A mitochondrial uncoupling artifact can be caused by east

Biochemical Journal 356, 779-789 DOI: 10.1042/bj3560779

Citation Report

#	Article	IF	CITATIONS
1	Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obesity Reviews, 2001, 2, 255-265.	3.1	216
3	Uncoupling ProteinsHow Do They Work and How Are They Regulated. IUBMB Life, 2001, 52, 175-179.	1.5	18
4	No Evidence for a Basal, Retinoic, or Superoxide-induced Uncoupling Activity of the Uncoupling Protein 2 Present in Spleen or Lung Mitochondria. Journal of Biological Chemistry, 2002, 277, 26268-26275.	1.6	150
5	Invited Review: Uncoupling proteins and thermoregulation. Journal of Applied Physiology, 2002, 92, 2187-2198.	1.2	228
6	The Basal Proton Conductance of Skeletal Muscle Mitochondria from Transgenic Mice Overexpressing or Lacking Uncoupling Protein-3. Journal of Biological Chemistry, 2002, 277, 2773-2778.	1.6	180
7	Superoxide Activates Mitochondrial Uncoupling Protein 2 from the Matrix Side. Journal of Biological Chemistry, 2002, 277, 47129-47135.	1.6	355
8	Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria. Biochemical Journal, 2002, 361, 49.	1.7	73
9	Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria. Biochemical Journal, 2002, 361, 49-56.	1.7	107
10	The Uncoupling Proteins Family: From Thermogenesis to the Regulation of ROS. Cell and Molecular Response To Stress, 2002, , 257-268.	0.4	2
11	Uncoupling of protein-3 induces an uncontrolled uncoupling of mitochondria after expression in muscle derived L6 cells. FEBS Journal, 2002, 269, 1373-1381.	0.2	10
12	Superoxide activates mitochondrial uncoupling proteins. Nature, 2002, 415, 96-99.	13.7	1,236
13	Does any yeast mitochondrial carrier have a native uncoupling protein function?. Journal of Bioenergetics and Biomembranes, 2002, 34, 165-176.	1.0	31
14	Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO Journal, 2002, 21, 572-579.	3.5	99
15	The oncogenic RAS2val19 mutation locks respiration, independently of PKA, in a mode prone to generate ROS. EMBO Journal, 2003, 22, 3337-3345.	3.5	101
16	Human Uncoupling Proteinâ€3 and Obesity: An Update. Obesity, 2003, 11, 1429-1443.	4.0	68
17	The â€~Novel'â€~Uncoupling' Proteins UCP2 and UCP3: What Do They Really do? Pros and Cons for Suggested Functions. Experimental Physiology, 2003, 88, 65-84.	0.9	203
18	Oxidative phosphorylation, mitochondrial proton cycling, free-radical production and aging. Advances in Cell Aging and Gerontology, 2003, 14, 35-68.	0.1	13
19	A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO Journal, 2003, 22, 4103-4110.	3.5	519

#	Article	IF	CITATIONS
20	Fasting, lipid metabolism, and triiodothyronine in rat gastrocnemius muscle: interrelated roles of uncoupling protein 3, mitochondrial thioesterase, and coenzyme Q. FASEB Journal, 2003, 17, 1112-1114.	0.2	40
21	Superoxide Stimulates a Proton Leak in Potato Mitochondria That Is Related to the Activity of Uncoupling Protein. Journal of Biological Chemistry, 2003, 278, 22298-22302.	1.6	123
22	Physiological significance of uncoupling protein-3: a role in fatty acid handling?. Advances in Molecular and Cell Biology, 2003, 33, 271-293.	0.1	0
23	Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radical Biology and Medicine, 2004, 37, 755-767.	1.3	900
24	Functional Characterization of a Drosophila Mitochondrial Uncoupling Protein. Journal of Bioenergetics and Biomembranes, 2004, 36, 219-228.	1.0	39
25	Brown Adipose Tissue: Function and Physiological Significance. Physiological Reviews, 2004, 84, 277-359.	13.1	5,263
26	Ubiquinone is not required for proton conductance by uncoupling protein 1 in yeast mitochondria. Biochemical Journal, 2004, 379, 309-315.	1.7	51
27	Secondary-structure characterization by far-UV CD of highly purified uncoupling protein 1 expressed in yeast. Biochemical Journal, 2004, 380, 139-145.	1.7	17
28	The mitochondrial uncoupling-protein homologues. Nature Reviews Molecular Cell Biology, 2005, 6, 248-261.	16.1	580
29	Respiratory uncoupling by UCP1 and UCP2 and superoxide generation in endothelial cell mitochondria. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E71-E79.	1.8	45
30	The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochemical Journal, 2005, 392, 353-362.	1.7	321
31	The reactions catalysed by the mitochondrial uncoupling proteins UCP2 and UCP3. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1709, 35-44.	0.5	125
32	Mitochondrial UCPs: New insights into regulation and impact. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 480-485.	0.5	123
33	Expression of UCP3 in CHO cells does not cause uncoupling, but controls mitochondrial activity in the presence of glucose. Biochemical Journal, 2006, 393, 431-439.	1.7	48
34	Uncoupling proteins: A role in protection against reactive oxygen species—or not?. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 449-458.	0.5	167
35	Functional analysis of skunk cabbage SfUCPB, a unique uncoupling protein lacking the fifth transmembrane domain, in yeast cells. Biochemical and Biophysical Research Communications, 2006, 349, 383-390.	1.0	9
36	Synergy of fatty acid and reactive alkenal activation of proton conductance through uncoupling protein 1 in mitochondria. Biochemical Journal, 2006, 395, 619-628.	1.7	36
37	Enzymic analysis of NADPH metabolism in β-lactam-producing Penicillium chrysogenum: Presence of a mitochondrial NADPH dehydrogenase. Metabolic Engineering, 2006, 8, 91-101.	3.6	42

#	Article	IF	Citations
38	Mitochondrial UCP4 Mediates an Adaptive Shift in Energy Metabolism and Increases the Resistance of Neurons to Metabolic and Oxidative Stress. NeuroMolecular Medicine, 2006, 8, 389-414.	1.8	167
39	Uncoupling protein 1 affects the yeast mitoproteome and oxygen free radical production. Free Radical Biology and Medicine, 2006, 40, 303-315.	1.3	21
40	Mitochondrial uncoupling proteins: New insights from functional and proteomic studies. Free Radical Biology and Medicine, 2006, 40, 1097-1107.	1.3	29
41	Protein-mediated energy-dissipating pathways in mitochondria. Chemico-Biological Interactions, 2006, 161, 57-68.	1.7	11
42	Protein-mediated energy-dissipating pathways in mitochondria. Chemico-Biological Interactions, 2006, 163, 133-144.	1.7	27
43	Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance. Cardiovascular Research, 2006, 72, 210-219.	1.8	157
44	Mitoenergetic failure in Alzheimer disease. American Journal of Physiology - Cell Physiology, 2007, 292, C8-C23.	2.1	126
45	Cold-induced alterations of phospholipid fatty acyl composition in brown adipose tissue mitochondria are independent of uncoupling protein-1. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1086-R1093.	0.9	27
46	The energetic implications of uncoupling protein-3 in skeletal muscle. Applied Physiology, Nutrition and Metabolism, 2007, 32, 884-894.	0.9	35
47	Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nature Cell Biology, 2007, 9, 445-452.	4.6	307
48	Mitochondrial uncoupling proteins—What is their physiological role?. Free Radical Biology and Medicine, 2007, 43, 1351-1371.	1.3	284
49	UCPs — unlikely calcium porters. Nature Cell Biology, 2008, 10, 1235-1237.	4.6	88
50	UCP2/3 — likely to be fundamental for mitochondrial Ca2+ uniport. Nature Cell Biology, 2008, 10, 1237-1240.	4.6	53
51	An ancient look at UCP1. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 637-641.	0.5	57
52	Mitochondrial Ca2+, the secret behind the function of uncoupling proteins 2 and 3?. Cell Calcium, 2008, 44, 36-50.	1.1	58
53	Essential Role for Uncoupling Protein-3 in Mitochondrial Adaptation to Fasting but Not in Fatty Acid Oxidation or Fatty Acid Anion Export. Journal of Biological Chemistry, 2008, 283, 25124-25131.	1.6	88
54	Reptilian uncoupling protein: functionality and expression in sub-zero temperatures. Journal of Experimental Biology, 2008, 211, 1456-1462.	0.8	23
55	Long-term fasting decreases mitochondrial avian UCP-mediated oxygen consumption in hypometabolic king penguins. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R92-R100.	0.9	24

#	Article	IF	CITATIONS
56	Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis. BMC Evolutionary Biology, 2009, 9, 4.	3.2	67
57	UCP2, a metabolic sensor coupling glucose oxidation to mitochondrial metabolism?. IUBMB Life, 2009, 61, 762-767.	1.5	79
58	Uncoupling protein-1 (UCP1) contributes to the basal proton conductance of brown adipose tissue mitochondria. Journal of Bioenergetics and Biomembranes, 2009, 41, 335-342.	1.0	55
59	Uncoupling proteins: A complex journey to function discovery. BioFactors, 2009, 35, 417-428.	2.6	69
60	HDMCP uncouples yeast mitochondrial respiration and alleviates steatosis in L02 and hepG2 cells by decreasing ATP and H2O2 levels: A novel mechanism for NAFLD. Journal of Hepatology, 2009, 50, 1019-1028.	1.8	40
61	Uncoupling protein 1 inhibition by purine nucleotides is under the control of the endogenous ubiquinone redox state. Biochemical Journal, 2009, 424, 297-306.	1.7	29
62	Uncoupling protein-1 is not leaky. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 773-784.	0.5	78
63	Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans). International Journal of Obesity, 2010, 34, S7-S16.	1.6	150
64	Mitochondrial uncoupling protein 2 in pancreatic <i>β</i> ells. Diabetes, Obesity and Metabolism, 2010, 12, 134-140.	2.2	22
65	Not all mitochondrial carrier proteins support permeability transition pore formation: no involvement of uncoupling protein 1. Bioscience Reports, 2010, 30, 187-192.	1.1	11
66	Molecular cloning of lamprey uncoupling protein and assessment of its uncoupling activity using a yeast heterologous expression system. Mitochondrion, 2010, 10, 54-61.	1.6	6
67	Molecular cloning of amphioxus uncoupling protein and assessment of its uncoupling activity using a yeast heterologous expression system. Biochemical and Biophysical Research Communications, 2010, 400, 701-706.	1.0	5
68	Compromised respiratory adaptation and thermoregulation in aging and age-related diseases. Ageing Research Reviews, 2010, 9, 20-40.	5.0	17
69	Test Systems to Study the Structure and Function of Uncoupling Protein 1: A Critical Overview. Frontiers in Endocrinology, 2011, 2, 63.	1.5	13
70	Alterations of glucose-dependent insulinotropic polypeptide (GIP) during cold acclimation. Regulatory Peptides, 2011, 167, 91-96.	1.9	9
71	The Regulation and Physiology of Mitochondrial Proton Leak. Physiology, 2011, 26, 192-205.	1.6	335
72	A High-Throughput Assay for Modulators of NNT Activity in Permeabilized Yeast Cells. Journal of Biomolecular Screening, 2011, 16, 734-743.	2.6	0
73	Renaissance of Brown Adipose Tissue. Hormone Research in Paediatrics, 2011, 75, 231-239.	0.8	47

		Report	
#	Article	IF	CITATIONS
74	Emerging characterization of the role of SIRT3-mediated mitochondrial protein deacetylation in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H2191-H2197.	1.5	56
75	Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 185-193.	1.2	30
76	Fatty Acids Change the Conformation of Uncoupling Protein 1 (UCP1). Journal of Biological Chemistry, 2012, 287, 36845-36853.	1.6	47
77	Functional characterization of UCP1 in mammalian HEK293 cells excludes mitochondrial uncoupling artefacts and reveals no contribution to basal proton leak. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1660-1670.	0.5	46
78	Brown Adipose Tissue. , 2012, , 39-69.		11
79	Adipose Tissue Biology. , 2012, , .		16
80	Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson's disease. Translational Neurodegeneration, 2012, 1, 3.	3.6	67
81	Overexpression of membrane proteins from higher eukaryotes in yeasts. Applied Microbiology and Biotechnology, 2014, 98, 7671-7698.	1.7	27
82	Trends in Thermostability Provide Information on the Nature of Substrate, Inhibitor, and Lipid Interactions with Mitochondrial Carriers. Journal of Biological Chemistry, 2015, 290, 8206-8217.	1.6	67
83	Uncoupling protein 1 binds one nucleotide per monomer and is stabilized by tightly bound cardiolipin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6973-6978.	3.3	88
84	Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature, 2016, 532, 112-116.	13.7	341
85	UCPs, at the interface between bioenergetics and metabolism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2443-2456.	1.9	90
86	The Pancreatic Î ² -Cell: A Bioenergetic Perspective. Physiological Reviews, 2016, 96, 1385-1447.	13.1	86
87	Brown Adipose Tissue. , 2017, , 91-147.		21
88	Cell-free production and characterisation of human uncoupling protein 1–3. Biochemistry and Biophysics Reports, 2017, 10, 276-281.	0.7	3
90	Metabolic Reprogramming in Amyotrophic Lateral Sclerosis. Scientific Reports, 2018, 8, 3953.	1.6	69
91	Evolutionary Genetics of Hypoxia and Cold Tolerance in Mammals. Journal of Molecular Evolution, 2018, 86, 618-634.	0.8	15
92	Elevated UCP1 levels are sufficient to improve glucose uptake in human white adipocytes. Redox Biology, 2019, 26, 101286.	3.9	37

#	Article	IF	CITATIONS
93	Molecular evolution of thermogenic uncoupling protein 1 and implications for medical intervention of human disease. Molecular Aspects of Medicine, 2019, 68, 6-17.	2.7	4
94	Roquin is a major mediator of iron-regulated changes to transferrin receptor-1 mRNA stability. IScience, 2021, 24, 102360.	1.9	10
95	Mitochondrial proton leaks and uncoupling proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148428.	0.5	67
96	Comparative functional analyses of UCP1 to unravel evolution, ecophysiology and mechanisms of mammalian thermogenesis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2021, 255, 110613.	0.7	2
99	UCP2 as a Cancer Target through Energy Metabolism and Oxidative Stress Control. International Journal of Molecular Sciences, 2022, 23, 15077.	1.8	10