoV-2 ACE-2, M pro, and PL pro receptors. Pharmacia, 2021, 68, 533-560.	0.4	5	
695	Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Advanced Drug Delivery Reviews, 2021, 174, 30-52.	6.6	62	
696	Chitosan-based blends for biomedical applications. International Journal of Biological Macromolecules, 2021, 183, 1818-1850.	3.6	97	
697	Low-molecular weight chitosan enhances antibacterial effect of antibiotics and permeabilizes cytoplasmic membrane of Staphylococcus epidermidis biofilm cells. Folia Microbiologica, 2021, 66, 983-996.	1.1	6	
698	Antibacterial nano-biocomposite scaffolds of Chitosan, Carboxymethyl Cellulose and Zn & Fe integrated Hydroxyapatite (Chitosan-CMC-FZO@HAp) for bone tissue engineering. Cellulose, 2021, 28, 9207-9226.	2.4	26	
699	Antimicrobial Edible Films and Coatings based on N,O-Carboxymethyl Chitosan incorporated with Ferula Asafoetida (Hing) and Adhatoda Vasica (Adulsa) extract. Advances in Materials and Processing Technologies, 2022, 8, 2699-2715.	0.8	2	
700	Three Birds with One Stone: Preventive Protection of Paper Materials by ZnO-PHMB and UV-531 Composite Systems. Langmuir, 2021, 37, 8445-8454.	1.6	5	
701	An investigation on the morphology and microstructure of electrospun CMCH/PEO and CMCH/PVA nanofibers. Journal of the Textile Institute, 2022, 113, 1974-1982.	1.0	1	
702	Bioâ€Multifunctional Hydrogel Patches for Repairing Fullâ€Thickness Abdominal Wall Defects. Advanced Functional Materials, 2021, 31, 2105614.	7.8	57	
703	Antimicrobial Agents for Textiles: Types, Mechanisms and Analysis Standards. , 0, , .		10	
705	Evaluation of the Bioaerosol Inactivation Ability of Chitosan-Coated Antimicrobial Filters. International Journal of Environmental Research and Public Health, 2021, 18, 7183.	1.2	5	
706	Modified Hairy Nanocrystalline Cellulose as Photobactericidal Nanofillers for Food Packaging Application. ACS Sustainable Chemistry and Engineering, 2021, 9, 10513-10523.	3.2	28	
707	Investigation into the physical properties, antioxidant and antibacterial activity of Bletilla striata polysaccharide/chitosan membranes. International Journal of Biological Macromolecules, 2021, 182, 311-320.	3.6	43	
708	Fabrication of Nano Zero valent Iron/Biopolymer Composite with Antibacterial Properties for Simultaneous Removal of Nitrate and Humic Acid: Kinetics and Isotherm Studies. Journal of Polymers and the Environment, 2022, 30, 907-924.	2.4	6	

# 709	ARTICLE Development of Chitosan-Based Surfaces to Prevent Single- and Dual-Species Biofilms of	IF 1.7	CITATIONS
710	Staphylococcus aureus and Pseudomonas aeruginosa. Molecules, 2021, 26, 4378. Investigation of rheology, printability, and biocompatibility of N,O-carboxymethyl chitosan and agarose bioinks for 3D bioprinting of neuron cells. Materialia, 2021, 18, 101169.	1.3	14
711	Structure-property-processing correlations of longitudinal freeze-cast chitosan scaffolds for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104589.	1.5	7
712	Perspectives on new opportunities for nano-enabled strategies for gene delivery to plants using nanoporous materials. Planta, 2021, 254, 83.	1.6	8
713	Dual-functionalized titanium for enhancing osteogenic and antibacterial properties. Colloids and Interface Science Communications, 2021, 44, 100481.	2.0	7
714	Biofilm formation following chitosan-based varnish or chlorhexidine-fluoride varnish applicationÂin patients undergoing fixed orthodontic treatment: a double blinded randomised controlled trial. BMC Oral Health, 2021, 21, 465.	0.8	9
715	The significance of aqueous binders in lithium-ion batteries. Renewable and Sustainable Energy Reviews, 2021, 147, 111227.	8.2	63
716	A new antibacterial nano-system based on hematoporphyrin-carboxymethyl chitosan conjugate for enhanced photostability and photodynamic activity. Carbohydrate Polymers, 2021, 269, 118242.	5.1	21
717	Insight into antibacterial mechanism of polysaccharides: A review. LWT - Food Science and Technology, 2021, 150, 111929.	2.5	50
718	Chemical extraction and modification of chitin and chitosan from shrimp shells. European Polymer Journal, 2021, 159, 110709.	2.6	98
719	A Î ³ -PGA/KGM-based injectable hydrogel as immunoactive and antibacterial wound dressing for skin wound repair. Materials Science and Engineering C, 2021, 129, 112374.	3.8	32
720	Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implants. Journal of Colloid and Interface Science, 2022, 607, 869-880.	5.0	17
721	Study on inhibitory activity and mechanism of chitosan oligosaccharides on Aspergillus Flavus and Aspergillus Fumigatus. Carbohydrate Polymers, 2022, 275, 118673.	5.1	33
722	Engineered surfaces: A plausible alternative in overviewing critical barriers for reconstructing modern therapeutics or biomimetic scaffolds. , 2021, , 39-80.		1
723	Antimicrobial Properties of Chitosan and Its Derivatives. Advances in Polymer Science, 2021, , 131-168.	0.4	7
724	Design and optimization of polymerization parameters of carboxymethyl chitosan and sodium 2-acrylamido-2-methylpropane sulfonate hydrogels as wound dressing materials. European Polymer Journal, 2021, 143, 110186.	2.6	22
725	Chitosan nanocrystals synthesis <i>via</i> aging and application towards alginate hydrogels for sustainable drug release. Green Chemistry, 2021, 23, 6527-6537.	4.6	16
726	Chitin-based nanomaterials. , 2021, , 249-275.		0

#	Article	IF	CITATIONS
728	Anti-biofouling and Antimicrobial Biomaterials for Tissue Engineering. , 2020, , 333-354.		5
729	Functional Chitosan Carriers for Oral Colon-Specific Drug Delivery. , 2019, , 135-161.		1
730	Antibacterial activities of microwave-assisted synthesized polypyrrole/chitosan and poly (pyrrole-N-(1-naphthyl) ethylenediamine) stimulated by C-dots. Carbohydrate Polymers, 2020, 243, 116474.	5.1	36
731	Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. European Polymer Journal, 2020, 138, 109984.	2.6	372
732	Chapter 1. Antimicrobial Materials—An Overview. Biomaterials Science Series, 2019, , 1-37.	0.1	25
733	Biomedical Applications of Chitosan: An Overview. Journal of Biomaterials and Tissue Engineering, 2012, 2, 100-111.	0.0	73
734	Synthesis, Characterization and Biomedical Applications of Chitosan and Its Derivatives. , 2013, , 15-68.		2
736	Postharvest quality and safety of fresh-cut melon fruits coated with water soluble chitosan films. Progress in Agricultural Engineering Sciences, 2018, 14, 133-145.	0.5	2
737	Functional Characterization of Chitin and Chitosan. Current Chemical Biology, 2009, 3, 203-230.	0.2	679
738	Pharmaceutical Uses of Chitosan in the Medical Field. European Journal of Interdisciplinary Studies, 2015, 1, 35.	0.1	3
739	In Vitro Antimicrobial and Antioxidant Activities of Chitosan Oligosaccharides. Journal of Applied Biological Chemistry, 2009, 52, 84-87.	0.2	8
740	Preparation of Chitosan Derivatives from Gladius of Squid Sepioteuthis lessoniana (Lesson, 1830) and Antimicrobial Potential against Human Pathogens. Journal of Biological Sciences, 2013, 13, 257-263.	0.1	5
741	In vitro screening for anti-microbial activity of chitosans and chitooligosaccharides, aiming at potential uses in functional textiles. Journal of Microbiology and Biotechnology, 2010, 20, 311-318.	0.9	64
742	Amelioratory Effect of Nanoconjugated Vancomycin on Spleen during VRSA-Induced Oxidative Stress. Pathology Research International, 2011, 2011, 1-10.	1.4	8
743	Chitosan Sub-micron Particles Prepared Using Sulfate Ion Salt as Bacteriostatic Materials in Neutral pH Condition. Journal of Biomaterials and Nanobiotechnology, 2011, 02, 347-352.	1.0	3
744	Glutathione-Responsive Carboxymethyl Chitosan Nanoparticles for Controlled Release of Herbicides. Materials Sciences and Applications, 2015, 06, 591-604.	0.3	19
745	Antimicrobial Activity of Chitosan Extracted from Prawn Shell. Indian Journal of Applied Microbiology, 2017, 20, 1-7.	0.1	4
746	Control of Late Blight of Tomato and Potato by Oilgochitosan. Research in Plant Disease, 2011, 17, 129-135.	0.3	5

#	Article	IF	CITATIONS
747	Chitosan A Marine Medical Polymer And Its Lipid Lowering Capacity. The Internet Journal of Health, 2009, 9, .	0.0	2
748	Chitosan/whey Protein (CWP) Edible Films Efficiency for Controlling Mould Growth and on Microbiological, Chemical and Sensory Properties During Storage of Göbek Kashar Cheese. Korean Journal for Food Science of Animal Resources, 2015, 35, 216-224.	1.5	17
749	Dehydrated pork manure by-product: effect of a chitosan amendment on bacterial community and common scab incidence. Phytoprotection, 0, 90, 107-115.	0.3	2
750	A novel CT contrast agent for intestinal-targeted imaging through rectal administration. E-Polymers, 2021, 21, 754-762.	1.3	0
751	Preparation, characterisation and antibacterial properties of thermoplastic chitosan/nano ZnO composites. Materials Technology, 2022, 37, 1846-1853.	1.5	2
752	Gold Nanorods Exhibit Intrinsic Therapeutic Activity via Controlling <i>N</i> 6-Methyladenosine-Based Epitranscriptomics in Acute Myeloid Leukemia. ACS Nano, 2021, 15, 17689-17704.	7.3	36
753	Novel scaffold based graphene oxide doped electrospun iota carrageenan/polyvinyl alcohol for wound healing and pathogen reduction: in-vitro and in-vivo study. Scientific Reports, 2021, 11, 20456.	1.6	16
754	Natural polymeric and peptide-loaded composite wound dressings for scar prevention. Applied Materials Today, 2021, 25, 101186.	2.3	15
755	Complementary experimental/docking approach for determining chitosan and carboxymethylchitosan ability for the formation of active polymer-β-galactosidase adducts. International Journal of Biological Macromolecules, 2021, 192, 736-744.	3.6	6
756	The potential of chitosan-based haemostats for use in neurosurgical setting – Literature review. Journal of Clinical Neuroscience, 2021, 94, 128-134.	0.8	7
757	Chitosan Derivatives for Bioadhesive/Hemostatic Applications (Review). Seikei-Kakou, 2010, 22, 540-544.	0.0	0
758	Carbohydrate-Derived Self-Crosslinkable InÂSitu Gelable Hydrogels forÂModulation of Wound Healing. , 2013, , 739-782.		0
759	Biological Activities of Chitosan-Based Nanomaterials. SpringerBriefs in Plant Science, 2016, , 33-41.	0.4	2
760	Chitosan: A Multifunctional Polymer. Research in Pharmacy and Health Sciences, 2017, 3, 256-276.	0.1	0
761	Chemical Modification of Chitin and Chitosan for Their Potential Applications. , 2017, , 117-175.		0
762	Effect of Edible Coatings and Storage Temperatures on Maintenance of Aril Quality and Microbial Population of Pomegranate cv. Bhagwa Packed in Clamshells. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 2244-2252.	0.0	4
763	Chitosan: An elicitor and antimicrobial Bio-resource in plant protection. Agricultural Reviews, 2018, ,	0.1	2
764	The Effect of Different Matrix Bound on the Transesterification Activity of Immobilized PPD2 Lipase. Journal of Pure and Applied Microbiology, 2018, 12, 513-519.	0.3	1

#	Article	IF	CITATIONS
765	Chitosan and Its Derivatives: A New Versatile Biopolymer for Various Applications. , 2019, , 1-42.		0
766	Biomedical Applications of Chitosan. , 2019, , 3473-3484.		1
767	Structural and biological evaluation of new chitosan membrane for dural closure. Ukrainian Neurosurgical Journal, 2019, 25, 48-55.	0.1	0
768	Enzymatic Destruction of Film Materials on the Basis of Chitosan in the Presence of Cephalosporin Series Antibiotics. Chemistry and Chemical Technology, 2019, 13, 71-76.	0.2	1
769	Chitosan and chitosan-based biomaterials for wound management. , 2020, , 721-759.		5
770	Functional properties of chitin and chitosan-based polymer materials. , 2020, , 177-198.		2
771	The species' composition dynamics of mycobiota philloplane and rhizosphere of Fragaria ananassa Duch. under the chitosan solutions' treatment. Biolohichni Systemy, 2020, 12, 39-51.	0.0	0
772	Treatment of residual pockets using an oscillating chitosan device versus regular curettes alone—A randomized, feasibility parallelâ€arm clinical trial. Journal of Periodontology, 2022, 93, 780-789.	1.7	5
773	Recent Advances in Management of Bacterial Diseases of Crops. , 2021, , 197-210.		0
774	Chitosan and Carboxymethylchitosan as High Turbidity Water Biocoagulants. Journal of Renewable Materials, 2020, 8, 1489-1504.	1.1	4
775	Biomedical applications carboxymethyl chitosans. , 2020, , 433-470.		4
776	Thermoplastic Electrode (TPE)â€based Enzymatic Glucose Sensor Using Polycaprolactoneâ€graphite Composites. Electroanalysis, 2022, 34, 1869-1876.	1.5	4
777	EVALUATION OF EFFICACY OF CHITOSAN BASED HAEMOSTATIC AGENT FOR ACHIEVING HAEMOSTASIS IN VARIOUS PERIODONTAL SURGERIES -A PILOT STUDY , 2020, , 1-3.		0
780	Studies on Chitosan, Chitin and Chitooligosaccharides and Their Biomedical Properties. European Journal of Natural Sciences and Medicine, 2021, 4, 99.	0.1	0
781	Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules, 2021, 26, 7136.	1.7	126
782	Chitosan Functionalization: Covalent and Non-Covalent Interactions and Their Characterization. Polymers, 2021, 13, 4118.	2.0	29
783	Synthesis and characterization of chitosan/montmorillonite nanocomposites for application as edible coating. Food Science and Technology International, 2023, 29, 25-39.	1.1	3
784	Impact of amino acids on enhancing trimethyl chitosan as a nontoxic antiproliferative active biopolymer. Biofuels, Bioproducts and Biorefining, 2022, 16, 537-547.	1.9	3

#	Article	IF	CITATIONS
785	Antimicrobial coatings based on chitosan to prevent implant-associated infections: A systematic review. IScience, 2021, 24, 103480.	1.9	29
786	Antibacterial efficiency of carbon dots against Gram-positive and Gram-negative bacteria: A review. Journal of Environmental Chemical Engineering, 2021, 9, 106821.	3.3	68
787	Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. Advances in Colloid and Interface Science, 2022, 300, 102593.	7.0	47
788	Study on gamma-irradiation degradation of chitosan swollen in Hâ,,Oâ,, solution and its antimicrobial activity for E. coli. Nuclear Science and Technology, 2021, 4, 1-8.	0.0	0
789	Environmentally Friendly Chitosan Biopolymer and its Anti-biofilm Activity― International Journal of Pharmaceutical Sciences Review and Research, 2020, 64, 50-54.	0.1	2
790	Studies on Chitosan Extraction and Its Biomedical Properties. European Journal of Natural Sciences and Medicine, 2020, 3, 69.	0.1	0
791	Antimicrobial effects of chitosan and garlic against <i>Salmonella</i> spp., <i>Escherichia coli</i> O157:H7, and <i>Listeria monocytogenes</i> in hummus during storage at various temperatures. Journal of Food Science, 2022, 87, 833-844.	1.5	5
792	Antimicrobial uses of chitosan. , 2022, , 13-36.		2
793	Development and Characterization of Copper Cross-Linked Freeze-Dried Bioscaffolds for Potential Wound Healing Activity. Journal of Pharmaceutical Innovation, 0, , 1.	1.1	1
794	Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms. Carbohydrate Polymers, 2022, 282, 119132.	5.1	143
795	Preparation, properties and drug controlled release of chitin-based hydrogels: An updated review. Carbohydrate Polymers, 2022, 283, 119177.	5.1	42
796	Non-amide kinetic hydrate inhibitors: A review. Fuel, 2022, 315, 123179.	3.4	28
797	Effects of cashew leaf extract on physicochemical, antioxidant, and antimicrobial properties of N, O–Carboxymethyl chitosan films. Carbohydrate Polymer Technologies and Applications, 2022, 3, 100191.	1.6	10
798	Latest Trends in Surface Modification for Dental Implantology: Innovative Developments and Analytical Applications. Pharmaceutics, 2022, 14, 455.	2.0	27
799	Mupirocin-Loaded Chitosan Microspheres Embedded in Piper betle Extract Containing Collagen Scaffold Accelerate Wound Healing Activity. AAPS PharmSciTech, 2022, 23, 77.	1.5	9
800	Chitosan/Polyacrylamide Green Gels for Water Control in High-Temperature Reservoirs. Energy & Fuels, 2022, 36, 3816-3824.	2.5	8
801	An innovative green synthesis approach of chitosan nanoparticles and their inhibitory activity against phytopathogenic Botrytis cinerea on strawberry leaves. Scientific Reports, 2022, 12, 3515.	1.6	40
802	Synthesis, characterization and application of chitosan conjugated heterocyclic compounds. Journal of Polymer Research, 2022, 29, 1.	1.2	6

ARTICLE IF CITATIONS Accurate fish-freshness prediction label based on red cabbage anthocyanins. Food Control, 2022, 138, 803 2.8 26 109018. High molecular weight chitosan oligosaccharide exhibited antifungal activity by misleading cell wall 804 5.1 organization via targeting PHR transglucosidases. Carbohydrate Polymers, 2022, 285, 119253. High-Performance Biocomposite Polyvinyl Alcohol (PVA) Films Modified with Cellulose Nanocrystals 805 (CNCs), Tannic Acid (TA), and Chitosan (CS) for Food Packaging. Journal of Nanomaterials, 2021, 2021, 1.5 16 Ì-9. Carboxymethyl Chitosan Promotes Migration and Inhibits Lipopolysaccharide-Induced Inflammatory Response in Canine Bone Marrow-Derived Mesenchymal Stem Cells. Journal of Veterinary Clinics, 2021, 806 0.2 38, 261-268. Synthesis, characterization, and molecular docking analysis of Chitosan-gr-Polysulphanilic acid as antimicrobial water-soluble polymers. International Journal of Polymeric Materials and Polymeric 807 1.8 3 Biomaterials, 2023, 72, 271-284. Conversion of Aquaculture Waste into Biomedical Wealth: Chitin and Chitosan Journey. Advances in 1.0 Materials Science and Engineering, 2022, 2022, 1-12. Interfacial biodegradation of phenanthrene in bacteria-carboxymethyl cellulose-stabilized Pickering 812 1.7 4 emulsions. Applied Microbiology and Biotechnology, 2022, 106, 3829-3836. Chitosan-Based Biomaterial Scaffolds for the Repair of Infected Bone Defects. Frontiers in 2.0 Bioengineering and Biotechnology, 2022, 10, . Chitosan oxidative scission in selfâ€neutralizing biocompatible solution of peroxycarbonic acid under 814 0 1.3 highâ€pressure <scp> CO ₂ </scp>. Journal of Applied Polymer Science, 0, , . Preparation of norfloxacin-grafted chitosan antimicrobial sponge and its application in wound 3.6 repair. International Journal of Biological Macromolecules, 2022, 210, 243-251. Chitosan oligosaccharide improves the mucosal immunity of small intestine through activating SIgA 816 1.7 6 production in mice: Proteomic analysis. International Immunopharmacology, 2022, 109, 108826. Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect 1.6 56 Hermetia illucens. Scientific Reports, 2022, 12, 8084. Effect of molecular weight of chitosan on the formation and properties of zein-nisin-chitosan 818 5.1 6 nanocomplexes. Carbohydrate Polymers, 2022, 292, 119664. Fabrication of Silver Nanoparticles / Chitosan Nanofibers Composite Material Using a High-Pressure Wet-Type Jet Mill and their Antibacterial Properties. Zairyo/Journal of the Society of Materials Science, Japan, 2022, 71, 489-494. 0.1 Convenient, nondestructive monitoring and sustained-release of ethephon/chitosan film for 820 3.6 8 on-demand of fruit ripening. International Journal of Biological Macromolecules, 2022, 214, 338-347. Curcumin-loaded multifunctional chitosan gold nanoparticles: An enhanced PDT/PTTâ€,dual-modal phototherapeutic andâ€,pH-responsive antimicrobial agent. Photodiagnosis and Photodynamic Therapy, 2022, 39, 103011. Furcellaran Surface Deposition and Its Potential in Biomedical Applications. International Journal of 822 1.8 3 Molecular Sciences, 2022, 23, 7439. Role of chitosan and chitosan-based nanoparticles in pesticide delivery: avenues and applications., 2022, , 401-434.

#	Article	IF	CITATIONS
824	Efecto de las membranas con Cu+2 sobre el proceso de filtración y capacidad de biocida contra Escherichia coli. Ciencia, TecnologÃa Y Salud, 2022, 9, 98-115.	0.0	0
825	Antimicrobial Application of Chitosan Derivatives and their Nanocomposites. Current Medicinal Chemistry, 2023, 30, 1736-1755.	1.2	5
826	Ultraporous Polyquaternium-Carboxylated Chitosan Composite Hydrogel Spheres with Anticoagulant, Antibacterial, and Rapid Endotoxin Removal Profiles for Sepsis Treatment. Biomacromolecules, 2022, 23, 3728-3742.	2.6	16
827	Recent Progress in ZnO-Based Nanostructures for Photocatalytic Antimicrobial in Water Treatment: A Review. Applied Sciences (Switzerland), 2022, 12, 7910.	1.3	9
828	Chitosan as a potential natural compound to manage plant diseases. International Journal of Biological Macromolecules, 2022, 220, 998-1009.	3.6	70
829	Facile phytosynthesis of gold nanoparticles-doped graphene oxide using Mangifera indica leaf extract: Characterization, antibacterial activity, and catalytic reduction of organic dyes. Materials Today Sustainability, 2022, 19, 100216.	1.9	5
830	Antimicrobial ceramic foam composite air filter prepared from Moroccan red clay, phosphate sludge waste and biopolymer. Applied Clay Science, 2022, 230, 106703.	2.6	1
831	Current challenges and future applications of antibacterial nanomaterials and chitosan hydrogel in burn wound healing. Materials Advances, 2022, 3, 6707-6727.	2.6	10
832	A Review of the Current Status of Research on Chitosan-Modified Polymer. , 2022, 2, 9-12.		0
833	Preparation of Fluorescently Labeled Chitosan-Quercetin Drug-Loaded Nanoparticles with Excellent Antibacterial Properties. Journal of Functional Biomaterials, 2022, 13, 141.	1.8	9
834	Preparation and Applications of Chitosan–Gold Bionanocomposites. Advanced Structured Materials, 2023, , 67-97.	0.3	0
835	Polyethylene Glycol-decorated GO Nanosheets as a Well-Organized Nanohybrid to Enhance the Performance of Chitosan Biopolymer. Journal of Polymers and the Environment, 2022, 30, 5130-5147.	2.4	6
836	Advancement of chitin and chitosan as promising biomaterials. Journal of Saudi Chemical Society, 2022, 26, 101561.	2.4	24
837	Eco-design and tunable structure-properties of chitosan-epoxy-glycerol-silicate biohybrids using integrated crosslinking. Carbohydrate Polymers, 2023, 299, 120187.	5.1	2
838	Fabrication of Silver Nanoparticles/Chitosan Nanofibers Composite Material Using a High-Pressure Wet-Type Jet Mill and Their Antibacterial Properties. Materials Transactions, 2022, 63, 1651-1656.	0.4	1
839	HASS AVOKADO YAPRAĞI: MİKRODALGA DESTEKLİ EKSTRAKSİYON PARAMETRELERİ, FENOLİK BİLEŞ ANTİOKSİDAN VE ANTİDİYABETİK AKTİVİTELERİN OPTİMİZASYONU. Gıda, 0, , 913-923.	ŰKLER, 0.1	0
840	Influence of Quaternary Ammonium Salt Functionalized Chitosan Additive as Sustainable Filler for High-Density Polyethylene Composites. Materials, 2022, 15, 7418.	1.3	2
841	Preparation, physicochemical properties and antimicrobial activity of chitosan from fly pupae. Heliyon, 2022, 8, e11168.	1.4	5

#	Article	IF	CITATIONS
842	Chemical modifications in the structure of marine polysaccharide as serviceable food processing and preservation assistant: A review. International Journal of Biological Macromolecules, 2022, 223, 1539-1555.	3.6	20
843	Sulfamic acid grafted to cross-linked chitosan by dendritic units: a bio-based, highly efficient and heterogeneous organocatalyst for green synthesis of 2,3-dihydroquinazoline derivatives. RSC Advances, 2022, 13, 320-334.	1.7	18
844	Studies of Mercaptosuccinic Acid-Crosslinked Chitosan Hydrogel with Grafted Cinnamaldehyde and Silver Nanoparticles for Antibacterial Biomedical Application. International Journal of Molecular Sciences, 2022, 23, 14806.	1.8	3
845	Chitosan as a potential biomaterial for the management of oral mucositis, a common complication of cancer treatment. Pharmaceutical Development and Technology, 2023, 28, 78-94.	1.1	1
846	A New Approach in Meat Bio-Preservation through the Incorporation of a Heteropolysaccharide Isolated from Lobularia maritima L Foods, 2022, 11, 3935.	1.9	7
848	Antimicrobial Efficiency of Chitosan and Its Methylated Derivative against Lentilactobacillus parabuchneri Biofilms. Molecules, 2022, 27, 8647.	1.7	4
849	Curcumin-loaded alginate hydrogels for cancer therapy and wound healing applications: A review. International Journal of Biological Macromolecules, 2023, 232, 123283.	3.6	21
850	A Comprehensive Review Based on Chitin and Chitosan Composites. Composites Science and Technology, 2023, , 15-66.	0.4	2
851	Chitosan modified with bio-extract as an antibacterial coating with UV filtering feature. International Journal of Biological Macromolecules, 2023, 230, 123145.	3.6	6
852	Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydrate Polymers, 2023, 305, 120555.	5.1	44
853	Water - Based Polyurethanes for Antibacterial Coatings: an Overview. , 2022, 2, 213-242.		0
854	Multi-functional carboxymethyl chitosan/sericin protein/halloysite composite sponge with efficient antibacterial and hemostatic properties for accelerating wound healing. International Journal of Biological Macromolecules, 2023, 234, 123357.	3.6	16
855	Materials for 3D printing in medicine: metals, polymers, ceramics, and hydrogels. , 2023, , 59-103.		0
856	Antimicrobial Coatings: Reviewing Options for Healthcare Applications. Applied Microbiology, 2023, 3, 145-174.	0.7	7
857	Facilely preparing carboxymethyl chitosan/hydroxyethyl cellulose hydrogel films for protective and sustained release of fibroblast growth factor 2 to accelerate dermal tissue repair. Journal of Drug Delivery Science and Technology, 2023, 82, 104318.	1.4	7
858	Organic-solvent-free oxidation of styrene, phenol and sulfides with H2O2 over eco-friendly niobium and tantalum based heterogeneous catalysts. Journal of Industrial and Engineering Chemistry, 2023, 121, 249-263.	2.9	3
859	Chitosan/silver nanocomposites enhanced the biofilm eradication in biofilm forming Gram positive S. aureus. Journal of King Saud University - Science, 2023, 35, 102597.	1.6	5
860	Facile fabrication of efficient flame retardant-modified wool fabrics with antibacterial properties by zincâ€based coating. Thermochimica Acta, 2023, 724, 179488.	1.2	0

#	Article	IF	CITATIONS
861	A comprehensive review of chitosan applications in paper science and technologies. Carbohydrate Polymers, 2023, 309, 120665.	5.1	16
862	Preparation and characterization of carboxymethyl chitosan/polyvinyl alcohol composite hydrogel with improved mechanical and antibacterial properties. Reactive and Functional Polymers, 2023, 187, 105592.	2.0	0
863	Emerging trends in vaccine delivery systems. , 2022, , 361-386.		0
864	NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coordination Chemistry Reviews, 2023, 481, 215052.	9.5	7
865	Carbohydrate polymer derived nanocomposites: design, features and potential for biomedical applications. Polymer-Plastics Technology and Materials, 2023, 62, 582-603.	0.6	2
866	Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis. Molecules, 2023, 28, 2107.	1.7	9
867	Advances in medical textiles. , 2023, , 31-70.		1
868	Recent advances in natural polymer based hydrogels for wound healing applications. , 2023, , 115-149.		Ο
869	Development and Application of Newly Synthesized Guar gum Diamino Benzoic Acid (GDABA) Resin for Elimination of Hazardous Waste Metal Ions from Industrial Effluents. Oriental Journal of Chemistry, 2023, 39, 216-221.	0.1	3
870	Insect-Derived Chitin and Chitosan: A Still Unexploited Resource for the Edible Insect Sector. Sustainability, 2023, 15, 4864.	1.6	12
871	Chitosan Schiff base electrospun fabrication and molecular docking assessment for nonleaching antibacterial nanocomposite production. Cellulose, 2023, 30, 3505-3522.	2.4	7
872	Self-Healing Hydrogels Fabricated by Introducing Antibacterial Long-Chain Alkyl Quaternary Ammonium Salt into Marine-Derived Polysaccharides for Wound Healing. Polymers, 2023, 15, 1467.	2.0	3
873	Chitosan-based biomaterials in biomedical applications. , 2023, , 363-378.		0
874	Chitosan Grafted with Thermoresponsive Poly(di(ethylene glycol) Methyl Ether Methacrylate) for Cell Culture Applications. Polymers, 2023, 15, 1515.	2.0	0
875	A Biomimetic, Bilayered Antimicrobial Collagen-Based Scaffold for Enhanced Healing of Complex Wound Conditions. ACS Applied Materials & Interfaces, 2023, 15, 17444-17458.	4.0	6
876	A Medico-Biological Approach to Chitosan Bionanocomposites. Biological and Medical Physics Series, 2023, , 55-80.	0.3	0
877	Antibacterial Response of Nanostructured Chitosan Hybrid Materials. Biological and Medical Physics Series, 2023, , 161-179.	0.3	1
878	Introductory Aspects of Carboxymethyl Chitosan Derivatives. Advances in Polymer Science, 2023, , .	0.4	Ο

IF CITATIONS # ARTICLE Synthesis, Properties, and Applications of Carboxymethyl Chitosan-Based Hydrogels. Advances in 0.4 0 888 Polymer Science, 2023, , . Carboxymethyl Chitosan for Drug and Vaccine Delivery: An Overview. Advances in Polymer Science, 0.4 Carboxymethyl Chitosan Derivatives in Blood Clotting. Advances in Polymer Science, 2023, , . 900 0.4 0 Clay-Based Aerogels. Springer Handbooks, 2023, , 883-917. Carboxymethyl Chitosan-Based Materials in Packaging, Food, Pharmaceutical, and Cosmetics. Advances 904 0.4 1 in Polymer Science, 2023, , 139-203. ${\sf Electrospinning}$ of Carboxymethyl Chitosan Derivatives-Based Nanofibers and Its Applications. Advances in Polymer Science, 2023, , . Chitosan and its derivatives for nanomaterial formulations: fabrication and physicochemical 924 0 characterization., 2024, , 73-89.