Phylogenetic Relationships within Cation Transporter I

Plant Physiology 126, 1646-1667 DOI: 10.1104/pp.126.4.1646

Citation Report

#	Article	IF	CITATIONS
1	Sodium Uptake in Arabidopsis Roots Is Regulated by Cyclic Nucleotides. Plant Physiology, 2001, 127, 1617-1625.	2.3	239
2	Strategies to identify transport systems in plants. Trends in Plant Science, 2001, 6, 577-585.	4.3	30
3	Structural Determinants of Ca2+ Transport in the Arabidopsis H+/Ca2+Antiporter CAX1. Journal of Biological Chemistry, 2001, 276, 43152-43159.	1.6	62
4	Combining Genetics and Cell Biology to Crack the Code of Plant Cell Calcium Signaling. Science Signaling, 2001, 2001, re13-re13.	1.6	24
5	Dominant Negative Guard Cell K+ Channel Mutants Reduce Inward-Rectifying K+ Currents and Light-Induced Stomatal Opening in Arabidopsis. Plant Physiology, 2001, 127, 473-485.	2.3	173
6	Regulation of CAX1, an Arabidopsis Ca2+/H+ Antiporter. Identification of an N-Terminal Autoinhibitory Domain. Plant Physiology, 2001, 127, 1020-1029.	2.3	102
7	Inventory of the Superfamily of P-Type Ion Pumps in Arabidopsis. Plant Physiology, 2001, 126, 696-706.	2.3	402
8	Genes Encoding Calmodulin-binding Proteins in the Arabidopsis Genome. Journal of Biological Chemistry, 2002, 277, 9840-9852.	1.6	199
9	Mechanism of N-terminal Autoinhibition in theArabidopsis Ca2+/H+ Antiporter CAX1. Journal of Biological Chemistry, 2002, 277, 26452-26459.	1.6	67
10	The Expression of HAK-Type K+ Transporters Is Regulated in Response to Salinity Stress in Common Ice Plant. Plant Physiology, 2002, 129, 1482-1493.	2.3	138
11	Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes and Development, 2002, 16, 339-350.	2.7	195
12	Inventory and Functional Characterization of the HAK Potassium Transporters of Rice. Plant Physiology, 2002, 130, 784-795.	2.3	299
13	Distinct N-Terminal Regulatory Domains of Ca2+/H+ Antiporters. Plant Physiology, 2002, 130, 1054-1062.	2.3	60
14	Genetic Manipulation of Vacuolar Proton Pumps and Transporters. Plant Physiology, 2002, 129, 967-973.	2.3	128
15	Genes and Proteins for Solute Transport and Sensing. The Arabidopsis Book, 2002, 1, e0092.	0.5	11
16	Characterization of CAX4, an Arabidopsis H+/Cation Antiporter. Plant Physiology, 2002, 128, 1245-1254.	2.3	109
17	A Mutation in the Arabidopsis KT2/KUP2 Potassium Transporter Gene Affects Shoot Cell Expansion. Plant Cell, 2002, 14, 119-131.	3.1	202
18	Arabidopsis and the Genetic Potential for the Phytoremediation of Toxic Elemental and Organic Pollutants. The Arabidopsis Book, 2002, 1, e0032.	0.5	31

#	Article	IF	Citations
	Electrophysiological Analysis of Cloned Cyclic Nucleotide-Gated Ion Channels. Plant Physiology,		
19	2002, 128, 400-410.	2.3	198
20	Outer Pore Residues Control the H+ and K+ Sensitivity of the Arabidopsis Potassium Channel AKT3. Plant Cell, 2002, 14, 1859-1868.	3.1	41
21	Calcium at the Crossroads of Signaling. Plant Cell, 2002, 14, S401-S417.	3.1	1,076
22	The Genetic Basis of Metal Hyperaccumulation in Plants. Critical Reviews in Plant Sciences, 2002, 21, 539-566.	2.7	357
23	Plants and sodium ions: keeping company with the enemy. Genome Biology, 2002, 3, reviews1017.1.	13.9	83
24	Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 299-309.	1.4	182
25	KCO1 is a component of the slow-vacuolar (SV) ion channel. FEBS Letters, 2002, 511, 28-32.	1.3	56
26	Phytoremediation of Metals Using Transgenic Plants. Critical Reviews in Plant Sciences, 2002, 21, 439-456.	2.7	254
27	Summaries of National Science Foundation-Sponsored Arabidopsis 2010 Projects and National Science Foundation-Sponsored Plant Genome Projects That Are Generating Arabidopsis Resources for the Community. Plant Physiology, 2002, 129, 394-437.	2.3	29
28	Limiting nutrients: an old problem with new solutions?. Current Opinion in Plant Biology, 2002, 5, 158-163.	3.5	43
29	Plant K + Transport: Not Just an Uphill Struggle. Current Biology, 2002, 12, R402-R404.	1.8	9
30	Identification and characterization of a NaCl-inducible vacuolar Na+ /H+ antiporter in Beta vulgaris. Physiologia Plantarum, 2002, 116, 206-212.	2.6	114
31	Vacuolar membrane localization of theArabidopsis†twoâ€pore' K+channel KCO1. Plant Journal, 2002, 29, 809-820.	2.8	113
32	Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant Journal, 2002, 31, 529-542.	2.8	139
33	The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant Journal, 2002, 31, 589-599.	2.8	298
34	A role for HKT1 in sodium uptake by wheat roots. Plant Journal, 2002, 32, 139-149.	2.8	250
35	Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant Journal, 2002, 32, 799-808.	2.8	174
36	NONSELECTIVECATIONCHANNELS INPLANTS. Annual Review of Plant Biology, 2002, 53, 67-107.	8.6	347

#	Article	IF	CITATIONS
37	Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology, 2002, 50, 587-597.	2.0	229
38	Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa. Plant Molecular Biology, 2002, 50, 623-633.	2.0	51
39	Molecular mechanisms of potassium and sodium uptake in plants. Plant and Soil, 2002, 247, 43-54.	1.8	151
40	Characterization of a family of vacuolar Na+/H+antiporters in Arabidopsis thaliana. Plant and Soil, 2003, 253, 245-256.	1.8	109
41	Selecting plants to minimise radiocaesium in the food chain. Plant and Soil, 2003, 249, 177-186.	1.8	62
42	MOLECULARMECHANISMS ANDREGULATION OFK+TRANSPORT INHIGHERPLANTS. Annual Review of Plant Biology, 2003, 54, 575-603.	8.6	530
43	Five-Group Distribution of the Shaker-like K + Channel Family in Higher Plants. Journal of Molecular Evolution, 2003, 56, 418-434.	0.8	98
44	Phytoremediation: an overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology, 2003, 61, 405-412.	1.7	335
45	Iron uptake, trafficking and homeostasis in plants. Planta, 2003, 216, 541-551.	1.6	546
46	Cytosolic potassium homeostasis revisited: 42 K-tracer analysis in Hordeum vulgare L. reveals set-point variations in [K +]. Planta, 2003, 217, 540-546.	1.6	60
47	Putative microtubule-associated proteins from the Arabidopsis genome. Protoplasma, 2003, 222, 61-74.	1.0	39
47 48	Putative microtubule-associated proteins from the Arabidopsis genome. Protoplasma, 2003, 222, 61-74. Genes for magnesium transport. Current Opinion in Plant Biology, 2003, 6, 263-267.	1.0 3.5	39 93
48	Genes for magnesium transport. Current Opinion in Plant Biology, 2003, 6, 263-267. Don't shoot the (second) messenger: endomembrane transporters and binding proteins modulate	3.5	93
48 49	Genes for magnesium transport. Current Opinion in Plant Biology, 2003, 6, 263-267. Donâ∈™t shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Current Opinion in Plant Biology, 2003, 6, 257-262. Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant	3.5 3.5	93 58
48 49 50	Genes for magnesium transport. Current Opinion in Plant Biology, 2003, 6, 263-267. Don't shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Current Opinion in Plant Biology, 2003, 6, 257-262. Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant Physiology and Biochemistry, 2003, 41, 945-954.	3.5 3.5 2.8	93 58 79
48 49 50 51	Genes for magnesium transport. Current Opinion in Plant Biology, 2003, 6, 263-267. Don't shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Current Opinion in Plant Biology, 2003, 6, 257-262. Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant Physiology and Biochemistry, 2003, 41, 945-954. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 2003, 27, 313-339. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in	3.5 3.5 2.8 3.9	93 58 79 1,214

#	ARTICLE	IF	CITATIONS
55	Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare. Plant, Cell and Environment, 2003, 26, 821-833.	2.8	75
56	Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant, Cell and Environment, 2003, 26, 1657-1672.	2.8	242
57	AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant Journal, 2003, 34, 685-695.	2.8	433
58	Sodium transport and HKT transporters: the rice model. Plant Journal, 2003, 34, 788-801.	2.8	378
59	ILR2, a novel gene regulating IAA conjugate sensitivity and metal transport in Arabidopsis thaliana. Plant Journal, 2003, 35, 523-534.	2.8	41
60	Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant Journal, 2003, 35, 675-692.	2.8	286
61	Vacuolar cation/H+exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant ofAtNHX1, theArabidopsisvacuolar Na+/H+antiporter. Plant Journal, 2003, 36, 229-239.	2.8	331
62	Isolation of AtSUC2promoter-GFP-marked companion cells for patch-clamp studies and expression profiling. Plant Journal, 2003, 36, 931-945.	2.8	85
63	Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2003, 157, 423-447.	3.5	2,243
64	Schizosaccharomyces pombe as a model for metal homeostasis in plant cells: the phytochelatinâ€dependent pathway is the main cadmium detoxification mechanism. New Phytologist, 2003, 159, 323-330.	3.5	67
65	Differential metalâ€ s pecific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytologist, 2003, 159, 411-419.	3.5	242
66	Thlaspi caerulescens , an attractive model species to study heavy metal hyperaccumulation in plants. New Phytologist, 2003, 159, 351-360.	3.5	319
67	Heavy metals and plants – model systems and hyperaccumulators. New Phytologist, 2003, 159, 289-293.	3.5	101
68	Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nature Biotechnology, 2003, 21, 1215-1221.	9.4	407
69	The hyperaccumulation of metals by plants. Advances in Botanical Research, 2003, 40, 63-105.	0.5	123
70	Mechanisms and Control of Nutrient Uptake in Plants. International Review of Cytology, 2003, 229, 73-114.	6.2	66
71	Structure and function of potassium channels in plants: some inferences about the molecular origin of inward rectification in KAT1 channels (Review). Molecular Membrane Biology, 2003, 20, 19-25.	2.0	20
72	Heavy metal signalling in plants: linking cellular and organismic responses. Topics in Current Genetics, 0, , 187-215.	0.7	57

#	Article	IF	CITATIONS
73	Calcium in Plants. Annals of Botany, 2003, 92, 487-511.	1.4	1,666
74	CNGCs: prime targets of plant cyclic nucleotide signalling?. Trends in Plant Science, 2003, 8, 286-293.	4.3	237
75	Molecular Approaches to Improve Salt Resistance in Crops: Facts and Perspectives. The Journal of Crop Improvement: Innovations in Practiceory and Research, 2003, 7, 67-98.	0.4	0
76	Requirement of Negative Residues, Asp 95 and Asp 105, in S2 on Membrane Integration of a Voltage-dependent K+Channel, KAT1. Bioscience, Biotechnology and Biochemistry, 2003, 67, 923-926.	0.6	2
77	Transition metal transporters in plants. Journal of Experimental Botany, 2003, 54, 2601-2613.	2.4	481
78	Poplar Metal Tolerance Protein 1 Confers Zinc Tolerance and Is an Oligomeric Vacuolar Zinc Transporter with an Essential Leucine Zipper Motif. Plant Cell, 2003, 15, 2911-2928.	3.1	170
79	The Arabidopsis cax1 Mutant Exhibits Impaired Ion Homeostasis, Development, and Hormonal Responses and Reveals Interplay among Vacuolar Transporters. Plant Cell, 2003, 15, 347-364.	3.1	207
80	ARAMEMNON, a Novel Database for Arabidopsis Integral Membrane Proteins. Plant Physiology, 2003, 131, 16-26.	2.3	624
81	Transcriptional Profiling of Arabidopsis Tissues Reveals the Unique Characteristics of the Pollen Transcriptome. Plant Physiology, 2003, 133, 713-725.	2.3	365
82	Genes Encoding Proteins of the Cation Diffusion Facilitator Family That Confer Manganese Tolerance. Plant Cell, 2003, 15, 1131-1142.	3.1	227
83	Differential Metal Selectivity and Gene Expression of Two Zinc Transporters from Rice. Plant Physiology, 2003, 133, 126-134.	2.3	307
84	Manganese Specificity Determinants in the ArabidopsisMetal/H+ Antiporter CAX2. Journal of Biological Chemistry, 2003, 278, 6610-6617.	1.6	98
85	Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12510-12515.	3.3	161
86	The K+ Channel KZM1 Mediates Potassium Uptake into the Phloem and Guard Cells of the C4 Grass Zea mays. Journal of Biological Chemistry, 2003, 278, 16973-16981.	1.6	92
87	Mutations in the Ca2+/H+ Transporter CAX1 Increase CBF/DREB1 Expression and the Cold-Acclimation Response in Arabidopsis. Plant Cell, 2003, 15, 2940-2951.	3.1	170
88	Plants Do It Differently. A New Basis for Potassium/Sodium Selectivity in the Pore of an Ion Channel. Plant Physiology, 2003, 132, 1353-1361.	2.3	107
89	Regulation of Potassium Transport in Leaves: from Molecular to Tissue Level. Annals of Botany, 2003, 92, 627-634.	1.4	155
90	Addition of a Peptide Tag at the C Terminus of AtHKT1 Inhibits Its Na+Transport. Bioscience, Biotechnology and Biochemistry, 2003, 67, 2291-2293.	0.6	5

	Сіта	tion Report	
#	Article	IF	Citations
91	Expression Profiles of Arabidopsis thaliana in Mineral Deficiencies Reveal Novel Transporters Involved in Metal Homeostasis. Journal of Biological Chemistry, 2003, 278, 47644-47653.	1.6	357
92	Cloning and Characterization of CXIP1, a Novel PICOT Domain-containing Arabidopsis Protein That Associates with CAX1. Journal of Biological Chemistry, 2003, 278, 6503-6509.	1.6	61
93	HLM1, an Essential Signaling Component in the Hypersensitive Response, Is a Member of the Cyclic Nucleotide–Gated Channel Ion Channel Family[W]. Plant Cell, 2003, 15, 365-379.	3.1	329
94	Iron homeostasis related genes in rice. Genetics and Molecular Biology, 2003, 26, 477-497.	0.6	108
95	NUTRITION Mineral Uptake. , 2003, , 617-625.		0
96	Iron transport in plants: Future research in view of a plant nutritionist and a molecular biologist. Soil Science and Plant Nutrition, 2004, 50, 1003-1012.	0.8	19
97	K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12242-12247.	3.3	293
98	Arabidopsis HMA2, a Divalent Heavy Metal-Transporting PIB-Type ATPase, Is Involved in Cytoplasmic Zn2 Homeostasis. Plant Physiology, 2004, 136, 3712-3723.	2+ 2.3	206
99	Isolation and Functional Characterization of Ca2+/H+ Antiporters from Cyanobacteria. Journal of Biological Chemistry, 2004, 279, 4330-4338.	1.6	54
100	Expression of KT/KUP Genes in Arabidopsis and the Role of Root Hairs in K+ Uptake. Plant Physiology, 2004, 134, 1135-1145.	2.3	296
101	P-Type ATPase Heavy Metal Transporters with Roles in Essential Zinc Homeostasis in Arabidopsis. Plant Cell, 2004, 16, 1327-1339.	3.1	646
102	Update on Plant Ionomics: Figure 1 Plant Physiology, 2004, 136, 2451-2456.	2.3	113
103	Weeds, Worms, and More. Papain's Long-Lost Cousin, Phytochelatin Synthase. Plant Physiology, 2004, 136, 2463-2474.	2.3	119
104	Protection of Plasma Membrane K+ Transport by the Salt Overly Sensitive1 Na+-H+ Antiporter during Salinity Stress. Plant Physiology, 2004, 136, 2548-2555.	2.3	176
105	The Protein Kinase SOS2 Activates the Arabidopsis H+/Ca2+ Antiporter CAX1 to Integrate Calcium Transport and Salt Tolerance. Journal of Biological Chemistry, 2004, 279, 2922-2926.	1.6	223
106	A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10211-10216.	3.3	109
107	Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8827-8832.	3.3	539
108	Cyclic Adenosine Monophosphate Regulates Calcium Channels in the Plasma Membrane of Arabidopsis Leaf Guard and Mesophyll Cells. Journal of Biological Chemistry, 2004, 279, 35306-35312.	1.6	103

<u> </u>		<u> </u>	
(17	ΓΔΤΙ	Repo	DL.
\sim			IX I

#	Article	IF	CITATIONS
109	Analysis of Sequence, Map Position, and Gene Expression Reveals Conserved Essential Genes for Iron Uptake in Arabidopsis and Tomato. Plant Physiology, 2004, 136, 4169-4183.	2.3	80
110	Expression Patterns of a Novel AtCHX Gene Family Highlight Potential Roles in Osmotic Adjustment and K+ Homeostasis in Pollen Development. Plant Physiology, 2004, 136, 2532-2547.	2.3	148
111	Sodium Transporters in Plants. Diverse Genes and Physiological Functions. Plant Physiology, 2004, 136, 2457-2462.	2.3	199
112	Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant, Cell and Environment, 2004, 27, 828-839.	2.8	155
113	The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulatorThlaspi goesingenseacts to enhance efflux of Zn at the plasma membrane when expressed inSaccharomyces cerevisiae. Plant Journal, 2004, 39, 237-251.	2.8	144
114	Characterization ofAtCHX17, a member of the cation/H+exchangers, CHX family, fromArabidopsis thalianasuggests a role in K+homeostasis. Plant Journal, 2004, 39, 834-846.	2.8	158
115	Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant Journal, 2004, 40, 523-535.	2.8	177
116	DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter: impact of AtNHX1 on gene expression. Plant Journal, 2004, 40, 752-771.	2.8	114
117	Functional dependence on calcineurin by variants of the Saccharomyces cerevisiae vacuolar Ca2+/H+ exchanger Vcx1p. Molecular Microbiology, 2004, 54, 1104-1116.	1.2	47
118	Natural genetic variation in caesium (Cs) accumulation by Arabidopsis thaliana. New Phytologist, 2004, 162, 535-548.	3.5	64
119	Genetically engineered phytoremediation: one man's trash is another man's transgene. Trends in Biotechnology, 2004, 22, 496-498.	4.9	43
120	Exploring the post-transcriptional RNA world with DNA microarrays. Trends in Biotechnology, 2004, 22, 498-500.	4.9	2
121	Over-Expression of an Arabidopsis Zinc Transporter in Hordeum Vulgare Increases Short-Term Zinc Uptake after Zinc Deprivation and Seed Zinc Content. Plant Molecular Biology, 2004, 54, 373-385.	2.0	174
122	Identification and Characterization of Several New Members of the ZIP Family of Metal Ion Transporters in Medicago Truncatula. Plant Molecular Biology, 2004, 54, 583-596.	2.0	163
123	Recent Findings on the Phytoremediation of Soils Contaminated with Environmentally Toxic Heavy Metals and Metalloids Such as Zinc, Cadmium, Lead, and Arsenic. Reviews in Environmental Science and Biotechnology, 2004, 3, 71-90.	3.9	385
124	Plant membrane proteome databases. Plant Physiology and Biochemistry, 2004, 42, 1023-1034.	2.8	32
125	Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant Molecular Biology, 2004, 56, 413-421.	2.0	83
126	Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter. Plant Molecular Biology, 2004, 56, 959-971.	2.0	89

	CITATION I	LEPUKI	
#	Article	IF	CITATIONS
127	Overview of mammalian zinc transporters. Cellular and Molecular Life Sciences, 2004, 61, 49-68.	2.4	366
128	Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant, Cell and Environment, 2004, 27, 1-14.	2.8	172
129	Crossâ€species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator <i>Arabidopsis halleri</i> . Plant Journal, 2004, 37, 251-268.	2.8	500
130	Yeast hygromycin sensitivity as a functional assay of cyclic nucleotide gated cation channels. Plant Physiology and Biochemistry, 2004, 42, 529-536.	2.8	25
131	The Cation/Ca2+ Exchanger Superfamily: Phylogenetic Analysis and Structural Implications. Molecular Biology and Evolution, 2004, 21, 1692-1703.	3.5	211
132	Regulation and function of AtNRAMP4 metal transporter protein. Soil Science and Plant Nutrition, 2004, 50, 1141-1150.	0.8	56
133	Assembly of Plant Shaker-Like Kout Channels Requires Two Distinct Sites of the Channel α-Subunit. Biophysical Journal, 2004, 87, 858-872.	0.2	70
134	A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genetics and Biology, 2004, 41, 827-841.	0.9	128
135	Differential expression of rice Nramp genes in response to pathogen infection, defense signal molecules and metal ions. Physiological and Molecular Plant Pathology, 2004, 65, 235-243.	1.3	16
136	Critical Review of the Scienceand Options for Reducing Cadmium in Tobacco (Nicotiana Tabacum L.) and Other Plants. Advances in Agronomy, 2004, 83, 111-180.	2.4	104
137	Characterization of CXIP4, a novelArabidopsisprotein that activates the H+/Ca2+antiporter, CAX1. FEBS Letters, 2004, 559, 99-106.	1.3	44
138	Arabidopsis DND2, a Second Cyclic Nucleotide-Gated Ion Channel Gene for Which Mutation Causes the "Defense, No Death―Phenotype. Molecular Plant-Microbe Interactions, 2004, 17, 511-520.	1.4	190
139	Lotus japonicus LjKUP Is Induced Late During Nodule Development and Encodes a Potassium Transporter of the Plasma Membrane. Molecular Plant-Microbe Interactions, 2004, 17, 789-797.	1.4	38
140	Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E. coli. Functional Plant Biology, 2005, 32, 643.	1.1	67
141	Nematode-Induced Changes of Transporter Gene Expression in Arabidopsis Roots. Molecular Plant-Microbe Interactions, 2005, 18, 1247-1257.	1.4	121
142	Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology, 2005, 18, 339-353.	1.5	430
143	Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytologist, 2005, 167, 733-742.	3.5	312
144	K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels. Plant Journal, 2005, 41, 606-614.	2.8	79

#	Article	IF	CITATIONS
145	Plants, symbiosis and parasites: a calcium signalling connection. Nature Reviews Molecular Cell Biology, 2005, 6, 555-566.	16.1	340
146	Expression of potassium-transporter coding genes, and kinetics of rubidium uptake, along a longitudinal root axis. Plant, Cell and Environment, 2005, 28, 850-862.	2.8	36
147	Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes. BMC Bioinformatics, 2005, 6, 6.	1.2	71
148	Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiology Reviews, 2005, 29, 653-671.	3.9	364
149	A Putative Plasma Membrane Cation/proton Antiporter from Soybean Confers Salt Tolerance in Arabidopsis. Plant Molecular Biology, 2005, 59, 809-820.	2.0	86
150	Calcium signaling system in plants. Russian Journal of Plant Physiology, 2005, 52, 249-270.	0.5	60
151	Potassium uptake by higher plants: From field application to membrane transport. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2005, 53, 443-459.	0.2	11
152	Predicting Inter-Taxa Differences in Plant Uptake of Cesium-134/137. Journal of Environmental Quality, 2005, 34, 1478-1489.	1.0	37
153	Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotechnology, 2005, 22, 19-25.	0.5	110
154	Guanylyl cyclases across the tree of life. Frontiers in Bioscience - Landmark, 2005, 10, 1485.	3.0	68
155	Evolutionary origins of eukaryotic sodium/proton exchangers. American Journal of Physiology - Cell Physiology, 2005, 288, C223-C239.	2.1	492
156	Functional Association of Arabidopsis CAX1 and CAX3 Is Required for Normal Growth and Ion Homeostasis. Plant Physiology, 2005, 138, 2048-2060.	2.3	190
157	Regulation by External K+ in a Maize Inward Shaker Channel Targets Transport Activity in the High Concentration Range. Plant Cell, 2005, 17, 1532-1548.	3.1	33
158	Differential Capacity for High-Affinity Manganese Uptake Contributes to Differences between Barley Genotypes in Tolerance to Low Manganese Availability. Plant Physiology, 2005, 139, 1411-1420.	2.3	73
159	A Comparative Inventory of Metal Transporters in the Green Alga Chlamydomonas reinhardtii and the Red Alga Cyanidioschizon merolae. Plant Physiology, 2005, 137, 428-446.	2.3	157
160	Halotolerant Cyanobacterium Aphanothece halophytica Contains NapA-Type Na + /H + Antiporters with Novel Ion Specificity That Are Involved in Salt Tolerance at Alkaline pH. Applied and Environmental Microbiology, 2005, 71, 4176-4184.	1.4	39
161	Increased Calcium Levels and Prolonged Shelf Life in Tomatoes Expressing Arabidopsis H+/Ca2+ Transporters. Plant Physiology, 2005, 139, 1194-1206.	2.3	153
163	Expression Profile of the Genes for Rice Cation/H+ Exchanger Family and Functional Analysis in Yeast. Plant and Cell Physiology, 2005, 46, 1735-1740.	1.5	66

#	Article	IF	CITATIONS
164	Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16107-16112.	3.3	222
165	OsZIP4, a novel zinc-regulated zinc transporter in rice. Journal of Experimental Botany, 2005, 56, 3207-3214.	2.4	350
166	A Putative Function for the Arabidopsis Fe–Phytosiderophore Transporter Homolog AtYSL2 in Fe and Zn Homeostasis. Plant and Cell Physiology, 2005, 46, 762-774.	1.5	163
167	Puccinellia tenuifloraExhibits Stronger Selectivity for K+over Na+than Wheat. Journal of Plant Nutrition, 2005, 27, 1841-1857.	0.9	57
168	The Potassium Transporter AtHAK5 Functions in K+ Deprivation-Induced High-Affinity K+ Uptake and AKT1 K+ Channel Contribution to K+ Uptake Kinetics in Arabidopsis Roots. Plant Physiology, 2005, 137, 1105-1114.	2.3	449
169	Characterization of genes encoding metal tolerance proteins isolated from Nicotiana glauca and Nicotiana tabacum. Biochemical and Biophysical Research Communications, 2005, 331, 675-680.	1.0	69
170	Evidence of differential pH regulation of theArabidopsisvacuolar Ca2+/H+antiporters CAX1 and CAX2. FEBS Letters, 2005, 579, 2648-2656.	1.3	46
171	Arabidopsis thalianaMTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Letters, 2005, 579, 4165-4174.	1.3	260
172	The submergence-induced gene OsCTP in rice (Oryza sativa L.) is similar to Escherichia coli cation transport protein ChaC. Plant Science, 2005, 168, 15-22.	1.7	16
173	The barley two-pore K+-channel HvKCO1 interacts with 14-3-3 proteins in an isoform specific manner. Plant Science, 2005, 169, 612-619.	1.7	23
174	MTP1 mops up excess zinc in Arabidopsis cells. Trends in Plant Science, 2005, 10, 313-315.	4.3	78
175	PLANT-SPECIFIC CALMODULIN-BINDING PROTEINS. Annual Review of Plant Biology, 2005, 56, 435-466.	8.6	379
176	SOLUTE TRANSPORTERS OF THE PLASTID ENVELOPE MEMBRANE. Annual Review of Plant Biology, 2005, 56, 133-164.	8.6	199
177	Functions and homeostasis of zinc, copper, and nickel in plants. Topics in Current Genetics, 2005, , 215-271.	0.7	63
178	Cd2+ transport and storage in the chloroplast of Euglena gracilis. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1706, 88-97.	0.5	58
179	Root Development and Nutrient Uptake. Critical Reviews in Plant Sciences, 2006, 25, 279-301.	2.7	202
180	Sequence Similarity and Functional Relationship Among Eukaryotic ZIP and CDF Transporters. Genomics, Proteomics and Bioinformatics, 2006, 4, 1-9.	3.0	74
181	Plant responses to potassium deficiencies: a role for potassium transport proteins. Journal of Experimental Botany, 2006, 57, 425-436.	2.4	374

#	Article	IF	CITATIONS
182	Na+/H+ antiporters in plants and cyanobacteria. , 2006, , 163-175.		2
183	Non-Invasive Microelectrode Ion Flux Measurements In Plant Stress Physiology. , 2006, , 35-71.		23
184	Heavy Metals Competing with Iron under Conditions Involving Phytoremediation. , 2006, , 129-151.		3
185	A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proceedings of the United States of America, 2006, 103, 12625-12630.	3.3	412
186	Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany, 2006, 58, 83-102.	2.4	521
187	Extra domains in secondary transport carriers and channel proteins. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1557-1579.	1.4	41
188	Phosphate deficiency promotes modification ofÂiron distribution inÂArabidopsis plants. Biochimie, 2006, 88, 1767-1771.	1.3	168
189	Toxic metal accumulation, responses toÂexposure andÂmechanisms ofÂtolerance inÂplants. Biochimie, 2006, 88, 1707-1719.	1.3	1,584
190	HEAVY METAL STRESS. , 2006, , 219-254.		39
191	METABOLIC ENGINEERING FOR STRESS TOLERANCE. , 2006, , 255-299.		4
191 192	METABOLIC ENGINEERING FOR STRESS TOLERANCE. , 2006, , 255-299. Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Science, 2006, 170, 216-224.	1.7	4
	Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Science, 2006,	1.7 2.6	
192	Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Science, 2006, 170, 216-224. Progress in the genetic understanding of plant iron and zinc nutrition. Physiologia Plantarum, 2006,		100
192 193	 Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Science, 2006, 170, 216-224. Progress in the genetic understanding of plant iron and zinc nutrition. Physiologia Plantarum, 2006, 126, 407-417. Co-regulation of water channels and potassium channels in rice. Physiologia Plantarum, 2006, 128, 	2.6	100 121
192 193 194	 Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Science, 2006, 170, 216-224. Progress in the genetic understanding of plant iron and zinc nutrition. Physiologia Plantarum, 2006, 126, 407-417. Co-regulation of water channels and potassium channels in rice. Physiologia Plantarum, 2006, 128, 58-69. Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of 	2.6 2.6	100 121 75
192 193 194 195	 Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Science, 2006, 170, 216-224. Progress in the genetic understanding of plant iron and zinc nutrition. Physiologia Plantarum, 2006, 126, 407-417. Co-regulation of water channels and potassium channels in rice. Physiologia Plantarum, 2006, 128, 58-69. Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation. New Phytologist, 2006, 170, 21-32. Plasma membrane anion channels in higher plants and their putative functions in roots. New 	2.6 2.6 3.5	100 121 75 71
192 193 194 195 196	 Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Science, 2006, 170, 216-224. Progress in the genetic understanding of plant iron and zinc nutrition. Physiologia Plantarum, 2006, 126, 407-417. Co-regulation of water channels and potassium channels in rice. Physiologia Plantarum, 2006, 128, 58-69. Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation. New Phytologist, 2006, 170, 21-32. Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytologist, 2006, 169, 647-666. Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc 	2.6 2.6 3.5 3.5	100 121 75 71 157

#	Article	IF	CITATIONS
200	Intracellular K+sensing of SKOR, a Shaker-type K+channel from Arabidopsis. Plant Journal, 2006, 46, 260-268.	2.8	68
201	Characterization ofÂplant phenotypes associated with loss-of-function ofÂAtCNGC1, aÂplant cyclic nucleotide gated cation channel. Plant Physiology and Biochemistry, 2006, 44, 494-505.	2.8	82
202	Potassium Homeostasis in Salinized Plant Tissues. , 2006, , 287-317.		9
203	Diverse Functions and Molecular Properties Emerging for CAX Cation/H+ Exchangers in Plants. Plant Biology, 2006, 8, 419-429.	1.8	116
204	Ion Channels Meet Auxin Action. Plant Biology, 2006, 8, 353-359.	1.8	24
206	Gene polymorphisms for elucidating the genetic structure of the heavy-metal hyperaccumulating trait in Thlaspi caerulescens and their cross-genera amplification in Brassicaceae. Journal of Plant Research, 2006, 119, 479-487.	1.2	14
207	Properties of Shaker-type Potassium Channels in Higher Plants. Journal of Membrane Biology, 2006, 210, 1-19.	1.0	98
208	Identification of Three Distinct Phylogenetic Groups of CAX Cation/Proton Antiporters. Journal of Molecular Evolution, 2006, 63, 815-825.	0.8	166
209	Polymorphism of response to cobalt excess in individual Vicia faba plants. Environmental and Experimental Botany, 2006, 55, 221-234.	2.0	11
210	Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 595-608.	1.9	382
211	Put the metal to the petal: metal uptake and transport throughout plants. Current Opinion in Plant Biology, 2006, 9, 322-330.	3.5	346
212	Arabidopsis thaliana Cyclic Nucleotide Gated Channel 3 forms a non-selective ion transporter involved in germination and cation transport. Journal of Experimental Botany, 2006, 57, 791-800.	2.4	201
213	Genetic mapping of natural variation in potassium concentrations in shoots of Arabidopsis thaliana. Journal of Experimental Botany, 2006, 57, 953-960.	2.4	59
214	Zinc-Dependent Global Transcriptional Control, Transcriptional Deregulation, and Higher Gene Copy Number for Genes in Metal Homeostasis of the Hyperaccumulator Arabidopsis halleri. Plant Physiology, 2006, 142, 148-167.	2.3	405
215	High-affinity potassium and sodium transport systems in plants. Journal of Experimental Botany, 2006, 57, 1149-1160.	2.4	296
216	The Chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 Activates Multiple Pathogen Resistance Responses. Plant Cell, 2006, 18, 747-763.	3.1	201
217	Functional analysis of CHX21: a putative sodium transporter in Arabidopsis. Journal of Experimental Botany, 2006, 57, 1201-1210.	2.4	88
218	The face value of ion fluxes: the challenge of determining influx in the low-affinity transport range. Journal of Experimental Botany, 2006, 57, 3293-3300.	2.4	16

#	Article	IF	CITATIONS
219	Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. Journal of Experimental Botany, 2006, 57, 3209-3216.	2.4	109
222	Identification of a zinc transporter gene in strawberry. DNA Sequence, 2006, 17, 15-23.	0.7	0
223	Potassium as an Intrinsic Uncoupler of the Plasma Membrane H+-ATPase*. Journal of Biological Chemistry, 2006, 281, 38285-38292.	1.6	59
224	Comparative cDNA-AFLP analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea. Journal of Experimental Botany, 2006, 57, 2967-2983.	2.4	51
225	Iron Transport and Metabolism in Plants. , 2006, 27, 119-140.		20
226	Expression of plant cyclic nucleotide-gated cation channels in yeast. Journal of Experimental Botany, 2006, 57, 125-138.	2.4	82
227	Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. Journal of Experimental Botany, 2006, 57, 1181-1199.	2.4	385
228	Rice Shaker Potassium Channel OsKAT1 Confers Tolerance to Salinity Stress on Yeast and Rice Cells. Plant Physiology, 2007, 144, 1978-1985.	2.3	138
229	Sampling the Arabidopsis Transcriptome with Massively Parallel Pyrosequencing. Plant Physiology, 2007, 144, 32-42.	2.3	298
230	Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 2007, 58, 1717-1728.	2.4	119
231	A Proteomics Dissection of Arabidopsis thaliana Vacuoles Isolated from Cell Culture. Molecular and Cellular Proteomics, 2007, 6, 394-412.	2.5	294
232	Manganese Deficiency in Chlamydomonas Results in Loss of Photosystem II and MnSOD Function, Sensitivity to Peroxides, and Secondary Phosphorus and Iron Deficiency. Plant Physiology, 2007, 143, 263-277.	2.3	149
233	Plant KT/KUP/HAK Potassium Transporters: Single Family - Multiple Functions. Annals of Botany, 2007, 99, 1035-1041.	1.4	168
234	Solute Transport in the Phloem. , 0, , 235-274.		8
236	Participation of Endomembrane Cation/H+ Exchanger AtCHX20 in Osmoregulation of Guard Cells. Plant Physiology, 2007, 144, 82-93.	2.3	95
237	An NH4+-sensitive component dominates high-affinity K+ uptake in tomato plants. Plant Science, 2007, 172, 273-280.	1.7	99
238	Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.). Plant Science, 2007, 172, 708-721.	1.7	90
239	Atmospheric deposition and isotope biogeochemistry of zinc in ombrotrophic peat. Geochimica Et Cosmochimica Acta, 2007, 71, 3498-3517.	1.6	122

#	Article	IF	CITATIONS
240	Cyclic nucleotide-gated channels in plants. FEBS Letters, 2007, 581, 2237-2246.	1.3	206
241	Potassium transporters in plants - Involvement in K+acquisition, redistribution and homeostasis. FEBS Letters, 2007, 581, 2348-2356.	1.3	333
242	K+channel activity in plants: Genes, regulations and functions. FEBS Letters, 2007, 581, 2357-2366.	1.3	268
243	Mining iron: Iron uptake and transport in plants. FEBS Letters, 2007, 581, 2273-2280.	1.3	416
244	Integration Of Ca2+ In Plant Drought And Salt Stress Signal Transduction Pathways. , 2007, , 141-182.		5
245	Phytoremediation of soils contaminated with radionuclides. Radioactivity in the Environment, 2007, 10, 43-69.	0.2	2
246	Regulation and Role of Calcium Fluxes in the Chloroplast. Advances in Photosynthesis and Respiration, 2007, , 403-416.	1.0	24
247	Using Quantitative Trait Loci Analysis to Select Plants for Altered Radionuclide Accumulation. Methods in Biotechnology, 2007, , 27-47.	0.2	1
248	Membrane Proteomic Analysis ofArabidopsisthalianaUsing Alternative Solubilization Techniques. Journal of Proteome Research, 2007, 6, 1933-1950.	1.8	82
249	Genes associated with hypersensitive response (HR) in the citrus EST database (CitEST). Genetics and Molecular Biology, 2007, 30, 943-956.	0.6	16
251	Expression profiling of Oryza sativa metal homeostasis genes in different rice cultivars using a cDNA macroarray. Plant Physiology and Biochemistry, 2007, 45, 277-286.	2.8	74
252	Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiology and Biochemistry, 2007, 45, 822-833.	2.8	153
253	Copper and iron homeostasis inArabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant, Cell and Environment, 2007, 30, 271-290.	2.8	253
254	Zinc in plants. New Phytologist, 2007, 173, 677-702.	3.5	1,577
255	CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Research, 2007, 17, 411-421.	5.7	140
256	The grateful dead: calcium and cell death in plant innate immunity. Cellular Microbiology, 2007, 9, 2571-2585.	1.1	159
257	Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant, Cell and Environment, 2007, 30, 875-885.	2.8	220
258	AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant Journal, 2007, 49, 718-728.	2.8	98

#	Article	IF	CITATIONS
259	Potassium transport systems in the moss <i>Physcomitrella patens</i> : <i>pphak1</i> plants reveal the complexity of potassium uptake. Plant Journal, 2007, 52, 1080-1093.	2.8	33
260	A Putative Calciumâ€Permeable Cyclic Nucleotideâ€Gated Channel, CNGC18, Regulates Polarized Pollen Tube Growth. Journal of Integrative Plant Biology, 2007, 49, 1261-1270.	4.1	38
261	The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC Plant Biology, 2007, 7, 48.	1.6	58
262	Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics, 2007, 8, 107.	1.2	353
263	Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics, 2007, 8, 187.	1.2	193
264	Solute and Water Relations of Growing Plant Cells. , 2006, , 7-31.		4
265	Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Molecular Biology, 2007, 65, 733-746.	2.0	88
266	The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Molecular Biology, 2007, 65, 747-761.	2.0	102
267	Monovalent cation transporters; establishing a link between bioinformatics and physiology. Plant and Soil, 2007, 301, 1-15.	1.8	29
268	Cloning and functional analysis of the K+ transporter, PhaHAK2, from salt-sensitive and salt-tolerant reed plants. Biotechnology Letters, 2007, 29, 501-506.	1.1	45
269	Cloning and functional expression in Saccharomyces cereviae of a K+ transporter, AlHAK, from the graminaceous halophyte, Aeluropus littoralis. Biotechnology Letters, 2007, 29, 1959-1963.	1.1	14
270	The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. Planta, 2007, 225, 563-573.	1.6	81
271	Comparative expression analysis of three genes from the Arabidopsis vacuolar Na+/H+ antiporter (AtNHX) family in relation to abiotic stresses. Science Bulletin, 2007, 52, 1754-1763.	1.7	11
272	Comparative molecular biological analysis of membrane transport genes in organisms. Plant Molecular Biology, 2008, 66, 565-585.	2.0	29
273	Emergence of a novel calcium signaling pathway in plants: CBL-CIPK signaling network. Physiology and Molecular Biology of Plants, 2008, 14, 51-68.	1.4	88
274	KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Molecular Genetics and Genomics, 2008, 280, 437-52.	1.0	129
275	Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: Comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes. Journal of Biotechnology, 2008, 136, 44-53.	1.9	60
276	Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russian Journal of Plant Physiology, 2008, 55, 400-409.	0.5	115

#	Article	IF	CITATIONS
277	Membrane Transporters for Nitrogen, Phosphate and Potassium Uptake in Plants. Journal of Integrative Plant Biology, 2008, 50, 835-848.	4.1	99
278	Potassium transport and plant salt tolerance. Physiologia Plantarum, 2008, 133, 651-669.	2.6	1,038
279	The cyclic nucleotideâ€gated channel, AtCNGC10, influences salt tolerance in <i>Arabidopsis</i> . Physiologia Plantarum, 2008, 134, 499-507.	2.6	98
280	Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of <i>Brassica napus</i> . A role for thiolâ€peptides in the longâ€distance transport of cadmium and the effect of cadmium on iron translocation. Plant Journal, 2008, 54, 249-259.	2.8	311
281	Identification of a functionally essential amino acid for Arabidopsis cyclic nucleotide gated ion channels using the chimeric <i>AtCNGC11/12</i> gene. Plant Journal, 2008, 56, 457-469.	2.8	49
282	Recent Advances in Understanding of Plant Responses to Excess Metals: Exposure, Accumulation, and Tolerance. , 2008, , 227-251.		2
283	Uptake and localisation of lead in the root system of Brassica juncea. Environmental Pollution, 2008, 153, 323-332.	3.7	163
284	Overexpression of a New Rice Vacuolar Antiporter Regulating Protein OsARP Improves Salt Tolerance in Tobacco. Plant and Cell Physiology, 2008, 49, 880-890.	1.5	33
285	NH4+-stimulated and -inhibited components of K+ transport in rice (Oryza sativa L.). Journal of Experimental Botany, 2008, 59, 3415-3423.	2.4	80
286	The high affinity K ⁺ transporter AtHAK5 plays a physiological role <i>in planta</i> at very low K ⁺ concentrations and provides a caesium uptake pathway in <i>Arabidopsis</i> . Journal of Experimental Botany, 2008, 59, 595-607.	2.4	255
287	Investigating Heavy-metal Hyperaccumulation using Thlaspi caerulescens as a Model System. Annals of Botany, 2008, 102, 3-13.	1.4	275
288	Lesion mimic mutants. Plant Signaling and Behavior, 2008, 3, 764-767.	1.2	82
289	AtCCX3 Is an Arabidopsis Endomembrane H+-Dependent K+ Transporter Â. Plant Physiology, 2008, 148, 1474-1486.	2.3	66
290	AtCHX13 Is a Plasma Membrane K+ Transporter Â. Plant Physiology, 2008, 148, 796-807.	2.3	94
291	Transcriptome Analyses Show Changes in Gene Expression to Accompany Pollen Germination and Tube Growth in Arabidopsis Â. Plant Physiology, 2008, 148, 1201-1211.	2.3	406
292	Signaling Pathways That Regulate the Enhanced Disease Resistance of <i>Arabidopsis</i> " <i>Defense, No Death</i> ―Mutants. Molecular Plant-Microbe Interactions, 2008, 21, 1285-1296.	1.4	92
296	Relationship between calcium decoding elements and plant abiotic-stress resistance. International Journal of Biological Sciences, 2008, 4, 116-125.	2.6	89
297	Environmental Sensitivity in Pathogen ResistantArabidopsis Mutants. , 0, , 113-135.		9

#	Article	IF	CITATIONS
298	A strong effect of growth medium and organ type on the identification of QTLs for phytate and mineral concentrations in three Arabidopsis thaliana RIL populations. Journal of Experimental Botany, 2009, 60, 1409-1425.	2.4	75
299	Proteomic Analysis of the Proplastid Envelope Membrane Provides Novel Insights into Small Molecule and Protein Transport across Proplastid Membranes. Molecular Plant, 2009, 2, 1247-1261.	3.9	50
300	Cyclic nucleotide gated channels and related signaling components in plant innate immunity. Plant Signaling and Behavior, 2009, 4, 277-282.	1.2	58
301	SOS1 and Halophytism. Plant Signaling and Behavior, 2009, 4, 1081-1083.	1.2	18
302	Dynamic Aspects of Ion Accumulation by Vesicle Traffic Under Salt Stress in Arabidopsis. Plant and Cell Physiology, 2009, 50, 2023-2033.	1.5	130
303	Effects of top excision on the potassium accumulation and expression of potassium channel genes in tobacco. Journal of Experimental Botany, 2009, 60, 279-289.	2.4	18
304	Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses. BMC Genomics, 2009, 10, 147.	1.2	160
305	Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biology, 2009, 9, 140.	1.6	95
306	Genomic expression profiling of mature soybean (Glycine max) pollen. BMC Plant Biology, 2009, 9, 25.	1.6	71
307	Differential regulation of the HAK5 genes encoding the high-affinity K+ transporters of Thellungiella halophila and Arabidopsis thaliana. Environmental and Experimental Botany, 2009, 65, 263-269.	2.0	73
308	The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta, 2009, 230, 119-134.	1.6	200
309	Identification and characterization of MtMTP1, a Zn transporter of CDF family, in the Medicago truncatula. Plant Physiology and Biochemistry, 2009, 47, 1089-1094.	2.8	22
310	Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Molecular Biology Reports, 2009, 36, 281-287.	1.0	121
311	Identification and functional analysis of two ZIP metal transporters of the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 2009, 325, 79-95.	1.8	51
312	The Thlaspi caerulescens NRAMP Homologue TcNRAMP3 is Capable of Divalent Cation Transport. Molecular Biotechnology, 2009, 41, 15-21.	1.3	85
313	Implications of metal accumulation mechanisms to phytoremediation. Environmental Science and Pollution Research, 2009, 16, 162-175.	2.7	320
314	Molecular characterization of GmNHX2, a Na+/H+ antiporter gene homolog from soybean, and its heterologous expression to improve salt tolerance in Arabidopsis. Science Bulletin, 2009, 54, 3536-3545.	4.3	5
315	Identification of QTL affecting seed mineral concentrations and content in the model legume Medicago truncatula. Theoretical and Applied Genetics, 2009, 119, 241-253.	1.8	83

#	Article	IF	CITATIONS
316	Overâ€expression of <i>OslRT1</i> leads to increased iron and zinc accumulations in rice. Plant, Cell and Environment, 2009, 32, 408-416.	2.8	417
317	<i>NRAMP</i> genes function in <i>Arabidopsis thaliana</i> resistance to <i>Erwinia chrysanthemi</i> infection. Plant Journal, 2009, 58, 195-207.	2.8	80
318	Element interconnections inLotus japonicus: A systematic study of the effects of element additions on different natural variants. Soil Science and Plant Nutrition, 2009, 55, 91-101.	0.8	36
319	High external phosphate (Pi) increases sodium ion uptake and reduces salt tolerance of â€~Piâ€ŧolerant' soybean. Physiologia Plantarum, 2009, 135, 412-425.	2.6	29
320	Regulation of macronutrient transport. New Phytologist, 2009, 181, 35-52.	3.5	176
321	Shaping the calcium signature. New Phytologist, 2009, 181, 275-294.	3.5	638
322	Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator <i>Thlaspi caerulescens</i> . New Phytologist, 2009, 181, 637-650.	3.5	244
323	Arabidopsis IRT3 is a zincâ€regulated and plasma membrane localized zinc/iron transporter. New Phytologist, 2009, 182, 392-404.	3.5	249
324	Genetic analysis identifies quantitative trait loci controlling rosette mineral concentrations in <i>Arabidopsis thaliana</i> under drought. New Phytologist, 2009, 184, 180-192.	3.5	51
325	Distribution and ratios of 137Cs and K in control and K-treated coconut trees at Bikini Island where nuclear test fallout occurred: effects and implications. Journal of Environmental Radioactivity, 2009, 100, 76-83.	0.9	23
326	Heavy metal-regulated new microRNAs from rice. Journal of Inorganic Biochemistry, 2009, 103, 282-287.	1.5	143
327	Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiology and Biochemistry, 2009, 47, 377-383.	2.8	73
328	Overexpression of millet ZIP-like gene (SiPf40) affects lateral bud outgrowth in tobacco and millet. Plant Physiology and Biochemistry, 2009, 47, 1051-1060.	2.8	17
329	Transduction mechanisms of photoreceptor signals in plant cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2009, 10, 63-80.	5.6	41
330	Proteomic and enzymatic response of poplar to cadmium stress. Journal of Proteomics, 2009, 72, 379-396.	1.2	121
331	Ion Homeostasis. , 2009, , 245-262.		3
332	Biological roles of cyclic-nucleotide-gated ion channels in plants: What we know and don't know about this 20 member ion channel familyThis paper is one of a selection published in a Special Issue comprising papers presented at the 50th Annual Meeting of the Canadian Society of Plant Physiologists (CSPP) held at the University of Ottawa, Ontario, in June 2008 Botany, 2009, 87, 668-677.	0.5	64
333	The role of microRNAs in copper and cadmium homeostasis. Biochemical and Biophysical Research Communications, 2009, 386, 6-10.	1.0	98

#	Article	IF	CITATIONS
334	What makes a gate? The ins and outs of Kv-like K+ channels in plants. Trends in Plant Science, 2009, 14, 383-390.	4.3	98
335	Cloning and molecular analyses of the Arabidopsis thaliana chloride channel gene family. Plant Science, 2009, 176, 650-661.	1.7	70
336	Potassium/sodium steady-state homeostasis in Thellungiella halophila and Arabidopsis thaliana under long-term salinity conditions. Plant Science, 2009, 176, 768-774.	1.7	47
337	K+ transport in plants: Physiology and molecular biology. Journal of Plant Physiology, 2009, 166, 447-466.	1.6	214
338	Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses. Annual Review of Physiology, 2009, 71, 59-82.	5.6	335
339	Identification of nutrient and physical seed trait QTL in the model legume <i>Lotus japonicus</i> . Genome, 2009, 52, 677-691.	0.9	59
340	RÃ1es biologiques des antiports vacuolaires NHX : acquis et perspectives d'amélioration génétique des plantes. Botany, 2009, 87, 1023-1035.	0.5	10
341	Copper in plants: acquisition, transport and interactions. Functional Plant Biology, 2009, 36, 409.	1.1	645
342	Transition Metal Nutrition. , 2009, , 333-399.		15
343	Signaling in Plants. Signaling and Communication in Plants, 2009, , .	0.5	1
344	Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.). Journal of Genetics and Genomics, 2009, 36, 161-172.	1.7	67
345	The Chloroplast Envelope Proteome and Lipidome. Plant Cell Monographs, 2009, , 41-88.	0.4	8
346	Physiological Roles of Cyclic Nucleotide Gated Channels in Plants. Signaling and Communication in Plants, 2009, , 91-106.	0.5	13
347	A cation/proton-exchanging protein is a candidate for the barley NecS1 gene controlling necrosis and enhanced defense response to stem rust. Theoretical and Applied Genetics, 2009, 118, 385-397.	1.8	27
348	Iron Uptake by Plants and Fungi. , 0, , 103-139.		0
349	Synchrony between flower opening and petal-color change from red to blue in morning glory, Ipomoea tricolor cv. Heavenly Blue. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2009, 85, 187-197.	1.6	51
351	Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cellular and Molecular Life Sciences, 2010, 67, 2511-2532.	2.4	215
352	Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cellular and Molecular Life Sciences, 2010, 67, 3763-3784.	2.4	111

		CITATION R	EPORT	
#	Article		IF	Citations
353	Crystal structures of all-alpha type membrane proteins. European Biophysics Journal, 2010	, 39, 723-755.	1.2	27
354	Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in Molecules and Cells, 2010, 29, 551-558.	rice.	1.0	166
355	OsZIP5 is a plasma membrane zinc transporter in rice. Plant Molecular Biology, 2010, 73, 5	507-517.	2.0	201
356	Mechanisms of sodium uptake by roots of higher plants. Plant and Soil, 2010, 326, 45-60.		1.8	222
357	Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environm Environmental and Experimental Botany, 2010, 68, 1-13.	ient.	2.0	438
358	Systems analysis of the responses to longâ€ŧerm magnesium deficiency and restoration in <i>Arabidopsis thaliana</i> . New Phytologist, 2010, 187, 132-144.		3.5	140
359	Expression of a <i>Neurospora crassa</i> zinc transporter gene in transgenic <i>Nicotiana tabacum</i> enhances plant zinc accumulation without coâ€transport of cadmium. Plant, Environment, 2010, 33, 1697-1707.		2.8	17
360	AtNHX3 is a vacuolar K ⁺ /H ⁺ antiporter required for lowâ€potass in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2010, 33, 1989-1999.	ium tolerance	2.8	38
361	Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involve Ca2+-associated opening of plasma membrane anion channels. Plant Journal, 2010, 62, 36	2s 7-378.	2.8	215
362	The cyclic nucleotide-gated channel AtCNGC10 transports Ca ²⁺ and Mg ²⁺ in <i>Arabidopsis</i> . Physiologia Plantarum, 2010, 139, 303-12.		2.6	75
363	Two types of ammonium uncoupling in pea chloroplasts. Biochemistry (Moscow), 2010, 7	5, 784-791.	0.7	1
364	Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Genetics, 2010, 42, 260-263.	Nature	9.4	423
365	Roles of tandemâ€pore K ⁺ channels in plants – a puzzle still to be solved*. 2010, 12, 56-63.	Plant Biology,	1.8	62
366	Physiology and biophysics of plant ligandâ€gated ion channels. Plant Biology, 2010, 12, 80)-93.	1.8	69
367	Eco-physiological responses and symbiotic nitrogen fixation capacity of salt-exposed Hedy carnosum plants. African Journal of Biotechnology, 2010, 9, 7462-7469.	sarum	0.3	14
369	A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2 in Physiology, 2010, 1, 24.	l. Frontiers	1.3	131
370	A Novel Potassium Channel in Photosynthetic Cyanobacteria. PLoS ONE, 2010, 5, e10118.		1.1	30
371	Cloning and characterisation of ZmZLP1, a gene encoding an endoplasmic reticulum-locali transporter in Zea mays. Functional Plant Biology, 2010, 37, 194.	sed zinc	1.1	19

ARTICLE

IF CITATIONS

372	Phytoremediation. , 2010, , 495-498.		0
373	Gibberellic acid and cGMP-dependent transcriptional regulation inArabidopsis thaliana. Plant Signaling and Behavior, 2010, 5, 224-232.	1.2	40
374	High-Affinity Manganese Uptake by the Metal Transporter NRAMP1 Is Essential for <i>Arabidopsis</i> Growth in Low Manganese Conditions Â. Plant Cell, 2010, 22, 904-917.	3.1	449
375	<i>Arabidopsis thaliana</i> transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10296-10301.	3.3	334
376	Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis. Journal of Experimental Botany, 2010, 61, 635-655.	2.4	117
377	Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies. Annals of Botany, 2010, 105, 1221-1234.	1.4	68
378	Molecular Mechanisms Underlying Calcification in Coccolithophores. Geomicrobiology Journal, 2010, 27, 585-595.	1.0	110
379	Regulation of the adaptation to zinc deficiency in plants. Plant Signaling and Behavior, 2010, 5, 1553-1555.	1.2	49
380	Importance of the αC-helix in the cyclic nucleotide binding domain for the stable channel regulation and function of cyclic nucleotide gated ion channels in Arabidopsis. Journal of Experimental Botany, 2010, 61, 2383-2393.	2.4	28
381	Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences. Journal of Experimental Botany, 2010, 61, 2303-2315.	2.4	157
382	Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum. Journal of Experimental Botany, 2010, 61, 423-437.	2.4	101
383	High-Affinity K+ Transport in Arabidopsis: AtHAK5 and AKT1 Are Vital for Seedling Establishment and Postgermination Growth under Low-Potassium Conditions Â. Plant Physiology, 2010, 153, 863-875.	2.3	219
384	How do vacuolar NHX exchangers function in plant salt tolerance?. Plant Signaling and Behavior, 2010, 5, 792-795.	1.2	147
385	Calcium Signals: The Lead Currency of Plant Information Processing. Plant Cell, 2010, 22, 541-563.	3.1	918
386	Specificity of Polyamine Effects on NaCl-induced Ion Flux Kinetics and Salt Stress Amelioration in Plants. Plant and Cell Physiology, 2010, 51, 422-434.	1.5	80
387	The Language of Calcium Signaling. Annual Review of Plant Biology, 2010, 61, 593-620.	8.6	1,093
388	Biotech Crops for Ecology and Environment. , 2010, , 301-342.		1
389	Calcium: Not Just Another Ion. Plant Cell Monographs, 2010, , 17-54.	0.4	15

#	Article	IF	CITATIONS
390	Regulation of Ion Channels by the Calcium Signaling Network in Plant Cells. Signaling and Communication in Plants, 2010, , 111-135.	0.5	2
391	Cytosolic metal handling in plants: determinants for zinc specificity in metal transporters and metallothioneins. Metallomics, 2010, 2, 510.	1.0	71
392	Comparative physiology of elemental distributions in plants. Annals of Botany, 2010, 105, 1081-1102.	1.4	288
393	Phytoremediation of Cyanide. , 2010, , 399-426.		4
394	Plant Sensing and Signaling in Response to K+-Deficiency. Molecular Plant, 2010, 3, 280-287.	3.9	103
395	Ion Channels and Plant Stress: Past, Present, and Future. Signaling and Communication in Plants, 2010, , 1-22.	0.5	12
396	Characterization of the Root Transcriptome for Iron and Zinc Homeostasis-related Genes in Indica rice (Oryza sativa L). Journal of Plant Biochemistry and Biotechnology, 2010, 19, 145-152.	0.9	7
397	Role of Hyperaccumulators in Phytoextraction of Metals From Contaminated Mining Sites: A Review. Critical Reviews in Environmental Science and Technology, 2010, 41, 168-214.	6.6	248
398	Ion Channels and Plant Stress Responses. Signaling and Communication in Plants, 2010, , .	0.5	11
400	The cyclic nucleotide-gated channels AtCNGC11 and 12 are involved in multiple Ca2+-dependent physiological responses and act in a synergistic manner. Journal of Experimental Botany, 2011, 62, 3671-3682.	2.4	40
401	The <i>Arabidopsis</i> Na+/H+ Antiporters NHX1 and NHX2 Control Vacuolar pH and K+ Homeostasis to Regulate Growth, Flower Development, and Reproduction Â. Plant Cell, 2011, 23, 3482-3497.	3.1	417
402	Functional Classification of Plant Plasma Membrane Transporters. Plant Cell Monographs, 2011, , 131-176.	0.4	9
403	The Role of Cyclic Nucleotide-Gated Ion Channels in Plant Immunity. Molecular Plant, 2011, 4, 442-452.	3.9	125
404	Characterization of the ER-located zinc transporter ZnT1 and identification of a vesicular zinc storage compartment in Hebeloma cylindrosporum. Fungal Genetics and Biology, 2011, 48, 496-503.	0.9	52
405	Characterization of an AtCCX5 gene from Arabidopsis thaliana that involves in high-affinity K+ uptake and Na+ transport in yeast. Biochemical and Biophysical Research Communications, 2011, 414, 96-100.	1.0	38
407	Cyclic Nucleotides and Nucleotide Cyclases in Plant Stress Responses. , 2011, , .		6
408	lonotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in <i>Arabidopsis thaliana</i> . Biochemical Journal, 2011, 440, 355-373.	1.7	130
409	Calcium Efflux Systems in Stress Signaling and Adaptation in Plants. Frontiers in Plant Science, 2011, 2, 85.	1.7	206

#	Article	IF	CITATIONS
410	A K ⁺ channel from saltâ€ŧolerant melon inhibited by Na ⁺ . New Phytologist, 2011, 189, 856-868.	3.5	25
411	Ca ²⁺ conduction by plant cyclic nucleotide gated channels and associated signaling components in pathogen defense signal transduction cascades. New Phytologist, 2011, 190, 566-572.	3.5	136
412	Identification of the Nâ€ŧerminal region of TjZNT2, a Zrt/Irtâ€ŀike protein family metal transporter, as a novel functional region involved in metal ion selectivity. FEBS Journal, 2011, 278, 851-858.	2.2	3
413	A DExD/H box RNA helicase is important for K ⁺ deprivation responses and tolerance in <i>Arabidopsis thaliana</i> . FEBS Journal, 2011, 278, 2296-2306.	2.2	28
414	Calciumâ€permeable channels in plant cells. FEBS Journal, 2011, 278, 4262-4276.	2.2	103
415	Calcium regulation of tip growth: new genes for old mechanisms. Current Opinion in Plant Biology, 2011, 14, 721-730.	3.5	78
416	Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. Journal of Bioscience and Bioengineering, 2011, 111, 346-356.	1.1	129
417	Na+ and K+ Transporters in Plant Signaling. Signaling and Communication in Plants, 2011, , 65-98.	0.5	27
418	Cyclic Nucleotide Gated Channels (CNGCs) and the Generation of Ca2+ Signals. Signaling and Communication in Plants, 2011, , 93-110.	0.5	5
419	Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation. Plant Molecular Biology, 2011, 76, 545-556.	2.0	48
420	Zn Uptake and Translocation in Rice Plants. Rice, 2011, 4, 21-27.	1.7	146
421	Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evolutionary Biology, 2011, 11, 76.	3.2	182
422	Safety of food crops on land contaminated with trace elements. Journal of the Science of Food and Agriculture, 2011, 91, 1349-1366.	1.7	54
423	High throughput chemical screening supports the involvement of Ca ²⁺ in cyclic nucleotide-gated ion channel-mediated programmed cell death in Arabidopsis. Plant Signaling and Behavior, 2011, 6, 1817-1819.	1.2	16
424	The <i>Arabidopsis</i> Intracellular Na+/H+ Antiporters NHX5 and NHX6 Are Endosome Associated and Necessary for Plant Growth and Development. Plant Cell, 2011, 23, 224-239.	3.1	286
425	Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2611-2616.	3.3	341
426	Cyclic nucleotide gated channel and Ca ²⁺ -mediated signal transduction during plant senescence signaling. Plant Signaling and Behavior, 2011, 6, 413-415.	1.2	21
427	Self-Incompatibility in <i>Papaver rhoeas</i> Activates Nonspecific Cation Conductance Permeable to Ca2+ and K+ Â. Plant Physiology, 2011, 155, 963-973.	2.3	58

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
428	Heavy Metal Tolerance in Arabidopsis thaliana. Advances in Botanical Research, 2011,	60, 1-49.	0.5	51
429	Root K+ Acquisition in Plants: The Arabidopsis thaliana Model. Plant and Cell Physiolog 1603-1612.	y, 2011, 52,	1.5	154
430	TPC1 – SV Channels Gain Shape. Molecular Plant, 2011, 4, 428-441.		3.9	143
431	Phylogenetic Analysis of K+ Transporters in Bryophytes, Lycophytes, and Flowering Pla Specialization of Vascular Plants. Frontiers in Plant Science, 2012, 3, 167.	nts Indicates a	1.7	91
432	Iron biofortification and homeostasis in transgenic cassava roots expressing the algal i assimilatory gene, FEA1. Frontiers in Plant Science, 2012, 3, 171.	ron	1.7	26
433	Evolutionary and Structural Perspectives of Plant Cyclic Nucleotide-Gated Cation Char Frontiers in Plant Science, 2012, 3, 95.	nels.	1.7	126
434	Plasma Membrane Cyclic Nucleotide Gated Calcium Channels Control Land Plant Ther Acquired Thermotolerance. Plant Cell, 2012, 24, 3333-3348.	nal Sensing and	3.1	280
435	Conserved and Diversified Gene Families of Monovalent Cation/H+ Antiporters from Al Flowering Plants. Frontiers in Plant Science, 2012, 3, 25.	gae to	1.7	192
436	Lead-Induced Nitric Oxide Generation Plays a Critical Role in Lead Uptake by Pogonath Root Cells. Plant and Cell Physiology, 2012, 53, 1728-1736.	erum crinitum	1.5	41
437	The roles of the cation transporters CHX21 and CHX23 in the development of Arabido Journal of Experimental Botany, 2012, 63, 59-67.	psis thaliana.	2.4	30
438	The Arabidopsis AP2/ERF Transcription Factor RAP2.11 Modulates Plant Response to L Conditions. Molecular Plant, 2012, 5, 1042-1057.	ow-Potassium	3.9	157
440	Cyclic nucleotide-gated ion channel-mediated cell death may not be critical for R gene- resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiological and Molecu Pathology, 2012, 79, 40-48.		1.3	13
441	The ins and outs of algal metal transport. Biochimica Et Biophysica Acta - Molecular Ce 2012, 1823, 1531-1552.	ll Research,	1.9	173
442	Arabidopsis KEA2, a homolog of bacterial KefC, encodes a K+/H+ antiporter with a chlc peptide. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2362-2371.	roplast transit	1.4	81
443	Enhanced tolerance to NaCl and LiCl stresses by over-expressing Caragana korshinskii exchanger 1 (CkNHX1) and the hydrophilic C terminus is required for the activity of Ck mutant and yeast. Biochemical and Biophysical Research Communications, 2012, 417	NHX1 in Atsos3-1	1.0	11
444	Plant Responses to Heavy Metal Toxicity. Springer Briefs in Molecular Science, 2012, ,	27-53.	0.1	130
445	Phytoextraction of Zinc: Physiological and Molecular Mechanism. Soil and Sediment Co 2012, 21, 115-133.	ontamination,	1.1	19
446	6.10 Structure–Function Correlates in Plant Ion Channels. , 2012, , 234-245.			6

#	Article	IF	CITATIONS
447	Toxic Metals Accumulation, Tolerance and Homeostasis in Brassicaoilseed Species: Overview of Physiological, Biochemical and Molecular Mechanisms. Environmental Pollution, 2012, , 171-211.	0.4	2
448	Phylogenetic relationships and selective pressure on gene families related to iron homeostasis in land plants. Genome, 2012, 55, 883-900.	0.9	39
449	Components of Mitochondrial Oxidative Phosphorylation Vary in Abundance Following Exposure to Cold and Chemical Stresses. Journal of Proteome Research, 2012, 11, 3860-3879.	1.8	41
450	The Plant Family Brassicaceae. Environmental Pollution, 2012, , .	0.4	33
451	Genetic analysis of the effect of zinc deficiency on Arabidopsis growth and mineral concentrations. Plant and Soil, 2012, 361, 227-239.	1.8	9
452	Protein Phylogenetic Analysis of Ca2+/cation Antiporters and Insights into their Evolution in Plants. Frontiers in Plant Science, 2012, 3, 1.	1.7	490
453	Multiple Transport Pathways for Mediating Intracellular pH Homeostasis: The Contribution of H+/ion Exchangers. Frontiers in Plant Science, 2012, 3, 11.	1.7	79
454	Metal Ion Homeostasis Mediated by NRAMP Transporters in Plant Cells - Focused on Increased Resistance to Iron and Cadmium Ion. , 2012, , .		6
455	Molecular phylogenetics: principles and practice. Nature Reviews Genetics, 2012, 13, 303-314.	7.7	572
456	Studying Membrane Transport Processes by Non-invasive Microelectrodes: Basic Principles and Methods. , 2012, , 167-186.		4
457	Genomeâ€wide and molecular evolution analysis of the <scp>P</scp> oplar <scp>KT</scp> / <scp>HAK</scp> / <scp>KUP</scp> potassium transporter gene family. Ecology and Evolution, 2012, 2, 1996-2004.	0.8	48
458	K+ Nutrition, Uptake, and Its Role in Environmental Stress in Plants. , 2012, , 85-112.		6
459	Vacuolar Transporters in Their Physiological Context. Annual Review of Plant Biology, 2012, 63, 183-213.	8.6	210
460	Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays) Tj ETQq1	1 0 78431 1.0	l4 _s rgBT /Ov
462	Determinants for <i>Arabidopsis</i> Peptide Transporter Targeting to the Tonoplast or Plasma Membrane. Traffic, 2012, 13, 1090-1105.	1.3	48
463	Plant and Yeast NHX Antiporters: Roles in Membrane Trafficking ^F . Journal of Integrative Plant Biology, 2012, 54, 66-72.	4.1	38
464	Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization. Plant Physiology and Biochemistry, 2012, 50, 79-86.	2.8	47
465	Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 2012, 32, 181-200.	2.2	521

#	ARTICLE	IF	Citations
466	Physiological and molecular responses of two Arabidopsis accessions to calcium amendment and salt constraint. Acta Physiologiae Plantarum, 2012, 34, 439-450.	1.0	5
467	Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Reports, 2012, 31, 67-79.	2.8	175
468	Regulation of the major vacuolar Ca2+ transporter genes, by intercellular Ca2+ concentration and abiotic stresses, in tip-burn resistant Brassica oleracea. Molecular Biology Reports, 2013, 40, 177-188.	1.0	24
469	Model of how plants sense zinc deficiency. Metallomics, 2013, 5, 1110.	1.0	50
470	Different evolutionary histories of two cation/proton exchanger gene families in plants. BMC Plant Biology, 2013, 13, 97.	1.6	28
471	Characterization of Ca2+/H+ exchange in the plasma membrane of Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 2013, 537, 125-132.	1.4	7
472	Modulated expression of ion transporters may be responsible for manganese deficiency in brittle leaf disease affected date palm (Phoenix dactylifera L.) trees. Physiological and Molecular Plant Pathology, 2013, 84, 61-69.	1.3	0
473	Cyclic Nucleotide Signaling in Plants. Methods in Molecular Biology, 2013, , .	0.4	1
474	Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants. Current Genetics, 2013, 59, 207-230.	0.8	15
475	Aequorin-Based Luminescence Imaging Reveals Stimulus- and Tissue-Specific Ca2+ Dynamics in Arabidopsis Plants. Molecular Plant, 2013, 6, 444-455.	3.9	71
476	Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology, 2013, 13, 114.	1.6	169
477	Energization of Vacuolar Transport in Plant Cells and Its Significance Under Stress. International Review of Cell and Molecular Biology, 2013, 304, 57-131.	1.6	25
478	Calcium and Reactive Oxygen Species Rule the Waves of Signaling. Plant Physiology, 2013, 163, 471-485.	2.3	184
479	Distinctive Potassium-Accumulation Capability of Alligatorweed (Alternanthera philoxeroides) Links to High-Affinity Potassium Transport Facilitated by K+-Uptake Systems. Weed Science, 2013, 61, 77-84.	0.8	31
480	The Arabidopsis Cyclic Nucleotide-Gated Ion Channels AtCNGC2 and AtCNGC4 Work in the Same Signaling Pathway to Regulate Pathogen Defense and Floral Transition Â. Plant Physiology, 2013, 163, 611-624.	2.3	114
481	Expression of a rice Zn transporter, OsZIP1, increases Zn concentration in tobacco and finger millet transgenic plants. Plant Biotechnology Reports, 2013, 7, 309-319.	0.9	47
482	Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum. Environmental Science and Pollution Research, 2013, 20, 270-280.	2.7	18
483	Osmotic Stress Responses and Plant Growth Controlled by Potassium Transporters in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 609-624.	3.1	350

#	Article	IF	Citations
484	Modelling metal–metal interactions and metal toxicity to lettuce Lactuca sativa following mixture exposure (Cu2+–Zn2+ and Cu2+–Ag+). Environmental Pollution, 2013, 176, 185-192.	3.7	31
485	Molecular cloning and the expression of the Na+/H+antiporter in the monocot halophyte Leptochloa fusca (L.) Kunth. Njas - Wageningen Journal of Life Sciences, 2013, 64-65, 87-93.	7.9	14
486	Ca2+/H+ exchange in the plasma membrane of Arabidopsis thaliana leaves. Acta Physiologiae Plantarum, 2013, 35, 161-173.	1.0	15
487	Enhanced drought and salt tolerance by expression of AtGSK1 gene in poplar. Plant Biotechnology Reports, 2013, 7, 39-47.	0.9	14
488	Potassium Transport and Signaling in Higher Plants. Annual Review of Plant Biology, 2013, 64, 451-476.	8.6	537
489	Bioremediation of Heavy Metals Using Metal Hyperaccumulator Plants. Soil Biology, 2013, , 467-480.	0.6	0
490	UBIQUITIN-SPECIFIC PROTEASE16 Modulates Salt Tolerance in <i>Arabidopsis</i> by Regulating Na+/H+ Antiport Activity and Serine Hydroxymethyltransferase Stability Â. Plant Cell, 2013, 24, 5106-5122.	3.1	83
491	Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. Physiologia Plantarum, 2013, 149, 515-527.	2.6	113
492	Effects of Deficiency and Excess of Zinc on Morphophysiological Traits and Spatiotemporal Regulation of Zinc-Responsive Genes Reveal Incidence of Cross Talk between Micro- and Macronutrients. Environmental Science & Technology, 2013, 47, 5327-5335.	4.6	80
493	Phylogeny and a structural model of plant MHX transporters. BMC Plant Biology, 2013, 13, 75.	1.6	27
494	Noninvasive Microelectrode Ion Flux Estimation Technique (MIFE) for the Study of the Regulation of Root Membrane Transport by Cyclic Nucleotides. Methods in Molecular Biology, 2013, 1016, 95-106.	0.4	4
495	Identification of Cyclic Nucleotide Gated Channels Using Regular Expressions. Methods in Molecular Biology, 2013, 1016, 207-224.	0.4	23
496	Characterization of Heterologously Expressed Transporter Genes by Patch- and Voltage-Clamp Methods: Application to Cyclic Nucleotide-Dependent Responses. Methods in Molecular Biology, 2013, 1016, 67-93.	0.4	4
497	Comparative analysis of cation/proton antiporter superfamily in plants. Gene, 2013, 521, 245-251.	1.0	34
498	A Suppressor Screen of the Chimeric <i>AtCNGC11/12</i> Reveals Residues Important for Intersubunit Interactions of Cyclic Nucleotide-Gated Ion Channels Â. Plant Physiology, 2013, 162, 1681-1693.	2.3	15
499	A Cyclic Nucleotide-Gated Channel (CNGC16) in Pollen Is Critical for Stress Tolerance in Pollen Reproductive Development Â. Plant Physiology, 2013, 161, 1010-1020.	2.3	143
500	The group IV-A cyclic nucleotide-gated channels, CNGC19 and CNGC20, localize to the vacuole membrane in Arabidopsis thaliana. AoB PLANTS, 2013, 5, .	1.2	49
501	Biomass for thermochemical conversion: targets and challenges. Frontiers in Plant Science, 2013, 4, 218.	1.7	183

ARTICLE IF CITATIONS Compensatory Mutations in Predicted Metal Transporters Modulate Auxin Conjugate Responsiveness 502 0.8 10 in <i>Arabidopsis</i>. G3: Genes, Genomes, Genetics, 2013, 3, 131-141. An IQ Domain Mediates the Interaction with Calmodulin in a Plant Cyclic Nucleotide-Gated Channel. 1.5 94 Plant and Cell Physiology, 2013, 54, 573-584. Identification and Characterization of Transcription Factors Regulating Arabidopsis HAK5. Plant and 504 1.5 94 Cell Physiology, 2013, 54, 1478-1490. Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. Journal 2.4 of Experimental Botany, 2013, 64, 4375-4387. Complexity of potassium acquisition: How much flows through channels?. Plant Signaling and 506 1.2 6 Behavior, 2013, 8, e24799. An RNA-Seq Transcriptome Analysis of Orthophosphate-Deficient White Lupin Reveals Novel Insights into Phosphorus Acclimation in Plants Â. Plant Physiology, 2013, 161, 705-724. 2.3 184 Involvement of the glutamate receptor <scp>A</scp>t<scp>GLR</scp>3.3 in plant defense signaling and 508 2.8 102 resistance to <i><scp>H</scp>yaloperonospora arabidopsidis</i>. Plant Journal, 2013, 76, 466-480. CalcineurinÂBâ€kike protein <scp>CBL</scp>10 directly interacts with <scp>AKT</scp>1 and modulates 509 2.8 199 K⁺ homeostasis in Arabidopsis. Plant Journal, 2013, 74, 258-266. A Novel AtKEA Gene Family, Homolog of Bacterial K+/H+ Antiporters, Plays Potential Roles in K+ 510 1.1 55 Homeostasis and Osmotic Adjustment in Arabidopsis. PLoS ONE, 2013, 8, e81463. Gene Expression Analysis of Rice Seedling under Potassium Deprivation Reveals Major Changes in 1.1 Metabolism and Signaling Components. PLoS ONE, 2013, 8, e70321. The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis 512 133 1.7 thaliana. Frontiers in Plant Science, 2013, 4, 224. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold. 1.1 182 PLoS ONE, 2014, 9, e93793. Tollip or Not Tollip: What Are the Evolving Questions behind It?. PLoS ONE, 2014, 9, e97219. 514 1.1 7 Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses. BMC Genomics, 2014, 15, 853. 1.2 129 Functional characterization in Xenopus oocytes of Na+ transport systems from durum wheat reveals 516 39 2.4 diversity among two HKT1;4 transporters. Journal of Experimental Botany, 2014, 65, 213-222. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and 228 mobilization in plants. Frontiers in Plant Science, 2014, 5, 106. Strategies for Improving Potassium Use Efficiency in Plants. Molecules and Cells, 2014, 37, 575-584. 518 1.0 60 Polyamines control of cation transport across plant membranes: implications for ion homeostasis 519 168 and abiotic stress signaling. Frontiers in Plant Science, 2014, 5, 154.

#	Article	IF	CITATIONS
520	Dissection of the Control of Anion Homeostasis by Associative Transcriptomics in <i>Brassica napus</i> . Plant Physiology, 2014, 166, 442-450.	2.3	52
521	Molecular cloning and expression analysis of a gene encoding KUP/HAK/KT-type potassium uptake transporter from Cryptomeria japonica. Trees - Structure and Function, 2014, 28, 1527-1537.	0.9	4
522	Distinct Roles for SOS1 in the Convergent Evolution of Salt Tolerance in Eutrema salsugineum and Schrenkiella parvula. Molecular Biology and Evolution, 2014, 31, 2094-2107.	3.5	43
523	Cyclic Nucleotides and Nucleotide Cyclases in Plants Under Stress. , 2014, , 119-151.		1
524	Ion homeostasis in the Chloroplast. , 2014, , 465-514.		10
525	Organelle-localized potassium transport systems in plants. Journal of Plant Physiology, 2014, 171, 743-747.	1.6	26
526	Function and evolution of channels and transporters in photosynthetic membranes. Cellular and Molecular Life Sciences, 2014, 71, 979-998.	2.4	51
527	Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere, 2014, 108, 134-144.	4.2	219
528	The over-expression of Chrysanthemum crassum CcSOS1 improves the salinity tolerance of chrysanthemum. Molecular Biology Reports, 2014, 41, 4155-4162.	1.0	38
529	Simple sequence repeat (SSR) analysis in relation to calcium transport and signaling genes reveals transferability among grasses and a conserved behavior within finger millet genotypes. Plant Systematics and Evolution, 2014, 300, 1561-1568.	0.3	26
530	Genome-wide and molecular evolution analyses of the KT/HAK/KUP family in tomato (Solanum) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 34
531	Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. Journal of Plant Physiology, 2014, 171, 670-687.	1.6	388
532	Genomeâ€wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice. FEBS Journal, 2014, 281, 894-915.	2.2	92
533	Transport, signaling, and homeostasis of potassium and sodium in plants. Journal of Integrative Plant Biology, 2014, 56, 231-249.	4.1	183
534	New Approach for Phylogenetic Tree Recovery Based on Genome-Scale Metabolic Networks. Journal of Computational Biology, 2014, 21, 508-519.	0.8	7
536	Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. , 2014, , .		13
537	Improvement of Crops in the Era of Climatic Changes. , 2014, , .		12
538	Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis. Journal of Experimental Botany, 2014, 65, 871-884.	2.4	174

#	Article	IF	Citations
539	The Role of a Potassium Transporter OsHAK5 in Potassium Acquisition and Transport from Roots to Shoots in Rice at Low Potassium Supply Levels Â. Plant Physiology, 2014, 166, 945-959.	2.3	286
540	Coordination of AtHKT1;1 and AtSOS1 facilitates Na+ and K+ homeostasis in Arabidopsis thaliana under salt stress. Journal of Plant Biology, 2014, 57, 282-290.	0.9	22
542	Molecular mechanisms involved in plant adaptation to low K+ availability. Journal of Experimental Botany, 2014, 65, 833-848.	2.4	142
543	Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. Journal of Experimental Botany, 2014, 65, 5725-5741.	2.4	109
544	Signaling in cells and organisms — calcium holds the line. Current Opinion in Plant Biology, 2014, 22, 14-21.	3.5	147
545	Albino midrib 1, encoding a putative potassium efflux antiporter, affects chloroplast development and drought tolerance in rice. Plant Cell Reports, 2014, 33, 1581-1594.	2.8	58
546	Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana. Journal of Experimental Botany, 2014, 65, 5367-5384.	2.4	58
547	Whole genome transcriptome analysis of rice seedling reveals alterations in Ca2+ ion signaling and homeostasis in response to Ca2+ deficiency. Cell Calcium, 2014, 55, 155-165.	1.1	21
548	Functional characterization of GhAKT1, a novel Shaker-like K+ channel gene involved in K+ uptake from cotton (Gossypium hirsutum). Gene, 2014, 545, 61-71.	1.0	19
549	Zincâ€deficiency resistance and biofortification in plants. Journal of Plant Nutrition and Soil Science, 2014, 177, 311-319.	1.1	47
550	Conserved histidine of metal transporter At <scp>NRAMP</scp> 1 is crucial for optimal plant growth under manganese deficiency at chilling temperatures. New Phytologist, 2014, 202, 1173-1183.	3.5	29
551	Subfunctionalization of cation/proton antiporter 1 genes in grapevine in response to salt stress in different organs. Horticulture Research, 2015, 2, 15031.	2.9	36
552	Functional analysis of a high-affinity potassium transporter PaHAK1 from Phytolacca acinosa by overexpression in eukaryotes. Plant and Soil, 2015, 397, 63-73.	1.8	3
553	Genome-wide investigation and expression analysis of Sodium/Calcium exchanger gene family in rice and Arabidopsis. Rice, 2015, 8, 54.	1.7	41
554	Transcriptome-wide high-throughput deep m6A-seq reveals unique differential m6A methylation patterns between three organs in Arabidopsis thaliana. Genome Biology, 2015, 16, 272.	3.8	145
555	Rice potassium transporter <scp>O</scp> s <scp>HAK</scp> 1 is essential for maintaining potassiumâ€mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant, Cell and Environment, 2015, 38, 2747-2765.	2.8	242
556	Complex interactions among residues within pore region determine the K ⁺ dependence of a <scp>KAT</scp> 1â€ŧype potassium channel Am <scp>KAT</scp> 1. Plant Journal, 2015, 83, 401-412.	2.8	9
557	<scp>CHX</scp> 14 is a plasma membrane <scp><scp>K</scp></scp> â€efflux transporter that regulates <scp><scp>K</scp></scp> + redistribution in <scp><i>A</i></scp> <i>rabidopsis thaliana</i> . Plant, Cell and Environment, 2015, 38, 2223-2238.	2.8	48

#	Article	IF	CITATIONS
558	The potassium transporter <scp>O</scp> s <scp>HAK</scp> 21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant, Cell and Environment, 2015, 38, 2766-2779.	2.8	155
559	Critical Issues in the Study of Magnesium Transport Systems and Magnesium Deficiency Symptoms in Plants. International Journal of Molecular Sciences, 2015, 16, 23076-23093.	1.8	46
560	Potassium Retention under Salt Stress Is Associated with Natural Variation in Salinity Tolerance among Arabidopsis Accessions. PLoS ONE, 2015, 10, e0124032.	1.1	69
561	AtNHX5 and AtNHX6 Control Cellular K+ and pH Homeostasis in Arabidopsis: Three Conserved Acidic Residues Are Essential for K+ Transport. PLoS ONE, 2015, 10, e0144716.	1.1	27
562	Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Frontiers in Plant Science, 2015, 06, 290.	1.7	189
563	Cyclic nucleotide gated channel gene family in tomato: genome-wide identification and functional analyses in disease resistance. Frontiers in Plant Science, 2015, 06, 303.	1.7	102
564	Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Frontiers in Plant Science, 2015, 6, 873.	1.7	119
565	The inward-rectifying K+ channel SsAKT1 is a candidate involved in K+ uptake in the halophyte Suaeda salsa under saline condition. Plant and Soil, 2015, 395, 173-187.	1.8	49
566	Whole-genome identification and expression analysis of K+ efflux antiporter (KEA) and Na+/H+ antiporter (NHX) families under abiotic stress in soybean. Journal of Integrative Agriculture, 2015, 14, 1171-1183.	1.7	30
567	Zygosaccharomyces rouxii Trk1 is an efficient potassium transporter providing yeast cells with high lithium tolerance. FEMS Yeast Research, 2015, 15, fov029.	1.1	21
568	Uptake of Heavy Metals. , 2015, , 91-111.		2
569	Zinc (Zn) Uptake. , 2015, , 127-133.		2
570	Interaction of nickel and manganese in uptake, translocation and accumulation by the nickel-hyperaccumulator plant, Alyssum bracteatum (Brassicaceae). Australian Journal of Botany, 2015, 63, 47.	0.3	18
571	Genetic Manipulation in Plants for Mitigation of Climate Change. , 2015, , .		2
572	Engineered Plants for Heavy Metals and Metalloids Tolerance. , 2015, , 143-168.		3
573	Identification, functional characterization, and expression pattern of a NaCl-inducible vacuolar Na+/H+ antiporter in chicory (Cichorium intybus L.). Plant Growth Regulation, 2015, 75, 605-614.	1.8	9
574	OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Science, 2015, 232, 1-12.	1.7	145
575	Nutrient Use Efficiency: from Basics to Advances. , 2015, , .		30

#	Article	IF	CITATIONS
576	Reducing the Genetic Redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 Transporters to Study Phosphate Uptake and Signaling Â. Plant Physiology, 2015, 167, 1511-1526.	2.3	117
577	Abiotic Stress Biology in Horticultural Plants. , 2015, , .		17
578	Increasing complexity and versatility: How the calcium signaling toolkit was shaped during plant land colonization. Cell Calcium, 2015, 57, 231-246.	1.1	122
579	A Low-Affinity K+ Transporter AlHKT2;1 from Recretohalophyte Aeluropus lagopoides Confers Salt Tolerance in Yeast. Molecular Biotechnology, 2015, 57, 489-498.	1.3	24
580	Understanding Genetic and Molecular Bases of Fe and Zn Accumulation Towards Development of Micronutrient-Enriched Maize. , 2015, , 255-282.		18
581	Metal Response in Cupriavidus metallidurans. Springer Briefs in Molecular Science, 2015, , .	0.1	2
582	Role of Cation/Proton Exchangers in Abiotic Stress Signaling and Stress Tolerance in Plants. , 2015, , 95-117.		7
583	KT/HAK/KUP potassium transporter genes differentially expressed during fruit development, ripening, and postharvest shelf-life of â€~Xiahui6' peaches. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	18
584	Two typical K-efficiency cotton genotypes differ in potassium absorption kinetic parameters and patterns. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 45-53.	0.3	4
585	Calcium Signaling during Reproduction and Biotrophic Fungal Interactions in Plants. Molecular Plant, 2015, 8, 595-611.	3.9	44
586	Transcription of potassium transporter genes of KT/HAK/KUP family in peach seedlings and responses to abiotic stresses. Biologia Plantarum, 2015, 59, 65-73.	1.9	15
587	Identification and localized expression of putative K+/H+ antiporter genes in Arabidopsis. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	15
588	Regulation of Nutrient Uptake by Plants. , 2015, , .		39
589	Got to hide your Zn away: Molecular control of Zn accumulation and biotechnological applications. Plant Science, 2015, 236, 1-17.	1.7	102
590	Genome-wide analysis of iron-regulated transporter 1 (IRT1) genes in plants. Horticulture Environment and Biotechnology, 2015, 56, 516-523.	0.7	8
591	Differential gene expression of two outward-rectifying shaker-like potassium channels OsSKOR and OsGORK in rice. Journal of Plant Biology, 2015, 58, 230-235.	0.9	24
592	A nodeâ€localized transporter Os <scp>ZIP</scp> 3 is responsible for the preferential distribution of Zn to developing tissues in rice. Plant Journal, 2015, 84, 374-384.	2.8	137
593	Sodium efflux in plant roots: What do we really know?. Journal of Plant Physiology, 2015, 186-187, 1-12.	1.6	39

#	Article	IF	CITATIONS
594	Constitutive Expression of Rice <i>MicroRNA528</i> Alters Plant Development and Enhances Tolerance to Salinity Stress and Nitrogen Starvation in Creeping Bentgrass. Plant Physiology, 2015, 169, 576-593.	2.3	136
595	Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato <i>CNGCs</i> . DNA Research, 2015, 22, 471-483.	1.5	81
596	Potassium transporter TRH1 subunits assemble regulating root-hair elongation autonomously from the cell fate determination pathway. Plant Science, 2015, 231, 131-137.	1.7	37
597	Genomic characterization, phylogenetic comparison and differential expression of the cyclic nucleotide-gated channels gene family in pear (Pyrus bretchneideri Rehd.). Genomics, 2015, 105, 39-52.	1.3	52
598	<i>Medicago sativa</i> - <i>Sinorhizobium meliloti</i> Symbiosis Promotes the Bioaccumulation of Zinc in Nodulated Roots. International Journal of Phytoremediation, 2015, 17, 49-55.	1.7	18
599	Identification of Anchored Simple Sequence Repeat Markers Associated with Calcium Content in Finger Millet (Eleusine coracana). Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2015, 85, 311-317.	0.4	33
600	Molecular mechanisms of phosphate and zinc signalling crosstalk in plants: Phosphate and zinc loading into root xylem in Arabidopsis. Environmental and Experimental Botany, 2015, 114, 57-64.	2.0	30
601	The membrane proteome of stroma thylakoids from <i>Arabidopsis thaliana</i> studied by successive inâ€solution and inâ€gel digestion. Physiologia Plantarum, 2015, 154, 433-446.	2.6	17
602	Thallium and potassium uptake kinetics and competition differ between durum wheat and canola. Environmental Science and Pollution Research, 2015, 22, 2166-2174.	2.7	13
603	Comparative and phylogenetic analysis of zinc transporter genes/proteins in plants. Turkish Journal of Biology, 2016, 40, 600-611.	2.1	14
604	Overexpression of an H+-PPase gene from Arabidopsis in sugarcane improvesdrought tolerance, plant growth, and photosynthetic responses. Turkish Journal of Biology, 2016, 40, 109-119.	2.1	24
605	Biochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation. Frontiers in Plant Science, 2016, 7, 918.	1.7	324
606	Fine Mapping of Virescent Leaf Gene v-1 in Cucumber (Cucumis sativus L.). International Journal of Molecular Sciences, 2016, 17, 1602.	1.8	37
607	Physiological and Transcriptome Responses to Combinations of Elevated CO2 and Magnesium in Arabidopsis thaliana. PLoS ONE, 2016, 11, e0149301.	1.1	19
608	Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Frontiers in Plant Science, 2015, 6, 1143.	1.7	817
609	Uneven HAK/KUP/KT Protein Diversity Among Angiosperms: Species Distribution and Perspectives. Frontiers in Plant Science, 2016, 7, 127.	1.7	75
610	Expression of Zinc Transporter Genes in Rice as Influenced by Zinc-Solubilizing Enterobacter cloacae Strain ZSB14. Frontiers in Plant Science, 2016, 7, 446.	1.7	62
611	Genome-Wide Analysis of Gene Regulatory Networks of the FVE-HDA6-FLD Complex in Arabidopsis. Frontiers in Plant Science, 2016, 7, 555.	1.7	37

#	Article	IF	CITATIONS
612	Improving Rice Zinc Biofortification Success Rates Through Genetic and Crop Management Approaches in a Changing Environment. Frontiers in Plant Science, 2016, 7, 764.	1.7	75
613	Molecular Cloning and Functional Analysis of a Na+-Insensitive K+ Transporter of Capsicum chinense Jacq. Frontiers in Plant Science, 2016, 7, 1980.	1.7	9
614	Potassium-Solubilizing Microorganisms: Mechanism and Their Role in Potassium Solubilization and Uptake. , 2016, , 203-219.		69
616	Sub-Functionalization in Rice Gene Families with Regulatory Roles in Abiotic Stress Responses. Critical Reviews in Plant Sciences, 2016, 35, 231-285.	2.7	3
617	Nuclear-localized cyclic nucleotide–gated channels mediate symbiotic calcium oscillations. Science, 2016, 352, 1102-1105.	6.0	230
618	Rhenium uptake and distribution in phaeophyceae macroalgae, Fucus vesiculosus. Royal Society Open Science, 2016, 3, 160161.	1.1	12
619	Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiology and Biochemistry, 2016, 105, 297-309.	2.8	171
620	Association of SNP Haplotypes of HKT Family Genes with Salt Tolerance in Indian Wild Rice Germplasm. Rice, 2016, 9, 15.	1.7	91
621	Adaptive molecular evolution of the two-pore channel 1 gene <i>TPC1</i> in the karst-adapted genus <i>Primulina</i> (Gesneriaceae). Annals of Botany, 2016, 118, 1257-1268.	1.4	7
622	Metal Hyperaccumulators: Mechanisms of Hyperaccumulation and Metal Tolerance. , 2016, , 239-268.		9
624	Thai jasmine rice cultivar KDML105 carrying Saltol QTL exhibiting salinity tolerance at seedling stage. Molecular Breeding, 2016, 36, 1.	1.0	11
625	A mutagenic study identifying critical residues for the structure and function of rice manganese transporter OsMTP8.1. Scientific Reports, 2016, 6, 32073.	1.6	17
626	The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. Journal of Experimental Botany, 2016, 67, 6253-6265.	2.4	216
627	Short day length-induced decrease of cesium uptake without altering potassium uptake manner in poplar. Scientific Reports, 2016, 6, 38360.	1.6	18
628	Potassium Solubilizing Microorganisms for Sustainable Agriculture. , 2016, , .		84
629	Multiple Calmodulin-binding Sites Positively and Negatively Regulate Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL12. Plant Cell, 2016, 28, tpc.00870.2015.	3.1	81
630	Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell and Environment, 2016, 39, 1112-1126.	2.8	368
631	Mycorrhizal Fungi: Role in the Solubilization of Potassium. , 2016, , 77-98.		75

#	Article	IF	CITATIONS
632	Involvement of Potassium Transport Systems in the Response of <i>Synechocystis</i> PCC 6803 Cyanobacteria to External pH Change, High-Intensity Light Stress and Heavy Metal Stress. Plant and Cell Physiology, 2016, 57, 862-877.	1.5	14
633	Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by <i>Trichoderma</i> spp Journal of Experimental Botany, 2016, 67, 2191-2205.	2.4	42
634	Roles and Transport of Sodium and Potassium in Plants. Metal Ions in Life Sciences, 2016, 16, 291-324.	2.8	86
635	Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environmental Monitoring and Assessment, 2016, 188, 206.	1.3	246
636	On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. Journal of Experimental Botany, 2016, 67, 1015-1031.	2.4	135
637	Algae-Based Bioremediation. , 2016, , 457-493.		10
638	Fineâ€ŧuned regulation of the K ⁺ /H ⁺ antiporter <scp>KEA</scp> 3 is required to optimize photosynthesis during induction. Plant Journal, 2017, 89, 540-553.	2.8	74
639	Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biology, 2017, 17, 43.	1.6	78
640	Calmodulin as a Ca2+-Sensing Subunit of Arabidopsis Cyclic Nucleotide-Gated Channel Complexes. Plant and Cell Physiology, 2017, 58, 1208-1221.	1.5	58
642	Using GCaMP3 to Study Ca2+ Signaling in Nicotiana Species. Plant and Cell Physiology, 2017, 58, 1173-1184.	1.5	32
643	Cadmium and zinc activate adaptive mechanisms in Nicotiana tabacum similar to those observed in metal tolerant plants. Planta, 2017, 246, 433-451.	1.6	33
644	Modelling toxicity of metal mixtures: A generalisation of new advanced methods, considering potential application to terrestrial ecosystems. Critical Reviews in Environmental Science and Technology, 2017, 47, 409-454.	6.6	11
645	Remediation of Polluted Soils Using Hyperaccumulator Plants. , 2017, , 187-214.		2
646	Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants. Scientific Reports, 2017, 7, 3806.	1.6	46
649	Uptake and translocation of cesium by Arabidopsis thaliana in hydroponics conditions: Links between kinetics and molecular mechanisms. Environmental and Experimental Botany, 2017, 138, 164-172.	2.0	15
651	Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napus. BioMetals, 2017, 30, 917-931.	1.8	77
652	Essential Plant Nutrients and Recent Concepts about their Uptake. , 2017, , 3-36.		12
653	Genetic Engineering and Molecular Strategies for Nutrient Manipulation in Plants. , 2017, , 405-441.		2

#	Article	IF	CITATIONS
654	Cesium Uptake by Rice Roots Largely Depends Upon a Single Gene, HAK1, Which Encodes a Potassium Transporter. Plant and Cell Physiology, 2017, 58, 1486-1493.	1.5	36
655	Expression and integrated network analyses revealed functional divergence of NHX-type Na+/H+ exchanger genes in poplar. Scientific Reports, 2017, 7, 2607.	1.6	50
656	AtPME3, a ubiquitous cell wall pectin methylesterase of Arabidopsis thaliana, alters the metabolism of cruciferin seed storage proteins during post-germinative growth of seedlings. Journal of Experimental Botany, 2017, 68, 1083-1095.	2.4	17
657	Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a metaâ€analysis. Plant Biotechnology Journal, 2017, 15, 162-173.	4.1	40
658	Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: a Review. Applied Biochemistry and Biotechnology, 2017, 181, 464-482.	1.4	114
659	TATA Box Insertion Provides a Selection Mechanism Underpinning Adaptations to Fe Deficiency. Plant Physiology, 2017, 173, 715-727.	2.3	27
660	Genotypic Variations in Plant Growth and Nutritional Elements of Perennial Ryegrass Accessions under Salinity Stress. Journal of the American Society for Horticultural Science, 2017, 142, 476-483.	0.5	10
661	Molecular and genetic basis of plant macronutrient use efficiency: concepts, opportunities, and challenges. , 2017, , 1-29.		7
662	Electrical Signaling, Photosynthesis and Systemic Acquired Acclimation. Frontiers in Physiology, 2017, 8, 684.	1.3	80
663	Overexpression of a Plasma Membrane Bound Na+/H+ Antiporter-Like Protein (SbNHXLP) Confers Salt Tolerance and Improves Fruit Yield in Tomato by Maintaining Ion Homeostasis. Frontiers in Plant Science, 2016, 7, 2027.	1.7	30
664	Biofortification in Millets: A Sustainable Approach for Nutritional Security. Frontiers in Plant Science, 2017, 8, 29.	1.7	83
665	A Dominant Negative OsKAT2 Mutant Delays Light-Induced Stomatal Opening and Improves Drought Tolerance without Yield Penalty in Rice. Frontiers in Plant Science, 2017, 8, 772.	1.7	11
666	In-Depth Genomic and Transcriptomic Analysis of Five K+ Transporter Gene Families in Soybean Confirm Their Differential Expression for Nodulation. Frontiers in Plant Science, 2017, 8, 804.	1.7	40
667	Genome-Wide Identification and Expression Analysis of NRAMP Family Genes in Soybean (Glycine Max L.). Frontiers in Plant Science, 2017, 8, 1436.	1.7	67
668	Editorial: Salinity Tolerance in Plants: Mechanisms and Regulation of Ion Transport. Frontiers in Plant Science, 2017, 8, 1795.	1.7	40
669	Potassium sensing, signaling, and transport: toward improved potassium use efficiency in plants. , 2017, , 149-163.		4
670	Understanding calcium transport and signaling, and its use efficiency in vascular plants. , 2017, , 165-180.		15
671	Comprehensive genomic analysis of the CNGC gene family in Brassica oleracea: novel insights into synteny, structures, and transcript profiles. BMC Genomics, 2017, 18, 869.	1.2	39

#	Article	IF	CITATIONS
672	Oversensitivity of Arabidopsis gad1/2 mutant to NaCl treatment reveals the importance of GABA in salt stress responses. African Journal of Plant Science, 2017, 11, 252-263.	0.4	7
673	The role of plant cation/proton antiporter gene family in salt tolerance. Biologia Plantarum, 2018, 62, 617-629.	1.9	37
674	Zinc, zinc nanoparticles and plants. Journal of Hazardous Materials, 2018, 349, 101-110.	6.5	216
675	An apple cyclic nucleotide-gated ion channel gene highly responsive to Botryosphaeria dothidea infection enhances the susceptibility of Nicotiana benthamiana to bacterial and fungal pathogens. Plant Science, 2018, 269, 94-105.	1.7	21
676	Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica) Tj ETQq0 0 0 rg	gBT /Overlo	ock 10 Tf 50

677	Proteaceae from phosphorusâ€impoverished habitats preferentially allocate phosphorus to photosynthetic cells: An adaptation improving phosphorusâ€use efficiency. Plant, Cell and Environment, 2018, 41, 605-619.	2.8	90
678	Potassium Uptake and Homeostasis in Plants Grown Under Hostile Environmental Conditions, and Its Regulation by CBL-Interacting Protein Kinases. , 2018, , 137-158.		0
679	Ectopic expression of SaNRAMP3 from Sedum alfredii enhanced cadmium root-to-shoot transport in Brassica juncea. Ecotoxicology and Environmental Safety, 2018, 156, 279-286.	2.9	28
680	A Comparative Analysis on the Physiological Effects of the Physical and Chemical Properties of the Trihalomethanes on Nutrient Levels, Oxidative Stress and Sterol Compositions of Leaf Oils in <i>Solanum Lycopersicum</i> Cultivars. American Journal of Agricultural and Biological Science, 2018, 13, 77-96.	0.9	0
682	Genome-Wide Identification and Analysis of HAK/KUP/KT Potassium Transporters Gene Family in Wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 2018, 19, 3969.	1.8	55
683	Microbial Assisted Phytoremediation for Heavy Metal Contaminated Soils. , 2018, , 295-317.		8
684	Stress Signaling Under Metal and Metalloid Toxicity. , 2018, , 149-184.		4
685	Evolution, and functional analysis of Natural Resistance-Associated Macrophage Proteins (NRAMPs) from Theobroma cacao and their role in cadmium accumulation. Scientific Reports, 2018, 8, 14412.	1.6	53
686	Arabidopsis NHX Transporters: Sodium and Potassium Antiport Mythology and Sequestration During Ionic Stress. Journal of Plant Biology, 2018, 61, 292-300.	0.9	12
687	Broad phylogenetic analysis of cation/proton antiporters reveals transport determinants. Nature Communications, 2018, 9, 4205.	5.8	74
688	K ⁺ Efflux Antiporters 4, 5, and 6 Mediate pH and K ⁺ Homeostasis in Endomembrane Compartments. Plant Physiology, 2018, 178, 1657-1678.	2.3	65
689	Tracing the role of plant proteins in the response to metal toxicity: a comprehensive review. Plant Signaling and Behavior, 2018, 13, e1507401.	1.2	37
690	OsMTP11, a trans-Golgi network localized transporter, is involved in manganese tolerance in rice. Plant Science, 2018, 274, 59-69.	1.7	58

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
691	Bioremediation of Metal Contaminated Soil for Sustainable Crop Production. , 2018, ,	143-173.		11
693	SaZIP4, an uptake transporter of Zn/Cd hyperaccumulator Sedum alfredii Hance. Envir Experimental Botany, 2018, 155, 107-117.	onmental and	2.0	44
694	Genome-Wide Identification and Expression Analysis of the KUP Family under Abiotic S (Manihot esculenta Crantz). Frontiers in Physiology, 2018, 9, 17.	itress in Cassava	1.3	65
695	Genome-Wide Identification of Cyclic Nucleotide-Gated Ion Channel Gene Family in W Functional Analyses of TaCNGC14 and TaCNGC16. Frontiers in Plant Science, 2018, 9,	heat and 18.	1.7	44
696	Coping With Metal Toxicity – Cues From Halophytes. Frontiers in Plant Science, 201	8, 9, 777.	1.7	72
697	Regulation of Micronutrient Homeostasis and Deficiency Response in Plants. , 2018, ,	1-15.		8
698	Pharmacological Strategies for Manipulating Plant Ca2+ Signalling. International Journ Molecular Sciences, 2018, 19, 1506.	al of	1.8	34
699	The Molecular Genetics of Zinc Uptake and Utilization Efficiency in Crop Plants. , 2018	, , 87-108.		24
700	Genome-Wide Identification and Analysis of Arabidopsis Sodium Proton Antiporter (NH Sodium Proton Exchanger (NHE) Homologs in Sorghum bicolor. Genes, 2018, 9, 236.	ΗX) and Human	1.0	37
701	Functional characterization of the NhaA Na+/H+ antiporter from the green picoalga Os tauri. Archives of Biochemistry and Biophysics, 2018, 649, 37-46.	streococcus	1.4	2
702	Genome-wide identification, evolution, and expression analysis of the <i>KT/HAK/KUP< Genome, 2018, 61, 755-765.</i>	∕i>family in pear.	0.9	25
703	Molecular Approaches to Nutrient Uptake and Cellular Homeostasis in Plants Under Al 2018, , 525-590.	piotic Stress. ,		6
704	Genome-Wide Analysis of Potassium Transport-Related Genes in Chickpea (Cicer arieti Role in Abiotic Stress Responses. Plant Molecular Biology Reporter, 2018, 36, 451-468	num L.) and Their	1.0	29
705	Changes of cationic transport in AtCAX5 transformant yeast by electromagnetic field o Journal of Biological Physics, 2018, 44, 433-448.	environments.	0.7	15
706	Calcium transport across plant membranes: mechanisms and functions. New Phytolog 49-69.	ist, 2018, 220,	3.5	289
707	A Sodium Transporter HvHKT1;1 Confers Salt Tolerance in Barley via Regulating Tissue Homeostasis. Plant and Cell Physiology, 2018, 59, 1976-1989.	and Cell Ion	1.5	66
708	Mechanisms of Ion Transport in Halophytes: From Roots to Leaves. Tasks for Vegetation 125-150.	on Science, 2019, ,	0.6	5
709	Redox Mechanisms and Plant Tolerance Under Heavy Metal Stress: Genes and Regulate 2019, , 71-105.	ory Networks. ,		3

#	Article	IF	CITATIONS
710	Transcriptome-Wide Identification and Characterization of Circular RNAs in Leaves of Chinese Cabbage (Brassica rapa L. ssp. pekinensis) in Response to Calcium Deficiency-Induced Tip-burn. Scientific Reports, 2019, 9, 14544.	1.6	26
711	The Prevalence and Impact of Model Violations in Phylogenetic Analysis. Genome Biology and Evolution, 2019, 11, 3341-3352.	1.1	105
712	The Intracellular Transporter AtNRAMP6 Is Involved in Fe Homeostasis in Arabidopsis. Frontiers in Plant Science, 2019, 10, 1124.	1.7	43
713	Cyclic nucleotide gated channels (CNGCs) in plant signalling—Current knowledge and perspectives. Journal of Plant Physiology, 2019, 241, 153035.	1.6	90
714	Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. Frontiers in Plant Science, 2019, 10, 1172.	1.7	85
715	Distinct leaf transcriptomic response of water deficient Eucalyptus grandis submitted to potassium and sodium fertilization. PLoS ONE, 2019, 14, e0218528.	1.1	13
716	Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance. Planta, 2019, 250, 549-561.	1.6	55
717	The Ca ²⁺ Channel CNGC19 Regulates Arabidopsis Defense Against Spodoptera Herbivory. Plant Cell, 2019, 31, 1539-1562.	3.1	88
718	Multiple cyclic nucleotideâ€gated channels coordinate calcium oscillations and polar growth of root hairs. Plant Journal, 2019, 99, 910-923.	2.8	54
719	Zinc biofortification of cereals—role of phosphorus and other impediments in alkaline calcareous soils. Environmental Geochemistry and Health, 2019, 41, 2365-2379.	1.8	23
720	The Effect of AtHKT1;1 or AtSOS1 Mutation on the Expressions of Na+ or K+ Transporter Genes and Ion Homeostasis in Arabidopsis thaliana under Salt Stress. International Journal of Molecular Sciences, 2019, 20, 1085.	1.8	31
721	Genome-wide analysis of the HAK potassium transporter gene family reveals asymmetrical evolution in tobacco (<i>Nicotiana tabacum</i>). Genome, 2019, 62, 267-278.	0.9	15
722	Emerging Trends and Tools in Transgenic Plant Technology for Phytoremediation of Toxic Metals and Metalloids. , 2019, , 63-88.		13
724	Arabidopsis CNGC Family Members Contribute to Heavy Metal Ion Uptake in Plants. International Journal of Molecular Sciences, 2019, 20, 413.	1.8	63
725	The Complex Fine-Tuning of K+ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses. International Journal of Molecular Sciences, 2019, 20, 715.	1.8	43
726	Linking ploidy level with salinity tolerance: NADPH-dependent â€~ROS–Ca2+ hub' in the spotlight. Journal of Experimental Botany, 2019, 70, 1063-1067.	2.4	20
727	Genome-wide identification and functional analysis of the cyclic nucleotide-gated channel gene family in Chinese cabbage. 3 Biotech, 2019, 9, 114.	1.1	13
728	Involvement of Medicago truncatula glutamate receptor-like channels in nitric oxide production under short-term water deficit stress. Journal of Plant Physiology, 2019, 236, 1-6.	1.6	23

#	Article	IF	CITATIONS
729	BCL2-ASSOCIATED ATHANOGENE4 Regulates the KAT1 Potassium Channel and Controls Stomatal Movement. Plant Physiology, 2019, 181, 1277-1294.	2.3	25
730	A Novel â€~Candidatus Liberibacter asiaticus'-Encoded Sec-Dependent Secretory Protein Suppresses Programmed Cell Death in Nicotiana benthamiana. International Journal of Molecular Sciences, 2019, 20, 5802.	1.8	21
731	A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nature Plants, 2019, 5, 1297-1308.	4.7	136
732	Could vesicular transport of Na+ and Cl– be a feature of salt tolerance in halophytes?. Annals of Botany, 2019, 123, 1-18.	1.4	53
733	ZmHAK5 and ZmHAK1 function in K ⁺ uptake and distribution in maize under low K ⁺ conditions. Journal of Integrative Plant Biology, 2019, 61, 691-705.	4.1	61
734	A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean. PLoS Genetics, 2019, 15, e1007798.	1.5	70
735	Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 2019, 16, 1807-1828.	1.8	463
736	Cloning and functional analysis of the VcCXIP4 and VcYSL6 genes as Cd-regulating genes in blueberry. Gene, 2019, 686, 104-117.	1.0	15
737	Potassium Uptake and Transport in Apple Roots Under Drought Stress. Horticultural Plant Journal, 2019, 5, 10-16.	2.3	38
738	A quantitative trait locus, <i><scp>qSE</scp>3</i> , promotes seed germination and seedling establishment under salinity stress in rice. Plant Journal, 2019, 97, 1089-1104.	2.8	107
739	Transcriptome profiles of soybean leaves and roots in response to zinc deficiency. Physiologia Plantarum, 2019, 167, 330-351.	2.6	27
740	Cation Specificity of Vacuolar NHX-Type Cation/H ⁺ Antiporters. Plant Physiology, 2019, 179, 616-629.	2.3	119
742	Golgiâ€localized cation/proton exchangers regulate ionic homeostasis and skotomorphogenesis in Arabidopsis. Plant, Cell and Environment, 2019, 42, 673-687.	2.8	25
743	Genome-wide identification, evolution and expression analysis of cyclic nucleotide-gated channels in tobacco (Nicotiana tabacum L.). Genomics, 2019, 111, 142-158.	1.3	44
744	Ca2+ to the rescue – Ca2+channels and signaling in plant immunity. Plant Science, 2019, 279, 19-26.	1.7	62
745	Identification, characterization and expression profiling of cation-proton antiporter superfamily in Triticum aestivum L. and functional analysis of TaNHX4-B. Genomics, 2020, 112, 356-370.	1.3	45
746	The topology of plastid inner envelope potassium cation efflux antiporter KEA1 provides new insights into its regulatory features. Photosynthesis Research, 2020, 145, 43-54.	1.6	16
747	Plant Membrane Transport Research inÂtheÂPost-genomic Era. Plant Communications, 2020, 1, 100013.	3.6	26

#	Article	IF	CITATIONS
748	Zinc finger protein 5 (ZFP5) associates with ethylene signaling to regulate the phosphate and potassium deficiency-induced root hair development in Arabidopsis. Plant Molecular Biology, 2020, 102, 143-158.	2.0	39
749	Plant Cyclic Nucleotide-Gated Channels: New Insights on Their Functions and Regulation. Plant Physiology, 2020, 184, 27-38.	2.3	55
750	The Interplay between Toxic and Essential Metals for Their Uptake and Translocation Is Likely Governed by DNA Methylation and Histone Deacetylation in Maize. International Journal of Molecular Sciences, 2020, 21, 6959.	1.8	17
751	Discovery and validation of candidate genes for grain iron and zinc metabolism in pearl millet [Pennisetum glaucumÂ(L.) R. Br.]. Scientific Reports, 2020, 10, 16562.	1.6	18
752	Comprehensive In Silico Characterization and Expression Profiling of Nine Gene Families Associated with Calcium Transport in Soybean. Agronomy, 2020, 10, 1539.	1.3	15
753	Molecular Evolution and Expansion of the KUP Family in the Allopolyploid Cotton Species Gossypium hirsutum and Gossypium barbadense. Frontiers in Plant Science, 2020, 11, 545042.	1.7	3
754	Heat stress in Marchantia polymorpha : Sensing and mechanisms underlying a dynamic response. Plant, Cell and Environment, 2020, 44, 2134-2149.	2.8	7
756	Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants. , 2020, , .		7
757	Leveraging computational genomics to understand the molecular basis of metal homeostasis. New Phytologist, 2020, 228, 1472-1489.	3.5	4
758	Genome-Wide Characterization and Expression Analysis of NHX Gene Family under Salinity Stress in Gossypium barbadense and Its Comparison with Gossypium hirsutum. Genes, 2020, 11, 803.	1.0	22
759	Manganese Treatment Alleviates Zinc Deficiency Symptoms in Arabidopsis Seedlings. Plant and Cell Physiology, 2020, 61, 1711-1723.	1.5	8
760	Genome-Wide Survey and Expression Analysis of the KT/HAK/KUP Family in Brassica napus and Its Potential Roles in the Response to K+ Deficiency. International Journal of Molecular Sciences, 2020, 21, 9487.	1.8	11
761	Genome-Wide Identification and Functional Characterization of the Cation Proton Antiporter (CPA) Family Related to Salt Stress Response in Radish (Raphanus sativus L.). International Journal of Molecular Sciences, 2020, 21, 8262.	1.8	23
763	A novel plasma membrane-based NRAMP transporter contributes to Cd and Zn hyperaccumulation in Sedum alfredii Hance. Environmental and Experimental Botany, 2020, 176, 104121.	2.0	56
764	Functional Characterization of ZmHAK1 Promoter and Its Regulatory Transcription Factors in Maize. Molecular Biology, 2020, 54, 327-340.	0.4	3
765	Structure, Function, Regulation and Phylogenetic Relationship of ZIP Family Transporters of Plants. Frontiers in Plant Science, 2020, 11, 662.	1.7	110
766	Grapevine Potassium Nutrition and Fruit Quality in the Context of Climate Change. Frontiers in Plant Science, 2020, 11, 123.	1.7	35
767	Salt Tolerance Mechanisms of Plants. Annual Review of Plant Biology, 2020, 71, 403-433.	8.6	988

#	Article	IF	CITATIONS
768	Genome-wide identification of CNGC genes in Chinese jujube (Ziziphus jujuba Mill.) and ZjCNGC2 mediated signalling cascades in response to cold stress. BMC Genomics, 2020, 21, 191.	1.2	20
769	Suppression of class I compensated cell enlargement by xs2Âmutation is mediated by salicylic acid signaling. PLoS Genetics, 2020, 16, e1008873.	1.5	10
770	Role of molecular approaches in improving genetic variability of micronutrients and their utilization in breeding programs. , 2020, , 27-52.		3
771	Characterization and Expression of KT/HAK/KUP Transporter Family Genes in Willow under Potassium Deficiency, Drought, and Salt Stresses. BioMed Research International, 2020, 2020, 1-12.	0.9	23
772	Whole-genome landscape of H3K4me3, H3K36me3 and H3K9ac and their association with gene expression during Paulownia witches' broom disease infection and recovery processes. 3 Biotech, 2020, 10, 336.	1.1	7
773	Improved genome assembly provides new insights into genome evolution in a desert poplar (<i>Populus euphratica</i>). Molecular Ecology Resources, 2020, 20, 781-794.	2.2	45
774	Functional characterization and physiological roles of the single Shaker outward K ⁺ channel in <i>Medicago truncatula</i> . Plant Journal, 2020, 102, 1249-1265.	2.8	11
775	Calcium channel CNGC19 mediates basal defense signaling to regulate colonization by Piriformospora indica in Arabidopsis roots. Journal of Experimental Botany, 2020, 71, 2752-2768.	2.4	36
776	Genome-wide systematic characterization of the HAK/KUP/KT gene family and its expression profile during plant growth and in response to low-K+ stress in Saccharum. BMC Plant Biology, 2020, 20, 20.	1.6	26
777	Plant tissue succulence engineering improves waterâ€use efficiency, waterâ€deficit stress attenuation and salinity tolerance in Arabidopsis. Plant Journal, 2020, 103, 1049-1072.	2.8	36
778	Distinct Evolutionary Origins of Intron Retention Splicing Events in NHX1 Antiporter Transcripts Relate to Sequence Specific Distinctions in Oryza Species. Frontiers in Plant Science, 2020, 11, 267.	1.7	16
779	The Dynamics of Radio-Cesium in Soils and Mechanism of Cesium Uptake Into Higher Plants: Newly Elucidated Mechanism of Cesium Uptake Into Rice Plants. Frontiers in Plant Science, 2020, 11, 528.	1.7	34
780	Enterococcus faecalis Manganese Exporter MntE Alleviates Manganese Toxicity and Is Required for Mouse Gastrointestinal Colonization. Infection and Immunity, 2020, 88, .	1.0	13
781	Genetic dissection of the shoot and root ionomes of Brassica napus grown with contrasting phosphate supplies. Annals of Botany, 2020, 126, 119-140.	1.4	8
782	Genome-wide association analysis of aluminum tolerance related traits in rapeseed (Brassica napus L.) during germination. Genetic Resources and Crop Evolution, 2021, 68, 335-357.	0.8	6
783	Phytoremediation using genetically engineered plants to remove metals: a review. Environmental Chemistry Letters, 2021, 19, 669-698.	8.3	55
784	Genome-Wide Investigation and Expression Analysis of K+-Transport-Related Gene Families in Chinese Cabbage (Brassica rapa ssp. pekinensis). Biochemical Genetics, 2021, 59, 256-282.	0.8	9
785	Effects of calcium application on activities of membrane transporters in Panax notoginseng under cadmium stress. Chemosphere, 2021, 262, 127905.	4.2	14

#	Article	IF	CITATIONS
786	Expression of a Brassica napus metal transport protein (BnMTP3) in Arabidopsis thaliana confers tolerance to Zn and Mn. Plant Science, 2021, 304, 110754.	1.7	20
788	Genome-wide analysis of the NRAMP gene family in potato (Solanum tuberosum): Identification, expression analysis and response to five heavy metals stress. Ecotoxicology and Environmental Safety, 2021, 208, 111661.	2.9	45
789	Pear metal transport protein PbMTP8.1 confers manganese tolerance when expressed in yeast and Arabidopsis thaliana. Ecotoxicology and Environmental Safety, 2021, 208, 111687.	2.9	9
790	Genome-wide characterization and expression analysis of HAK K+ transport family in Ipomoea. 3 Biotech, 2021, 11, 3.	1.1	13
791	A novel zinc transporter essential for Arabidopsis zinc and iron-dependent growth. Journal of Plant Physiology, 2021, 256, 153296.	1.6	7
792	The assessment of cadmium nitrate effect on morphological and cytogenetic indices of spring barley (Hordeum vulgare) seedlings. Revista Brasileira De Botanica, 2021, 44, 43-56.	0.5	3
793	The soybean plasma membraneâ€localized cation/H + exchanger GmCHX20a plays a negative role under salt stress. Physiologia Plantarum, 2021, 171, 714-727.	2.6	15
794	Interaction between Ca2+ and ROS signaling in plants. , 2021, , 387-410.		2
795	Genome-wide Analysis of a Plant AT-rich Sequence and Zinc-binding Protein (PLATZ) in Triticum Aestivum. Phyton, 2021, 90, 971-986.	0.4	6
796	Identification and characterization of the strawberry KT/HAK/KUP transporter gene family in response to K+ deficiency. Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	7
797	Regulation of transporters through different exogenously applied chemicals during environmental stress. , 2021, , 195-214.		0
798	Plant mineral transport systems and the potential for crop improvement. Planta, 2021, 253, 45.	1.6	29
799	An introduction to the calcium transport elements in plants. , 2021, , 1-18.		3
800	Functional analysis of glutamate receptor-like channels in plants. , 2021, , 215-229.		0
801	Role of transporters of copper, manganese, zinc, and nickel in plants exposed to heavy metal stress. , 2021, , 145-168.		2
802	Calcium channels and transporters in plants under salinity stress. , 2021, , 157-169.		2
803	Cation/H+ exchanger in plants. , 2021, , 89-101.		1
804	Physiological and Molecular Responses to Heavy Metal Stresses in Plants. , 2021, , 171-202.		6

#	Article	IF	CITATIONS
805	Insights into the mechanisms of transport and regulation of the arabidopsis high-affinity K+ transporter HAK51. Plant Physiology, 2021, 185, 1860-1874.	2.3	32
806	A misâ€regulated cyclic nucleotideâ€gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis. New Phytologist, 2021, 230, 1078-1094.	3.5	51
807	Advances in Mineral Nutrition Transport and Signal Transduction in Rosaceae Fruit Quality and Postharvest Storage. Frontiers in Plant Science, 2021, 12, 620018.	1.7	28
808	Diurnal variation of transitory starch metabolism is regulated by plastid proteins WXR1/WXR3 in Arabidopsis young seedlings. Journal of Experimental Botany, 2021, 72, 3074-3090.	2.4	1
809	Recent Advances in Genome-wide Analyses of Plant Potassium Transporter Families. Current Genomics, 2021, 22, 164-180.	0.7	11
810	Transcriptional Regulation of Genes Involved in Zinc Uptake, Sequestration and Redistribution Following Foliar Zinc Application to Medicago sativa. Plants, 2021, 10, 476.	1.6	17
811	Melatonin promotes potassium deficiency tolerance by regulating HAK1 transporter and its upstream transcription factor NAC71 in wheat. Journal of Pineal Research, 2021, 70, e12727.	3.4	17
812	Role of transporters in plant disease resistance. Physiologia Plantarum, 2021, 171, 849-867.	2.6	22
813	Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. Plant Cell Reports, 2021, 40, 2247-2271.	2.8	51
814	Direct transfer of zinc between plants is channelled by common mycorrhizal network of arbuscular mycorrhizal fungi and evidenced by changes in expression of zinc transporter genes in fungus and plant. Environmental Microbiology, 2021, 23, 5883-5900.	1.8	14
815	Significance of vacuolar proton pumps and metal/H + antiporters in plant heavy metal tolerance. Physiologia Plantarum, 2021, 173, 384-393.	2.6	4
816	Genome-Wide Identification and Expression Analysis of the NRAMP Family Genes in Tea Plant (Camellia) Tj ETQq1	1.0.78432 1.6	14 rgBT /Ov
817	Identification and characterization of HAK/KUP/KT potassium transporter gene family in barley and their expression under abiotic stress. BMC Genomics, 2021, 22, 317.	1.2	24
818	Plant electrical signals: A multidisciplinary challenge. Journal of Plant Physiology, 2021, 261, 153418.	1.6	24
819	Genome Wide Association Mapping of Root Traits in the Andean Genepool of Common Bean (Phaseolus) Tj ETQq	0.0 rgBT 1.7	Overlock 1 10
820	Potential Networks of Nitrogen-Phosphorus-Potassium Channels and Transporters in Arabidopsis Roots at a Single Cell Resolution. Frontiers in Plant Science, 2021, 12, 689545.	1.7	8
821	Computational characterization and expression profile of MTP1 gene associated with zinc homeostasis across dicot plant species. Gene Reports, 2021, 23, 101073.	0.4	4
822	Genome-wide identification and expression analysis of NRAMP transporter genes in Cucumis sativus and Citrullus lanatus. Canadian Journal of Plant Science, 2021, 101, 377-392.	0.3	2

#	Article	IF	CITATIONS
823	Identification and Expression Profiling Analysis of the Cation/Ca2+ Exchanger (CCX) Gene Family: Overexpression of SICCX1-LIKE Regulates the Leaf Senescence in Tomato Flowering Phase. Frontiers in Genetics, 2021, 12, 683904.	1.1	0
824	Recent Advances in the Physiology of Ion Channels in Plants. Annual Review of Plant Biology, 2021, 72, 463-495.	8.6	33
825	Ionomic Approaches for Discovery of Novel Stress-Resilient Genes in Plants. International Journal of Molecular Sciences, 2021, 22, 7182.	1.8	23
826	MYB77 regulates highâ€affinity potassium uptake by promoting expression of <i>HAK5</i> . New Phytologist, 2021, 232, 176-189.	3.5	26
827	Genome-Wide Identification and Characterization of Calcium Metabolism Related Gene Families in Arabidopsis thaliana and Their Regulation by Bacillus amyloliquefaciens Under High Calcium Stress. Frontiers in Plant Science, 2021, 12, 707496.	1.7	7
828	Disruption of <i><scp>AtHAK</scp>/<scp>KT</scp>KUP9</i> enhances plant cesium accumulation under low potassium supply. Physiologia Plantarum, 2021, 173, 1230-1243.	2.6	6
829	Cyclic nucleotide gated channel genes (CNGCs) in Rosaceae: genome-wide annotation, evolution and the roles on Valsa canker resistance. Plant Cell Reports, 2021, 40, 2369-2382.	2.8	10
830	Identification and characterization of Nramp transporter AoNramp1 in Aspergillus oryzae. 3 Biotech, 2021, 11, 452.	1.1	3
831	Molecular characterization and expression of cyclic nucleotide gated ion channels 19 and 20 in Arabidopsis thaliana for their potential role in salt stress. Saudi Journal of Biological Sciences, 2021, 28, 5800-5807.	1.8	12
832	OMICS approaches towards understanding plant's responses to counterattack heavy metal stress: An insight into molecular mechanisms of plant defense. Plant Gene, 2021, 28, 100333.	1.4	16
833	Metal tolerance in plants: Molecular and physicochemical interface determines the "not so heavy effect―of heavy metals. Chemosphere, 2022, 287, 131957.	4.2	66
834	Exploring the relationship between plant secondary metabolites and macronutrient homeostasis. , 2022, , 119-146.		2
835	Entangling the interaction between essential and nonessential nutrients: implications for global food security. , 2022, , 1-25.		0
836	The Complex Story of Plant Cyclic Nucleotide-Gated Channels. International Journal of Molecular Sciences, 2021, 22, 874.	1.8	59
837	Calcium transport elements and abiotic stress management: Machinery involved in generation of calcium signature in plants. , 2021, , 37-62.		0
838	Research Progress on Remediation of Cadmium Contaminated Soil by Plant Rhizosphere Growth-Promoting Bacteria. Hans Journal of Agricultural Sciences, 2021, 11, 354-360.	0.0	0
840	The Potassium Transporter AtKUP12 Enhances Tolerance to Salt Stress through the Maintenance of the K+/Na+ Ratio in Arabidopsis. Phyton, 2021, 90, 389-402.	0.4	3
841	The Role of ZIP Family Members in Iron Transport. , 2006, , 311-326.		8

#	Article	IF	CITATIONS
842	Physiological and Genetic Aspects of Crop Plant Adaptation to Elemental Stresses in Acid Soils. , 2004, , 171-218.		11
843	Potassium and Sodium Transport Channels Under NaCl Stress. , 2014, , 325-359.		3
844	Arbuscular Mycorrhizal Fungi-Mediated Mycoremediation of Saline Soil: Current Knowledge and Future Prospects. Fungal Biology, 2019, , 319-348.	0.3	2
845	Neurotransmitters in Signalling and Adaptation to Salinity Stress in Plants. Signaling and Communication in Plants, 2020, , 49-73.	0.5	6
846	General Roles of Phytochelatins and Other Peptides in Plant Defense Mechanisms Against Oxidative Stress/Primary and Secondary Damages Induced by Heavy Metals. , 2015, , 219-245.		5
847	Molecular Mechanisms Regulating Root Hair Tip Growth: A Comparison with Pollen Tubes. , 2017, , 167-243.		18
848	Biotechnological Approaches to Improve Phytoremediation Efficiency for Environment Contaminants. , 2007, , 223-258.		21
849	Root Hair Electrophysiology. Plant Cell Monographs, 2009, , 123-144.	0.4	3
850	Ion Transport in Aquatic Plants. , 2010, , 221-238.		7
851	Potassium and Potassium-Permeable Channels in Plant Salt Tolerance. Signaling and Communication in Plants, 2010, , 87-110.	0.5	36
852	The Role of Cyclic Nucleotide-Gated Channels in Cation Nutrition and Abiotic Stress. Signaling and Communication in Plants, 2010, , 137-157.	0.5	9
853	Role of Phytochelatins in Heavy Metal Stress and Detoxification Mechanisms in Plants. , 2013, , 73-94.		30
854	Heavy Metals as Essential Nutrients. , 2004, , 271-294.		18
855	Molecular mechanisms of potassium and sodium uptake in plants. , 2002, , 43-54.		31
856	Calcium Signaling: A Communication Network that Regulates Cellular Processes. , 2019, , 279-309.		8
857	Ecophysiological Responses of Plants Under Metal/Metalloid Toxicity. , 2020, , 393-428.		1
858	Phytoremediation of Heavy Metals: An Overview and New Insight on Green Approaches. , 2020, , 701-724.		3
859	Roots as an Integrated Part of the Translocation Pathway. , 2005, , 157-179.		3

#	Article	IF	Citations
860	Phytoremediation: Advances Toward a New Cleanup Technology. , 2004, , 924-927.		1
864	"Metallomics―— a Multidisciplinary Metal-Assisted Functional Biogeochemistry. , 2005, , 253-270.		2
865	Detoxification/Defense Mechanisms in Metal-Exposed Plants. , 2005, , 271-289.		2
866	Plants That Accumulate and/or Exclude Toxic Trace Elements Play an Important Role in Phytoremediation. , 2005, , 523-547.		2
867	Differential expression of antioxidants, Fe and Zn transporter genes in wheat under Pb stress. Zemdirbyste, 2018, 105, 49-54.	0.3	4
868	The Evolutionary History of Sarco(endo)plasmic Calcium ATPase (SERCA). PLoS ONE, 2012, 7, e52617.	1.1	44
869	Elemental Concentrations in the Seed of Mutants and Natural Variants of Arabidopsis thaliana Grown under Varying Soil Conditions. PLoS ONE, 2013, 8, e63014.	1.1	19
870	Identification of a rice metal tolerance protein OsMTP11 as a manganese transporter. PLoS ONE, 2017, 12, e0174987.	1.1	65
871	PtHAK5, a candidate for mediating high-affinity K\$lt;sup\$gt;+\$lt;/sup\$gt; uptake in the halophytic grass, Puccinellia tenuiflora. Frontiers of Agricultural Science and Engineering, 2018, 5, 108.	0.9	4
872	Options for Developing Salt-tolerant Crops. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1085-1092.	0.5	19
873	Role of Cyclic Nucleotide Gated Channels in Stress Management in Plants. Current Genomics, 2016, 17, 315-329.	0.7	92
874	Higher plant vacuolar ionic transport in the cellular context. Acta Botanica Mexicana, 2002, , 37.	0.1	16
875	Metal hyperaccumulation in plants - Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 2003, 6, .	1.2	476
876	Isolation and molecular characterization of a cax gene from Capsella bursa-pastoris. Biocell, 2008, 32, 229-225.	0.4	5
877	Probing the Role of the Chloroplasts in Heavy Metal Tolerance and Accumulation in Euglena gracilis. Microorganisms, 2020, 8, 115.	1.6	23
879	Mapping Cadmium distribution in roots of Salicaceae through scanning electron microscopy with x-ray microanalysis. IForest, 2011, 4, 113-120.	0.5	16
880	Involvement of Ca2+ in Alleviation of Cd2+ Toxicity in Common Bean (Phaseolas vulgaris L.) Plants. Asian Journal of Biological Sciences, 2007, 1, 26-32.	0.2	11
881	Abiotic Stress Response in Plants - Physiological, Biochemical and Genetic Perspectives. , 2011, , .		23

#	Article	IF	CITATIONS
882	A quantitative hypermorphic CNGC allele confers ectopic calcium flux and impairs cellular development. ELife, 2017, 6, .	2.8	30
883	Genome-wide identification and analysis of the <i>CNGC</i> gene family in maize. PeerJ, 2018, 6, e5816.	0.9	20
884	Noncoding-RNA-Mediated Regulation in Response to Macronutrient Stress in Plants. International Journal of Molecular Sciences, 2021, 22, 11205.	1.8	7
885	Genome-Wide Identification, Genomic Organization, and Characterization of Potassium Transport-Related Genes in Cajanus cajan and Their Role in Abiotic Stress. Plants, 2021, 10, 2238.	1.6	11
886	Uncovering expression and functional analysis of newly discovered high-affinity K+ transporter family members from sugarcane. Journal of Plant Biochemistry and Biotechnology, 0, , 1.	0.9	0
887	The Role of Copper Oxide Nanomaterials on Ruta graveolens Physiological Response, and IRT1 and CAT Gene Expression. Plant Molecular Biology Reporter, 0, , 1.	1.0	1
888	Insights into the physiological and molecular responses of plants to iron and zinc deficiency. Plant Physiology Reports, 2021, 26, 626.	0.7	4
889	Cross-Talks Between Macro- and Micronutrient Uptake and Signaling in Plants. Frontiers in Plant Science, 2021, 12, 663477.	1.7	53
890	Isolation of in planta-Induced Genes of Pseudomonas viridiflava. Acta Phytopathologica Et Entomologica Hungarica, 2004, 39, 361-375.	0.1	0
893	Structural and functional relationship between cation transporters and channels. , 2006, , 177-184.		0
894	The Chloroplast Envelope Proteome and Lipidome. Plant Cell Monographs, 2008, , 41.	0.4	4
895	Identification of Genes for Biofortification Genetic and Molecular Analysis of Mineral Accumulation in Arabidopsis thaliana and Other Plant Species. , 2008, , 231-251.		0
896	Expression of Arabidiopsis CAX4 in tomato fruits increases calcium level with no accumulation of other metallic cations. Journal of Plant Biotechnology, 2008, 35, 337-343.	0.1	0
897	Characteristics and functions of shaker like potassium channels in rice. Journal of Plant Biotechnology, 2010, 37, 539-548.	0.1	0
899	Expression and subcellular localization of antiporter regulating protein OsARP in rice induced by submergence, salt and drought stresses. African Journal of Biotechnology, 2012, 11, .	0.3	0
900	Cyclic Nucleotide-Gated Channels: Essential Signaling Components in Plants for Fertilization and Immunity Responses. , 2014, , 177-192.		0
901	Micronutrient Use Efficiency – Cell Biology of Iron and Its Metabolic Interactions in Plants. Plant Ecophysiology, 2014, , 133-152.	1.5	3
902	Blossom-End Rot in Fruit Vegetables. , 2015, , 117-126.		7

#	Article	lF	CITATIONS
903	Sub-cloning of Zinc Transporter Gene for Genetic Transformation to Improve Zinc Nutrient Status in Crop Plants. International Journal of Bio-resource and Stress Management, 2015, 6, 396.	0.1	0
904	Copper (Cu) Uptake. , 2015, , 141-148.		0
905	Metal Response in Cupriavidus metallidurans: Insights into the Structure-Function Relationship of Proteins. Springer Briefs in Molecular Science, 2015, , 1-70.	0.1	0
906	Potassium (K) Uptake. , 2015, , 43-52.		0
907	Interplay of vacuolar transporters for coupling primary and secondary active transport. AIMS Biophysics, 2016, 3, 479-500.	0.3	1
908	Effect of Low Temperatures on the Structure of Plant Cells: Structural, Biochemical, and Molecular Aspects. , 2016, , 565-594.		1
910	An Update on Molecular Strategies of Transgenic Rice Tolerance to Abiotic Stresses. Energy, Environment, and Sustainability, 2019, , 229-247.	0.6	1
912	Improvement of Rice Quality via Biofortification of Selenium, Iron, and Zinc and Its Starring Role in Human Health. , 2020, , 699-713.		4
916	Cation transporters in cell fate determination and plant adaptive responses to a low-oxygen environment. Journal of Experimental Botany, 2022, 73, 636-645.	2.4	7
917	Micronutrient Biofortification in Rice for Better Quality. , 2020, , 639-653.		1
918	Genome-wide identification and expression analysis of the potato ZIP gene family under Zn-deficiency. Biologia Plantarum, 0, 64, 845-855.	1.9	11
919	Plant Ligand-Gated Channels 2: CNGC. SpringerBriefs in Plant Science, 2021, , 63-73.	0.4	0
920	Zinc deficiency responses: bridging the gap between Arabidopsis and dicotyledonous crops. Journal of Experimental Botany, 2022, 73, 1699-1716.	2.4	16
922	Cadmium: Uptake in Plants and Its Alleviation Via Crosstalk Between Phytohormones and Sulfur. , 2020, , 393-418.		0
923	Mechanism of Toxic Metal Uptake and Transport in Plants. , 2020, , 335-349.		1
924	Heavy Metal Contamination of Environment and Crop Plants. , 2020, , 303-333.		0
925	Heavy Metal–Induced Gene Expression in Plants. , 2020, , 143-173.		5
926	Plant-Microbe-Metal Interactions: A Biochemical and Molecular Analysis for Phytoremediation. , 2020, , 71-92.		0

#	Article	IF	CITATIONS
927	Genome-Wide Identification of Wheat ZIP Gene Family and Functional Characterization of the TaZIP13-B in Plants. Frontiers in Plant Science, 2021, 12, 748146.	1.7	6
928	Expression of Zinc Transporter Genes in Oat (Avena sativa L.) as Influenced by Zinc-Solubilizing Bacteria. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 3448-3457.	0.0	1
932	Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in arabidopsis. Plant Physiology, 2001, 127, 473-85.	2.3	79
933	Regulation of CAX1, an Arabidopsis Ca(2+)/H+ antiporter. Identification of an N-terminal autoinhibitory domain. Plant Physiology, 2001, 127, 1020-9.	2.3	36
934	Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiology, 2001, 127, 1617-25.	2.3	66
935	Genome-wide analysis of potassium transport genes in Gossypium raimondii suggest a role of GrHAK/KUP/KT8, GrAKT2.1 and GrAKT1.1 in response to abiotic stress. Plant Physiology and Biochemistry, 2022, 170, 110-122.	2.8	16
936	Delineating Calcium Signaling Machinery in Plants: Tapping the Potential through Functional Genomics. Current Genomics, 2021, 22, 404-439.	0.7	6
937	Regulation of Cytosolic pH: The Contributions of Plant Plasma Membrane H+-ATPases and Multiple Transporters. International Journal of Molecular Sciences, 2021, 22, 12998.	1.8	22
938	Insights into plastome of Fagonia indica Burm.f. (Zygophyllaceae): organization, annotation and phylogeny. Saudi Journal of Biological Sciences, 2022, 29, 1313-1321.	1.8	0
939	Identification of genes related to tipburn resistance in Chinese cabbage and preliminary exploration of its molecular mechanism. BMC Plant Biology, 2021, 21, 567.	1.6	4
941	Identification of NRAMP4 from Arabis paniculata enhance cadmium tolerance in transgenic Arabidopsis. Journal of Genetics, 2021, 100, .	0.4	2
942	Mechanism of high affinity potassium transporter (HKT) towards improved crop productivity in saline agricultural lands. 3 Biotech, 2022, 12, 51.	1.1	7
943	Role of natural resistance-associated macrophage proteins in metal ion transport in plants. , 2022, , 337-356.		2
944	Transcriptomeâ€wide identification and analysis of the KT/HAK/KUP family in black goji under NaCl stress. Agronomy Journal, 2022, 114, 2069-2080.	0.9	4
945	Potassium transporters and their evolution in plants under salt stress. , 2022, , 63-83.		4
946	Cation/Proton Antiporter Genes in Tomato: Genomic Characterization, Expression Profiling, and Co-Localization with Salt Stress-Related QTLs. Agronomy, 2022, 12, 245.	1.3	6
948	Cation transporters in plants: an overview. , 2022, , 1-28.		5
949	A tale of many families: calcium channels in plant immunity. Plant Cell, 2022, 34, 1551-1567.	3.1	45

#	Article	IF	Citations
950	Metal tolerance protein family members are involved in Mn homeostasis through internal compartmentation and exocytosis in Brassica napus. Environmental and Experimental Botany, 2022, 195, 104785.	2.0	7
951	Genome-wide analysis of HAK/KUP/KT potassium transporter genes in banana (Musa acuminata L.) and their tissue-specific expression profiles under potassium stress. Plant Growth Regulation, 2022, 97, 51-60.	1.8	5
952	Exogenous sucrose influences KEA1 and KEA2 to regulate abscisic acid-mediated primary root growth in Arabidopsis. Plant Science, 2022, 317, 111209.	1.7	2
953	Cyclic nucleotideâ€gated ion channel 6 is involved in extracellular ATP signaling and plant immunity. Plant Journal, 2022, 109, 1386-1396.	2.8	16
955	Zinc solubilizing rhizobacteria as soil health engineer managing zinc deficiency in plants. , 2022, , 215-238.		1
956	Dynamic Expression, Differential Regulation and Functional Diversity of the CNGC Family Genes in Cotton. International Journal of Molecular Sciences, 2022, 23, 2041.	1.8	8
957	Plant-Mycorrhizal Fungi Interactions in Phytoremediation of Geogenic Contaminated Soils. Frontiers in Microbiology, 2022, 13, 843415.	1.5	5
958	Transcriptome-wide identification and expression analysis of the KT/HAK/KUP family in <i>Salicornia europaea</i> L. under varied NaCl and KCl treatments. PeerJ, 2022, 10, e12989.	0.9	2
959	Overexpression of <i>OsHAK5</i> potassium transporter enhances virus resistance in rice (<i>Oryza) Tj ETQq0 0</i>	0 rgBT /Ov	verlock 10 T
960	Finger Millet (<i>Eleusine coracana</i> (L.) Gaertn): Nutritional Importance and Nutrient Transporters. Critical Reviews in Plant Sciences, 2022, 41, 1-31.	2.7	22
961	Ethylene-induced potassium transporter AcKUP2 gene is involved in kiwifruit postharvest ripening. BMC Plant Biology, 2022, 22, 108.	1.6	1
962	Silencing of GhKEA4 and GhKEA12 Revealed Their Potential Functions Under Salt and Potassium Stresses in Upland Cotton. Frontiers in Plant Science, 2021, 12, 789775.	1.7	10
963	Genome-Wide Identification and Expression Profiling of Potassium Transport-Related Genes in Vigna radiata under Abiotic Stresses, Plants, 2022, 11, 2,	1.6	11

965	BrCNGC gene family in field mustard: genome-wide identification, characterization, comparative synteny, evolution and expression profiling. Scientific Reports, 2021, 11, 24203.	1.6	3
966	Fe and Zn stress induced gene expression analysis unraveled mechanisms of mineral homeostasis in common bean (Phaseolus vulgaris L.). Scientific Reports, 2021, 11, 24026.	1.6	4
967	Genome-wide identification, molecular characterization, and gene expression analyses of honeysuckle NHX antiporters suggest their involvement in salt stress adaptation. PeerJ, 2022, 10, e13214.	0.9	6
968	Regulation and Role of Calcium Fluxes in the Chloroplast. , 2007, , 403-416.		0

1004	Heterologous expression of the MiHAK14 homologue from Mangifera indica enhances plant tolerance to K+ deficiency and salinity stress in Arabidopsis. Plant Growth Regulation, 2022, 98, 39-49.	1.8	5	
------	--	-----	---	--

ARTICLE IF CITATIONS Comprehensive insights in thallium ecophysiology in the hyperaccumulator Biscutella laevigata. 1005 3.9 9 Science of the Total Environment, 2022, 838, 155899. Phytic acid contributes to the phosphate-zinc signaling crosstalk in Arabidopsis. Plant Physiology and 1006 2.8 Biochemistry, 2022, 183, 1-8. 1007 Ca ²⁺ signals in plant immunity. EMBO Journal, 2022, 41, e110741. 3.582 Chloroplast pH Homeostasis for the Regulation of Photosynthesis. Frontiers in Plant Science, 2022, Melatonin as a regulator of plant ionic homeostasis: implications for abiotic stress tolerance. 1009 2.4 26 Journal of Experimental Botany, 2022, 73, 5886-5902. Genome-wide analyses of metal tolerance protein genes in apple (Malus domestica): Identification, characterization, expression and response to various metal ion stresses. Environmental and Experimental Botany, 2022, 201, 104948. 1011 Root Hair Electrophysiology. Plant Cell Monographs, 0, , . 0.4 0 Genome Editing for Nutrient Use Efficiency in Crops., 2022, , 347-383. 1012 Regulation of the Zinc Deficiency Response in the Legume Model Medicago truncatula. Frontiers in 1013 1.7 8 Plant Science, 0, 13, . PCNRAMP1 Enhances Cadmium Uptake and Accumulation in Populus Ã- canescens. International Journal 1014 1.8 of Molecular Sciences, 2022, 23, 7593. Phytoremediation of 137Cs: factors and consequences in the environment. Radiation and 1015 2 0.6 Environmental Biophysics, 2022, 61, 341-359. Functional Characterization of MaZIP4, a Gene Regulating Copper Stress Tolerance in Mulberry 1.1 (Morus atropurpurea R.). Life, 2022, 12, 1311. Strategies for Heavy Metals Remediation from Contaminated Soils and Future Perspectives. 1017 0.1 4 Environmental Science and Engineering, 2022, , 615-644. Role of NRAMP transporters for Fe, mineral uptake, and accumulation in rice and other plants., 2022, 1018 331-348. Genome-wide identification of & amp;lt;italic& amp;gt;BnCNGC& amp;lt;/italic& amp;gt; and the gene expression analysis in & amp;lt;italic>Brassica napus</italic&gt; challenged with 1019 0.1 0 <italic&gt;Sclerotinia sclerotiorum&lt;/italic&gt; and PEG-simulated drought. Acta Agronomica Sinica(China), 2022, 48, 1357-1371. Dealing with Environmental Fluctuations: Diversity of Potassium Uptake Systems Across the Three 2.8 Domains of Life. Journal of Plant Growth Regulation, 0, , . Function identification and characterization of <i>Oryza sativa</i> 1021 computationally for nutrition and biofortification in rice. Journal of Biomolecular Structure and 2.0 1 Dynamics, 2023, 41, 7490-7510. The plasma membrane-localized OsNIP1;2 mediates internal aluminum detoxification in rice. Frontiers in Plant Science, 0, 13, .

#	Article	IF	CITATIONS
1023	Divergent Roles of CNGC2 and CNGC4 in the Regulation of Disease Resistance, Plant Growth and Heat Tolerance in Arabidopsis. Agronomy, 2022, 12, 2176.	1.3	2
1024	Genome-wide identification of the ZIP gene family in lettuce (Lactuca sativa L.) and expression analysis under different element stress. PLoS ONE, 2022, 17, e0274319.	1.1	5
1025	CNGCs as stomatal gatekeepers during ABA signaling. Plant Cell, 0, , .	3.1	0
1026	The Copper Transport Mechanism in Plants. , 2022, , 275-287.		0
1027	Heavy Metal Transporters, Phytoremediation Potential, and Biofortification. , 2022, , 387-405.		1
1028	Natural Resistance-Associated Macrophage Proteins (NRAMPs): Functional Significance of Metal Transport in Plants. , 2022, , 91-107.		2
1029	The Function of HAK as K+ Transporter and AKT as Inward-Rectifying Agent in the K+ Channel. , 2022, , 227-243.		0
1030	FveARF2 negatively regulates fruit ripening and quality in strawberry. Frontiers in Plant Science, 0, 13,	1.7	3
1031	Integrated physiological and transcriptional dissection reveals the core genes involving nutrient transport and osmoregulatory substance biosynthesis in allohexaploid wheat seedlings under salt stress. BMC Plant Biology, 2022, 22, .	1.6	3
1032	Pangenome-wide analysis of cyclic nucleotide-gated channel (CNGC) gene family in citrus Spp. Revealed their intraspecies diversity and potential roles in abiotic stress tolerance. Frontiers in Genetics, 0, 13, .	1.1	9
1033	<i>SES1</i> is vital for seedling establishment and post-germination growth under high-potassium stress conditions in <i>Arabidopsis thaliana</i> . PeerJ, 0, 10, e14282.	0.9	0
1034	Identification of the HAK gene family reveals their critical response to potassium regulation during adventitious root formation in apple rootstock. Horticultural Plant Journal, 2023, 9, 45-59.	2.3	3
1035	Genome-Wide Analysis of Cyclic Nucleotide-Gated Channel Genes Related to Pollen Development in Rice. Plants, 2022, 11, 3145.	1.6	3
1036	A Na+/H+ antiporter localized on the Golgi-to-vacuole transport system from Camellia sinensis, CsNHX6, plays a positive role in salt tolerance. Scientia Horticulturae, 2023, 309, 111704.	1.7	1
1037	Genome-wide characterization and expression analysis of the HAK gene family in response to abiotic stresses in Medicago. BMC Genomics, 2022, 23, .	1.2	1
1038	Cloning and Functional Characterization of SpZIP2. Genes, 2022, 13, 2395.	1.0	2
1039	Genome-wide investigation on metal tolerance protein (MTP) genes in leguminous plants: Glycine max, Medicago truncatula, and Lotus japonicus. Acta Physiologiae Plantarum, 2023, 45, .	1.0	4
1040	Functional and biotechnological cues of potassium homeostasis for stress tolerance and plant development. Biotechnology and Genetic Engineering Reviews, 0, , 1-44.	2.4	2

		CITATION F	REPORT	
#	Article		IF	CITATIONS
1041	Comparative Ubiquitination Proteomics Revealed the Salt Tolerance Mechanism in Suga Monomeric Additional Line M14. International Journal of Molecular Sciences, 2022, 23,		1.8	0
1042	New Insight into Plant Saline-Alkali Tolerance Mechanisms and Application to Breeding. Journal of Molecular Sciences, 2022, 23, 16048.	International	1.8	15
1043	MaHAK5, a Potassium Transporter of Banana, Enhanced Potassium Uptake in Transgeni under Low Potassium Conditions. Horticulturae, 2023, 9, 10.	c Arabidopsis	1.2	1
1044	Wheat potassium transporter TaHAK13 mediates K+ absorption and maintains potassiu under low potassium stress. Frontiers in Plant Science, 0, 13, .	m homeostasis	1.7	0
1045	Phenotypes of cyclic nucleotideâ€gated cation channel mutants: probing the nature of Plant Journal, 2023, 113, 1223-1236.	native channels.	2.8	2
1046	Genome-Wide Identification and Expression Analysis Reveals Roles of the NRAMP Gene Iron/Cadmium Interactions in Peanut. International Journal of Molecular Sciences, 2023,	Family in , 24, 1713.	1.8	10
1047	Overexpression of Rice C3HC4-Type RING Finger Protein Gene, OsSIRHC-2, Improves Sa Through Low Na+ Accumulation. Journal of Plant Biology, 2023, 66, 147-162.	inity Tolerance	0.9	3
1048	Advanced biotechnological strategies towards the development of crops with enhanced micronutrient content. Plant Growth Regulation, 2023, 100, 355-371.		1.8	4
1049	Exogenous brassinosteroid alleviates calcium deficiency induced tip-burn by regulating or transport in Brassica rapa L. ssp. pekinensis. Ecotoxicology and Environmental Safety, 2		2.9	1
1050	Two Trk/Ktr/HKT-type potassium transporters, TrkG and TrkH, perform distinct functions Escherichia coli K-12. Journal of Biological Chemistry, 2023, 299, 102846.	in	1.6	3
1051	A novel mutant allele of <i>AtCNGC15</i> reveals a dual function of nuclear calcium rel root meristem. Journal of Experimental Botany, 2023, 74, 2572-2584.	ease in the	2.4	4
1052	lon-uptake mechanisms of individual cells and roots: short-distance transport. , 2023, , 2	11-71.		4
1053	Potassium nutrient status drives posttranslational regulation of a low-K response netwo Arabidopsis. Nature Communications, 2023, 14, .	rk in	5.8	8
1054	Ectopic co-expression of endosome located V-ATPase subunit gene and NHX transporte Helianthus tuberosus enhances rice growth and nutrient uptake. Environmental and Exp Botany, 2023, 209, 105302.		2.0	0
1055	Differential behaviour of four genotypes of Andrographis paniculata (Burm.f.) Nees towa toxicity of As, Cd, and Pb: An ionomics and metabolic interpretation. Journal of Hazardo Advances, 2023, 10, 100274.	ard combined us Materials	1.2	0
1056	Physiological and molecular mechanisms of medicinal plants in response to cadmium st status and future perspective. Journal of Hazardous Materials, 2023, 450, 131008.	ress: Current	6.5	22
1058	Novel biofortification candidate: MTP1 increases microelement contents and decreases metal accumulation in grains. Chemosphere, 2023, 318, 137967.	toxic heavy	4.2	3
1059	A non-K+-solubilizing PGPB (Bacillus megaterium) increased K+ deprivation tolerance in seedlings by up-regulating root K+ transporters. Plant Physiology and Biochemistry, 202	Oryza sativa 3, 196, 774-782.	2.8	3

#	Article	IF	CITATIONS
1060	<i>In planta</i> evidence that the HAK transporter OsHAK2 is involved in Na+ transport in rice. Bioscience, Biotechnology and Biochemistry, 0, , .	0.6	0
1061	Comparative Transcriptome Profiling Reveals Key MicroRNAs and Regulatory Mechanisms for Aluminum Tolerance in Olive. Plants, 2023, 12, 978.	1.6	2
1062	Growth and physiological–biochemical characteristics of cucumber (Cucumis sativus L.) in the presence of different microplastics. Arabian Journal of Geosciences, 2023, 16, .	0.6	6
1063	Trace metal nutrition and response to deficiency. , 2023, , 167-203.		2
1064	Genome-Wide Identification, Characterization and Experimental Expression Analysis of CNGC Gene Family in Gossypium. International Journal of Molecular Sciences, 2023, 24, 4617.	1.8	0
1065	GABA Metabolism, Transport and Their Roles and Mechanisms in the Regulation of Abiotic Stress (Hypoxia, Salt, Drought) Resistance in Plants. Metabolites, 2023, 13, 347.	1.3	7
1066	The captivating role of calcium in plant-microbe interaction. Frontiers in Plant Science, 0, 14, .	1.7	5
1067	Zinc/iron-regulated transporter-like protein gene family in Theobroma cacao L: Characteristics, evolution, function and 3D structure analysis. Frontiers in Plant Science, 0, 14, .	1.7	1
1069	Bitki İyonomik: İyonların Biyolojik Dili. , 0, , .		0
1070	Physiological, transcriptome and gene functional analysis provide novel sights into cadmium accumulation and tolerance mechanisms in kenaf. Journal of Environmental Sciences, 2024, 137, 500-514.	3.2	1
1071	Systematic Analysis of NRAMP Family Genes in Areca catechu and Its Response to Zn/Fe Deficiency Stress. International Journal of Molecular Sciences, 2023, 24, 7383.	1.8	3
1072	Silencing of PpNRAMP5 improves manganese toxicity tolerance in peach (Prunus persica) seedlings. Journal of Hazardous Materials, 2023, 454, 131442.	6.5	9
1073	Effective removal of Mn(â¡) from acidic wastewater using a novel acid tolerant fungi Aspergillus sp. MF1 via immobilization. Journal of Hazardous Materials Advances, 2023, 10, 100301.	1.2	0
1074	Considerations in production of the prokaryotic ZIP family transporters for structural and functional studies. Methods in Enzymology, 2023, , 1-30.	0.4	0
1078	Toxicity Assessment of Gold Ions and Gold Nanoparticles on Plant Growth. , 2023, , 175-189.		0
1085	Current understanding of genomics, transcriptomics, proteomics, and metabolomics of plants upon heavy metal stress. , 2023, , 327-338.		0
1086	Halotolerance mechanisms in salt‑tolerant cyanobacteria. Advances in Applied Microbiology, 2023, , .	1.3	0
1098	Improving the metal composition of plants for reduced Cd and increased Zn content: molecular mechanisms and genetic regulations. Cereal Research Communications, 0, , .	0.8	0

		CITATION REPORT	
#	Article	IF	CITATIONS
1106	Breeding Efforts and Biotechnology. Earth and Environmental Sciences Library, 2023, , 247-300.	0.3	0