Amphipathic α helical antimicrobial peptides.

FEBS Journal 268, 5589-5600

DOI: 10.1046/j.1432-1033.2001.02494.x

Citation Report

#	Article	IF	CITATIONS
1	Mimicry of Host-Defense Peptides by Unnatural Oligomers:  Antimicrobial β-Peptides. Journal of the American Chemical Society, 2002, 124, 7324-7330.	6.6	373
2	Solid-Phase Synthesis of Fullerene-peptides. Journal of the American Chemical Society, 2002, 124, 12543-12549.	6.6	78
3	Antibacterial and antifungal properties of \hat{l}_{\pm} -helical, cationic peptides in the venom of scorpions from southern Africa. FEBS Journal, 2002, 269, 4799-4810.	0.2	157
4	Cathelicidins - a family of multifunctional antimicrobial peptides. Cellular and Molecular Life Sciences, 2003, 60, 711-720.	2.4	364
5	Characterization of the Penicillium chrysogenum antifungal protein PAF. Archives of Microbiology, 2003, 180, 204-210.	1.0	113
6	Isolation of peptides of the brevinin-1 family with potent candidacidal activity from the skin secretions of the frog Rana boylii. Chemical Biology and Drug Design, 2003, 62, 207-213.	1.2	59
7	Antimicrobial Peptides. Drugs, 2003, 63, 389-406.	4.9	264
8	In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines. Peptides, 2003, 24, 945-953.	1.2	93
9	A study of host defence peptide β-defensin 3 in primates. Biochemical Journal, 2003, 374, 707-714.	1.7	69
10	Effects of Positively Selected Sequence Variations in Human and Macaca fascicularis Î ² -Defensins 2 on Antimicrobial Activity. Antimicrobial Agents and Chemotherapy, 2004, 48, 685-688.	1.4	44
11	Small, basic antifungal proteins secreted from filamentous ascomycetes: a comparative study regarding expression, structure, function and potential application. Applied Microbiology and Biotechnology, 2004, 65, 133-42.	1.7	84
12	Factors contributing to the potency of antimicrobial cationic peptides from the N-terminal region of human lactoferrin. FEMS Microbiology Letters, 2004, 239, 295-299.	0.7	5
13	Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1696, 1-14.	1.1	344
14	Monomeric analogues of halocidin. Organic and Biomolecular Chemistry, 2004, 2, 2757.	1.5	6
15	Biocidal Activity of Polystyrenes That Are Cationic by Virtue of Protonation. Organic Letters, 2004, 6, 557-560.	2.4	151
16	Perturbation of the Hydrophobic Core of Lipid Bilayers by the Human Antimicrobial Peptide LL-37. Biochemistry, 2004, 43, 8459-8469.	1.2	247
17	Unexpected Relationships between Structure and Function in α,β-Peptides:  Antimicrobial Foldamers with Heterogeneous Backbones. Journal of the American Chemical Society, 2004, 126, 6848-6849.	6.6	213
18	Promotion of Peptide Antimicrobial Activity by Fatty Acid Conjugation. Bioconjugate Chemistry, 2004, 15, 530-535.	1.8	120

#	Article	IF	CITATIONS
19	The ascaphins: a family of antimicrobial peptides from the skin secretions of the most primitive extant frog, Ascaphus truei. Biochemical and Biophysical Research Communications, 2004, 320, 170-175.	1.0	66
20	Antimicrobial properties of the frog skin peptide, ranatuerin-1 and its [Lys-8]-substituted analog. Peptides, 2004, 25, 29-36.	1.2	18
21	Parabutoporinâ€"an antibiotic peptide from scorpion venomâ€"can both induce activation and inhibition of granulocyte cell functions. Peptides, 2004, 25, 1079-1084.	1.2	21
22	Membrane Association, Electrostatic Sequestration, and Cytotoxicity of Gly-Leu-Rich Peptide Orthologs with Differing Functions. Biochemistry, 2004, 43, 8391-8409.	1.2	48
23	An atypical member of the brevinin-1 family of antimicrobial peptides isolated from the skin of the European frog Rana dalmatina. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2004, 137, 191-196.	1.3	9
24	Membrane Binding, Structure, and Localization of Cecropin-Mellitin Hybrid Peptides: A Site-Directed Spin-Labeling Study. Biophysical Journal, 2004, 86, 329-336.	0.2	60
25	Acylation of SC4 dodecapeptide increases bactericidal potency against Gram-positive bacteria, including drug-resistant strains. Biochemical Journal, 2004, 378, 93-103.	1.7	75
26	The therapeutic potential of antimicrobial peptides from frog skin. Reviews in Medical Microbiology, 2004, 15, 17-25.	0.4	56
27	Exploring the Antibacterial and Hemolytic Activity of Shorter- and Longer-Chain?-,?,?-, and?-Peptides, and of?-Peptides from?2-3-Aza- and?3-2-Methylidene-amino Acids Bearing Proteinogenic Side Chains - A Survey. Chemistry and Biodiversity, 2005, 2, 401-420.	1.0	61
28	Lactoferrin. Cellular and Molecular Life Sciences, 2005, 62, 2576-2587.	2.4	397
29	Amphipathic \hat{l} ±-helices in proteins: Results from analysis of protein structures. Proteins: Structure, Function and Bioinformatics, 2005, 59, 791-801.	1.5	16
30	Structure-activity relationship study of anoplin. Journal of Peptide Science, 2005, 11, 113-121.	0.8	45
31	Novel lysine-peptoid hybrids with antibacterial properties. Journal of Peptide Science, 2005, 11, 727-734.	0.8	40
32	Primate β-defensins - Structure, Function and Evolution. Current Protein and Peptide Science, 2005, 6, 7-21.	0.7	49
33	Controlled alteration of the shape and conformational stability of \hat{l}_{\pm} -helical cell-lytic peptides: effect on mode of action and cell specificity. Biochemical Journal, 2005, 390, 177-188.	1.7	107
34	Application of the "Codon-shuffling―Method. Journal of Biological Chemistry, 2005, 280, 23605-23614.	1.6	13
35	Functionalized Micellar Assemblies Prepared via Block Copolymers Synthesized by Living Free Radical Polymerization upon Peptide-Loaded Resins. Biomacromolecules, 2005, 6, 220-228.	2.6	143
36	Pentadactylin: An antimicrobial peptide from the skin secretions of the South American bullfrog Leptodactylus pentadactylus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2005, 141, 393-397.	1.3	13

#	ARTICLE	IF	CITATIONS
37	Host-defense peptides isolated from the skin secretions of the Northern red-legged frog Rana aurora aurora. Developmental and Comparative Immunology, 2005, 29, 83-90.	1.0	25
38	Antimicrobial and cytolytic properties of the frog skin peptide, kassinatuerin-1 and its l- and d-lysine-substituted derivatives. Peptides, 2005, 26, 2104-2110.	1.2	19
39	Correlation between the activities of \hat{l} ±-helical antimicrobial peptides and hydrophobicities represented as RP HPLC retention times. Peptides, 2005, 26, 2050-2056.	1.2	61
40	Tuning the biological properties of amphipathic \hat{l} ±-helical antimicrobial peptides: Rational use of minimal amino acid substitutions. Peptides, 2005, 26, 2368-2376.	1.2	76
41	An antimicrobial peptide from the skin secretions of the mountain chicken frog Leptodactylus fallax (Anura:Leptodactylidae). Regulatory Peptides, 2005, 124, 173-178.	1.9	47
42	Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, pseudin-2. Regulatory Peptides, 2005, 129, 85-91.	1.9	53
43	Purification and characterization of antimicrobial peptides from the skin secretions of the carpenter frog Rana virgatipes (Ranidae, Aquarana). Regulatory Peptides, 2005, 131, 38-45.	1.9	44
44	Identification and optimization of an antimicrobial peptide from the ant venom toxin pilosulin. Archives of Biochemistry and Biophysics, 2005, 434, 358-364.	1.4	60
45	Human Cathelicidin (LL-37), a Multifunctional Peptide, is Expressed by Ocular Surface Epithelia and has Potent Antibacterial and Antiviral Activity. Current Eye Research, 2005, 30, 385-394.	0.7	225
46	Latarcins, Antimicrobial and Cytolytic Peptides from the Venom of the Spider Lachesana tarabaevi (Zodariidae) That Exemplify Biomolecular Diversity. Journal of Biological Chemistry, 2006, 281, 20983-20992.	1.6	149
47	Spatial Structure and Activity Mechanism of a Novel Spider Antimicrobial Peptide,. Biochemistry, 2006, 45, 10759-10767.	1.2	37
48	Dermaseptin S9, an α-Helical Antimicrobial Peptide with a Hydrophobic Core and Cationic Terminiâ€. Biochemistry, 2006, 45, 468-480.	1.2	94
49	Brevinin-1BYa: a naturally occurring peptide from frog skin with broad-spectrum antibacterial and antifungal properties. International Journal of Antimicrobial Agents, 2006, 27, 525-529.	1.1	51
50	Effects of Pro → Peptoid Residue Substitution on Cell Selectivity and Mechanism of Antibacterial Action of Tritrpticin-Amide Antimicrobial Peptideâ€. Biochemistry, 2006, 45, 13007-13017.	1.2	40
51	Evolution of the Primate Cathelicidin. Journal of Biological Chemistry, 2006, 281, 19861-19871.	1.6	99
52	Osmoprotection of Bacterial Cells from Toxicity Caused by Antimicrobial Hybrid Peptide CM15â€. Biochemistry, 2006, 45, 9997-10007.	1.2	20
53	A family of antimicrobial peptides related to japonicin-2 isolated from the skin of the chaochiao brown frog Rana chaochiaoensis. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2006, 144, 101-105.	1.3	10
54	Alpha-helical antimicrobial peptides—Using a sequence template to guide structure–activity relationship studies. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1436-1449.	1.4	352

#	ARTICLE	IF	Citations
55	De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria. Peptides, 2006, 27, 2567-2574.	1.2	57
56	In vitro system for high-throughput screening of random peptide libraries for antimicrobial peptides that recognize bacterial membranes. Journal of Peptide Science, 2006, 12, 643-652.	0.8	39
57	Contribution of a central proline in model amphipathic \hat{l} ±-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action. FEBS Journal, 2006, 273, 4040-4054.	2.2	61
58	A linguistic model for the rational design of antimicrobial peptides. Nature, 2006, 443, 867-869.	13.7	214
59	Design of multifunctional peptides expressing both antimicrobial activity and shiga toxin neutralization activity. Bioorganic and Medicinal Chemistry, 2006, 14, 77-82.	1.4	15
60	Amphiphilic laminin peptides at air/water interface—Effect of single amino acid mutations on surface properties. Journal of Colloid and Interface Science, 2006, 302, 95-102.	5.0	9
61	Characterisation of DEFB107 by mass spectrometry: Lessons from an anti-antimicrobial defensin. International Journal of Mass Spectrometry, 2006, 252, 180-188.	0.7	14
62	Computational promoter analysis of mouse, rat and human antimicrobial peptide-coding genes. BMC Bioinformatics, 2006, 7, S8.	1.2	26
63	Advances in antimicrobial peptide immunobiology. Biopolymers, 2006, 84, 435-458.	1.2	248
64	Inhibition of Plant-Pathogenic Bacteria by Short Synthetic Cecropin A-Melittin Hybrid Peptides. Applied and Environmental Microbiology, 2006, 72, 3302-3308.	1.4	106
65	COMPUTER SIMULATIONS OF MEMBRANE-LYTIC PEPTIDES: PERSPECTIVES IN DRUG DESIGN. Journal of Bioinformatics and Computational Biology, 2007, 05, 611-626.	0.3	9
66	Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic \hat{l} ±-helical peptides. Pure and Applied Chemistry, 2007, 79, 717-728.	0.9	86
67	Structure and Function of a Mitochondrial Late Embryogenesis Abundant Protein Are Revealed by Desiccation. Plant Cell, 2007, 19, 1580-1589.	3.1	209
68	Peptidomic analysis of skin secretions from Rana heckscheri and Rana okaloosae provides insight into phylogenetic relationships among frogs of the Aquarana species group. Regulatory Peptides, 2007, 138, 87-93.	1.9	24
69	Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods, 2007, 42, 349-357.	1.9	129
70	Peptides with differential cytolytic activity from skin secretions of the lemur leaf frog Hylomantis lemur (Hylidae: Phyllomedusinae). Toxicon, 2007, 50, 498-506.	0.8	60
71	Effect of aminoisobutyric acid (Aib) substitutions on the antimicrobial and cytolytic activities of the frog skin peptide, temporin-1DRa. Peptides, 2007, 28, 2075-2080.	1,2	43
72	A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides, 2007, 28, 2276-2285.	1.2	145

#	Article	IF	Citations
73	Effects of topology, length, and charge on the activity of a kininogen-derived peptide on lipid membranes and bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 715-727.	1.4	53
74	Substitution of the leucine zipper sequence in melittin with peptoid residues affects self-association, cell selectivity, and mode of action. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1506-1517.	1.4	74
75	Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: Differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2787-2800.	1.4	56
76	Membrane Insertion and Bilayer Perturbation by Antimicrobial Peptide CM15. Biophysical Journal, 2007, 93, 1651-1660.	0.2	69
77	<i>In silico</i> analysis of antifungal peptides. Expert Opinion on Drug Discovery, 2007, 2, 837-847.	2.5	14
78	De Novo Design of Selective Antibiotic Peptides by Incorporation of Unnatural Amino Acids. Journal of Medicinal Chemistry, 2007, 50, 3026-3036.	2.9	60
79	New Type of Helix and 27 Ribbon Structure Formation in Poly ΔLeu Peptides:  Construction of a Single-Handed Template. Biomacromolecules, 2007, 8, 3093-3101.	2.6	13
80	Application of 3D-QSAR for Identification of Descriptors Defining Bioactivity of Antimicrobial Peptides. Journal of Medicinal Chemistry, 2007, 50, 6545-6553.	2.9	49
81	Conformational Study of Short Peptoid Models for Future Applications as Potent Antimicrobial Compounds. Macromolecular Theory and Simulations, 2007, 16, 295-303.	0.6	10
82	Improved antimicrobial peptides based on acyl-lysine oligomers. Nature Biotechnology, 2007, 25, 657-659.	9.4	238
83	Synthetic analogues of antimicrobial peptides from the venom of the Central Asian spider Lachesana tarabaevi. Russian Journal of Bioorganic Chemistry, 2007, 33, 376-382.	0.3	4
84	Minimum requirements of hydrophobic and hydrophilic features in cationic peptide antibiotics (CPAs): pharmacophore generation and validation with cationic steroid antibiotics (CSAs). Journal of Molecular Modeling, 2008, 14, 265-278.	0.8	19
85	Bacterial selectivity and plausible mode of antibacterial action of designed Proâ€rich short model antimicrobial peptides. Journal of Peptide Science, 2008, 14, 876-882.	0.8	25
86	Design and analysis of structure–activity relationship of novel antimicrobial peptides derived from the conserved sequence of cecropin. Journal of Peptide Science, 2008, 14, 290-298.	0.8	8
87	Effects of net charge and the number of positively charged residues on the biological activity of amphipathic αâ€helical cationic antimicrobial peptides. Biopolymers, 2008, 90, 369-383.	1.2	390
88	Synthetic mimics of antimicrobial peptides. Biopolymers, 2008, 90, 83-93.	1.2	126
89	Interactions of laminin peptides with phospholipids in Langmuir films and vesicles. Chemical Physics Letters, 2008, 464, 226-229.	1.2	3
90	Design of Potent, Nonâ€Toxic Antimicrobial Agents Based Upon the Naturally Occurring Frog Skin Peptides, Ascaphinâ€8 and Peptide XTâ€7. Chemical Biology and Drug Design, 2008, 72, 58-64.	1.5	49

#	Article	IF	CITATIONS
91	The anti-endotoxic effects of the KSL-W decapeptide on Escherichia coli O55:B5 and various oral lipopolysaccharides. Journal of Periodontal Research, 2008, 43, 422-430.	1.4	15
92	An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease. Insect Biochemistry and Molecular Biology, 2008, 38, 213-232.	1.2	114
93	Characterization of antimicrobial peptides from the skin secretions of the Malaysian frogs, Odorrana hosii and Hylarana picturata (Anura:Ranidae). Toxicon, 2008, 52, 465-473.	0.8	49
94	Activities of the frog skin peptide, ascaphin-8 and its lysine-substituted analogs against clinical isolates of extended-spectrum β-lactamase (ESBL) producing bacteria. Peptides, 2008, 29, 25-30.	1.2	23
95	Purification and characterization of antimicrobial peptides from the Caribbean frog, Leptodactylus validus (Anura: Leptodactylidae). Peptides, 2008, 29, 1287-1292.	1.2	16
96	A peptide of the phylloseptin family from the skin of the frog Hylomantis lemur (Phyllomedusinae) with potent in vitro and in vivo insulin-releasing activity. Peptides, 2008, 29, 2136-2143.	1.2	37
97	Pleurocidin-derived antifungal peptides with selective membrane-disruption effect. Biochemical and Biophysical Research Communications, 2008, 369, 858-861.	1.0	22
98	Small Changes in the Primary Structure of Transportan 10 Alter the Thermodynamics and Kinetics of its Interaction with Phospholipid Vesicles. Biochemistry, 2008, 47, 3051-3060.	1.2	38
99	Three-Dimensional Structure/Hydrophobicity of Latarcins Specifies Their Mode of Membrane Activity [,] . Biochemistry, 2008, 47, 3525-3533.	1.2	38
100	Lysine-Enriched Cecropin-Mellitin Antimicrobial Peptides with Enhanced Selectivity. Antimicrobial Agents and Chemotherapy, 2008, 52, 4463-4465.	1.4	27
101	Analysis of in vitro activities and modes of action of synthetic antimicrobial peptides derived from an α-helical †sequence template'. Journal of Antimicrobial Chemotherapy, 2008, 61, 341-352.	1.3	73
102	Probing structure–activity relationships in bactericidal peptide βpep-25. Biochemical Journal, 2008, 414, 143-150.	1.7	8
103	Sporicidal Activity of Synthetic Antifungal Undecapeptides and Control of <i>Penicillium</i> Rot of Apples. Applied and Environmental Microbiology, 2009, 75, 5563-5569.	1.4	55
104	Evaluation of Strategies for Improving Proteolytic Resistance of Antimicrobial Peptides by Using Variants of EFK17, an Internal Segment of LL-37. Antimicrobial Agents and Chemotherapy, 2009, 53, 593-602.	1.4	171
105	The Central Kink Region of Fowlicidin-2, an \hat{l}_{\pm} -Helical Host Defense Peptide, Is Critically Involved in Bacterial Killing and Endotoxin Neutralization. Journal of Innate Immunity, 2009, 1, 268-280.	1.8	69
106	Cathelicidin peptide SMAPâ€29: comprehensive review of its properties and potential as a novel class of antibiotics. Drug Development Research, 2009, 70, 481-498.	1.4	32
107	The antimicrobial activity of CCL28 is dependent on Câ€terminal positivelyâ€charged amino acids. European Journal of Immunology, 2010, 40, 186-196.	1.6	41
108	Antimicrobial peptide RPâ€1 structure and interactions with anionic versus zwitterionic micelles. Biopolymers, 2009, 91, 1-13.	1.2	51

#	Article	IF	Citations
109	Effect of dimerization of a $\hat{1}^2$ -turn antimicrobial peptide, PST13-RK, on antimicrobial activity and mammalian cell toxicity. Biotechnology Letters, 2009, 31, 233-237.	1.1	22
110	Application of antimicrobial peptides in agriculture and food industry. World Journal of Microbiology and Biotechnology, 2009, 25, 933-944.	1.7	128
111	Interaction of 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes. Journal of Biosciences, 2009, 34, 239-250.	0.5	4
112	Design and characterization of novel hybrid peptides from LFB15(W4,10), HP(2-20), and cecropin A based on structure parameters by computer-aided method. Applied Microbiology and Biotechnology, 2009, 82, 1097-1103.	1.7	31
113	Effects of dimerization of the cellâ€penetrating peptide Tat analog on antimicrobial activity and mechanism of bactericidal action. Journal of Peptide Science, 2009, 15, 345-352.	0.8	72
114	Structure dependence of biological activities for primate cathelicidins. Journal of Peptide Science, 2009, 15, 576-582.	0.8	20
115	Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations. Journal of Peptide Science, 2009, 15, 550-558.	0.8	85
116	Effect of Leucine and Lysine substitution on the antimicrobial activity and evaluation of the mechanism of the HPA3NT3 analog peptide. Journal of Peptide Science, 2009, 15, 589-594.	0.8	20
117	Drosomycin, an essential component of antifungal defence in <i>Drosophila</i> . Insect Molecular Biology, 2009, 18, 549-556.	1.0	58
118	Molecular diversity of spider venom. Biochemistry (Moscow), 2009, 74, 1505-1534.	0.7	145
119	Antimicrobial and Cytolytic Activities and Plausible Mode of Bactericidal Action of the Cell Penetrating Peptide Penetratin and Its Lysâ€linked Twoâ€Stranded Peptide. Chemical Biology and Drug Design, 2009, 73, 209-215.	1.5	40
120	Dermal Cytolytic Peptides and the System of Innate Immunity in Anurans. Annals of the New York Academy of Sciences, 2009, 1163, 75-82.	1.8	51
121	Design and Characterization of a Broad -Spectrum Bactericidal Acyl-lysyl Oligomer. Chemistry and Biology, 2009, 16, 1250-1258.	6.2	26
122	Solution Structure and Membrane Interactions of the Antimicrobial Peptide Fallaxidin 4.1a: An NMR and QCM Study. Biochemistry, 2009, 48, 11892-11901.	1.2	48
123	Antimicrobial Action of Prototypic Amphipathic Cationic Decapeptides and Their Branched Dimers. Biochemistry, 2009, 48, 5642-5657.	1.2	52
124	Action mechanism and structural requirements of the antimicrobial peptides, gaegurins. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1620-1629.	1.4	43
125	Binding of amphipathic \hat{l}_{\pm} -helical antimicrobial peptides to lipid membranes: Lessons from temporins B and L. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1600-1609.	1.4	116
126	Antibacterial activity of six novel peptides from Tityus discrepans scorpion venom. A fluorescent probe study of microbial membrane Na+ permeability changes. Toxicon, 2009, 54, 802-817.	0.8	57

#	ARTICLE	IF	CITATIONS
127	A glycine-leucine-rich peptide structurally related to the plasticins from skin secretions of the frog Leptodactylus laticeps (Leptodactylidae). Peptides, 2009, 30, 888-892.	1.2	36
129	Artificial Î ² -defensin based on a minimal defensin template. Biochemical Journal, 2009, 421, 435-447.	1.7	24
130	Host Defense Peptides: Bridging Antimicrobial and Immunomodulatory Activities*., 2010,, 175-216.		2
131	Correlation of Charge, Hydrophobicity, and Structure with Antimicrobial Activity of S1 and MIRIAM Peptides. Biochemistry, 2010, 49, 9161-9170.	1.2	29
132	Novel antimicrobial peptides that exhibit activity against select agents and other drug resistant bacteria. Bioorganic and Medicinal Chemistry, 2010, 18, 5137-5147.	1.4	30
133	Unimolecular study of the interaction between the outer membrane protein OmpF from E. coli and an analogue of the HP(2–20) antimicrobial peptide. Journal of Bioenergetics and Biomembranes, 2010, 42, 173-180.	1.0	29
134	New Antimicrobial Hexapeptides: Synthesis, Antimicrobial Activities, Cytotoxicity, and Mechanistic Studies. ChemMedChem, 2010, 5, 86-95.	1.6	30
135	Disperse distribution of cationic amino acids on hydrophilic surface of helical wheel enhances antimicrobial peptide activity. Biotechnology and Bioengineering, 2010, 107, 216-223.	1.7	23
136	Development of potent anti-infective agents from Silurana tropicalis: Conformational analysis of the amphipathic, alpha-helical antimicrobial peptide XT-7 and its non-haemolytic analogue [G4K]XT-7. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1020-1028.	1.1	21
137	Interaction between amphiphilic peptides and phospholipid membranes. Current Opinion in Colloid and Interface Science, 2010, 15, 467-478.	3.4	134
138	Synergy with Rifampin and Kanamycin Enhances Potency, Kill Kinetics, and Selectivity of <i>De </i> Novo Designed Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 2010, 54, 1693-1699.	1.4	64
139	Temporin-SHf, a New Type of Phe-rich and Hydrophobic Ultrashort Antimicrobial Peptide. Journal of Biological Chemistry, 2010, 285, 16880-16892.	1.6	73
140	Reverse Engineering Truncations of an Antimicrobial Peptide Dimer to Identify the Origins of Potency and Broad Spectrum of Action. Journal of Medicinal Chemistry, 2010, 53, 6079-6088.	2.9	14
141	Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1864-1875.	1.4	80
142	Selective Acylation Enhances Membrane Charge Sensitivity of the Antimicrobial Peptide Mastoparan-X. Biophysical Journal, 2011, 100, 399-409.	0.2	29
143	Analogues of peptide SMAP-29 with comparable antimicrobial potency and reduced cytotoxicity. International Journal of Antimicrobial Agents, 2011, 37, 432-437.	1.1	21
144	Venom Composition and Strategies in Spiders. Advances in Insect Physiology, 2011, 40, 1-86.	1.1	121
145	Structureâ^'Activity Relationship, Conformational and Biological Studies of Temporin L Analogues. Journal of Medicinal Chemistry, 2011, 54, 1298-1307.	2.9	76

#	Article	IF	CITATIONS
146	Influence of C-Terminal Amidation on the Efficacy of Modelin-5. Biochemistry, 2011, 50, 1514-1523.	1.2	57
147	Effects of D-Lysine Substitutions on the Activity and Selectivity of Antimicrobial Peptide CM15. Polymers, 2011, 3, 2088-2106.	2.0	27
148	Osmotin from Calotropis procera latex: New insights into structure and antifungal properties. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2501-2507.	1.4	41
149	Competing interactions for antimicrobial selectivity based on charge complementarity. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2867-2876.	1.4	24
150	Anti-Tuberculosis Activity of & Designed L- and D-Enantiomers Versus L- and D-LL37. Protein and Peptide Letters, 2011, 18, 241-252.	0.4	55
151	Antimicrobial β-Peptides and α-Peptoids. Chemical Biology and Drug Design, 2011, 77, 107-116.	1.5	110
152	The effect of the placement and total charge of the basic amino acid clusters on antibacterial organism selectivity and potency. Bioorganic and Medicinal Chemistry, 2011, 19, 7008-7022.	1.4	12
153	Determining the effect of the incorporation of unnatural amino acids into antimicrobial peptides on the interactions with zwitterionic and anionic membrane model systems. Chemistry and Physics of Lipids, 2011, 164, 740-758.	1.5	20
154	What Determines the Activity of Antimicrobial and Cytolytic Peptides in Model Membranes. Biochemistry, 2011, 50, 7919-7932.	1.2	27
155	Revisiting Peptide Amphiphilicity for Membrane Pore Formation. Biochemistry, 2011, 50, 9409-9420.	1.2	15
156	Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides. European Biophysics Journal, 2011, 40, 371-385.	1.2	50
157	Bacterial membrane activity of \hat{l}^{\pm} -peptide \hat{l}^2 -peptoid chimeras: Influence of amino acid composition and chain length on the activity against different bacterial strains. BMC Microbiology, 2011, 11, 144.	1.3	34
158	Reversed sequence enhances antimicrobial activity of a synthetic peptide. Journal of Peptide Science, 2011, 17, 329-334.	0.8	22
159	Antimicrobial activity, bactericidal mechanism and LPSâ€neutralizing activity of the cellâ€penetrating peptide <i>peptide <i>peptide <i>peptide <i>peptide <i>peptide <i> peptide <i> pe</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	0.8	37
160	Purification and properties of antimicrobial peptides from skin secretions of the Eritrea clawed frog Xenopus clivii (Pipidae). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2011, 153, 350-354.	1.3	25
161	Can the interaction between the antimicrobial peptide LL-37 and alginate be exploited for the formulation of new biomaterials with antimicrobial properties?. Carbohydrate Polymers, 2011, 83, 578-585.	5.1	17
162	Rationale-Based, <i>De Novo</i> Design of Dehydrophenylalanine-Containing Antibiotic Peptides and Systematic Modification in Sequence for Enhanced Potency. Antimicrobial Agents and Chemotherapy, 2011, 55, 2178-2188.	1.4	45
163	The Design and Construction of K11: A Novel $\hat{l}\pm$ -Helical Antimicrobial Peptide. International Journal of Microbiology, 2012, 2012, 1-6.	0.9	11

#	Article	IF	CITATIONS
164	Comparative mode of action of novel hybrid peptide <scp>CS</scp> â€la and its rearranged amphipathic analogue <scp>CS</scp> â€2a. FEBS Journal, 2012, 279, 3776-3790.	2.2	8
165	Improving the Selectivity of Antimicrobial Peptides from Anuran Skin. Journal of Chemical Information and Modeling, 2012, 52, 3341-3351.	2.5	30
166	Molecular Interactions of Proteins and Peptides at Interfaces Studied by Sum Frequency Generation Vibrational Spectroscopy. Langmuir, 2012, 28, 2113-2121.	1.6	61
167	The hymenochirins: A family of host-defense peptides from the Congo dwarf clawed frog Hymenochirus boettgeri (Pipidae). Peptides, 2012, 35, 269-275.	1.2	31
168	Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37. Peptides, 2012, 35, 239-247.	1.2	69
169	Role of lipids in the interaction of antimicrobial peptides with membranes. Progress in Lipid Research, 2012, 51, 149-177.	5 . 3	555
170	Use of Unnatural Amino Acids to Probe Structure–Activity Relationships and Mode-of-Action of Antimicrobial Peptides. Methods in Molecular Biology, 2012, 794, 169-183.	0.4	5
171	Antitumor effects and cell selectivity of temporin-1CEa, an antimicrobial peptide from the skin secretions of the Chinese brown frog (Rana chensinensis). Biochimie, 2012, 94, 434-441.	1.3	68
172	Molecular dynamics studies of the antimicrobial peptides piscidin 1 and its mutants with a DOPC lipid bilayer. Biopolymers, 2012, 97, 998-1009.	1.2	13
173	Modification of a novel angiogenic peptide, AG30, for the development of novel therapeutic agents. Journal of Cellular and Molecular Medicine, 2012, 16, 1629-1639.	1.6	26
174	5.10 Interactions of Antimicrobial Peptides with Lipid Bilayers. , 2012, , 189-222.		14
175	In vitro antibacterial and antimalarial activity of dehydrophenylalanine-containing undecapeptides alone and in combination with drugs. International Journal of Antimicrobial Agents, 2012, 39, 146-152.	1.1	8
176	What Determines the Activity of Antimicrobial and Cytolytic Peptides in Model Membranes. Biophysical Journal, 2012, 102, 90a.	0.2	0
177	Comparative genomics analysis of five families of antimicrobial peptide-like genes in seven ant species. Developmental and Comparative Immunology, 2012, 38, 262-274.	1.0	53
178	Application of Unnatural Amino Acids to the De Novo Design of Selective Antibiotic Peptides. Methods in Molecular Biology, 2012, 794, 135-167.	0.4	16
179	Anti-plasmodial action of de novo-designed, cationic, lysine-branched, amphipathic, helical peptides. Malaria Journal, 2012, 11, 256.	0.8	9
180	Antimicrobial peptides: key components of the innate immune system. Critical Reviews in Biotechnology, 2012, 32, 143-171.	5.1	576
181	Antimicrobial Peptides for Plant Disease Control. From Discovery to Application. ACS Symposium Series, 2012, , 235-261.	0.5	23

#	ARTICLE	IF	CITATIONS
182	Identification of antimicrobial peptides from teleosts and anurans in expressed sequence tag databases using conserved signal sequences. FEBS Journal, 2012, 279, 724-736.	2.2	23
183	The effect of the length and flexibility of the side chain of basic amino acids on the binding of antimicrobial peptides to zwitterionic and anionic membrane model systems. Bioorganic and Medicinal Chemistry, 2012, 20, 1723-1739.	1.4	23
184	Rational design of anti-microbial peptides with enhanced activity and low cytotoxicity based on the structure of the arginine/histidine-rich peptide, chensinin-1. Journal of Applied Microbiology, 2012, 113, 677-685.	1.4	10
185	The application of DOSY NMR and molecular dynamics simulations to explore the mechanism(s) of micelle binding of antimicrobial peptides containing unnatural amino acids. Biopolymers, 2013, 99, 548-561.	1.2	15
186	Truncated and constrained helical analogs of antimicrobial esculentin-2EM. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6717-6720.	1.0	30
187	An analog of the host-defense peptide hymenochirin-1B with potent broad-spectrum activity against multidrug-resistant bacteria and immunomodulatory properties. Peptides, 2013, 50, 153-159.	1.2	41
189	Membrane Orientation of $G\hat{l}_{sub}^2 \cdot sub}^2 \cdot sub$	6.6	43
190	Antifungal proteins: More than antimicrobials?. Fungal Biology Reviews, 2013, 26, 132-145.	1.9	153
191	Characterization and performance of short cationic antimicrobial peptide isomers. Biopolymers, 2013, 100, 387-401.	1.2	27
192	Stepwise identification of potent antimicrobial peptides from human genome. BioSystems, 2013, 113, 1-8.	0.9	11
193	Antimicrobial HPA3NT3 peptide analogs: Placement of aromatic rings and positive charges are key determinants for cell selectivity and mechanism of action. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 443-454.	1.4	57
194	Design of hybrid \hat{l}^2 -hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity. Biomaterials, 2013, 34, 237-250.	5.7	128
195	Antimicrobial peptides containing unnatural amino acid exhibit potent bactericidal activity against ESKAPE pathogens. Bioorganic and Medicinal Chemistry, 2013, 21, 205-214.	1.4	51
196	Transformation of the naturally occurring frog skin peptide, alyteserin-2a into a potent, non-toxic anti-cancer agent. Amino Acids, 2013, 44, 715-723.	1.2	31
197	Antimicrobial Peptides. Pharmaceuticals, 2013, 6, 1543-1575.	1.7	1,003
198	Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization. PLoS Computational Biology, 2013, 9, e1003212.	1.5	65
199	Structure-Activity Relations of Myxinidin, an Antibacterial Peptide Derived from the Epidermal Mucus of Hagfish. Antimicrobial Agents and Chemotherapy, 2013, 57, 5665-5673.	1.4	37
200	From Design to Screening: A New Antimicrobial Peptide Discovery Pipeline. PLoS ONE, 2013, 8, e59305.	1.1	26

#	Article	IF	CITATIONS
201	Antimicrobial Lactoferrin Peptides: The Hidden Players in the Protective Function of a Multifunctional Protein. International Journal of Peptides, 2013, 2013, 1-12.	0.7	98
202	Derivatives of the Antimicrobial Peptide BP100 for Expression in Plant Systems. PLoS ONE, 2013, 8, e85515.	1.1	48
203	Structural Characterization of de Novo Designed L5K5W Model Peptide Isomers with Potent Antimicrobial and Varied Hemolytic Activities. Molecules, 2013, 18, 859-876.	1.7	16
204	Synthetic Antimicrobial Peptides Exhibit Two Different Binding Mechanisms to the Lipopolysaccharides Isolated from Pseudomonas aeruginosa and Klebsiella pneumoniae. International Journal of Medicinal Chemistry, 2014, 2014, 1-13.	2.2	9
205	Intraspecific Variation of Centruroides Edwardsii Venom from Two Regions of Colombia. Toxins, 2014, 6, 2082-2096.	1.5	16
206	Lauryl-poly-L-lysine: A New Antimicrobial Agent?. Journal of Amino Acids, 2014, 2014, 1-10.	5.8	18
207	Molecular mechanisms of anticancer action and cell selectivity ofÂshort α-helical peptides. Biomaterials, 2014, 35, 1552-1561.	5.7	88
208	Effect of hydrophobic modifications in antimicrobial peptides. Advances in Colloid and Interface Science, 2014, 205, 265-274.	7.0	127
209	Effect of substituting arginine and lysine with alanine on antimicrobial activity and the mechanism of action of a cationic dodecapeptide ($CL(14\hat{a}\in 25)$), a partial sequence of cyanate lyase from rice. Biopolymers, 2014, 102, 58-68.	1.2	17
210	Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1985-1999.	1.4	93
211	Antimicrobial activity of de novo designed cationic peptides against multi-resistant clinical isolates. European Journal of Medicinal Chemistry, 2014, 71, 31-35.	2.6	47
212	Structural Insights into and Activity Analysis of the Antimicrobial Peptide Myxinidin. Antimicrobial Agents and Chemotherapy, 2014, 58, 5280-5290.	1.4	54
213	Antimicrobial Peptides from Skin Secretions of <i>Hypsiboas pulchellus</i> (Anura: Hylidae). Journal of Natural Products, 2014, 77, 831-841.	1.5	27
214	Dynamical structure of the short multifunctional peptide BP100 in membranes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 940-949.	1.4	50
215	Purification and Modeling Amphipathic Alpha Helical Antimicrobial Peptides from Skin Secretions of <scp><i>E</i></scp> <i>uphlyctis cyanophlyctis</i>	1.5	14
216	Amphiphilic Macromolecules on Cell Membranes: From Protective Layers to Controlled Permeabilization. Journal of Membrane Biology, 2014, 247, 861-881.	1.0	50
217	High specific selectivity and Membrane-Active Mechanism of the synthetic centrosymmetric \hat{l}_{\pm} -helical peptides with Gly-Gly pairs. Scientific Reports, 2015, 5, 15963.	1.6	74
218	Controls and constrains of the membrane disrupting action of Aurein 1.2. Scientific Reports, 2015, 5, 16378.	1.6	54

#	ARTICLE	IF	CITATIONS
219	<i>N</i> â€Capping Effects of Stapled Heptapeptides on Antimicrobial and Hemolytic Activities. Bulletin of the Korean Chemical Society, 2015, 36, 2511-2515.	1.0	10
220	Assessment of the Antimicrobial Activity of Few Saudi Arabian Snake Venoms. Open Microbiology Journal, 2015, 9, 18-25.	0.2	13
221	Partial Characterization of Venom from the Colombian Spider Phoneutria Boliviensis (Aranae:Ctenidae). Toxins, 2015, 7, 2872-2887.	1.5	22
222	Perspective of Use of Antiviral Peptides against Influenza Virus. Viruses, 2015, 7, 5428-5442.	1.5	98
223	Rational Design of Alphaâ∈Helical Antimicrobial Peptides: Do's and Don'ts. ChemBioChem, 2015, 16, 242-253.	1.3	67
224	The structure and behavior of the NA-CATH antimicrobial peptide with liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2394-2405.	1.4	19
225	Structure–Activity Relationship-based Optimization of Small Temporin-SHf Analogs with Potent Antibacterial Activity. ACS Chemical Biology, 2015, 10, 2257-2266.	1.6	26
226	Peptoid-Substituted Hybrid Antimicrobial Peptide Derived from Papiliocin and Magainin 2 with Enhanced Bacterial Selectivity and Anti-inflammatory Activity. Biochemistry, 2015, 54, 3921-3931.	1.2	25
227	Antimicrobial activity of doubly-stapled alanine/lysine-based peptides. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4016-4019.	1.0	39
228	Identification and characterization of an antimicrobial peptide of Hypsiboas semilineatus (Spix, 1824) (Amphibia, Hylidae). Toxicon, 2015, 99, 16-22.	0.8	19
229	A novel antibacterial tripeptide from Chinese leek seeds. European Food Research and Technology, 2015, 240, 327-333.	1.6	2
230	Universal cell capture by immobilized antimicrobial peptide plantaricin. Biochemical Engineering Journal, 2015, 101, 18-22.	1.8	4
231	Common occurrence of antibacterial agents in human intestinal microbiota. Frontiers in Microbiology, 2015, 6, 441.	1.5	74
232	Designing \hat{l}_{\pm} -helical peptides with enhanced synergism and selectivity against Mycobacterium smegmatis: Discerning the role of hydrophobicity and helicity. Acta Biomaterialia, 2015, 28, 99-108.	4.1	61
233	Mechanism study on a new antimicrobial peptide Sphistin derived from the N-terminus of crab histone H2A identified in haemolymphs of Scylla paramamosain. Fish and Shellfish Immunology, 2015, 47, 833-846.	1.6	46
234	A novel antimicrobial peptide derived from fish goose type lysozyme disrupts the membrane of Salmonella enterica. Molecular Immunology, 2015, 68, 421-433.	1.0	58
235	Predicting the Minimal Inhibitory Concentration for Antimicrobial Peptides with Rana-Box Domain. Journal of Chemical Information and Modeling, 2015, 55, 2275-2287.	2.5	17
236	Copper-binding tripeptide motif increases potency of the antimicrobial peptide Anoplin via Reactive Oxygen Species generation. Biochemical and Biophysical Research Communications, 2015, 456, 446-451.	1.0	46

#	Article	IF	CITATIONS
237	MP-V1 from the Venom of Social Wasp Vespula vulgaris Is a de Novo Type of Mastoparan that Displays Superior Antimicrobial Activities. Molecules, 2016, 21, 512.	1.7	15
238	Full-Length cDNA, Prokaryotic Expression, and Antimicrobial Activity of UuHb-F-I fromUrechis unicinctus. BioMed Research International, 2016, 2016, 1-8.	0.9	6
239	A New Synthetic Peptide Having Two Target of Antibacterial Action in E. coli ML35. Frontiers in Microbiology, 2016, 7, 2006.	1.5	18
240	Structure and Bioactivity of a Modified Peptide Derived from the LPS-Binding Domain of an Anti-Lipopolysaccharide Factor (ALF) of Shrimp. Marine Drugs, 2016, 14, 96.	2.2	31
241	Effect of alanine, leucine, and arginine substitution on antimicrobial activity against candida albicans and action mechanism of a cationic octadecapeptide derived from αâ€amylase of rice. Biopolymers, 2016, 106, 219-229.	1.2	15
242	The rational search for selective anticancer derivatives of the peptide Trichogin GA IV: a multi-technique biophysical approach. Scientific Reports, 2016, 6, 24000.	1.6	26
243	Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of \hat{l}^2 -Hairpin Peptides. ACS Infectious Diseases, 2016, 2, 442-450.	1.8	191
244	Pleurocidin congeners demonstrate activity against Streptococcus and low toxicity on gingival fibroblasts. Archives of Oral Biology, 2016, 70, 79-87.	0.8	19
245	Selective amino acid substitution reduces cytotoxicity of the antimicrobial peptide mastoparan. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2699-2708.	1.4	63
246	Bioinspired Polymers: Antimicrobial Polymethacrylates. Australian Journal of Chemistry, 2016, 69, 717.	0.5	11
247	Cyclization Improves Membrane Permeation by Antimicrobial Peptoids. Langmuir, 2016, 32, 12905-12913.	1.6	33
248	Charge Distribution Fine-Tunes the Translocation of \hat{l}_{\pm} -Helical Amphipathic Peptides across Membranes. Biophysical Journal, 2016, 111, 1738-1749.	0.2	22
249	Dissecting the contribution of Staphylococcus aureus \hat{l}_{\pm} -phenol-soluble modulins to biofilm amyloid structure. Scientific Reports, 2016, 6, 34552.	1.6	57
250	Membrane phase characteristics control NA-CATH activity. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1974-1982.	1.4	6
251	The effect of amidation on the behaviour of antimicrobial peptides. European Biophysics Journal, 2016, 45, 195-207.	1.2	72
252	Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants. Colloids and Surfaces B: Biointerfaces, 2016, 143, 194-205.	2.5	31
253	A novel antimicrobial peptide derived from membrane-proximal external region of human immunodeficiency virus type 1. Biochimie, 2016, 123, 110-116.	1.3	3
254	Activity of Synthetic Antimicrobial Peptide GH12 against Oral Streptococci. Caries Research, 2016, 50, 48-61.	0.9	44

#	Article	IF	CITATIONS
255	The Central Hinge Link Truncation of the Antimicrobial Peptide Fowlicidin-3 Enhances Its Cell Selectivity without Antibacterial Activity Loss. Antimicrobial Agents and Chemotherapy, 2016, 60, 2798-2806.	1.4	21
256	Bombyx mori cecropin A has a high antifungal activity to entomopathogenic fungus Beauveria bassiana. Gene, 2016, 583, 29-35.	1.0	48
257	Alanine scan and 2 H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1328-1338.	1.4	32
258	The human cathelicidin LL-37 — A pore-forming antibacterial peptide and host-cell modulator. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 546-566.	1.4	263
259	Melanoma cell surface-expressed phosphatidylserine as a therapeutic target for cationic anticancer peptide, temporin-1CEa. Journal of Drug Targeting, 2016, 24, 548-556.	2.1	30
260	Venom from Opisthacanthus elatus scorpion of Colombia, could be more hemolytic and less neurotoxic than thought. Acta Tropica, 2016, 153, 70-78.	0.9	12
261	Characterization and production of multifunctional cationic peptides derived from rice proteins. Bioscience, Biotechnology and Biochemistry, 2017, 81, 634-650.	0.6	13
262	Highly potent antimicrobial peptides from N-terminal membrane-binding region of E. coli MreB. Scientific Reports, 2017, 7, 42994.	1.6	31
263	Designing Hybrid Antibiotic Peptide Conjugates To Cross Bacterial Membranes. Bioconjugate Chemistry, 2017, 28, 793-804.	1.8	23
264	Effects of arginine and leucine substitutions on antiâ€endotoxic activities and mechanisms of action of cationic and amphipathic antimicrobial octadecapeptide from rice ⟨i⟩α⟨ i⟩â€amylase. Journal of Peptide Science, 2017, 23, 252-260.	0.8	11
265	Determination of effective charges and ionic mobilities of polycationic antimicrobial peptides by capillary isotachophoresis and capillary zone electrophoresis. Electrophoresis, 2017, 38, 2018-2024.	1.3	8
266	Characterizing the structure–function relationship reveals the mode of action of a novel antimicrobial peptide, P1, from jumper ant Myrmecia pilosula. Molecular BioSystems, 2017, 13, 1193-1201.	2.9	12
267	Effect of physicochemical properties of peptides from soy protein on their antimicrobial activity. Peptides, 2017, 94, 10-18.	1.2	21
268	Antimicrobial activity predictors benchmarking analysis using shuffled and designed synthetic peptides. Journal of Theoretical Biology, 2017, 426, 96-103.	0.8	51
269	De novo synthetic short antimicrobial peptides against cariogenic bacteria. Archives of Oral Biology, 2017, 80, 41-50.	0.8	57
270	Antimicrobial activity and interactions of cationic peptides derived from Galleria mellonella cecropin D-like peptide with model membranes. Journal of Antibiotics, 2017, 70, 238-245.	1.0	40
271	Tools for Designing Amphipathic Helical Antimicrobial Peptides. Methods in Molecular Biology, 2017, 1548, 23-34.	0.4	10
272	KR-12-a5 is a non-cytotoxic agent with potent antimicrobial effects against oral pathogens. Biofouling, 2017, 33, 807-818.	0.8	23

#	ARTICLE	IF	Citations
273	CCL28 chemokine: An anchoring point bridging innate and adaptive immunity. International Immunopharmacology, 2017, 51, 165-170.	1.7	60
274	PepBio: predicting the bioactivity of host defense peptides. RSC Advances, 2017, 7, 35119-35134.	1.7	8
275	The increase in positively charged residues in cecropin D-like Galleria mellonella favors its interaction with membrane models that imitate bacterial membranes. Archives of Biochemistry and Biophysics, 2017, 629, 54-62.	1.4	15
276	Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides. Physical Review E, 2017, 96, 042405.	0.8	20
277	Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections. Acta Biomaterialia, 2017, 49, 16-35.	4.1	91
278	Implications of lipid monolayer charge characteristics on their selective interactions with a short antimicrobial peptide. Colloids and Surfaces B: Biointerfaces, 2017, 150, 308-316.	2.5	41
279	Beyond conventional antibiotics â€" New directions for combination products to combat biofilm. Advanced Drug Delivery Reviews, 2017, 112, 48-60.	6.6	57
280	Design and characterization of short hybrid antimicrobial peptides from <scp>pEM</scp> â€2, mastoparanâ€ <scp>VT</scp> 1, and mastoparanâ€B. Chemical Biology and Drug Design, 2017, 89, 327-338.	1.5	33
281	Effects of Aib residues insertion on the structural–functional properties of the frog skin-derived peptide esculentin-1a(1–21)NH2. Amino Acids, 2017, 49, 139-150.	1.2	20
282	Bioactivity of Natural and Engineered Antimicrobial Peptides from Venom of the Scorpions Urodacus yaschenkoi and U. manicatus. Toxins, 2017, 9, 22.	1.5	27
283	Promising Approaches to Optimize the Biological Properties of the Antimicrobial Peptide Esculentin-1a($1\hat{a}\in 21$)NH2: Amino Acids Substitution and Conjugation to Nanoparticles. Frontiers in Chemistry, 2017, 5, 26.	1.8	34
284	D-BMAP18 Antimicrobial Peptide Is Active In vitro, Resists to Pulmonary Proteases but Loses Its Activity in a Murine Model of Pseudomonas aeruginosa Lung Infection. Frontiers in Chemistry, 2017, 5, 40.	1.8	25
285	Comparative Analysis of the Bacterial Membrane Disruption Effect of Two Natural Plant Antimicrobial Peptides. Frontiers in Microbiology, 2017, 8, 51.	1.5	80
286	Antimicrobial peptide GH12 suppresses cariogenic virulence factors of <i>Streptococcus mutans</i> Journal of Oral Microbiology, 2018, 10, 1442089.	1.2	66
287	Biomimetic antimicrobial polymers: recent advances in molecular design. Polymer Chemistry, 2018, 9, 2407-2427.	1.9	224
288	In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nature Communications, 2018, 9, 1490.	5.8	179
289	Interaction of cationic antimicrobial peptides from Australian frogs with lipid membranes. Peptide Science, 2018, 110, e24061.	1.0	16
290	Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality. World Journal of Microbiology and Biotechnology, 2018, 34, 62.	1.7	28

#	Article	IF	CITATIONS
291	Chargeâ€Induced Secondary Structure Transformation of Amyloidâ€Derived Dipeptide Assemblies from βâ€Sheet to αâ€Helix. Angewandte Chemie, 2018, 130, 1553-1558.	1.6	28
292	Chargeâ€Induced Secondary Structure Transformation of Amyloidâ€Derived Dipeptide Assemblies from βâ€Sheet to αâ€Helix. Angewandte Chemie - International Edition, 2018, 57, 1537-1542.	7.2	192
293	Augmentation of the antibacterial activities of Pt5-derived antimicrobial peptides (AMPs) by amino acid substitutions: Design of novel AMPs against MDR bacteria. Fish and Shellfish Immunology, 2018, 77, 100-111.	1.6	13
294	Fish Heat Shock Cognate 70 Derived AMPs CsHSC70 A1 and CsHSC70 A2. International Journal of Peptide Research and Therapeutics, 2018, 24, 143-155.	0.9	8
295	Antioxidant, anti-inflammatory, and anti-allergic activities of the sweet-tasting protein brazzein. Food Chemistry, 2018, 267, 163-169.	4.2	27
296	Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacological Research, 2018, 128, 288-305.	3.1	55
297	Identification of a moronecidin-like antimicrobial peptide in the venomous fish Pterois volitans: Functional and structural study of pteroicidin-α. Fish and Shellfish Immunology, 2018, 72, 318-324.	1.6	20
298	An engineered arginine-rich \hat{l} ±-helical antimicrobial peptide exhibits broad-spectrum bactericidal activity against pathogenic bacteria and reduces bacterial infections in mice. Scientific Reports, 2018, 8, 14602.	1.6	38
299	Structural insight into the mechanism of action of antimicrobial peptide BMAP-28(1–18) and its analogue mutBMAP18. Journal of Structural Biology, 2018, 204, 435-448.	1.3	15
300	A Review: The Fate of Bacteriocins in the Human Gastro-Intestinal Tract: Do They Cross the Gut–Blood Barrier?. Frontiers in Microbiology, 2018, 9, 2297.	1.5	112
301	Bioinspired Designs, Molecular Premise and Tools for Evaluating the Ecological Importance of Antimicrobial Peptides. Pharmaceuticals, 2018, 11, 68.	1.7	25
302	Hyporientalin A, an anti-Candida peptaibol from a marine Trichoderma orientale. World Journal of Microbiology and Biotechnology, 2018, 34, 98.	1.7	28
303	Immunity in Molluscs: Recognition and Effector Mechanisms, with a Focus on Bivalvia., 2018, , 225-341.		43
304	Beta-defensin derived cationic antimicrobial peptides with potent killing activity against gram negative and gram positive bacteria. BMC Microbiology, 2018, 18, 54.	1.3	34
305	Biological Activities of Cationicity-Enhanced and Hydrophobicity-Optimized Analogues of an Antimicrobial Peptide, Dermaseptin-PS3, from the Skin Secretion of Phyllomedusa sauvagii. Toxins, 2018, 10, 320.	1.5	17
306	Joker: An algorithm to insert patterns into sequences for designing antimicrobial peptides. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2043-2052.	1.1	53
307	Fast and potent bactericidal membrane lytic activity of PaDBS1R1, a novel cationic antimicrobial peptide. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 178-190.	1.4	32
308	Approaches to Obtaining Fluorinated α-Amino Acids. Chemical Reviews, 2019, 119, 10718-10801.	23.0	192

#	Article	IF	Citations
309	A histone H2A derived antimicrobial peptide, Fi-Histin from the Indian White shrimp, Fenneropenaeus indicus: Molecular and functional characterization. Fish and Shellfish Immunology, 2019, 92, 667-679.	1.6	25
310	Covalent Graft of Lipopeptides and Peptide Dendrimers to Cellulose Fibers. Coatings, 2019, 9, 606.	1.2	12
311	A Novel Dermaseptin Isolated from the Skin Secretion of Phyllomedusa tarsius and Its Cationicity-Enhanced Analogue Exhibiting Effective Antimicrobial and Anti-Proliferative Activities. Biomolecules, 2019, 9, 628.	1.8	12
312	Unravelling the Skin Secretion Peptides of the Gliding Leaf Frog, Agalychnis spurrelli (Hylidae). Biomolecules, 2019, 9, 667.	1.8	12
313	Chemical and Biological Characteristics of Antimicrobial \hat{l}_{\pm} -Helical Peptides Found in Solitary Wasp Venoms and Their Interactions with Model Membranes. Toxins, 2019, 11, 559.	1.5	20
314	Redesigning Arenicin-1, an Antimicrobial Peptide from the Marine Polychaeta Arenicola marina, by Strand Rearrangement or Branching, Substitution of Specific Residues, and Backbone Linearization or Cyclization. Marine Drugs, 2019, 17, 376.	2.2	28
315	Sarconesin II, a New Antimicrobial Peptide Isolated from Sarconesiopsis magellanica Excretions and Secretions. Molecules, 2019, 24, 2077.	1.7	17
316	De Novo Designed Amphipathic α-Helical Antimicrobial Peptides Incorporating Dab and Dap Residues on the Polar Face To Treat the Gram-Negative Pathogen, <i>Acinetobacter baumannii</i> Medicinal Chemistry, 2019, 62, 3354-3366.	2.9	43
317	Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. Advances in Experimental Medicine and Biology, 2019, 1117, 175-214.	0.8	44
318	Evaluation of the Antimicrobial Activity of Cationic Peptides Loaded in Surface-Modified Nanoliposomes against Foodborne Bacteria. International Journal of Molecular Sciences, 2019, 20, 680.	1.8	47
319	Antimicrobial Peptides with High Proteolytic Resistance for Combating Gram-Negative Bacteria. Journal of Medicinal Chemistry, 2019, 62, 2286-2304.	2.9	106
320	Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era?. International Journal of Molecular Sciences, 2019, 20, 5713.	1.8	92
321	Dipeptide Self-Assembled Hydrogels with Tunable Mechanical Properties and Degradability for 3D Bioprinting. ACS Applied Materials & Samp; Interfaces, 2019, 11, 46419-46426.	4.0	75
322	Peptide/Peptoid Hybrid Oligomers: The Influence of Hydrophobicity and Relative Side-Chain Length on Antibacterial Activity and Cell Selectivity. Molecules, 2019, 24, 4429.	1.7	21
323	Increases in Hydrophilicity and Charge on the Polar Face of Alyteserin 1c Helix Change its Selectivity towards Gram-Positive Bacteria. Antibiotics, 2019, 8, 238.	1.5	31
324	Modulation of supramolecular self-assembly of an antimicrobial designer peptide by single amino acid substitution: implications on peptide activity. Nanoscale Advances, 2019, 1, 4679-4682.	2.2	24
325	Inhibition of peptide BF-30 on influenza A virus infection in vitro/vivo by causing virion membrane fusion. Peptides, 2019, 112, 14-22.	1.2	12
326	Discovery and identification of antimicrobial peptides in Sichuan pepper (Zanthoxylum bungeanum) Tj ETQq1 1 2217-2228.	0.784314 1.7	rgBT /Overlo 26

#	Article	IF	CITATIONS
327	Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomaterialia, 2019, 93, 2-11.	4.1	89
328	Aggregation determines the selectivity of membrane-active anticancer and antimicrobial peptides: The case of killerFLIP. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183107.	1.4	26
329	The Best Peptidomimetic Strategies to Undercover Antibacterial Peptides. International Journal of Molecular Sciences, 2020, 21, 7349.	1.8	24
330	Cathelicidins enhance protection of channel catfish, <i>lctalurus punctatus</i> , and channel catfish ♀Â×Âblue catfish, <i>lctalurus furcatus</i> â™, hybrid catfish against <i>Edwarsiella ictaluri</i> infection. Journal of Fish Diseases, 2020, 43, 1553-1562.	0.9	7
331	Adepamycin: design, synthesis and biological properties of a new peptide with antimicrobial properties. Archives of Biochemistry and Biophysics, 2020, 691, 108487.	1.4	10
332	Antibacterial and antioomycete activities of a novel designed RY12WY peptide against fish pathogens. Microbial Pathogenesis, 2020, 149, 104591.	1.3	11
333	"What Doesn't Kill You Makes You Stronger― Future Applications of Amyloid Aggregates in Biomedicine. Molecules, 2020, 25, 5245.	1.7	20
334	Vaginal estrogen therapy is associated with increased Lactobacillus in the urine of postmenopausal women with overactive bladder symptoms. American Journal of Obstetrics and Gynecology, 2020, 223, 727.e1-727.e11.	0.7	42
335	Characterization of the structureâ€"function relationship of a novel salt-resistant antimicrobial peptide, RR12. RSC Advances, 2020, 10, 23624-23631.	1.7	8
336	Role and modulation of the secondary structure of antimicrobial peptides to improve selectivity. Biomaterials Science, 2020, 8, 6858-6866.	2.6	48
337	Peptidomic Analysis of Skin Secretions of the Caribbean Frogs Leptodactylus insularum and Leptodactylus nesiotus (Leptodactylidae) Identifies an Ocellatin with Broad Spectrum Antimicrobial Activity. Antibiotics, 2020, 9, 718.	1.5	10
338	Peptides with Dual Antimicrobial–Anticancer Activity: Strategies to Overcome Peptide Limitations and Rational Design of Anticancer Peptides. Molecules, 2020, 25, 4245.	1.7	49
339	Synthesis of Some Novel Fluorinated/Nonfluorinated $\langle i \rangle \hat{l} \pm \langle i \rangle$ -Amino Acids, Bearing 3-Thioxo-5-oxo-1,2,4-triazin-6-yl and Steroidal Moieties, and Evaluation of Their Amylolytic Effects against Some Fungi, Part-II. Heteroatom Chemistry, 2020, 2020, 1-6.	0.4	0
340	Functional Characterization of Temporin-SHe, a New Broad-Spectrum Antibacterial and Leishmanicidal Temporin-SH Paralog from the Sahara Frog (Pelophylax saharicus). International Journal of Molecular Sciences, 2020, 21, 6713.	1.8	16
341	Catalytic asymmetric synthesis of quaternary trifluoromethyl α- to Î μ -amino acid derivatives <i>via</i> umpolung allylation/2-aza-Cope rearrangement. Chemical Science, 2020, 11, 10984-10990.	3.7	21
342	Novel Cyclic Lipopeptide Antibiotics: Effects of Acyl Chain Length and Position. International Journal of Molecular Sciences, 2020, 21, 5829.	1.8	15
343	Rational Design of Helixâ€Stabilized Antimicrobial Peptide Foldamers Containing α,αâ€Disubstituted Amino Acids or Sideâ€Chain Stapling. ChemPlusChem, 2020, 85, 2731-2736.	1.3	15
344	Identification of New Ocellatin Antimicrobial Peptides by cDNA Precursor Cloning in the Frame of This Family of Intriguing Peptides. Antibiotics, 2020, 9, 751.	1.5	3

#	Article	IF	CITATIONS
345	Identification of a group D anti-lipopolysaccharide factor (ALF) from kuruma prawn (Marsupenaeus) Tj ETQq0 0 2020, 102, 368-380.	0 rgBT /O\ 1.6	erlock 10 Tf 5
346	Non-perfectly Amphipathic α-Helical Structure Containing the XXYXX Sequence Improves the Biological Activity of Bovine α _{s2} -Casein Antimicrobial Peptides. Journal of Agricultural and Food Chemistry, 2020, 68, 7520-7529.	2.4	8
347	Rationally designed antimicrobial peptides: Insight into the mechanism of eleven residue peptides against microbial infections. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183177.	1.4	21
348	Human Antimicrobial Peptides: Spectrum, Mode of Action and Resistance Mechanisms. International Journal of Peptide Research and Therapeutics, 2021, 27, 801-816.	0.9	15
349	Antimicrobial and Anticancer Properties of Synthetic Peptides Derived from the Wasp <i>Parachartergus fraternus</i>): ChemBioChem, 2021, 22, 1415-1423.	1.3	7
350	Membrane Binding of Antimicrobial Peptides Is Modulated by Lipid Charge Modification. Journal of Chemical Theory and Computation, 2021, 17, 1218-1228.	2.3	10
351	Modulating Kinetics of the Amyloid-Like Aggregation of S. aureus Phenol-Soluble Modulins by Changes in pH. Microorganisms, 2021, 9, 117.	1.6	9
352	Secretory Defense Response in the Birdâ \in TM s Gastro-Intestinal Tract and Nutritional Strategies to Modulate It. , 0, , .		0
353	Synthesis of cyclotetrapeptide analogues of c-PLAI and evaluation of their antimicrobial properties. Royal Society Open Science, 2021, 8, 201822.	1.1	5
354	Prediction and Activity of a Cationic α-Helix Antimicrobial Peptide ZM-804 from Maize. International Journal of Molecular Sciences, 2021, 22, 2643.	1.8	9
355	A Lymphoid Organ Specific Anti-Lipopolysaccharide Factor from Litopenaeus vannamei Exhibits Strong Antimicrobial Activities. Marine Drugs, 2021, 19, 250.	2.2	8
356	Computational Methods and Tools in Antimicrobial Peptide Research. Journal of Chemical Information and Modeling, 2021, 61, 3172-3196.	2.5	51
357	Design and heterologous expression of a novel dimeric LL37 variant in Pichia pastoris. Microbial Cell Factories, 2021, 20, 143.	1.9	7
358	The Impact of Lung Proteases on Snake-Derived Antimicrobial Peptides. Biomolecules, 2021, 11, 1106.	1.8	5
359	Bacteriocins: Recent Advances in its Application as an Antimicrobial Alternative. Current Pharmaceutical Biotechnology, 2022, 23, 1028-1040.	0.9	4
360	Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharmaceutica Sinica B, 2021, 11, 2609-2644.	5.7	54
361	In vitro and in vivo evaluation of implantable bacterial-killing coatings based on host defense peptides and their synthetic mimics. Journal of Materials Science and Technology, 2021, 91, 90-104.	5.6	9
362	EcDBS1R6: A novel cationic antimicrobial peptide derived from a signal peptide sequence. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129633.	1.1	12

#	ARTICLE	IF	CITATIONS
363	Antimicrobial peptides prevent bacterial biofilm formation on the surface of polymethylmethacrylate bone cement. Journal of Medical Microbiology, 2019, 68, 961-972.	0.7	26
364	Novel α-MSH Peptide Analogues with Broad Spectrum Antimicrobial Activity. PLoS ONE, 2013, 8, e61614.	1.1	35
365	De-Novo Design of Antimicrobial Peptides for Plant Protection. PLoS ONE, 2013, 8, e71687.	1.1	55
366	Interplay between Bladder Microbiota and Urinary Antimicrobial Peptides: Mechanisms for Human Urinary Tract Infection Risk and Symptom Severity. PLoS ONE, 2014, 9, e114185.	1.1	106
367	Sarkosyl-Induced Helical Structure of an Antimicrobial Peptide GW-Q6 Plays an Essential Role in the Binding of Surface Receptor Oprl in Pseudomonas aeruginosa. PLoS ONE, 2016, 11, e0164597.	1.1	7
368	Structure, dynamics and kinetics of two-component Lantibiotic Lichenicidin. PLoS ONE, 2017, 12, e0179962.	1.1	3
369	Antimicrobial Peptides as an Opportunity Against Bacterial Diseases. Current Medicinal Chemistry, 2015, 22, 1665-1677.	1.2	72
370	The Development of an Antimicrobial Contact Lens – From the Laboratory to the Clinic. Current Protein and Peptide Science, 2020, 21, 357-368.	0.7	15
371	Designed Trp-Cage Proteins with Antimicrobial Activity and Enhanced Stability. Biochemistry, 2021, 60, 3187-3199.	1.2	2
372	The Trp-rich Antimicrobial Amphiphiles With Intramolecular Aromatic Interactions for the Treatment of Bacterial Infection. Frontiers in Microbiology, 2021, 12, 733441.	1.5	4
373	Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. Journal of Applied Microbiology, 2022, 132, 1573-1596.	1.4	125
374	Improving the Activity of Antimicrobial Peptides Against Aquatic Pathogen Bacteria by Amino Acid Substitutions and Changing the Ratio of Hydrophobic Residues. Frontiers in Microbiology, 2021, 12, 773076.	1.5	5
375	Recent progress in physicochemical characteristics of antimicrobial peptides. Hunan Nong Ye Da Xue Xue Bao = Journal of Hunan Agricultural University, 2013, 38, 150-155.	0.0	0
377	Development of Novel Peptides for the Antimicrobial Combination Therapy against Carbapenem-Resistant Acinetobacter baumannii Infection. Pharmaceutics, 2021, 13, 1800.	2.0	14
379	Lactoferrin and oral diseases: current status and perspective in periodontitis. Annali Di Stomatologia, 2011, 2, 10-8.	0.6	17
380	Design of Novel Amphipathic \hat{l} ±-Helical Antimicrobial Peptides with No Toxicity as Therapeutics against the Antibiotic-Resistant Gram-Negative Bacterial Pathogen,. Journal of Medicinal Chemistry and Drug Design, 2019, 2, .	0.3	0
381	Short Peptides and Their Mimetics as Potent Antibacterial Agents and Antibiotic Adjuvants. ACS Chemical Biology, 2021, 16, 2731-2745.	1.6	13
382	Design of Novel Amphipathic α-Helical Antimicrobial Peptides with No Toxicity as Therapeutics against the Antibiotic-Resistant Gram-Negative Bacterial Pathogen, Acinetobacter Baumannii. Journal of Medicinal Chemistry and Drug Design, 2021, 3, .	0.3	0

#	Article	IF	CITATIONS
383	Antimicrobial Bioceramics for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2022, , 159-193.	0.7	1
384	Bacteriocins and antimicrobial peptides as an alternative to antibiotics., 2022,, 327-346.		3
385	Rationalisation of Antifungal Properties of α-Helical Pore-Forming Peptide, Mastoparan B. Molecules, 2022, 27, 1438.	1.7	2
386	Stapled Anoplin as an Antibacterial Agent. Frontiers in Microbiology, 2021, 12, 772038.	1.5	9
387	Antimicrobial activity of an artificially designed peptide against fish pathogens. Microbiological Research, 2022, 260, 127039.	2.5	14
389	Evolving and assembling to pierce through: Evolutionary and structural aspects of antimicrobial peptides. Computational and Structural Biotechnology Journal, 2022, 20, 2247-2258.	1.9	8
390	Antiplasmodial Cyclodecapeptides from Tyrothricin Share a Target with Chloroquine. Antibiotics, 2022, 11, 801.	1.5	3
391	Identification of antiviral peptide inhibitors forÂreceptor binding domain ofÂSARS-CoV-2 omicron and its sub-variants: an in-silico approach. 3 Biotech, 2022, 12, .	1.1	16
392	Tools and techniques for rational designing of antimicrobial peptides for aquaculture. Fish and Shellfish Immunology, 2022, 127, 1033-1050.	1.6	6
393	C-Locked Analogs of the Antimicrobial Peptide BP214. Antibiotics, 2022, 11, 1080.	1.5	3
394	Advancements in antimicrobial nanoscale materials and self-assembling systems. Chemical Society Reviews, 2022, 51, 8696-8755.	18.7	23
395	Synthetic Antimicrobial Peptides: IV. Effect of Cationic Groups of Lysine, Arginine, and Histidine on Antimicrobial Activity of Peptides with a $\hat{a}\in$ Circular $\hat{a}\in$ Type of Amphipathicity. Russian Journal of Bioorganic Chemistry, 2022, 48, 937-948.	0.3	0
396	Structure and function of cationic hylin bioactive peptides from the tree frog Boana pulchella in interaction with lipid membranes. Peptides, 2023, 159, 170900.	1.2	7
397	Biological Characterization of Natural Peptide Bcl-1003 from Boana cordobae (anura): Role in Alzheimerâ \in ^{Ms} Disease and Microbial Infections. International Journal of Peptide Research and Therapeutics, 2023, 29, .	0.9	1
398	Sub-acute and sub-chronic toxicity assessment of the antimicrobial peptide Dermaseptin B2 on biochemical, haematological and histopathological parameters in BALB/c mice and Albino Wistar rats. Heliyon, 2022, 8, e12124.	1.4	1
399	Insect peptides with antimicrobial effects. , 2023, , 117-138.		3
400	The biological role of charge distribution in linear antimicrobial peptides. Expert Opinion on Drug Discovery, 2023, 18, 287-302.	2.5	5
401	Rational design of stapled antimicrobial peptides. Amino Acids, 2023, 55, 421-442.	1.2	8

ARTICLE IF CITATIONS

402 Development of a Novel Antibacterial Peptide, PAM-5, via Combination of Phage Display Selection and Computer-Assisted Modification. Biomolecules, 2023, 13, 466.