Synthetic bone graft substitutes

ANZ Journal of Surgery 71, 354-361 DOI: 10.1046/j.1440-1622.2001.02128.x

Citation Report

#	Article	IF	CITATIONS
1	Manufacture of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) hydrogel tubes for use as nerve guidance channels. Biomaterials, 2002, 23, 3843-3851.	5.7	214
2	Subperiosteal tissue expansion: an experimental study. European Journal of Plastic Surgery, 2003, 26, 306-311.	0.3	0
3	Novel polyphosphazene-hydroxyapatite composites as biomaterials - Evaluating a polymer-ceramic biomaterial as a candidate for bone tissue engineering. IEEE Engineering in Medicine and Biology Magazine, 2003, 22, 18-26.	1.1	100
4	An animal evaluation of a paste of chitosan glutamate and hydroxyapatite as a synthetic bone graft material. Journal of Biomedical Materials Research Part B, 2003, 67B, 603-609.	3.0	45
5	Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials, 2003, 24, 1745-1750.	5.7	125
6	Bioceramics. , 2003, , 169-214.		18
7	Natural bioceramics: from coral to bone and beyond. Current Opinion in Solid State and Materials Science, 2003, 7, 283-288.	5.6	199
8	Effect of Ag-Doped Hydroxyapatite as a Bone Filler for Inflamed Bone Defects. Key Engineering Materials, 2003, 254-256, 47-50.	0.4	10
9	In Vivo Evaluation of Macroporous Calcium Metaphosphate Ceramic as a Bone Substitute. Key Engineering Materials, 2003, 240-242, 419-422.	0.4	2
10	Evaluation of Macroporous Biphasic HA-TCP Ceramic as a Bone Substitute. Key Engineering Materials, 2003, 254-256, 189-192.	0.4	0
11	Successful Osteoinduction by Macroporous Calcium Metaphosphate Ceramic-Osteoblastic Cell Complex Implantation. Key Engineering Materials, 2003, 254-256, 631-634.	0.4	0
12	Results of a Calcium Sulfate Bone Graft Substitute Used to Promote Posterolateral Lumbar Spinal Fusion. Neurosurgery Quarterly, 2003, 13, 251-256.	0.1	1
13	Radiographic and histological study of perennial bone defect repair in rat calvaria after treatment with blocks of porous bovine organic graft material. Journal of Applied Oral Science, 2004, 12, 62-69.	0.7	25
14	Bone defect regeneration with bioactive glass implantation in rats. Journal of Applied Oral Science, 2004, 12, 137-143.	0.7	25
15	Functional Materials for Bone Regeneration from Beta-Tricalcium Phosphate. Materialwissenschaft Und Werkstofftechnik, 2004, 35, 203-207.	0.5	59
16	In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials, 2004, 25, 5037-5044.	5.7	127
17	Cytotoxicity and Antimicrobial Effect of Ag Doped Hydroxyapatite. Key Engineering Materials, 2004, 264-268, 2107-2110.	0.4	19
18	Mechanically engineered hydrogel scaffolds for axonal growth and angiogenesis after transplantation in spinal cord injury. Journal of Neurosurgery: Spine, 2004, 1, 322-329.	0.9	134

#	Article	IF	CITATIONS
19	Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting. Materials Science and Engineering C, 2005, 25, 181-186.	3.8	114
20	Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials, 2005, 26, 137-146.	5.7	299
21	Repair of mandible defect with tissue engineering bone in rabbits. ANZ Journal of Surgery, 2005, 75, 1017-1021.	0.3	25
22	Bone Regeneration in Osseous Defects Using a Resorbable Nanoparticular Hydroxyapatite. Journal of Oral and Maxillofacial Surgery, 2005, 63, 1626-1633.	0.5	149
23	Osteogenic potential of injectable tissue-engineered bone: A comparison among autogenous bone, bone substitute (Bio-Ossî), platelet-rich plasma, and tissue-engineered bone with respect to their mechanical properties and histological findings. Journal of Biomedical Materials Research - Part A, 2005, 73A, 63-72.	2.1	61
24	In vivo evaluation of a porous hydroxyapatite/poly-DL-lactide composite for use as a bone substitute. Journal of Biomedical Materials Research - Part A, 2005, 75A, 567-579.	2.1	64
25	The medium-term results of treatment with hydroxyapatite implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 75B, 405-413.	1.6	9
26	Expression of bone matrix proteins during de novo bone formation using a bovine collagen and platelet-rich plasma (prp)—an immunohistochemical analysis. Biomaterials, 2005, 26, 2575-2584.	5.7	93
27	Fabrication of Hydroxyapatite Block from Gypsum Block Based on (NH4)2HPO4 Treatment. Dental Materials Journal, 2005, 24, 515-521.	0.8	32
28	Influence of Emdogain [®] Treatment onto K ₂ O Incorporated Calcium Metaphosphate on Osteogenic Activation. Key Engineering Materials, 2005, 284-286, 631-634.	0.4	0
29	Lignin-Hydroxyapatite/Tricalcium Phosphate Biocomposites: SEM/EDX and FTIR Characterization. Key Engineering Materials, 2005, 284-286, 745-748.	0.4	12
30	Periodontal Regeneration Techniques for Treatment of Periodontal Diseases. Dental Clinics of North America, 2005, 49, 637-659.	0.8	47
31	Stability of autogenous bone grafts after sinus lift procedures: A comparative study between anterior and posterior aspects of the iliac crest and an intraoral donor site. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2005, 100, 278-284.	1.6	41
32	PRP modulates expression of bone matrix proteins in vivo without long-term effects on bone formation. Bone, 2006, 38, 30-40.	1.4	66
33	Acceleration of de novo bone formation following application of autogenous bone to particulated anorganic bovine material in vivo. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2006, 101, 309-316.	1.6	33
35	Beta-tricalcium phosphate as a synthetic cancellous bone graft in veterinary orthopaedics. Veterinary and Comparative Orthopaedics and Traumatology, 2006, 19, 196-204.	0.2	20
36	Changes of mineralization of free autogenous bone grafts used for sinus floor elevation. Clinical Oral Implants Research, 2006, 17, 673-678.	1.9	39
37	Modelling nutrient transport in hollow fibre membrane bioreactors for growing three-dimensional bone tissue. Journal of Membrane Science, 2006, 272, 169-178.	4.1	71

#	Article	IF	CITATIONS
38	Interatomic potential models for natural apatite crystals: Incorporating strontium and the lanthanides. Journal of Computational Chemistry, 2006, 27, 253-266.	1.5	50
39	Targeting RGD Recognizing Integrins: Drug Development, Biomaterial Research, Tumor Imaging and Targeting. Current Pharmaceutical Design, 2006, 12, 2723-2747.	0.9	271
40	Evaluation of Bovine Bone Ash Particles for Tooth-Bearing Bone Defect Healing. Key Engineering Materials, 2006, 309-311, 37-40.	0.4	0
41	Preprosthetic Ridge Augmentation: Hard and Soft. , 0, , 57-68.		0
42	Evaluation of Subretinal Implants Coated with Amorphous Aluminum Oxide and Diamond-like Carbon. Journal of Bioactive and Compatible Polymers, 2006, 21, 5-22.	0.8	13
43	Periodontal Regeneration. , 0, , 239-264.		0
44	Comparison Between Polyurethanes Containing Castor Oil (Soft Segment) and Cancellous Bone Autograft in the Treatment of Segmental Bone Defect Induced in Rabbits. Journal of Biomaterials Applications, 2007, 21, 283-297.	1.2	34
45	An Experimental Comparison of the Effects of Calcium Sulfate Particles and Î ² -Tricalcium Phosphate/Hydroxyapatite Granules on Osteogenesis in Internal Bone Cavities. Biotechnology and Biotechnological Equipment, 2007, 21, 205-210.	0.5	3
46	Grafting of Tooth Extraction Socket With Inorganic Bovine Bone or Bioactive Glass Particles: Comparative Histometric Study in Rats. Implant Dentistry, 2007, 16, 260-269.	1.7	13
47	Bone Graft Materials. Dental Clinics of North America, 2007, 51, 729-746.	0.8	81
48	A Review of Bone Substitutes. Oral and Maxillofacial Surgery Clinics of North America, 2007, 19, 513-521.	0.4	198
49	Evaluation of substitutes for bone: Comparison of microradiographic and histological assessments. British Journal of Oral and Maxillofacial Surgery, 2007, 45, 41-47.	0.4	19
50	Nano- to Microscale Porous Silicon as a Cell Interface for Bone-Tissue Engineering. Advanced Materials, 2007, 19, 921-924.	11.1	113
51	Bone regeneration of porous β-tricalcium phosphate (Conduitâ,,¢ TCP) and of biphasic calcium phosphate ceramic (Biosel®) in trabecular defects in sheep. Journal of Biomedical Materials Research - Part A, 2007, 82A, 711-722.	2.1	69
52	In vivo evaluation of a porous hydroxyapatite/poly-DL-lactide composite for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2007, 81A, 930-938.	2.1	64
53	Injectable nanocrystalline hydroxyapatite paste for bone substitution:In vivo analysis of biocompatibility and vascularization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 82B, 494-505.	1.6	113
54	Effect of ternary phosphate-based glass compositions on osteoblast and osteoblast-like proliferation, differentiation and death in vitro. Acta Biomaterialia, 2007, 3, 563-572.	4.1	40
55	Porous silicon as a cell interface for bone tissue engineering. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1429-1433.	0.8	32

#	Article	IF	CITATIONS
56	A comparison of different nanostructured biomaterials in subcutaneous tissue. Journal of Materials Science: Materials in Medicine, 2008, 19, 2629-2636.	1.7	21
57	Histological evaluation on bone regeneration of dental implant placement sites grafted with a selfâ€setting αâ€ŧricalcium phosphate cement. Microscopy Research and Technique, 2008, 71, 93-104.	1.2	9
58	Effects of FGF-2 release from a hydrogel polymer on bone mass and microarchitecture. Biomaterials, 2008, 29, 1593-1600.	5.7	48
59	Sinus floor augmentation with recombinant human growth and differentiation factor-5 (rhGDF-5): a histological and histomorphometric study in the Goettingen miniature pig. Clinical Oral Implants Research, 2008, 19, 522-529.	1.9	40
60	Maxillary sinus floor elevation using a tissueâ€engineered bone complex with OsteoBone ^{â"¢} and bMSCs in rabbits. Clinical Oral Implants Research, 2008, 19, 804-813.	1.9	60
61	Bone regeneration in osseous defects—application of particulated human and bovine materials. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2008, 105, 430-436.	1.6	16
62	Synthesis and Evaluation of Novel Biodegradable Hydrogels Based on Poly(ethylene glycol) and Sebacic Acid as Tissue Engineering Scaffolds. Biomacromolecules, 2008, 9, 149-157.	2.6	121
63	Rapid Prototyping to Produce POROUS SCAFFOLDS WITH CONTROLLED ARCHITECTURE for Possible use in Bone Tissue Engineering. , 2008, , 171-206.		6
64	Injectable Bone Cement Augmentation for the Treatment of Distal Radius Fractures: A Review. Journal of Orthopaedic Trauma, 2008, 22, S121-S125.	0.7	12
65	The Use of Calcium Phosphate Bone Cement in Fracture Treatment. Journal of Bone and Joint Surgery - Series A, 2008, 90, 1186-1196.	1.4	122
66	Development of Calcium Phosphate Mineralized Silk for Potential Use in Guided Bone Regeneration: Preparation and Properties. Key Engineering Materials, 0, 396-398, 653-657.	0.4	1
67	Critical Analysis of the Evidence for Current Technologies in Bone-Healing and Repair. Journal of Bone and Joint Surgery - Series A, 2008, 90, 85-91.	1.4	47
68	Allograft and Synthetic Graft Substitutes. Techniques in Foot and Ankle Surgery, 2008, 7, 79-83.	0.1	0
69	Comparison of in vitro and in vivo Bioactivity of SrO—CaO—ZnO—SiO2 Glass Grafts. Journal of Biomaterials Applications, 2009, 23, 561-572.	1.2	23
70	Reconstruction of a Rabbit Ulna Bone Defect Using Bone Marrow Stromal Cells and a PLA/ <i>β</i> â€TCP Composite by a Novel Sintering Method. Advanced Engineering Materials, 2009, 11, B169.	1.6	4
71	<i>In vivo</i> analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone®. Journal of Biomedical Materials Research - Part A, 2009, 91A, 557-566.	2.1	76
72	Healing of bone defects in the goat mandible, using COLLOSS® E and βâ€ŧricalciumphosphate. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 92B, 517-524.	1.6	8
73	Use of platelet-rich plasma in periodontal surgery—a prospective randomised double blind clinical trial. Clinical Oral Investigations, 2009, 13, 179-187.	1.4	44

#	Article	IF	Citations
π 74	Bone graft substitutes in anterior cervical discectomy and fusion. European Spine Journal, 2009, 18,	1.0	122
74	449-464.	1.0	122
75	Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part B: Delivery systems for BMPs in orthopaedic and craniofacial tissue engineering. Biotechnology Letters, 2009, 31, 1825-1835.	1.1	154
76	Preliminary investigation of novel bone graft substitutes based on strontium–calcium–zinc–silicate glasses. Journal of Materials Science: Materials in Medicine, 2009, 20, 413-420.	1.7	57
77	The effect of composition on ion release from Ca–Sr–Na–Zn–Si glass bone grafts. Journal of Materials Science: Materials in Medicine, 2009, 20, 2207-2214.	1.7	68
78	Development of bioresorbable Mg-substituted tricalcium phosphate scaffolds for bone tissue engineering. Materials Science and Engineering C, 2009, 29, 2003-2010.	3.8	11
79	The repair of segmental bone defects with porous bioglass: An experimental study in goat. Research in Veterinary Science, 2009, 86, 162-173.	0.9	66
80	Bone Graft Substitutes and Allografts for Reconstruction of the Foot and Ankle. Clinics in Podiatric Medicine and Surgery, 2009, 26, 589-605.	0.2	31
81	Endoscopic Maxillary Sinus Lift Without Vestibular Mucosal Incision or Bone Graft. Journal of Craniofacial Surgery, 2009, 20, 1462-1467.	0.3	3
82	USE OF BIOCERAMICS IN FILLING BONE DEFECTS. Revista Brasileira De Ortopedia, 2010, 45, 433-438.	0.6	2
83	Use of Cell-Based Approaches in Maxillary Sinus Augmentation Procedures. Journal of Craniofacial Surgery, 2010, 21, 557-560.	0.3	24
84	Reinforcement of carbonate apatite bone substitutes with carbonate apatite by Ca salt introduction. Journal of the Ceramic Society of Japan, 2010, 118, 521-524.	0.5	7
85	Fabrication of carbonate apatite block based on internal dissolution-precipitation reaction of dicalcium phosphate and calcium carbonate. Dental Materials Journal, 2010, 29, 303-308.	0.8	29
86	Vascular smooth muscle contraction/relaxation of rat carotid artery is not altered by bone grafting substitutes in vitro. Oral and Maxillofacial Surgery, 2010, 14, 97-104.	0.6	0
87	In vitro characterization of nanofibrous PLGA/gelatin/hydroxyapatite composite for bone tissue engineering. Macromolecular Research, 2010, 18, 1195-1202.	1.0	28
88	The effect of ionic dissolution products of Ca–Sr–Na–Zn–Si bioactive glass on in vitro cytocompatibility. Journal of Materials Science: Materials in Medicine, 2010, 21, 2827-2834.	1.7	81
89	Keratin–hydroxyapatite composites: Biocompatibility, osseointegration, and physical properties in an ovine model. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1084-1095.	2.1	48
90	Osteoconductive effects of calcium phosphate glass cement grafts in rabbit calvarial defects. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 95B, 47-52.	1.6	13
91	Biomaterials for bone regeneration. Medicina Oral, Patologia Oral Y Cirugia Bucal, 2010, , e517-e522.	0.7	19

#	Article	IF	CITATIONS
92	Effects of Enamel Matrix Derivative on Bioactive Glass in Rat Calvarium Defects. Journal of Oral Implantology, 2010, 36, 195-204.	0.4	13
93	Cranial bone defects: current and future strategies. Neurosurgical Focus, 2010, 29, E8.	1.0	169
94	Synthetic Bone Grafting in Foot and Ankle Surgery. Foot and Ankle Clinics, 2010, 15, 559-576.	0.5	19
95	A review of nanoparticle functionality and toxicity on the central nervous system. Journal of the Royal Society Interface, 2010, 7, S411-22.	1.5	202
96	Systematic evaluation of a tissue-engineered bone for maxillary sinus augmentation in large animal canine model. Bone, 2010, 46, 91-100.	1.4	45
97	Bone healing with an in situ–formed bioresorbable polyethylene glycol hydrogel membrane in rabbit calvarial defects. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2010, 109, 372-384.	1.6	38
98	Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries. Journal of Neurotrauma, 2010, 27, 1-19.	1.7	319
99	Successful Treatment of Chronic Periapical Osteomyelitis in a Parma Wallaby (Macropus parma) Using Comprehensive Endodontic Therapy with Apicoectomy. Journal of Zoo and Wildlife Medicine, 2010, 41, 703-709.	0.3	8
100	The role of nanostructured mesoporous silicon in discriminating in vitro calcification for electrospun composite tissue engineering scaffolds. Nanoscale, 2011, 3, 354-361.	2.8	58
101	The Evaluation of Mineralized Collagen as a Carrier for the Osteoinductive Material COLLOSS [®] E, <i>In Vivo</i> . Tissue Engineering - Part A, 2011, 17, 1683-1690.	1.6	5
102	Bio-inspired calcium silicate–gelatin bone grafts for load-bearing applications. Journal of Materials Chemistry, 2011, 21, 12793.	6.7	22
103	In Vitro Physicochemical Properties, Osteogenic Activity, and Immunocompatibility of Calcium Silicate–Gelatin Bone Grafts for Load-Bearing Applications. ACS Applied Materials & Interfaces, 2011, 3, 4142-4153.	4.0	42
104	In Vivo Characterization of Hyalonect, a Novel Biodegradable Surgical Mesh. Journal of Surgical Research, 2011, 168, e31-e38.	0.8	16
105	Assessment of bone grafts placed within an oral and maxillofacial training programme for implant rehabilitation. Australian Dental Journal, 2011, 56, 406-411.	0.6	17
106	An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo. Acta Biomaterialia, 2011, 7, 4018-4028.	4.1	63
108	Strategies for stimulation of new bone formation: a critical review. Brazilian Dental Journal, 2011, 22, 443-448.	0.5	26
109	Perspectives on the clinical utility of allografts for bone regeneration within osseous defects: a narrative review. Orthopedic Research and Reviews, 0, , 31.	0.7	4
110	Various Ways to Enhance the Results of Maxillary Sinus Augmentation Procedures. , 0, , .		0

		CITATION REPORT		
#	Article		IF	CITATIONS
111	Cockle Shell-Based Biocomposite Scaffold for Bone Tissue Engineering. , 2011, , .			2
112	In Vitro Antimicrobial Activity of Calcium Sulfate and Hydroxyapatite (Cerament Bone Void Discs Using Heat-Sensitive and Non–Heat-sensitive Antibiotics Against Methicillin-Resista Staphylococcus aureus and Pseudomonas aeruginosa. Journal of the American Podiatric Methods Association. 2011. 101. 146-152.	ant	0.2	19
113	Management in the Wound-care Center Outpatient Setting of a Diabetic Patient with Fore Osteomyelitis Using Cerament Bone Void Filler Impregnated with Vancomycin. Journal of th Podiatric Medical Association, 2011, 101, 259-264.	foot ne American	0.2	23
114	Use of self-setting α-tricalcium phosphate for maxillary sinus augmentation in rabbit. Clinic Implants Research, 2011, 22, 606-612.	cal Oral	1.9	19
115	Bone graft substitutes in hip revision surgery: A comprehensive overview. Injury, 2011, 42,	S40-S46.	0.7	25
116	Scaffolds with a standardized macro-architecture fabricated from several calcium phosphat ceramics using an indirect rapid prototyping technique. Journal of Materials Science: Mater Medicine, 2011, 22, 97-105.	ie ials in	1.7	42
117	Influence of microstructure and chemical composition of sputter deposited TiO2 thin films vitro bioactivity. Journal of Materials Science: Materials in Medicine, 2011, 22, 2727-2734.	on in	1.7	20
118	Recombinant human bone morphogenetic protein-2 (rhBMP-2) in the treatment of mandib after tumor resection. Oral and Maxillofacial Surgery, 2011, 15, 169-174.	ular sequelae	0.6	18
119	Calcium phosphate scaffolds for bone repair. Jom, 2011, 63, 83-92.		0.9	37
120	<i>In vitro</i> assessment of osteoblast and macrophage mobility in presence of βâ€₹CP videomicroscopy. Journal of Biomedical Materials Research - Part A, 2011, 96A, 108-115.	particles by	2.1	9
121	Calcium phosphate bioceramics fabricated from extracted human teeth for tooth tissue en Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 399-411	gineering.	1.6	26
122	Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Materials Science and Engineering C, 2011, 31, 43-49.		3.8	165
123	Modifying biomaterial surfaces to optimise interactions with bone. , 2011, , 365-400.			6
124	Adipose-Derived Stem Cells in Functional Bone Tissue Engineering: Lessons from Bone Mechanobiology. Tissue Engineering - Part B: Reviews, 2011, 17, 195-211.		2.5	61
125	Materials in Fracture Fixation. , 2011, , 219-235.			8
126	Bone Repair Efficiency by Various Round Granular Bone Substitutes. Key Engineering Mater 493-494, 143-146.	rials, 2011,	0.4	Ο
127	Primary Implant Stability in Calcium Phosphate Cement: Clinical, Radiographic and Histolog Analysis. Materials Science Forum, 0, 727-728, 1131-1135.	gical	0.3	1
128	Dental Implant Prosthetic Rehabilitation. , 2012, , 157-163.			4

#	Article	IF	CITATIONS
129	Preparation and In Vitro Characterization of Polycaprolactone and Demineralized Bone Matrix Scaffolds. Materials Research Society Symposia Proceedings, 2012, 1417, 30.	0.1	0
130	Infections in Calcaneal Fracture Patients Treated with Open Reduction and Internal Fixation and Bioresorbable Calcium Phosphate Paste: A Case Series. Foot and Ankle International, 2012, 33, 997-1000.	1.1	4
131	The role of perfusion bioreactors in bone tissue engineering. Biomatter, 2012, 2, 167-175.	2.6	125
132	Biomaterials for periodontal regeneration. Biomatter, 2012, 2, 271-277.	2.6	128
133	The chemical composition of synthetic bone substitutes influences tissue reactions <i>in vivo</i> : histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics. Biomedical Materials (Bristol), 2012, 7, 015005.	1.7	119
134	Conditioned Media from Mesenchymal Stem Cells Enhanced Bone Regeneration in Rat Calvarial Bone Defects. Tissue Engineering - Part A, 2012, 18, 1479-1489.	1.6	304
135	Xenograft Enriched with Autologous Bone Marrow in Inlay Reconstructions: A Tomographic and Histomorphometric Study in Rabbit Calvaria. International Journal of Biomaterials, 2012, 2012, 1-7.	1.1	11
136	Preparation of Sr-containing carbonate apatite as a bone substitute and its properties. Dental Materials Journal, 2012, 31, 197-205.	0.8	6
137	Bone Graft Substitutes. Hand Clinics, 2012, 28, 457-468.	0.4	141
138	In Vitro Elution Characteristics of Vancomycin in a Composite Calcium Phosphate/Calcium Sulfate Bone Substitute. HSS Journal, 2012, 8, 129-132.	0.7	9
139	Development of a surface roughness model in end milling of nHAP using PCD insert. Ceramics International, 2012, 38, 6865-6871.	2.3	9
140	Preparation, characterization and in vitro angiogenic capacity of cobalt substituted β-tricalcium phosphate ceramics. Journal of Materials Chemistry, 2012, 22, 21686.	6.7	63
141	Bone Tissue Engineering: Current Strategies and Techniques—Part I: Scaffolds. Tissue Engineering - Part B: Reviews, 2012, 18, 246-257.	2.5	134
142	Cell Culture–Based Tissue Engineering as an Alternative to Bone Grafts in Implant Dentistry: A Literature Review. Journal of Oral Implantology, 2012, 38, 538-545.	0.4	16
143	Cytocompatibility of polymer-based periodontal bone substitutes in gingival fibroblast and MC3T3 osteoblast cell cultures. Dental Materials, 2012, 28, e239-e249.	1.6	15
145	Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress in Biomaterials, 2012, 1, 2.	1.8	175
146	Polycaprolactone scaffold as targeted drug delivery system and cell attachment scaffold for postsurgical care of limb salvage. Drug Delivery and Translational Research, 2012, 2, 272-283.	3.0	39
147	Rationale, characteristics, and clinical performance of the OsteoSponge®: a novel allograft for treatment of osseous defects. Orthopedic Research and Reviews, 0, , 9.	0.7	Ο

#	ARTICLE	IF	CITATIONS
148	Mineralized Synthetic Matrices as an Instructive Microenvironment for Osteogenic Differentiation of Human Mesenchymal Stem Cells. Macromolecular Bioscience, 2012, 12, 1022-1032.	2.1	44
149	Increased osteoblast adhesion on physically optimized KRSR modified calcium aluminate. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1229-1238.	2.1	15
150	<i>In vivo</i> evaluation of resorbable bone graft substitutes in mandibular sockets of the beagle. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2726-2731.	2.1	2
151	Development and evaluation of tetrapod-shaped granular artificial bones. Acta Biomaterialia, 2012, 8, 2340-2347.	4.1	21
152	Spark plasma sintering of sol–gel derived 45S5 Bioglass®-ceramics: Mechanical properties and biocompatibility evaluation. Materials Science and Engineering C, 2012, 32, 494-502.	3.8	36
153	Role of amniotic fluid mesenchymal cells engineered on MgHA/collagen-based scaffold allotransplanted on an experimental animal study of sinus augmentation. Clinical Oral Investigations, 2013, 17, 1661-1675.	1.4	28
154	Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes. Carbohydrate Polymers, 2013, 95, 134-142.	5.1	51
155	Early healing in alveolar sockets grafted with titanium granules. An experimental study in a dog model. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1971-1976.	2.1	7
156	Machining assessment of nano-crystalline hydroxyapatite bio-ceramic. Journal of Manufacturing Processes, 2013, 15, 666-672.	2.8	10
157	Use of bone graft substitutes in the management of tibial plateau fractures. Injury, 2013, 44, S86-S94.	0.7	86
158	Autologous bone marrow derived mononuclear cells combined with β-tricalcium phosphate and absorbable atelocollagen for a treatment of aneurysmal bone cyst of the humerus in child. Journal of Biomaterials Applications, 2013, 28, 343-353.	1.2	10
159	Calcium phosphate-based cements: clinical needs and recent progress. Journal of Materials Chemistry B, 2013, 1, 1081-1089.	2.9	97
160	Establishment of the chronic bone defect model in experimental model mandible and evaluation of the efficacy of the mesenchymal stem cells in enhancing bone regeneration. Tissue Engineering and Regenerative Medicine, 2013, 10, 18-24.	1.6	12
161	Hollow hydroxyapatite microspheres: A novel bioactive and osteoconductive carrier for controlled release of bone morphogenetic protein-2 in bone regeneration. Acta Biomaterialia, 2013, 9, 8374-8383.	4.1	94
162	In vivo biocompatibility evaluation of electrospun composite scaffolds by subcutaneous implantation in rat. Drug Delivery and Translational Research, 2013, 3, 504-517.	3.0	12
163	Biomaterials for Bone Tissue Engineering. , 2013, , 563-594.		3
164	Sintering effects on chemical and physical properties of bioactive ceramics. Journal of Advanced Ceramics, 2013, 2, 274-284.	8.9	27
165	Calcium Phosphate Scaffold Loaded with Platinum Nanoparticles for Bone Allograft. American Journal of Biomedical Sciences, 0, , 242-249.	0.2	14

#	Article	IF	CITATIONS
166	Improving CT Image Analysis of Augmented Bone with Raman Spectroscopy. Journal of Applied Mathematics, 2013, 2013, 1-10.	0.4	2
167	Scintigraphic and Histopathologic Evaluation of Combined Bone Grafts. Journal of Craniofacial Surgery, 2013, 24, 1902-1907.	0.3	4
169	Changes in Bone Regeneration by Trehalose Coating and Basic Fibroblast Growth Factor after Implantation of Tailor-Made Bone Implants in Dogs. Journal of Veterinary Medical Science, 2013, 75, 721-726.	0.3	2
170	Concepts in Bone Reconstruction for Implant Rehabilitation. , 0, , .		1
171	Recent Developments of Functional Scaffolds for Craniomaxillofacial Bone Tissue Engineering Applications. Scientific World Journal, The, 2013, 2013, 1-21.	0.8	76
172	Bone-Forming Capabilities of a Newly Developed NanoHA Composite Alloplast Infused with Collagen: A Pilot Study in the Sheep Mandible. International Journal of Dentistry, 2013, 2013, 1-7.	0.5	6
173	Analyzing the behavior of a porous nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composite for healing of bone defects. International Journal of Nanomedicine, 2014, 9, 485.	3.3	75
174	Effect of platelet rich fibrin and beta tricalcium phosphate on bone healing. A histological study in pigs. Acta Cirurgica Brasileira, 2014, 29, 59-65.	0.3	39
175	Eluting antibiotic bone graft substitutes for the treatment of osteomyelitis in long bones. A review: evidence for their use?. Orthopedic Research and Reviews, 0, , 71.	0.7	6
176	Three Dimensional Printing of Titanium for Bone Tissue Engineering Applications: A Preliminary Study. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 2014, 21, 101-115.	0.5	8
177	Exigency for fusion of graphene and carbon nanotube with biomaterials. Toxicological and Environmental Chemistry, 2014, 96, 699-721.	0.6	5
178	Molded polymerâ€coated composite bone void filler improves tobramycin controlled release kinetics. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1074-1083.	1.6	13
179	Antibacterial property expressed by a novel calcium phosphate glass. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 423-429.	1.6	16
180	Size and composition of synthetic calcium sulfate beads influence dissolution and elution rates <i>in vitro</i> . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 667-673.	1.6	43
181	Development and characterization of fast-hardening composite cements composed of natural ceramics originated from horse bones and chitosan solution. Tissue Engineering and Regenerative Medicine, 2014, 11, 362-371.	1.6	4
182	Comparison of the Osteogenic Potential of OsteoSelect Demineralized Bone Matrix Putty to NovaBone Calcium-Phosphosilicate Synthetic Putty in a Cranial Defect Model. Journal of Craniofacial Surgery, 2014, 25, 657-661.	0.3	24
183	Gelation behavior of in situ forming gels based on HPMC and biphasic calcium phosphate nanoparticles. Carbohydrate Polymers, 2014, 99, 257-263.	5.1	29
184	Stem cell engineered bone with calcium-phosphate coated porous titanium scaffold or silicon hydroxyapatite granules for revision total joint arthroplasty. Journal of Materials Science: Materials in Medicine, 2014, 25, 1553-1562.	1.7	14

#	Article	IF	CITATIONS
185	Ion-Exchange Polymer Nanofibers for Enhanced Osteogenic Differentiation of Stem Cells and Ectopic Bone Formation. ACS Applied Materials & Interfaces, 2014, 6, 72-82.	4.0	30
186	Biocompatible evaluation of barium titanate foamed ceramic structures for orthopedic applications. Journal of Biomedical Materials Research - Part A, 2014, 102, 2089-2095.	2.1	63
187	The physicochemical characterization and in vivo response of micro/nanoporous bioactive ceramic particulate bone graft materials. Materials Science and Engineering C, 2014, 43, 472-480.	3.8	10
188	Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis. Biomedical Materials (Bristol), 2014, 9, 035002.	1.7	49
189	Simple and less invasive technique for fixation of iliac inlay bone block using dental implants in the atrophied posterior maxilla. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 2014, 26, 497-500.	0.2	0
190	In vitro evaluation of cytotoxicity of hyaluronic acid as an extracellular matrix on OFCOL II cells by the MTT assay. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2014, 117, e423-e428.	0.2	19
191	Biofunctionalization of Ulvan Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2014, 6, 3211-3218.	4.0	92
192	Bioactive glass functionalized with alkaline phosphatase stimulates bone extracellular matrix deposition and calcification in vitro. Applied Surface Science, 2014, 313, 372-381.	3.1	22
193	Intramedullary cement osteosynthesis (IMCO): A pilot study in sheep. Bio-Medical Materials and Engineering, 2014, 24, 2177-2186.	0.4	5
194	Tri-calcium phosphate (ß-TCP) can be artificially synthesized by recycling dihydrate gypsum hardened. Dental Materials Journal, 2014, 33, 845-851.	0.8	5
195	Xenograft Impregnated with Bone Marrow Mononuclear Fraction for Appositional Bone Regeneration in Rabbit Calvaria: A Clinical and Histomorphometric Study. International Journal of Oral and Maxillofacial Implants, 2014, 29, 962-968.	0.6	10
197	Secondary Fronto-orbital Reconstruction Using an Augmented Allograph. Journal of Craniofacial Surgery, 2014, 25, 1570-1572.	0.3	0
198	Manufacture of duck-beak bone particles with gamma-ray irradiation for bone graft. Tissue Engineering and Regenerative Medicine, 2014, 11, 453-457.	1.6	0
199	Adipose Mesenchymal Stem Cells Associated with Xenograft in a Guided Bone Regeneration Model: A Histomorphometric Study in Rabbit Calvaria. International Journal of Oral and Maxillofacial Implants, 2015, 30, 1415-1422.	0.6	8
200	Physical and Chemical Characteristics of Corals from Bidong Island, Terengganu, Malaysia. Advanced Materials Research, 2015, 1112, 555-558.	0.3	2
202	Novel nanocomposite biomaterial to differentiate bone marrow mesenchymal stem cells to the osteogenic lineage for boneÂrestoration. Journal of Orthopaedic Translation, 2015, 3, 105-113.	1.9	5
203	Behavior of POP-calcium carbonate hydrogel as bone substitute with controlled release capability: A study in rat. Journal of Biomedical Materials Research - Part A, 2015, 103, 3273-3283.	2.1	16
204	BAG‣53P4 as an additive to bone allografts: A laboratory study using an uniaxial compression test. Journal of Orthopaedic Research, 2015, 33, 1875-1879.	1.2	5

#	Article	IF	CITATIONS
205	Neoformação Ã3ssea e osteointegração de biomateriais micro e nanoestruturados em ovinos. Pesquisa Veterinaria Brasileira, 2015, 35, 177-187.	0.5	9
206	A Bone Sample Containing a Bone Graft Substitute Analyzed by Correlating Density Information Obtained by X-ray Micro Tomography with Compositional Information Obtained by Raman Microscopy. Materials, 2015, 8, 3831-3853.	1.3	3
207	Study of bone-like hydroxyapatite/polyamino acid composite materials for their biological properties and effects on the reconstruction of long bone defects. Drug Design, Development and Therapy, 2015, 9, 6497.	2.0	17
208	Histological Comparison in Rats between Carbonate Apatite Fabricated from Gypsum and Sintered Hydroxyapatite on Bone Remodeling. BioMed Research International, 2015, 2015, 1-7.	0.9	37
209	Interim Clinical Outcomes in Nanocomposite Bone Material Repairing Large Proximal Femoral Defect of Fibrous Dysplasia. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	1
210	Geometry sensing through POR1 regulates Rac1 activity controlling early osteoblast differentiation in response to nanofiber diameter. Integrative Biology (United Kingdom), 2015, 7, 229-236.	0.6	22
211	Enhanced bone healing by improved fibrin lot formation via fibrinogen adsorption on biphasic calcium phosphate granules. Clinical Oral Implants Research, 2015, 26, 1203-1210.	1.9	17
212	Design and characterization of a composite material based on Sr(II)-loaded clay nanotubes included within a biopolymer matrix. Journal of Colloid and Interface Science, 2015, 448, 501-507.	5.0	18
213	High-Temperature Sintering of Xenogeneic Bone Substitutes Leads to Increased Multinucleated Giant Cell Formation: In Vivo and Preliminary Clinical Results. Journal of Oral Implantology, 2015, 41, e212-e222.	0.4	49
214	Development of Polymer/Nanodiamond Composite Coatings to Control Cell Adhesion, Growth, and Functions. Behavior Research Methods, 2015, 21, 1-26.	2.3	3
215	Lithiumâ€endâ€capped polylactide thin films influence osteoblast progenitor cell differentiation and mineralization. Journal of Biomedical Materials Research - Part A, 2015, 103, 500-510.	2.1	4
217	Naturalâ€Based Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: A Review. Advanced Materials, 2015, 27, 1143-1169.	11.1	743
218	The role of osteoclasts in bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1133-1149.	1.3	108
219	Synthesis and Characterization of Synthetic and Natural Nano Hydroxyapatite Composites Containing Poloxamer Coated Demineralized Bone Matrix as Bone Graft Material: A Comparative Study. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 534-540.	1.8	2
220	Autologously Generated Tissue-Engineered Bone Flaps for Reconstruction of Large Mandibular Defects in an Ovine Model. Tissue Engineering - Part A, 2015, 21, 1520-1528.	1.6	33
221	Phase separation in an ionomer glass: Insight from calorimetry and phase transitions. Journal of Non-Crystalline Solids, 2015, 415, 24-29.	1.5	19
222	Biphasic calcium phosphate–casein bone graft fortified with Cassia occidentalis for bone tissue engineering and regeneration. Bulletin of Materials Science, 2015, 38, 259-266.	0.8	14
223	BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects. International Journal of Nanomedicine, 2015, 10, 517.	3.3	41

		TION REPORT	
#	Article	IF	CITATIONS
224	Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 2015, 81, 112-121.	1.4	469
225	Effect of Organic Acids on Calcium Phosphate Nucleation and Osteogenic Differentiation of Human Mesenchymal Stem Cells on Peptide Functionalized Nanofibers. Langmuir, 2015, 31, 5130-5140.	1.6	34
226	Collagen immobilization of multi-layered BCP-ZrO 2 bone substitutes to enhance bone formation. Applied Surface Science, 2015, 345, 238-248.	3.1	10
227	Bone Grafts and Bone Substitutes for Opening-Wedge Osteotomies of the Knee: AÂSystematic Review. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2015, 31, 720-730.	1.3	81
228	Tracking calcification in tissue-engineered bone using synchrotron micro-FTIR and SEM. Analytical and Bioanalytical Chemistry, 2015, 407, 1097-1105.	1.9	6
229	Osseointegration of acellular and cellularized osteoconductive scaffolds: Is tissue engineering using mesenchymal stem cells necessary for implant fixation?. Journal of Biomedical Materials Research - Part A, 2015, 103, 1067-1076.	2.1	19
230	Evaluation of porous β-calcium pyrophosphate as bioresorbable bone graft substitute material. Materials Research Innovations, 2015, 19, 86-90.	1.0	5
231	Evaluation of the Osteoinductive Capacity of Polydopamine-Coated Poly(ε-caprolactone) Diacrylate Shape Memory Foams. ACS Biomaterials Science and Engineering, 2015, 1, 1220-1230.	2.6	44
232	Bone Tissue Engineering with Multilayered Scaffolds—Part I: An Approach for Vascularizing Engineered Constructs <i>In Vivo</i> . Tissue Engineering - Part A, 2015, 21, 2480-2494.	1.6	31
233	Histologic Evaluation of Critical Size Defect Healing With Natural and Synthetic Bone Grafts in the Pigeon (<i>Columba livia</i>) Ulna. Journal of Avian Medicine and Surgery, 2015, 29, 106-113.	0.6	6
234	Production of hydroxyapatite–bacterial cellulose nanocomposites from agroindustrial wastes. Cellulose, 2015, 22, 3177-3187.	2.4	42
235	The effect of the prefrozen process on properties of a chitosan/hydroxyapatite/poly(methyl) Tj ETQq1 1 Advances, 2015, 5, 79679-79686.	0.784314 rgBT /Ov 1.7	erlock 10 Tf 29
236	Capability of new bone formation with a mixture of hydroxyapatite and betaâ€ŧricalcium phosphate granules. Clinical Oral Implants Research, 2015, 26, 1369-1374.	1.9	9
237	Antibiotic-Loaded Synthetic Calcium Sulfate Beads for Prevention of Bacterial Colonization and Biofilm Formation in Periprosthetic Infections. Antimicrobial Agents and Chemotherapy, 2015, 59, 111-120.	1.4	183
238	Micro-poro-elasticity of baghdadite-based bone tissue engineering scaffolds: A unifying approach based on ultrasonics, nanoindentation, and homogenization theory. Materials Science and Engineering C, 2015, 46, 553-564.	3.8	35
239	Nanofibrous nonmulberry silk/ <scp>PVA</scp> scaffold for osteoinduction and osseointegration. Biopolymers, 2015, 103, 271-284.	1.2	40
240	Synthesis and characterization of a nanoâ€hydroxyapatite/chitosan/polyethylene glycol nanocomposite for bone tissue engineering. Polymers for Advanced Technologies, 2015, 26, 41-48.	1.6	38
241	Drug release from calcium sulfate-based composites. , 2015, 103, 135-142.		22

#	Article	IF	CITATIONS
242	Morphology effect of bioglassâ€reinforced hydroxyapatite (<scp>Bonelike[®]</scp>) on osteoregeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 292-304.	1.6	19
243	Biocompatibility evaluation of porous ceria foams for orthopedic tissue engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 8-15.	2.1	29
244	11th World congress on structural and multidisciplinary optimization (WCSMO-11). Structural and Multidisciplinary Optimization, 2015, 51, 799-800.	1.7	3
245	Ceramic–polymer nanocomposites for bone-tissue regeneration. , 2016, , 331-367.		11
246	Within Patient Radiological Comparative Analysis of the Performance of Two Bone Graft Extenders Utilized in Posterolateral Lumbar Fusion: A Retrospective Case Series. Frontiers in Surgery, 2015, 2, 69.	0.6	2
247	Effects of Rat Bone Marrow–Derived Mesenchymal Stem Cells and Demineralized Bone Matrix on Cranial Bone Healing. Annals of Plastic Surgery, 2016, 77, 249-254.	0.5	7
248	Mesenchymal Stem Cells Ageing: Targeting the "Purinome―to Promote Osteogenic Differentiation and Bone Repair. Journal of Cellular Physiology, 2016, 231, 1852-1861.	2.0	37
249	Use of β-tricalcium phosphate grafts for Airway reconstruction in rabbits: A pilot study. Laryngoscope, 2016, 126, E255-E260.	1.1	2
250	Mesenchymal stem cell implantation in atrophic nonunion of the long bones. Bone and Joint Research, 2016, 5, 287-293.	1.3	44
251	Acid-resistant calcium silicate-based composite implants with high-strength as load-bearing bone graft substitutes and fracture fixation devices. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 366-383.	1.5	17
252	Current considerations on bone substitutes in maxillary sinus lifting. Revista ClÃnica De Periodoncia ImplantologÃa Y Rehabilitación Oral, 2016, 9, 102-107.	0.1	5
253	Subchondroplasty for Treating Bone Marrow Lesions. Journal of Knee Surgery, 2016, 29, 555-563.	0.9	73
254	Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. Science and Technology of Advanced Materials, 2016, 17, 136-148.	2.8	153
255	Evaluation of osteoinductive and endothelial differentiation potential of Plateletâ€Rich Plasma incorporated Gelatinâ€Nanohydroxyapatite Fibrous Matrix. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 771-781.	1.6	14
256	The role of bone void fillers in medial opening wedge high tibial osteotomy: a systematic review. Knee Surgery, Sports Traumatology, Arthroscopy, 2016, 24, 3584-3598.	2.3	75
257	Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds. Acta Biomaterialia, 2016, 44, 144-154.	4.1	80
258	The usability of ark clam shell (Anadara granosa) as calcium precursor to produce hydroxyapatite nanoparticle via wet chemical precipitate method in various sintering temperature. SpringerPlus, 2016, 5, 1206.	1.2	46
260	Treatment of critically sized femoral defects with recombinant BMP-2 delivered by a modified mPEG-PLGA biodegradable thermosensitive hydrogel. BMC Musculoskeletal Disorders, 2016, 17, 286.	0.8	33

#	Article	IF	CITATIONS
261	Biomaterials Act as Enhancers of Growth Factors in Bone Regeneration. Advanced Functional Materials, 2016, 26, 8810-8823.	7.8	86
262	Unmet needs and current and future approaches for osteoporotic patients at high risk of hip fracture. Archives of Osteoporosis, 2016, 11, 37.	1.0	50
263	In Vitro Biocompatibility Assessment and In Vivo Behavior of a New Osteoconductive βTCP Bone Substitute. Implant Dentistry, 2016, 25, 456-463.	1.7	3
264	Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 938-954.	1.3	47
265	Nano-fibrin stabilized CaSO 4 crystals incorporated injectable chitin composite hydrogel for enhanced angiogenesis & amp; osteogenesis. Carbohydrate Polymers, 2016, 140, 144-153.	5.1	43
266	Simulations reveal the role of composition into the atomic-level flexibility of bioactive glass cements. Physical Chemistry Chemical Physics, 2016, 18, 837-845.	1.3	14
267	A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Engineering - Part B: Reviews, 2016, 22, 284-297.	2.5	741
268	Feasibility of alumina and alumina-silica nanoparticles to fabricate strengthened betatricalcium phosphate scaffold with improved biological responses. Ceramics International, 2016, 42, 7593-7604.	2.3	10
269	A combinatorial approach towards achieving an injectable, self-contained, phosphate-releasing scaffold for promoting biomineralization in critical size bone defects. Acta Biomaterialia, 2016, 29, 389-397.	4.1	20
270	Development of a hydroxyapatite-poly(d,l-lactide-co-glycolide) infiltrated carbon foam for orthopedic applications. Carbon, 2016, 98, 106-114.	5.4	17
271	Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes. Materials Science and Engineering C, 2016, 59, 265-277.	3.8	62
272	A Periosteumâ€Inspired 3D Hydrogelâ€Bioceramic Composite for Enhanced Bone Regeneration. Macromolecular Bioscience, 2016, 16, 276-287.	2.1	22
273	Potential of inherent RGD containing silk fibroin–poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering. Cell and Tissue Research, 2016, 363, 525-540.	1.5	44
274	Unexpected reaction of new HAp/glucan composite to environmental acidification: Defect or advantage?. , 2017, 105, 1178-1190.		2
275	Improving osteogenesis of three-dimensional porous scaffold based on mineralized recombinant human-like collagen via mussel-inspired polydopamine and effective immobilization of BMP-2-derived peptide. Colloids and Surfaces B: Biointerfaces, 2017, 152, 124-132.	2.5	49
277	Micro-computed tomography analysis of early stage bone healing using micro-porous titanium mesh for guided bone regeneration: preliminary experiment in a canine model. Odontology / the Society of the Nippon Dental University, 2017, 105, 408-417.	0.9	16
279	Evaluation of carbonate apatite blocks fabricated from dicalcium phosphate dihydrate blocks for reconstruction of rabbit femoral and tibial defects. Journal of Materials Science: Materials in Medicine, 2017, 28, 85.	1.7	37
280	Application of materials as medical devices with localized drug delivery capabilities for enhanced wound repair. Progress in Materials Science, 2017, 89, 392-410.	16.0	83

#	Article	IF	CITATIONS
281	Surface treatment and biomimetic mineralization of porous microspheres fabricated by calcium gluconate-g-poly(D,L-lactide). Chinese Journal of Polymer Science (English Edition), 2017, 35, 837-845.	2.0	0
282	An in vivo study on bone formation behavior of microporous granular calcium phosphate. Biomaterials Science, 2017, 5, 1315-1325.	2.6	18
283	Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomaterials Research, 2017, 21, 9.	3.2	246
284	Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by Îμ-polycarbonate coating. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1256-1270.	1.9	19
285	Fabrication of interconnected porous calcium-deficient hydroxyapatite using the setting reaction of α tricalcium phosphate spherical granules. Ceramics International, 2017, 43, 11149-11155.	2.3	23
286	Bone Cements Utilised for the Reconstruction of Hard Tissue: Basic Understanding and Recent Topics. , 2017, , 151-186.		1
287	Hydroxyapatite reinforced inherent RGD containing silk fibroin composite scaffolds: Promising platform for bone tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1745-1759.	1.7	52
288	Common treatments and procedures used for fractures of the distal radius and scaphoid: A review. Materials Science and Engineering C, 2017, 74, 422-433.	3.8	7
289	Enhanced properties of novel zirconia-based osteo-implant systems. Applied Materials Today, 2017, 9, 622-632.	2.3	24
290	Endocultivation of Scaffolds with Recombinant Human Bone Morphogenetic Protein-2 and VECF ₁₆₅ in the Omentum Majus in a Rabbit Model. Tissue Engineering - Part C: Methods, 2017, 23, 842-849.	1.1	7
291	The Use of Graft Materials and Platelet Rich Plasma in Oral Surgery. Defect and Diffusion Forum, 2017, 376, 39-53.	0.4	2
292	Simple and economic elaboration of high purity CaCO ₃ particles for bone graft applications using a spray pyrolysis technique. Journal of Materials Chemistry B, 2017, 5, 6897-6907.	2.9	2
293	Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactiveÂpolymerÂscaffolds. Bio-Medical Materials and Engineering, 2017, 28, 671-685.	0.4	11
294	Controlling calcium and phosphate ion release of 3D printed bioactive ceramic scaffolds: An in vitro study. Journal of Advanced Ceramics, 2017, 6, 157-164.	8.9	27
295	Fabrication of monticellite-akermanite nanocomposite powder for tissue engineering applications. Journal of Alloys and Compounds, 2017, 693, 601-605.	2.8	21
296	Microbial resistance related to antibiotic-loaded bone cement: a historical review. Knee Surgery, Sports Traumatology, Arthroscopy, 2017, 25, 3808-3817.	2.3	22
297	Mesenchymal Stem Cells for Optimizing Bone Volume at the Dental Implant Recipient Site. , 0, , .		0
298	Ceramic Biocomposites as Biodegradable Antibiotic Carriers in the Treatment of Bone Infections. Journal of Bone and Joint Infection, 2017, 2, 38-51.	0.6	112

#	Article	IF	CITATIONS
299	An Overview of the Percutaneous Antibiotic Delivery Technique for Osteomyelitis Treatment and a Case Study of Calcaneal Osteomyelitis. Journal of the American Podiatric Medical Association, 2017, 107, 511-515.	0.2	6
300	The Effect of Reduced Graphene Oxide-Coated Biphasic Calcium Phosphate Bone Graft Material on Osteogenesis. International Journal of Molecular Sciences, 2017, 18, 1725.	1.8	42
301	Fabrication of Carbonate Apatite Block through a Dissolution–Precipitation Reaction Using Calcium Hydrogen Phosphate Dihydrate Block as a Precursor. Materials, 2017, 10, 374.	1.3	32
302	Biomaterials in treatment of orthopedic infections. , 2017, , 41-68.		16
303	7.16 Materials in Fracture Fixation â~†. , 2017, , 278-297.		9
304	Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features. International Journal of Polymer Science, 2017, 2017, 1-8.	1.2	66
305	Dental biocomposites. , 2017, , 65-84.		8
306	Release characteristics of bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres in vivo. Molecular Medicine Reports, 2017, 16, 1425-1430.	1.1	7
307	Chenopodium ambrosioides as a bone graft substitute in rabbits radius fracture. BMC Complementary and Alternative Medicine, 2017, 17, 350.	3.7	10
308	A novel technique to ensure accurate placement of synthetic bone graft. Annals of the Royal College of Surgeons of England, 2017, 99, 363-363.	0.3	0
309	The role of orthobiologics in foot and ankle surgery. EFORT Open Reviews, 2017, 2, 272-280.	1.8	25
310	Bioreactors for Cell Culture Systems and Organ Bioengineering. , 2017, , 889-899.		2
311	Angulating-Distraction Ulnar Osteotomy and Interpositional Phosphocalcic Ceramic Wedge Graft for a Chronic Monteggia Lesion. The Open Orthopaedics Journal, 2017, 11, 263-267.	0.1	1
312	The biocompatibility of bone cements: progress in methodological approach. European Journal of Histochemistry, 2017, 61, 2673.	0.6	10
313	Effects of PCL, PEG and PLGA polymers on curcumin release from calcium phosphate matrix for inÂvitro and inÂvivo bone regeneration. Materials Today Chemistry, 2018, 8, 110-120.	1.7	90
314	The influence of channel anion identity on the high-pressure crystal structure, compressibility, and stability of apatite. Mineralogy and Petrology, 2018, 112, 617-631.	0.4	2
315	Bioactive solâ€gel glasses: Processing, properties, and applications. International Journal of Applied Ceramic Technology, 2018, 15, 841-860.	1.1	124
316	Porous Particle-Reinforced Bioactive Gelatin Scaffold for Large Segmental Bone Defect Repairing. ACS Applied Materials & Interfaces, 2018, 10, 6956-6964.	4.0	53

#	Article	IF	CITATIONS
317	A silencing-mediated enhancement of osteogenic differentiation by supramolecular ternary siRNA polyplexes comprising biocleavable cationic polyrotaxanes and anionic fusogenic peptides. Biomaterials Science, 2018, 6, 440-450.	2.6	14
318	Collagen I derived recombinant protein microspheres as novel delivery vehicles for bone morphogenetic protein-2. Materials Science and Engineering C, 2018, 84, 271-280.	3.8	24
319	Influence of fluoride for enhancing bioactivity onto phosphate based glasses. Journal of Non-Crystalline Solids, 2018, 493, 108-118.	1.5	23
320	Assessment of calcium sulfate hemihydrate–Tricalcium silicate composite for bone healing in a rabbit femoral condyle model. Materials Science and Engineering C, 2018, 88, 53-60.	3.8	33
322	Current Trends in the Management of Ballistic Fractures of the Hand and Wrist: Experiences of a High-Volume Level I Trauma Center. Hand, 2018, 13, 176-180.	0.7	15
323	Calcium Phosphate Bone Cements: Their Development and Clinical Applications. Springer Series in Biomaterials Science and Engineering, 2018, , 1-39.	0.7	3
324	Three dimensionally printed bioactive ceramic scaffold osseoconduction across critical-sized mandibular defects. Journal of Surgical Research, 2018, 223, 115-122.	0.8	67
325	Fabrication Aspects of Porous Biomaterials in Orthopedic Applications: A Review. ACS Biomaterials Science and Engineering, 2018, 4, 1-39.	2.6	130
326	Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model. Biomedicine and Pharmacotherapy, 2018, 97, 600-606.	2.5	25
327	Bone Graft Types. , 0, , .		3
327 328	Bone Graft Types. , 0, , . Update on Bone Grafting Materials Used in Dentistry in the Bone Healing Process: Our Experience from Translational Studies to Their Clinical Use. , 2018, , .		3 0
	Update on Bone Grafting Materials Used in Dentistry in the Bone Healing Process: Our Experience from		
328	Update on Bone Grafting Materials Used in Dentistry in the Bone Healing Process: Our Experience from Translational Studies to Their Clinical Use. , 2018, , .	0.9	0
328 329	Update on Bone Grafting Materials Used in Dentistry in the Bone Healing Process: Our Experience from Translational Studies to Their Clinical Use., 2018,,. A Review on Bone Grafting, Bone Substitutes and Bone Tissue Engineering., 2018,,. Biomechanical Analysis Using FEA and Experiments of Metal Plate and Bone Strut Repair of a Femur	0.9	0
328 329 330	Update on Bone Grafting Materials Used in Dentistry in the Bone Healing Process: Our Experience from Translational Studies to Their Clinical Use., 2018,,. A Review on Bone Grafting, Bone Substitutes and Bone Tissue Engineering., 2018,,. Biomechanical Analysis Using FEA and Experiments of Metal Plate and Bone Strut Repair of a Femur Midshaft Segmental Defect. BioMed Research International, 2018, 2018, 1-11. Regenerative Models for the Integration and Regeneration of Head Skeletal Tissues. International		0 4 27
328 329 330 331	Update on Bone Grafting Materials Used in Dentistry in the Bone Healing Process: Our Experience from Translational Studies to Their Clinical Use., 2018,,. A Review on Bone Grafting, Bone Substitutes and Bone Tissue Engineering., 2018,,. Biomechanical Analysis Using FEA and Experiments of Metal Plate and Bone Strut Repair of a Femur Midshaft Segmental Defect. BioMed Research International, 2018, 2018, 1-11. Regenerative Models for the Integration and Regeneration of Head Skeletal Tissues. International Journal of Molecular Sciences, 2018, 19, 3752. Effects of systemic erythropoietin treatment and heterogeneous xenograft in combination on bone regeneration of a critical-size defect in an experimental model. Journal of Cranio-Maxillo-Facial	1.8	0 4 27 8
328 329 330 331 332	Update on Bone Grafting Materials Used in Dentistry in the Bone Healing Process: Our Experience from Translational Studies to Their Clinical Use., 2018,,. A Review on Bone Grafting, Bone Substitutes and Bone Tissue Engineering., 2018,,. Biomechanical Analysis Using FEA and Experiments of Metal Plate and Bone Strut Repair of a Femur Midshaft Segmental Defect. BioMed Research International, 2018, 2018, 1-11. Regenerative Models for the Integration and Regeneration of Head Skeletal Tissues. International Journal of Molecular Sciences, 2018, 19, 3752. Effects of systemic erythropoietin treatment and heterogeneous xenograft in combination on bone regeneration of a critical-size defect in an experimental model. Journal of Cranio-Maxillo-Facial Surgery, 2018, 46, 1919-1923. Novel osteoconductive Î ² -tricalcium phosphate/poly(L-lactide-co-e-caprolactone) scaffold for bone regeneration: a study in a rabbit calvarial defect. Journal of Materials Science: Materials in Medicine,	1.8 0.7	0 4 27 8 7

#	Article	lF	CITATIONS
336	Modified lateral sinus lift using disc-form silica calcium-phosphate NanoComposite and consequent implant placement. Future Dental Journal, 2018, 4, 126-134.	0.1	2
337	Physical and Histological Comparison of Hydroxyapatite, Carbonate Apatite, and β-Tricalcium Phosphate Bone Substitutes. Materials, 2018, 11, 1993.	1.3	84
338	Synthetic and Marine-Derived Porous Scaffolds for Bone Tissue Engineering. Materials, 2018, 11, 1702.	1.3	55
339	Comparison of the regenerative effect of adiposeâ€derived stem cells, fibrin glue scaffold, and autologous bone graft in experimental mandibular defect in rabbit. Dental Traumatology, 2018, 34, 413-420.	0.8	39
340	Tuning the bioactivity of bone morphogenetic protein-2 with surface immobilization strategies. Acta Biomaterialia, 2018, 80, 108-120.	4.1	24
341	In vivo Implantation of a Bovine-Derived Collagen Membrane Leads to Changes in the Physiological Cellular Pattern of Wound Healing by the Induction of Multinucleated Giant Cells: An Adverse Reaction?. Frontiers in Bioengineering and Biotechnology, 2018, 6, 104.	2.0	37
342	Subchondroplasty for the treatment of postâ€ŧraumatic bone marrow lesions of the medial femoral condyle in a preâ€clinical canine model. Journal of Orthopaedic Research, 2018, 36, 2709-2717.	1.2	16
343	The role of 3D printing in treating craniomaxillofacial congenital anomalies. Birth Defects Research, 2018, 110, 1055-1064.	0.8	40
344	Post-process composition and biological responses of laser sintered PMMA and β-TCP composites. Journal of Materials Research, 2018, 33, 1987-1998.	1.2	13
345	Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. , 2018, , 701-735.		17
346	Calcium silicate as a graft material for bone fractures: a systematic review. Journal of International Medical Research, 2018, 46, 2537-2548.	0.4	33
347	Antibody-Mediated Osseous Regeneration for Bone Tissue Engineering in Canine Segmental Defects. BioMed Research International, 2018, 2018, 1-10.	0.9	9
348	Effect of age on biomaterial-mediated in situ bone tissue regeneration. Acta Biomaterialia, 2018, 78, 329-340.	4.1	30
349	Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2018, 170, 421-429.	2.5	79
350	Porous silicon. , 2018, , 93-135.		2
351	A Retrospective Comparison of Union Rates After Open Wedge High Tibial Osteotomies With and Without Synthetic Bone Grafts (Hydroxyapatite and β-tricalciumphosphate) at 2ÂYears. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2018, 34, 2621-2630.	1.3	20
352	Compositional and histological comparison of carbonate apatite fabricated by dissolution–precipitation reaction and Bio-Oss®. Journal of Materials Science: Materials in Medicine, 2018, 29, 121.	1.7	36
353	Form and functional repair of long bone using 3Dâ€printed bioactive scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1986-1999.	1.3	49

#	Article	IF	CITATIONS
354	Bioactive Glasses: From Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies. Journal of Functional Biomaterials, 2018, 9, 24.	1.8	202
355	3D Powder Printed Bioglass and β-Tricalcium Phosphate Bone Scaffolds. Materials, 2018, 11, 13.	1.3	71
356	Carbonate Apatite Containing Statin Enhances Bone Formation in Healing Incisal Extraction Sockets in Rats. Materials, 2018, 11, 1201.	1.3	10
357	Biodegradable Metallic Wires in Dental and Orthopedic Applications: A Review. Metals, 2018, 8, 212.	1.0	33
358	Mesenchymal stem cells and porous Î ² -tricalcium phosphate composites prepared through stem cell screen-enrich-combine(â~'biomaterials) circulating system for the repair of critical size bone defects in goat tibia. Stem Cell Research and Therapy, 2018, 9, 157.	2.4	28
359	RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects. Acta Biomaterialia, 2018, 75, 105-114.	4.1	81
360	Nondestructive characterization of bone tissue scaffolds for clinical scenarios. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 89, 150-161.	1.5	27
361	Application of Bone Substitutes and Its Future Prospective in Regenerative Medicine. , 0, , .		2
362	Screen-enrich-combine circulating system to prepare MSC/ \hat{l}^2 -TCP for bone repair in fractures with depressed tibial plateau. Regenerative Medicine, 2019, 14, 555-569.	0.8	15
363	Scaffold implantation in the omentum majus of rabbits for new bone formation. Journal of Cranio-Maxillo-Facial Surgery, 2019, 47, 1274-1279.	0.7	7
364	A review of materials for managing bone loss in revision total knee arthroplasty. Materials Science and Engineering C, 2019, 104, 109941.	3.8	16
365	Osteoconductive potential of a hydroxyapatite fiber material with magnesium: <i>In vitro</i> and <i>in vivo</i> studies. Dental Materials Journal, 2019, 38, 771-778.	0.8	10
366	Inversely 3D-Printed Î ² -TCP Scaffolds for Bone Replacement. Materials, 2019, 12, 3417.	1.3	18
367	Applications of Carbon Nanotubes in Bone Tissue Regeneration and Engineering: Superiority, Concerns, Current Advancements, and Prospects. Nanomaterials, 2019, 9, 1501.	1.9	119
368	Synthetic Blocks for Bone Regeneration: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 2019, 20, 4221.	1.8	32
369	Study of bone repair mediated by recombination BMP-2/ recombination CXC chemokine Ligand-13-loaded hollow hydroxyapatite microspheres/chitosan composite. Life Sciences, 2019, 234, 116743.	2.0	8
370	Investigations on Bio-mineralization of reduced graphene oxide aerogel in thepresence of various polymers. Materials Today: Proceedings, 2019, 9, 389-396.	0.9	5
371	Processing methods for making porous bioactive glassâ€based scaffolds—A stateâ€ofâ€theâ€art review. International Journal of Applied Ceramic Technology, 2019, 16, 1762-1796.	1.1	93

#	Article	IF	CITATIONS
372	Biological Properties of Calcium Phosphate Bioactive Glass Composite Bone Substitutes: Current Experimental Evidence. International Journal of Molecular Sciences, 2019, 20, 305.	1.8	60
373	Tissue-engineered alloplastic scaffolds for reconstruction of alveolar defects. , 2019, , 505-520.		3
374	Complications and Risk Factors Using Structural Allograft Versus Synthetic Cage: Analysis 17 783 Anterior Cervical Discectomy and Fusions Using a National Registry. Global Spine Journal, 2019, 9, 388-392.	1.2	12
375	Natural and synthetic bone replacement graft materials for dental and maxillofacial applications. , 2019, , 347-376.		13
376	Challenges in Three-Dimensional Printing of Bone Substitutes. Tissue Engineering - Part B: Reviews, 2019, 25, 387-397.	2.5	18
377	Structural, physicomechanical, and in vitro biodegradation studies on Sr-doped bioactive ceramic. Ceramics International, 2019, 45, 14090-14097.	2.3	9
378	Robocasting of Bioactive SiO ₂ -P ₂ O ₅ -CaO-MgO-Na ₂ O-K ₂ O Glass Scaffolds. Journal of Healthcare Engineering, 2019, 2019, 1-12.	1.1	32
379	Histomorphometric evaluation of a nano-sized eggshell-containing supplement as a natural alloplast: An animal study. Saudi Dental Journal, 2019, 31, 375-381.	0.5	11
380	The Addition of High Doses of Hyaluronic Acid to a Biphasic Bone Substitute Decreases the Proinflammatory Tissue Response. International Journal of Molecular Sciences, 2019, 20, 1969.	1.8	28
381	Recent advances in 3D printing: vascular network for tissue and organ regeneration. Translational Research, 2019, 211, 46-63.	2.2	92
382	3D Printing and Adenosine Receptor Activation for Craniomaxillofacial Regeneration. , 2019, , 255-267.		2
383	The mechanism research of non-Smad dependent TAK1 signaling pathway in the treatment of bone defects by recombination BMP-2-loaded hollow hydroxyapatite microspheres/chitosan composite. Journal of Materials Science: Materials in Medicine, 2019, 30, 130.	1.7	2
384	Fabrication and Histological Evaluation of Porous Carbonate Apatite Block from Gypsum Block Containing Spherical Phenol Resin as a Porogen. Materials, 2019, 12, 3997.	1.3	6
385	Dipyridamole Augments Three-Dimensionally Printed Bioactive Ceramic Scaffolds to Regenerate Craniofacial Bone. Plastic and Reconstructive Surgery, 2019, 143, 1408-1419.	0.7	22
386	Potential of growth factor incorporated mesoporous bioactive glass for in vivo bone regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 182-192.	1.5	16
387	Mineralization in micropores of calcium phosphate scaffolds. Acta Biomaterialia, 2019, 83, 435-455.	4.1	91
388	Nano-hydroxyapatite/polyamide66 composite scaffold conducting osteogenesis to repair mandible defect. Journal of Bioactive and Compatible Polymers, 2019, 34, 72-82.	0.8	4
389	Preparation and characterization of a piezoelectric poly (vinylidene fluoride)/nanohydroxyapatite scaffold capable of naproxen delivery. European Polymer Journal, 2019, 112, 442-451.	2.6	16

ARTICLE IF CITATIONS Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal 390 1.8 114 Regeneration. Journal of Functional Biomaterials, 2019, 10, 3. Biologics in Hand Surgery., 2019, , 135-139. 392 The Use of Bioactive Glasses in Periodontology., 2019, , 251-271. 1 Maxillary Sinus Floor Augmentation Using Low-Crystalline Carbonate Apatite Granules With Simultaneous Implant Installation: First-in-Human Clinical Trial. Journal of Oral and Maxillofacial 0.5 44 Surgery, 2019, 77, 985.e1-985.e11. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone 394 5.0 106 regeneration. Journal of Colloid and Interface Science, 2019, 534, 625-636. Preparation and in vivo biocompatibility studies of different mesoporous bioactive glasses. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 89, 89-98. 1.5 Zinc silicate mineral-coated scaffold improved in vitro osteogenic differentiation of equine 396 0.9 17 adipose-derived mesenchymal stem cells. Research in Veterinary Science, 2019, 124, 444-451. Imaging of nano-hydroxyapatite/chitosan scaffolds using a cone beam computed tomography device on 1.4 rat calvarial defects with histological verification. Clinical Oral Investigations, 2020, 24, 437-446. Characterization of a prevascularized biomimetic tissue engineered scaffold for bone regeneration. 398 1.6 6 Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1655-1668. Histological comparison of three apatitic bone substitutes with different carbonate contents in 399 alveolar bone defects in a beagle mandible with simultaneous implant installation. Journal of 1.6 Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1450-1459. Additive manufacturing of bioceramic scaffolds by combination of FDM and slip casting. Journal of 400 2.8 28 the European Ceramic Society, 2020, 40, 3707-3713. Augmented osteogenesis of mesenchymal stem cells using a fragmented Runx2 mixed with cell-penetrating, dimeric a-helical peptide. European Journal of Pharmaceutical Sciences, 2020, 144, 105210. Preparation, characterisation and in-vitro biocompatibility study of a bone graft developed from 402 0.9 17 waste bovine teeth for bone regeneration. Materials Today Communications, 2020, 22, 100732. Design and evaluation of Konjac glucomannan-based bioactive interpenetrating network (IPN) scaffolds for engineering vascularized bone tissues. International Journal of Biological Macromolecules, 2020, 143, 30-40. 3.6 Physical/Chemical Properties and Resorption Behavior of a Newly Developed Ca/P/S-Based Bone 404 1.3 7 Substitute Material. Materials, 2020, 13, 3458. A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofiber's and Taurine for bone regeneration. Scientific Reports, 2020, 10, 13366. In vitro and in vivo osteogenesis of gelatin-modified calcium silicate cement with washout resistance. 406 3.8 31 Materials Science and Engineering Č, 2020, 117, 111297. A Facile Synthesis Process and Evaluations of $\hat{I}\pm$ -Calcium Sulfate Hemihydrate for Bone Substitute. 1.3 Materials, 2020, 13, 3099.

#	Article	IF	CITATIONS
408	Osteoporotic Goat Spine Implantation Study Using a Synthetic, Resorbable Ca/P/S-Based Bone Substitute. Frontiers in Bioengineering and Biotechnology, 2020, 8, 876.	2.0	4
409	Conditioned media from mesenchymal stromal cells and periodontal ligament fibroblasts under cyclic stretch stimulation promote bone healing in mouse calvarial defects. Cytotherapy, 2020, 22, 543-551.	0.3	13
410	Fibrin sealants in lumbar annuloplasty after endoscopic discectomy as a method to prevent recurrent lumbar disc herniation. European Journal of Translational Myology, 2020, 30, 325-333.	0.8	2
411	Three-Dimensional Printing for Craniofacial Bone Tissue Engineering. Tissue Engineering - Part A, 2020, 26, 1303-1311.	1.6	28
412	Utilisation of calcium sulphate beads in one-stage aseptic revision total hip arthroplasty. HIP International, 2020, , 112070002097397.	0.9	0
413	In-situ analysis of the hydration ability of bone graft material using a synchrotron radiation X-ray micro-CT. Journal of Applied Biomaterials and Functional Materials, 2020, 18, 228080002096347.	0.7	4
414	Acid-responsive composite hydrogel platform with space-controllable stiffness and calcium supply for enhanced bone regeneration. Chemical Engineering Journal, 2020, 396, 125353.	6.6	43
415	Direct incorporation of mesenchymal stem cells into a Nanofiber scaffold – in vitro and in vivo analysis. Scientific Reports, 2020, 10, 9557.	1.6	9
416	Glycerylphytate crosslinker as a potential osteoinductor of chitosan-based systems for guided bone regeneration. Carbohydrate Polymers, 2020, 241, 116269.	5.1	9
417	Evaluation and comparison of histologic changes and implant survival in extraction sites immediately grafted with two different xenografts: A randomized clinical pilot study. Clinical Oral Implants Research, 2020, 31, 825-835.	1.9	9
418	Teriparatide (recombinant parathyroid hormone 1–34) enhances bone allograft integration in a clinically relevant pig model of segmental mandibulectomy. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1037-1049.	1.3	4
419	Probing the surface activity of hydroxyapatite nanoparticles through their interaction with water molecules. AIP Advances, 2020, 10, 065217.	0.6	5
420	Biomaterials and biocompatibility: An historical overview. Journal of Biomedical Materials Research - Part A, 2020, 108, 1617-1633.	2.1	80
421	Multifunctional injectable protein-based hydrogel for bone regeneration. Chemical Engineering Journal, 2020, 394, 124875.	6.6	48
422	The Impact of Bioceramic Scaffolds on Bone Regeneration in Preclinical In Vivo Studies: A Systematic Review. Materials, 2020, 13, 1500.	1.3	27
423	Bone responses to biomaterials. , 2020, , 617-636.		0
424	Novel injectable and self-setting composite materials for bone defect repair. Science China Materials, 2020, 63, 876-887.	3.5	11
425	Individual Tissue-Engineered Bone in Repairing Bone Defects: A 10-Year Follow-Up Study. Tissue Engineering - Part A, 2020, 26, 896-904.	1.6	11

#	Article	IF	CITATIONS
426	Neutralized Dicalcium Phosphate and Hydroxyapatite Biphasic Bioceramics Promote Bone Regeneration in Critical Peri-Implant Bone Defects. Materials, 2020, 13, 823.	1.3	9
427	Preparation and properties of a highly dispersed nano-hydroxyapatite colloid used as a reinforcing filler for chitosan. Materials Science and Engineering C, 2020, 110, 110689.	3.8	25
428	Osseous Healing in Surgically Prepared Bone Defects Using Different Grafting Materials: An Experimental Study in Pigs. Dentistry Journal, 2020, 8, 7.	0.9	6
429	Sintered nanoporous biosilica diatom frustules as high efficiency cell-growth and bone-mineralisation platforms. Materials Today Communications, 2020, 24, 100923.	0.9	10
430	Comparison between Bioactive Sol-Gel and Melt-Derived Glasses/Glass-Ceramics Based on the Multicomponent SiO2–P2O5–CaO–MgO–Na2O–K2O System. Materials, 2020, 13, 540.	1.3	57
431	A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceramics International, 2020, 46, 15725-15739.	2.3	118
432	Fibrin sealants in lumbar annuloplasty after endoscopic discectomy as a method to prevent recurrent lumbar disc herniation. European Journal of Translational Myology, 2020, 30, 8748.	0.8	3
433	A novel modification for polymer sponge method to fabricate the highly porous composite bone scaffolds with large aspect ratio suitable for repairing critical-sized bone defects. Vacuum, 2020, 176, 109316.	1.6	16
434	Simultaneously promoting adhesion and osteogenic differentiation of bone marrow-derived mesenchymal cells by a functional electrospun scaffold. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111040.	2.5	14
435	Nanostructured Materials for Artificial Tissue Replacements. International Journal of Molecular Sciences, 2020, 21, 2521.	1.8	28
436	Synthetic and Bone tissue engineering graft substitutes: What is the future?. Injury, 2021, 52, S72-S77.	0.7	62
437	Improvement of the mechanical and biological properties of bioactive glasses by the addition of zirconium oxide (ZrO ₂) as a synthetic bone graft substitute. Journal of Biomedical Materials Research - Part A, 2021, 109, 1196-1208.	2.1	15
438	Robocasting of mesoporous bioactive glasses (MBGs) for bone tissue engineering. , 2021, , 327-349.		3
439	Safety and Efficacy Results of BonoFill First-in-Human, Phase I/IIa Clinical Trial for the Maxillofacial Indication of Sinus Augmentation and Mandibular Bone Void Filling. Journal of Oral and Maxillofacial Surgery, 2021, 79, 787-798.e2.	0.5	1
440	Development and characterization of waste equine bone-derived calcium phosphate cements with human alveolar bone-derived mesenchymal stem cells. Connective Tissue Research, 2021, 62, 164-175.	1.1	7
441	Fabrication of nanoparticles for bone regeneration: new insight into applications of nanoemulsion technology. Journal of Materials Chemistry B, 2021, 9, 5221-5244.	2.9	23
442	Study on Biocompatibility of Chitosan/Hydroxyapatite Doped Silicon Composite as Material for Alveolar Socket Preservation. Journal of Physics: Conference Series, 2021, 1726, 012007.	0.3	1
443	Comparison between allogenic and xenogenic bone blocks on the osteogenic potential of cultured human periodontal ligament stem cells: Confocal laser and scanning electron microscopy study. International Journal of Applied & Basic Medical Research, 2021, 11, 75.	0.2	2

ARTICLE IF CITATIONS Calcium-based ceramic biomaterials., 2021, , 333-394. 2 444 Exploring the Formation of Calcium Orthophosphateâ€Pyrophosphate Chemical Gardens. 445 1.1 ChemSystemsChem, 2021, 3, e2000062. In-Vivo Degradation Behavior and Osseointegration of 3D Powder-Printed Calcium Magnesium 446 1.3 14 Phosphate Cement Scaffolds. Materials, 2021, 14, 946. Alloplastic Bone Substitutes for Periodontal and Bone Regeneration in Dentistry: Current Status and 447 Prospects. Materials, 2021, 14, 1096. $3D\hat{a} \in printed$, bioactive ceramic scaffold with rhBMP $\hat{a} \in 2$ in treating critical femoral bone defects in rabbits 448 1.2 4 using the induced membrane technique. Journal of Orthopaedic Research, 2021, 39, 2671-2680. The State of the Art and Prospects for Osteoimmunomodulatory Biomaterials. Materials, 2021, 14, 1357. 1.3 Bioactive Siloxane-Containing Shape-Memory Polymer (SMP) Scaffolds with Tunable Degradation 451 2.6 14 Rates. ACS Biomaterials Science and Engineering, 2021, 7, 1631-1639. Silk fibroin and ceramic scaffolds: Comparative in vitro studies for bone regeneration. Bioengineering 3.9 and Translational Medicine, 2021, 6, e10221. Synthetic Bone Graft Materials in Spine Fusion: Current Evidence and Future Trends. International 453 12 0.7 Journal of Spine Surgery, 2021, 15, 104-112. Inverse 3D Printing with Variations of the Strand Width of the Resulting Scaffolds for Bone 454 1.3 Replacement. Materials, 2021, 14, 1964. Bioresorbable Magnesium-Based Alloys as Novel Biomaterials in Oral Bone Regeneration: General 455 31 1.0 Review and Clinical Perspectives. Journal of Clinical Medicine, 2021, 10, 1842. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules, 231 2021, 26, 3007. In Vivo Analysis of the Biocompatibility and Bone Healing Capacity of a Novel Bone Grafting Material 458 1.8 17 Combined with Hyaluronic Acid. International Journal of Molecular Sciences, 2021, 22, 4818. Titanium mesh-reinforced calcium sulfate for structural bone grafts. Journal of the Mechanical 1.5 Behavior of Biomedical Materials, 2021, 118, 104461. Effect of platelet-poor plasma additive on the formation of biocompatible calcium phosphates. 460 0.9 7 Materials Today Communications, 2021, 27, 102224. Extracellular Vesicle Functionalized Melt Electrowritten Scaffolds for Bone Tissue Engineering. Advanced NanoBiomed Research, 2021, 1, 2100037. A novel hydroxyapatite fiber material for the regeneration of critical-sized rabbit calvaria defects. 462 0.8 2 Dental Materials Journal, 2021, 40, 964-971. Bilayer Membrane Composed of Mineralized Collagen and Chitosan Cast Film Coated With Berberine-Loaded PCL/PVP Electrospun Nanofiber Promotes Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 684335.

#	Article	IF	CITATIONS
464	The protective role of curcumin against toxic effect of nonylphenol on bone development. Human and Experimental Toxicology, 2021, 40, S63-S76.	1.1	2
465	Assessment of cobalt substitution on the structural, physico-mechanical, and inÂvitro degradation of akermanite ceramic. Journal of Science: Advanced Materials and Devices, 2021, 6, 560-560.	1.5	2
466	Zinc containing calcium phosphates obtained via microwave irradiation of suspensions. Materials Chemistry and Physics, 2022, 276, 124921.	2.0	6
467	Comparison of Outcome of Bone Autograft and Allograft in Union of Long Bone Fractures. Acta Medica Bulgarica, 2021, 48, 13-18.	0.0	1
468	Addition of lactoferrin and substance P in a chitin/PLGA-CaSO4 hydrogel for regeneration of calvarial bone defects. Materials Science and Engineering C, 2021, 126, 112172.	3.8	17
470	Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2021, 32, 93.	1.7	40
471	Integration of Umbilical Cord Mesenchymal Stem Cell Application in Hydroxyapatite-Based Scaffolds in the Treatment of Vertebral Bone Defect due to Spondylitis Tuberculosis: A Translational Study. Stem Cells International, 2021, 2021, 1-14.	1.2	2
472	Bone Fracture-Treatment Method: Fixing 3D-Printed Polycaprolactone Scaffolds with Hydrogel Type Bone-Derived Extracellular Matrix and Î ² -Tricalcium Phosphate as an Osteogenic Promoter. International Journal of Molecular Sciences, 2021, 22, 9084.	1.8	15
473	Bone Grafts in Trauma and Orthopaedics. Cureus, 2021, 13, e17705.	0.2	9
474	A NOVEL METHOD TO SYNTHESIS OF CALCIUM SULPHATE ANHYDRITE SELF-DOPED WITH SiOâ,, FROM RED MU AS A BIOCERAMIC. Ceramics - Silikaty, 2021, , 344-353.	D _{0.2}	1
475	Fibers by Electrospinning and Their Emerging Applications in Bone Tissue Engineering. Applied Sciences (Switzerland), 2021, 11, 9082.	1.3	19
476	Scaffold Pore Geometry Guides Gene Regulation and Bone-like Tissue Formation in Dynamic Cultures. Tissue Engineering - Part A, 2021, 27, 1192-1204.	1.6	11
477	FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Materials Science and Engineering C, 2021, 130, 112466.	3.8	134
478	Berberine for bone regeneration: Therapeutic potential and molecular mechanisms. Journal of Ethnopharmacology, 2021, 277, 114249.	2.0	22
479	Surface-treated 3D printed Ti-6Al-4V scaffolds with enhanced bone regeneration performance: an in vivo study. Annals of Translational Medicine, 2021, 9, 39-39.	0.7	15
481	Biological Roles and Delivery Strategies for Ions to Promote Osteogenic Induction. Frontiers in Cell and Developmental Biology, 2020, 8, 614545.	1.8	39
485	Calcium Phosphate Biomaterials for Bone Tissue Engineering: Properties and Relevance in Bone Repair. , 2020, , 535-555.		3
486	A Review of Nanoparticle Functionality and Toxicity on the Central Nervous System. , 2013, , 313-332.		5

#	Article	IF	CITATIONS
487	Inorganic and Composite Bioactive Scaffolds for Bone Tissue Engineering. , 2008, , 3-43.		1
488	Bone Grafts in Periodontal Therapy. Acta Medica (Hradec Kralove), 2008, 51, 203-207.	0.2	38
489	Comparison of the effect of hemihydrate calcium sulfate granules and Cerabone on dental socket preservation: An animal experiment. Journal of Dental Research, Dental Clinics, Dental Prospects, 2018, 12, 238-244.	0.4	7
490	Biomateriales utilizados en cirugÃa ortopédica como sustitutos del tejido óseo. Revista De La Asociación Argentina De Ortopedia Y TraumatologÃa, 2012, 77, 140.	0.0	4
491	A Novel Hollow Hydroxyapatite Microspheres/Chitosan Composite Drug Carrier for Controlled Release. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2016, 31, 434.	0.6	8
492	The comparative effectiveness of demineralized bone matrix, beta-tricalcium phosphate, and bovine-derived anorganic bone matrix on inflammation and bone formation using a paired calvarial defect model in rats. Clinical, Cosmetic and Investigational Dentistry, 2011, 3, 69.	0.7	9
493	Recent Progress on the Development of Porous Bioactive Calcium Phosphate for Biomedical Applications. Recent Patents on Biomedical Engineering, 2008, 1, 213-229.	0.5	35
494	Histological evaluation of bone response to bioactive ceramics as graft material in rats. Acta Veterinaria, 2005, 55, 461-470.	0.2	4
496	Histochemical and Radiological Study of Bone Regeneration by the Combinatorial Use of Tetrapod-Shaped Artificial Bone and Collagen. Journal of Hard Tissue Biology, 2015, 24, 199-210.	0.2	3
497	Effect of Medical Polymer Filling on Tensile Properties of Biomedical Porous Pure Titanium. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55, 312-317.	0.1	6
498	Electrospun PCL/PLA Scaffolds Are More Suitable Carriers of Placental Mesenchymal Stromal Cells Than Collagen/Elastin Scaffolds and Prevent Wound Contraction in a Mouse Model of Wound Healing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 604123.	2.0	18
499	Additive Manufacturing of β-Tricalcium Phosphate Components via Fused Deposition of Ceramics (FDC). Materials, 2021, 14, 156.	1.3	13
500	Progress of Calcium Sulfate and Inorganic Composites for Bone Defect Repair. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 795-803.	0.6	6
501	Bone Marrow Seeded Bone Graft Versus Bone Graft; Compact Bone Critical Sized Defect Healing Pattern in Rabbit. Journal of Animal and Veterinary Advances, 2010, 9, 1588-1596.	0.1	2
502	Restoration of Large Bone Defects Using a Hard-Setting, Injectable Putty Containing Demineralized Bone Particles Compared to Cancellous Autograft Bone. Orthopedics, 2003, 26, .	0.5	9
503	An Injectable Calcium Sulfate-Based Bone Graft Putty Using Hydroxypropylmethylcellulose as the Plasticizer. Orthopedics, 2004, 27, s155-9.	0.5	17
504	Efficacy of Composite Allograft and Demineralized Bone Matrix Graft in Treating Tibial Plateau Fractures with Bone Loss. Orthopedics, 2008, 31, 1-5.	0.5	9
505	Efficacy of Composite Allograft and Demineralized Bone Matrix Graft in Treating Tibial Plateau Fractures with Bone Loss. Orthopedics, 2008, 31, .	0.5	4

ARTICLE IF CITATIONS Articular Cartilage Changes. Orthopedics, 2008, 31, . 506 0.5 1 Induction of multinucleated giant cells in response to small sized bovine bone substitute (Bio-Oss) Tj ETQq1 1 0.784314 rgBT /Overlo 0.2 61 Maxillofacial Surgery, 2014, 4, 150. Biomimetic ceramics for periodontal regeneration in infrabony defects: A systematic review. Journal 508 0.4 7 of International Society of Preventive and Community Dentistry, 2014, 4, 78. Application of low-crystalline carbonate apatite granules in 2-stage sinus floor augmentation: a prospective clinical trial and histomorphometric evaluation. Journal of Periodontal and Implant 509 0.9 Science, 2019, 49, 382 Development and Characterization of Horse Bone-derived Natural Calcium Phosphate Powders. 510 1.2 10 Journal of Biosystems Engineering, 2014, 39, 122-133. The Use of Osteoconductive Bone Graft Substitutes in Orthopaedic Trauma. Journal of the American 1.1 Academy of Orthopaedic Surgeons, The, 2007, 15, 525-536. Perspectives on regeneration of alveolar bone defects. Serbian Journal of Experimental and Clinical 512 0.2 2 Research, 2013, 14, 145-153. A New Design of Porosity Gradient Ti-6Al-4V Encapsulated Hydroxyapatite Dual Materials Composite 513 1.4 Scaffold for Bone Defects. Micromachines, 2021, 12, 1294. Transforming the Degradation Rate of Î²-tricalcium Phosphate Bone Replacement Using 3-Dimensional 514 0.5 12 Printing. Annals of Plastic Surgery, 2021, 87, e153-e162. Research Progress of Bioactive Glass and Its Application in Orthopedics. Advanced Materials 1.9 Interfaces, 2021, 8, 2100606. Clinical use of calcium sulphate in bone regeneration therapy: Case report. Serbian Dental Journal, 516 0.1 1 2003, 50, 24-28. Nanohydroxyapatite for Biomedical Applications., 2008,,. Uso da biocer \tilde{A} ¢mica no preenchimento de falhas \tilde{A}^3 sseas. Revista Brasileira De Ortopedia, 2010, 45, 519 0.2 0 433-438. New Bone Formation Following Transplantation of Stem Cells and Nanoscale Hydroxyapatite Scaffold Materials into Rabbit Long Bone Defects. The Journal of the Korean Orthopaedic Association, 2011, 46, 18. Efficacy Of Calcium Phosphosilicate (CPS) Putty As Alloplastic Bioactive Graft Material In Sinus 521 0.0 0 Augmentation Procedures: An Original Study. Journal of Dentistry and Oral Implants, 2014, 1, 27-54. Use of Grafting Materials in Sinus Floor Elevation: Biologic Basis and Current Updates., 2015, , 145-194. 523 Cranial Bone Regeneration., 2015, , 199-208. 0 Radiographic, Histologic and Mechanical Comparison of NanoFUSE® DBM and a Bioactive Glass in a 524 Rabbit Spinal Fusion Model. International Journal of Biomedical Materials Research, 2015, 3, 19.

#	Article	IF	CITATIONS
526	Efficacy of Equine Demineralized Bone Matrix in treating Oral Cyst following Enucleation: A Histologic and Clinical study in Humans. Journal of Dental Health, Oral Disorders & Therapy, 2015, 3, .	0.0	0
527	Time Dependent Properties of Nanocomposite Hydroxyapatite Based Bone Cements. International Journal of Nanomedicine and Nanosurgery, 2016, 1, .	0.3	0
528	Polymers in Orthopedic Devices. , 2016, , 43-58.		0
529	EVALUATION OF THE BONE REGENERATION EFFICACY OF MAGNESIUM BIOACTIVE GLASS VERSUS ZINC BIOACTIVE GLASS BOTH LOADED WITH BONE MORPHOGENETIC PROTEIN-2 IN EXTRACTION SOCKETS OF DIABETIC ALBINO RATS. Egyptian Dental Journal, 2017, 63, 509-522.	0.1	0
530	The effects of two bone substitute materials in the treatment of experimentally induced mandibular defects: An experimental study. Al-Rafidain Dental Journal, 2018, 18, 9-20.	0.1	1
531	Preparation of Porous Hydroxyapatite Bodies Using Bamboo and Rattan Templates. , 0, , .		1
532	Fabrication of 3D Printed Poly(lactic acid)/Polycaprolactone Scaffolds Using TGF-β1 for Promoting Bone Regeneration. Polymers, 2021, 13, 3731.	2.0	20
533	Osteogenic Potential of Periodontal Ligament Stem Cells Cultured in Osteogenic and Regular Growth Media: Confocal and Scanning Electron Microscope Study. Journal of Contemporary Dental Practice, 2020, 21, 776-780.	0.2	2
534	Healing of gap nonunion using autologous cultured osteoblasts impregnated over three-dimensional bio-degradable nanomaterial scaffold: A pilot experiment on rabbits. Journal of Orthopedics Traumatology and Rehabilitation, 2020, 12, 86.	0.1	0
536	Physical Gold Nanoparticle-Decorated Polyethylene Glycol-Hydroxyapatite Composites Guide Osteogenesis and Angiogenesis of Mesenchymal Stem Cells. Biomedicines, 2021, 9, 1632.	1.4	9
537	Review of State of the Art: Growth Factor-Based Systems for Use as Bone Graft Substitutes. , 0, , 117-165.		1
539	Transformation from calcium sulfate to calcium phosphate in biological environment. Journal of Materials Science: Materials in Medicine, 2021, 32, 146.	1.7	2
540	Comblement des ostéotomies par ouverture autour du genou. , 2021, , 75-79.		0
542	Additive manufacturing-based design approaches and challenges for orthopaedic bone screws: a state-of-the-art review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	0.8	36
543	Tissue Engineering Strategies for Craniomaxillofacial Surgery: Current Trends in 3D-Printed Bioactive Ceramic Scaffolds. Springer Series in Biomaterials Science and Engineering, 2022, , 55-74.	0.7	2
545	Strategy of Stem Cell Transplantation for Bone Regeneration with Functionalized Biomaterials and Vascularized Tissues in Immunocompetent Mice. ACS Biomaterials Science and Engineering, 2022, 8, 1656-1666.	2.6	1
546	Magnesium oxide regulates the degradation behaviors and improves the osteogenesis of poly(lactide-co-glycolide) composite scaffolds. Composites Science and Technology, 2022, 222, 109368.	3.8	11
547	Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration. Bioactive Materials, 2022, 18, 26-41.	8.6	66

#	Article	IF	CITATIONS
548	Three-dimensional printing of scaffolds for facial reconstruction. MRS Bulletin, 2022, 47, 91-97.	1.7	8
549	Top 50 Cited Bone Graft Orthopedic Papers. Cureus, 2022, 14, e23419.	0.2	1
550	Is a Bioceramic Glass Bone Graft Superior to Spongious Allografts in Femoral and Tibial Benign Bone Lesions?. The Journal of Tepecik Education and Research Hospital, 2022, 32, 122-130.	0.2	0
551	Tribo-mechanical measurements and in vivo performance of zirconia-containing biphasic calcium phosphate material implanted in a rat model for bone replacement applications. Materials Chemistry and Physics, 2022, 285, 126085.	2.0	23
555	CHAPTER 13. Borophosphate Glasses and Their Potential Use in Medical Devices. Biomaterials Science Series, 2022, , 248-262.	0.1	1
556	PERIODONTAL RECENERATION WITH OSSEOUS GRAFTS: A REVIEW. , 2022, , 12-16.		0
557	Marine Plankton-Derived Whitlockite Powder-Based 3D-Printed Porous Scaffold for Bone Tissue Engineering. Materials, 2022, 15, 3413.	1.3	3
558	The additive effects of photobiomodulation and bioactive glasses on enhancing early angiogenesis. Biomedical Materials (Bristol), 2022, 17, 045007.	1.7	2
559	Bone grafts versus synthetic bone substitutes in the treatment of benign bone tumors. Romanian Journal of Orthopaedic Surgery and Traumatology, 2021, 4, 67-70.	0.1	0
560	Nonoperative and Operative Soft-Tissue and Cartilage Regeneration and Orthopaedic Biologics of the Foot and Ankle: An Orthoregeneration Network Foundation Review. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2022, 38, 2350-2358.	1.3	2
561	In Vivo Evaluation of 3D-Printed Silica-Based Bioactive Glass Scaffolds for Bone Regeneration. Journal of Functional Biomaterials, 2022, 13, 74.	1.8	11
562	NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications. , 0, , .		0
564	Integrity of the ECM Influences the Bone Regenerative Property of ECM/Dicalcium Phosphate Composite Scaffolds. ACS Applied Bio Materials, 0, , .	2.3	1
565	Bio-piezoelectricity: fundamentals and applications in tissue engineering and regenerative medicine. Biophysical Reviews, 2022, 14, 717-733.	1.5	24
566	Bone Tissue Engineering Strategies for Alveolar Cleft: Review of Preclinical Results and Guidelines for Future Studies. Cleft Palate-Craniofacial Journal, 0, , 105566562211049.	0.5	1
567	Bone Regeneration by Multichannel Cylindrical Granular Bone Substitute for Regeneration of Bone in Cases of Tumor, Fracture, and Arthroplasty. International Journal of Environmental Research and Public Health, 2022, 19, 8228.	1.2	3
568	Biological Impact of Alloplastic Bone Graft vs Bovine Xenograft and Allograft Materials in Bone Healing: An Experimental Study. Journal of Contemporary Dental Practice, 2022, 23, 482-491.	0.2	1
571	Enhanced Biocompatibility and Osteogenic Activity of Marine-Plankton-Derived Whitlockite Bone Granules through Bone Morphogenetic Protein 2 Incorporation. Bioengineering, 2022, 9, 399.	1.6	0

#	ARTICLE	IF	CITATIONS
572	Physio-mechanical and Biological Effects Due to Surface Area Modifications of 3D Printed β-tri- calcium phosphate: An In Vitro Study. Annals of 3D Printed Medicine, 2022, 8, 100078.	1.6	2
573	Clinical Applications of Poly-Methyl-Methacrylate in Neurosurgery: The In Vivo Cranial Bone Reconstruction. Journal of Functional Biomaterials, 2022, 13, 156.	1.8	0
574	Comparison of degradation behavior and osseointegration of 3D powder-printed calcium magnesium phosphate cement scaffolds with alkaline or acid post-treatment. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
575	High Capability of the Buffering Agent in Providing Constant pH to Improve the Behaviour of Synthesized HA/b-TCP Ceramic. Glass and Ceramics (English Translation of Steklo I Keramika), 2022, 79, 239-245.	0.2	0
576	The use of 3D ceramic block graft compared with autogenous block graft for rehabilitation of the atrophic maxilla: a randomized controlled clinical trial. Trials, 2022, 23, .	0.7	3
577	Nanocomposite Biomaterials for Tissue Engineering and Regenerative Medicine Applications. , 0, , .		1
578	Hydroxyapatite/TPU/PLA nanocomposites: Morphological, dynamic-mechanical, and thermal study. Green Processing and Synthesis, 2022, 11, 996-1012.	1.3	1
579	Bioactive Porous Particles as Biological and Physical Stimuli for Bone Regeneration. ACS Biomaterials Science and Engineering, 2022, 8, 5233-5244.	2.6	3
580	Structure and Properties of Bioactive Glass-Modified Calcium Phosphate/Calcium Sulfate Biphasic Porous Self-Curing Bone Repair Materials and Preliminary Research on Their Osteogenic Effect. Materials, 2022, 15, 7898.	1.3	3
581	Periodontal Therapy Using Bioactive Glasses: A Review. Prosthesis, 2022, 4, 648-663.	1.1	7
582	Extraction of Hydroxyapatite from Camel Bone for Bone Tissue Engineering Application. Molecules, 2022, 27, 7946.	1.7	5
583	Osteoregenerative efficacy of a novel synthetic, resorbable Ca/P/S-based bone graft substitute in intra- and peri-articular fractures: a brief medical image-based report. Journal of Orthopaedic Surgery and Research, 2022, 17, .	0.9	1
585	Physicochemical degradation of calcium magnesium phosphate (stanfieldite) based bone replacement materials and the effect on their cytocompatibility. Biomedical Materials (Bristol), 2023, 18, 015022.	1.7	1
586	Investigations on effect of pore architectures of additively manufactured novel hydroxyapatite coated PLA/Al ₂ O ₃ composite scaffold for bone tissue engineering. Rapid Prototyping Journal, 2023, 29, 1061-1079.	1.6	2
587	The complex of miRNA2861 and cell-penetrating, dimeric $\hat{l}\pm$ -helical peptide accelerates the osteogenesis of mesenchymal stem cells. Biomaterials Research, 2022, 26, .	3.2	3
588	Fabrication of 3D gel-printed β-tricalcium phosphate/titanium dioxide porous scaffolds for cancellous bone tissue engineering. International Journal of Bioprinting, 2022, 9, 673.	1.7	2
589	12-Month clinical and radiographic outcomes of ViBone viable bone matrix in patients undergoing cervical and lumbar spinal fusion surgery. Journal of Orthopaedic Surgery and Research, 2023, 18, .	0.9	0
590	Preclinical evaluation of the effect of periodontal regeneration by carbonate apatite in a canine one-wall intrabony defect model. Regenerative Therapy, 2023, 22, 128-135.	1.4	2

#	Article		IF	Citations
591	Engineering 3D Printed Bioceramic Scaffolds to Reconstruct Critical-Sized Calvaria Defec Skeletally Immature Pig Model. Plastic and Reconstructive Surgery, 2023, 152, 270e-280	cts in a Oe.	0.7	4
592	Sequential Therapy for Bone Regeneration by Cerium Oxide-Reinforced 3D-Printed Bioac Scaffolds. ACS Nano, 2023, 17, 4433-4444.	tive Glass	7.3	16
593	Bacterial Inhibition and Osteogenic Potentials of Sr/Zn Co-Doped Nano-Hydroxyapatite-F Scaffold for Bone Tissue Engineering Applications. Polymers, 2023, 15, 1370.	PLGA Composite	2.0	4
594	<i>In vitro</i> angiogenesis in response to biomaterial properties for bone tissue engined of the state of the art. Regenerative Biomaterials, 2023, 10, .	ering: a review	2.4	3
595	Gear-shaped carbonate apatite granules with a hexagonal macropore for rapid bone rege Computational and Structural Biotechnology Journal, 2023, 21, 2514-2523.	eneration.	1.9	4
596	Efficacy of calcium sulfate dihydrate as a bone graft substitute in odontogenic cystic def following enucleation: A clinical study. National Journal of Maxillofacial Surgery, 2023, 14	fects of jaws 4, 125.	0.1	Ο
599	Biologics and Advanced Materials for Spondylolisthesis. , 2023, , 149-155.			0
602	Innovative Treatment Modalities for Craniofacial Reconstruction. , 2023, , 291-308.			0