Crystal Structure of Nitric Oxide Synthase Bound to Nit Inactivation Mechanismâ€

Biochemistry 40, 13448-13455 DOI: 10.1021/bi010957u

Citation Report

#	Article	IF	CITATIONS
1	Binding ofl-Arginine and Imidazole Suggests Heterogeneity of Rat Brain Neuronal Nitric Oxide Synthaseâ€. Biochemistry, 2002, 41, 7819-7829.	1.2	19
2	First Non-α-Amino Acid Guanidines Acting as Efficient NO Precursors upon Oxidation by NO-Synthase II or Activated Mouse Macrophages. Biochemistry, 2002, 41, 9286-9292.	1.2	23
3	29â€fâ€fBioinorganic chemistry. Annual Reports on the Progress of Chemistry Section A, 2002, 98, 593-614.	0.8	3
4	The antithyroid agent 6-n-propyl-2-thiouracil is a mechanism-based inactivator of the neuronal nitric oxide synthase isoform. Archives of Biochemistry and Biophysics, 2002, 407, 83-94.	1.4	4
5	N-Aryl Nâ€~-Hydroxyguanidines, A New Class of NO-Donors after Selective Oxidation by Nitric Oxide Synthases:  Structureâ^'Activity Relationship. Journal of Medicinal Chemistry, 2002, 45, 944-954.	2.9	55
6	7-Methoxy-1H-indazole, a new inhibitor of neuronal nitric oxide synthase. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, o688-o690.	0.4	9
7	Conformational Changes in Nitric Oxide Synthases Induced by Chlorzoxazone and Nitroindazoles: Crystallographic and Computational Analyses of Inhibitor Potency. Biochemistry, 2002, 41, 13915-13925.	1.2	63
8	Cyanide binding study of neuronal nitric oxide synthase: effects of inhibitors and mutations at the substrate binding site. Journal of Inorganic Biochemistry, 2003, 95, 25-30.	1.5	3
9	Implications of protein flexibility for drug discovery. Nature Reviews Drug Discovery, 2003, 2, 527-541.	21.5	640
10	Two Modes of Binding of N-Hydroxyguanidines to NO Synthases:  First Evidence for the Formation of Ironâ^'N-Hydroxyguanidine Complexes and Key Role of Tetrahydrobiopterin in Determining the Binding Mode. Biochemistry, 2003, 42, 3858-3867.	1.2	16
11	Computer Modeling of Selective Regions in the Active Site of Nitric Oxide Synthases:  Implication for the Design of Isoform-Selective Inhibitors. Journal of Medicinal Chemistry, 2003, 46, 5700-5711.	2.9	69
12	Inhibitory effects and spectral interactions of isomeric methoxyindazoles on recombinant nitric oxide synthases. Nitric Oxide - Biology and Chemistry, 2003, 9, 86-94.	1.2	8
13	Binding Structures and Potencies of Oxidosqualene Cyclase Inhibitors with the Homologous Squaleneâ^'Hopene Cyclase. Journal of Medicinal Chemistry, 2003, 46, 2083-2092.	2.9	47
14	Structural Basis for the Specificity of the Nitric-oxide Synthase Inhibitors W1400 and N ï‰-Propyl-l-Arg for the Inducible and Neuronal Isoforms. Journal of Biological Chemistry, 2003, 278, 45818-45825.	1.6	66
15	The bioinorganic chemistry of iron in oxygenases and supramolecular assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3569-3574.	3.3	312
16	Synthesis, Pharmacological Study and Modeling of 7-Methoxyindazole and Related Substituted Indazoles as Neuronal Nitric Oxide Synthase Inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2003, 18, 195-199.	2.5	8
17	Evidence of Two Distinct Oxygen Complexes of Reduced Endothelial Nitric Oxide Synthase. Journal of Biological Chemistry, 2004, 279, 19824-19831.	1.6	31
18	Structural basis for dipeptide amide isoform-selective inhibition of neuronal nitric oxide synthase. Nature Structural and Molecular Biology, 2004, 11, 54-59.	3.6	75

CITATION REPORT

#	Article	IF	CITATIONS
19	Alternative nitric oxide-producing substrates for no synthases. Free Radical Biology and Medicine, 2004, 37, 1105-1121.	1.3	43
20	Importance of valine 567 in substrate recognition and oxidation by neuronal nitric oxide synthase. Journal of Inorganic Biochemistry, 2004, 98, 1200-1209.	1.5	6
21	Analysis of the kinetics of CO binding to neuronal nitric oxide synthase by flash photolysis: dual effects of substrates, inhibitors, and tetrahydrobiopterin. Journal of Inorganic Biochemistry, 2004, 98, 1210-1216.	1.5	7
22	Drug-like properties: guiding principles for design – or chemical prejudice?. Drug Discovery Today: Technologies, 2004, 1, 189-195.	4.0	71
23	Relationship between the structure of guanidines and N-hydroxyguanidines, their binding to inducible nitric oxide synthase (iNOS) and their iNOS-catalysed oxidation to NO. FEBS Journal, 2005, 272, 3172-3183.	2.2	15
24	Structure and activity of NO synthase inhibitors specific to the L-arginine binding site. Biochemistry (Moscow), 2005, 70, 8-23.	0.7	2
25	Structure and activity of NO synthase inhibitors specific to the L-arginine binding site. Biochemistry (Moscow), 2005, 70, 8-23.	0.7	9
26	Prediction of binding modes for ligands in the cytochromes P450 and other heme-containing proteins. Proteins: Structure, Function and Bioinformatics, 2005, 58, 836-844.	1.5	92
27	Endogenous Methylarginines Modulate Superoxide as Well as Nitric Oxide Generation from Neuronal Nitric-oxide Synthase. Journal of Biological Chemistry, 2005, 280, 7540-7549.	1.6	90
28	STRUCTURAL AND FUNCTIONAL DIVERSITY IN HEME MONOOXYGENASES. Drug Metabolism and Disposition, 2005, 33, 10-18.	1.7	49
29	Models and Mechanisms of Cytochrome P450 Action. , 2005, , 1-43.		77
30	Differential Effects of Alkyl- and Arylguanidines on the Stability and Reactivity of Inducible NOS Hemeâ^'Dioxygen Complexesâ€. Biochemistry, 2006, 45, 3988-3999.	1.2	11
31	Reactivity of the heme-dioxygen complex of the inducible nitric oxide synthase in the presence of alternative substrates. FEBS Journal, 2006, 273, 180-191.	2.2	10
32	High-valent iron in chemical and biological oxidations. Journal of Inorganic Biochemistry, 2006, 100, 434-447.	1.5	565
33	Synthesis and structural study of tetrahydroindazolones. Tetrahedron, 2006, 62, 11704-11713.	1.0	35
34	Selective Inhibitors of Inducible Nitric Oxide Synthase: Potential Agents for the Treatment of Inflammatory Diseases?. Current Topics in Medicinal Chemistry, 2006, 6, 77-92.	1.0	102
35	Nitric-oxide synthase: A cytochrome P450 family foster child. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 432-445.	1.1	110
36	Effects of S-nitrosation of nitric oxide synthase. Advances in Experimental Biology, 2007, 1, 151-456.	0.1	4

	CITATION REF	CITATION REPORT	
#	Article	IF	CITATIONS
37	Inhibitory effects of a series of 7-substituted-indazoles toward nitric oxide synthases: Particular potency of 1H-indazole-7-carbonitrile. Bioorganic and Medicinal Chemistry, 2008, 16, 5962-5973.	1.4	18
38	NG-Aminoguanidines from Primary Amines and the Preparation of Nitric Oxide Synthase Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 924-931.	2.9	26
39	Synthesis of 3â€(Tosylalkyl)indazoles and their Desulfonylation Reactions – A New Entry to 3‧ubstituted Indazoles by an Unprecedented Friedel–Crafts Process. European Journal of Organic Chemistry, 2009, 2009, 3184-3188.	1.2	18
40	Synthesis, reactivity, and NMR spectroscopy of 4,6―and 6,7â€difluoroâ€3â€methylâ€1 <i>H</i> â€indazoles. Jour of Heterocyclic Chemistry, 2009, 46, 1408-1412.	nal 1.4	12
41	Fluorinated indazoles as novel selective inhibitors of nitric oxide synthase (NOS): Synthesis and biological evaluation. Bioorganic and Medicinal Chemistry, 2009, 17, 6180-6187.	1.4	46
42	Theoretical calculations of a model of NOS indazole inhibitors: Interaction of aromatic compounds with Zn-porphyrins. Bioorganic and Medicinal Chemistry, 2009, 17, 8027-8031.	1.4	16
43	Chapter 2 Advancements in the Development of Nitric Oxide Synthase Inhibitors. Annual Reports in Medicinal Chemistry, 2009, 44, 27-50.	0.5	30
44	Isoform-specific differences in the nitrite reductase activity of nitric oxide synthases under hypoxia. Biochemical Journal, 2009, 418, 673-682.	1.7	43
45	(±)-Praeruptorin A enantiomers exert distinct relaxant effects on isolated rat aorta rings dependent on endothelium and nitric oxide synthesis. Chemico-Biological Interactions, 2010, 186, 239-246.	1.7	41
46	Trifluoroâ€3â€hydroxyâ€1 <i>H</i> â€indazolecarboxylic Acids and Esters from Perfluorinated Benzenedicarboxylic Acids. European Journal of Organic Chemistry, 2010, 2010, 890-899.	1.2	10
47	Comparison of wild type neuronal nitric oxide synthase and its Tyr588Phe mutant towards various l-arginine analogues. Journal of Inorganic Biochemistry, 2010, 104, 1043-1050.	1.5	2
48	Role of Arginine Guanidinium Moiety in Nitric-oxide Synthase Mechanism of Oxygen Activation. Journal of Biological Chemistry, 2010, 285, 7233-7245.	1.6	27
49	<scp>l</scp> -Arginine Binding to Human Inducible Nitric Oxide Synthase: An Antisymmetric Funnel Route toward Isoform-Specific Inhibitors?. Journal of Chemical Information and Modeling, 2011, 51, 1325-1335.	2.5	2
50	Constitutively active heat shock factor 1 enhances glucose-driven insulin secretion. Metabolism: Clinical and Experimental, 2011, 60, 789-798.	1.5	7
52	Heteroalicyclic carboxamidines as inhibitors of inducible nitric oxide synthase; the identification of (2R)-2-pyrrolidinecarboxamidine as a potent and selective haem-co-ordinating inhibitor. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3037-3040.	1.0	4
53	Synthesis and biological evaluation of indazole derivatives. European Journal of Medicinal Chemistry, 2011, 46, 1439-1447.	2.6	22
54	The molecular mechanism of mammalian NO-synthases: A story of electrons and protons. Journal of Inorganic Biochemistry, 2011, 105, 127-141.	1.5	70
55	MYST protein acetyltransferase activity requires active site lysine autoacetylation. EMBO Journal, 2012, 31, 58-70.	3.5	101

#	Article	IF	CITATIONS
56	Selective Monocationic Inhibitors of Neuronal Nitric Oxide Synthase. Binding Mode Insights from Molecular Dynamics Simulations. Journal of the American Chemical Society, 2012, 134, 11559-11572.	6.6	21
57	Vasorelaxant activity of some structurally related triterpenic acids from Phoradendron reichenbachianum (Viscaceae) mainly by NO production: Ex vivo and in silico studies. Fìtoterapìâ, 2012, 83, 1023-1029.	1.1	39
58	Mechanism of nitric oxide synthase regulation: Electron transfer and interdomain interactions. Coordination Chemistry Reviews, 2012, 256, 393-411.	9.5	92
59	Investigations on the role of π–π interactions and π–π networks in eNOS and nNOS proteins. Bioorganic Chemistry, 2013, 49, 16-23.	2.0	5
60	Structure of NH-benzazoles (1H-benzimidazoles, 1H- and 2H-indazoles, 1H- and 2H-benzotriazoles). Chemistry of Heterocyclic Compounds, 2013, 49, 177-202.	0.6	26
61	Deciphering the Binding of Caveolin-1 to Client Protein Endothelial Nitric-oxide Synthase (eNOS). Journal of Biological Chemistry, 2014, 289, 13273-13283.	1.6	54
62	Identification of Redox Partners and Development of a Novel Chimeric Bacterial Nitric Oxide Synthase for Structure Activity Analyses. Journal of Biological Chemistry, 2014, 289, 29437-29445.	1.6	11
63	Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases. Journal of Inorganic Biochemistry, 2014, 130, 130-140.	1.5	18
64	Re(I) and Tc(I) Complexes for Targeting Nitric Oxide Synthase: Influence of the Chelator in the Affinity for the Enzyme. Chemical Biology and Drug Design, 2015, 86, 1072-1086.	1.5	8
65	Suggested Involvement of PP1/PP2A Activity and De Novo Gene Expression in Anhydrobiotic Survival in a Tardigrade, Hypsibius dujardini, by Chemical Genetic Approach. PLoS ONE, 2015, 10, e0144803.	1.1	43
66	Computational Development of Selective nNOS Inhibitors: Binding Modes and Pharmacokinetic Considerations. Current Medicinal Chemistry, 2015, 22, 2558-2579.	1.2	1
67	Molecular docking and in vitro evaluations of Hippocampus trimaculatus (seahorse) extracts as the anti-inflammatory compounds. International Journal of Bioinformatics Research and Applications, 2016, 12, 355.	0.1	25
68	Inhibitors of Nitric Oxide Synthase: What's up and What's Next?. Current Enzyme Inhibition, 2016, 12, 81-107.	0.3	3
69	Role of Nitric Oxide and Hydrogen Sulfide in the Vasodilator Effect of Ursolic Acid and Uvaol from Black Cherry Prunus serotina Fruits. Molecules, 2016, 21, 78.	1.7	30
70	Nitric oxide synthase and structure-based inhibitor design. Nitric Oxide - Biology and Chemistry, 2017, 63, 68-77.	1.2	38
71	Calmodulin-induced Conformational Control and Allostery Underlying Neuronal Nitric Oxide Synthase Activation. Journal of Molecular Biology, 2018, 430, 935-947.	2.0	14
72	Importance of Val567 on heme environment and substrate recognition of neuronal nitric oxide synthase. FEBS Open Bio, 2018, 8, 1553-1566.	1.0	1
73	Hexachlorobenzene Monooxygenase Substrate Selectivity and Catalysis: Structural and Biochemical Insights. Applied and Environmental Microbiology, 2020, 87, .	1.4	7

CITATION REPORT

#	Article	IF	CITATIONS
74	Inhibited Nitric Oxide Production of Human Endothelial Nitric Oxide Synthase by Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology, 2020, 54, 2922-2930.	4.6	39
75	A Medicinal Chemistry Perspective on Structure-Based Drug Design and Development. Methods in Molecular Biology, 2012, 841, 351-381.	0.4	14
77	Vasorelaxant and Antihypertensive Effects of (3β)-ursen-12-en-3,28-diol by NO/cGMP System. Letters in Drug Design and Discovery, 2022, 19, .	0.4	0
78	Structure and activity of NO synthase inhibitors specific to the L-arginine binding site. Biochemistry (Moscow), 2005, 70, 8-23.	0.7	5

CITATION REPORT