The complexity of disease signaling in Arabidopsis

Current Opinion in Immunology 13, 63-68 DOI: 10.1016/s0952-7915(00)00183-7

Citation Report

#	Article	IF	CITATIONS
1	Induced systemic resistance (ISR) against pathogens – a promising field for ecological research. Perspectives in Plant Ecology, Evolution and Systematics, 2001, 4, 65-79.	1.1	42
2	Isolation of pepper mRNAs differentially expressed during the hypersensitive response to tobacco mosaic virus and characterization of a proteinase inhibitor gene. Plant Science, 2001, 161, 727-737.	1.7	59
4	Different micro-organisms differentially induce Arabidopsis disease response pathways. Plant Physiology and Biochemistry, 2001, 39, 673-680.	2.8	92
5	Engineering disease resistance in plants. Nature, 2001, 411, 865-868.	13.7	118
6	The Role of Ethylene and Wound Signaling in Resistance of Tomato to Botrytis cinerea. Plant Physiology, 2002, 129, 1341-1351.	2.3	301
7	Role of SCF Ubiquitin-Ligase and the COP9 Signalosome in the N Gene–Mediated Resistance Response to Tobacco mosaic virus. Plant Cell, 2002, 14, 1483-1496.	3.1	306
8	Pathogen Challenge, Salicylic Acid, and Jasmonic Acid Regulate Expression of Chitinase Gene Homologs in Pine. Molecular Plant-Microbe Interactions, 2002, 15, 380-387.	1.4	103
9	Ethylene Insensitivity Impairs Resistance to Soilborne Pathogens in Tobacco and Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2002, 15, 1078-1085.	1.4	50
10	The Arabidopsis Thaliana-Pseudomonas Syringae Interaction. The Arabidopsis Book, 2002, 1, e0039.	0.5	421
11	Flagellin perception: a paradigm for innate immunity. Trends in Plant Science, 2002, 7, 251-256.	4.3	488
12	Impact of phyto-oxylipins in plant defense. Trends in Plant Science, 2002, 7, 315-322.	4.3	549
13	Des dérivés d'acides gras dans la résistance des plantes aux attaques microbiennes : à la recherche d'acyle hydrolases impliquées dans la synthèse des oxylipines. Oleagineux Corps Gras Lipides, 2002, 9, 37-42.	0.2	0
14	Phospholipid signalling in plant defence. Current Opinion in Plant Biology, 2002, 5, 332-338.	3.5	223
15	Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 2002, 5, 325-331.	3.5	1,291
16	Jasmonate-related mutants of Arabidopsis as tools for studying stress signaling. Planta, 2002, 214, 497-504.	1.6	119
17	Natural variability in the Arabidopsis response to infection with Erwinia carotovora subsp. carotovora. Planta, 2002, 215, 205-209.	1.6	10
18	Plant defensins. Planta, 2002, 216, 193-202.	1.6	616
19	Runaway cell death, but not basal disease resistance, inlsd1is SA- andNIM1/NPR1-dependent. Plant Journal, 2002, 29, 381-391.	2.8	115

#	Article	IF	CITATIONS
20	Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant Journal, 2002, 29, 23-32.	2.8	689
21	Esa1 , an Arabidopsis mutant with enhanced susceptibility to a range of necrotrophic fungal pathogens, shows a distorted induction of defense responses by reactive oxygen generating compounds. Plant Journal, 2002, 29, 131-140.	2.8	89
22	Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor-treated tobacco leaves are not affected by endogenous levels of salicylic acid. Plant Journal, 2002, 32, 749-762.	2.8	63
23	Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses. Plant Molecular Biology, 2003, 51, 803-815.	2.0	63
24	Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression. Plant Molecular Biology, 2003, 53, 443-456.	2.0	97
25	Interactions Between Signaling Compounds Involved in Plant Defense. Journal of Plant Growth Regulation, 2003, 22, 82-98.	2.8	205
26	Selective desensitization of jasmonate- and pH-dependent signaling in the induction of benzophenanthridine biosynthesis in cells of Eschscholzia californica. Phytochemistry, 2003, 62, 491-500.	1.4	36
27	Quantification of disease progression of several microbial pathogens onArabidopsis thalianausing real-time fluorescence PCR. FEMS Microbiology Letters, 2003, 228, 241-248.	0.7	128
28	Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology, 2003, 14, 177-193.	3.3	521
29	Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis-Pseudomonas syringae pv. tomato interaction. Plant Journal, 2003, 36, 342-352.	2.8	128
30	Negative crossâ€ŧalk between salicylate―and jasmonateâ€mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana. Molecular Ecology, 2003, 12, 1125-1135.	2.0	79
31	Alternaria spp.: from general saprophyte to specific parasite. Molecular Plant Pathology, 2003, 4, 225-236.	2.0	600
32	The Arabidopsis mutant iop1 exhibits induced over-expression of the plant defensin gene PDF1.2 and enhanced pathogen resistance. Molecular Plant Pathology, 2003, 4, 479-486.	2.0	22
33	Biochemical Diversity among the 1-Amino-cyclopropane-1-Carboxylate Synthase Isozymes Encoded by the Arabidopsis Gene Family. Journal of Biological Chemistry, 2003, 278, 49102-49112.	1.6	331
34	NPR1 Modulates Cross-Talk between Salicylate- and Jasmonate-Dependent Defense Pathways through a Novel Function in the Cytosol. Plant Cell, 2003, 15, 760-770.	3.1	1,011
35	Interactive Effects of Jasmonic Acid, Salicylic Acid, and Gibberellin on Induction of Trichomes in Arabidopsis. Plant Physiology, 2003, 133, 1367-1375.	2.3	328
36	ETHYLENE RESPONSE FACTOR1 Integrates Signals from Ethylene and Jasmonate Pathways in Plant Defense[W]. Plant Cell, 2003, 15, 165-178.	3.1	1,187
37	Defense Gene Expression Analysis of Arabidopsis thaliana Parasitized by Orobanche ramosa. Phytopathology, 2003, 93, 451-457.	1.1	67

#	Article	IF	CITATIONS
38	Induction of Resistance and Expression of Defense-Related Genes in Tobacco Leaves Infiltrated with Ralstonia solanacearum. Plant and Cell Physiology, 2003, 44, 287-295.	1.5	45
39	Pathogen-responsive wheat PR4 genes are induced by activators of systemic acquired resistance and wounding. Plant Science, 2003, 164, 1067-1078.	1.7	77
40	Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants?. Trends in Plant Science, 2003, 8, 263-271.	4.3	448
41	Pathogen-Responsive Expression of a Putative ATP-Binding Cassette Transporter Gene Conferring Resistance to the Diterpenoid Sclareol Is Regulated by Multiple Defense Signaling Pathways in Arabidopsis. Plant Physiology, 2003, 133, 1272-1284.	2.3	194
42	Modulation of CYP79 Genes and Glucosinolate Profiles in Arabidopsis by Defense Signaling Pathways. Plant Physiology, 2003, 131, 298-308.	2.3	314
43	Systemic Gene Expression in Arabidopsis during an Incompatible Interaction with Alternaria brassicicola Â. Plant Physiology, 2003, 132, 999-1010.	2.3	160
44	Intracellular Replication of Mycobacterium marinum within Dictyostelium discoideum : Efficient Replication in the Absence of Host Coronin. Infection and Immunity, 2003, 71, 3578-3586.	1.0	125
45	Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10552-10557.	3.3	311
46	Plastidial Fatty Acid Signaling Modulates Salicylic Acid– and Jasmonic Acid–Mediated Defense Pathways in the Arabidopsis ssi2 Mutant. Plant Cell, 2003, 15, 2952-2965.	3.1	221
47	A Role for the GCC-Box in Jasmonate-Mediated Activation of the PDF1.2 Gene of Arabidopsis. Plant Physiology, 2003, 132, 1020-1032.	2.3	385
48	Mode of Action of Plant Defensins Suggests Therapeutic Potential. Current Drug Targets Infectious Disorders, 2003, 3, 1-8.	2.1	60
49	Drosophila melanogasterAntimicrobial Defense. Journal of Infectious Diseases, 2003, 187, S327-S324.	1.9	99
50	Aphid-Induced Defense Responses in Mi-1-Mediated Compatible and Incompatible Tomato Interactions. Molecular Plant-Microbe Interactions, 2003, 16, 699-708.	1.4	219
51	Erwinia carotovora subsp. carotovora and Erwinia-Derived Elicitors HrpN and PehA Trigger Distinct but Interacting Defense Responses and Cell Death in Arabidopsis. Molecular Plant-Microbe Interactions, 2003, 16, 179-187.	1.4	81
52	An Investigation into the Involvement of Defense Signaling Pathways in Components of the Nonhost Resistance of Arabidopsis thaliana to Rust Fungi Also Reveals a Model System for Studying Rust Fungal Compatibility. Molecular Plant-Microbe Interactions, 2003, 16, 398-404.	1.4	102
53	Ethylene-Insensitive Tobacco Shows Differentially Altered Susceptibility to Different Pathogens. Phytopathology, 2003, 93, 813-821.	1.1	74
54	The Role of the Jasmonate Response in Plant Susceptibility to Diverse Pathogens with a Range of Lifestyles. Plant Physiology, 2004, 135, 530-538.	2.3	338
55	A Novel Arabidopsis-Colletotrichum Pathosystem for the Molecular Dissection of Plant-Fungal Interactions. Molecular Plant-Microbe Interactions, 2004, 17, 272-282.	1.4	214

#	Article	IF	CITATIONS
56	Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2275-2280.	3.3	126
57	Capsicum annuum Tobacco Mosaic Virus-Induced Clone 1 Expression Perturbation Alters the Plant's Response to Ethylene and Interferes with the Redox Homeostasis. Plant Physiology, 2004, 135, 561-573.	2.3	14
58	Unique and Overlapping Expression Patterns among the Arabidopsis 1-Amino-Cyclopropane-1-Carboxylate Synthase Gene Family Members. Plant Physiology, 2004, 136, 2982-3000.	2.3	339
59	Ethylene Response Factor 1 Mediates Arabidopsis Resistance to the Soilborne Fungus Fusarium oxysporum. Molecular Plant-Microbe Interactions, 2004, 17, 763-770.	1.4	268
60	The Role of Salicylic Acid and Nitric Oxide in Programmed Cell Death and Induced Resistance. Ecological Studies, 2004, , 111-150.	0.4	8
61	Induction of Resistance in Melon Seedlings Against Soil-borne Fungal Pathogens by Gaseous Treatments with Methyl Jasmonate and Ethylene. Journal of Phytopathology, 2004, 152, 491-497.	0.5	25
62	Mutual antagonism of ethylene and jasmonic acid regulates ozone-induced spreading cell death inArabidopsis. Plant Journal, 2004, 39, 59-69.	2.8	109
63	The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. Plant Journal, 2004, 39, 790-808.	2.8	247
64	An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant Journal, 2004, 41, 304-318.	2.8	148
65	Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant Journal, 2005, 41, 451-463.	2.8	222
66	The jasmonate-insensitive mutant jin1 shows increased resistance to biotrophic as well as necrotrophic pathogens. Molecular Plant Pathology, 2004, 5, 425-434.	2.0	95
67	An Arabidopsis mutant with altered hypersensitive response to Xanthomonas campestris pv. campestris, hxc1, displays a complex pathophenotype. Molecular Plant Pathology, 2004, 5, 453-464.	2.0	7
68	The CBEL elicitor of Phytophthora parasitica var. nicotianae activates defence in Arabidopsis thaliana via three different signalling pathways. New Phytologist, 2004, 162, 501-510.	3.5	60
69	Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunological Reviews, 2004, 198, 267-284.	2.8	272
70	NPR1: the spider in the web of induced resistance signaling pathways. Current Opinion in Plant Biology, 2004, 7, 456-464.	3.5	435
71	The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. Virology, 2004, 320, 107-120.	1.1	83
72	Indirect Defence of Plants against Herbivores: UsingArabidopsis thalianaas a Model Plant. Plant Biology, 2004, 6, 387-401.	1.8	145
73	SIVB 2003 Congress Symposium Proceeding: Plant-Targets of Pathogenic Effectors Can Transduce Both Virulence and Resistance Signals. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 251-255.	0.9	Ο

#	Article	IF	CITATIONS
74	DNA fragmentation in Sekiguchi lesion mutants of rice infected with Magnaporthe grisea. Journal of General Plant Pathology, 2004, 70, 321-328.	0.6	9
75	Jasmonates—Signals in plant-microbe interactions. Journal of Plant Growth Regulation, 2004, 23, 211-222.	2.8	12
76	Involvement of jasmonic acid and derivatives in plant responses to pathogens and insects and in fruit ripening. Journal of Plant Growth Regulation, 2004, 23, 246-260.	2.8	10
77	Jasmonates - Signals in Plant-Microbe Interactions. Journal of Plant Growth Regulation, 2004, 23, 211-222.	2.8	194
78	Involvement of Jasmonic Acid and Derivatives in Plant Response to Pathogen and Insects and in Fruit Ripening. Journal of Plant Growth Regulation, 2004, 23, 246-260.	2.8	33
79	Pine genes regulated by the necrotrophic pathogen Fusarium circinatum. Theoretical and Applied Genetics, 2004, 109, 922-932.	1.8	36
80	Characterisation of anArabidopsis-Leptosphaeria maculanspathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant Journal, 2004, 37, 9-20.	2.8	100
81	Induction of Resistance in Melon to Didymella bryoniae and Sclerotinia sclerotiorum by Seed Treatments with Acibenzolar-S -methyl and Methyl Jasmonate but not with Salicylic Acid. Journal of Phytopathology, 2004, 152, 34-42.	0.5	66
82	JASMONATE-INSENSITIVE1 Encodes a MYC Transcription Factor Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis[W]. Plant Cell, 2004, 16, 1938-1950.	3.1	1,165
83	Increased Plant Fitness by Rhizobacteria. Ecological Studies, 2004, , 177-205.	0.4	101
84	Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis. Plant Cell, 2004, 16, 3460-3479.	3.1	1,017
86	A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments. Physiological and Molecular Plant Pathology, 2004, 64, 331-341.	1.3	37
87	Identification of sugarcane genes induced in disease-resistant somaclones upon inoculation with Ustilago scitaminea or Bipolaris sacchari. Plant Physiology and Biochemistry, 2005, 43, 1115-1121.	2.8	53
88	Abscisic Acid and Callose: Team Players in Defence Against Pathogens?. Journal of Phytopathology, 2005, 153, 377-383.	0.5	117
89	ups1, an Arabidopsis thaliana camalexin accumulation mutant defective in multiple defence signalling pathways. Plant Journal, 2005, 41, 673-684.	2.8	34
90	Staphylococcus aureus pathogenicity on Arabidopsis thaliana is mediated either by a direct effect of salicylic acid on the pathogen or by SA-dependent, NPR1-independent host responses. Plant Journal, 2005, 42, 417-432.	2.8	60
91	Multiple defence signals induced by Erwinia carotovora ssp. carotovora elicitors in potato. Molecular Plant Pathology, 2005, 6, 541-549.	2.0	33
92	Potential role for salicylic acid in induced resistance of asparagus roots to Fusarium oxysporum f.sp. asparagi. Plant Pathology, 2005, 54, 227-232.	1.2	63

#	Article	IF	CITATIONS
93	The role of abscisic acid in plant–pathogen interactions. Current Opinion in Plant Biology, 2005, 8, 409-414.	3.5	706
94	Genetic dissection of fusiform rust and pitch canker disease traits in loblolly pine. Theoretical and Applied Genetics, 2005, 110, 948-958.	1.8	48
95	A proximal upstream sequence controls tissue-specific expression of Lem2, a salicylate-inducible barley lectin-like gene. Planta, 2005, 221, 170-183.	1.6	28
96	Regulation of elicitin-induced ethylene production in suspension-cultured tobacco BY-2 cells. Journal of General Plant Pathology, 2005, 71, 273-279.	0.6	4
97	Genomic Analysis of the 12-oxo-phytodienoic Acid Reductase Gene Family of Zea mays. Plant Molecular Biology, 2005, 59, 323-343.	2.0	75
98	Chlorophyllase 1, a Damage Control Enzyme, Affects the Balance between Defense Pathways in Plants. Plant Cell, 2005, 17, 282-294.	3.1	241
99	A Peroxiredoxin Q Homolog from Gentians is Involved in Both Resistance Against Fungal Disease and Oxidative Stress. Plant and Cell Physiology, 2005, 46, 1007-1015.	1.5	56
100	Transcriptional Profiling of Sorghum Induced by Methyl Jasmonate, Salicylic Acid, and Aminocyclopropane Carboxylic Acid Reveals Cooperative Regulation and Novel Gene Responses. Plant Physiology, 2005, 138, 352-368.	2.3	189
101	An Arabidopsis Homeodomain Transcription Factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, Mediates Resistance to Infection by Necrotrophic Pathogens. Plant Cell, 2005, 17, 2123-2137.	3.1	108
102	Signal Crosstalk and Induced Resistance: Straddling the Line Between Cost and Benefit. Annual Review of Phytopathology, 2005, 43, 545-580.	3.5	525
103	Pathogen-inducible cDNAs from the interaction of the root rot fungus Heterobasidion annosum with Scots pine (Pinus sylvestris L.). Plant Science, 2005, 168, 365-372.	1.7	40
104	An extract of Penicillium chrysogenum elicits early defense-related responses and induces resistance in Arabidopsis thaliana independently of known signalling pathways. Physiological and Molecular Plant Pathology, 2005, 67, 180-193.	1.3	44
105	Phenotypical and molecular characterization of the Tomato mottle Taino virus–Nicotiana megalosiphon interaction. Physiological and Molecular Plant Pathology, 2005, 67, 231-236.	1.3	9
106	Signal Signature and Transcriptome Changes of Arabidopsis During Pathogen and Insect Attack. Molecular Plant-Microbe Interactions, 2005, 18, 923-937.	1.4	909
107	Involvement of ethylene biosynthesis and perception in the susceptibility of citrus fruits to Penicillium digitatum infection and the accumulation of defence-related mRNAs. Journal of Experimental Botany, 2005, 56, 2183-2193.	2.4	78
108	Lipids, Lipases, and Lipid-Modifying Enzymes in Plant Disease Resistance. Annual Review of Phytopathology, 2005, 43, 229-260.	3.5	255
109	Arabidopsis ssi2-Conferred Susceptibility to Botrytis cinerea Is Dependent on EDS5 and PAD4. Molecular Plant-Microbe Interactions, 2005, 18, 363-370.	1.4	52
110	Electrophysiology and Plant Responses to Biotic Stress. , 2006, , 461-481.		14

#	Article	IF	CITATIONS
112	Early Signaling Events Induced by Elicitors of Plant Defenses. Molecular Plant-Microbe Interactions, 2006, 19, 711-724.	1.4	509
113	Transgenic Tobacco Plants Overexpressing Chitinases of Fungal Origin Show Enhanced Resistance to Biotic and Abiotic Stress Agents. Plant Physiology, 2006, 142, 722-730.	2.3	222
114	Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. Cell, 2006, 124, 803-814.	13.5	2,467
115	Significance of Inducible Defense-related Proteins in Infected Plants. Annual Review of Phytopathology, 2006, 44, 135-162.	3.5	2,754
116	The Role of Ethylene in Host-Pathogen Interactions. Annual Review of Phytopathology, 2006, 44, 393-416.	3.5	430
117	The Arabidopsis defense response mutant esa1 as a model to discover novel resistance traits against Fusarium diseases. Plant Science, 2006, 171, 585-595.	1.7	27
118	Differential induction of NPR1 during defense responses in Brassica juncea. Physiological and Molecular Plant Pathology, 2006, 68, 128-137.	1.3	26
119	Ethylene as a modulator of disease resistance in plants. Trends in Plant Science, 2006, 11, 184-191.	4.3	517
120	Engineering Fungal Resistance in Crops. , 2006, , 225-239.		5
122	Natural Variation in Partial Resistance to Pseudomonas syringae Is Controlled by Two Major QTLs in Arabidopsis thaliana. PLoS ONE, 2006, 1, e123.	1.1	33
124	Disease―and Performanceâ€Related Traits of Ethyleneâ€Insensitive Soybean. Crop Science, 2006, 46, 893-901.	0.8	12
125	Yeast Increases Resistance in Arabidopsis Against Pseudomonas syringae and Botrytis cinerea by Salicylic Acid-Dependent as Well as -Independent Mechanisms. Molecular Plant-Microbe Interactions, 2006, 19, 1138-1146.	1.4	35
126	Acibenzolar-S-methyl and methyl jasmonate treatments of glasshouse-grown freesias suppress post-harvest petal specking caused by <i>Botrytis cinerea</i> . Journal of Horticultural Science and Biotechnology, 2006, 81, 1043-1051.	0.9	18
127	Effects of postharvest methyl jasmonate treatments against Botrytis cinerea on Geraldton waxflower (Chamelaucium uncinatum). Australian Journal of Experimental Agriculture, 2006, 46, 717.	1.0	17
128	EIL2 Transcription Factor and Glutathione Synthetase Are Required for Defense of Tobacco Against Tobacco Blue Mold. Molecular Plant-Microbe Interactions, 2006, 19, 399-406.	1.4	17
129	Defects in Allene Oxide Synthase and 12-Oxa-Phytodienoic Acid Reductase Alter the Resistance to Pseudomonas syringae and Botrytis cinerea. Journal of Phytopathology, 2006, 154, 740-744.	0.5	21
130	Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 2006, 7, 1-16.	2.0	906
131	Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 2006, 7, 71-86.	2.0	758

#	ARTICLE	IF	CITATIONS
132	WRKY70 modulates the selection of signaling pathways in plant defense. Plant Journal, 2006, 46, 477-491.	2.8	466
133	Altering glucosinolate profiles modulates disease resistance in plants. Plant Journal, 2006, 46, 758-767.	2.8	201
134	Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant Journal, 2006, 46, 961-970.	2.8	204
135	A cDNA microarray approach to decipher sunflower (Helianthus annuus) responses to the necrotrophic fungus Phoma macdonaldii. New Phytologist, 2006, 170, 523-536.	3.5	38
136	PLANT-MEDIATED INTERACTIONS BETWEEN PATHOGENIC MICROORGANISMS AND HERBIVOROUS ARTHROPODS. Annual Review of Entomology, 2006, 51, 663-689.	5.7	412
137	Chemosensation in C. elegans. WormBook, 2006, , 1-29.	5.3	603
138	Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza, 2006, 16, 413-419.	1.3	161
139	Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta, 2006, 225, 1-12.	1.6	205
140	Nitric oxide mediates the fungal elicitor-induced puerarin biosynthesis in Pueraria thomsonii Benth. suspension cells through a salicylic acid (SA)-dependent and a jasmonic acid (JA)-dependent signal pathway. Science in China Series C: Life Sciences, 2006, 49, 379-389.	1.3	44
141	Salicylic acid mediates resistance to the vascular wilt pathogenFusarium oxysporumin the model hostArabidopsis thaliana. Australasian Plant Pathology, 2006, 35, 581.	0.5	93
142	Over-expression of a pathogenesis-related protein gene in transgenic tomato alters the transcription patterns of other defence genes. Journal of Horticultural Science and Biotechnology, 2006, 81, 27-32.	0.9	8
143	Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis. Journal of Experimental Botany, 2006, 57, 1299-1308.	2.4	110
144	Chemical Signals in Plant Resistance: Salicylic Acid. , 2006, , 143-165.		1
145	Oxylipin Profiling of the Hypersensitive Response inArabidopsis thaliana. Journal of Biological Chemistry, 2006, 281, 31528-31537.	1.6	136
146	Herbivore-Induced Resistance against Microbial Pathogens in Arabidopsis. Plant Physiology, 2006, 142, 352-363.	2.3	207
147	The Transcription Factors WRKY11 and WRKY17 Act as Negative Regulators of Basal Resistance in Arabidopsis thaliana. Plant Cell, 2006, 18, 3289-3302.	3.1	391
148	Comparative Immunology. , 2006, , 611-637.		5
149	The Arabidopsis thaliana JASMONATE INSENSITIVE 1 Gene Is Required for Suppression of Salicylic Acid-Dependent Defenses During Infection by Pseudomonas syringae. Molecular Plant-Microbe Interactions, 2006, 19, 789-800.	1.4	217

#	Article	IF	CITATIONS
150	Cracking the Green Paradigm: Functional Coding of Phosphoinositide Signals in Plant Stress Responses. , 2006, 39, 207-237.		41
151	Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18395-18400.	3.3	110
152	Commercialization of Plant Systemic Defense Activation: Theory, Problems and Successes. , 2006, , 386-414.		12
153	Virulence Strategies of Plant Pathogenic Bacteria. , 2006, , 421-440.		20
154	Defense Against <i>Sclerotinia sclerotiorum</i> in <i>Arabidopsis</i> Is Dependent on Jasmonic Acid, Salicylic Acid, and Ethylene Signaling. Molecular Plant-Microbe Interactions, 2007, 20, 1384-1395.	1.4	146
155	Ethylene Is One of the Key Elements for Cell Death and Defense Response Control in the Arabidopsis Lesion Mimic Mutant <i>vad1</i> Â. Plant Physiology, 2007, 145, 465-477.	2.3	108
156	GmEREBP1 Is a Transcription Factor Activating Defense Genes in Soybean and Arabidopsis. Molecular Plant-Microbe Interactions, 2007, 20, 107-119.	1.4	78
157	Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis thaliana. Journal of Experimental Botany, 2007, 58, 4147-4159.	2.4	38
158	Oxo-Phytodienoic Acid-Containing Galactolipids in Arabidopsis: Jasmonate Signaling Dependence. Plant Physiology, 2007, 145, 1658-1669.	2.3	104
159	PathoPlant(R): a platform for microarray expression data to analyze co-regulated genes involved in plant defense responses. Nucleic Acids Research, 2007, 35, D841-D845.	6.5	38
160	Detached and Attached Arabidopsis Leaf Assays Reveal Distinctive Defense Responses Against Hemibiotrophic Colletotrichum spp Molecular Plant-Microbe Interactions, 2007, 20, 1308-1319.	1.4	94
161	The Chitin-Binding <i>Cladosporium fulvum</i> Effector Protein Avr4 Is a Virulence Factor. Molecular Plant-Microbe Interactions, 2007, 20, 1092-1101.	1.4	223
162	Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends in Plant Science, 2007, 12, 564-569.	4.3	399
163	Costs and trade-offs associated with induced resistance. Physiological and Molecular Plant Pathology, 2007, 71, 3-17.	1.3	300
164	Antifungal activity of rice Pex5p, a receptor for peroxisomal matrix proteins. Biochemical and Biophysical Research Communications, 2007, 359, 941-946.	1.0	15
165	The Human Fungal Pathogen Cryptococcus Can Complete Its Sexual Cycle during a Pathogenic Association with Plants. Cell Host and Microbe, 2007, 1, 263-273.	5.1	175
166	ABA Is an Essential Signal for Plant Resistance to Pathogens Affecting JA Biosynthesis and the Activation of Defenses in Arabidopsis. Plant Cell, 2007, 19, 1665-1681.	3.1	755
167	The Phytotoxin Coronatine Contributes to Pathogen Fitness and Is Required for Suppression of Salicylic Acid Accumulation in Tomato Inoculated with <i>Pseudomonas syringae</i> pv.< <i>tomato</i> DC3000. Molecular Plant-Microbe Interactions, 2007, 20, 955-965.	1.4	222

#	Article	IF	CITATIONS
168	Plant physiology meets phytopathology: plant primary metabolism and plant pathogen interactions. Journal of Experimental Botany, 2007, 58, 4019-4026.	2.4	635
169	Signalling Cascades Involved in Induced Resistance. , 0, , 65-88.		19
170	Salicylic Acid-, Jasmonic Acid- and Ethylenemediated Regulation of Plant Defense Signaling. , 2007, 28, 55-83.		50
172	Functional genomics of plant infection by the rice blast fungus Magnaporthe grisea. , 0, , 227-254.		0
173	Pseudomonas-induced defence molecules in rice plants against leaffolder (Cnaphalocrocis medinalis) pest. Pest Management Science, 2007, 63, 714-721.	1.7	56
174	Induced plant resistance and salicylic acid: A review. Applied Biochemistry and Microbiology, 2007, 43, 367-373.	0.3	42
175	Effects of Light Quality on Induction of Tryptamine-mediated Resistance in Lesion Mimic Mutant of Rice Infected with Magnaporthe grisea. Journal of Phytopathology, 2007, 155, 228-235.	0.5	11
176	Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiologia Plantarum, 2007, 131, 434-447.	2.6	115
177	Wounding induces resistance to pathogens with different lifestyles in tomato: role of ethylene in crossâ€protection. Plant, Cell and Environment, 2007, 30, 1357-1365.	2.8	36
178	Increased SA in <i>NPR1â€</i> silenced plants antagonizes JA and JAâ€dependent direct and indirect defenses in herbivoreâ€attacked <i>Nicotiana attenuata</i> in nature. Plant Journal, 2007, 52, 700-715.	2.8	97
179	Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Molecular Plant Pathology, 2007, 8, 41-54.	2.0	164
180	<i>Botrytis cinerea</i> : the cause of grey mould disease. Molecular Plant Pathology, 2007, 8, 561-580.	2.0	1,345
181	Only an early nitric oxide burst and the following wave of secondary nitric oxide generation enhanced effective defence responses of pelargonium to a necrotrophic pathogen. New Phytologist, 2007, 175, 718-730.	3.5	108
182	Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps?. FEMS Microbiology Reviews, 2007, 31, 239-277.	3.9	149
183	Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects. Drug Discovery Today, 2007, 12, 167-173.	3.2	20
184	Inducible cell death in plant immunity. Seminars in Cancer Biology, 2007, 17, 166-187.	4.3	98
185	Modulation of Plant Defenses by Ethylene. Journal of Plant Growth Regulation, 2007, 26, 160-177.	2.8	123
186	How plants recognize pathogens and defend themselves. Cellular and Molecular Life Sciences, 2007, 64, 2726-2732.	2.4	197

щ		IE	CITATIONS
#	ARTICLE Identification, expression analysis and characterization of defense and signaling genes in Vitis	IF	CITATIONS
187	vinifera. Plant Physiology and Biochemistry, 2008, 46, 469-481.	2.8	57
188	Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiology and Biochemistry, 2008, 46, 941-950.	2.8	676
189	Molecular characterization of a pepper C2 domain-containing SRC2 protein implicated in resistance against host and non-host pathogens and abiotic stresses. Planta, 2008, 227, 1169-1179.	1.6	35
190	Cross Talk in Defense Signaling. Plant Physiology, 2008, 146, 839-844.	2.3	878
191	Integrated Transcriptomics, Proteomics, and Metabolomics Analyses To Survey Ozone Responses in the Leaves of Rice Seedling. Journal of Proteome Research, 2008, 7, 2980-2998.	1.8	159
192	Transcriptome analysis of <i>Arabidopsis</i> roots treated with signaling compounds: a focus on signal transduction, metabolic regulation and secretion. New Phytologist, 2008, 179, 209-223.	3.5	112
193	Constitutive expression of a rice GTPaseâ€activating protein induces defense responses. New Phytologist, 2008, 179, 530-545.	3.5	44
194	Constitutive expression of <i>Arabidopsis NPR1 </i> confers enhanced resistance to the early instars of <i>Spodoptera litura </i> in transgenic tobacco. Physiologia Plantarum, 2008, 133, 765-775.	2.6	43
195	Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Current Opinion in Plant Biology, 2008, 11, 420-427.	3.5	148
196	Biotechnological potential of antimicrobial peptides from flowers. Peptides, 2008, 29, 1842-1851.	1.2	80
197	Building up plant defenses by breaking down proteins. Plant Science, 2008, 174, 375-385.	1.7	45
198	Correlation of ethylene synthesis in Citrus fruits and their susceptibility to Alternaria alternata pv. citri. Physiological and Molecular Plant Pathology, 2008, 72, 162-166.	1.3	17
199	Global Switches and Fine-Tuning—ABA Modulates Plant Pathogen Defense. Molecular Plant-Microbe Interactions, 2008, 21, 709-719.	1.4	409
200	Maize 9-Lipoxygenase ZmLOX3 Controls Development, Root-Specific Expression of Defense Genes, and Resistance to Root-Knot Nematodes. Molecular Plant-Microbe Interactions, 2008, 21, 98-109.	1.4	157
201	Function of Jasmonate in Response and Tolerance of Arabidopsis to Thrip Feeding. Plant and Cell Physiology, 2008, 49, 68-80.	1.5	108
202	Low Levels of Polymorphism in Genes That Control the Activation of Defense Response in <i>Arabidopsis thaliana</i> . Genetics, 2008, 178, 2031-2043.	1.2	57
203	Differential Effectiveness of Microbially Induced Resistance Against Herbivorous Insects in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2008, 21, 919-930.	1.4	213
204	Variations in defense related enzyme activities in tomato during the infection with bacterial wilt pathogen. Journal of Plant Interactions, 2008, 3, 245-253.	1.0	20

#	Article	IF	CITATIONS
205	Gene silencing to investigate the roles of receptor-like proteins in Arabidopsis. Plant Signaling and Behavior, 2008, 3, 893-896.	1.2	13
206	Horticultural applications of jasmonates. Journal of Horticultural Science and Biotechnology, 2008, 83, 283-304.	0.9	136
207	Glycerol-3-Phosphate Levels Are Associated with Basal Resistance to the Hemibiotrophic Fungus <i>Colletotrichum higginsianum</i> in Arabidopsis Â. Plant Physiology, 2008, 147, 2017-2029.	2.3	71
208	A Genome-Wide Functional Investigation into the Roles of Receptor-Like Proteins in Arabidopsis Â. Plant Physiology, 2008, 147, 503-517.	2.3	266
209	Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Functional Plant Biology, 2008, 35, 1255.	1.1	101
210	Ethylene- and pathogen-inducible Arabidopsis acyl-CoA-binding protein 4 interacts with an ethylene-responsive element binding protein. Journal of Experimental Botany, 2008, 59, 3997-4006.	2.4	105
211	The <i>Cladosporium fulvum</i> Virulence Protein Avr2 Inhibits Host Proteases Required for Basal Defense Â. Plant Cell, 2008, 20, 1948-1963.	3.1	230
212	Molecular and Functional Profiling of Arabidopsis Pathogenesis-Related Genes: Insights into Their Roles in Salt Response of Seed Germination. Plant and Cell Physiology, 2008, 49, 334-344.	1.5	197
213	Global Gene Expression Profiles Suggest an Important Role for Nutrient Acquisition in Early Pathogenesis in a Plant Model of <i>Pseudomonas aeruginosa</i> Infection. Applied and Environmental Microbiology, 2008, 74, 5784-5791.	1.4	23
214	Kinetics of Salicylate-Mediated Suppression of Jasmonate Signaling Reveal a Role for Redox Modulation. Plant Physiology, 2008, 147, 1358-1368.	2.3	331
215	Towards a reporter system to identify regulators of cross-talk between salicylate and jasmonate signaling pathways in Arabidopsis. Plant Signaling and Behavior, 2008, 3, 543-546.	1.2	33
219	OXI1 protein kinase is required for plant immunity against Pseudomonas syringae in Arabidopsis. Journal of Experimental Botany, 2009, 60, 3727-3735.	2.4	72
220	Rice Blast Fungus (<i>Magnaporthe oryzae</i>) Infects Arabidopsis via a Mechanism Distinct from That Required for the Infection of Rice Â. Plant Physiology, 2009, 149, 474-486.	2.3	63
221	Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 2009, 60, 377-390.	2.4	711
222	Chapter 15 Ecological Consequences of Plant Defence Signalling. Advances in Botanical Research, 2009, , 667-716.	0.5	23
223	<i>Agrobacterium tumefaciens</i> Promotes Tumor Induction by Modulating Pathogen Defense in <i>Arabidopsis thaliana</i> Â. Plant Cell, 2009, 21, 2948-2962.	3.1	138
224	Grapevine MLO candidates required for powdery mildew pathogenicity?. Plant Signaling and Behavior, 2009, 4, 522-523.	1.2	19
225	Role of Abscisic Acid in Disease Resistance. , 0, , 1-22.		6

#	Article	IF	CITATIONS
226	A Combinatorial Interplay Among the 1-Aminocyclopropane-1-Carboxylate Isoforms Regulates Ethylene Biosynthesis in <i>Arabidopsis thaliana</i> . Genetics, 2009, 183, 979-1003.	1.2	263
227	RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. Journal of Experimental Botany, 2009, 60, 591-602.	2.4	189
228	Role of plant hormones in plant defence responses. Plant Molecular Biology, 2009, 69, 473-488.	2.0	2,187
229	Differential expression of eight defensin genes of N. benthamiana following biotic stress, wounding, ethylene, and benzothiadiazole treatments. Plant Cell Reports, 2009, 28, 703-717.	2.8	12
230	Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitorâ€induced flavonol glycoside accumulation of <i>Ginkgo biloba</i> cells. Plant, Cell and Environment, 2009, 32, 960-967.	2.8	59
231	Heterotrimeric G proteinsâ€mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acidâ€; jasmonic acid/ethylene―and abscisic acidâ€mediated defense signaling. Plant Journal, 2009, 58, 69-81.	2.8	149
232	A locus conferring resistance to <i>Colletotrichum higginsianum</i> is shared by four geographically distinct Arabidopsis accessions. Plant Journal, 2009, 60, 602-613.	2.8	131
233	Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 2009, 5, 308-316.	3.9	1,987
234	Fatty Acid–Derived Signals in Plant Defense. Annual Review of Phytopathology, 2009, 47, 153-176.	3.5	374
235	Stress Signaling I: The Role of Abscisic Acid (ABA). , 2009, , 33-73.		16
236	Induction of secondary metabolism in grape cell cultures by jasmonates. Functional Plant Biology, 2009, 36, 323.	1.1	69
237	An Intact Cuticle in Distal Tissues Is Essential for the Induction of Systemic Acquired Resistance in Plants. Cell Host and Microbe, 2009, 5, 151-165.	5.1	121
238	An S-locus receptor-like kinase plays a role as a negative regulator in plant defense responses. Biochemical and Biophysical Research Communications, 2009, 381, 424-428.	1.0	41
239	Linking development to defense: auxin in plant–pathogen interactions. Trends in Plant Science, 2009, 14, 373-382.	4.3	504
240	Metabolism and roles of stilbenes in plants. Plant Science, 2009, 177, 143-155.	1.7	540
241	Look Before You Leap: Memoirs of a "Cell Biological―Plant Pathologist. Annual Review of Phytopathology, 2009, 47, 1-13.	3.5	3
242	Botrytis cinerea: Molecular Aspects of a Necrotrophic Life Style. , 2009, , 29-50.		20
243	Cellular Response of Pea Plants to Cadmium Toxicity: Cross Talk between Reactive Oxygen Species, Nitric Oxide, and Calcium Â. Plant Physiology, 2009, 150, 229-243.	2.3	532

#	Article	IF	CITATIONS
244	Ethylene Modulates the Role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in Cross Talk between Salicylate and Jasmonate Signaling Â. Plant Physiology, 2009, 149, 1797-1809.	2.3	269
245	Global Gene Expression Profiling During <i>Medicago truncatula–Phymatotrichopsis omnivora</i> Interaction Reveals a Role for Jasmonic Acid, Ethylene, and the Flavonoid Pathway in Disease Development. Molecular Plant-Microbe Interactions, 2009, 22, 7-17.	1.4	65
246	Tomato Transcriptional Responses to a Foliar and a Vascular Fungal Pathogen Are Distinct. Molecular Plant-Microbe Interactions, 2009, 22, 245-258.	1.4	61
247	The Absence of Nops Secretion in <i>Sinorhizobium fredii</i> HH103 Increases <i>GmPR1</i> Expression in Williams Soybean. Molecular Plant-Microbe Interactions, 2009, 22, 1445-1454.	1.4	65
248	Nitric Oxide Participates in the Complex Interplay of Defense-Related Signaling Pathways Controlling Disease Resistance to <i>Sclerotinia sclerotiorum</i> in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2010, 23, 846-860.	1.4	186
249	Analysis of genome expression in the response of Oryza granulata to Xanthomonas oryzae pv oryzae. Molecular Biology Reports, 2010, 37, 875-892.	1.0	11
250	Plant immune system incompatibility and the distribution of enemies in natural hybrid zones. Current Opinion in Plant Biology, 2010, 13, 466-471.	3.5	20
251	A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection. BMC Plant Biology, 2010, 10, 194.	1.6	95
252	OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. BMC Plant Biology, 2010, 10, 199.	1.6	46
254	The immediate activation of defense responses in <i>Arabidopsis</i> roots is not sufficient to prevent <i>Phytophthora parasitica</i> infection. New Phytologist, 2010, 187, 449-460.	3.5	107
255	Ethylene perception via <i>ETR1</i> is required in <i>Arabidopsis</i> infection by <i>Verticillium dahliae</i> . Molecular Plant Pathology, 2010, 11, 191-202.	2.0	73
256	Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant Journal, 2010, 62, 840-851.	2.8	180
257	Salicylate-induced modification of plant proteomes (review). Applied Biochemistry and Microbiology, 2010, 46, 241-252.	0.3	15
258	Molecular and histochemical characterisation of two distinct poplar <i>Melampsora</i> leaf rust pathosystems. Plant Biology, 2010, 12, 364-376.	1.8	19
259	Analysis on the Role of Phenylpropanoid Metabolism in the <i>Pinus pinaster-Botrytis cinerea</i> Interaction. Journal of Phytopathology, 2010, 158, 641.	0.5	4
260	Induced Resistance by β-Aminobutyric Acid in Artichoke against White Mould Caused by Sclerotinia sclerotiorum. Journal of Phytopathology, 2010, 158, 659-667.	0.5	30
262	Interação entre Colletotrichum gloeosporioides e ecótipos de pinha. Bragantia, 2010, 69, 105-114.	1.3	1
263	Novel Bifunctional Nucleases, OmBBD and AtBBD1, Are Involved in Abscisic Acid-Mediated Callose Deposition in Arabidopsis. Plant Physiology, 2010, 152, 1015-1029.	2.3	20

		CITATION RE	EPORT	
#	ARTICLE	210 01 120	IF	CITATIONS
264	1-Aminocyclopropane-1-Carboxylate Synthase, an Enzyme of Ethylene Biosynthesis. , 20)10, , 91-120.		1
265	From Perception to Activation: The Molecular-Genetic and Biochemical Landscape of Dia Resistance Signaling in Plants. The Arabidopsis Book, 2010, 8, e012.	sease	0.5	41
266	Necrotroph Attacks on Plants: Wanton Destruction or Covert Extortion?. The Arabidops 8, e0136.	sis Book, 2010,	0.5	220
267	Salicylic Acid. , 2010, , 681-699.			6
268	Plants versus pathogens: an evolutionary arms race. Functional Plant Biology, 2010, 37	, 499.	1.1	156
269	Compatible plant-aphid interactions: How aphids manipulate plant responses. Comptes Biologies, 2010, 333, 516-523.	Rendus -	0.1	179
270	Methyl jasmonate and ethylene induce partial resistance in Medicago truncatula agains rot pathogen Macrophomina phaseolina. Physiological and Molecular Plant Pathology, 2 412-418.		1.3	62
271	Non-host resistance responses of <i>Arabidopsis thaliana</i> to the coffee leaf rust fun (<i>Hemileia vastatrix</i>). Botany, 2010, 88, 621-629.	gus	0.5	22
272	The lipid language of plant–fungal interactions. Fungal Genetics and Biology, 2011, 4	.8, 4-14.	0.9	182
273	The role of chitin detection in plant–pathogen interactions. Microbes and Infection, 2	2011, 13, 1168-1176.	1.0	90
274	Redefining plant systems biology: from cell to ecosystem. Trends in Plant Science, 2011	l, 16, 183-190.	4.3	70
275	The <i>Arabidopsis thaliana</i> DNA-Binding Protein AHL19 Mediates Verticillium Wilt I Molecular Plant-Microbe Interactions, 2011, 24, 1582-1591.	Resistance.	1.4	36
276	Review Functional characterization and signal transduction ability of nucleotide-binding site-leucine-rich repeat resistance genes in plants. Genetics and Molecular Research, 20		0.3	51
277	Suppression of Salicylic Acid-Mediated Plant Defense Responses During Initial Infection Woad by <i>Puccinia thlaspeos</i> . American Journal of Agricultural and Biological Scie 307-316.	of Dyer's nce, 2011, 6,	0.9	1
278	Abiotic and Biotic Stress Response Crosstalk in Plants. , 0, , .			40
279	Light Quantity and Photosystem Function Mediate Host Susceptibility to <i>Turnip mo a Salicylic Acid–Independent Mechanism. Molecular Plant-Microbe Interactions, 2011</i>		1.4	41
280	Transcript Profiles in Sugar Beet Genotypes Uncover Timing and Strength of Defense Re <i>Cercospora beticola</i> Infection. Molecular Plant-Microbe Interactions, 2011, 24, 7		1.4	20
281	Differential Expression in <i>Hibiscus cannabinus</i> (Mesta) Plants After Infection with Yellow Vein Mosaic Virus as Revealed by Suppression Subtractive Hybridization. Jou Phytopathology, 2011, 159, 735-742.	n <i>Mesta rnal of</i>	0.5	1

#	Article	IF	CITATIONS
282	Differential response of young and adult leaves to herbicide 2,4â€dichlorophenoxyacetic acid in pea plants: role of reactive oxygen species. Plant, Cell and Environment, 2011, 34, 1874-1889.	2.8	87
283	Expression of Arabidopsis pathogenesisâ€related genes during nematode infection. Molecular Plant Pathology, 2011, 12, 355-364.	2.0	150
284	A genomically tractable and ecologically relevant model herbivore for a model plant: new insights into the mechanisms of insect–plant interactions and evolution. Molecular Ecology, 2011, 20, 990-994.	2.0	7
285	Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biological Control, 2011, 58, 74-82.	1.4	129
286	Extracts of the marine brown macroalga, Ascophyllum nodosum, induce jasmonic acid dependent systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000 and Sclerotinia sclerotiorum. European Journal of Plant Pathology, 2011, 131, 237-248.	0.8	59
287	A quantitative PCR assay for accurate in planta quantification of the necrotrophic pathogen Phytophthora cinnamomi. European Journal of Plant Pathology, 2011, 131, 419-430.	0.8	25
288	Transformed tobacco (Nicotiana tabacum) plants over-expressing a peroxisome proliferator-activated receptor gene from Xenopus laevis (xPPARα) show increased susceptibility to infection by virulent Pseudomonas syringae pathogens. Planta, 2011, 233, 507-521.	1.6	13
289	Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta, 2011, 234, 405-417.	1.6	72
290	Defence responses in Rpv3-dependent resistance to grapevine downy mildew. Planta, 2011, 234, 1097-1109.	1.6	76
291	Analysis of expressed sequence tags derived from a compatible Mycosphaerella fijiensis–banana interaction. Plant Cell Reports, 2011, 30, 913-928.	2.8	33
292	Effect of foliar salicylic acid and methyl jasmonate applications on protection against pill-bugs in lettuce plants (Lactuca sativa). Phytoparasitica, 2011, 39, 137-144.	0.6	19
293	WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes. BMC Plant Biology, 2011, 11, 89.	1.6	174
294	Progress on trichome development regulated by phytohormone signaling. Plant Signaling and Behavior, 2011, 6, 1959-1962.	1.2	41
295	Interfamily Transfer of Tomato <i>Ve1</i> Mediates <i>Verticillium</i> Resistance in Arabidopsis Â. Plant Physiology, 2011, 156, 2255-2265.	2.3	250
296	The Jasmonate Pathway Is a Key Player in Systemically Induced Defense against Root Knot Nematodes in Rice. Plant Physiology, 2011, 157, 305-316.	2.3	318
297	The pathogenic white-rot fungus Heterobasidion parviporum triggers non-specific defence responses in the bark of Norway spruce. Tree Physiology, 2011, 31, 1262-1272.	1.4	22
298	Rhamnolipids Elicit Defense Responses and Induce Disease Resistance against Biotrophic, Hemibiotrophic, and Necrotrophic Pathogens That Require Different Signaling Pathways in Arabidopsis and Highlight a Central Role for Salicylic Acid Â. Plant Physiology, 2012, 160, 1630-1641.	2.3	115
299	Constitutive Expression of Mammalian Nitric Oxide Synthase in Tobacco Plants Triggers Disease Resistance to Pathogens. Molecules and Cells, 2012, 34, 463-472.	1.0	63

#	Article	IF	CITATIONS
300	Tiadinil, a plant activator of systemic acquired resistance, boosts the production of herbivore-induced plant volatiles that attract the predatory mite Neoseiulus womersleyi in the tea plant Camellia sinensis. Experimental and Applied Acarology, 2012, 58, 247-258.	0.7	17
301	Descendants of Primed Arabidopsis Plants Exhibit Resistance to Biotic Stress Â. Plant Physiology, 2012, 158, 835-843.	2.3	442
302	Molecular cloning and characterization of GhWRKY11, a gene implicated in pathogen responses from cotton. South African Journal of Botany, 2012, 81, 113-123.	1.2	9
303	Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling. Plant Science, 2012, 184, 75-82.	1.7	84
304	<i>Arabidopsis thaliana</i> plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen <i>Alternaria brassicicola</i> . New Phytologist, 2012, 195, 872-882.	3.5	107
305	Jasmonates in Plant Defense Responses. Signaling and Communication in Plants, 2012, , 67-88.	0.5	5
306	Promoter analyses and transcriptional profiling of eggplant polyphenol oxidase 1 gene (SmePPO1) reveal differential response to exogenous methyl jasmonate and salicylic acid. Journal of Plant Physiology, 2012, 169, 718-730.	1.6	8
307	Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Fungal Biology, 2012, 116, 413-426.	1.1	81
308	Effects of salicylic and jasmonic acid on phospholipase D activity and the level of active oxygen species in soybean seedlings. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2012, 6, 243-248.	0.3	7
309	Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patterns. BMC Genomics, 2012, 13, 502.	1.2	75
310	Effects of salicylic acid, 1â€aminocyclopropanâ€1â€carboxylic acid and methyl jasmonate on the frequencies of endophytic fungi in <i>Quercus serrata</i> leaves. Forest Pathology, 2012, 42, 393-396.	0.5	3
312	Conifer Defense Against Insects and Fungal Pathogens. Ecological Studies, 2012, , 85-109.	0.4	34
313	Transcriptome Comparison of Susceptible and Resistant Wheat in Response to Powdery Mildew Infection. Genomics, Proteomics and Bioinformatics, 2012, 10, 94-106.	3.0	90
314	New faces in plant innate immunity: heterotrimeric G proteins. Journal of Plant Biochemistry and Biotechnology, 2012, 21, 40-47.	0.9	16
315	Host-Selective Toxins of Pyrenophora tritici-repentis Induce Common Responses Associated with Host Susceptibility. PLoS ONE, 2012, 7, e40240.	1.1	34
316	Development of a promoter-luciferase-based high-throughput system to monitor jasmonate-mediated defense gene expression. Plant Biotechnology, 2012, 29, 515-520.	0.5	6
317	Novel Elicitors Induce Defense Responses in Cut Flowers. , 2012, , .		3
318	Cellular and molecular analyses of coffee resistance to Hemileia vastatrix and nonhost resistance to Uromyces vignae in the resistance-donor genotype HDT832/2. European Journal of Plant Pathology, 2012, 133, 141-157.	0.8	32

#	Article	IF	CITATIONS
319	Different expression profiles of jasmonic acid and salicylic acid inducible genes in the tomato plant against herbivores with various feeding modes. Arthropod-Plant Interactions, 2012, 6, 221-230.	0.5	78
320	Molecular cloning and gene transcription analyses of barwinâ€ŧype PRâ€4 genes from <i>Phellinus sulphurascens</i> â€infected Douglasâ€fir seedlings. Forest Pathology, 2012, 42, 279-288.	0.5	6
321	Transcriptome analysis of tobacco BY-2 cells elicited by cryptogein reveals new potential actors of calcium-dependent and calcium-independent plant defense pathways. Cell Calcium, 2012, 51, 117-130.	1.1	17
322	Monolignol biosynthesis is associated with resistance to <i>Sclerotinia sclerotiorum</i> in <i>Camelina sativa</i> . Molecular Plant Pathology, 2012, 13, 887-899.	2.0	81
323	<i>Malus hupehensis NPR1</i> induces pathogenesisâ€related protein gene expression in transgenic tobacco. Plant Biology, 2012, 14, 46-56.	1.8	49
324	Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack. Cellular Microbiology, 2012, 14, 829-839.	1.1	65
325	Proteomic analysis of soybean defense response induced by cotton worm (prodenia litura, fabricius) feeding. Proteome Science, 2012, 10, 16.	0.7	21
326	Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 2012, 32, 227-243.	2.2	543
327	Expression Analysis of Defense-Related Genes in Cotton (Gossypium hirsutum) after Fusarium oxysporum f. sp. vasinfectum Infection and Following Chemical Elicitation using a Salicylic Acid Analog and Methyl Jasmonate. Plant Molecular Biology Reporter, 2012, 30, 225-234.	1.0	27
328	SALICYLIC ACID. , 2013, , .		25
329	Symbiotic fungi alter plant chemistry that discourages leaf utting ants. New Phytologist, 2013, 198, 241-251.	3.5	95
330	Identification of promoter motifs regulating ZmeIF4E expression level involved in maize rough dwarf disease resistance in maize (Zea Mays L.). Molecular Genetics and Genomics, 2013, 288, 89-99.	1.0	19
331	A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis. Plant Cell Reports, 2013, 32, 687-702.	2.8	25
332	Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance. Journal of Experimental Botany, 2013, 64, 4877-4893.	2.4	89
333	Submergence Confers Immunity Mediated by the WRKY22 Transcription Factor in Arabidopsis. Plant Cell, 2013, 25, 2699-2713.	3.1	178
334	Overexpression of an nsLTPs-like antimicrobial protein gene (LJAMP2) from motherwort (Leonurus) Tj ETQq1 1 Physiological and Molecular Plant Pathology, 2013, 82, 81-87.	0.784314 r 1.3	gBT /Overloo 12
335	Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiological and Molecular Plant Pathology, 2013, 82, 10-19.	1.3	78
336	<scp><i>Ta</i>EIL1</scp> , a wheat homologue of <scp> <i>At</i>EIN3</scp> , acts as a negative regulator in the wheat–stripe rust fungus interaction. Molecular Plant Pathology, 2013, 14, 728-739.	2.0	32

#	Article	IF	CITATIONS
337	Chronic stress and disease resistance in the genome model marine seaweed Ectocarpus siliculosus. Aquatic Botany, 2013, 104, 147-152.	0.8	12
338	Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Physiology and Biochemistry, 2013, 62, 70-78.	2.8	39
339	Host-selective toxins produced by the plant pathogenic fungus <i>Alternaria alternata</i> . FEMS Microbiology Reviews, 2013, 37, 44-66.	3.9	336
340	Cytological and molecular characterization of non-host resistance in Arabidopsis thaliana against wheat stripe rust. Plant Physiology and Biochemistry, 2013, 62, 11-18.	2.8	22
341	<scp>PFT</scp> 1, a transcriptional <scp>M</scp> ediator complex subunit, controls root hair differentiation through reactive oxygen species (<scp>ROS</scp>) distribution in <scp>A</scp> rabidopsis. New Phytologist, 2013, 197, 151-161.	3.5	95
342	Overexpression of a moso bamboo (<i>Phyllostachys edulis</i>) transcription factor gene <i>PheWRKY1</i> enhances disease resistance in transgenic <i>Arabidopsis thaliana</i> . Botany, 2013, 91, 486-494.	0.5	14
343	Impact of the PGPB Enterobacter radicincitans DSM 16656 on Growth, Glucosinolate Profile, and Immune Responses of Arabidopsis thaliana. Microbial Ecology, 2013, 65, 661-670.	1.4	56
344	Bioproduction of trans-Resveratrol from Grapevine Cell Cultures. , 2013, , 1683-1713.		21
345	Recent Advances and Future Prospects on Practical Use of Salicylic Acid. , 2013, , 357-385.		1
346	A PR-4 gene identified from Malus domestica is involved in the defense responses against Botryosphaeria dothidea. Plant Physiology and Biochemistry, 2013, 62, 23-32.	2.8	61
347	Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Frontiers in Plant Science, 2013, 4, 142.	1.7	131
348	Green Leaf Volatiles: A Plant's Multifunctional Weapon against Herbivores and Pathogens. International Journal of Molecular Sciences, 2013, 14, 17781-17811.	1.8	355
349	ZmLEA3, a Multifunctional Group 3 LEA Protein from Maize (Zea mays L.), is Involved in Biotic and Abiotic Stresses. Plant and Cell Physiology, 2013, 54, 944-959.	1.5	190
350	Characterization of genes expressed in Casuarina equisetifolia in response to elicitation by cell wall components of Trichosporium vesiculosum. Silvae Genetica, 2013, 62, 161-172.	0.4	1
351	1-Aminocyclopropane-1-Carboxylate Synthase, an Enzyme of Ethylene Biosynthesis. , 2013, , 536-559.		1
352	Overexpression of DWARF AND LESION FORMATION 1 (DLE1) causes altered activation of plant defense system in Arabidopsis thaliana. Plant Biotechnology, 2013, 30, 385-392.	0.5	5
353	Cerato-Platanin Induces Resistance in Arabidopsis Leaves through Stomatal Perception, Overexpression of Salicylic Acid- and Ethylene-Signalling Genes and Camalexin Biosynthesis. PLoS ONE, 2014, 9, e100959.	1.1	41
357	Unraveling the Dark Septate Endophyte Functions: Insights from the Arabidopsis Model. , 2014, , 115-141.		27

#	Article	IF	Citations
358	Quantitative profiling method for phytohormones and betaines in algae by liquid chromatography electrospray ionization tandem mass spectrometry. Biomedical Chromatography, 2014, 28, 275-280.	0.8	21
359	Allelopathy for Pest Control. Sustainable Agriculture Reviews, 2014, , 109-131.	0.6	1
360	PAMP Signaling in Plant Innate Immunity. Signaling and Communication in Plants, 2014, , 17-161.	0.5	3
361	Significance of PR-1 Proteins in Infected Plants. Advanced Materials Research, 2014, 893, 482-487.	0.3	0
362	Expression analysis of major genes involved in signaling pathways during infection of Chinese cabbage with Hyaloperonospora brassicae. Scientia Horticulturae, 2014, 167, 27-35.	1.7	11
363	Induced Defense in Plants: A Short Overview. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2014, 84, 669-679.	0.4	9
364	Defence Signalling Pathways Involved in Plant Resistance and Phosphite-Mediated Control of Phytophthora Cinnamomi. Plant Molecular Biology Reporter, 2014, 32, 342-356.	1.0	33
366	Elevated <scp><co>CO₂</co></scp> alters the feeding behaviour of the pea aphid by modifying the physical and chemical resistance of <scp><i>M</i></scp> <i>edicago truncatula</i> . Plant, Cell and Environment, 2014, 37, 2158-2168.	2.8	43
367	Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination. Mycorrhiza, 2014, 24, 349-360.	1.3	47
368	Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Molecular Biology, 2014, 85, 473-484.	2.0	127
369	Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots. BMC Plant Biology, 2014, 14, 96.	1.6	65
370	Molecular characterization of NBS encoding resistance genes and induction analysis of a putative candidate gene linked to Fusarium basal rot resistance in Allium sativum. Physiological and Molecular Plant Pathology, 2014, 85, 15-24.	1.3	26
371	Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology, 2014, 52, 347-375.	3.5	2,193
372	Elucidating the molecular responses of apple rootstock resistant to ARD pathogens: challenges and opportunities for development of genomics-assisted breeding tools. Horticulture Research, 2014, 1, 14043.	2.9	57
373	Modifications of sphingolipid content affect tolerance to hemibiotrophic and necrotrophic pathogens by modulating plant defense responses in Arabidopsis. Plant Physiology, 2015, 169, pp.01126.2015.	2.3	61
374	Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens <i>Botrytis cinerea</i> and <i>Alternaria brassicicola</i> . Plant Journal, 2015, 83, 1019-1033.	2.8	44
375	Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum. Frontiers in Plant Science, 2015, 6, 911.	1.7	41
376	Metabolomics Research of Quantitative Disease Resistance Against Barley Leaf Rust. , 2015, , 303-319.		1

#	Article	IF	CITATIONS
377	Calcium (Ca) Uptake. , 2015, , 53-70.		3
378	The novel elicitor AsES triggers a defense response against Botrytis cinerea in Arabidopsis thaliana. Plant Science, 2015, 241, 120-127.	1.7	35
379	Aboveground insect infestation attenuates belowground <i>Agrobacteriumâ€</i> mediated genetic transformation. New Phytologist, 2015, 207, 148-158.	3.5	24
380	Molecular cloning and characterization of disease-resistance gene candidates of the nucleotide binding site (NBS) type from Cocos nucifera L. Physiological and Molecular Plant Pathology, 2015, 89, 87-96.	1.3	20
381	PeBL1, a Novel Protein Elicitor from Brevibacillus laterosporus Strain A60, Activates Defense Responses and Systemic Resistance in Nicotiana benthamiana. Applied and Environmental Microbiology, 2015, 81, 2706-2716.	1.4	51
382	Peanut Resistance Gene Expression in Response to <i><scp>A</scp>spergillus flavus</i> Infection During Seed Germination. Journal of Phytopathology, 2015, 163, 212-221.	0.5	9
383	Manipulation of <i><scp>MKS</scp>1</i> gene expression affects <i>Kalanchoë blossfeldiana</i> and <i>Petunia hybrida</i> phenotypes. Plant Biotechnology Journal, 2015, 13, 51-61.	4.1	28
384	Proteomic dissection of plant responses to various pathogens. Proteomics, 2015, 15, 1525-1543.	1.3	33
385	Global nucleosome positioning regulates salicylic acid mediated transcription in Arabidopsis thaliana. BMC Plant Biology, 2015, 15, 13.	1.6	17
386	In vitro and in planta fungicide properties of ozonated water against the esca-associated fungus Phaeoacremonium aleophilum. Scientia Horticulturae, 2015, 189, 184-191.	1.7	23
387	Characterization of a vacuolar processing enzyme expressed in Arachis diogoi in resistance responses against late leaf spot pathogen, Phaeoisariopsis personata. Plant Molecular Biology, 2015, 88, 177-191.	2.0	16
388	Regulation of Nutrient Uptake by Plants. , 2015, , .		39
389	Down-regulation of a wheat alkaline/neutral invertase correlates with reduced host susceptibility to wheat stripe rust caused by <i>Puccinia striiformis</i> . Journal of Experimental Botany, 2015, 66, 7325-7338.	2.4	49
390	The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen <i>Sclerotinia sclerotiorum</i> . Plant Physiology, 2015, 169, 856-872.	2.3	64
391	Plant Metabolomics. , 2015, , .		3
392	Stage-specific reprogramming of gene expression characterizes Lr48-mediated adult plant leaf rust resistance in wheat. Functional and Integrative Genomics, 2015, 15, 233-245.	1.4	11
393	Jasmonate Signaling System in Plant Innate Immunity. Signaling and Communication in Plants, 2015, , 123-194.	0.5	4
394	Salicylic Acid Signaling in Plant Innate Immunity. Signaling and Communication in Plants, 2015, , 27-122.	0.5	15

#	Article	IF	CITATIONS
395	Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics, 2015, 11, 81-97.	1.4	77
396	Overexpression of <i>BSR1</i> confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice. Breeding Science, 2016, 66, 396-406.	0.9	26
397	Clobal Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road. Frontiers in Plant Science, 2016, 7, 187.	1.7	493
398	Transcriptome Analysis of Gerbera hybrida Including in silico Confirmation of Defense Genes Found. Frontiers in Plant Science, 2016, 7, 247.	1.7	23
399	Genome-Wide Identification and Analysis of the SBP-Box Family Genes under Phytophthora capsici Stress in Pepper (Capsicum annuum L.). Frontiers in Plant Science, 2016, 7, 504.	1.7	73
400	Use of BABA and INA As Activators of a Primed State in the Common Bean (Phaseolus vulgaris L.). Frontiers in Plant Science, 2016, 7, 653.	1.7	48
401	The Mediator Complex Subunits MED14, MED15, and MED16 Are Involved in Defense Signaling Crosstalk in Arabidopsis. Frontiers in Plant Science, 2016, 7, 1947.	1.7	37
402	The role of DNA (de)methylation in immune responsiveness of Arabidopsis. Plant Journal, 2016, 88, 361-374.	2.8	196
403	Bacteria-Mediated Elicitation of Induced Resistance in Plants upon Fungal Phytopathogen. , 2016, , 249-269.		1
404	Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi. BMC Genomics, 2016, 17, 608.	1.2	99
405	Plant Growth-Promoting Microbial-Mediated Induced Systemic Resistance in Plants: Induction, Mechanism, and Expression. , 2016, , 213-226.		7
406	Ectopic expression of a grape aspartic protease gene, AP13, in Arabidopsis thaliana improves resistance to powdery mildew but increases susceptibility to Botrytis cinerea. Plant Science, 2016, 248, 17-27.	1.7	47
407	Circadian regulation of hormone signaling and plant physiology. Plant Molecular Biology, 2016, 91, 691-702.	2.0	70
408	Morphological features of different polyploids for adaptation and molecular characterization of CC-NBS-LRR and LEA gene families in Agave L Journal of Plant Physiology, 2016, 195, 80-94.	1.6	22
409	JUB1 suppresses <i>Pseudomonas syringae</i> -induced defense responses through accumulation of DELLA proteins. Plant Signaling and Behavior, 2016, 11, e1181245.	1.2	28
410	Data mining of genomic data generated from soybean treated with different phytohormones. , 2016, , .		0
411	Biotrophy at Its Best: Novel Findings and Unsolved Mysteries of the Arabidopsis-Powdery Mildew Pathosystem. The Arabidopsis Book, 2016, 14, e0184.	0.5	56
412	Root-mediated signal transmission of systemic acquired resistance against above-ground and below-ground pathogens. Annals of Botany, 2016, 118, 821-831.	1.4	37

#	Article	IF	CITATIONS
413	Can plant–natural enemy communication withstand disruption by biotic and abiotic factors?. Ecology and Evolution, 2016, 6, 8569-8582.	0.8	39
414	Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway. Scientific Reports, 2016, 6, 26144.	1.6	95
415	Genome-Wide Identification and Analysis of the MYB Transcription Factor Superfamily in <i>Solanum lycopersicum</i> . Plant and Cell Physiology, 2016, 57, 1657-1677.	1.5	117
416	Expression of defence-related genes in sunflower infected with broomrape. Biotechnology and Biotechnological Equipment, 2016, 30, 685-691.	0.5	12
417	Induction of Systemic Resistance in Crop Plants Against Plant Pathogens by Plant Growth-Promoting Actinomycetes. , 2016, , 193-202.		3
418	Indirect Plant Growth Promotion in Grain Legumes: Role of Actinobacteria. , 2016, , 17-32.		7
420	Phytotoxins. , 2016, , 211-238.		1
421	Apple resistance responses against Valsa mali revealed by transcriptomics analyses. Physiological and Molecular Plant Pathology, 2016, 93, 85-92.	1.3	42
422	Molecular Manipulation of Transcription Factors, the Master Regulators of PAMP-Triggered Signaling Systems. Signaling and Communication in Plants, 2016, , 255-358.	0.5	3
423	Role of Plant Immune Signals and Signaling Systems in Plant Pathogenesis. Signaling and Communication in Plants, 2016, , 27-90.	0.5	1
424	An effector of apple proliferation phytoplasma targets TCP transcription factors—a generalized virulence strategy of phytoplasma?. Molecular Plant Pathology, 2017, 18, 435-442.	2.0	65
425	Three Pectin Methylesterase Inhibitors Protect Cell Wall Integrity for Arabidopsis Immunity to <i>Botrytis</i> . Plant Physiology, 2017, 173, 1844-1863.	2.3	165
426	Short oligogalacturonides induce pathogen resistance-associated gene expression in Arabidopsis thaliana. BMC Plant Biology, 2017, 17, 19.	1.6	72
427	Molecular characterisation and functional analysis of a cytochrome P450 gene in cotton. Biologia (Poland), 2017, 72, 43-52.	0.8	3
429	Potential use of cuminic acid as a botanical fungicide against Valsa mali. Microbial Pathogenesis, 2017, 106, 9-15.	1.3	17
430	Breeding for Aphid Resistance in Rapeseed Mustard. , 2017, , 171-199.		4
431	Crop Improvement. , 2017, , .		3
432	Penicillium expansum (compatible) and Penicillium digitatum (non-host) pathogen infection differentially alter ethylene biosynthesis in apple fruit. Plant Physiology and Biochemistry, 2017, 120, 132-143.	2.8	27

#	Article	IF	CITATIONS
433	Characterization of salt tolerance and Fusarium wilt resistance of a sweetpotato mutant. Journal of Integrative Agriculture, 2017, 16, 1946-1955.	1.7	9
434	Induction of Systemic Resistance for Disease Suppression. , 2017, , 335-357.		3
435	Different Arabidopsis thaliana photosynthetic and defense responses to hemibiotrophic pathogen induced by local or distal inoculation of Burkholderia phytofirmans. Photosynthesis Research, 2017, 134, 201-214.	1.6	27
436	Comparative NGS Transcriptomics Unravels Molecular Components Associated with Mosaic Virus Infection in a Bioenergy Plant Species, Jatropha curcas L Bioenergy Research, 2017, 10, 129-145.	2.2	11
437	Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice. Journal of Environmental Sciences, 2017, 51, 352-360.	3.2	63
438	Chitinolytic Bacillus-Mediated Induction of Jasmonic Acid and Defense-Related Proteins in Soybean (Clycine max L. Merrill) Plant Against Rhizoctonia solani and Fusarium oxysporum. Journal of Plant Growth Regulation, 2017, 36, 200-214.	2.8	36
439	Antimycotic Role of Soil Bacillus sp. Against Rice Pathogens: A Biocontrol Prospective. , 2017, , 29-60.		9
440	Belowground Microbial Crosstalk and Rhizosphere Biology. , 2017, , 695-752.		6
441	Signs of Silence: Small RNAs and Antifungal Responses in Arabidopsis thaliana and Zea mays. , 0, , .		4
442	Fusarium-plant interaction: state of the art - a review. Plant Protection Science, 2017, 53, 61-70.	0.7	20
443	Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant. Frontiers in Plant Science, 2017, 8, 1006.	1.7	45
444	Host–Multi-Pathogen Warfare: Pathogen Interactions in Co-infected Plants. Frontiers in Plant Science, 2017, 8, 1806.	1.7	149
445	Transcriptome dynamic of Arabidopsis roots infected with Phytophthora parasitica identifies VQ29, a gene induced during the penetration and involved in the restriction of infection. PLoS ONE, 2017, 12, e0190341.	1.1	41
446	Transgenic Arabidopsis thaliana containing increased levels of ATP and sucrose is more susceptible to Pseudomonas syringae. PLoS ONE, 2017, 12, e0171040.	1.1	9
447	Detecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum. PLoS ONE, 2017, 12, e0168850.	1.1	52
448	Induction of systemic resistance in chickpea against Fusarium wilt by <i>Bacillus</i> strains. Archives of Phytopathology and Plant Protection, 2018, 51, 70-80.	0.6	18
449	Upâ€regulation of <scp>PR</scp> 1 and less disruption of hormone and sucrose metabolism in roots is associated with lower susceptibility to â€~ <i>Candidatus</i> Liberibacter asiaticus'. Plant Pathology, 2018, 67, 1426-1435.	1.2	8
450	Resistance of apple leaves to infection by Colletotrichum fructicola acts independently of hypersensitive reaction and PR-1 and PR-10 gene expression. Tropical Plant Pathology, 2018, 43, 360-370.	0.8	5

#	Article	IF	CITATIONS
451	Genome-wide analysis of dirigent gene family in pepper (Capsicum annuum L.) and characterization of CaDIR7 in biotic and abiotic stresses. Scientific Reports, 2018, 8, 5500.	1.6	51
452	Role of NBS-LRR Proteins in Plant Defense. , 2018, , 115-138.		60
453	Arabidopsis thaliana as a Model Organism to Study Plant-Pathogen Interactions. , 2018, , 1-20.		1
454	The Cuticle Mutant <i>eca2</i> Modifies Plant Defense Responses to Biotrophic and Necrotrophic Pathogens and Herbivory Insects. Molecular Plant-Microbe Interactions, 2018, 31, 344-355.	1.4	26
455	Enzymatic activities and pathogenesis-related genes expression in sunflower inbred lines affected by <i>Sclerotinia sclerotiorum</i> culture filtrate. Journal of Applied Microbiology, 2018, 125, 227-242.	1.4	6
456	The Elongator complexâ€associated protein DRL1 plays a positive role in immune responses against necrotrophic fungal pathogens in Arabidopsis. Molecular Plant Pathology, 2018, 19, 286-299.	2.0	4
459	Identification of Soybean Genes Whose Expression is Affected by the Ensifer fredii HH103 Effector Protein NopP. International Journal of Molecular Sciences, 2018, 19, 3438.	1.8	18
460	BrRLP48, Encoding a Receptor-Like Protein, Involved in Downy Mildew Resistance in Brassica rapa. Frontiers in Plant Science, 2018, 9, 1708.	1.7	20
461	1-Methyltryptophan Modifies Apoplast Content in Tomato Plants Improving Resistance Against Pseudomonas syringae. Frontiers in Microbiology, 2018, 9, 2056.	1.5	8
462	Combined small RNA and gene expression analysis revealed roles of miRNAs in maize response to rice black-streaked dwarf virus infection. Scientific Reports, 2018, 8, 13502.	1.6	17
463	Primary Plant Metabolism During Plant–Pathogen Interactions and Its Role in Defense. , 2018, , 215-229.		8
464	Classification and Genome-Wide Analysis of Chitin-Binding Proteins Gene Family in Pepper (Capsicum) Tj ETQq1 Applications. International Journal of Molecular Sciences, 2018, 19, 2216.	1 0.78431 1.8	4 rgBT /Over 35
465	Abscisic Acid as a Dominant Signal in Tomato During Salt Stress Predisposition to Phytophthora Root and Crown Rot. Frontiers in Plant Science, 2018, 9, 525.	1.7	19
466	Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana Improves Resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000. International Journal of Molecular Sciences, 2018, 19, 696.	1.8	28
467	Disease Resistance Mechanisms in Plants. Genes, 2018, 9, 339.	1.0	290
468	Compounds Released by the Biocontrol Yeast Hanseniaspora opuntiae Protect Plants Against Corynespora cassiicola and Botrytis cinerea. Frontiers in Microbiology, 2018, 9, 1596.	1.5	26
469	Recent developments in the enhancement of some postharvest biocontrol agents with unconventional chemicals compounds. Trends in Food Science and Technology, 2018, 78, 180-187.	7.8	65
471	Host response of Arabidopsis thaliana ecotypes is determined by Sclerotinia sclerotiorum isolate type. European Journal of Plant Pathology, 2019, 153, 583-597.	0.8	2

#	Article	IF	CITATIONS
472	Recent Advances in Mechanisms of Plant Defense to Sclerotinia sclerotiorum. Frontiers in Plant Science, 2019, 10, 1314.	1.7	73
473	Differential interaction of the dark septate endophyte Cadophora sp. and fungal pathogens in vitro and in planta. FEMS Microbiology Ecology, 2019, 95, .	1.3	24
474	Identification of Jasmonateâ€Mediated Physiological and Molecular Characteristics Correlated with the Brown Spot Resistance of Tobacco. Crop Science, 2019, 59, 2141-2152.	0.8	1
475	Gene networks underlying the early regulation of Paraburkholderia phytofirmans PsJN induced systemic resistance in Arabidopsis. PLoS ONE, 2019, 14, e0221358.	1.1	34
476	Comparative transcriptome analysis reveals defense responses against soft rot in Chinese cabbage. Horticulture Research, 2019, 6, 68.	2.9	34
477	ROS accumulation and associated cell death mediates susceptibility to Alternaria brassicae in Arabidopsis accessions. Physiological and Molecular Plant Pathology, 2019, 107, 51-59.	1.3	16
478	Transcriptome Profile Analysis Reveals that CsTCP14 Induces Susceptibility to Foliage Diseases in Cucumber. International Journal of Molecular Sciences, 2019, 20, 2582.	1.8	9
479	Nodulation Induces Systemic Resistance of <i>Medicago truncatula</i> and <i>Pisum sativum</i> Against <i>Erysiphe pisi</i> and Primes for Powdery Mildew-Triggered Salicylic Acid Accumulation. Molecular Plant-Microbe Interactions, 2019, 32, 1243-1255.	1.4	25
480	Stress Responsive Signaling Molecules and Genes Under Stressful Environments in Plants. , 2019, , 19-42.		5
481	Multiple molecular defense strategies in Brachypodium distachyon surmount Hessian fly (Mayetiola) Tj ETQq1 1 0	.784314 r 1.6	gBT /Overio
482	Transcriptional profiling of methyl jasmonate-induced defense responses in bilberry (Vaccinium) Tj ETQq0 0 0 rgB	「 /Overlocl 1.6	2 10 Tf 50 3
483	Defense Responses of Cherry Rootstock â€~Gisela 6' Elicited by Agrobacterium tumefaciens Infection. Journal of Plant Growth Regulation, 2019, 38, 1082-1093.	2.8	5
484	A Role for Tocopherol Biosynthesis in Arabidopsis Basal Immunity to Bacterial Infection. Plant Physiology, 2019, 181, 1008-1028.	2.3	49
485	A detached petal disc assay and virus-induced gene silencing facilitate the study of Botrytis cinerea resistance in rose flowers. Horticulture Research, 2019, 6, 136.	2.9	17
486	Sphingolipids: towards an integrated view of metabolism during the plant stress response. New Phytologist, 2020, 225, 659-670.	3.5	81
487	A combined transcriptional, biochemical and histopathological study unravels the complexity of Alternaria resistance and susceptibility in Brassica coenospecies. Fungal Biology, 2020, 124, 44-53.	1.1	8
488	Inhibition of BpEIN3 causes plaques in leaves of Betula platyphylla × B. pendula. Trees - Structure and Function, 2020, 34, 483-495.	0.9	2
489	Identification of Fusarium solani f. sp. pisi (Fsp) Responsive Genes in Pisum sativum. Frontiers in Genetics, 2020, 11, 950.	1.1	9

ARTICLE IF CITATIONS Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. 490 2.5 64 Microbiological Research, 2020, 241, 126589. Transcription-mediated tissue-specific lignification of vascular bundle causes trade-offs between 491 1.7 growth and defence capacity during invasion of Solidago canadensis.. Plant Science, 2020, 301, 110638. Genome-Wide Identification and Expression Analysis of MAPK and MAPKK Gene Family in Pomegranate 492 0 1.3 (Punica Granatum L.). Agronomy, 2020, 10, 1015. Exploration of microbial stimulants for induction of systemic resistance in plant disease management. 493 Annals of Applied Biology, 2020, 177, 282-293. Aphid-Plant Interactions: Implications for Pest Management., 0, , . 494 5 Expression of Putative Defense Responses in Cannabis Primed by Pseudomonas and/or Bacillus Strains 495 1.7 and Infected by Botrytis cinerea. Frontiers in Plant Science, 2020, 11, 572112. Fungal-derived extracts induce resistance against Botrytis cinerea in Arabidopsis thaliana. European 496 0.8 2 Journal of Plant Pathology, 2020, 158, 45-58. Signaling pathway of induced systemic resistance., 2020, , 133-141. 497 498 The Leaf Wettability of Various Potato Cultivars. Plants, 2020, 9, 504. 1.6 4 499 Plant Innate Immunity Signals and Signaling Systems. Signaling and Communication in Plants, 2020, , . Distinct defensive activity of phenolics and phenylpropanoid pathway genes in different cotton 500 1.2 23 varieties toward chewing pests. Plant Signaling and Behavior, 2020, 15, 1747689. Rhizobacteria and its biofilm for sustainable agriculture: A concise review., 2020, , 165-175. Principle, diversity, mechanism, and potential of practical application of plant probiotic bacteria for 502 1 the biocontrol of phytopathogens by induced systemic resistance. , 2021, , 75-94. Microbial Influence on Plant–Insect Interaction., 2021, , 337-363. Molecular Interactions of Pectobacterium and Dickeya with Plants., 2021, , 85-147. 504 12 Antioxidant-mediated defense in triggering resistance against biotic stress in plants., 2021, , 383-399. Characterization of a novel levopimaradiene synthase gene responsible for the biosynthesis of 506 1.2 2 terpene trilactones in Ginkgo biloba. Plant Signaling and Behavior, 2021, 16, 1885906. Infection process and defense response of two distinct symptoms of Cercospora leaf spot in coffee leaves. Phytoparasitica, 2021, 49, 727-737.

#	Article	IF	CITATIONS
508	Advances in Understanding Defense Mechanisms in Persea americana Against Phytophthora cinnamomi. Frontiers in Plant Science, 2021, 12, 636339.	1.7	14
509	Current Status of the Disease-Resistant Gene(s)/QTLs, and Strategies for Improvement in Brassica juncea. Frontiers in Plant Science, 2021, 12, 617405.	1.7	27
510	GmBTB/POZ promotes the ubiquitination and degradation of LHP1 to regulate the response of soybean to Phytophthora sojae. Communications Biology, 2021, 4, 372.	2.0	30
511	Molecular and physiological characterization of <i>Arabidopsis</i> – <i>Colletotrichum gloeosporioides</i> pathosystem. Plant Pathology, 2021, 70, 1168-1179.	1.2	4
512	A Transcriptomic Analysis of Gene Expression in Chieh-Qua in Response to Fusaric Acid Stress. Horticulturae, 2021, 7, 88.	1.2	2
513	Three LysM effectors of <i>Zymoseptoria tritici</i> collectively disarm chitinâ€ŧriggered plant immunity. Molecular Plant Pathology, 2021, 22, 683-693.	2.0	31
514	Gadolinium Protects Arabidopsis thaliana against Botrytis cinerea through the Activation of JA/ET-Induced Defense Responses. International Journal of Molecular Sciences, 2021, 22, 4938.	1.8	5
515	An update on redox signals in plant responses to biotic and abiotic stress crosstalk: insights from cadmium and fungal pathogen interactions. Journal of Experimental Botany, 2021, 72, 5857-5875.	2.4	23
516	Internalization and induction of defense responses in tobacco by harpin conjugated gold nanoparticles as a foliar spray. Colloids and Interface Science Communications, 2021, 43, 100438.	2.0	7
517	Coronatine Contributes to <i>Pseudomonas cannabina</i> pv. <i>alisalensis</i> Virulence by Overcoming Both Stomatal and Apoplastic Defenses in Dicot and Monocot Plants. Molecular Plant-Microbe Interactions, 2021, 34, 746-757.	1.4	17
518	Seaweed extracts: Potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Research, 2021, 58, 102363.	2.4	23
519	Chrysanthemum WRKY15-1 promotes resistance to Puccinia horiana Henn. via the salicylic acid signaling pathway. Horticulture Research, 2021, 8, 6.	2.9	25
520	G Proteins and Plant Innate Immunity. Signaling and Communication in Plants, 2010, , 221-250.	0.5	19
521	Arthropod Endosymbiosis and Evolution. , 2013, , 441-477.		4
522	Ethylene and Jasmonate as Regulators of Cell Death in Disease Resistance. Ecological Studies, 2004, , 75-109.	0.4	17
523	Hormonal Signaling by PGPR Improves Plant Health Under Stress Conditions. , 2012, , 119-140.		3
524	Arthropod Endosymbiosis and Evolution. , 2013, , 441-477.		14
525	Amelioration of Biotic Stress by Application of Rhizobacteria for Agriculture Sustainability. Microorganisms for Sustainability, 2019, , 111-168.	0.4	5

ARTICLE IF CITATIONS Host Resistance., 2019, , 177-295. 2 526 Different Transcript Patterns in Response to Specialist and Generalist Herbivores in the Wild 529 1.1 44 Arabidopsis Relative Boechera divaricarpa. PLo'S ONE, 2007, 2, e1081. Island Cotton Gbve1 Gene Encoding A Receptor-Like Protein Confers Resistance to Both Defoliating 530 1.1 120 and Non-Defoliating Isolates of Verticillium dahliae. PLoS ONE, 2012, 7, e51091. The Activated SA and JA Signaling Pathways Have an Influence on flg22-Triggered Oxidative Burst and 1.1 Callose Deposition. PLoS ONE, 2014, 9, e88951. Systemic Resistance to Powdery Mildew in Brassica napus (AACC) and Raphanus alboglabra (RRCC) by 532 1.1 29 Trichoderma harzianum TH12. PLoS ONE, 2015, 10, e0142177. Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum. PLoS ONE, 2016, 11, e0159085. 1.1 The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature 534 1.1 46 seedling-plant resistance to Puccinia striiformis f. sp. tritici. PLoS ONE, 2017, 12, e0181963. Effect of Methyl Jasmonate on Disease Severity and Expression of Plant Defensin Gene during Alternaria brassicae Infection in Arabidopsis. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 857-865. Jasmonic acid signaling pathway of Arabidopsis thaliana is important for root-knot nematode 536 0.3 7 invasion. Nihon Senchu Gakkai Shi = Japanese Journal of Nematology, 2011, 41, 9-17. Differential expression of defense-related genes in Sinapis alba and Brassica juncea upon the infection of Alternaria brassicae. 0.1 Tropical Agricultural Research, 2016, 27, 123. Expression Profiling of MLO Family Genes under Podosphaera xanthii Infection and Exogenous 538 4 0.2 Application of Phytohormones in Cucumis melo L. Journal of Life Science, 2016, 26, 419-430. Platform of Hot Pepper Defense Genomics: Isolation of Pathogen Responsive Genes in Hot Pepper (Capsicum annuum L.) Non-Host Resistance Against Soybean Pustule Pathogen (Xanthomonas) Tj ETQq1 1 0.78430.4 rgBT /@verlock Disease-resistant Transgenic Arabidopsis Carrying the expl Gene from Pectobacterium carotovorum 540 0.7 3 subsp. carotovorum SL940. Plant Pathology Journal, 2008, 24, 183-190. Effect of Phytohormones and Chemical Inhibitors on Pathogenesis-related Genes Identified by Differential Hybridization in Rice Suspension Culture Cells. Plant Pathology Journal, 2010, 26, 386-393. 541 Application of Jasmonic Acid Followed by Salicylic Acid Inhibits Cucumber mosaic virus Replication. 542 0.7 18 Plant Pathology Journal, 2011, 27, 53-58. Abiotic Stress Response in Plants - Physiological, Biochemical and Genetic Perspectives. , 2011, , . 543 23 Multiple immunity-related genes control susceptibility of <i>Arabidopsis thaliana </i> to the parasitic 544 0.9 7 weed <i>Phelipanche aegyptiaca </i>. PeerJ, 2020, 8, e9268. 546 Importance of Biotechnology in Global Food Security., 2002, , .

		CITATION REPORT		
#	Article	IF		CITATIONS
547	Transcription Factors Regulating Plant Defense Responses. , 2006, , 159-205.			0
549	Oxylipin Profiling of the Hypersensitive Response in Arabidopsis thaliana. Journal of Biological Chemistry, 2006, 281, 31528-31537.	1.0	6	20
550	Perception and Transduction of Pathogen Signals in Plants. Books in Soils, Plants, and the Environment, 2007, , .	0.	1	0
551	Induced Resistance in Plants and the Role of Arbuscular Mycorrhizal Fungi. , 2010, , .			1
553	Development of Two New Zantedeschia Cultivars Resistant to Bacterial Soft Rot. Flower Research Journal, 2014, 22, 88-94.	0.	1	2
557	Transcriptome Analysis of a Cotton Cultivar Provides Insights into the Differentially Expressed Genes Underlying Heightened Resistance to the Devastating Verticillium Wilt. Cells, 2021, 10, 2961.	S 1.{	8	9
558	Bioengineering and Molecular Manipulation of Mitogen-Activated Kinases to Activate Plant Innate Immunity for Crop Disease Management. Signaling and Communication in Plants, 2020, , 137-168.	0.	5	0
559	Effects of cobalt ions and cobalt nanoparticles on transient expression of gus gene in catharanthus roseus suspension cultures. Journal of Radiation Research and Applied Sciences, 2020, 13, 765-775.	0.	7	4
560	Microbial Interactions in the Rhizosphere Contributing Crop Resilience to Biotic and Abiotic Stresses Microorganisms for Sustainability, 2020, , 1-33.	5. 0.	4	3
561	Bioengineering and Molecular Manipulation of Jasmonate Signaling System to Activate Plant Immun System for Crop Disease Management. Signaling and Communication in Plants, 2020, , 223-248.	ne O.	5	0
562	Xanthomonas oryzae pv. oryzae AvrXA21 Activity Is Dependent on a Type One Secretion System, Is Regulated by a Two-Component Regulatory System that Responds to Cell Population Density, and Is Conserved in Other Xanthomonas spp , 2008, , 25-40.	5		0
563	Hormonal Signaling by PGPR Improves Plant Health Under Stress Conditions. , 2012, , 119-140.			1
567	Plant bio-stimulants, their functions and use in enhancing stress tolerance in oilseeds. , 2022, , 239-259.			1
568	Genome-Wide Identification of TLP Gene Family and Their Roles in Carya cathayensis Sarg in Respon to Botryosphaeria dothidea. Frontiers in Plant Science, 2022, 13, 849043.	ise 1.7	7	2
588	Genome-Wide Identification and Expression Analysis of Chitinase-like Genes in Petunia axillaris. Plan 2022, 11, 1269.	ts, 1.6	6	3
590	Resistance in lentil (<i>Lens culinaris</i>) genetic resources to the pea aphid (<i>Acyrthosiphon) Tj</i>	ETQq1 1 0.78431	4 rgBT	/Sverlock
592	RNA sequencing reveals that cell wall, Ca2+, hypersensitive response and salicylic acid signals are involved in pear suspension cells responses to Valsa pyri infection. Scientia Horticulturae, 2022, 305 111422.	5, 1.7	7	6
593	The Arabidopsis thaliana–Streptomyces Interaction Is Controlled by the Metabolic Status of the Holobiont. International Journal of Molecular Sciences, 2022, 23, 12952.	1.8	8	4

#	Article	IF	CITATIONS
594	Rose WRKY13 promotes disease protection to <i>Botrytis</i> by enhancing cytokinin content and reducing abscisic acid signaling. Plant Physiology, 2023, 191, 679-693.	2.3	9
595	Host Plant Resistance in Brassicaceae against Aphids. , 0, , .		1
597	Two polysaccharide elicitors trigger systemic acquired resistance to resist Sclerotium rolfsii and its transcriptional characteristic in Atractylodes macrocephala. Physiological and Molecular Plant Pathology, 2023, , 102027.	1.3	0
598	Chitosan application reduces downy mildew severity on grapevine leaves by positively affecting gene expression pattern. Physiological and Molecular Plant Pathology, 2023, 125, 102025.	1.3	2
601	Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Functional and Integrative Genomics, 2023, 23, .	1.4	8
606	Plant immune system: Mechanisms and resilience. , 2024, , 9-21.		0