Pressure Loss from Flow Energy Dissipation: Relevance

Pediatric Cardiology 22, 110-115 DOI: 10.1007/s002460010172

Citation Report

CITATION REDORT

#	Article	IF	CITATIONS
1	Long-term outcome and complications of patients with single ventricle. Progress in Pediatric Cardiology, 2002, 16, 89-103.	0.2	8
2	Effect of Vessel Size on the Flow Efficiency of the Total Cavopulmonary Connection: In Vitro Studies. Pediatric Cardiology, 2002, 23, 171-177.	0.6	17
3	Streamlining Fluid Pathways Lessens Flow Energy Dissipation: Relevance to Atriocavopulmonary Connections. Pediatric Cardiology, 2003, 24, 249-258.	0.6	6
4	Midterm surgical results of total cavopulmonary connection: clinical advantages of the extracardiac conduit method. Journal of Thoracic and Cardiovascular Surgery, 2004, 127, 730-737.	0.4	310
5	Systematic-to-Pulmonary Collaterals: A Source of Flow Energy Loss in Fontan Physiology. Pediatric Cardiology, 2004, 25, 472-481.	0.6	36
6	Computational simulations of the total cavo-pulmonary connection: insights in optimizing numerical solutions. Medical Engineering and Physics, 2005, 27, 135-146.	0.8	26
7	Efficiency differences in computational simulations of the total cavo-pulmonary circulation with and without compliant vessel walls. Computer Methods and Programs in Biomedicine, 2006, 81, 220-227.	2.6	18
9	Modeling the Fontan Circulation: Where We Are and Where We Need to Go. Pediatric Cardiology, 2008, 29, 3-12.	0.6	57
10	Bidirectional Glenn Shunt as an Adjunct to Surgical Repair of Congenital Heart Disease Associated with Pulmonary Outflow Obstruction: Relevance of the Fluid Pressure Drop–Flow Relationship. Pediatric Cardiology, 2008, 29, 910-917.	0.6	4
11	Understanding the Physiology and Modelling of the Fontan Pathway. International Journal of Emerging Multidisciplinary Fluid Sciences, 2011, 3, 1-20.	0.5	1
12	Simulation of the Fontan circulation during rest and exercise. , 2012, 2012, 6673-6.		7
13	Considerations of Blood Properties, Outlet Boundary Conditions and Energy Loss Approaches in Computational Fluid Dynamics Modeling. Neurointervention, 2014, 9, 1.	0.5	27
14	Computational Fluid Dynamics Characterization of Blood Flow in Central Aorta to Pulmonary Artery Connections: Importance of Shunt Angulation as a Determinant of Shear Stress-Induced Thrombosis. Pediatric Cardiology, 2015, 36, 600-615.	0.6	31
15	Role for intravesical prostatic protrusion in lower urinary tract symptom: a fluid structural interaction analysis study. BMC Urology, 2015, 15, 86.	0.6	21
16	Outcomes after extracardiac Fontan procedure with a 16-mm polytetrafluoroethylene conduit. European Journal of Cardio-thoracic Surgery, 2018, 53, 269-275.	0.6	12
17	Energetics of Blood Flow in Cardiovascular Disease. Circulation, 2018, 137, 2393-2407.	1.6	65
18	Computational fluid dynamics simulations as a complementary study for transcatheter endovascular stent implantation for re-coarctation of the aorta associated with minimal pressure drop: an aneurysmal ductal ampulla with aortic isthmus narrowing. Cardiology in the Young, 2019, 29, 768-776.	0.4	3
19	Physiological Fontan Procedure. Frontiers in Pediatrics, 2019, 7, 196.	0.9	5

#	Article	IF	Citations
T			CHAHONS
20	Fontanâ€associated liver disease and total cavopulmonary anatomical flow effectors. Journal of Cardiac Surgery, 2021, 36, 2329-2335.	0.3	2
21	Single ventricle. , 2004, , 21-49.		0
22	Virtual Cardiac Surgical Planning Through Hemodynamics Simulation and Design Optimization of Fontan Grafts. Lecture Notes in Computer Science, 2019, , 200-208.	1.0	5

CITATION REPORT