A mechanistic model of transport processes in porous n and hydrostatic pressure

Journal of Membrane Science 191, 61-69 DOI: 10.1016/s0376-7388(01)00450-1

Citation Report

#	Article	IF	CITATIONS
1	Computational Flow Modeling in Hollowâ€Fiber Dialyzers. Artificial Organs, 2002, 26, 590-599.	1.9	57
2	Osmotic Pressures for Binary Solutions of Non-electrolytes. Biomedical Microdevices, 2002, 4, 309-321.	2.8	28
3	Mechanistic equations for membrane substance transport and their identity with Kedem–Katchalsky equations. Biophysical Chemistry, 2003, 103, 117-127.	2.8	30
4	Some remarks about a mechanistic model of transport processes in porous membranes. Journal of Membrane Science, 2003, 214, 331-333.	8.2	5
5	A reply to remarks on the mechanistic model of transport processes in porous membranes. Journal of Membrane Science, 2003, 214, 335-338.	8.2	1
6	Mathematical modeling of the membrane separation of nutmeg essential oil and dense CO2. Journal of Membrane Science, 2004, 237, 87-95.	8.2	4
7	Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review. Water Research, 2004, 38, 2795-2809.	11.3	863
8	The Kedem-Katchalsky equations and the sieve mechanism of membrane transport. Journal of Membrane Science, 2005, 246, 109-111.	8.2	12
9	Biophysical mechanisms of physiological water exchange with the surroundings by the cells of the Nitella translucens and Chara corallina plants. Acta Physiologiae Plantarum, 2005, 27, 71-77.	2.1	1
10	A study of porous structure of cellular membranes in human erythrocytes. Cryobiology, 2005, 50, 332-337.	0.7	8
12	Investigation of reverse osmosis on the basis of the Kedem–Katchalsky equations and mechanistic transport equations. Desalination, 2006, 190, 267-276.	8.2	8
13	Investigations into biophysical regulation mechanisms of physiological water exchange of the Nitella translucens cells with the surroundings. Acta Physiologiae Plantarum, 2006, 28, 13-19.	2.1	0
14	Comparing the Phenomenological and Hydrodynamic Modeling Approaches for Describing the Rejection of Emerging Nonionic Organic Contaminants by a Nanofiltration Membrane. ACS Symposium Series, 2010, , 397-420.	0.5	1
15	Effect of molecular shape on rejection of uncharged organic compounds by nanofiltration membranes and on calculated pore radii. Journal of Membrane Science, 2010, 358, 101-113.	8.2	59
16	Pore radius estimation based on organic solute molecular shape and effects of pressure on pore radius for a reverse osmosis membrane. Journal of Membrane Science, 2011, 369, 290-298.	8.2	56
17	Two-fluid model for the simultaneous flow of colloids and fluids in porous media. Journal of Colloid and Interface Science, 2011, 355, 389-395.	9.4	49
18	Potential of Nanofiltration for Brackish Water Desalination in Gaza Strip. Advanced Materials Research, 2011, 233-235, 2356-2358.	0.3	1
19	A mathematical model for release of biologics from porous hollow fibers. Journal of Biomedical Materials Research - Part A, 2012, 100A, 817-826.	4.0	1

τατιών Ρερώ

#	Article	IF	CITATIONS
20	Modeling blood filtration in hollow fibers dialyzers coupled with patient's body dynamics. Atti Della Accademia Nazionale Dei Lincei, Classe Di Scienze Fisiche, Matematiche E Naturali, Rendiconti Lincei Matematica E Applicazioni, 2016, 27, 369-412.	0.6	1
21	Performance of continuous electrodeionization technique during the purification of the nonaqueous organic solvent N,N-dimethylformamide. Separation and Purification Technology, 2018, 199, 242-250.	7.9	6
22	Fluid structure interaction study on straight and undulated hollow fibre hemodialyser membranes. International Journal of Biomedical Engineering and Technology, 2020, 33, 11.	0.2	2
23	The Rr Form of the Kedem–Katchalsky–Peusner Model Equations for Description of the Membrane Transport in Concentration Polarization Conditions. Entropy, 2020, 22, 857.	2.2	2
24	Model of Hydraulic Resistance When Forecasting Reverse Osmosis in Water Treatment. Membranes, 2021, 11, 314.	3.0	2
25	The Identification of Fouling in Reverse Osmosis in the Treatment of Water with Petroleum Substances. Water (Switzerland), 2021, 13, 1092.	2.7	5
26	Modeling high flux hollow fibers dialyzers. Discrete and Continuous Dynamical Systems - Series B, 2012, 17, 1903-1937.	0.9	3
27	Comparison Studies of Applied Pressure and Concentration Gradient Driving Forces in Ceramic Nano-Filtration Membrane for the Production of Intravenous Salt Solution. Journal of Applied Sciences, 2007, 7, 2069-2075.	0.3	0
28	Laser Interferometric Determination of Liposomes Diffusion Through Artificial Membranes. , 0, , .		0