Air-Stable Single-Source Precursors for the Synthesis o Nanoparticles

Chemistry of Materials 13, 913-920 DOI: 10.1021/cm0011662

Citation Report

#	Article	IF	CITATIONS
1	Synthesis of CdSe nanoparticles using various organometallic cadmium precursors. Journal of Materials Chemistry, 2001, 11, 3197-3201.	6.7	108
2	Continuous Preparation of CdSe Nanocrystals by a Microreactor. Chemistry Letters, 2002, 31, 1072-1073.	0.7	46
3	A Simple Route to the Synthesis of Core/Shell Nanoparticles of Chalcogenides. Chemistry of Materials, 2002, 14, 2004-2010.	3.2	201
4	A single-source route to CdS nanorods. Chemical Communications, 2002, , 564-565.	2.2	76
5	Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials. Chemistry of Materials, 2002, 14, 1576-1584.	3.2	355
6	Preparation of CdSe nanocrystals in a micro-flow-reactor. Chemical Communications, 2002, , 2844-2845.	2.2	180
8	Green Chemical Approaches toward High-Quality Semiconductor Nanocrystals. Chemistry - A European Journal, 2002, 8, 334-339.	1.7	204
9	Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers. Angewandte Chemie - International Edition, 2002, 41, 2368-2371.	7.2	1,174
10	Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes:  Nucleation and Growth. Journal of the American Chemical Society, 2002, 124, 3343-3353.	6.6	1,461
11	Selective Synthesis and Characterization of CdSe Nanorods and Fractal Nanocrystals. Inorganic Chemistry, 2002, 41, 5249-5254.	1.9	174
12	ZnSe Semiconductor Hollow Microspheres. Angewandte Chemie, 2003, 115, 3135-3138.	1.6	72
13	ZnSe Semiconductor Hollow Microspheres. Angewandte Chemie - International Edition, 2003, 42, 3027-3030.	7.2	593
14	A novel ultrasound-assisted approach to the synthesis of CdSe and CdS nanoparticles. Journal of Solid State Chemistry, 2003, 172, 102-110.	1.4	67
15	Cd(NH2CSNHNHCSNH2)Cl2: a new single-source precursor for the preparation of CdS nanoparticles. Polyhedron, 2003, 22, 3129-3135.	1.0	42
16	Synthesis and characterization of ZnO nanoparticles assembled in one-dimensional order. Inorganic Chemistry Communication, 2003, 6, 877-881.	1.8	67
17	Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 220, 151-157.	2.3	97
18	Nanocrystalline Chalcopyrite Materials (CuInS2 and CuInSe2) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors. Chemistry of Materials, 2003, 15, 3142-3147.	3.2	388
19	Synthesis of High-Quality Metal Sulfide Nanoparticles from Alkyl Xanthate Single Precursors in Alkylamine Solvents. Journal of Physical Chemistry B, 2003, 107, 13843-13854.	1.2	213

ARTICLE IF CITATIONS # In situ synthesis of CdS/PVK nanocomposites and their optical properties. Materials Letters, 2003, 57, 20 1.3 39 1351-1354. Influence of Precursor Design on the Growth of Nanomaterials. Materials Research Society Symposia 0.1 Proceedings, 2004, 848, 85. 22 Luminescent ZnSe nanocrystals of high color purity. Materials Chemistry and Physics, 2004, 84, 10-13. 2.0 102 N-alkylthioureacadmium (II) complexes as novel precursors for the synthesis of CdS nanoparticles. Journal of Materials Science: Materials in Electronics, 2004, 15, 313-316. SYNTHESIS ROUTES FOR LARGE VOLUMES OF NANOPARTICLES. Annual Review of Materials Research, 24 4.3 326 2004, 34, 41-81. A Single-Source Approach to Bi2S3and Sb2S3Nanorods via a Hydrothermal Treatment. Crystal Growth and Design, 2004, 4, 513-516. 1.4 Synthesis and Characterization of Colloidal CuInS2Nanoparticles from a Molecular Single-Source 26 1.2 404 Precursor. Journal of Physical Chemistry B, 2004, 108, 12429-12435. Carbonâ[^]Sulfur Bond Cleavage in Bis(N-alkyldithiocarbamato)cadmium(II) Complexes:  Heterolytic Desulfurization Coupled to Topochemical Proton Transfer. Inorganic Chemistry, 2004, 43, 3180-3188. High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors. Nano 28 4.5 335 Letters, 2004, 4, 2261-2264. Thermodynamicâ€Dependent Sizeâ€Selection of ZnSe Nanoparticles in Amphiphilic Triblock Copolymer 0.8 Systems. Journal of the Chinese Chemical Society, 2004, 51, 65-70. New Organometallic Approach to Synthesize High-quality CdSe Quantum Dots. Chemistry Letters, 30 0.7 6 2005, 34, 1284-1285. Size-tuning and Optical Properties of High-quality CdSe Nanoparticles Synthesized from Cadmium Stearate. Čhemistry Letters, 2005, 34, 1004-1005. In situ Synthesis of Ag2S Nanosized Particles in Porous Materials Using Single-source Precursor. 32 0.7 8 Chemistry Letters, 2005, 34, 1618-1619. A Simple Large-scale Synthesis of Well-defined Silver Sulfide Semiconductor Nanoparticles with Adjustable Sizes. Chemistry Letters, 2005, 34, 1664-1665. Phase-controlled synthesis of ZnS nanocrystallites by mild solvothermal decomposition of an 34 49 0.7 air-stable single-source molecular precursor. Journal of Crystal Growth, 2005, 284, 554-560. The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods. Nanotechnology, 2005, 16, 2000-2011. Fluorescent Nanocrystal-Polymer Complexes with Flexible Processability. Advanced Materials, 2005, 17, 36 11.1 76 853-857. Flexible Wurtzite-Type ZnS Nanobelts with Quantum-Size Effects: a Diethylenetriamine-Assisted 5.2 128 Solvothermal Approach. Small, 2005, 1, 320-325.

		CITATION REPORT		
#	Article		IF	Citations
38	Metal (Mn, Co, and Cu) Oxide Nanocrystals from Simple Formate Precursors. Small, 2005,	1, 1081-1086.	5.2	88
39	Some effects of single molecule precursors on the synthesis of CdS nanoparticles. Materia and Technology, 2005, 21, 237-242.	ls Science	0.8	5
40	Controlled Synthesis of High Quality Semiconductor Nanocrystals. , 0, , 79-119.			43
41	Cadmium and Lead Thiosemicarbazide Complexes: Precursors for the Synthesis of CdS Nar PbS nanoparticles. Materials Research Society Symposia Proceedings, 2005, 879, 1.	norods and	0.1	5
42	Microwave-Enhanced Reaction Rates for Nanoparticle Synthesis. Journal of the American C Society, 2005, 127, 15791-15800.	hemical	6.6	470
43	Controlled Growth and Photocatalytic Properties of CdS Nanocrystals Implanted in Layered Hydroxide Matrixes. Journal of Physical Chemistry B, 2005, 109, 21602-21607.	d Metal	1.2	56
44	Organometallic and Metallo-Organic Precursors for Nanoparticles. , 0, , 173-204.			12
45	Single-Crystalline and Monodisperse LaF3Triangular Nanoplates from a Single-Source Preci Journal of the American Chemical Society, 2005, 127, 3260-3261.	ursor.	6.6	423
46	Chalcogenide nanowires by evaporation–condensation. Journal of Non-Crystalline Solids 1410-1416.	, 2005, 351,	1.5	13
47	Single-Source Precursor Route for the Synthesis of EuS Nanocrystals. Chemistry of Materia 17, 3451-3456.	ls, 2005,	3.2	145
48	Precursor Routes to Semiconductor Quantum Dots. Phosphorus, Sulfur and Silicon and the Elements, 2005, 180, 689-712.	e Related	0.8	25
49	Thermal decomposition of single source precursors and the shape evolution of CdS and Control nanocrystals. Journal of Materials Chemistry, 2006, 16, 467-473.	lSe	6.7	60
50	Group 12 metal monoselenocarboxylates: synthesis, characterization, structure and their transformation to metal selenide (MSe; M = Zn, Cd, Hg) nanoparticles. Dalton Transaction 2714.	s, 2006, ,	1.6	46
51	Controllable, Surfactant-Free Growth of 2D, Scroll-Like Tellurium Nanocrystals via a Modifie Process. Crystal Growth and Design, 2006, 6, 2804-2808.	ed Polyol	1.4	21
52	Crystal and electrochemical properties of water dispersed CdS nanocrystals obtained via remicelles and arrested precipitation. Nanotechnology, 2006, 17, 2553-2559.	zverse	1.3	18
53	Low energy ion induced effects on TOPO capped CdSe nanocrystals probed by XPS depth optical measurements. Nuclear Instruments & Methods in Physics Research B, 2006, 244, a	profiling and 86-90.	0.6	12
54	ZnS thin film prepared through a self-assembled thin film precursor route. Applied Surface 2006, 252, 7826-7829.	Science,	3.1	11
55	Effect of ratios of Cd:Se in CdSe nanoparticles on optical edge shifts and photoluminescer properties. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 31, 180-186.	.ce	1.3	38

#	Article	IF	CITATIONS
56	2-(N,N-Dimethylamino)ethylselenolates of cadmium(II): Syntheses, structure of [Cd3(OAc)2(SeCH2CH2NMe2)4] and their use as single source precursors for the preparation of CdSe nanoparticles. Polyhedron, 2006, 25, 2383-2391.	1.0	28
57	Recent developments in II–VI and III–VI semiconductors and their applications in solar cells. Journal of Materials Chemistry, 2006, 16, 1597-1602.	6.7	229
58	ZnS and ZnSe Nanoparticles via Solid-State and Solution Thermolysis of Zinc Silylchalcogenolate Complexes. Journal of Cluster Science, 2006, 17, 97-110.	1.7	18
59	Semiconductor/porous silica glass nanocomposites via the single-source precursor approach. Materials Research Bulletin, 2006, 41, 376-386.	2.7	20
60	Solvothermal synthesis of uniform hexagonal-phase ZnS nanorods using a single-source molecular precursor. Materials Research Bulletin, 2006, 41, 1817-1824.	2.7	23
61	Complex Wurtzite ZnSe Microspheres with High Hierarchy and Their Optical Properties. Chemistry - A European Journal, 2006, 12, 2066-2072.	1.7	55
62	Control of Metal-Ion Composition in the Synthesis of Ternary II-II′-VI Nanoparticles by Using a Mixed-Metal Cluster Precursor Approach. Chemistry - A European Journal, 2006, 12, 1547-1554.	1.7	39
63	Hydrothermal synthesis of ZnSe hollow micropheres. Crystal Research and Technology, 2006, 41, 323-327.	0.6	30
64	Zinc Sulfide Nanocrystals in Paraffin Liquid Open to Air: Preparation, Structure, and Mechanism. Chemistry Letters, 2007, 36, 1376-1377.	0.7	3
65	High-Quality ZnS Shells for CdSe Nanoparticles:  Rapid Microwave Synthesis. Langmuir, 2007, 23, 7751-7759.	1.6	59
66	Cadmium(ii) complexes of N,N-diethyl-N′-benzoylthio(seleno)urea as single-source precursors for the preparation of CdS and CdSe nanoparticles. New Journal of Chemistry, 2007, 31, 1647.	1.4	77
67	Controllable Synthesis and Optical Properties of Zn-Doped CdS Nanorods from Single-Source Molecular Precursors. Crystal Growth and Design, 2007, 7, 580-586.	1.4	74
68	From Trifluoroacetate Complex Precursors to Monodisperse Rare-Earth Fluoride and Oxyfluoride Nanocrystals with Diverse Shapes through Controlled Fluorination in Solution Phase. Chemistry - A European Journal, 2007, 13, 2320-2332.	1.7	189
69	Use of Ionic Liquids in the Synthesis of Nanocrystals and Nanorods of Semiconducting Metal Chalcogenides. Chemistry - A European Journal, 2007, 13, 6123-6129.	1.7	135
70	High‥ield Synthesis of Rhombohedral Boron Nitride Triangular Nanoplates. Advanced Materials, 2007, 19, 2141-2144.	11.1	61
71	Novel inorganic rings and materials deposition. Journal of Organometallic Chemistry, 2007, 692, 2669-2677.	0.8	54
72	Growth process and investigation of some physical properties of CdS nanocrystals formed in polymer matrix by successive ionic layer adsorption and reaction (SILAR) method. Journal of Crystal Growth, 2007, 305, 175-180.	0.7	52
73	Synthesis of high-luminescent cadmium sulfide nanocrystallites by a novel single-source precursor route. Materials Letters, 2007, 61, 3612-3615.	1.3	15

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
74	Formation of cubic zinc sulfide nanocrystals in paraffin liquid. Materials Letters, 2007, 61,	5026-5028.	1.3	7
75	Colloidal magnetic nanocrystals: synthesis, properties and applications. Annual Reports or Progress of Chemistry Section C, 2007, 103, 351.	n the	4.4	46
76	Surface sensitive probe of the morphological and structural aspects of CdSe core–shell nanoparticles. Applied Surface Science, 2007, 253, 5325-5333.		3.1	29
77	ZnSe colloidal nanoparticles synthesized by solvothermal method in the presence of ZrCl4 of Colloid and Interface Science, 2008, 322, 473-477.	. Journal	5.0	19
78	A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles. Crystal Growth, 2008, 310, 3230-3234.	ournal of	0.7	62
79	Synthesis and characterization of rhodium sulfide nanoparticles and thin films. Materials S and Engineering B: Solid-State Materials for Advanced Technology, 2008, 150, 111-115.	cience	1.7	8
80	Low temperature non-alkylphosphine based synthesis of cadmium selenide nanocrystals. Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 211-215.	Colloids and	2.3	5
81	A facile two-phase approach to nearly monodisperse ZnS nanocrystals. Materials Chemistr Physics, 2008, 112, 730-733.	y and	2.0	4
82	Size-dependent blue luminescent CdS nanocrystals synthesized through a single-source m precursor route. Materials Research Bulletin, 2008, 43, 1093-1098.	ıolecular	2.7	4
83	The evolution of optical properties during hydrothermal coarsening of ZnS nanoparticles. Letters, 2008, 62, 3862-3864.	Materials	1.3	27
84	A new synthetic route to organically capped cadmium selenide nanoparticles. New Journal Chemistry, 2008, 32, 1432.	of	1.4	20
85	Controllable Morphology Evolution and Photoluminescence of ZnSe Hollow Microspheres of Physical Chemistry C, 2008, 112, 11301-11306.	Journal	1.5	31
86	Synthesis of Cuâ^'Inâ^'S Ternary Nanocrystals with Tunable Structure and Composition. Jo American Chemical Society, 2008, 130, 5620-5621.	urnal of the	6.6	440
87	Ultrathin β-In ₂ S ₃ Nanobelts: Shape-Controlled Synthesis and O Photocatalytic Properties. Crystal Growth and Design, 2008, 8, 2130-2136.	otical and	1.4	101
88	Large-scale preparation of CdS quantum dots by direct thermolysis of a single-source prec Nanotechnology, 2008, 19, 035602.	ursor.	1.3	19
89	A molecular precursor approach for the synthesis of composition-controlled ZnxCd1â^'xS ZnxCd1â^'xSe nanoparticles. Journal of Materials Chemistry, 2008, 18, 1123.	and	6.7	18
90	Temporal evolution of capped cadmium sulfide nanoparticles. Semiconductor Science and 2008, 23, 045009.	Technology,	1.0	14
91	A simple route to synthesize size-controlled Ag ₂ S core–shell nanocrystals, self-assembly. Nanotechnology, 2008, 19, 225607.	and their	1.3	32

#	Article	IF	CITATIONS
92	Solution-based route to semiconductor film: Well-aligned ZnSe nanobelt arrays. Thin Solid Films, 2009, 517, 4814-4817.	0.8	20
93	Green synthesis of metal sulfide nanocrystals through a general composite-surfactants-aided-solvothermal process. Journal of Crystal Growth, 2009, 311, 3775-3780.	0.7	17
94	Synthesis of hexadecylamine capped CdS nanoparticles using heterocyclic cadmium dithiocarbamates as single source precursors. Polyhedron, 2009, 28, 2977-2982.	1.0	42
95	Reaction of secondary phosphine selenides with the system Se/MOH (M=Li, Na, K, Rb, Cs): A novel three-component synthesis of diorganodiselenophosphinates. Journal of Organometallic Chemistry, 2009, 694, 4116-4120.	0.8	18
96	A novel "green―synthesis of starch-capped CdSe nanostructures. Colloids and Surfaces B: Biointerfaces, 2009, 73, 382-386.	2.5	40
97	An unusual fluorescence evolution of cadmium selenide (CdSe) nanoparticles generated from a cadmium oxide/trioctylphosphine selenide/trioctylphosphine heterogeneous system. Chemical Physics Letters, 2009, 470, 112-115.	1.2	5
98	Synthesis of CdSe Quantum Dots by Evaporation of Bulk CdSe using SMAD and Digestive Ripening Processes. Chemistry of Materials, 2009, 21, 1248-1252.	3.2	36
99	Synthesis of ZnS nanoparticles via hydrothermal process assisted by microemulsion technique. Journal of Alloys and Compounds, 2009, 486, L40-L43.	2.8	45
100	Nanoparticles and Thin Films of Silver from Complexes of Derivatives of N-(Diisopropylthiophosphoryl)thioureas. Chemistry of Materials, 2009, 21, 4233-4240.	3.2	19
101	Life Cycle Inventory of Semiconductor Cadmium Selenide Quantum Dots for Environmental Applications. , 2009, , 561-582.		9
102	Chemical Synthesis of Two-Dimensional Iron Chalcogenide Nanosheets: FeSe, FeTe, Fe(Se,Te), and FeTe ₂ . Chemistry of Materials, 2009, 21, 3655-3661.	3.2	95
103	Inorganic Single-Source Precursor to Complex Fluoride and Oxyfluoride Nanocrystallines and Their Photoluminescence. Journal of Physical Chemistry C, 2009, 113, 597-602.	1.5	10
105	Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor. Chemistry of Materials, 2010, 22, 1437-1444.	3.2	190
106	One-pot synthesis and optical properties of monodisperse ZnSe colloidal microspheres. Applied Physics A: Materials Science and Processing, 2010, 99, 651-656.	1.1	28
107	Synthesis and assembly of rare earth nanostructures directed by the principle of coordination chemistry in solution-based process. Coordination Chemistry Reviews, 2010, 254, 1038-1053.	9.5	150
108	Role of surface modification of colloidal CdSe quantum dots on the properties of hybrid organic–inorganic nanocomposites. Colloid and Polymer Science, 2010, 288, 841-849.	1.0	18
109	Microwave Synthesis of Nearly Monodisperse Core/Multishell Quantum Dots with Cell Imaging Applications. Nanoscale Research Letters, 2010, 5, 625-630.	3.1	17
110	Comparison of the properties of composition-tunable CdSe–ZnSe and Zn Cd1â^'Se nanocrystallites: Single- and double-pot synthesis approach. Materials Chemistry and Physics, 2010, 124, 670-680.	2.0	8

#	ARTICLE	IF	Citations
111	High-yield synthesis of quantum-confined CdS nanorods using a new dimeric cadmium(II) complex of S-benzyldithiocarbazate as single-source molecular precursor. Solid State Sciences, 2010, 12, 532-535.	1.5	35
112	Preparation and characterization of graphene/CdS nanocomposites. Applied Surface Science, 2010, 257, 747-751.	3.1	113
113	Low temperature synthesis of metal chalcogenide nanoparticles in mesitylene. Polyhedron, 2010, 29, 691-696.	1.0	3
114	N,N'-diisopropylthiourea and N,N'-dicyclohexyl-thiourea zinc(II) complexes as precursors for the synthesis of ZnS nanoparticles. South African Journal of Science, 2010, 105, .	0.3	5
115	Precursor Chemistry for Main Group Elements in Semiconducting Materials. Chemical Reviews, 2010, 110, 4417-4446.	23.0	316
116	Transition Metal Polysulfide Complexes as Single-Source Precursors for Metal Sulfide Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 3817-3821.	1.5	41
117	Synthesis and characterization of [Pb{Se2P(OiPr)2}2]n pseudo polymorphs: Polymeric, single source precursor enabling preparation of shape-controlled lead selenide structures. Dalton Transactions, 2010, 39, 2821.	1.6	16
118	Heterocyclic dithiocarbamates: precursors for shape controlled growth of CdS nanoparticles. New Journal of Chemistry, 2011, 35, 1133.	1.4	52
119	Deposition of iron sulfide nanocrystals from single source precursors. Journal of Materials Chemistry, 2011, 21, 9737.	6.7	82
120	pH-Control of the Photocatalytic Degradation Mechanism of Rhodamine B over Pb ₃ Nb ₄ O ₁₃ . Journal of Physical Chemistry C, 2011, 115, 8014-8023.	1.5	115
121	Flow reactor synthesis of CdSe, CdS, CdSe/CdS and CdSeS nanoparticles from single molecular precursor(s). Journal of Materials Chemistry, 2011, 21, 18768.	6.7	50
122	CoMn2O4 spinel from a MOF: synthesis, structure and magnetic studies. Dalton Transactions, 2011, 40, 1952.	1.6	60
124	A Molecule to Detect and Perturb the Confinement of Charge Carriers in Quantum Dots. Nano Letters, 2011, 11, 5455-5460.	4.5	94
125	Preparation of a ZnS Shell on CdSe Quantum Dots Using a Single-Molecular ZnS Precursor. Nano Letters, 2011, 11, 1964-1969.	4.5	72
126	Optimizing the yield and selectivity of high purity nanoparticle clusters. Journal of Nanoparticle Research, 2011, 13, 2157-2172.	0.8	10
127	High-throughput syntheses of nano-scaled mixed metal sulphides. Catalysis Today, 2011, 159, 64-73.	2.2	7
128	Synthesis and tailoring of CdSe core@shell heterostructures for optical applications. , 2011, , .		3
129	Chapter 4. Nanotoxicity: Are We Confident for Modelling? – An Experimentalist's Point of View. RSC Nanoscience and Nanotechnology, 2012, , 54-68.	0.2	2

#	Article	IF	CITATIONS
130	Synthesis and growth mechanism of hollow microcorn-like CdS crystal. CrystEngComm, 2012, 14, 246-250.	1.3	3
131	ZnS–Graphene nanocomposite: Synthesis, characterization and optical properties. Journal of Solid State Chemistry, 2012, 191, 51-56.	1.4	106
132	A new continuous two-step molecular precursor route to rare-earth oxysulfides Ln2O2S. Journal of Solid State Chemistry, 2012, 191, 195-200.	1.4	8
133	Synthesis and crystal structures of diimine adducts of Cd(II) tetrahydroquinolinedithiocarbamate and use of (1,10-phenanthroline)bis(1,2,3,4-tetrahydroquinolinecarbodithioato-S,S′)- cadmium(II) for the preparation of CdS nanorods. Journal of Molecular Structure, 2012, 1026, 102-107.	1.8	20
134	Deposition of iron sulfide thin films by AACVD from single source precursors. Journal of Crystal Growth, 2012, 346, 106-112.	0.7	36
135	Nickel and Iron Sulfide Nanoparticles from Thiobiurets. Journal of Physical Chemistry C, 2012, 116, 2253-2259.	1.5	54
136	Transformation of Indium Nanoparticles to β-Indium Sulfide: Digestive Ripening and Visible Light-Induced Photocatalytic Properties. Langmuir, 2012, 28, 3569-3575.	1.6	43
137	Synthesis of Semiconductor Nanoparticles. Methods in Molecular Biology, 2012, 906, 103-123.	0.4	3
138	From Metal Thiobenzoates to Metal Sulfide Nanocrystals: An Experimental and Theoretical Investigation. Nanomaterials, 2012, 2, 113-133.	1.9	11
139	A Facile One-Pot Synthesis of MSe (M = Cd or Zn) Nanoparticles Using Biopolymer as Passivating Agent. , 2012, , .		2
140	Solutionâ€Based Synthesis and Design of Late Transition Metal Chalcogenide Materials for Oxygen Reduction Reaction (ORR). Small, 2012, 8, 13-27.	5.2	256
141	Synthesis and characterisation of CdSe nanocrystals using NaHSeO3 as selenium source. Micro and Nano Letters, 2012, 7, 589.	0.6	5
142	A simple one-pot environmentally benign synthesis of ascorbic acid-capped CdSe nanoparticles at room temperature. Materials Letters, 2012, 75, 84-86.	1.3	8
143	Synthesis of multi-podal CdS nanostructures using heterocyclic dithiocarbamato complexes as precursors. Polyhedron, 2013, 56, 62-70.	1.0	28
144	A Controlled Growth Process To Design Relatively Larger Size Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2013, 117, 1183-1188.	1.5	10
145	Compound Semiconductors: Chalcogenides. , 2013, , 177-210.		2
146	Synthesis and characterization of CdSe nanocrystals in the presence of butylamine as a capping agent. Korean Journal of Chemical Engineering, 2013, 30, 949-954.	1.2	4
147	A simple route to shape controlled CdS nanoparticles. Journal of Physics and Chemistry of Solids, 2013, 74, 245-249.	1.9	3

#	Article	IF	CITATIONS
148	Nanoscale Stabilization of New Phases in the PbTe–Sb ₂ Te ₃ System: Pb _{<i>m</i>} Sb _{2<i>n</i>} Te _{<i>m</i>+3<i>n</i>} Nanocrystals. Journal of the American Chemical Society, 2013, 135, 768-774.	6.6	40
149	Chemistry of Doped Colloidal Nanocrystals. Chemistry of Materials, 2013, 25, 1305-1317.	3.2	310
150	Controllable architecture of CdS and CuS by single-source precursor-mediated approach and their photocatalytic activity. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	14
151	Size-dependent structural, electrical and optical properties of nanostructured iron selenide thin films deposited by Chemical Bath Deposition Method. Solid State Sciences, 2013, 16, 134-142.	1.5	29
152	Synthesis of Nanocrystalline ZnS from (1,10-phenanthroline)bis(1,2,3,4-tetrahydroquinolinecarbodithioato-S,S′)zinc(II). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 1256-1263.	0.6	4
153	Quantum Dot Synthesis Methods. , 2013, , 1-42.		0
154	Life Cycle Inventory of Semiconductor Cadmium Selenide Quantum Dots for Environmental Applications. , 2014, , 623-644.		1
156	Synthesis and Characterization of Hexadecylamine Capped ZnS, CdS, and HgS Nanoparticles Using Heteroleptic Single Molecular Precursors. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	11
157	Bis(piperidinedithiocarbamato)pyridinecadmium(<scp>ii</scp>) as a single-source precursor for the synthesis of CdS nanoparticles and aerosol-assisted chemical vapour deposition (AACVD) of CdS thin films. New Journal of Chemistry, 2014, 38, 6073-6080.	1.4	55
158	Colloidal Synthesis of ZnS, CdS and Zn x Cd1â^'x S Nanoparticles from Zinc and Cadmium Thiobiuret Complexes. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 226-240.	1.9	19
159	Open Photoacoustic Cell Configuration Applied to the Thermal Characterization of Liquid CdS Nanocomposites. International Journal of Thermophysics, 2014, 35, 53-61.	1.0	7
160	Synthesis and characterization of CdSe nanostructures by using a new selenium source: Effect of hydrothermal preparation conditions. Materials Research Bulletin, 2014, 53, 7-14.	2.7	36
161	Growth of semiconducting iron sulfide thin films by chemical vapor deposition from air-stable single-source metal organic precursor for photovoltaic application. Journal of Coordination Chemistry, 2014, 67, 1693-1701.	0.8	9
162	Recent Advances in the Synthesis and Characterization of Chalcogenide Nanoparticles. Solid State Phenomena, 0, 222, 187-233.	0.3	21
163	Active Nature of Primary Amines during Thermal Decomposition of Nickel Dithiocarbamates to Nickel Sulfide Nanoparticles. Chemistry of Materials, 2014, 26, 6281-6292.	3.2	86
164	Characterization of ZnSe microspheres synthesized under different hydrothermal conditions. Transactions of Nonferrous Metals Society of China, 2014, 24, 2588-2597.	1.7	18
165	On the interaction of copper(<scp>ii</scp>) with disulfiram. Chemical Communications, 2014, 50, 13334-13337.	2.2	92
166	The synthesis of metallic and semiconducting nanoparticles from reactive melts of precursors. Journal of Materials Chemistry A, 2014, 2, 570-580.	5.2	45

#	Article	IF	CITATIONS
167	Graphene nanocomposites of CdS and ZnS in effective water purification. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	26
168	Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2014, 368, 207-229.	1.0	233
169	A facile route for CdSe nanoparticles: synthesis and structural characterisation. Nanomaterials and Energy, 2014, 3, 160-166.	0.1	5
170	Semiconductor Nanocrystal Quantum Dot Synthesis Approaches Towards Large-Scale Industrial Production for Energy Applications. Nanoscale Research Letters, 2015, 10, 469.	3.1	73
171	Selenophosphorus Compounds. , 2015, , 633-720.		1
172	Microwave-assisted aqueous synthesis of transition metal ions doped ZnSe/ZnS core/shell quantum dots with tunable white-light emission. Applied Surface Science, 2015, 351, 655-661.	3.1	40
173	CdSe nanoparticles: facile hydrothermal synthesis, characterization and optical properties. Journal of Materials Science: Materials in Electronics, 2015, 26, 6831-6836.	1.1	23
174	A new pyrazolyl dithioate function in the precursor for the shape controlled growth of CdS nanocrystals: optical and photocatalytic activities. New Journal of Chemistry, 2015, 39, 9487-9496.	1.4	24
175	Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states. Physical Chemistry Chemical Physics, 2015, 17, 2850-2858.	1.3	204
176	Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews, 2016, 116, 10513-10622.	23.0	744
176 177	Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews, 2016, 116, 10513-10622. Influence of functionalities over polymer, trimer, dimer formation and optical properties of cadmium dithiocarbamates. Polyhedron, 2016, 117, 592-599.	23.0 1.0	744 15
176 177 178	Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews, 2016, 116, 10513-10622. Influence of functionalities over polymer, trimer, dimer formation and optical properties of cadmium dithiocarbamates. Polyhedron, 2016, 117, 592-599. Potential Impact of Substituents on the Crystal Structures and Properties of Tl(I) Ferrocenyl/Picolylâ€Functionalized Dithiocarbamates; Tlâ <hâ€canagostic 1,="" 2016,="" 5733-5742.<="" chemistryselect,="" interactions.="" td=""></hâ€canagostic>	23.0 1.0 0.7	744 15 8
176 177 178 179	Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews, 2016, 116, 10513-10622. Influence of functionalities over polymer, trimer, dimer formation and optical properties of cadmium dithiocarbamates. Polyhedron, 2016, 117, 592-599. Potential Impact of Substituents on the Crystal Structures and Properties of Tl(I) Ferrocenyl/Picolylâ€Functionalized Dithiocarbamates; Tlâ <hâ€canagostic 1,="" 2016,="" 5733-5742.<="" chemistryselect,="" interactions.="" td=""> Synthesis of zinc sulphide nanoparticles from thermal decomposition of zinc N-ethyl cyclohexyl dithiocarbamate complex. Materials Chemistry and Physics, 2016, 173, 33-41.</hâ€canagostic>	23.0 1.0 0.7 2.0	744 15 8 25
176 177 178 179 180	Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews, 2016, 116, 10513-10622. Influence of functionalities over polymer, trimer, dimer formation and optical properties of cadmium dithiocarbamates. Polyhedron, 2016, 117, 592-599. Potential Impact of Substituents on the Crystal Structures and Properties of Tl(I) Ferrocenyl/Picolylâ€Functionalized Dithiocarbamates; Tlâ <hâ€canagostic 1,="" 2016,="" 5733-5742.<="" chemistryselect,="" interactions.="" td=""> Synthesis of zinc sulphide nanoparticles from thermal decomposition of zinc N-ethyl cyclohexyl dithiocarbamate complex. Materials Chemistry and Physics, 2016, 173, 33-41. Synthesis and structural characterization of monomeric mercury(<scp>ii</scp>) selenolate complexes derived from 2-phenylbenzamide ligands. Dalton Transactions, 2016, 45, 4030-4040.</hâ€canagostic>	23.0 1.0 0.7 2.0 1.6	744 15 8 25 11
176 177 178 179 180 181	Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews, 2016, 116, 10513-10622. Influence of functionalities over polymer, trimer, dimer formation and optical properties of cadmium dithiocarbamates. Polyhedron, 2016, 117, 592-599. Potential Impact of Substituents on the Crystal Structures and Properties of Tl(I) Ferrocenyl[Picolylä&Functionalized Dithiocarbamates; Tlå< Hå&CAnagostic Interactions. ChemistrySelect, 2016, 1, 5733-5742.	23.0 1.0 0.7 2.0 1.6 1.1	 744 15 8 25 11 24
176 177 178 179 180 181	Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews, 2016, 116, 10513-10622. Influence of functionalities over polymer, trimer, dimer formation and optical properties of cadmium dithiocarbamates. Polyhedron, 2016, 117, 592-599. Potential Impact of Substituents on the Crystal Structures and Properties of Tl(I) Ferrocenyl/Picolylä&Functionalized Dithiocarbamates; Tlå Synthesis of zinc sulphide nanoparticles from thermal decomposition of zinc N-ethyl cyclohexyl dithiocarbamate complex. Materials Chemistry and Physics, 2016, 173, 33-41. Synthesis and structural characterization of monomeric mercury(<scp>ii</scp>) selenolate complexes derived from 2-phenylbenzamide ligands. Dalton Transactions, 2016, 45, 4030-4040. Optimized synthesis of ZnSe nanocrystals by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2016, 27, 293-303. Tribological behavior of polyimide/epoxy resin-polytetrafluoroethylene bonded solid lubricant coatings filled with in situ-synthesized silver nanoparticles. Progress in Organic Coatings, 2017, 106, 111-118.	 23.0 1.0 0.7 2.0 1.6 1.1 1.9 	 744 15 8 25 11 24 33
176 177 178 179 180 181 182 183	Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews, 2016, 116, 10513-10622. Influence of functionalities over polymer, trimer, dimer formation and optical properties of cadmium dithiocarbamates. Polyhedron, 2016, 117, 592-599. Potential Impact of Substituents on the Crystal Structures and Properties of Tl(I) Ferrocenyl/Picolyla&Functionalized Dithiocarbamates; Tlå: Ha&CAnagostic Interactions. ChemistrySelect, 2016, 1, 5733-5742. Synthesis of zinc sulphide nanoparticles from thermal decomposition of zinc N-ethyl cyclohexyl dithiocarbamate complex. Materials Chemistry and Physics, 2016, 173, 33-41. Synthesis and structural characterization of monomeric mercury(<scp>ii</scp>) selenolate complexes derived from 2-phenylbenzamide ligands. Dalton Transactions, 2016, 45, 4030-4040. Optimized synthesis of ZnSe nanocrystals by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2016, 27, 293-303. Tribological behavior of polyimide/epoxy resin-polytetrafluoroethylene bonded solid lubricant coatings filled with in situ-synthesized silver nanoparticles. Progress in Organic Coatings, 2017, 106, 111-118. Synthesis, structural, DFT calculations and Hirshfeld surface analysis of (N-butyl-N-(4-fluorobenzyl)dithiocarbamato-S,S')-(thiocyanato-N)(triphenylphosphine)nickel(II) and preparation of nickel suffice from nickel(II) dithiocarbamate. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 102, 102-303.	 23.0 1.0 0.7 2.0 1.6 1.1 1.9 0.8 	 744 15 8 25 11 24 33 3

#	Article	IF	CITATIONS
185	Synthesis and spectral studies on Cd(II) dithiocarbamate complexes and their use as precursors for CdS nanoparticles. Journal of Molecular Structure, 2017, 1147, 103-113.	1.8	11
186	Synthesis and characterization of CdSe nanoparticles via thermal treatment technique. Results in Physics, 2017, 7, 1556-1562.	2.0	46
187	Resonance Raman Investigation of the Interaction between Aromatic Dithiocarbamate Ligands and CdSe Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 7056-7061.	1.5	24
188	The <i>in situ</i> synthesis of PbS nanocrystals from lead(II) <i>n</i> -octylxanthate within a 1,3-diisopropenylbenzene–bisphenol A dimethacrylate sulfur copolymer. Royal Society Open Science, 2017, 4, 170383.	1.1	13
189	Synthesis and Characterization of PtTe2 Multi-Crystallite Nanoparticles using Organotellurium Nanocomposites. Scientific Reports, 2017, 7, 9889.	1.6	5
190	Synthesis and structure of open and closed type iron telluride –Âstibine cluster compounds. Journal of Organometallic Chemistry, 2017, 851, 22-29.	0.8	6
191	Allylpalladium complexes of pyridylselenolates as precursors for palladium selenides. Inorganica Chimica Acta, 2017, 467, 221-226.	1.2	12
192	Uncovering active precursors in colloidal quantum dot synthesis. Nature Communications, 2017, 8, 2082.	5.8	26
193	Enhanced photocatalytic activity of ternary CuInS2 nanocrystals synthesized from the combination of a binary Cu(I)S precursor and InCl3. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	10
194	Thermal Transformations of Polymeric Metal Chelates and Their Precursors in Nanocomposites Formation. Springer Series in Materials Science, 2018, , 899-1007.	0.4	1
195	Silver, Gold, Palladium, and Platinum N-heterocyclic Carbene Complexes Containing a Selenoether-Functionalized Imidazol-2-ylidene Moiety. Organometallics, 2018, 37, 298-308.	1.1	24
196	Environmentally friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaic applications. Journal of Materials Chemistry C, 2018, 6, 414-445.	2.7	40
197	Metal–Thiobenzoato Complexes: Synthesis, Structure, and Processing as Carbonâ€6upported Nanoparticles. European Journal of Inorganic Chemistry, 2018, 2018, 1371-1382.	1.0	3
198	One pot synthesis of hybrid ZnS–Graphene nanocomposite with enhanced photocatalytic activities using hydrothermal approach. Journal of Materials Science: Materials in Electronics, 2018, 29, 9099-9107.	1.1	12
199	Preparation and characterization of ZnSe quantum dots by the cation-inverting-injection method in aqueous solution. Materials Technology, 2018, 33, 205-213.	1.5	6
200	Remarkable impact of Ni2+ ion on the structural, optical, and magnetic properties of hexagonal wurtzite ZnS nanopowders. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	16
201	Thermolysis of Low Molecular Weight Metal Chelates. Springer Series on Polymer and Composite Materials, 2018, , 71-245.	0.5	1
202	Facile and green synthesis of core–shell ZnSe/ZnS quantum dots in aqueous solution. Journal of Materials Science: Materials in Electronics, 2018, 29, 16805-16814.	1.1	7

#	Article	IF	CITATIONS
203	Synthesis, Optical, and Structural Studies of Iron Sulphide Nanoparticles and Iron Sulphide Hydroxyethyl Cellulose Nanocomposites from Bis-(Dithiocarbamato)Iron(II) Single-Source Precursors. Nanomaterials, 2018, 8, 187.	1.9	20
204	Advances in green colloidal synthesis of metal selenide and telluride quantum dots. Chinese Chemical Letters, 2019, 30, 277-284.	4.8	13
205	Exploring the promising potential of MoS2–RuS2 binary metal sulphide towards the electrocatalysis of antibiotic drug sulphadiazine. Analytica Chimica Acta, 2019, 1086, 55-65.	2.6	42
206	In-Situ Synthesis Strategy of Monodispersed Ag2S Nanoparticles to Modify Wear Resistance of Polyamide-imide Nanocomposite Lubricating Coatings. Tribology Letters, 2019, 67, 1.	1.2	13
207	Synthesis and characterization of Ni(II) complexes with functionalized dithiocarbamates: New single source precursors for nickel sulfide and nickel-iron sulfide nanoparticles. Inorganica Chimica Acta, 2019, 498, 119162.	1.2	20
208	Highly Dispersed Ag2S Nanoparticles: In Situ Synthesis, Size Control, and Modification to Mechanical and Tribological Properties towards Nanocomposite Coatings. Nanomaterials, 2019, 9, 1308.	1.9	12
209	Systematic review on applicability of magnetic iron oxides–integrated photocatalysts for degradation of organic pollutants in water. Materials Today Chemistry, 2019, 14, 100186.	1.7	108
210	A low temperature synthesis of Ag2S nanostructures and their structural, morphological, optical, dielectric and electrical studies: An effect of SDS surfactant concentration. Materials Science in Semiconductor Processing, 2019, 93, 360-365.	1.9	20
211	Synthesis of ternary sulfide nanomaterials using dithiocarbamate complexes as single source precursors. Nanoscale Advances, 2019, 1, 3056-3066.	2.2	26
212	A Facile Green Synthesis of Ultranarrow PbS Nanorods. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 2274-2281.	1.9	3
213	Ruthenium(II) Complexes of Mixed Bipyridyl and Dithiolate Ligands: Synthesis, Characterization and Electrochemical Studies. International Journal of Electrochemical Science, 2019, 14, 679-692.	0.5	3
214	11. Applications of metal selenium/tellurium compounds in materials science. , 2019, , 383-444.		3
215	Applications of metal selenium/tellurium compounds in materials science. Physical Sciences Reviews, 2019, 4, .	0.8	4
216	The Effects of Temperature on Iron Sulfide Nanocrystals Prepared from Thermal Decomposition of Bis-(N-methylbenzyldithiocarbamato)iron(II) Complex. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1327-1338.	1.9	7
217	Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials. Nanoscale Advances, 2020, 2, 798-807.	2.2	16
218	Monomeric and dimeric cadmium(II) complexes of S-alkyl/aryl dithiocarbazate as single-source precursors for cadmium sulfide nanoparticles: An experimental, theoretical interpretation in the stability of precursor and visible light dye degradation study. Inorganica Chimica Acta, 2020, 501, 119315.	1.2	9
219	Structural, morphological and optical properties of iron sulfide, cobalt sulfide, copper sulfide, zinc sulfide and copper-iron sulfide nanoparticles synthesized from single source precursors. Chemical Physics Letters, 2020, 739, 136972.	1.2	34
220	Morphological variations in Bi2S3 nanoparticles synthesized by using a single source precursor. Heliyon, 2020, 6, e04505.	1.4	28

#	Article	IF	CITATIONS
221	Green synthesis of ZnO–Co ₃ O ₄ nanocomposite using facile foliar fuel and investigation of its electrochemical behaviour for supercapacitors. New Journal of Chemistry, 2020, 44, 18281-18292.	1.4	46
222	Paul O'Brien. 22 January 1954—16 October 2018. Biographical Memoirs of Fellows of the Royal Society, 2020, 69, 443-466.	0.1	2
223	Three novel Cd(II) dithiocarbamate complexes: synthesis, structural diversity and fluorescence properties. Journal of the Iranian Chemical Society, 2020, 17, 2867-2876.	1.2	3
225	Synergistic activity of binary metal sulphide WS2–RuS2 nanospheres for the electrochemical detection of the antipsychotic drug promazine. New Journal of Chemistry, 2020, 44, 4621-4630.	1.4	13
226	Single source precursor route to iron sulfide nanomaterials for energy storage. Chemical Physics Letters, 2020, 739, 136993.	1.2	5
227	A rapid microwave synthesis of Ag2S nanoparticles and their photocatalytic performance under UV and visible light illumination for water treatment applications. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 121, 114060.	1.3	32
228	Pulsed Laser Deposition Films Based on CdSe-Doped Zinc Aluminophosphate Glass. Jom, 2021, 73, 495-503.	0.9	5
229	Phyto-mediated semiconducting n-type electrode nanomaterial: structural, compositional, and supercapacitor investigations. Ionics, 2021, 27, 833-843.	1.2	4
230	Synthesis methods for chalcogenides and chalcogenides-based nanomaterials for photocatalysis. , 2021, , 105-134.		0
231	Selective Synthesis of Bismuth or Bismuth Selenide Nanosheets from a Metal Organic Precursor: Investigation of their Catalytic Performance for Water Splitting. Inorganic Chemistry, 2021, 60, 1449-1461.	1.9	28
232	Structural studies and morphological properties of antimony sulphide nanorods obtained by solvothermal synthesis. Physica B: Condensed Matter, 2021, 605, 412691.	1.3	8
233	Comparative study on the effect of precursors on the morphology and electronic properties of CdS nanoparticles. Turkish Journal of Chemistry, 2021, 45, 400-409.	0.5	1
234	Dithiocarbamate Complexes as Single Source Precursors to Nanoscale Binary, Ternary and Quaternary Metal Sulfides. Chemical Reviews, 2021, 121, 6057-6123.	23.0	91
235	Temperature Controlled Evolution of Pure Phase Cu9S5 Nanoparticles by Solvothermal Process. Frontiers in Materials, 2021, 8, .	1.2	6
236	Cyclopentadienylidene―and Fluorenâ€9â€ylideneâ€methaneâ€1,1â€dithiolato Metalates of Tin, Indium and Bis European Journal of Inorganic Chemistry, 2021, 2021, 3852.	muth. 1.0	3
237	The future of semiconductors nanoparticles: Synthesis, properties and applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115363.	1.7	62
238	Encapsulation of aggregation-caused quenching dye in metal-organic framework as emissive layer of organic light-emitting diodes. Microporous and Mesoporous Materials, 2021, 328, 111452.	2.2	9
239	CuS, In2S3 and CuInS2 nanoparticles by microwave-assisted solvothermal route and their electrochemical studies. Journal of Physics and Chemistry of Solids, 2022, 160, 110319.	1.9	13

# 240	ARTICLE Nickel(II) complexes from phosphor-dichalcogenide (P/Se2 and P/S2) type ligands: Synthesis, structure and theoretical calculations. Journal of Molecular Structure, 2020, 1218, 128517.	IF 1.8	CITATIONS 8
241	Optical and Structural Properties of Cu Doped ZnS Nanocrystals: Effect of Temperature and Concentration of Capping Agent. Acta Physica Polonica A, 2016, 129, 1147-1150.	0.2	15
243	CdS Nanoparticles as Efficient Fluorescence Resonance Energy Transfer Donors for Various Organic Dyes in an Aqueous Solution. Bulletin of the Korean Chemical Society, 2011, 32, 3610-3613.	1.0	8
244	Products and Applications of Biopolymers. , 2012, , .		9
245	One-pot four-component assembly for diselenocarbamates. Organic Chemistry Frontiers, 0, , .	2.3	4
246	Preparation and Characteristics of Elongated CdSe nanoparticles. Journal of Korean Powder Metallurgy Institute, 2008, 15, 210-213.	0.2	0
247	First principles study on half-metallic ferromagnetismof ternary compounds ZnVSe. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 046301.	0.2	0
249	7.3.4 Quantum dots and nano crystals based on CdS and its alloys. , 2013, , 318-327.		0
250	7.3.7 Quantum dots and nano crystals based on ZnS and its alloys. , 2013, , 335-338.		0
251	7.3.6 Quantum dots and nano crystals based on ZnSe and its alloys. , 2013, , 330-334.		0
252	Chalcogenide Micro/Nanostructures by Evaporation Condensation Method. Environmental Science and Engineering, 2014, , 593-595.	0.1	0
253	Chalcogenide Micro/Nanostructures by Evaporation Condensation Method. Environmental Science and Engineering, 2014, , 753-755.	0.1	0
254	DFT Study of II-VI Semiconducting Nano-Clusters: An Overview. , 2016, , 239-254.		0
255	Development of cathode materials for magnesium primary cell. International Journal of Research in Advance Engineering, 2016, 2, 23.	0.1	0
256	The Use of Single-Source Precursors in Nanoparticle Synthesis. RSC Nanoscience and Nanotechnology, 2014, , 224-251.	0.2	1
257	Dithiocarbamate complexes containing the pyrrole moiety for synthesis of sulfides. , 2022, , 107-121.		1
258	Fabrication and catalytic applications of first row-transition metal and mixed-metal chalcogenides synthesized from single-source precursors. , 2022, , 389-451.		0
260	Synthesis of Nickel Sulfide Thin Films and Nanocrystals from the Nickel Ethyl Xanthate Complex. Advances in Materials Science and Engineering, 2022, 2022, 1-10.	1.0	2

#	Article	IF	CITATIONS
261	Synthesis and interfacial interaction of Ag2S quantum dots for enhancing the tribological behaviors of PTFE-based lubricating coatings. Progress in Organic Coatings, 2022, 173, 107177.	1.9	1
262	A facile synthetic route toward phase-pure colloidal Cu ₂ GeS ₃ nanostructures mediated through metal xanthate precursors. New Journal of Chemistry, 2022, 46, 19817-19823.	1.4	5
263	Lattice Strain Analysis of Antimony Sulphide Nanorods. Journal of Cluster Science, 2023, 34, 2017-2027.	1.7	2
264	Facile synthesis and size-dependent optical properties of luminescent ZnIn ₂ S ₄ nanocrystals derived from metal xanthates. New Journal of Chemistry, 2022, 47, 307-314.	1.4	1
265	Controlled synthesis of monodispersed ZnSe microspheres for enhanced photo-catalytic application and its corroboration using density functional theory. Physical Chemistry Chemical Physics, 2023, 25, 10567-10582.	1.3	1
266	Bismuth sulfide nanorods by thermal decomposition of a complex: Effect of reaction temperature on microstructural and optical properties. Journal of Physics and Chemistry of Solids, 2023, 179, 111388.	1.9	1