Lung tissue mechanics and extracellular matrix compos

Journal of Applied Physiology 90, 1400-1406 DOI: 10.1152/jappl.2001.90.4.1400

Citation Report

#	Article	IF	CITATIONS
1	Lung Tissue Mechanics and Extracellular Matrix Remodeling in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1067-1071.	2.5	155
2	FAS Ligand Triggers Pulmonary Silicosis. Journal of Experimental Medicine, 2001, 194, 155-164.	4.2	106
3	Comparison of rat and mouse pulmonary tissue mechanical properties and histology. Journal of Applied Physiology, 2002, 92, 230-234.	1.2	34
4	Apoptosis Underlies Immunopathogenic Mechanisms in Acute Silicosis. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 78-84.	1.4	64
5	Acute Remodeling of Parenchyma in Pulmonary and Extrapulmonary ARDS. An Autopsy Study of Collagen-Elastic System Fibers. Pathology Research and Practice, 2002, 198, 355-361.	1.0	48
6	Synovial Remodeling Process Induced by Type V Collagen Immunization in Rabbits. Pathology Research and Practice, 2003, 199, 605-612.	1.0	12
7	On the preparation of lung strip for tissue mechanics measurement. Respiratory Physiology and Neurobiology, 2003, 134, 255-262.	0.7	14
8	Effect of Corticosteroid on Lung Parenchyma Remodeling at an Early Phase of Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 677-684.	2.5	94
9	Therapeutic potential of a new phosphodiesterase inhibitor in acute lung injury. European Respiratory Journal, 2003, 22, 20-27.	3.1	50
10	Fibrillin-1 and elastin are differentially expressed in hypertrophic scars and keloids. Wound Repair and Regeneration, 2004, 12, 169-174.	1.5	105
11	Time course of respiratory mechanics and pulmonary structural remodelling in acute lung injury. Respiratory Physiology and Neurobiology, 2004, 143, 49-61.	0.7	24
12	Mechanical properties of mouse distal lung: in vivo versus in vitro comparison. Respiratory Physiology and Neurobiology, 2004, 143, 77-86.	0.7	22
13	What increases type III procollagen mRNA levels in lung tissue: stress induced by changes in force or amplitude?. Respiratory Physiology and Neurobiology, 2004, 144, 59-70.	0.7	37
14	Collagen and elastic system in the remodelling process of major types of idiopathic interstitial pneumonias (IIP). Histopathology, 2005, 46, 413-421.	1.6	48
15	Effect of Long-Term Inhalation of Toner on Extracellular Matrix in the Lungs of Rats In Vivo. Inhalation Toxicology, 2005, 17, 153-159.	0.8	17
16	Lung Parenchyma Remodeling in a Murine Model of Chronic Allergic Inflammation. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 829-837.	2.5	88
17	Mouse strain dependence of lung tissue mechanics: Role of specific extracellular matrix composition. Respiratory Physiology and Neurobiology, 2006, 152, 186-196.	0.7	11
18	Respiratory changes in a murine model of spontaneous systemic lupus erythematosus. Respiratory Physiology and Neurobiology, 2006, 153, 107-114.	0.7	4

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Apoptosis and extracellular matrix remodelling in human silicosis. Histopathology, 2006	, 49, 283-289.	1.6	27
20	Immune Cell Infiltration and Broncovascular Remodeling After Nitric Acid Nasal Instillation Mouse Bronchiolitis Obliterans Model. Lung, 2006, 184, 229-238.	on in a	1.4	6
21	Abnormal deposition of collagen/elastic vascular fibres and prognostic significance in id interstitial pneumonias. Thorax, 2007, 62, 428-437.	iopathic	2.7	37
22	Vitamin A deficiency alters pulmonary parenchymal collagen and tissue mechanics. Resp Physiology and Neurobiology, 2007, 156, 312-319.	biratory	0.7	9
23	Calcitonin Gene-Related Peptide (CGRP) as Hazard Marker for Lung Injury Induced by Du Toxicology, 2007, 19, 283-289.	ısts. Inhalation	0.8	7
24	Idiopathic and Collagen Vascular Disease Nonspecific Interstitial Pneumonia: Clinical Sig Remodeling Process. Lung, 2007, 185, 39-46.	nificance of	1.4	22
25	MR elastography of the lung with hyperpolarized ³ He. Magnetic Resonanc 2008, 59, 14-18.	e in Medicine,	1.9	44
26	Extracellular matrix mechanics in lung parenchymal diseases. Respiratory Physiology and Neurobiology, 2008, 163, 33-43.		0.7	125
27	Microcrystalline cellulose induces time-dependent lung functional and inflammatory cha Respiratory Physiology and Neurobiology, 2008, 164, 331-337.	inges.	0.7	4
28	Inflammatory related changes in lung tissue mechanics after bleomycin-induced lung inj Respiratory Physiology and Neurobiology, 2008, 160, 196-203.	ury.	0.7	8
29	Effects of amiodarone on lung tissue mechanics and parenchyma remodeling. Respirato and Neurobiology, 2008, 162, 126-131.	ry Physiology	0.7	2
30	Suppressive Oligodeoxynucleotides Inhibit Silica-Induced Pulmonary Inflammation. Journ Immunology, 2008, 180, 7648-7654.	nal of	0.4	40
31	Lung Parenchymal Mechanics in Health and Disease. Physiological Reviews, 2009, 89, 7	59-775.	13.1	159
32	Intratracheal instillation of bone marrow-derived cell in an experimental model of silicos Respiratory Physiology and Neurobiology, 2009, 169, 227-233.	is.	0.7	32
33	Lung Parenchymal Mechanics. , 2011, 1, 1317-1351.			139
34	Lung tissue mechanics as an emergent phenomenon. Journal of Applied Physiology, 201	1, 110, 1111-1118.	1.2	115
35	Bone marrow-derived mononuclear cell therapy attenuates silica-induced lung fibrosis. E Respiratory Journal, 2011, 37, 1217-1225.	uropean	3.1	51
36	Repeated Administration of Bone Marrow-Derived Cells Prevents Disease Progression in Silicosis. Cellular Physiology and Biochemistry, 2013, 32, 1681-1694.	Experimental	1.1	36

CITATION REPORT

#	Article	IF	CITATIONS
37	Overexpression of Apolipoprotein A1 in the Lung Abrogates Fibrosis in Experimental Silicosis. PLoS ONE, 2013, 8, e55827.	1.1	32
38	P2X7 Receptor Modulates Inflammatory and Functional Pulmonary Changes Induced by Silica. PLoS ONE, 2014, 9, e110185.	1.1	55
39	Pulmonary functional and morphological damage after exposure to tripoli dust. Respiratory Physiology and Neurobiology, 2014, 196, 17-24.	0.7	6
40	The Effect of Particle Deposition on Immunological Response as Measured byÂCytokine Production. , 2015, , 601-627.		Ο
41	Biomechanics of the Aging Lung Parenchyma. Engineering Materials and Processes, 2015, , 95-133.	0.2	11
42	Dasatinib Reduces Lung Inflammation and Fibrosis in Acute Experimental Silicosis. PLoS ONE, 2016, 11, e0147005.	1.1	58
43	Labeling mesenchymal cells with DMSA-coated gold and iron oxide nanoparticles: assessment of biocompatibility and potential applications. Journal of Nanobiotechnology, 2016, 14, 59.	4.2	39
44	Bosutinib Therapy Ameliorates Lung Inflammation and Fibrosis in Experimental Silicosis. Frontiers in Physiology, 2017, 8, 159.	1.3	52
45	Therapeutic effects of bone marrow-derived mononuclear cells from healthy or silicotic donors on recipient silicosis mice. Stem Cell Research and Therapy, 2017, 8, 259.	2.4	14
46	The Organophosphorus Pesticide Chlorpyrifos Induces Sex-Specific Airway Hyperreactivity in Adult Rats. Toxicological Sciences, 2018, 165, 244-253.	1.4	13
47	Therapeutic effects of adipose-tissue-derived mesenchymal stromal cells and their extracellular vesicles in experimental silicosis. Respiratory Research, 2018, 19, 104.	1.4	44
48	Zooming into the Matrix: Using Nonlinear Optical Microscopy to Visualize Collagen Remodeling in Asthmatic Airways. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 403-405.	2.5	4
49	Defective Fibrillar Collagen Organization by Fibroblasts Contributes to Airway Remodeling in Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 431-443.	2.5	66
50	Magnetic targeting increases mesenchymal stromal cell retention in lungs and enhances beneficial effects on pulmonary damage in experimental silicosis. Stem Cells Translational Medicine, 2020, 9, 1244-1256.	1.6	12
51	P2Y12 Receptor Antagonist Clopidogrel Attenuates Lung Inflammation Triggered by Silica Particles. Frontiers in Pharmacology, 2020, 11, 301.	1.6	8
52	Development of nintedanib nanosuspension for inhaled treatment of experimental silicosis. Bioengineering and Translational Medicine, 2023, 8, .	3.9	8
53	Lung inflammation induced by silica particles triggers hippocampal inflammation, synapse damage and memory impairment in mice. Journal of Neuroinflammation, 2022, 19, .	3.1	6