Collectivity in the optical response. of small metal clust

Applied Physics B: Lasers and Optics 73, 293-297 DOI: 10.1007/s003400100679

Citation Report

#	Article	IF	CITATIONS
1	Two avenues to self-interaction correction within Kohn—Sham theory: unitary invariance is the shortcut. Molecular Physics, 2003, 101, 1363-1368.	0.8	45
2	Optical properties of metal-polymer nanocomposites based on iron and high-pressure polyethylene. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2004, 96, 798-803.	0.2	11
3	Copper-containing nanocomposites: Synthesis and phase composition. Technical Physics Letters, 2004, 30, 485-486.	0.2	3
4	On surface plasmon damping in metallic nanoparticles. Applied Physics B: Lasers and Optics, 2004, 78, 453-455.	1.1	44
5	Theoretical studies of molecular scale near-field electron dynamics. Journal of Chemical Physics, 2006, 125, 074709.	1.2	8
6	Quantum memory effects in the dynamics of electrons in gold clusters. Physical Review B, 2006, 73, .	1.1	38
7	Photoelectron spectra of sodium clusters: The problem of interpreting Kohn-Sham eigenvalues. Physical Review B, 2006, 73, .	1.1	33
8	Photoelectron spectra of anionic sodium clusters from time-dependent density-functional theory in real time. Physical Review B, 2007, 76, .	1.1	51
9	End and Central Plasmon Resonances in Linear Atomic Chains. Physical Review Letters, 2007, 98, 216602.	2.9	157
10	Numerical aspects of real-space approaches to strong-field electron dynamics. Journal of Computational Physics, 2007, 226, 89-103.	1.9	16
11	Hydrodynamic perspective on memory in time-dependent density-functional theory. Physical Review A, 2009, 79, .	1.0	23
12	Photoabsorption spectra from adiabatically exact time-dependent density-functional theory in real time. Physical Chemistry Chemical Physics, 2009, 11, 4631.	1.3	32
13	Density-functional studies of plasmons in small metal clusters. Journal of Chemical Physics, 2009, 130, 174701.	1.2	37
14	Energy transfer and Förster's dipole coupling approximation investigated in a real-time Kohn-Sham scheme. Physical Review A, 2010, 82, .	1.0	20
15	Theoretical Studies of Plasmonics using Electronic Structure Methods. Chemical Reviews, 2011, 111, 3962-3994.	23.0	393
16	Time-Dependent Density Functional Theory Studies of Plasmons in Parallel Double Sodium Atomic Chains. Advanced Materials Research, 2012, 602-604, 883-886.	0.3	0
17	Spatially resolved collective excitations of nano-plasmas via molecular dynamics simulations and fluid dynamics. New Journal of Physics, 2012, 14, 115016.	1.2	7
18	Optical Generation of Collective Plasmon Modes in Small Gold Chains Induced by Doping Transition-Metal Impurities. Physical Review Letters, 2012, 109, 157404.	2.9	26

	CITATION	tion Report	
#	Article	IF	CITATIONS
19	Self-interaction correction in a real-time Kohn-Sham scheme: Access to difficult excitations in time-dependent density functional theory. Journal of Chemical Physics, 2012, 137, 064117.	1.2	42
20	Plasmon excitations in sodium atomic planes: A time-dependent density functional theory study. Journal of Chemical Physics, 2012, 137, 054101.	1.2	19
21	Spectral Properties of Individual DNA-Hosted Silver Nanoclusters at Low Temperatures. Journal of Physical Chemistry C, 2012, 116, 25568-25575.	1.5	35
22	Optical properties of silver and copper clusters with up to 150 atoms. Computational and Theoretical Chemistry, 2013, 1021, 197-205.	1.1	10
23	Determining Excitation-Energy Transfer Times and Mechanisms from Stochastic Time-Dependent Density Functional Theory. Journal of Physical Chemistry B, 2013, 117, 14408-14419.	1.2	7
24	Evidence for Rod‧haped DNA‧tabilized Silver Nanocluster Emitters. Advanced Materials, 2013, 25, 2797-2803.	11.1	173
25	Effect of transition metal (Fe, Cu, Ni, Rh)-doped small silver chains on optics of plasmon resonances. Applied Physics A: Materials Science and Processing, 2013, 113, 543-548.	1.1	9
26	Quantum coherent plasmon in silver nanowires: A real-time TDDFT study. Journal of Chemical Physics, 2014, 140, 244705.	1.2	57
27	Plasmons in molecules: Microscopic characterization based on orbital transitions and momentum conservation. Journal of Chemical Physics, 2014, 141, 104101.	1.2	26
28	Which resonances in small metallic nanoparticles are plasmonic?. Journal of Optics (United Kingdom), 2014, 16, 114022.	1.0	42
29	Quadrupole plasmon excitations in confined one-dimensional systems. Europhysics Letters, 2014, 108, 27001.	0.7	10
30	Polarization Resolved Measurements of Individual DNA‣tabilized Silver Clusters. Advanced Optical Materials, 2014, 2, 765-770.	3.6	16
31	Frequency Dependence of the Exact Exchange-Correlation Kernel of Time-Dependent Density-Functional Theory. Physical Review Letters, 2014, 112, .	2.9	23
32	Quadrupole plasmon excitations in finite-size atomic chain systems. Physica B: Condensed Matter, 2014, 454, 165-169.	1.3	2
33	Identification of Plasmons in Molecules with Scaled Ab Initio Approaches. Journal of Physical Chemistry C, 2015, 119, 24564-24573.	1.5	34
34	Quantifying the Plasmonic Character of Optical Excitations in Nanostructures. ACS Photonics, 2016, 3, 520-525.	3.2	51
35	Theory and technology of SPASERs. Advances in Optics and Photonics, 2017, 9, 79.	12.1	95
36	Plasmon excitations in doped square-lattice atomic clusters. International Journal of Modern Physics B, 2017, 31, 1750233.	1.0	4

	СПАНО	TATION REPORT		
#	Article	IF	CITATIONS	
37	Molecular Vibration Induced Plasmon Decay. Journal of Physical Chemistry C, 2017, 121, 15368-15374.	1.5	24	
38	Accurate Evaluation of Real-Time Density Functional Theory Providing Access to Challenging Electron Dynamics. Journal of Chemical Theory and Computation, 2018, 14, 1910-1927.	2.3	32	
39	Anisotropic Polarizability-Induced Plasmon Transfer. Journal of Physical Chemistry C, 2018, 122, 10621-10626.	1.5	22	
40	Identifying Electronic Modes by Fourier Transform from δ-Kick Time-Evolution TDDFT Calculations. Journal of Chemical Theory and Computation, 2018, 14, 6417-6426.	2.3	19	
41	On the challenge to improve the density response with unusual gradient approximations. European Physical Journal B, 2018, 91, 1.	0.6	4	
42	Real-Time Propagation TDDFT and Density Analysis for Exciton Coupling Calculations in Large Systems. Journal of Chemical Theory and Computation, 2019, 15, 3743-3754.	2.3	24	
43	Real-Time TDDFT Investigation of Optical Absorption in Gold Nanowires. Journal of Physical Chemistry C, 2019, 123, 14734-14745.	1.5	31	
44	Plasmon Excitations in Mixed Metallic Nanoarrays. ACS Nano, 2019, 13, 5344-5355.	7.3	21	
45	Plasmon Excitations in Spin-Polarized Iron Atomic Chains: A Time-Dependent Density Functional Theory Study. IOP Conference Series: Materials Science and Engineering, 2019, 562, 012073.	0.3	1	
46	Detecting Molecular Plasmons by Means of Electron Density Descriptors. Journal of Physical Chemistry C, 2020, 124, 1585-1593.	1.5	6	
47	Energy-Based Plasmonicity Index to Characterize Optical Resonances in Nanostructures. Journal of Physical Chemistry C, 2020, 124, 24331-24343.	1.5	12	
48	Molecular excitations from meta-generalized gradient approximations in the Kohn–Sham scheme. Journal of Chemical Physics, 2020, 153, 114106.	1.2	6	
49	Plasmon excitations in chemically heterogeneous nanoarrays. Physical Review B, 2020, 101, .	1.1	11	
50	On the existence of a local dipolar plasmon mode in doped small gold atomic arrays. Physical Review B, 2020, 101, .	1.1	2	
51	The plasmon excitations in small lithium clusters: A time-dependent density functional theory study. Chemical Physics Letters, 2020, 745, 137235.	1.2	0	
52	Spectral tuning of 11-cis retinal in conjugation with Au14 cluster and concomitant effect on isomerization: A theoretical outlook. Journal of Photochemistry and Photobiology, 2021, 7, 100051.	1.1	1	
53	Electron-Beam-Induced Molecular Plasmon Excitation and Energy Transfer in Silver Molecular Nanowires. Journal of Physical Chemistry A, 2021, 125, 74-87.	1.1	3	
54	Analyzing Excitation-Energy Transfer Based on the Time-Dependent Density Functional Theory in Real Time. Journal of Chemical Theory and Computation, 2022, 18, 6577-6587.	2.3	4	

ARTICLE

IF CITATIONS