Cell-derived Microparticles Circulate in Healthy Human Generation

Thrombosis and Haemostasis 85, 639-649 DOI: 10.1055/s-0037-1615646

Citation Report

#	Article	IF	CITATIONS
1	Microparticles from Patients with Multiple Organ Dysfunction Syndrome and Sepsis Support Coagulation through Multiple Mechanisms. Thrombosis and Haemostasis, 2001, 85, 810-820.	1.8	240
2	Platelets, circulating tissue factor, and fibrin colocalize in ex vivo thrombi: real-time fluorescence images of thrombus formation and propagation under defined flow conditions. Blood, 2002, 100, 2787-2792.	0.6	123
3	Elevated Numbers of Tissue-Factor Exposing Microparticles Correlate With Components of the Metabolic Syndrome in Uncomplicated Type 2 Diabetes Mellitus. Circulation, 2002, 106, 2442-2447.	1.6	331
4	Markers of platelet activation and platelet–leukocyte interaction in patients with myeloproliferative syndromes. Thrombosis Research, 2002, 108, 139-145.	0.8	111
5	Enhanced Coagulation Activation in Preeclampsia: the Role of APC Resistance, Microparticles and Other Plasma Constituents. Thrombosis and Haemostasis, 2002, 88, 415-420.	1.8	62
6	Microparticle subpopulations are increased in preeclampsia: Possible involvement in vascular dysfunction?. American Journal of Obstetrics and Gynecology, 2002, 187, 450-456.	0.7	166
7	Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis and Rheumatism, 2002, 46, 1498-1503.	6.7	212
8	Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis and Rheumatism, 2002, 46, 2857-2866.	6.7	177
9	Phospholipid Composition of Cell-Derived Microparticles Determined by One-Dimensional High-Performance Thin-Layer Chromatography. Analytical Biochemistry, 2002, 302, 191-198.	1.1	127
10	Cellular prion protein is expressed on endothelial cells and is released during apoptosis on membrane microparticles found in human plasma. Transfusion, 2002, 42, 334-342.	0.8	63
11	Release of annexin V-binding membrane microparticles from cultured human umbilical vein endothelial cells after treatment with camptothecin. BMC Cell Biology, 2002, 3, 11.	3.0	87
12	Generation of platelet-derived microparticles in patients undergoing cardiac surgery is not affected by complement activation. Journal of Thoracic and Cardiovascular Surgery, 2003, 126, 1101-1106.	0.4	14
13	Cellular microparticles: what are they bad or good for?. Journal of Thrombosis and Haemostasis, 2003, 1, 1655-1662.	1.9	382
14	Pro- and non-coagulant forms of non-cell-bound tissue factor in vivo. Journal of Thrombosis and Haemostasis, 2003, 1, 1920-1926.	1.9	56
15	Antigenic characterization of endothelial cell-derived microparticles and their detection ex vivo. Journal of Thrombosis and Haemostasis, 2003, 1, 2434-2443.	1.9	128
16	Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. Journal of Thrombosis and Haemostasis, 2003, 1, 2561-2568.	1.9	270
17	Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein. Nature Medicine, 2003, 9, 458-462.	15.2	411
18	Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Experimental Cell Research, 2003, 285, 243-257.	1.2	236

		CITATION R	Report	
#	Article		IF	CITATIONS
19	Microparticles in cardiovascular diseases. Cardiovascular Research, 2003, 59, 277-287		1.8	527
20	Accumulation of Tissue Factor into Developing Thrombi In Vivo Is Dependent upon Mic P-Selectin Glycoprotein Ligand 1 and Platelet P-Selectin. Journal of Experimental Medic 1585-1598.	croparticle ine, 2003, 197,	4.2	700
21	Intravascular tissue factor pathway – a model for rapid initiation of coagulation with vessel. Thrombosis and Haemostasis, 2003, 89, 3-8.	in the blood	1.8	88
22	Thrombin generation in severe haemophilia A and B: the endogenous thrombin potent platelet-rich plasma. Thrombosis and Haemostasis, 2003, 90, 781-786.	ial in	1.8	82
23	New horizons in the analysis of circulating cell-derived microparticles. Keio Journal of N 2004, 53, 210-230.	1edicine,	0.5	129
24	Endothelium-derived microparticles impair endothelial function in vitro. American Jourr Physiology - Heart and Circulatory Physiology, 2004, 286, H1910-H1915.	hal of	1.5	329
25	Tissue factor and tissue factor pathway inhibitor. Anaesthesia, 2004, 59, 483-492.		1.8	64
26	Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal hae British Journal of Haematology, 2004, 125, 804-813.	moglobinuria.	1.2	115
27	Cellular microparticles: new players in the field of vascular disease?. European Journal c Investigation, 2004, 34, 392-401.	of Clinical	1.7	337
28	V?-restricted T cell adherence to endothelial cells: A mechanism for superantigen-dependinjury. Arthritis and Rheumatism, 2004, 50, 589-597.	ndent vascular	6.7	44
29	Endothelial and platelet microparticles in vasculitis of the young. Arthritis and Rheuma 927-936.	tism, 2004, 50,	6.7	168
30	Role of Tissue Factor in Hemostasis, Thrombosis, and Vascular Development. Arteriosc Thrombosis, and Vascular Biology, 2004, 24, 1015-1022.	lerosis,	1.1	562
31	Monocyte-derived tissue factor contributes to stent thrombosis in an in vitro system. J American College of Cardiology, 2004, 44, 1570-1577.	ournal of the	1.2	42
32	Apoptotic bodies from endothelial cells enhance the number and initiate the differentia endothelial progenitor cells in vitro. Blood, 2004, 104, 2761-2766.	ation of human	0.6	396
33	Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends in N Medicine, 2004, 10, 171-178.	<i>N</i> olecular	3.5	246
34	Endothelial microparticles correlate with high-risk angiographic lesions in acute corona syndromes. International Journal of Cardiology, 2004, 97, 439-446.	iry	0.8	132
35	Protease-activated receptor signaling in the regulation of inflammation. Critical Care N 32, S287-S292.	1edicine, 2004,	0.4	36
36	The endogenous thrombin potential and high levels of coagulation factor VIII, factor IX Blood Coagulation and Fibrinolysis, 2004, 15, 241-244.	and factor XI.	0.5	31

#	Article	IF	CITATIONS
37	Lipid rafts are necessary for tonic inhibition of cellular tissue factor procoagulant activity. Blood, 2004, 103, 3038-3044.	0.6	59
38	Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation. Blood, 2004, 104, 3190-3197.	0.6	323
39	Endothelial Microparticles and the Diagnosis of the Vasculitides. Internal Medicine, 2004, 43, 1115-1119.	0.3	40
40	Clotting time analysis of citrated blood samples is strongly affected by the tube used for blood sampling. Blood Coagulation and Fibrinolysis, 2005, 16, 447-452.	0.5	27
41	Generation of Tissue factor-rich microparticles in an ex vivo whole blood model. Blood Coagulation and Fibrinolysis, 2005, 16, 399-405.	0.5	26
42	Increased procoagulant phospholipid activity in blood from patients with suspected acute coronary syndromes: a pilot study. Blood Coagulation and Fibrinolysis, 2005, 16, 375-379.	0.5	10
43	Tissue factor activity in whole blood. Blood, 2005, 105, 2764-2770.	0.6	240
44	Circulating microparticles are elevated in haemophiliacs and non-haemophilic individuals aged <18 years. British Journal of Haematology, 2005, 131, 487-489.	1.2	15
45	The Role of Inflammation in Early and Late Venous Thrombosis: Are There Clinical Implications?. Seminars in Vascular Surgery, 2005, 18, 118-129.	1.1	50
46	Inflammation-dependent thrombosis. Frontiers in Bioscience - Landmark, 2005, 10, 2750.	3.0	28
47	Shed membrane microparticles from circulating and vascular cells in regulating vascular function. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1004-H1009.	1.5	269
49	Elevated platelet microparticles in stable coronary artery disease are unrelated to disease severity or to indices of inflammation. Platelets, 2005, 16, 368-371.	1.1	38
50	The Tissue Factor Requirement in Blood Coagulation. Journal of Biological Chemistry, 2005, 280, 42887-42896.	1.6	79
51	Macrovascular thrombosis is driven by tissue factor derived primarily from the blood vessel wall. Blood, 2005, 105, 192-198.	0.6	266
52	The release of microparticles by apoptotic cells and their effects on macrophages. Apoptosis: an International Journal on Programmed Cell Death, 2005, 10, 731-741.	2.2	127
53	Microparticles released by human neutrophils adhere to erythrocytes in the presence of complement. Experimental Cell Research, 2005, 307, 381-387.	1.2	62
54	Platelets and tissue factor. Platelets, 2005, 16, 313-319.	1.1	26
55	Platelet microparticles and soluble P selectin in peripheral artery disease: Relationship to extent of disease and platelet activation markers. Annals of Medicine, 2005, 37, 61-66.	1.5	98

	Сітатіо	n Report	
#	Article	IF	CITATIONS
56	The Platelet Microparticle Proteome. Journal of Proteome Research, 2005, 4, 1516-1521.	1.8	278
57	Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes. Arthritis Research, 2005, 7, R536.	2.0	140
58	P-Selectin- and CD63-Exposing Platelet Microparticles Reflect Platelet Activation in Peripheral Arterial Disease and Myocardial Infarction. Clinical Chemistry, 2006, 52, 657-664.	1.5	193
59	Formation and fate of platelet microparticles. Blood Cells, Molecules, and Diseases, 2006, 36, 182-187.	0.6	131
60	Platelets as Modifiers of Clinical Phenotype in Hemophilia. Scientific World Journal, The, 2006, 6, 661-668.	0.8	7
61	Truncated and microparticle-free soluble tissue factor bound to peripheral monocytes preferentially activate factor VII. Thrombosis and Haemostasis, 2006, 95, 462-468.	1.8	35
62	ENDOTHELIUM-DERIVED MICROPARTICLES INHIBIT HUMAN CARDIAC VALVE ENDOTHELIAL CELL FUNCTION Shock, 2006, 25, 575-580.	l. 1.0	43
64	Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. Journal of Thrombosis and Haemostasis, 2006, 4, 1296-1302.	1.9	243
65	Two consecutive high-fat meals affect endothelial-dependent vasodilation, oxidative stress and cellular microparticles in healthy men. Journal of Thrombosis and Haemostasis, 2006, 4, 1003-1010.	1.9	115
66	Cell vesiculation and immunopathology: implications in cerebral malaria. Microbes and Infection, 2006, 8, 2305-2316.	1.0	63
67	Cell Membrane Microparticles in Blood and Blood Products: Potentially Pathogenic Agents and Diagnostic Markers. Transfusion Medicine Reviews, 2006, 20, 1-26.	0.9	292
68	Increased circulating platelet–neutrophil, platelet–monocyte complexes, and platelet activation in patients with ulcerative colitis: A comparative study. American Journal of Hematology, 2006, 81, 753-759.	2.0	71
69	Sources of Tissue Factor. Seminars in Thrombosis and Hemostasis, 2006, 32, 011-023.	1.5	200
70	Vascular Biology: Cellular and Molecular Profiling. Seminars in Neurology, 2006, 26, 065-074.	0.5	2
71	Circulating Leukocyte-Derived Microparticles Predict Subclinical Atherosclerosis Burden in Asymptomatic Subjects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2775-2780.	1.1	173
72	Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thrombosis and Haemostasis, 2007, 97, 425-434.	1.8	460
73	Platelet-Derived Microparticles. , 2007, , 403-413.		6
74	Thrombus formation without platelets under inflammatory condition: Anin vitrostudy. Platelets, 2007, 18, 143-149.	1.1	5

#	Article	IF	CITATIONS
75	CCAAT/Enhancer-binding Protein-β Participates in Insulin-responsive Expression of the Factor VII Gene. Journal of Biological Chemistry, 2007, 282, 31156-31165.	1.6	5
76	Retransfusion of pericardial blood does not trigger systemic coagulation during cardiopulmonary bypass. European Journal of Cardio-thoracic Surgery, 2007, 31, 1029-1036.	0.6	14
77	Human platelets synthesize and express functional tissue factor. Blood, 2007, 109, 5242-5250.	0.6	208
78	Parallel decrease of tissue factor surface exposure and increase of tissue factor microparticle release by the n-3 fatty acid docosahexaenoate in endothelial cells. Thrombosis and Haemostasis, 2007, 98, 210-219.	1.8	23
79	Platelet microparticles are heterogeneous and highly dependent on the activation mechanism: Studies using a new digital flow cytometer. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2007, 71A, 38-45.	1.1	137
80	Tissue factor-positive microparticles: Cellular origin and association with coagulation activation in patients with colorectal cancer. Thrombosis and Haemostasis, 2007, 97, 119-123.	1.8	265
81	Gender-specific and menstrual cycle dependent differences in circulating microparticles. Platelets, 2007, 18, 515-521.	1.1	73
82	Microparticles and Cancer. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 2007, 36, 177-183.	0.5	35
83	Interactions Between Platelets and the Coagulation System. , 2007, , 377-402.		10
84	Value of Platelet Activation Markers as Prothrombotic Risk Indicators. Transfusion Medicine and Hemotherapy, 2007, 34, 34-42.	0.7	11
85	Endothelial Microparticles: Biology, Function, Assay and Clinical Application. , 0, , 1621-1636.		1
86	Circulating microparticles: pathophysiology and clinical implications. Blood Reviews, 2007, 21, 157-171.	2.8	685
87	Cancer-associated thrombosis. Critical Reviews in Oncology/Hematology, 2007, 62, 126-136.	2.0	146
88	Tissue factor: a mini-review. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 161-169.	1.3	21
89	Activated platelet-derived microparticles in thalassaemia. British Journal of Haematology, 2007, 136, 462-471.	1.2	75
90	Plasma microparticles and vascular disorders. British Journal of Haematology, 2007, 137, 070226161637002-???.	1.2	165
91			
91	The Role of Microparticles in Inflammation and Thrombosis. Scandinavian Journal of Immunology, 2007, 66, 159-165.	1.3	180

#	Article	IF	CITATIONS
93	Chemotherapyâ€induced thrombin generation via procoagulant endothelial microparticles is independent of tissue factor activity. Journal of Thrombosis and Haemostasis, 2007, 5, 2445-2452.	1.9	99
94	Levels of Circulating Procoagulant Microparticles in Nonvalvular Atrial Fibrillation. American Journal of Cardiology, 2007, 100, 989-994.	0.7	60
95	Cell-Derived Microparticles and Complement Activation in Preeclampsia Versus Normal Pregnancy. Placenta, 2007, 28, 928-935.	0.7	34
96	Tissue factor in thrombosis and hemorrhage. Surgery, 2007, 142, S2-S14.	1.0	32
97	Cell Saver device efficiently removes cell-derived microparticles during cardiac surgery. Journal of Thoracic and Cardiovascular Surgery, 2007, 134, 798-799.	0.4	13
98	Primary intrapulmonary thymoma associated with congenital hyperhomocysteinemia. Journal of Thoracic and Cardiovascular Surgery, 2007, 134, 799-801.	0.4	9
99	Proteomic profiling of exosomes: Current perspectives. Proteomics, 2008, 8, 4083-4099.	1.3	767
100	Platelet-derived microparticles and coagulation activation in breast cancer patients. Thrombosis and Haemostasis, 2008, 100, 663-669.	1.8	96
101	ORIGINAL ARTICLE: Systemic Changes in Haemostatic Balance are not Associated with Increased Levels of Circulating Microparticles in Women with Recurrent Spontaneous Abortion. American Journal of Reproductive Immunology, 2008, 59, 159-166.	1.2	15
102	Fetal corticotrophin-releasing hormone mRNA, but not phosphatidylserine-exposing microparticles, in maternal plasma are associated with factor VII activity in pre-eclampsia. Journal of Thrombosis and Haemostasis, 2008, 6, 421-427.	1.9	25
103	Microparticle-mediated thrombin generation assay: increased activity in patients with recurrent thrombosis. Journal of Thrombosis and Haemostasis, 2008, 6, 913-919.	1.9	69
104	Erythrocyte vesiculation: a selfâ€protective mechanism?. British Journal of Haematology, 2008, 141, 549-556.	1.2	265
105	Circulating Microparticles in Normal Pregnancy and Pre-Eclampsia. Placenta, 2008, 29, 73-77.	0.7	202
106	Flow cytometric measurement of microparticles: Pitfalls and protocol modifications. Platelets, 2008, 19, 365-372.	1.1	152
107	Platelet microparticles and vascular cells interactions: A checkpoint between the haemostatic and thrombotic responses. Platelets, 2008, 19, 9-23.	1.1	128
108	Phospholipid composition of in vitro endothelial microparticles and their in vivo thrombogenic properties. Thrombosis Research, 2008, 121, 865-871.	0.8	85
109	Circulating platelet-derived microparticles and endothelium-derived microparticles may be a potential cause of microthrombosis in patients with osteonecrosis of the femoral head. Thrombosis Research, 2008, 123, 367-373.	0.8	25
110	Function and role of microparticles in various clinical settings. Thrombosis Research, 2008, 123, 8-23.	0.8	181

#	Article	IF	CITATIONS
111	Platelet microparticle-associated protein disulfide isomerase promotes platelet aggregation and inactivates insulin. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2790-2796.	1.4	54
112	Tissue factor storage, synthesis and function in normal and activated human platelets. Thrombosis Research, 2008, 122, S31-S36.	0.8	22
113	Tissue factor activity and function in blood coagulation. Thrombosis Research, 2008, 122, S42-S46.	0.8	34
114	Circulating tissue factor-exposing microparticles. Thrombosis Research, 2008, 122, S47-S54.	0.8	64
115	Increased level of platelet microparticles in survivors of myocardial infarction. Scandinavian Journal of Clinical and Laboratory Investigation, 2008, 68, 386-392.	0.6	36
116	Microparticle Surface Proteins Are Associated With Experimental Venous Thrombosis: A Preliminary Study. Clinical and Applied Thrombosis/Hemostasis, 2008, 15, 201-8.	0.7	8
117	Increased platelet activation markers in rheumatoid arthritis: Are they related with subclinical atherosclerosis?. Platelets, 2008, 19, 146-154.	1.1	61
118	Apoptotic markers in human blood platelets treated with peroxynitrite. Platelets, 2008, 19, 624-635.	1.1	25
119	The Nature of the Stable Blood Clot Procoagulant Activities. Journal of Biological Chemistry, 2008, 283, 9776-9786.	1.6	41
120	Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins. Journal of Leukocyte Biology, 2008, 83, 921-927.	1.5	80
121	Characterization of blood borne microparticles as markers of premature coronary calcification in newly menopausal women. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H931-H938.	1.5	94
122	Inflammation, endothelium, and coagulation in sepsis. Journal of Leukocyte Biology, 2008, 83, 536-545.	1.5	518
123	Tissue Factor–Bearing Microparticles and Cancer. Seminars in Thrombosis and Hemostasis, 2008, 34, 195-198.	1.5	66
124	Effect of the administration of n-3 polyunsaturated fatty acids on circulating levels of microparticles in patients with a previous myocardial infarction. Haematologica, 2008, 93, 892-899.	1.7	38
125	Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood, 2008, 111, 5028-5036.	0.6	210
126	Endothelial Microparticles: Mediators or Markers of Endothelial Cell Dysfunction?. Current Hypertension Reviews, 2008, 4, 78-85.	0.5	0
127	Aspirin resistance in patients with coronary artery disease – which test to use in routine management?. Blood Coagulation and Fibrinolysis, 2008, 19, 324-326.	0.5	0
128	Desmoteplase-mediated plasminogen activation and clot lysis are inhibited by the lysine analogue tranexamic acid. Blood Coagulation and Fibrinolysis, 2008, 19, 322-324.	0.5	16

#	Article	IF	CITATIONS
129	The role of cellular microparticles in platelet-related hemostasis measured using Platelet Function Analyzer-100. Blood Coagulation and Fibrinolysis, 2008, 19, 328-330.	0.5	1
130	Adjunctive role for recombinant activated factor VII in the treatment of bleeding secondary to a factor V inhibitor. Blood Coagulation and Fibrinolysis, 2008, 19, 327-328.	0.5	10
131	Patent foramen ovale and prothrombotic markers in young stroke patients. Blood Coagulation and Fibrinolysis, 2008, 19, 326-327.	0.5	1
132	Dishomogeneous separation of citrated plasma in primary collection tubes for routine coagulation testing. Blood Coagulation and Fibrinolysis, 2008, 19, 330-332.	0.5	3
133	Characterizing blood microparticles: Technical aspects and challenges. Vascular Health and Risk Management, 2008, Volume 4, 769-774.	1.0	115
134	Vascular Biology. , 2009, , 12-20.		1
135	Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects. Haematologica, 2009, 94, 387-394.	1.7	84
136	Microparticles and the Hygiene Hypothesis. Annals of the New York Academy of Sciences, 2009, 1173, 409-421.	1.8	2
137	Tissue Factor in Coagulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1989-1996.	1.1	139
138	Microparticles and Arterial Disease. Seminars in Thrombosis and Hemostasis, 2009, 35, 488-496.	1.5	42
139	Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L1035-L1041.	1.3	128
140	Microparticles in deep venous thrombosis, antiphospholipid syndrome and Factor V Leiden. Platelets, 2009, 20, 367-375.	1.1	23
141	Plasma markers of coagulation and endothelial activation in Fabry disease: impact of renal impairment. Nephrology Dialysis Transplantation, 2009, 24, 3074-3081.	0.4	18
142	Cancer cell–derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. Journal of Experimental Medicine, 2009, 206, 1913-1927.	4.2	245
143	Induced release of membrane vesicles from rat adipocytes containing glycosylphosphatidylinositol-anchored microdomain and lipid droplet signalling proteins. Cellular Signalling, 2009, 21, 324-338.	1.7	68
144	Endothelial microparticles in diseases. Cell and Tissue Research, 2009, 335, 143-151.	1.5	373
145	Highlights of a new type of intercellular communication: microvesicle-based information transfer. Inflammation Research, 2009, 58, 1-8.	1.6	170
146	Cellâ€derived microparticles: a new challenge in neuroscience. Journal of Neurochemistry, 2009, 110, 457-468.	2.1	89

ARTICLE IF CITATIONS Coagulation Disorders in Sepsis., 2009, , 131-146. 0 147 Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle 148 1.7 241 cell disease. Haematologica, 2009, 94, 1513-1519. The possible role of red blood cell microvesicles in atherosclerosis. European Journal of Internal 149 1.0 23 Medicine, 2009, 20, 101-105. Plasma annexin A5 and microparticle phosphatidylserine levels are elevated in sickle cell disease and increase further during painful crisis. Biochemical and Biophysical Research Communications, 2009, 390, 161-164. Prognostic values of the factor Xa-activated clotting time and endogenous thrombin potential in 151 patients suspected of having disseminated intravascular coagulation. Thrombosis Research, 2009, 123, 0.8 29 565-572. Increased thrombin generation in women with a history of preeclampsia. Thrombosis Research, 2009, 0.8 123, 580-586. Circulating procoagulant microparticles in patients with venous thromboembolism. Thrombosis 153 0.8 49 Research, 2009, 123, 724-726. Cell-derived microparticles in haemostasis and vascular medicine. Thrombosis and Haemostasis, 2009, 154 1.8 359 101, 439-451. 155 Immunology of Normal Pregnancy and Preeclampsia., 2009, , 129-142. 10 Circulating microparticles and endogenous estrogen in newly menopausal women. Climacteric, 2009, 1.1 12, 177-184. Tissue factor +5466A>G polymorphism determines thrombin formation following vascular injury and thrombin-lowering effects of simvastatin in patients with ischemic heart disease. 158 0.4 13 Atherosclerosis, 2009, 204, 567-572. Microparticles and thrombotic disease. Current Opinion in Hematology, 2009, 16, 334-341. 1.2 50 Detection of the procoagulant activity of microparticle-associated phosphatidylserine using XACT. 160 0.5 54 Blood Coagulation and Fibrinolysis, 2009, 20, 558-564. Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles. Blood, 2009, 113, 1112-1121. Enhanced efficacy of recombinant FVIII in noncovalent complex with PEGylated liposome in hemophilia 162 39 0.6 A mice. Blood, 2009, 114, 2802-2811. Clinical relevance of microparticles from platelets and megakaryocytes. Current Opinion in 1.2 Hematology, 2010, 17, 578-584. Loss of estrogen receptor l2 decreases mitochondrial energetic potential and increases 164 3.034 thrombogenicity of platelets in aged female mice. Age, 2010, 32, 109-121. C-reactive protein in myocardial infarction binds to circulating microparticles but is not associated 1.4 with complement activation. Clinical Immunology, 2010, 135, 490-495.

#	Article	IF	CITATIONS
166	Human embryonic stem cellâ^'derived vascular progenitor cells capable of endothelial and smooth muscle cell function. Experimental Hematology, 2010, 38, 246-257.e1.	0.2	73
167	Monocyteâ€derived macrophage microparticles impart tissue factor activity to biomaterial surfaces. Journal of Biomedical Materials Research - Part A, 2010, 92A, 724-732.	2.1	2
168	The ability of surface characteristics of materials to trigger leukocyte tissue factor expression. Biomaterials, 2010, 31, 2498-2507.	5.7	29
169	Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Laboratory Investigation, 2010, 90, 1549-1557.	1.7	158
170	Release of pro-coagulant microparticles after moderate endurance exercise. Platelets, 2010, 21, 389-391.	1.1	17
171	Protein phosphatase inhibitor calyculin – A modulates activation markers in TRAP-stimulated human platelets. Platelets, 2010, 21, 555-562.	1.1	5
172	PLATELET MICROPARTICLES IN IMMUNE THROMBOCYTOPENIC PURPURA IN PEDIATRICS. Pediatric Hematology and Oncology, 2010, 27, 283-296.	0.3	32
173	Role of Microparticles in the Hemostatic Dysfunction in Acute Promyelocytic Leukemia. Seminars in Thrombosis and Hemostasis, 2010, 36, 917-924.	1.5	49
174	Tissue Factor, Lipid Rafts, and Microparticles. Seminars in Thrombosis and Hemostasis, 2010, 36, 857-864.	1.5	37
175	Tissue Factor and Its Measurement in Whole Blood, Plasma, and Microparticles. Seminars in Thrombosis and Hemostasis, 2010, 36, 865-875.	1.5	94
176	Platelet- and Megakaryocyte-Derived Microparticles. Seminars in Thrombosis and Hemostasis, 2010, 36, 881-887.	1.5	74
177	Factors influencing the level of circulating procoagulant microparticles in acute pulmonary embolism. Archives of Cardiovascular Diseases, 2010, 103, 394-403.	0.7	35
178	Red cell PMVs, plasma membrane-derived vesicles calling out for standards. Biochemical and Biophysical Research Communications, 2010, 399, 465-469.	1.0	29
179	MicropartÃculas plaquetarias en preeclampsia y eclampsia. Progresos En Obstetricia Y Ginecologia, 2010, 53, 507-512.	0.0	0
180	Do galectins play a role in venous thrombosis? a review. Thrombosis Research, 2010, 125, 373-376.	0.8	26
181	Proteomics of microparticles after deep venous thrombosis. Thrombosis Research, 2010, 125, e269-e274.	0.8	66
182	Cellular origin of platelet-derived microparticles in vivo. Thrombosis Research, 2010, 126, e255-e259.	0.8	35
183	Homocysteine and its thiolactone may promote apoptotic events in blood platelets <i>in vitro</i> . Platelets, 2010, 21, 533-540.	1.1	10

CITATION REPORT ARTICLE IF CITATIONS The involvement of circulating microparticles in inflammation, coagulation and cardiovascular 0.8 161 diseases. Canadian Journal of Cardiology, 2010, 26, e140-e145. The Tumor Microenvironment., 2010,,. Pre-analytical and analytical issues in the analysis of blood microparticles. Thrombosis and 186 1.8 247 Haemostasis, 2011, 105, 396-408. The functions of microparticles in preeclampsia. Pregnancy Hypertension, 2011, 1, 59-65. Clearance of platelet microparticles in vivo. Platelets, 2011, 22, 111-116. 1.1 97 Decline in platelet microparticles contributes to reduced hemostatic potential of stored plasma. 0.8 Thrombosis Research, 2011, 128, 35-41. Carotid artery dissections: Thrombosis of the false lumen. Thrombosis Research, 2011, 128, 317-324. 0.8 18 Comparative Hemostasis: Animal Models and New Hemostasis Tests. Clinics in Laboratory Medicine, 2011, 31, 139-159. The clinical and functional relevance of microparticles induced by activated protein C treatment in 193 2.5 25 sepsis. Critical Care, 2011, 15, R195. The microbubble or the microparticle?. Journal of Applied Physiology, 2011, 110, 307-308. 1.2 Microparticles in Health and Disease: Small Mediators, Large Role?. Current Vascular Pharmacology, 0.8 11 2011, 9, 490-500. Multiple Levels of Degradation Diminish Hemostatic Potential of Thawed Plasma. Journal of Trauma, 2.3 39 2011, 70, 71-80. An update on the Management and Treatment of Deep Vein Thrombosis. Cardiovascular and 0.4 3 Hematological Agents in Medicinal Chemistry, 2011, 9, 207-217. Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood, 2011, 117, 3172-3180. 164 Immunomodulatory Mediators in Platelet Transfusion Reactions. Hematology American Society of 0.9 24 Hematology Education Program, 2011, 2011, 470-474. Lactadherin functions as a probe for phosphatidylserine exposure and as an anticoagulant in the study of stored platelets. Vox Sanguinis, 2011, 100, 187-195. Apheresis platelet concentrates contain plateletâ€derived and endothelial cellâ€derived microparticles. 201 0.7 46 Vox Sanguinis, 2011, 100, 179-186.

202	Microparticles, malignancy and thrombosis. British Journal of Haematology, 2011, 152, 688-700.	1.2	46
-----	--	-----	----

#

184

188

191

194

195

197

198

#	Article	IF	CITATIONS
203	Differential contributions of monocyte―and plateletâ€derived microparticles towards thrombin generation and fibrin formation and stability. Journal of Thrombosis and Haemostasis, 2011, 9, 2251-2261.	1.9	153
204	Les nouveaux marqueurs d'activation de l'hémostase : les microparticules. Revue Francophone Des Laboratoires, 2011, 2011, 24-26.	0.0	0
205	Plasma microparticles are not elevated in fresh plasma from patients with gynaecological malignancy — An observational study. Gynecologic Oncology, 2011, 123, 152-156.	0.6	3
206	Pathophysiological role of blood-borne tissue factor: should the old paradigm be revisited?. Internal and Emergency Medicine, 2011, 6, 29-34.	1.0	21
207	Flow cytometric analysis of microparticle phenotype and their role in thrombin generation. , 2011, 80B, 57-63.		44
208	Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death and Disease, 2011, 2, e211-e211.	2.7	113
209	Circulating Endothelial Microparticles as a Measure of Early Lung Destruction in Cigarette Smokers. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 224-232.	2.5	201
210	The Functions of Microparticles in Pre-Eclampsia. Seminars in Thrombosis and Hemostasis, 2011, 37, 146-152.	1.5	44
211	Cell-Derived Microparticles in the Pathogenesis of Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 4-9.	1.1	121
212	Effect of strenuous physical exercise on circulating cell-derived microparticles. Clinical Hemorheology and Microcirculation, 2011, 47, 15-25.	0.9	69
213	Microparticles in Hemostasis and Thrombosis. Circulation Research, 2011, 108, 1284-1297.	2.0	717
214	Microparticles (Ectosomes) Shed by Stored Human Platelets Downregulate Macrophages and Modify the Development of Dendritic Cells. Journal of Immunology, 2011, 186, 6543-6552.	0.4	161
215	The missing link between atherosclerosis, inflammation and thrombosis: is it tissue factor?. Expert Review of Cardiovascular Therapy, 2011, 9, 517-523.	0.6	44
216	Cell-Derived Microparticles Promote Coagulation after Moderate Exercise. Medicine and Science in Sports and Exercise, 2011, 43, 1169-1176.	0.2	62
217	Tissue Factor Structure and Function. Scientifica, 2012, 2012, 1-15.	0.6	34
218	Coordinate Stimulation of Macrophages by Microparticles and TLR Ligands Induces Foam Cell Formation. Journal of Immunology, 2012, 189, 4621-4629.	0.4	35
219	Physical Characterization of Mouse Deep Vein Thrombosis Derived Microparticles by Differential Filtration with Nanopore Filters. Membranes, 2012, 2, 1-15.	1.4	7
220	Characterization of Membrane-shed Microvesicles from Cytokine-stimulated β-Cells Using Proteomics Strategies. Molecular and Cellular Proteomics, 2012, 11, 230-243.	2.5	105

#	Article	IF	CITATIONS
221	Mechanisms of Thrombosis in Paraproteinemias: The Effects of Immunomodulatory Drugs. Seminars in Thrombosis and Hemostasis, 2012, 38, 768-779.	1.5	11
222	Inflammation-Induced Thrombosis: Mechanisms, Disease Associations and Management. Current Pharmaceutical Design, 2012, 18, 1478-1493.	0.9	227
223	Platelet-Derived Microvesicles: Multitalented Participants in Intercellular Communication. Seminars in Thrombosis and Hemostasis, 2012, 38, 102-113.	1.5	158
224	Role of microparticles in sepsis. British Journal of Anaesthesia, 2012, 109, 503-513.	1.5	115
225	Climacteric Lowers Plasma Levels of Platelet-Derived Microparticles: A Pilot Study in Pre- versus Postmenopausal Women. Acta Haematologica, 2012, 128, 53-59.	0.7	7
226	Zebrafish Thrombocytes: Functions and Origins. Advances in Hematology, 2012, 2012, 1-9.	0.6	46
227	Procoagulant activity of erythrocytes and platelets through phosphatidylserine exposure and microparticles release in patients with nephrotic syndrome. Thrombosis and Haemostasis, 2012, 107, 681-689.	1.8	76
228	Platelet Function and Signaling in Diabetes Mellitus. Current Vascular Pharmacology, 2012, 10, 532-538.	0.8	22
229	Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques. Thrombosis and Haemostasis, 2012, 108, 1208-1219.	1.8	156
230	Prothrombin activation in blood coagulation: the erythrocyte contribution to thrombin generation. Blood, 2012, 120, 3837-3845.	0.6	146
231	Prasugrel inhibits platelet-leukocyte interaction and reduces inflammatory markers in a model of endotoxic shock in the mouse. Thrombosis and Haemostasis, 2012, 107, 1130-1140.	1.8	47
232	Evaluation of Erythrocytes. , 2012, , 49-121.		26
233	Phosphatidylserine-expressing cell by-products in transfusion: A pro-inflammatory or an anti-inflammatory effect?. Transfusion Clinique Et Biologique, 2012, 19, 90-97.	0.2	40
234	Mechanistic View of Risk Factors for Venous Thromboembolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 563-568.	1.1	170
235	Pre-analytical and analytical variables affecting the measurement of plasma-derived microparticle tissue factor activity. Thrombosis Research, 2012, 129, 80-85.	0.8	115
236	Postprandial changes in the phospholipid composition of circulating microparticles are not associated with coagulation activation. Thrombosis Research, 2012, 130, 115-121.	0.8	13
237	Role of zebrafish thrombocyte and non-thrombocyte microparticles in hemostasis. Blood Cells, Molecules, and Diseases, 2012, 48, 188-196.	0.6	10
238	Red cell and plateletâ€derived microparticles are increased in G6 <scp>PD</scp> â€deficient subjects. European Journal of Haematology, 2012, 89, 423-429.	1.1	25

#	Article	IF	CITATIONS
239	Blood platelet-derived microparticles release and bubble formation after an open-sea air dive. Applied Physiology, Nutrition and Metabolism, 2012, 37, 888-892.	0.9	31
240	Differential ability of tissue factor antibody clones on detection of tissue factor in blood cells and microparticles. Thrombosis Research, 2012, 130, 538-546.	0.8	38
241	Measurement of Platelet Microparticles. Methods in Molecular Biology, 2012, 788, 127-139.	0.4	17
242	Cause or Effect of Arteriogenesis: Compositional Alterations of Microparticles from CAD Patients Undergoing External Counterpulsation Therapy. PLoS ONE, 2012, 7, e46822.	1.1	27
243	Coagulation activation and microparticle-associated coagulant activity in cancer patients. Thrombosis and Haemostasis, 2012, 108, 160-165.	1.8	90
244	Inflammation and thrombosis new insights. Frontiers in Bioscience - Scholar, 2012, S4, 620-638.	0.8	7
245	Classification, Functions, and Clinical Relevance of Extracellular Vesicles. Pharmacological Reviews, 2012, 64, 676-705.	7.1	1,429
246	Platelet―and erythrocyteâ€derived microparticles trigger thrombin generation via factor XIIa. Journal of Thrombosis and Haemostasis, 2012, 10, 1355-1362.	1.9	243
247	Making contact with microparticles. Journal of Thrombosis and Haemostasis, 2012, 10, 1352-1354.	1.9	3
248	Quantification of hypercoagulable state after blunt trauma: Microparticle and thrombin generation are increased relative to injury severity, while standard markers are not. Surgery, 2012, 151, 831-836.	1.0	85
249	Methodology for isolation, identification and characterization of microvesicles in peripheral blood. Journal of Immunological Methods, 2012, 375, 207-214.	0.6	182
250	Endothelial cell microparticles act as centers of matrix metalloproteinsaseâ€2 (MMPâ€2) activation and vascular matrix remodeling. Journal of Cellular Physiology, 2012, 227, 534-549.	2.0	56
251	Sex-specific risk of cardiovascular disease and cognitive decline: pregnancy and menopause. Biology of Sex Differences, 2013, 4, 6.	1.8	52
253	Flow cytometric assessment of circulating platelet and erythrocytes microparticles in young thalassemia major patients: relation to pulmonary hypertension and aortic wall stiffness. European Journal of Haematology, 2013, 90, 508-518.	1.1	36
254	Microscopic evaluation of vesicles shed by rat erythrocytes at elevated temperatures. Journal of Thermal Biology, 2013, 38, 487-492.	1.1	12
255	Circulating microparticles: square the circle. BMC Cell Biology, 2013, 14, 23.	3.0	202
256	Increased promyelocytic-derived microparticles: a novel potential factor for coagulopathy in acute promyelocytic leukemia. Annals of Hematology, 2013, 92, 645-652.	0.8	35
257	Microparticles and microRNAs: new players in the complex field of coagulation. Internal and Emergency Medicine, 2013, 8, 291-296.	1.0	32

#	Article	IF	CITATIONS
258	Enhanced thrombin generation in women with a history of oral contraception-related venous thrombosis. Thrombosis Research, 2013, 132, 621-626.	0.8	10
259	Circulating platelet and erythrocyte microparticles in young children and adolescents with sickle cell disease: Relation to cardiovascular complications. Platelets, 2013, 24, 605-614.	1.1	71
260	Gateway to understanding microparticles: standardized isolation and identification of plasma membrane-derived vesicles. Nanomedicine, 2013, 8, 1657-1668.	1.7	44
261	Extracellular vesicles in physiological and pathological conditions. Blood Reviews, 2013, 27, 31-39.	2.8	439
262	A heparin-based method for flow cytometric analysis of microparticles directly from platelet-poor plasma in calcium containing buffer. Journal of Immunological Methods, 2013, 388, 49-59.	0.6	22
263	Outer membrane vesicles from pathogenic bacteria initiate an inflammatory response in human endothelial cells. Journal of Surgical Research, 2013, 184, 458-466.	0.8	45
264	The Platelet Proteome. , 2013, , 103-116.		3
265	Interactions Between Platelets and the Coagulation System. , 2013, , 425-451.		12
266	Platelet-Derived Microparticles. , 2013, , 453-467.		10
267	Evaluation of microparticles in whole blood by multicolour flow cytometry assay. Scandinavian Journal of Clinical and Laboratory Investigation, 2013, 73, 229-239.	0.6	36
268	Tetraspanins in Cancer., 2013,, 257-298.		2
269	Lipid-lowering therapy with statins reduces microparticle shedding from endothelium, platelets and inflammatory cells. Thrombosis and Haemostasis, 2013, 110, 366-377.	1.8	104
270	Low endogenous thrombin potential in trained subjects. Thrombosis Research, 2013, 131, e281-e285.	0.8	13
271	Microscopic evaluation of vesicles shed by erythrocytes at elevated temperatures. Microscopy Research and Technique, 2013, 76, 1163-1170.	1.2	8
272	The Functional Importance of Tetraspanins in Exosomes. , 2013, , 69-106.		2
273	Better hemostatic profiles of never-frozen liquid plasma compared with thawed fresh frozen plasma. Journal of Trauma and Acute Care Surgery, 2013, 74, 84-91.	1.1	63
274	Extracellular vesicles in the circulation: are erythrocyte microvesicles a confounder in the plasma haemoglobin assay?. Biochemical Society Transactions, 2013, 41, 288-292.	1.6	12
275	On the Origin of Microparticles: From "Platelet Dust―to Mediators of Intercellular Communication. Pulmonary Circulation, 2013, 3, 329-340.	0.8	144

	CIATION		
#	ARTICLE	IF	Citations
276	Microparticle counts in platelet-rich and platelet-free plasma, effect of centrifugation and sample-processing protocols. Blood Coagulation and Fibrinolysis, 2013, 24, 125-132.	0.5	50
277	Promoter Polymorphisms in the ATP Binding Cassette Transporter Gene Influence Production of Cell-Derived Microparticles and Are Highly Associated with Susceptibility to Severe Malaria in Humans. Infection and Immunity, 2013, 81, 1287-1294.	1.0	15
278	Emerging Concepts of Tumor Exosome–Mediated Cell-Cell Communication. , 2013, , .		7
279	Microvesicles as Potential Ovarian Cancer Biomarkers. BioMed Research International, 2013, 2013, 1-12.	0.9	50
280	Impact of Endothelial Microparticles on Coagulation, Inflammation, and Angiogenesis in Age-Related Vascular Diseases. Journal of Aging Research, 2013, 2013, 1-11.	0.4	91
281	Microparticles in Health and Disease. Journal of Veterinary Internal Medicine, 2013, 27, 1020-1033.	0.6	89
282	Elevated levels of thrombinâ€generating microparticles in stored red blood cells. Vox Sanguinis, 2013, 105, 11-17.	0.7	74
283	Microparticles in stored canine <scp>RBC</scp> concentrates. Veterinary Clinical Pathology, 2013, 42, 163-169.	0.3	44
284	Tetraspanins. , 2013, , .		12
285	Endothelial microparticles: missing link in endothelial dysfunction?. European Journal of Preventive Cardiology, 2013, 20, 496-512.	0.8	52
286	Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood, 2013, 122, 253-261.	0.6	363
287	Contact- and agonist-regulated microvesiculation of human platelets. Thrombosis and Haemostasis, 2013, 110, 331-399.	1.8	29
288	Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease. PLoS ONE, 2013, 8, e60932.	1.1	21
289	Comparative Response of Platelet fV and Plasma fV to Activated Protein C and Relevance to a Model of Acute Traumatic Coagulopathy. PLoS ONE, 2014, 9, e99181.	1.1	34
290	Erythrocyte-Derived Microparticles Supporting Activated Protein C-Mediated Regulation of Blood Coagulation. PLoS ONE, 2014, 9, e104200.	1.1	67
291	Membrane Properties Involved in Calcium-Stimulated Microparticle Release from the Plasma Membranes of S49 Lymphoma Cells. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	4
292	The coagulation system and its function in early immune defense. Thrombosis and Haemostasis, 2014, 112, 640-648.	1.8	92
293	Microparticles as Potential Biomarkers of Cardiovascular Disease. Arquivos Brasileiros De Cardiologia, 2014, 104, 169-74.	0.3	37

#	Article	IF	Citations
294	Pharmacological modulation of procoagulant microparticles improves haemodynamic dysfunction during septic shock in rats. Thrombosis and Haemostasis, 2014, 111, 154-164.	1.8	22
295	Microparticles: new light shed on the understanding of venous thromboembolism. Acta Pharmacologica Sinica, 2014, 35, 1103-1110.	2.8	25
296	Are Microparticles the Missing Link between Thrombosis and Autoimmune Diseases? Involvement in Selected Rheumatologic Diseases. Seminars in Thrombosis and Hemostasis, 2014, 40, 675-681.	1.5	13
297	Computational Modeling of Thrombotic Microparticle Deposition in Nonparallel Flow Regimes. Journal of Biomechanical Engineering, 2014, 136, .	0.6	2
298	Microparticles: A New Perspective in Central Nervous System Disorders. BioMed Research International, 2014, 2014, 1-17.	0.9	48
299	The hemostatic activity of cryopreserved platelets is mediated by phosphatidylserineâ€expressing platelets and platelet microparticles. Transfusion, 2014, 54, 1917-1926.	0.8	95
300	Global assays of hemostasis. Current Opinion in Hematology, 2014, 21, 395-403.	1.2	41
301	Evaluation of plasma endothelial microparticles in pre-eclampsia. Journal of International Medical Research, 2014, 42, 42-51.	0.4	10
302	Microparticle-associated tissue factor activity correlates with plasma levels of bacterial lipopolysaccharides in meningococcal septic shock. Thrombosis Research, 2014, 133, 507-514.	0.8	49
303	Involvement of Platelet-Derived Microparticles in Tumor Progression and Thrombosis. Seminars in Oncology, 2014, 41, 346-358.	0.8	96
304	Emerging paradigms in arterial thrombosis. Journal of Thrombosis and Thrombolysis, 2014, 37, 4-11.	1.0	6
305	Evaluation of indirect microparticle activity and parameters of thrombin generation test in healthy infants. Thrombosis Research, 2014, 133, 281-284.	0.8	4
306	Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive. European Journal of Applied Physiology, 2014, 114, 1175-1181.	1.2	7
307	Regulatory mechanisms of cAMP levels as a multiple target for antiplatelet activity and less bleeding risk. Thrombosis Research, 2014, 134, 221-226.	0.8	9
308	Circulating CD45+/CD3+ lymphocyte-derived microparticles map lipid-rich atherosclerotic plaques in familial hypercholesterolaemia patients. Thrombosis and Haemostasis, 2014, 111, 111-121.	1.8	76
309	The effect of plateletâ€derived microparticles in stored apheresis platelet concentrates on polymorphonuclear leucocyte respiratory burst. Vox Sanguinis, 2014, 106, 234-241.	0.7	29
310	Predicting Carotid Artery Disease and Plaque Instability from Cell-derived Microparticles. European Journal of Vascular and Endovascular Surgery, 2014, 48, 489-495.	0.8	31
311	Cellular microparticle and thrombogram phenotypes in the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) Study: Correlation with coagulopathy. Thrombosis Research, 2014, 134, 652-658.	0.8	65

#	Article	IF	Citations
312	Bone formation in periâ€implant defects grafted with microparticles: a pilot animal experimental study. Journal of Clinical Periodontology, 2014, 41, 990-998.	2.3	11
313	The Role of Hemostasis in Infective Endocarditis. Current Infectious Disease Reports, 2014, 16, 435.	1.3	19
314	Circulating levels of cell-derived microparticles are reduced by mild hypobaric hypoxia: data from a randomised controlled trial. European Journal of Applied Physiology, 2014, 114, 1067-1073.	1.2	10
315	Platelet microparticles: Detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Reviews, 2014, 28, 155-166.	2.8	161
316	Outer membrane vesicles alter inflammation and coagulation mediators. Journal of Surgical Research, 2014, 192, 134-142.	0.8	35
317	Mechanism of antiplatelet action of hypolipidemic, antidiabetic and antihypertensive drugs by PPAR activation. Vascular Pharmacology, 2014, 62, 162-166.	1.0	15
318	Repeated supraâ€maximal sprint cycling with and without sodium bicarbonate supplementation induces endothelial microparticle release. European Journal of Sport Science, 2014, 14, 345-352.	1.4	10
319	New players in haemostasis and thrombosis. Thrombosis and Haemostasis, 2014, 111, 570-574.	1.8	118
320	CLEC-2 expression is maintained on activated platelets and on platelet microparticles. Blood, 2014, 124, 2262-2270.	0.6	104
321	Role of Tissue Factor in the Coagulation Network. Seminars in Thrombosis and Hemostasis, 2015, 41, 708-717.	1.5	22
322	Clinical Significance of Tissue Factor–Exposing Microparticles in Arterial and Venous Thrombosis. Seminars in Thrombosis and Hemostasis, 2015, 41, 718-727.	1.5	43
323	Understanding the biosynthesis of plateletsâ€derived extracellular vesicles. Immunity, Inflammation and Disease, 2015, 3, 133-140.	1.3	28
324	Circulating Microparticles Alter Formation, Structure and Properties of Fibrin Clots. Scientific Reports, 2015, 5, 17611.	1.6	76
325	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	5.5	3,973
326	Microparticles as Biomarkers of Blood Coagulation in Cancer. Biomarkers in Cancer, 2015, 7, BIC.S30347.	3.6	27
327	Circulating microparticles, protein C, free protein S and endothelial vascular markers in children with sickle cell anaemia. Journal of Extracellular Vesicles, 2015, 4, 28414.	5.5	47
328	Microvesicles from platelets: novel drivers of vascular inflammation. Thrombosis and Haemostasis, 2015, 114, 228-236.	1.8	88
329	Plateletâ€derived extracellular vesicles in plateletpheresis concentrates as a quality control approach. Transfusion, 2015, 55, 2184-2196.	0.8	25

#	Article	IF	CITATIONS
330	Thrombin generation and procoagulant microparticle profiles after acute trauma. Journal of Trauma and Acute Care Surgery, 2015, 79, 726-731.	1.1	45
331	Mechanism of Platelet Activation and Hypercoagulability by Antithymocyte Globulins (ATG). American Journal of Transplantation, 2015, 15, 2588-2601.	2.6	22
332	Tissueâ€factorâ€bearing microparticles (<scp>MP</scp> sâ€ <scp>TF</scp>) in patients with acute ischaemic stroke: the influence of stroke treatment on <scp>MP</scp> sâ€ <scp>TF</scp> generation. European Journal of Neurology, 2015, 22, 395.	1.7	31
333	Growing thrombi release increased levels of CD235a+ microparticles and decreased levels of activated platelet-derived microparticles. Validation in ST-elevation myocardial infarction patients. Journal of Thrombosis and Haemostasis, 2015, 13, 1776-1786.	1.9	54
334	Microvesicles as a potential biomarker of neoplastic diseases and their role in development and progression of neoplasm. Przeglad Menopauzalny, 2015, 4, 283-291.	0.6	6
335	High levels of TSP1+/CD142+ platelet-derived microparticles characterise young patients with high cardiovascular risk and subclinical atherosclerosis. Thrombosis and Haemostasis, 2015, 114, 1310-1321.	1.8	74
336	Effect of Lidocaine and Epinephrine on Human Erythrocyte Shape and Vesiculability of Blood Cells. Advances in Condensed Matter Physics, 2015, 2015, 1-10.	0.4	1
337	Age- and sex-specific differences in blood-borne microvesicles from apparently healthy humans. Biology of Sex Differences, 2015, 6, 10.	1.8	73
338	Platelet miRNAs and cardiovascular diseases. Life Sciences, 2015, 133, 29-44.	2.0	28
339	Microparticle of drug and nanoparticle: a biosynthetic route. Pharmacology Research and Perspectives, 2015, 3, e00188.	1.1	7
340	Tips and tricks for flow cytometry-based analysis and counting of microparticles. Transfusion and Apheresis Science, 2015, 53, 110-126.	0.5	67
341	"Soluble Tissue Factor―in the 21st Century: Definitions, Biochemistry, and Pathophysiological Role in Thrombus Formation. Seminars in Thrombosis and Hemostasis, 2015, 41, 700-707.	1.5	23
342	Clinical significance of procoagulant microparticles. Journal of Intensive Care, 2015, 3, 2.	1.3	117
343	A New Enzyme-linked Sorbent Assay (ELSA) to Quantify Syncytiotrophoblast Extracellular Vesicles in Biological Fluids. American Journal of Reproductive Immunology, 2015, 73, 582-588.	1.2	25
344	Microparticles: Bridging the Gap between Autoimmunity and Thrombosis. Seminars in Thrombosis and Hemostasis, 2015, 41, 413-422.	1.5	34
345	Procoagulant activity induced by transcatheter closure of atrial septal defects is associated with exposure of phosphatidylserine on microparticles, platelets and red blood cells. Thrombosis Research, 2015, 136, 354-360.	0.8	8
346	Thalidomide and multiple myeloma serum synergistically induce a hemostatic imbalance in endothelial cells in vitro. Thrombosis Research, 2015, 135, 1154-1159.	0.8	12
347	Thermodynamic evaluation of vesicles shed by erythrocytes at elevated temperatures. Colloids and Surfaces B: Biointerfaces, 2015, 133, 231-238.	2.5	10

ARTICLE IF CITATIONS # Non-contact acoustic capture of microparticles from small plasma volumes. Lab on A Chip, 2015, 15, 348 3.1 62 2588-2596. Circulating endothelial cells in coronary artery disease and acute coronary syndrome. Trends in 349 2.3 Cardiovascular Medicine, 2015, 25, 578-587. The role of microparticles in inflammation and transfusion: A concise review. Transfusion and 350 0.5 72 Apheresis Science, 2015, 53, 159-167. The Role of Blood-Borne Microparticles in Inflammation and Hemostasis. Seminars in Thrombosis and Hemostasis, 2015, 41, 590-606. Molecular characterisation of plasma membrane-derived vesicles. Journal of Biomedical Science, 2015, 352 2.6 22 22, 68. Cell-free DNA: Preanalytical variables. Clinica Chimica Acta, 2015, 450, 243-253. 139 Effect of blood microparticles on the kinetics of polymerization and enzymatic hydrolysis of fibrin. 354 0.3 3 Doklady Biochemistry and Biophysics, 2015, 462, 151-154. Biologicals, platelet apoptosis and human diseases: An outlook. Critical Reviews in 2.0 49 Oncology/Hematology, 2015, 93, 149-158. 356 Endothelial barrier dysfunction in septic shock. Journal of Internal Medicine, 2015, 277, 277-293. 2.7 256 Immunology of Normal Pregnancy and Preeclampsia., 2015, , 161-179. Microparticles Provide a Novel Biomarker To Predict Severe Clinical Outcomes of Dengue Virus 358 1.5 39 Infection. Journal of Virology, 2015, 89, 1587-1607. Hypercoagulable States., 2015,, 541-554. The functional role of platelets in the regulation of angiogenesis. Platelets, 2015, 26, 199-211. 360 1.1 97 Extracellular Vesicles: A Mechanism to Reverse Metastatic Behaviour as a New Approach to Cancer Therapy., 0, , . Platelet microparticles reprogram macrophage gene expression and function. Thrombosis and 362 1.8 150 Haemostasis, 2016, 115, 311-323. Microparticle and Atherothrombotic Diseases. Journal of Atherosclerosis and Thrombosis, 2016, 23, 44 Role of Platelet-Derived Microvesicles As Crosstalk Mediators in Atherothrombosis and Future 364 Pharmacology Targets: A Link between Inflammation, Atherosclerosis, and Thrombosis. Frontiers in 1.6 116 Pharmacology, 2016, 07, 293. Cell-Derived Microparticles in Patients with Type 2 Diabetes Mellitus: a Systematic Review and 1.1 Meta-Analysis. Cellular Physiology and Biochemistry, 2016, 39, 2439-2450.

#	Article	IF	CITATIONS
366	Effect of acute exercise on circulating angiogenic cell and microparticle populations. Experimental Physiology, 2016, 101, 155-167.	0.9	54
367	Red blood cell-derived microparticles: An overview. Blood Cells, Molecules, and Diseases, 2016, 59, 134-139.	0.6	58
368	Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. Journal of Thrombosis and Haemostasis, 2016, 14, 48-56.	1.9	254
369	Circulating extracellular vesicles: Their role in tissue repair and regeneration. Transfusion and Apheresis Science, 2016, 55, 53-61.	0.5	27
370	From trash to treasure: The untapped potential of endothelial microparticles in neurovascular diseases. Pathophysiology, 2016, 23, 265-274.	1.0	16
371	The biology of extracellular vesicles with focus on platelet microparticles and their role in cancer development and progression. Tumor Biology, 2016, 37, 14391-14401.	0.8	83
372	Platelet proteomics applied to the search for novel antiplatelet therapeutic targets. Expert Review of Proteomics, 2016, 13, 993-1006.	1.3	5
373	Robust Label-free, Quantitative Profiling of Circulating Plasma Microparticle (MP) Associated Proteins. Molecular and Cellular Proteomics, 2016, 15, 3640-3652.	2.5	33
374	Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica. Journal of Ocean University of China, 2016, 15, 918-922.	0.6	4
375	Inflammation and Hemostatic Activation may Contribute to Postsurgical Thrombosis in Patients With Bladder Cancer. Clinical and Applied Thrombosis/Hemostasis, 2016, 22, 314-321.	0.7	3
376	Review of the Association between Splenectomy and Chronic Thromboembolic Pulmonary Hypertension. Annals of the American Thoracic Society, 2016, 13, 945-954.	1.5	28
377	The Gas6-Axl Protein Interaction Mediates Endothelial Uptake of Platelet Microparticles. Journal of Biological Chemistry, 2016, 291, 10586-10601.	1.6	45
378	Platelet Microvesicles (Microparticles) in Cardiac Surgery. Journal of Cardiothoracic and Vascular Anesthesia, 2016, 30, 222-228.	0.6	7
379	MicroRNAs in Platelet Physiology and Function. Seminars in Thrombosis and Hemostasis, 2016, 42, 215-222.	1.5	36
380	Adiponectin limits monocytic microparticle-induced endothelial activation by modulation of the AMPK, Akt and NFκB signaling pathways. Atherosclerosis, 2016, 245, 1-11.	0.4	25
381	Higher levels of procoagulant microparticles in women with recurrent miscarriage are not associated with antiphospholipid antibodies. Human Reproduction, 2016, 31, 46-52.	0.4	14
382	The clinical significance of platelet microparticle-associated microRNAs. Clinical Chemistry and Laboratory Medicine, 2017, 55, 657-666.	1.4	62
383	Platelet microvesicles in health and disease. Platelets, 2017, 28, 214-221.	1.1	174

ARTICLE IF CITATIONS Oxidative stress in sepsis. Possible production of free radicals through an erythrocyte-mediated 384 0.3 32 positive feedback mechanism. Brazilian Journal of Infectious Diseases, 2017, 21, 19-26. Extracellular vesicles and blood diseases. International Journal of Hematology, 2017, 105, 392-405. Microparticles from splenectomized Î²-thalassemia/HbE patients play roles on procoagulant activities 386 0.8 21 with thrombotic potential. Annals of Hematology, 2017, 96, 189-198. Microparticles in nasal lavage fluids in chronic rhinosinusitis: Potential biomarkers for diagnosis of aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2017, 140, 720-729. How to quantify microparticles in RBCs? A validated flow cytometry method allows the detection of 388 0.8 14 an increase in microparticles during storage. Transfusion, 2017, 57, 504-516. Immune-modulatory effects of syncytiotrophoblast extracellular vesicles in pregnancy and preeclampsia. Placenta, 2017, 60, S41-S51. 389 390 Platelet-Derived Microparticles., 2017, , 379-392. 8 Noncoding RNAs in Platelet Biology., 2017, , 239-252. 391 A transmission electron microscopy study of anticoagulant-induced platelet vesiculation. Porto 392 0.4 11 Biomedical Journal, 2017, 2, 23-27. Effect of Lipid Surface Composition on the Formation and Structure of Fibrin Clots. Bulletin of Experimental Biology and Medicine, 2017, 163, 722-725. Membrane Ballooning in Aggregated Platelets is Synchronised and Mediates a Surge in 394 1.6 42 Microvesiculation. Scientific Reports, 2017, 7, 2770. Interaction between platelet-derived microRNAs and CYP2C19*2 genotype on clopidogrel antiplatelet responsiveness in patients with ACS. Thrombosis Research, 2017, 157, 97-102. 0.8 Bronchoalveolar Lavage Microvesicles Protect Burn-Injured Mice from Pulmonary Infection. Journal 396 0.2 9 of the American College of Surgeons, 2017, 225, 538-547. Extracellular vesicles in renal disease. Nature Reviews Nephrology, 2017, 13, 545-562. 4.1 238 Isolation and Characterization of Microvesicles from Peripheral Blood. Journal of Visualized 398 0.2 38 Experiments, 2017, , . Different Potential of Extracellular Vesicles to Support Thrombin Generation: Contributions of Phosphatidylserine, Tissue Factor, and Cellular Origin. Scientific Reports, 2017, 7, 6522. The Impact of Vascular Disease Treatment on Platelet-Derived Microvesicles. Cardiovascular Drugs 400 1.336 and Therapy, 2017, 31, 627-644. Circulating microparticles in acute diabetic Charcot foot exhibit a high content of inflammatory 1.6 cytokines, and support monocyte-to-osteoclast cell induction. Scientific Reports, 2017, 7, 16450.

#	Article	IF	CITATIONS
402	The potential role of platelets in the consensus molecular subtypes of colorectal cancer. Cancer and Metastasis Reviews, 2017, 36, 273-288.	2.7	37
403	Anti-erythrocyte IgG in hamsters with acute experimental infection by Leptospira interrogans serovar Canicola. Microbial Pathogenesis, 2017, 110, 450-456.	1.3	1
404	Characterisation of tumourâ€derived microvesicles in cancer patients' blood and correlation with clinical outcome. Journal of Extracellular Vesicles, 2017, 6, 1340745.	5.5	65
405	Microvesicles in Atherosclerosis and Angiogenesis: From Bench to Bedside and Reverse. Frontiers in Cardiovascular Medicine, 2017, 4, 77.	1.1	61
406	Platelet-Derived Microvesicles in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2017, 4, 74.	1.1	120
407	Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor. PLoS ONE, 2017, 12, e0173077.	1.1	17
408	Characterization of intravascular cellular activation in relationship to subclinical atherosclerosis in postmenopausal women. PLoS ONE, 2017, 12, e0183159.	1.1	6
409	Changes in the pattern of plasma extracellular vesicles after severe trauma. PLoS ONE, 2017, 12, e0183640.	1.1	37
410	β3 phosphorylation of platelet αIIbβ3 is crucial for stability of arterial thrombus and microparticle formation in vivo. Thrombosis Journal, 2017, 15, 22.	0.9	4
412	From blood coagulation to innate and adaptive immunity: the role of platelets in the physiology and pathology of autoimmune disorders. Rheumatology International, 2018, 38, 959-974.	1.5	46
413	Increased level of cell-derived microparticles in the cyst fluids of odontogenic keratocysts. International Journal of Oncology, 2018, 52, 1863-1874.	1.4	3
414	Analytical validation of a flow cytometric protocol for quantification of platelet microparticles in dogs. Veterinary Clinical Pathology, 2018, 47, 186-196.	0.3	5
415	Dissecting the biochemical architecture and morphological release pathways of the human platelet extracellular vesiculome. Cellular and Molecular Life Sciences, 2018, 75, 3781-3801.	2.4	38
416	Microparticles in Hematological Malignancies: Role in Coagulopathy and Tumor Pathogenesis. American Journal of the Medical Sciences, 2018, 355, 207-214.	0.4	8
417	Identification of Novel Hemostatic Biomarkers of Adverse Clinical Events in Patients Implanted With a Continuous-Flow Left Ventricular Assist Device. Clinical and Applied Thrombosis/Hemostasis, 2018, 24, 965-972.	0.7	8
418	Analysis of factor XIa, factor IXa and tissue factor activity in burn patients. Burns, 2018, 44, 436-444.	1.1	8
419	Platelet-Derived Microvesicles: A Potential Therapy for Trauma-Induced Coagulopathy. Shock, 2018, 49, 243-248.	1.0	25
420	Extracellular vesicles compartment in liquid biopsies: Clinical application. Molecular Aspects of Medicine, 2018, 60, 27-37.	2.7	59

#	Article	IF	CITATIONS
421	Role of extracellular vesicles in rheumatoid arthritis. Molecular Immunology, 2018, 93, 125-132.	1.0	50
422	Platelet activity and hypercoagulation in type 2 diabetes. Cardiovascular Diabetology, 2018, 17, 141.	2.7	80
423	Large Extracellular Vesicles: Have We Found the Holy Grail of Inflammation?. Frontiers in Immunology, 2018, 9, 2723.	2.2	121
424	Human bone marrow contains high levels of extracellular vesicles with a tissue-specific subtype distribution. PLoS ONE, 2018, 13, e0207950.	1.1	4
425	Postprandial Increase in Blood Plasma Levels of Tissue Factor–Bearing (and Other) Microvesicles Measured by Flow Cytometry: Fact or Artifact?. TH Open, 2018, 02, e147-e157.	0.7	6
426	Circulating levels of tissue factor and the risk of thrombosis associated with antiphospholipid syndrome. Thrombosis Research, 2018, 171, 114-120.	0.8	10
427	Elevated coagulation factor levels affect the tissue factor-threshold in thrombin generation. Thrombosis Research, 2018, 172, 104-109.	0.8	10
428	Bariatric surgery reduces CD36-bearing microvesicles of endothelial and monocyte origin. Nutrition and Metabolism, 2018, 15, 76.	1.3	10
429	Analytical validation of platelet microparticle quantification in cats. Veterinary Clinical Pathology, 2018, 47, 386-395.	0.3	2
430	Evidence for Adipocyte-Derived Extracellular Vesicles in the Human Circulation. Endocrinology, 2018, 159, 3259-3267.	1.4	30
431	Inhibition of Tissue Factor Pathway Inhibitor (TFPI) as a Treatment for Haemophilia: Rationale with Focus on Concizumab. Drugs, 2018, 78, 881-890.	4.9	38
432	Simvastatin reverses multiple myeloma serum-induced prothrombotic phenotype in endothelial cells via ERK 1/2 signalling pathway. Blood Coagulation and Fibrinolysis, 2018, 29, 501-508.	0.5	2
433	The Exposure of Phosphatidylserine Influences Procoagulant Activity in Retinal Vein Occlusion by Microparticles, Blood Cells, and Endothelium. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.	1.9	12
434	Plateletâ€derived microparticles promote endothelial cell proliferation in hypertension <i>via</i> miRâ€142–3p. FASEB Journal, 2018, 32, 3912-3923.	0.2	57
435	Imbalance between endothelial damage and repair capacity in chronic obstructive pulmonary disease. PLoS ONE, 2018, 13, e0195724.	1.1	27
436	Red Blood Cell Homeostasis: Mechanisms and Effects of Microvesicle Generation in Health and Disease. Frontiers in Physiology, 2018, 9, 703.	1.3	82
437	Temporal phenotyping of circulating microparticles after trauma: a prospective cohort study. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2018, 26, 33.	1.1	26
438	Vesicles bearing gifts: the functional importance of micro-RNA transfer in extracellular vesicles in chronic kidney disease. American Journal of Physiology - Renal Physiology, 2018, 315, F1430-F1443.	1.3	17

# 439	ARTICLE Type 2 diabetes and older age contribute to elevated plasma microparticle concentrations independent of chronic stroke. Experimental Physiology, 2018, 103, 1560-1570.	IF 0.9	CITATIONS
440	Exercise-Derived Microvesicles: A Review of the Literature. Sports Medicine, 2018, 48, 2025-2039.	3.1	27
441	Dynamics of Platelet Behaviors as Defenders and Guardians: Accumulations in Liver, Lung, and Spleen in Mice. Biological and Pharmaceutical Bulletin, 2019, 42, 1253-1267.	0.6	3
442	Plateletâ€derived extracellular vesicles released after trauma promote hemostasis and contribute to DVT in mice. Journal of Thrombosis and Haemostasis, 2019, 17, 1733-1745.	1.9	49
443	Platelets in Skin Autoimmune Diseases. Frontiers in Immunology, 2019, 10, 1453.	2.2	16
444	Circulating extracellular vesicle content reveals <i>de novo</i> DNA methyltransferase expression as a molecular method to predict septic shock. Journal of Extracellular Vesicles, 2019, 8, 1669881.	5.5	43
445	Thrombin Generation and Cancer: Contributors and Consequences. Cancers, 2019, 11, 100.	1.7	65
446	Cell-derived microvesicles in infective endocarditis: Role in diagnosis and potential for risk stratification at hospital admission. Journal of Infection, 2019, 79, 101-107.	1.7	6
447	Involvement of Extracellular Vesicles in Vascular-Related Functions in Cancer Progression and Metastasis. International Journal of Molecular Sciences, 2019, 20, 2584.	1.8	53
448	Preclinical Evaluation of Safety and Biodistribution of Red Cell Microparticles: A Novel Hemostatic Agent. Journal of Cardiovascular Pharmacology and Therapeutics, 2019, 24, 474-483.	1.0	5
449	Circulating microparticles as biomarkers of stroke: A focus on the value of endothelial†and plateletâ€derived microparticles. Journal of Cellular Physiology, 2019, 234, 16739-16754.	2.0	36
450	Extracellular vesicles in autoimmune vasculitis - Little dirts light the fire in blood vessels. Autoimmunity Reviews, 2019, 18, 593-606.	2.5	29
451	Platelet-Derived Extracellular Vesicles as Target of Antiplatelet Agents. What Is the Evidence?. Frontiers in Pharmacology, 2019, 10, 1256.	1.6	34
452	Extracellular vesicles and coagulation in blood from healthy humans revisited. Journal of Extracellular Vesicles, 2019, 8, 1688936.	5.5	60
453	Circulating microvesicles are less procoagulant and carry different miRNA cargo in myelodysplasia. Blood Cells, Molecules, and Diseases, 2019, 74, 37-43.	0.6	7
454	Platelet Reactivity And Circulating Platelet-Derived Microvesicles Are Differently Affected By P2Y ₁₂ Receptor Antagonists. International Journal of Medical Sciences, 2019, 16, 264-275.	1.1	22
455	Platelet-derived microparticles generated in vitro resemble circulating vesicles of patients with rheumatoid arthritis and activate monocytes. Cellular Immunology, 2019, 336, 1-11.	1.4	24
456	Rac1 regulates platelet microparticles formation and rheumatoid arthritis deterioration. Platelets, 2020, 31, 112-119.	1.1	8

#	Article	IF	CITATIONS
457	Extracellular vesicles derived from pancreatic cancer cells BXPC3 or breast cancer cells MCF7 induce a permanent procoagulant shift to endothelial cells. Thrombosis Research, 2020, 187, 170-179.	0.8	6
458	Exosomes, microvesicles, and their friends in solid tumors. , 2020, , 39-80.		3
459	Increased microvesicle-associated thrombin generation in patients with immune thrombocytopenia after initiation of thrombopoietin receptor agonists. Platelets, 2020, 31, 322-328.	1.1	6
460	Identification of Fibrinogen as a Key Anti-Apoptotic Factor in Human Fresh Frozen Plasma for Protecting Endothelial Cells In Vitro. Shock, 2020, 53, 646-652.	1.0	16
461	Platelets and Platelet Extracellular Vesicles in Hemostasis and Sepsis. Journal of Investigative Medicine, 2020, 68, 813-820.	0.7	53
462	Impact of Epicatechin on the Procoagulant Activities of Microparticles. Nutrients, 2020, 12, 2935.	1.7	6
463	Platelet Extracellular Vesicles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 87-96.	1.1	83
464	Extracellular vesicle signalling in atherosclerosis. Cellular Signalling, 2020, 75, 109751.	1.7	27
465	Extracellular vesicles as biomarkers in liver diseases: A clinician's point of view. Journal of Hepatology, 2020, 73, 1507-1525.	1.8	105
466	Pursuing mechanisms of extracellular vesicle formation. Effects of sample processing. Advances in Biomembranes and Lipid Self-Assembly, 2020, 32, 113-155.	0.3	8
467	A review of the role of extracellular vesicles in neonatal physiology and pathology. Pediatric Research, 2021, 90, 289-299.	1.1	4
468	Characterization and origins of cell-free mitochondria in healthy murine and human blood. Mitochondrion, 2020, 54, 102-112.	1.6	35
469	Elevated levels of procoagulant microvesicles in patients with dengue fever. Future Virology, 2020, 15, 701-706.	0.9	4
470	Oxidative Stress Product, 4-Hydroxy-2-Nonenal, Induces the Release of Tissue Factor-Positive Microvesicles From Perivascular Cells Into Circulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 250-265.	1.1	12
471	Mode of induction of platelet-derived extracellular vesicles is a critical determinant of their phenotype and function. Scientific Reports, 2020, 10, 18061.	1.6	24
472	Therapeutic plasma exchange clears circulating soluble PD-L1 and PD-L1-positive extracellular vesicles. , 2020, 8, e001113.		32
473	Flow Cytometric Assessment of Endothelial and Platelet Microparticles in Patients With Atrial Fibrillation Treated With Dabigatran. Clinical and Applied Thrombosis/Hemostasis, 2020, 26, 107602962097246.	0.7	6
474	Use of Thrombodynamics for revealing the participation of platelet, erythrocyte, endothelial, and monocyte microparticles in coagulation activation and propagation. PLoS ONE, 2020, 15, e0227932.	1.1	19

#	Article	IF	CITATIONS
475	Phosphatidylserine positive microparticles improve hemostasis in in-vitro hemophilia A plasma models. Scientific Reports, 2020, 10, 7871.	1.6	11
476	Novel Biomarkers for Evaluation of Endothelial Dysfunction. Angiology, 2020, 71, 397-410.	0.8	84
477	Labelâ€free identification and chemical characterisation of single extracellular vesicles and lipoproteins by synchronous Rayleigh and Raman scattering. Journal of Extracellular Vesicles, 2020, 9, 1730134.	5.5	37
478	Plasma mEV levels in Ghanain malaria patients with low parasitaemia are higher than those of healthy controls, raising the potential for parasite markers in mEVs as diagnostic targets. Journal of Extracellular Vesicles, 2020, 9, 1697124.	5.5	24
479	Neutrophil microvesicles drive atherosclerosis by delivering miR-155 to atheroprone endothelium. Nature Communications, 2020, 11, 214.	5.8	103
480	Hemostatic changes by thrombopoietin-receptor agonists in immune thrombocytopenia patients. Blood Reviews, 2021, 47, 100774.	2.8	12
481	Expression of tissue factor mRNA in thrombosis associated with antiphospholipid syndrome. Journal of Thrombosis and Thrombolysis, 2021, 51, 370-378.	1.0	1
482	Production of erythrocyte microparticles in a sub-hemolytic environment. Journal of Artificial Organs, 2021, 24, 135-145.	0.4	9
483	Microparticles: a link to increased thrombin generation. Blood Coagulation and Fibrinolysis, 2021, 32, 204-208.	0.5	4
484	Diets and Cellular-Derived Microparticles: Weighing a Plausible Link With Cerebral Small Vessel Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 632131.	1.1	6
485	Biomarkers involved in evaluation of platelets function in South-Eastern Romanian patients with hematological malignancies subtypes. Medicine (United States), 2021, 100, e25944.	0.4	7
486	Platelets and extracellular vesicles and their cross talk with cancer. Blood, 2021, 137, 3192-3200.	0.6	78
487	New Insights Into Platelet-enriched miRNAs: Production, Functions, Roles in Tumors, and Potential Targets for Tumor Diagnosis and Treatment. Molecular Cancer Therapeutics, 2021, 20, 1359-1366.	1.9	6
488	Coagulation disorders in Chagas disease: A pathophysiological systematic review and meta-analysis. Thrombosis Research, 2021, 201, 73-83.	0.8	10
489	COVID-19 Infection and Circulating Microparticles—Reviewing Evidence as Microthrombogenic Risk Factor for Cerebral Small Vessel Disease. Molecular Neurobiology, 2021, 58, 4188-4215.	1.9	16
490	Horizontal MicroRNA Transfer by Platelets – Evidence and Implications. Frontiers in Physiology, 2021, 12, 678362.	1.3	11
491	The role of the calibrated automated thrombogram in neonates: describing mechanisms of neonatal haemostasis and evaluating haemostatic drugs. European Journal of Pediatrics, 2022, 181, 23-33.	1.3	1
492	Extracellular Vesicles in Blood: Sources, Effects, and Applications. International Journal of Molecular Sciences, 2021, 22, 8163.	1.8	68

ARTICLE IF CITATIONS Extracellular Vesicles and Thrombosis: Update on the Clinical and Experimental Evidence. 493 1.8 35 International Journal of Molecular Sciences, 2021, 22, 9317. Extracellular Vesicles: A Double-Edged Sword in Sepsis. Pharmaceuticals, 2021, 14, 829. 494 1.7 24 Characterization and Therapeutic Use of Extracellular Vesicles Derived from Platelets. International 495 1.8 36 Journal of Molecular Sciences, 2021, 22, 9701. Responses of platelet CD markers and indices to resistance exercise with and without blood flow restriction in patients with type 2 diabetes. Clinical Hemorheology and Microcirculation, 2022, 80, 496 281-289. Tetraspanins and Cancer Metastasis., 2010, , 555-598. 498 1 Flow Cytometric Analysis of Cell Membrane Microparticles. Methods in Molecular Biology, 2008, 484, 499 0.4 79-93. 502 Statin and endothelial cell-derived microparticles. Thrombosis and Haemostasis, 2008, 100, 377-378. 1.8 11 Platelet CD36 mediates interactions with endothelial cell $\hat{a} \in CD36$ mediates and contributes to 134 thrombosis in mice. Journal of Clinical Investigation, 2008, 118, 1934-43. Circulating Mesenchymal Stem Cells Microparticles in Patients with Cerebrovascular Disease. PLoS 504 1.1 44 ONE, 2012, 7, e37036. Circulating Contact-Pathway-Activating Microparticles Together with Factors IXa and XIa Induce 1.1 Spontaneous Clotting in Plasma of Hematology and Cardiologic Patients. PLoS ONE, 2014, 9, e87692. Alterations in Adhesion Molecules, Pro-Inflammatory Cytokines and Cell-Derived Microparticles Contribute to Intima-Media Thickness and Symptoms in Postmenopausal Women. PLoS ONE, 2015, 10, 506 1.1 40 e0120990. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In 1.1 Vivo. PLoS ONE, 2015, 10, e0143137. Plasma Membrane-derived Vesicles (PMVs) in G6PD Deficient Patients. SOJ Immunology, 2013, 1, . 508 0.2 1 Cell-Derived Microparticles and Acute Coronary Syndromes: Is there a Predictive Role for 509 1.2 Microparticles?. Current Medicinal Chemistry, 2020, 27, 4440-4468. Endothelial microparticles as markers of endothelial dysfunction. Frontiers in Bioscience - Landmark, 510 3.0 274 2004, 9, 1118. Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and 1.8 Therapy. International Journal of Molecular Sciences, 2021, 22, 153. Platelet Microparticle Controversial Role in Cancer. Advanced Pharmaceutical Bulletin, 2021, 11, 39-55. 512 0.6 8 The role of tissue factor in normal pregnancy and in the development of preeclampsia: A review. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, 19 Czechoslovakia, 2015, 159, 192-196.

		CITATION	Report	
#	Article		IF	CITATIONS
514	MicroRNAs in Platelets: Should I Stay or Should I Go?. , 0, , .			2
515	The role of tissue factor in thrombosis and hemostasis. Physiological Research, 2007, 50	6, 685-695.	0.4	17
517	Mikropartikel. , 2010, , 89-95.			0
518	Das thrombozytÃre Proteom. , 2010, , 51-59.			0
519	The Platelet as an Immunomodulator: The Old Thespian with New Roles in Atheroscleros Autoimmune Disease. , 0, , .	sis, Sepsis and		0
520	Novos conceitos sobre a fisiologia da hemostasia. Revista Da Universidade Vale Do Rio V 218-233.	Verde, 2012, 10,	0.1	1
521	Ultrastructure of Endothelium and Microparticles. , 2013, , 101-135.			0
522	Overview of Extracellular Vesicles in Health and Disease. , 2014, , 1-46.			0
523	Platelet Microparticles: Formation and Properties. Nauchno-prakticheskii Zhurnal «Pat 4-13.	ogenez», 2017, ,	0.2	6
524	Evaluation of circulating microparticles in healthy medical workers occupationally exposionizing radiation: A preliminary study. International Journal of Occupational Medicine a Environmental Health, 2018, 31, 783-793.		0.6	2
527	Phosphatidylserine Exposing Extracellular Vesicles in Pre-eclamptic Patients. Frontiers in 2021, 8, 761453.	ı Medicine,	1.2	5
528	The Dynamic of Extracellular Vesicles in Patients With Subacute Stroke: Results of the â and Perfusion—Training-Induced Changes After Stroke―(BAPTISe) Study. Frontiers ir 12, 731013.		1.1	6
530	Plasma levels of plateletâ€derived microvesicles are associated with risk of future venou thromboembolism. Journal of Thrombosis and Haemostasis, 2022, 20, 899-908.	JS	1.9	8
531	Rosuvastatin treatment decreases plasma procoagulant phospholipid activity after a VT randomized controlled trial. Journal of Thrombosis and Haemostasis, 2022, 20, 877-887	E: A 7.	1.9	3
532	Angiogenic content of microparticles in patients with diabetes and coronary artery dise networks of endothelial dysfunction. Cardiovascular Diabetology, 2022, 21, 17.	ase predicts	2.7	17
533	Platelet-Released Factors: Their Role in Viral Disease and Applications for Extracellular V Therapy. International Journal of Molecular Sciences, 2022, 23, 2321.	esicle (EV)	1.8	3
534	Platelet-released extracellular vesicles: the effects of thrombin activation. Cellular and N Life Sciences, 2022, 79, 190.	1olecular	2.4	23
535	Procoagulant Microvesicles in COVID-19 Patients: Possible Modulators of Inflammation Prothrombotic Tendency. Infection and Drug Resistance, 2022, Volume 15, 2359-2368.		1.1	8

\sim	 	D	ORT
		I Y F D	ועראי
\sim		NEL	

#	Article	IF	CITATIONS
536	The pathobiology of platelet and megakaryocyte extracellular vesicles: A (c)lot has changed. Journal of Thrombosis and Haemostasis, 2022, 20, 1550-1558.	1.9	8
537	Platelet Extracellular Vesicles Are Taken up by Canine T Lymphocytes but Do Not Play a Role in Their Proliferation, Differentiation and Cytokine Production In Vitro. International Journal of Molecular Sciences, 2022, 23, 5504.	1.8	2
538	Platelets and (Lymph)angiogenesis. Cold Spring Harbor Perspectives in Medicine, 2023, 13, a041174.	2.9	7
539	Methods to evaluate vascular function: a crucial approach towards predictive, preventive, and personalised medicine. EPMA Journal, 2022, 13, 209-235.	3.3	10
541	Circulating Extracellular Vesicles Are Strongly Associated With Cardiovascular Risk Markers. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	4
542	Extracellular Vesicles as Drivers of Immunoinflammation in Atherothrombosis. Cells, 2022, 11, 1845.	1.8	16
543	Blood Cell-Derived Microvesicles in Hematological Diseases and beyond. Biomolecules, 2022, 12, 803.	1.8	14
544	Rosmarinic Acid Inhibits Platelet Aggregation and Neointimal Hyperplasia In Vivo and Vascular Smooth Muscle Cell Dedifferentiation, Proliferation, and Migration In Vitro via Activation of the Keap1-Nrf2-ARE Antioxidant System. Journal of Agricultural and Food Chemistry, 2022, 70, 7420-7440.	2.4	6
545	Insights Into Platelet-Derived MicroRNAs in Cardiovascular and Oncologic Diseases: Potential Predictor and Therapeutic Target. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	4
546	Platelets at the Crossroads of Pro-Inflammatory and Resolution Pathways during Inflammation. Cells, 2022, 11, 1957.	1.8	21
547	Extracellular vesicles and lipoproteins $\hat{a} \in ``$ Smart messengers of blood cells in the circulation. , 2022, 1, .		6
548	The Vascular Endothelium and Coagulation: Homeostasis, Disease, and Treatment, with a Focus on the Von Willebrand Factor and Factors VIII and V. International Journal of Molecular Sciences, 2022, 23, 8283.	1.8	24
549	Platelet extracellular vesicles and the secretory interactome join forces in health and disease. Immunological Reviews, 2022, 312, 38-51.	2.8	15
550	Pathophysiology of Coagulation and Emerging Roles for Extracellular Vesicles in Coagulation Cascades and Disorders. Journal of Clinical Medicine, 2022, 11, 4932.	1.0	14
551	Extracellular vesicles in atherothrombosis: From biomarkers and precision medicine to therapeutic targets. Immunological Reviews, 2022, 312, 6-19.	2.8	19
552	Human platelet lysateâ€derived extracellular vesicles enhance angiogenesis through <scp>miR</scp> â€126. Cell Proliferation, 2022, 55, .	2.4	13
553	Red Blood Cell Microparticles Limit Hematoma Growth in Intracerebral Hemorrhage. Stroke, 2022, 53, 3182-3191.	1.0	6
554	The Pathophysiological Role of Platelet-Derived Extracellular Vesicles. Seminars in Thrombosis and Hemostasis, 2023, 49, 279-283.	1.5	10

#	Article	IF	CITATIONS
555	Autologous Protein Solution processing alters lymphoid and myeloid cell populations and modulates gene expression dependent on cell type. Arthritis Research and Therapy, 2022, 24, .	1.6	1
556	Exploring Transcriptomic Landscapes in Red Blood Cells, in Their Extracellular Vesicles and on a Single-Cell Level. International Journal of Molecular Sciences, 2022, 23, 12897.	1.8	5
557	In-line Leukoreduction Filters; a New Source of Microparticle for Human and Animal Study. Transfusion and Apheresis Science, 2022, , 103602.	0.5	1
558	Current Perspectives on Adult Mesenchymal Stromal Cell-Derived Extracellular Vesicles: Biological Features and Clinical Indications. Biomedicines, 2022, 10, 2822.	1.4	8
559	The Effect of Extracellular Vesicles on Thrombosis. Journal of Cardiovascular Translational Research, 2023, 16, 682-697.	1.1	5
560	Red Cell Microparticles Suppress Hematoma Growth Following Intracerebral Hemorrhage in Chronic Nicotine-Exposed Rats. International Journal of Molecular Sciences, 2022, 23, 15167.	1.8	1
561	Megakaryocyte-Derived IL-8 Acts as a Paracrine Factor for Prostate Cancer Aggressiveness through CXCR2 Activation and Antagonistic AR Downregulation. Biomolecules and Therapeutics, 2023, 31, 210-218.	1.1	1
562	The evolving knowledge on primary hemostasis in patients with cirrhosis: A comprehensive review. Hepatology, 2024, 79, 460-481.	3.6	9
563	Microparticle Phosphatidylserine Mediates Coagulation: Involvement in Tumor Progression and Metastasis. Cancers, 2023, 15, 1957.	1.7	3
564	Elevated Levels of Procoagulant Microvesicles and Tissue-Factor Bearing Microvesicles in Malaria Patients. International Journal of General Medicine, 0, Volume 16, 1205-1215.	0.8	2