The Independent cue and cusSystems Confer Copper To Anaerobic Growth inEscherichia coli

Journal of Biological Chemistry 276, 30670-30677 DOI: 10.1074/jbc.m104122200

Citation Report

#	Article	IF	CITATIONS
1	Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2766-2771.	3.3	296
2	Identification by RNA Profiling and Mutational Analysis of the Novel Copper Resistance Determinants CrdA (HP1326), CrdB (HP1327), and CzcB (HP1328) in Helicobacter pylori. Journal of Bacteriology, 2002, 184, 6700-6708.	1.0	26
3	Understanding the mechanism and function of copper P-type ATPases. Advances in Protein Chemistry, 2002, 60, 123-150.	4.4	31
4	Copper-Dependent Iron Assimilation Pathway in the Model Photosynthetic Eukaryote Chlamydomonas reinhardtii. Eukaryotic Cell, 2002, 1, 736-757.	3.4	184
5	Regulation of Saccharomyces cerevisiae FET4 by Oxygen and Iron. Journal of Molecular Biology, 2002, 318, 251-260.	2.0	60
6	Spectroscopy of Cu(II)-PcoC and the Multicopper Oxidase Function of PcoA, Two Essential Components ofEscherichia coli pcoCopper Resistance Operonâ€. Biochemistry, 2002, 41, 10046-10055.	1.2	92
7	An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Molecular Microbiology, 2002, 45, 145-153.	1.2	131
8	The multicopper oxidase of Pseudomonas aeruginosa is a ferroxidase with a central role in iron acquisition. Molecular Microbiology, 2002, 45, 1741-1750.	1.2	95
9	Flexibility in monomeric Cu,Zn superoxide dismutase detected by limited proteolysis and molecular dynamics simulation. Proteins: Structure, Function and Bioinformatics, 2002, 47, 513-520.	1.5	20
10	Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme and Microbial Technology, 2003, 33, 220-230.	1.6	119
11	Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 2003, 27, 313-339.	3.9	1,214
12	Escherichia colimechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 2003, 27, 197-213.	3.9	608
13	Heavy metal tolerance and metal homeostasis inPseudomonas putidaas revealed by complete genome analysis. Environmental Microbiology, 2003, 5, 1242-1256.	1.8	213
14	Multimetal Oxidases. , 2003, , 437-457.		5
15	Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR. Science, 2003, 301, 1383-1387.	6.0	598
16	The PcoC Copper Resistance Protein Coordinates Cu(I) via Novel S-Methionine Interactions. Journal of the American Chemical Society, 2003, 125, 342-343.	6.6	60
17	Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli. FEBS Letters, 2003, 546, 391-394.	1.3	66
18	Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Letters, 2003, 554, 422-426.	1.3	112

#	Article	IF	CITATIONS
19	Transition Metal Speciation in the Cell: Insights from the Chemistry of Metal Ion Receptors. Science, 2003, 300, 931-936.	6.0	1,032
20	An Atypical Linear Cu(I)â^'S2Center Constitutes the High-Affinity Metal-Sensing Site in the CueR Metalloregulatory Protein. Journal of the American Chemical Society, 2003, 125, 12088-12089.	6.6	54
21	Molecular Analysis of the Copper-Transporting Efflux System CusCFBA of Escherichia coli. Journal of Bacteriology, 2003, 185, 3804-3812.	1.0	462
22	A redox switch in CopC: An intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3814-3819.	3.3	173
23	A Labile Regulatory Copper Ion Lies Near the T1 Copper Site in the Multicopper Oxidase CueO. Journal of Biological Chemistry, 2003, 278, 31958-31963.	1.6	138
24	Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon. Microbiology (United Kingdom), 2003, 149, 3413-3421.	0.7	26
25	Fre1p Cu2+ Reduction and Fet3p Cu1+ Oxidation Modulate Copper Toxicity in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003, 278, 50309-50315.	1.6	76
27	Novel Phenotypes of Escherichia coli tat Mutants Revealed by Global Gene Expression and Phenotypic Analysis. Journal of Biological Chemistry, 2004, 279, 47543-47554.	1.6	62
28	Cuprous Oxidase Activity of CueO from Escherichia coli. Journal of Bacteriology, 2004, 186, 7815-7817.	1.0	172
29	The Chromosomally Encoded Cation Diffusion Facilitator Proteins DmeF and FieF from Wautersia metallidurans CH34 Are Transporters of Broad Metal Specificity. Journal of Bacteriology, 2004, 186, 8036-8043.	1.0	121
30	Linkage between Catecholate Siderophores and the Multicopper Oxidase CueO in Escherichia coli. Journal of Bacteriology, 2004, 186, 5826-5833.	1.0	116
31	Sequential reconstitution of copper sites in the multicopper oxidase CueO. Journal of Biological Inorganic Chemistry, 2004, 9, 90-95.	1.1	29
32	Ferrous Binding to the Multicopper OxidasesSaccharomyces cerevisiaeFet3p and Human Ceruloplasmin:A Contributions to Ferroxidase Activity. Journal of the American Chemical Society, 2004, 126, 6579-6589.	6.6	64
33	Characterization of a Small Metal Binding Protein fromNitrosomonas europaeaâ€. Biochemistry, 2004, 43, 11206-11213.	1.2	22
36	Purification and characterization of a periplasmic laccase produced by Sinorhizobium meliloti. Enzyme and Microbial Technology, 2005, 36, 800-807.	1.6	60
37	Transcriptional response of Escherichia coli to external copper. Molecular Microbiology, 2005, 56, 215-227.	1.2	218
38	Copper induction of carotenoid synthesis in the bacterium Myxococcus xanthus. Molecular Microbiology, 2005, 56, 1159-1168.	1.2	34
39	FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Archives of Microbiology, 2005, 183, 9-18.	1.0	205

#	Article	IF	CITATIONS
40	Function and molecular evolution of multicopper blue proteins. Cellular and Molecular Life Sciences, 2005, 62, 2050-2066.	2.4	241
41	A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles, 2005, 9, 415-425.	0.9	191
42	Control of Expression of a Periplasmic Nickel Efflux Pump by Periplasmic Nickel Concentrations. BioMetals, 2005, 18, 437-448.	1.8	57
43	Characterization of a Multicopper Oxidase Gene from Staphylococcus aureus. Applied and Environmental Microbiology, 2005, 71, 5650-5653.	1.4	55
44	Role of the Extracytoplasmic Function Protein Family Sigma Factor RpoE in Metal Resistance of Escherichia coli. Journal of Bacteriology, 2005, 187, 2297-2307.	1.0	111
45	The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology (United Kingdom), 2005, 151, 1187-1198.	0.7	131
46	Two P-Type ATPases Are Required for Copper Delivery in Arabidopsis thaliana Chloroplasts. Plant Cell, 2005, 17, 1233-1251.	3.1	316
47	The global gene expression response of Escherichia coli to l-phenylalanine. Journal of Biotechnology, 2005, 115, 221-237.	1.9	48
48	Characterization of copABCD operon from a copper-sensitive Pseudomonas putida strain. Canadian Journal of Microbiology, 2005, 51, 209-216.	0.8	17
49	A Combined Quantum and Molecular Mechanical Study of the O2Reductive Cleavage in the Catalytic Cycle of Multicopper Oxidases. Inorganic Chemistry, 2005, 44, 5612-5628.	1.9	79
50	X-ray Absorption Investigation of a Unique Protein Domain Able To Bind both Copper(I) and Copper(II) at Adjacent Sites of the N-Terminus of Haemophilus ducreyi Cu,Zn Superoxide Dismutase. Biochemistry, 2005, 44, 13144-13150.	1.2	22
51	Copper sensitivity of cueO mutants of Escherichia coli K-12 and the biochemical suppression of this phenotype. Biochemical and Biophysical Research Communications, 2005, 328, 1205-1210.	1.0	35
52	A Novel Copper-Binding Fold for the Periplasmic Copper Resistance Protein CusFâ€,â€j. Biochemistry, 2005, 44, 10533-10540.	1.2	126
53	Periplasmic Metal-Resistance Protein CusF Exhibits High Affinity and Specificity for Both Culand Aglâ€. Biochemistry, 2006, 45, 11096-11102.	1.2	75
54	Multireference Ab Initio Calculations on Reaction Intermediates of the Multicopper Oxidases. Inorganic Chemistry, 2006, 45, 11051-11059.	1.9	42
56	Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS Journal, 2006, 273, 2308-2326.	2.2	378
57	A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli. Molecular Microbiology, 2006, 62, 120-131.	1.2	131
58	Disruption of the copper efflux pump (CopA) of Serratia marcescens ATCC 274 pleiotropically affects copper sensitivity and production of the tripyrrole secondary metabolite, prodigiosin. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 151-158.	1.4	25

#	Article	IF	CITATIONS
59	Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC Microbiology, 2006, 6, 49.	1.3	66
60	Paralogs of Genes Encoding Metal Resistance Proteins in <i>Cupriavidus metallidurans</i> Strain CH34. Journal of Molecular Microbiology and Biotechnology, 2006, 11, 82-93.	1.0	52
61	Survival and Growth in the Presence of Elevated Copper: Transcriptional Profiling of Copper-Stressed Pseudomonas aeruginosa. Journal of Bacteriology, 2006, 188, 7242-7256.	1.0	270
62	Transcriptional Response of Escherichia coli to TPEN. Journal of Bacteriology, 2006, 188, 6709-6713.	1.0	53
63	Dissecting the Salmonella response to copper. Microbiology (United Kingdom), 2007, 153, 2989-2997.	0.7	88
64	Transition of Escherichia coli from Aerobic to Micro-aerobic Conditions Involves Fast and Slow Reacting Regulatory Components. Journal of Biological Chemistry, 2007, 282, 11230-11237.	1.6	112
65	Substrate-linked Conformational Change in the Periplasmic Component of a Cu(I)/Ag(I) Efflux System. Journal of Biological Chemistry, 2007, 282, 35695-35702.	1.6	94
66	Intracellular Copper Does Not Catalyze the Formation of Oxidative DNA Damage in Escherichia coli. Journal of Bacteriology, 2007, 189, 1616-1626.	1.0	305
67	Microbiology of the Toxic Noble Metal Silver. , 2007, , 343-355.		13
68	Use of Fatty Acid Methyl Ester Profiles to Compare Copper-Tolerant and Copper-Sensitive Strains of <i>Pantoea ananatis</i> . Phytopathology, 2007, 97, 1298-1304.	1.1	13
69	Regulation of Multidrug Efflux Systems Involved in Multidrug and Metal Resistance of <i>Salmonella enterica</i> Serovar Typhimurium. Journal of Bacteriology, 2007, 189, 9066-9075.	1.0	170
70	Bacterial Transition Metal Homeostasis. , 2007, , 117-142.		39
71	How Bacteria Handle Copper. , 2007, , 259-285.		41
72	Differential Expression of the Three Multicopper Oxidases from Myxococcus xanthus. Journal of Bacteriology, 2007, 189, 4887-4898.	1.0	31
73	Copper Homeostasis in <i>Escherichia coli</i> and Other <i>Enterobacteriaceae</i> . EcoSal Plus, 2007, 2, .	2.1	8
74	Crystal structures of E. coli laccase CueO at different copper concentrations. Biochemical and Biophysical Research Communications, 2007, 354, 21-26.	1.0	67
76	Evaluation of Mercury Toxicity as a Predictor of Mercury Bioavailability. Environmental Science & Technology, 2007, 41, 5685-5692.	4.6	35
77	Nickel-Specific Response in the Transcriptional Regulator,EscherichiacoliNikR. Journal of the American Chemical Society, 2007, 129, 5085-5095.	6.6	72

#	Article	IF	CITATIONS
78	Transcriptomic Responses of Bacterial Cells to Sublethal Metal Ion Stress. , 2007, , 73-115.		22
79	The Saccharomyces cerevisiae Crs5 Metallothionein metal-binding abilities and its role in the response to zinc overload. Molecular Microbiology, 2007, 63, 256-269.	1.2	89
80	Bacterial sensing of and resistance to gold salts. Molecular Microbiology, 2007, 63, 1307-1318.	1.2	118
81	GolS controls the response to gold by the hierarchical induction of <i>Salmonella</i> â€specific genes that include a CBA effluxâ€coding operon. Molecular Microbiology, 2007, 66, 814-825.	1.2	106
82	Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. Journal of Biological Inorganic Chemistry, 2008, 13, 183-193.	1.1	173
83	Manganese neurotoxicity: A bioinorganic chemist's perspective. Inorganica Chimica Acta, 2008, 361, 875-884.	1.2	41
84	Three-dimensional organization of three-domain copper oxidases: A review. Crystallography Reports, 2008, 53, 92-109.	0.1	51
85	Cu(l) recognition via cation-Ï€ and methionine interactions in CusF. Nature Chemical Biology, 2008, 4, 107-109.	3.9	220
86	Regulation of copper homeostasis in <i>Pseudomonas fluorescens</i> SBW25. Environmental Microbiology, 2008, 10, 3284-3294.	1.8	59
87	Responses of the marine bacterium Pseudomonas fluorescens to an excess of heavy metals: Physiological and biochemical aspects. Science of the Total Environment, 2008, 406, 76-87.	3.9	30
88	Proteomic Identification of the Cus System as a Major Determinant of Constitutive <i>Escherichia coli</i> Silver Resistance of Chromosomal Origin. Journal of Proteome Research, 2008, 7, 2351-2356.	1.8	42
89	Copper Homeostasis in Bacteria. Advances in Applied Microbiology, 2008, 65, 217-247.	1.3	139
90	Microbial Ecology Shifts in the lleum of Broilers During Feed Withdrawal and Dietary Manipulations. Poultry Science, 2008, 87, 1624-1632.	1.5	24
91	The copper resistance operon copAB from Xanthomonas axonopodis pathovar citri: gene inactivation results in copper sensitivity. Microbiology (United Kingdom), 2008, 154, 402-412.	0.7	46
92	A Multicopper Oxidase (Cj1516) and a CopA Homologue (Cj1161) Are Major Components of the Copper Homeostasis System of <i>Campylobacter jejuni</i> . Journal of Bacteriology, 2008, 190, 8075-8085.	1.0	37
93	Adaptation of Aerobically Growing <i>Pseudomonas aeruginosa</i> to Copper Starvation. Journal of Bacteriology, 2008, 190, 6706-6717.	1.0	49
94	Expression of copA and cusA in Shewanella during copper stress. Microbiology (United Kingdom), 2008, 154, 2709-2718.	0.7	37
95	Knock down of Caenorhabditis elegans cutc-1 Exacerbates the Sensitivity Toward High Levels of Copper. Toxicological Sciences, 2008, 106, 384-391.	1.4	32

#	Article	IF	CITATIONS
96	Escherichia coli heat-shock proteins lbpA/B are involved in resistance to oxidative stress induced by copper. Microbiology (United Kingdom), 2008, 154, 1739-1747.	0.7	58
97	Sandwich Hybridization Assay for Sensitive Detection of Dynamic Changes in mRNA Transcript Levels in Crude Escherichia coli Cell Extracts in Response to Copper Ions. Applied and Environmental Microbiology, 2008, 74, 7463-7470.	1.4	28
98	Contribution of Copper Ion Resistance to Survival of <i>Escherichia coli</i> on Metallic Copper Surfaces. Applied and Environmental Microbiology, 2008, 74, 977-986.	1.4	253
99	Characterization of Heavy Metal Resistance of Metal-ReducingShewanellaIsolates From Marine Sediments. Geomicrobiology Journal, 2008, 25, 304-314.	1.0	12
100	The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8344-8349.	3.3	912
101	Transcriptional and Functional Studies of <i>Acidithiobacillus ferrooxidans</i> Genes Related to Survival in the Presence of Copper. Applied and Environmental Microbiology, 2009, 75, 6102-6109.	1.4	73
102	The Genome of <i>Burkholderia cenocepacia</i> J2315, an Epidemic Pathogen of Cystic Fibrosis Patients. Journal of Bacteriology, 2009, 191, 261-277.	1.0	329
103	Site-Directed Mutagenesis Identifies a Molecular Switch Involved in Copper Sensing by the Histidine Kinase CinS in <i>Pseudomonas putida</i> KT2440. Journal of Bacteriology, 2009, 191, 5304-5311.	1.0	16
104	Development of a generic approach to native metalloproteomics: application to the quantitative identification of soluble copper proteins in Escherichia coli. Journal of Biological Inorganic Chemistry, 2009, 14, 631-640.	1.1	27
105	Molecular analysis of the copper-responsive CopRSCD of a pathogenic Pseudomonas fluorescens strain. Journal of Microbiology, 2009, 47, 277-286.	1.3	31
106	Alternative periplasmic copperâ€resistance mechanisms in Gram negative bacteria. Molecular Microbiology, 2009, 73, 212-225.	1.2	101
107	Contaminant mobilization by metallic copper and metal sulphide colloids in flooded soil. Nature Geoscience, 2009, 2, 267-271.	5.4	167
108	Toxicity of free and various aminocarboxylic ligands sequestered copper(II) ions to Escherichia coli. Journal of Hazardous Materials, 2009, 166, 1403-1409.	6.5	13
109	Biomining Microorganisms: Molecular Aspects and Applications in Biotechnology and Bioremediation. Soil Biology, 2009, , 239-256.	0.6	9
110	Unprecedented Binding Cooperativity between Cu ^I and Cu ^{II} in the Copper Resistance Protein CopK from <i>Cupriavidus metallidurans</i> CH34: Implications from Structural Studies by NMR Spectroscopy and X-Ray Crystallography. Journal of the American Chemical Society, 2009, 131, 3549-3564.	6.6	38
111	Coordination Chemistry of Bacterial Metal Transport and Sensing. Chemical Reviews, 2009, 109, 4644-4681.	23.0	540
112	Independent metal-binding features of recombinant metallothioneins convergently draw a step gradation between Zn- and Cu-thioneins. Metallomics, 2009, 1, 229.	1.0	69
113	Four-electron Reduction of Dioxygen by a Multicopper Oxidase, CueO, and Roles of Asp112 and Glu506 Located Adjacent to the Trinuclear Copper Center. Journal of Biological Chemistry, 2009, 284, 14405-14413.	1.6	66

#	Article	IF	CITATIONS
114	Oxidative Stress. EcoSal Plus, 2009, 3, .	2.1	31
115	The Tat Protein Export Pathway. EcoSal Plus, 2010, 4, .	2.1	26
116	Comparative Genome Analysis of Prevotella ruminicola and Prevotella bryantii: Insights into Their Environmental Niche. Microbial Ecology, 2010, 60, 721-729.	1.4	293
117	Periplasmic domain of CusA in an Escherichia coli Cu+/Ag+ transporter has metal binding sites. Journal of Microbiology, 2010, 48, 829-835.	1.3	7
118	The Dps protein of Escherichia coli is involved in copper homeostasis. Microbiological Research, 2010, 165, 108-115.	2.5	26
119	Life in blue: Copper resistance mechanisms of bacteria and Archaea used in industrial biomining of minerals. Biotechnology Advances, 2010, 28, 839-848.	6.0	160
120	Copper Stress Affects Iron Homeostasis by Destabilizing Iron-Sulfur Cluster Formation in <i>Bacillus subtilis</i> . Journal of Bacteriology, 2010, 192, 2512-2524.	1.0	200
121	Expression and Physiological Role of Three <i>Myxococcus xanthus</i> Copper-Dependent P _{1B} -Type ATPases during Bacterial Growth and Development. Applied and Environmental Microbiology, 2010, 76, 6077-6084.	1.4	19
122	Differential Regulation of Six Heavy Metal Efflux Systems in the Response of <i>Myxococcus xanthus</i> to Copper. Applied and Environmental Microbiology, 2010, 76, 6069-6076.	1.4	31
123	Copper Homeostasis in Salmonella Is Atypical and Copper-CueP Is a Major Periplasmic Metal Complex. Journal of Biological Chemistry, 2010, 285, 25259-25268.	1.6	149
124	Reaction Mechanisms of the Multicopper Oxidase CueO from <i>Escherichia coli</i> Support Its Functional Role as a Cuprous Oxidase. Journal of the American Chemical Society, 2010, 132, 2005-2015.	6.6	94
125	Bacterial metal-sensing proteins exemplified by ArsR–SmtB family repressors. Natural Product Reports, 2010, 27, 668.	5.2	116
126	Chaperone-mediated copper handling in the periplasm. Natural Product Reports, 2010, 27, 711.	5.2	68
127	Direct dizinc displacement approach for efficient detection of Cu2+ in aqueous media: acetate versus phenolate bridging platforms. New Journal of Chemistry, 2010, 34, 1163.	1.4	25
128	Switch or Funnel: How RND-Type Transport Systems Control Periplasmic Metal Homeostasis. Journal of Bacteriology, 2011, 193, 2381-2387.	1.0	139
129	Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces. Applied and Environmental Microbiology, 2011, 77, 416-426.	1.4	148
130	Cytotoxic Origin of Copper(II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts. ACS Nano, 2011, 5, 7214-7225.	7.3	309
131	Enhancement of Laccase Activity through the Construction and Breakdown of a Hydrogen Bond at the Type I Copper Center in <i>Escherichia coli</i> CueO and the Deletion Mutant Δα5â"7 CueO. Biochemistry, 2011, 50, 558-565.	1.2	33

#	Article	IF	CITATIONS
132	Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics, 2011, 3, 1109.	1.0	297
133	Metal Selectivity of the <i>Escherichia coli</i> Nickel Metallochaperone, SlyD. Biochemistry, 2011, 50, 10666-10677.	1.2	18
134	Bacterial Killing by Dry Metallic Copper Surfaces. Applied and Environmental Microbiology, 2011, 77, 794-802.	1.4	421
135	Crystal Structures of Multicopper Oxidase CueO Bound to Copper(I) and Silver(I). Journal of Biological Chemistry, 2011, 286, 37849-37857.	1.6	85
136	The Two-Component Signal Transduction System CopRS of Corynebacterium glutamicum Is Required for Adaptation to Copper-Excess Stress. PLoS ONE, 2011, 6, e22143.	1.1	34
138	Zn- and Cu-thioneins: a functional classification for metallothioneins?. Journal of Biological Inorganic Chemistry, 2011, 16, 991-1009.	1.1	132
139	A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage. Applied Microbiology and Biotechnology, 2011, 92, 761-767.	1.7	69
140	Construction of Copper Removing Bacteria Through the Integration of Two-Component System and Cell Surface Display. Applied Biochemistry and Biotechnology, 2011, 165, 1674-1681.	1.4	32
141	Crystallization and preliminary X-ray crystallographic analysis of <i>Salmonella</i> Typhimurium CueP. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 675-677.	0.7	9
142	Characterization of a Dipartite Iron Uptake System from Uropathogenic Escherichia coli Strain F11. Journal of Biological Chemistry, 2011, 286, 25317-25330.	1.6	34
143	Responses of Lactic Acid Bacteria to Heavy Metal Stress. , 2011, , 163-195.		13
144	RcnB Is a Periplasmic Protein Essential for Maintaining Intracellular Ni and Co Concentrations in Escherichia coli. Journal of Bacteriology, 2011, 193, 3785-3793.	1.0	56
145	Metal Sensing in Salmonella. Advances in Microbial Physiology, 2011, 58, 175-232.	1.0	37
146	Periplasmic proteins encoded by VCA0261–0260 and VC2216 genes together with copA and cueR products are required for copper tolerance but not for virulence in Vibrio cholerae. Microbiology (United Kingdom), 2012, 158, 2005-2016.	0.7	25
147	Transcriptional and Posttranscriptional Events Control Copper-Responsive Expression of a Rhodobacter capsulatus Multicopper Oxidase. Journal of Bacteriology, 2012, 194, 1849-1859.	1.0	20
148	Phenotypic Characterization of a <i>copA</i> Mutant of Neisseria gonorrhoeae Identifies a Link between Copper and Nitrosative Stress. Infection and Immunity, 2012, 80, 1065-1071.	1.0	43
149	Copper Homeostasis at the Host-Pathogen Interface. Journal of Biological Chemistry, 2012, 287, 13549-13555.	1.6	251
150	Membrane Lipid Peroxidation in Copper Alloy-Mediated Contact Killing of Escherichia coli. Applied and Environmental Microbiology, 2012, 78, 1776-1784.	1.4	218

	CITATION RE	PORT	
# 151	ARTICLE Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter ieiuniCGUG11284: characterization of a metallo-oxidase. Metallomics, 2012, 4, 37-47.	IF 1.0	Citations
152	Joint Bayesian inference of condition-specific miRNA and transcription factor activities from combined gene and microRNA expression data. Bioinformatics, 2012, 28, 1714-1720.	1.8	25
153	Tellurite resistance gene trgB confers copper tolerance to Rhodobacter capsulatus. BioMetals, 2012, 25, 995-1008.	1.8	5
154	Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities. Biochemical and Biophysical Research Communications, 2012, 422, 152-156.	1.0	13
155	Copper in Microbial Pathogenesis: Meddling with the Metal. Cell Host and Microbe, 2012, 11, 106-115.	5.1	241
156	Functional analysis of cus operon promoter of Klebsiella pneumoniae using E. coli lacZ assay. Gene, 2012, 495, 81-88.	1.0	5
157	Spectroscopic and Crystallographic Characterization of "Alternative Resting―and "Resting Oxidized― Enzyme Forms of Bilirubin Oxidase: Implications for Activity and Electrochemical Behavior of Multicopper Oxidases. Journal of the American Chemical Society, 2012, 134, 5548-5551.	6.6	50
158	Microbial Metalloproteomes Explored Using MIRAGE. Chemistry and Biodiversity, 2012, 9, 1967-1980.	1.0	11
159	Evolution of the metabolic and regulatory networks associated with oxygen availability in two phytopathogenic enterobacteria. BMC Genomics, 2012, 13, 110.	1.2	39
160	Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria. BMC Microbiology, 2012, 12, 249.	1.3	60
162	Molecular characterization, metal uptake and copper induced transcriptional activation of efflux determinants in copper resistant isolates of Klebsiella pneumoniae. Gene, 2012, 510, 32-38.	1.0	12
163	Metal Export by CusCFBA, the Periplasmic Cu(I)/Ag(I) Transport System of Escherichia coli. Current Topics in Membranes, 2012, 69, 163-196.	0.5	46
164	Silver nanoparticle enhanced silver ion stress response in <i>Escherichia coli</i> K12. Nanotoxicology, 2012, 6, 857-866.	1.6	153
165	Characterization of the Alkaline Laccase Ssl1 from Streptomyces sviceus with Unusual Properties Discovered by Genome Mining. PLoS ONE, 2012, 7, e52360.	1.1	80
166	Nutritional immunity: transition metals at the pathogen–host interface. Nature Reviews Microbiology, 2012, 10, 525-537.	13.6	1,256
168	Inorganic polyphosphates in extremophiles and their possible functions. Extremophiles, 2012, 16, 573-583.	0.9	71
169	Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS Microbiology Letters, 2012, 330, 30-37.	0.7	78
170	Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environmental Pollution, 2012, 169, 81-89.	3.7	180

#	Article	IF	CITATIONS
171	Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. Tuberculosis, 2012, 92, 202-210.	0.8	105
172	An O entered Structure of the Trinuclear Copper Center in the Cys500Ser/Glu506Gln Mutant of CueO and Structural Changes in Low to High Xâ€Ray Dose Conditions. Angewandte Chemie - International Edition, 2012, 51, 1861-1864.	7.2	26
173	The copper-inducible ComR (YcfQ) repressor regulates expression of ComC (YcfR), which affects copper permeability of the outer membrane of Escherichia coli. BioMetals, 2012, 25, 33-43.	1.8	53
174	Crystal structure of the CueO mutants at Glu506, the key amino acid located in the proton transfer pathway for dioxygen reduction. Biochemical and Biophysical Research Communications, 2013, 438, 686-690.	1.0	10
175	Abundance and diversity of copper resistance genes cusA and copA in microbial communities in relation to the impact of copper on Chilean marine sediments. Marine Pollution Bulletin, 2013, 67, 16-25.	2.3	52
176	An omp gene enhances cell tolerance of Cu(II) in Sinorhizobium meliloti CCNWSX0020. World Journal of Microbiology and Biotechnology, 2013, 29, 1655-1660.	1.7	5
177	Enhancement of copper content and specific activity of CotA laccase from Bacillus licheniformis by coexpression with CopZ copper chaperone in E. coli. Journal of Biotechnology, 2013, 168, 252-255.	1.9	26
178	Single-Molecule Dynamics and Mechanisms of Metalloregulators and Metallochaperones. Biochemistry, 2013, 52, 7170-7183.	1.2	14
179	Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biology and Toxicology, 2013, 29, 397-405.	2.4	196
180	Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa. Metallomics, 2013, 5, 144.	1.0	31
181	An experimental model approach of biologically-assisted silicate dissolution with olivine and Escherichia coli – Impact on chemical weathering of mafic rocks and atmospheric CO2 drawdown. Applied Geochemistry, 2013, 31, 216-227.	1.4	16
182	The copper supply pathway to a <i><scp>S</scp>almonella</i> <scp>C</scp> u, <scp>Z</scp> nâ€superoxide dismutase (<scp>SodCll</scp>) involves <scp>P</scp> ₁ <scp>_B</scp> â€type <scp>ATPase</scp> copper efflux and periplasmic <scp>CueP</scp> . Molecular Microbiology, 2013, 87, 466-477.	1.2	96
183	A fresh view of the cell biology of copper in enterobacteria. Molecular Microbiology, 2013, 87, 447-454.	1.2	43
184	Construction and characterization of nitrate and nitrite respiring Pseudomonas putida KT2440 strains for anoxic biotechnical applications. Journal of Biotechnology, 2013, 163, 155-165.	1.9	26
185	The Copper Metallome in Prokaryotic Cells. Metal Ions in Life Sciences, 2013, 12, 417-450.	2.8	64
186	Copper Efflux Is Induced during Anaerobic Amino Acid Limitation in Escherichia coli To Protect Iron-Sulfur Cluster Enzymes and Biogenesis. Journal of Bacteriology, 2013, 195, 4556-4568.	1.0	92
187	Lability and Liability of Endogenous Copper Pools. Journal of Bacteriology, 2013, 195, 4553-4555.	1.0	11
188	Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Frontiers in Cellular and Infection Microbiology, 2013, 3, 90.	1.8	306

ARTICLE IF CITATIONS The Genome of Pseudomonas fluorescens Strain R124 Demonstrates Phenotypic Adaptation to the 189 1.0 17 Mineral Environment. Journal of Bacteriology, 2013, 195, 4793-4803. Comparative Genomics Analysis of the Metallomes. Metal Ions in Life Sciences, 2013, 12, 529-580. 2.8 Structure of the periplasmic copper-binding protein CueP from <i>Salmonella enterica </i> 191 2.5 13 Typhimurium. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1867-1875. Coproporphyrin <scp>ili</scp> excretion identifies the anaerobic coproporphyrinogen <scp>ili</scp> oxidase <scp>HemN</scp> as a copper target in the <scp><scp>Cu⁺</scp>á€<scp>ATPase</scp> mutant <scp><i>copA</i></scp><i>copA</i></scp>á)^{â^}</i> of <i>scp>R</scp>ubrivivax gelatinosus</i>. Molecular 1.2 The Outer Membrane TolC-like Channel HgdD Is Part of Tripartite Resistance-Nodulation-Cell Division (RND) Efflux Systems Conferring Multiple-drug Resistance in the Cyanobacterium Anabaena sp. PCC7120. Journal of Biological Chemistry, 2013, 288, 31192-31205. 193 1.6 22 Role of Hydrogen Bond Connecting Ligands for Substrate and Type I Copper in Copper(I) Oxidase CueO. 194 Chemistry Letters, 2013, 42, 1102-1104. Heavy Metal Resistance Strategies of Acidophilic Bacteria and Their Acquisition: Importance for 195 1.5136 Biomining and Bioremediation. Biological Research, 2013, 46, 363-371. Mechanisms of copper homeostasis in bacteria. Frontiers in Cellular and Infection Microbiology, 2013, 196 1.8 193 197 Metal Resistance Loci of Bacterial Plasmids., 2014, , 165-173. 2 Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs. 198 0.8 Genome Announcements, 2014, 2, . Effect of Copper Treatment on the Composition and Function of the Bacterial Community in the 199 39 1.8 Sponge <i>Haliclona cymaeformis</i>. MBio, 2014, 5, e01980. Host-specific induction of <i>Escherichia coli</i> fitness genes during human urinary tract infection. 200 3.3 Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18327-18332. Potentially novel copper resistance genes in copper-enriched activated sludge revealed by 201 1.7 30 metagenómic analysis. Applied Microbiology and Biotechnology, 2014, 98, 10255-10266. Metal limitation and toxicity at the interface between host and pathogen. FEMS Microbiology Reviews, 189 2014, 38, 1235-1249. Metal Ion Homeostasis in Listeria monocytogenes and Importance in Hostâ€"Pathogen Interactions. 203 1.0 21 Advances in Microbial Physiology, 2014, 65, 83-123. An intimate link: two-component signal transduction systems and metal transport systems in bacteria. 204 1.0 Future Microbiology, 2014, 9, 1283-1293. Biocidal Mechanisms of Metallic Copper Surfaces., 2014, , 103-136. 205 1 Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass. Thin Solid Films, 2014, 561, 98-101. 46

#	Article	IF	CITATIONS
207	<i>In vivo</i> â€folded metal–metallothioneinÂ3 complexes reveal the Cu–thionein rather than Zn–thionein character of this brainâ€specific mammalian metallothionein. FEBS Journal, 2014, 281, 1659-1678.	2.2	47
208	Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15373-15378.	3.3	86
209	Cu binding by the Escherichia coli metal-efflux accessory protein RcnB. Metallomics, 2014, 6, 1400-1409.	1.0	8
210	A Primary Role for Disulfide Formation in the Productive Folding of Prokaryotic Cu,Zn-superoxide Dismutase. Journal of Biological Chemistry, 2014, 289, 20139-20149.	1.6	16
211	Study on dioxygen reduction by mutational modifications of the hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase. Biochemical and Biophysical Research Communications, 2014, 450, 767-772.	1.0	6
212	Survival of Escherichia coli Cells on Solid Copper Surfaces Is Increased by Glutathione. Applied and Environmental Microbiology, 2014, 80, 7071-7078.	1.4	25
213	Subcellular Targeting of Bacterial CusF Enhances Cu Accumulation and Alters Root to Shoot Cu Translocation in Arabidopsis. Plant and Cell Physiology, 2014, 55, 1568-1581.	1.5	22
214	Copper (Cu)–Silica Nanocomposite Containing Valence-Engineered Cu: A New Strategy for Improving the Antimicrobial Efficacy of Cu Biocides. Journal of Agricultural and Food Chemistry, 2014, 62, 6043-6052.	2.4	50
215	Copper Response of Proteus hauseri Based on Proteomic and Genetic Expression and Cell Morphology Analyses. Applied Biochemistry and Biotechnology, 2014, 173, 1057-1072.	1.4	11
216	Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli. BMC Microbiology, 2014, 14, 72.	1.3	39
217	New insights into the catalytic active-site structure of multicopper oxidases. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 772-779.	2.5	23
218	A versatile and efficient markerless gene disruption system for <scp><i>A</i></scp> <i>cidithiobacillus thiooxidans</i> : application for characterizing a copper tolerance related multicopper oxidase gene. Environmental Microbiology, 2014, 16, 3499-3514.	1.8	19
219	Bacterial Multidrug Efflux Transporters. Annual Review of Biophysics, 2014, 43, 93-117.	4.5	159
220	Pathogenic adaptations to host-derived antibacterial copper. Frontiers in Cellular and Infection Microbiology, 2014, 4, 3.	1.8	103
221	Heavy metal transport by the <scp>C</scp> us <scp>CFBA</scp> efflux system. Protein Science, 2015, 24, 1720-1736.	3.1	43
222	A multicopper oxidase contributes to the copper tolerance of Brucella melitensis 16M. FEMS Microbiology Letters, 2015, 362, fnv078.	0.7	9
223	Bacterial Copper Resistance and Virulence. , 2015, , 1-19.		9
224	Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Scientific Reports, 2015, 5, 10465.	1.6	97

#	Article	IF	CITATIONS
225	<i>c</i> -Type Cytochrome Assembly Is a Key Target of Copper Toxicity within the Bacterial Periplasm. MBio, 2015, 6, e01007-15.	1.8	31
226	Biogenesis of Escherichia coli DMSO Reductase: A Network of Participants for Protein Folding and Complex Enzyme Maturation. Advances in Experimental Medicine and Biology, 2015, 883, 215-234.	0.8	0
227	Back to the metal age: battle for metals at the host–pathogen interface during urinary tract infection. Metallomics, 2015, 7, 935-942.	1.0	67
228	Copper tolerance and virulence in bacteria. Metallomics, 2015, 7, 957-964.	1.0	235
229	Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology. Cellular and Molecular Life Sciences, 2015, 72, 911-922.	2.4	87
230	Lignocellulose degradation by the isolate of Streptomyces griseorubens JSD-1. Functional and Integrative Genomics, 2015, 15, 163-173.	1.4	16
231	Proteomic analysis of the copper resistance of Streptococcus pneumoniae. Metallomics, 2015, 7, 448-454.	1.0	15
232	The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens. Journal of Biological Chemistry, 2015, 290, 18954-18961.	1.6	324
233	Draft Genome Sequence of Se(IV)-Reducing Bacterium Pseudomonas migulae ES3-33. Genome Announcements, 2015, 3, .	0.8	5
234	Concentration- and chromosome-organization-dependent regulator unbinding from DNA for transcription regulation in living cells. Nature Communications, 2015, 6, 7445.	5.8	86
235	Microbial Copper-binding Siderophores at the Host-Pathogen Interface. Journal of Biological Chemistry, 2015, 290, 18967-18974.	1.6	56
236	Distinct functions of serial metalâ€binding domains in the <scp><i>E</i></scp> <i>scherichia coli</i> â€ <scp>P</scp> ₁ <scp>_B</scp> â€ <scp>ATP</scp> ase <scp>CopA</scp> . Molecular Microbiology, 2015, 97, 423-438.	1.2	28
237	Expression and Characterization of a Recombinant Laccase with Alkalistable and Thermostable Properties from Streptomyces griseorubens JSD-1. Applied Biochemistry and Biotechnology, 2015, 176, 547-562.	1.4	16
238	CopC Protein from <i>Pseudomonas fluorescens</i> SBW25 Features a Conserved Novel High-Affinity Cu(II) Binding Site. Inorganic Chemistry, 2015, 54, 2950-2959.	1.9	30
239	An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities. Biotechnology Letters, 2015, 37, 2279-2288.	1.1	44
240	<i>Clostridium</i> Species as Metallic Copper-Forming Bacteria in Soil under Reducing Conditions. Geomicrobiology Journal, 2015, 32, 130-139.	1.0	17
241	Bacterial antimicrobial metal ion resistance. Journal of Medical Microbiology, 2015, 64, 471-497.	0.7	294
242	Expression of copper-resistance genes in microbial communities under copper stress and oxic/anoxic conditions. Environmental Science and Pollution Research, 2016, 23, 4013-4023.	2.7	20

#	Article	IF	CITATIONS
243	The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation. , 0, , 367-386.		0
244	Thermodynamically optimal whole-genome tiling microarray design and validation. BMC Research Notes, 2016, 9, 305.	0.6	6
245	Copper Delivery to Chloroplast Proteins and its Regulation. Frontiers in Plant Science, 2015, 6, 1250.	1.7	41
246	Realâ€time PCR based analysis of metal resistance genes in metal resistant <i>Pseudomonas aeruginosa</i> strain J007. Journal of Basic Microbiology, 2016, 56, 688-697.	1.8	17
247	Ni exposure impacts the pool of free Fe and modifies DNA supercoiling via metal-induced oxidative stress in Escherichia coli K-12. Free Radical Biology and Medicine, 2016, 97, 351-361.	1.3	10
248	The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation. Microbiology Spectrum, 2016, 4, .	1.2	7
249	Biochemical, spectroscopic and X-ray structural analysis of deuterated multicopper oxidase CueO prepared from a new expression construct for neutron crystallography. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 788-794.	0.4	2
250	The Structure of the Periplasmic Sensor Domain of the Histidine Kinase CusS Shows Unusual Metal Ion Coordination at the Dimeric Interface. Biochemistry, 2016, 55, 5296-5306.	1.2	27
251	Compartment and signal-specific codependence in the transcriptional control of <i>Salmonella</i> periplasmic copper homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11573-11578.	3.3	36
253	Microbial Virulence and Interactions With Metals. Progress in Molecular Biology and Translational Science, 2016, 142, 27-49.	0.9	14
254	Novel Metal Cation Resistance Systems from Mutant Fitness Analysis of Denitrifying Pseudomonas stutzeri. Applied and Environmental Microbiology, 2016, 82, 6046-6056.	1.4	21
255	Caulobacter crescentus intrinsic dimorphism provides a prompt bimodal response to copper stress. Nature Microbiology, 2016, 1, 16098.	5.9	20
256	Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals. Microbial Cell Factories, 2016, 15, 176.	1.9	54
257	Development of strong enzymatic biocatalysts for dye decolorization. Biocatalysis and Agricultural Biotechnology, 2016, 7, 228-233.	1.5	8
258	Heavy metal resistance in halophilic <i>Bacteria</i> and <i>Archaea</i> . FEMS Microbiology Letters, 2016, 363, fnw146.	0.7	120
259	Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting. Water Research, 2016, 91, 339-349.	5.3	255
260	Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270. Applied and Environmental Microbiology, 2016, 82, 1015-1022.	1.4	27
261	Evolution of a heavy metal homeostasis/resistance island reflects increasing copper stress in Enterobacteria. Genome Biology and Evolution, 2016, 8, evw031.	1.1	68

#	Article	IF	CITATIONS
262	The CopC Family: Structural and Bioinformatic Insights into a Diverse Group of Periplasmic Copper Binding Proteins. Biochemistry, 2016, 55, 2278-2290.	1.2	78
263	The biological chemistry of the transition metal "transportome―of Cupriavidus metallidurans. Metallomics, 2016, 8, 481-507.	1.0	75
264	Understanding the antimicrobial activity behind thin- and thick-rolled copper plates. Applied Microbiology and Biotechnology, 2016, 100, 5569-5580.	1.7	13
265	Biogeochemical spatioâ€ŧemporal transformation of copper in <scp><i>A</i></scp> <i>spergillus niger</i> colonies grown on malachite with different inorganic nitrogen sources. Environmental Microbiology, 2017, 19, 1310-1321.	1.8	12
266	Osmotolerance in Escherichia coli Is Improved by Activation of Copper Efflux Genes or Supplementation with Sulfur-Containing Amino Acids. Applied and Environmental Microbiology, 2017, 83, .	1.4	28
267	Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12. Metallomics, 2017, 9, 183-191.	1.0	17
268	Amino acids located in the outer-sphere of the trinuclear copper center in a multicopper oxidase, CueO as the putative electron donor in the four-electron reduction of dioxygen. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 997-1003.	1.1	2
269	Metal Resistance and Its Association With Antibiotic Resistance. Advances in Microbial Physiology, 2017, 70, 261-313.	1.0	276
270	Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli. Applied and Environmental Microbiology, 2017, 83, .	1.4	47
271	The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review. Environmental Science and Pollution Research, 2017, 24, 16545-16559.	2.7	40
272	Adaptor protein mediates dynamic pump assembly for bacterial metal efflux. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6694-6699.	3.3	31
273	Metal homeostasis and resistance in bacteria. Nature Reviews Microbiology, 2017, 15, 338-350.	13.6	568
274	Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization. Infection and Immunity, 2017, 85, .	1.0	48
275	[4Fe-4S] Cluster Assembly in Mitochondria and Its Impairment by Copper. Journal of the American Chemical Society, 2017, 139, 719-730.	6.6	103
276	Towards a peptide-based vaccine against Shigella sonnei : A subtractive reverse vaccinology based approach. Biologicals, 2017, 50, 87-99.	0.5	71
277	Cytoplasmic Copper Detoxification in Salmonella Can Contribute to SodC Metalation but Is Dispensable during Systemic Infection. Journal of Bacteriology, 2017, 199, .	1.0	21
278	Bacterial Physiological Adaptations to Contrasting Edaphic Conditions Identified Using Landscape Scale Metagenomics. MBio, 2017, 8, .	1.8	46
279	Copper homeostasis networks in the bacterium Pseudomonas aeruginosa. Journal of Biological Chemistry, 2017, 292, 15691-15704.	1.6	100

#	Article	IF	CITATIONS
280	Stress-induced systems in Escherichia coli and their response to terahertz radiation. Russian Journal of Genetics: Applied Research, 2017, 7, 858-868.	0.4	5
281	The Electrosome: A Surface-Displayed Enzymatic Cascade in a Biofuel Cell's Anode and a High-Density Surface-Displayed Biocathodic Enzyme. Nanomaterials, 2017, 7, 153.	1.9	21
282	Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting. Frontiers in Microbiology, 2017, 8, 344.	1.5	107
283	The Copper Efflux Regulator CueR Is Subject to ATP-Dependent Proteolysis in Escherichia coli. Frontiers in Molecular Biosciences, 2017, 4, 9.	1.6	12
284	Copper Homeostasis in Humans and Bacteria. , 2017, , .		0
285	Genome sequencing and analysis of the first spontaneous Nanosilver resistant bacterium Proteus mirabilis strain SCDR1. Antimicrobial Resistance and Infection Control, 2017, 6, 119.	1.5	16
286	Resistance to Metals Used in Agricultural Production. Microbiology Spectrum, 2018, 6, .	1.2	48
287	Occurrence and fate of colloids and colloid-associated metals in a mining-impacted agricultural soil upon prolonged flooding. Journal of Hazardous Materials, 2018, 348, 56-66.	6.5	58
288	Two-dimensional (weak anion exchange chromatography-gel electrophoresis) separations coupling to inductively coupled plasma mass spectrometry strategy for analysis of metalloproteins. Talanta, 2018, 184, 404-410.	2.9	14
289	Transcriptional response of <i>Erwinia amylovora</i> to copper shock: <i>in vivo</i> role of the <i>copA</i> gene. Molecular Plant Pathology, 2018, 19, 169-179.	2.0	14
290	Multimodal Generally Recognized as Safe ZnO/Nanocopper Composite: A Novel Antimicrobial Material for the Management of Citrus Phytopathogens. Journal of Agricultural and Food Chemistry, 2018, 66, 6604-6608.	2.4	57
291	Characterization of Rhodococcus sp. A5wh isolated from a high altitude Andean lake to unravel the survival strategy under lithium stress. Revista Argentina De Microbiologia, 2018, 50, 311-322.	0.4	11
292	Cu in biology: Unleashed by O2 and now irreplaceable. Inorganica Chimica Acta, 2018, 481, 4-24.	1.2	11
293	Plant Frataxin in Metal Metabolism. Frontiers in Plant Science, 2018, 9, 1706.	1.7	13
294	Silver and Copper Acute Effects on Membrane Proteins and Impact on Photosynthetic and Respiratory Complexes in Bacteria. MBio, 2018, 9, .	1.8	25
295	Fixed-Quat: An Attractive Nonmetal Alternative to Copper Biocides against Plant Pathogens. Journal of Agricultural and Food Chemistry, 2018, 66, 13056-13064.	2.4	9
296	Resistance to Metals Used in Agricultural Production. , 2018, , 83-107.		4
297	Impact of Cu(II)-doping on the vulnerability of Escherichia coli ATCC 10536 revealed by Atomic Force Microscopy. Micron, 2018, 110, 73-78.	1.1	1

#	Article	IF	CITATIONS
298	The complex global response to copper in the multicellular bacterium <i>Myxococcus xanthus</i> . Metallomics, 2018, 10, 876-886.	1.0	16
299	Antimicrobial properties of ternary eutectic aluminum alloys. BioMetals, 2018, 31, 759-770.	1.8	9
300	Comparative mangrove metagenome reveals global prevalence of heavy metals and antibiotic resistome across different ecosystems. Scientific Reports, 2018, 8, 11187.	1.6	63
301	Taxon-Function Decoupling as an Adaptive Signature of Lake Microbial Metacommunities Under a Chronic Polymetallic Pollution Gradient. Frontiers in Microbiology, 2018, 9, 869.	1.5	19
302	Transcriptional responses of Escherichia coli during recovery from inorganic or organic mercury exposure. BMC Genomics, 2018, 19, 52.	1.2	22
303	Metabolic Reprogramming of Vibrio cholerae Impaired in Respiratory NADH Oxidation Is Accompanied by Increased Copper Sensitivity. Journal of Bacteriology, 2018, 200, .	1.0	9
304	Coupling heavy metal resistance and oxygen flexibility for bioremoval of copper ions by newly isolated Citrobacter freundii JPG1. Journal of Environmental Management, 2018, 226, 194-200.	3.8	21
305	Interaction of Copper Toxicity and Oxidative Stress in Campylobacter jejuni. Journal of Bacteriology, 2018, 200, .	1.0	10
306	Differential Sensitivity of Wetland-Derived Nitrogen Cycling Microorganisms to Copper Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 11642-11652.	3.2	10
307	Interactions of a Bacterial Cu(I)-ATPase with a Complex Lipid Environment. Biochemistry, 2018, 57, 4063-4073.	1.2	6
308	Intracellular Metabolism and Homeostasis of Metal Ions. , 2019, , 207-259.		0
309	Mixed Matrix Poly(Vinyl Alcohol)-Copper Nanofibrous Anti-Microbial Air-Microfilters. Membranes, 2019, 9, 87.	1.4	16
310	Laccases: structure, function, and potential application in water bioremediation. Microbial Cell Factories, 2019, 18, 200.	1.9	269
311	A thermostable laccase from Thermus sp. 2.9 and its potential for delignification of Eucalyptus biomass. AMB Express, 2019, 9, 24.	1.4	28
312	Zinc excess increases cellular demand for iron and decreases tolerance to copper in Escherichia coli. Journal of Biological Chemistry, 2019, 294, 16978-16991.	1.6	58
313	The Role of the CopA Copper Efflux System in Acinetobacter baumannii Virulence. International Journal of Molecular Sciences, 2019, 20, 575.	1.8	35
314	<i>Salmonella</i> Genomic Island 3 Is an Integrative and Conjugative Element and Contributes to Copper and Arsenic Tolerance of <i>Salmonella enterica</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	35
315	SGI-4 in Monophasic Salmonella Typhimurium ST34 Is a Novel ICE That Enhances Resistance to Copper. Frontiers in Microbiology, 2019, 10, 1118.	1.5	53

#	Article	IF	CITATIONS
316	Emergence of metal selectivity and promiscuity in metalloenzymes. Journal of Biological Inorganic Chemistry, 2019, 24, 517-531.	1.1	40
317	Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to â€~clean-up' heavy metal contaminants from water. Aquatic Toxicology, 2019, 212, 1-10.	1.9	125
318	Metals as phagocyte antimicrobial effectors. Current Opinion in Immunology, 2019, 60, 1-9.	2.4	99
319	Comparisons of Nitrogen Removal and Microbial Communities in Anammox Systems upon Addition of Copper-Based Nanoparticles and Copper Ion. Industrial & Engineering Chemistry Research, 2019, 58, 7808-7816.	1.8	21
320	The crystal structure of the CopC protein from Pseudomonas fluorescens reveals amended classifications for the CopC protein family. Journal of Inorganic Biochemistry, 2019, 195, 194-200.	1.5	17
321	Nitric oxide increases biofilm formation in Saccharomyces cerevisiae by activating the transcriptional factor Mac1p and thereby regulating the transmembrane protein Ctr1. Biotechnology for Biofuels, 2019, 12, 30.	6.2	18
322	Multiple Transcriptional Mechanisms Collectively Mediate Copper Resistance in <i>Cupriavidus gilardii</i> CR3. Environmental Science & amp; Technology, 2019, 53, 4609-4618.	4.6	29
323	Development and structural characterization of an engineered multi-copper oxidase reporter of protein–protein interactions. Journal of Biological Chemistry, 2019, 294, 7002-7012.	1.6	5
324	Formylglycine-generating enzyme binds substrate directly at a mononuclear Cu(I) center to initiate O ₂ activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5370-5375.	3.3	38
325	Metagenomic Resolution of Functional Diversity in Copper Surface-Associated Marine Biofilms. Frontiers in Microbiology, 2019, 10, 2863.	1.5	20
326	Mechanical stress compromises multicomponent efflux complexes in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25462-25467.	3.3	18
327	The addition of copper accelerates the corrosion of steel via impeding biomineralized film formation of Bacillus subtilis in seawater. Corrosion Science, 2019, 149, 153-163.	3.0	21
328	Metal-resistance encoding gene-fingerprints in some bacteria isolated from wastewaters of selected printeries in Ibadan, South-western Nigeria. Journal of Taibah University for Science, 2019, 13, 266-273.	1.1	14
329	Bioprospecting of Native Efflux Pumps To Enhance Furfural Tolerance in Ethanologenic <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2019, 85, .	1.4	31
330	Mechanism of metal ion-induced activation of a two-component sensor kinase. Biochemical Journal, 2019, 476, 115-135.	1.7	34
331	Not merely noxious? Time-dependent hormesis and differential toxic effects systematically induced by rare earth elements in Escherichia coli. Environmental Science and Pollution Research, 2020, 27, 5640-5649.	2.7	17
332	Factors Enhancing the Antibacterial Effect of Monovalent Copper Ions. Current Microbiology, 2020, 77, 361-368.	1.0	16
333	Draft whole genome sequence for four highly copper resistant soil isolates Pseudomonas lactis strain UKR1, Pseudomonas panacis strain UKR2, and Pseudomonas veronii strains UKR3 and UKR4.	1.4	7

#	Article	IF	CITATIONS
334	Antibiotic resistance gene transfer during anaerobic digestion with added copper: Important roles of mobile genetic elements. Science of the Total Environment, 2020, 743, 140759.	3.9	27
335	Biomineralization of Cu ₂ S Nanoparticles by Geobacter sulfurreducens. Applied and Environmental Microbiology, 2020, 86, .	1.4	17
336	The impact of metal pipe materials, corrosion products, and corrosion inhibitors on antibiotic resistance in drinking water distribution systems. Applied Microbiology and Biotechnology, 2020, 104, 7673-7688.	1.7	30
337	The Tat system and its dependent cell division proteins are critical for virulence of extra-intestinal pathogenic <i>Escherichia coli</i> . Virulence, 2020, 11, 1279-1292.	1.8	5
338	Cu Homeostasis in Bacteria: The Ins and Outs. Membranes, 2020, 10, 242.	1.4	60
339	Copper primes adaptation of uropathogenic Escherichia coli to superoxide stress by activating superoxide dismutases. PLoS Pathogens, 2020, 16, e1008856.	2.1	12
340	Copper Kills Escherichia coli Persister Cells. Antibiotics, 2020, 9, 506.	1.5	7
341	Escherichia coli CFT073 Fitness Factors during Urinary Tract Infection: Identification Using an Ordered Transposon Library. Applied and Environmental Microbiology, 2020, 86, .	1.4	30
342	Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil. 3 Biotech, 2020, 10, 238.	1.1	22
343	Metal-induced sensor mobilization turns on affinity to activate regulator for metal detoxification in live bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13248-13255.	3.3	13
344	Iron homeostasis of cyanobacteria: advancements in siderophores and metal transporters. , 2020, , 85-117.		10
345	Characterization of Acinetobacter baumannii Copper Resistance Reveals a Role in Virulence. Frontiers in Microbiology, 2020, 11, 16.	1.5	38
346	Mechanism of resistance focusing on copper, mercury and arsenic in extremophilic organisms, how acidophiles and thermophiles cope with these metals. , 2020, , 23-37.		4
347	<i>Arcobacter butzleri</i> : Upâ€ŧoâ€date taxonomy, ecology, and pathogenicity of an emerging pathogen. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2071-2109.	5.9	43
348	Flexibility of the CueR Metal Site Probed by Instantaneous Change of Element and Oxidation State from Ag ^I to Cd ^{II} . Chemistry - A European Journal, 2020, 26, 7451-7457.	1.7	10
349	Genome Sequencing of Pantoea agglomerans C1 Provides Insights into Molecular and Genetic Mechanisms of Plant Growth-Promotion and Tolerance to Heavy Metals. Microorganisms, 2020, 8, 153.	1.6	37
350	Development of a Sensitive Escherichia coli Bioreporter Without Antibiotic Markers for Detecting Bioavailable Copper in Water Environments. Frontiers in Microbiology, 2020, 10, 3031.	1.5	8
351	Copper tolerance in bacteria requires the activation of multiple accessory pathways. Molecular Microbiology, 2020, 114, 377-390.	1.2	118

#	Article	IF	CITATIONS
352	Copper stress by nutritional immunity activates the CusS-CusR two-component system that contributes to Vibrio alginolyticus anti-host response but affects virulence-related properties. Aquaculture, 2021, 532, 736012.	1.7	10
353	Metal resistance genes enrichment in marine biofilm communities selected by biocide-containing surfaces in temperate and tropical coastal environments. Environmental Pollution, 2021, 268, 115835.	3.7	15
354	Synthetic biology approaches to copper remediation: bioleaching, accumulation and recycling. FEMS Microbiology Ecology, 2021, 97, .	1.3	11
355	Use of Copper as a Trigger for the in Vivo Activity of E. coli Laccase CueO: A Simple Tool for Biosynthetic Purposes. ChemBioChem, 2021, 22, 1470-1479.	1.3	8
356	Recent advances in exploring the heavy metal(loid) resistant microbiome. Computational and Structural Biotechnology Journal, 2021, 19, 94-109.	1.9	69
357	Cast iron drinking water pipe biofilms support diverse microbial communities containing antibiotic resistance genes, metal resistance genes, and class 1 integrons. Environmental Science: Water Research and Technology, 2021, 7, 584-598.	1.2	10
358	Copper-Modified Polymeric Membranes for Water Treatment: A Comprehensive Review. Membranes, 2021, 11, 93.	1.4	25
359	Assessing the Involvement of Selected Phenotypes of Pseudomonas simiae PICF7 in Olive Root Colonization and Biological Control of Verticillium dahliae. Plants, 2021, 10, 412.	1.6	20
360	Cloning and high-level expression of monomeric human superoxide dismutase 1 (SOD1) and its interaction with pyrimidine analogs. PLoS ONE, 2021, 16, e0247684.	1.1	1
361	Genomic Background and Phylogeny of cfiA-Positive Bacteroides fragilis Strains Resistant to Meropenem-EDTA. Antibiotics, 2021, 10, 304.	1.5	8
362	Transcriptomic analysis reveals resistance mechanisms of Klebsiella michiganensis to copper toxicity under acidic conditions. Ecotoxicology and Environmental Safety, 2021, 211, 111919.	2.9	11
363	The Effect of Metal Ions on the Growth and Ferrous IronOxidation by Leptospirillum ferriphilum CC Isolated from Armenia Mine Sites. Metals, 2021, 11, 425.	1.0	6
364	Single-Target Regulators Constitute the Minority Group of Transcription Factors in Escherichia coli K-12. Frontiers in Microbiology, 2021, 12, 697803.	1.5	12
365	Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus, 2021, 9, eESP00142020.	2.1	18
366	Molecular Dynamics Simulations of the Apo and Holo States of the Copper Binding Protein CueR Reveal Principal Bending and Twisting Motions. Journal of Physical Chemistry B, 2021, 125, 9417-9425.	1.2	7
367	Enhanced copper-resistance gene repertoire in Alteromonas macleodii strains isolated from copper-treated marine coatings. PLoS ONE, 2021, 16, e0257800.	1.1	5
368	Maturation of Rhodobacter capsulatus Multicopper Oxidase CutO Depends on the CopA Copper Efflux Pathway and Requires the cutF Product. Frontiers in Microbiology, 2021, 12, 720644.	1.5	8
370	Genes associated with antibiotic tolerance and synthesis of antimicrobial compounds in a mangrove with contrasting salinities. Marine Pollution Bulletin, 2021, 171, 112740.	2.3	7

#	Article	IF	CITATIONS
371	Immobilized Ag-nanoparticles (iNPs) for environmental applications: Elucidation of immobilized silver-induced inhibition mechanism of Escherichia coli. Journal of Environmental Chemical Engineering, 2021, 9, 106001.	3.3	4
372	Functional filtering and random processes affect the assembly of microbial communities of snow algae blooms at Maritime Antarctic. Science of the Total Environment, 2022, 805, 150305.	3.9	11
373	Bacterial Laccases: Some Recent Advances and Applications. Microbiology Monographs, 2020, , 27-55.	0.3	2
374	Laccases for Soil Bioremediation. Microorganisms for Sustainability, 2019, , 165-209.	0.4	2
375	Development of a pigment-based whole-cell biosensor for the analysis of environmental copper. RSC Advances, 2017, 7, 29302-29305.	1.7	38
376	Silver in biology and medicine: opportunities for metallomics researchers. Metallomics, 2021, 13, .	1.0	15
377	Metal homeostasis in pathogenic Epsilonproteobacteria: mechanisms of acquisition, efflux, and regulation. Metallomics, 2021, 13, .	1.0	8
378	Copper resistance and its regulation in the sulfate-reducing bacterium Desulfosporosinus sp. OT. Microbiology (United Kingdom), 2016, 162, 684-693.	0.7	6
379	Cross-regulation between two common ancestral response regulators, HprR and CusR, in Escherichia coli. Microbiology (United Kingdom), 2017, 163, 243-252.	0.7	20
380	Copper-responsive gene regulation in bacteria. Microbiology (United Kingdom), 2012, 158, 2451-2464.	0.7	159
385	Resistance to Metals Used in Agricultural Production. , 0, , 99-114.		9
386	The Two-Component System CopRS Maintains Subfemtomolar Levels of Free Copper in the Periplasm of Pseudomonas aeruginosa Using a Phosphatase-Based Mechanism. MSphere, 2020, 5, .	1.3	18
387	The Myxococcus xanthus Two-Component System CorSR Regulates Expression of a Gene Cluster Involved in Maintaining Copper Tolerance during Growth and Development. PLoS ONE, 2013, 8, e68240.	1.1	13
388	Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine. PLoS ONE, 2017, 12, e0186019.	1.1	34
389	Essential Gene Clusters Involved in Copper Tolerance Identified in Acinetobacter baumannii Clinical and Environmental Isolates. Pathogens, 2020, 9, 60.	1.2	19
390	Thermoacidophiles for Bioleaching of Copper. Microorganisms for Sustainability, 2021, , 177-206.	0.4	1
392	Magnesium, Copper and Cobalt. , 2017, , 81-94.		0
393	Microbial Decolorization of Mixture of Dyes by an Application of Laccase through Bacillus subtillis ETL-1979 Isolated from Soil of Industrial Effluent Treatment Plant. Journal of Bacteriology & Mycology Open Access, 2017, 4, .	0.2	0

#	Article	IF	CITATIONS
395	A Research on The Role of RpoS againts pH Stress and Metals in Escherichia coli. Anadolu University Journal of Science and Technology - C Life Sciences and Biotechnology, 0, , 1-1.	0.0	0
399	CU (II) ACCUMULATION BY MARINE NEUTROPHIL SULFUR-OXIDIZING BACTERIA. Mikrobiologia I Biotehnologia, 2019, .	0.0	0
402	Deciphering the Key Factors for Heavy Metal Resistance in Gram-Negative Bacteria. , 2020, , 101-116.		3
403	APPLICATIONS OF METHODS OF DISPERSION AND CLUSTER ANALYSIS TO COMPARE THE RESISTANCE OF ACIDOPHILIC CHEMOLITHOTROPHIC BACTERIA ISOLATED FROM DUMP PRODUCTS TO HEAVY METALS. Visnyk L'vivs'koho Universytetu Seriia Biolohichna, 2020, , 111-121.	0.0	0
404	Differential Sensitivity of Wetland-Derived Nitrogen Cycling Microorganisms to Copper Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 11642-11652.	3.2	1
405	A periplasmic cupredoxin with a green CuT1.5 center is involved in bacterial copper tolerance. Metallomics, 2021, 13, .	1.0	5
406	The copper-linked Escherichia coli AZY operon: Structure, metal binding, and a possible physiological role in copper delivery. Journal of Biological Chemistry, 2022, 298, 101445.	1.6	1
407	Acquisition of ionic copper by the bacterial outer membrane protein OprC through a novel binding site. PLoS Biology, 2021, 19, e3001446.	2.6	14
408	Performance and bacterial community profiles of sequencing batch reactors during long-term exposure to polyethylene terephthalate and polyethylene microplastics. Bioresource Technology, 2022, 347, 126393.	4.8	7
409	Does Silver in Different Forms Affect Bacterial Susceptibility and Resistance? A Mechanistic Perspective. ACS Applied Bio Materials, 2022, 5, 801-817.	2.3	2
410	From Copper Tolerance to Resistance in Pseudomonas aeruginosa towards Patho-Adaptation and Hospital Success. Genes, 2022, 13, 301.	1.0	18
411	Loss of Mobile Genomic Islands in Metal-Resistant, Hydrogen-Oxidizing Cupriavidus metallidurans. Applied and Environmental Microbiology, 2022, 88, AEM0204821.	1.4	3
413	Combined Transcriptomic and Proteomic Profiling of E. coli under Microaerobic versus Aerobic Conditions: The Multifaceted Roles of Noncoding Small RNAs and Oxygen-Dependent Sensing in Global Gene Expression Control. International Journal of Molecular Sciences, 2022, 23, 2570.	1.8	5
414	Copper Induces Protein Aggregation, a Toxic Process Compensated by Molecular Chaperones. MBio, 2022, 13, e0325121.	1.8	38
415	Cooperative Interaction between Acid and Copper Resistance in <i>Escherichia coli</i> . Journal of Microbiology and Biotechnology, 2022, 32, 1-8.	0.9	2
416	Extraintestinal Pathogenic Escherichia coli: Beta-Lactam Antibiotic and Heavy Metal Resistance. Antibiotics, 2022, 11, 328.	1.5	1
417	Evolution of Copper Homeostasis and Virulence in Salmonella. Frontiers in Microbiology, 2022, 13, 823176.	1.5	3
419	Importance of RpoD- and Non-RpoD-Dependent Expression of Horizontally Acquired Genes in Cupriavidus metallidurans. Microbiology Spectrum, 2022, 10, e0012122.	1.2	3

#	Article	IF	CITATIONS
421	Alkalin pH Ortamında cusS-cusR İki Bileşikli Fosforlama Sisteminin Escherichia coli'de VBNC Oluşumundaki Rolünün Araştırılması. Recep Tayyip Erdoğan Ul^niversitesi Fen Ve Mul^hendislik B Dergisi, 0, , .	ilinderi	0
422	Analysis of the Genome of the Heavy Metal Resistant and Hydrocarbon-Degrading Rhizospheric Pseudomonas qingdaonensis ZCR6 Strain and Assessment of Its Plant-Growth-Promoting Traits. International Journal of Molecular Sciences, 2022, 23, 214.	1.8	15
424	The TbD1 Locus Mediates a Hypoxia-Induced Copper Response in Mycobacterium bovis. Frontiers in Microbiology, 2022, 13, 817952.	1.5	4
451	How is a Zinc Ion Correctly Allocated to a Zinc-dependent Protein?. Advances in Environmental Microbiology, 2022, , 579-660.	0.1	1
452	Experimental Evolution of Copper Resistance in Escherichia coli Produces Evolutionary Trade-Offs in the Antibiotics Chloramphenicol, Bacitracin, and Sulfonamide. Antibiotics, 2022, 11, 711.	1.5	2
453	Copper Cytotoxicity: Cellular Casualties of Noncognate Coordination Chemistry. MBio, 2022, 13, .	1.8	7
454	Mineralogical and Genomic Constraints on the Origin of Microbial Mn Oxide Formation in Complexed Microbial Community at the Terrestrial Hot Spring. Life, 2022, 12, 816.	1.1	1
455	Pseudomonas response regulators produced in an E. coli heterologous expression host exhibit host-derived post-translational phosphorylation. Scientific Reports, 2022, 12, .	1.6	2
456	Latent Benefits and Toxicity Risks Transmission Chain of High Dietary Copper along the Livestock–Environment–Plant–Human Health Axis and Microbial Homeostasis: A Review. Journal of Agricultural and Food Chemistry, 2022, 70, 6943-6962.	2.4	15
457	Mechanistic insights into bio-stabilization of lead (II) in flue gas by a sulfate-reducing bioreactor. Chemical Engineering Journal, 2022, 450, 137564.	6.6	3
458	Periplasmic oxidized-protein repair during copper stress in E. coli: A focus on the metallochaperone CusF. PLoS Genetics, 2022, 18, e1010180.	1.5	5
459	An Insight into the Mechanisms of Homeostasis in Extremophiles. Microbiological Research, 2022, , 127115.	2.5	11
460	Unique underlying principles shaping copper homeostasis networks. Journal of Biological Inorganic Chemistry, 0, , .	1.1	10
461	Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Frontiers in Surgery, 0, 9, .	0.6	34
462	Composition and niche-specific characteristics of microbial consortia colonizing Marsberg copper mine in the Rhenish Massif. Biogeosciences, 2022, 19, 4883-4902.	1.3	3
463	Sequestration and efflux largely account for cadmium and copper resistance in the deepâ€sea <scp><i>Nitratiruptor</i></scp> sp. <scp>SB155</scp> â€2 (phylum Campylobacterota). Environmental Microbiology, 2022, 24, 6144-6163.	1.8	2
464	Review of copper and copper alloys as immune and antibacterial element. Transactions of Nonferrous Metals Society of China, 2022, 32, 3163-3181.	1.7	8
465	Heterologous Lignan Production in Stirred-Tank Reactors—Metabolomics-Assisted Bioprocess Development for an In Vivo Enzyme Cascade. Catalysts, 2022, 12, 1473.	1.6	1

#	Article	IF	CITATIONS
467	Evidence of microbial activity in a uranium roll-front deposit: Unlocking their potential role as bioenhancers of the ore genesis. Science of the Total Environment, 2023, 861, 160636.	3.9	1
468	Insights into the defensive mechanism of bioleaching microorganisms under extreme environmental copper stress. Reviews in Environmental Science and Biotechnology, 2023, 22, 79-103.	3.9	5
469	Sequence-based Functional Metagenomics Reveals Novel Natural Diversity of Functioning CopA in Environmental Microbiomes. Genomics, Proteomics and Bioinformatics, 2022, , .	3.0	7
470	Structural Analyses of the Multicopper Site of CopG Support a Role as a Redox Enzyme. Advances in Experimental Medicine and Biology, 2022, , .	0.8	0
471	Calculation of electric field gradients in Cd(<scp>ii</scp>) model complexes of the CueR protein metal site. Physical Chemistry Chemical Physics, 2023, 25, 12277-12283.	1.3	2
472	Genome-resolved metagenomics revealed metal-resistance, geochemical cycles in a Himalayan hot spring. Applied Microbiology and Biotechnology, 2023, 107, 3273-3289.	1.7	1
473	Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutasesâ€: International Journal of Biological Macromolecules, 2023, 233, 123534.	3.6	4
474	Metal-Responsive Transcription Factors Co-Regulate Anti-Sigma Factor (Rsd) and Ribosome Dimerization Factor Expression. International Journal of Molecular Sciences, 2023, 24, 4717.	1.8	2
475	The Sensory Histidine Kinase CusS of Escherichia coli Senses Periplasmic Copper Ions. Microbiology Spectrum, 2023, 11, .	1.2	1
476	Oxygen Nanobubble-Loaded Biochars Mitigate Copper Transfer from Copper-Contaminated Soil to Rice and Improve Rice Growth. ACS Sustainable Chemistry and Engineering, 2023, 11, 5032-5044.	3.2	1
477	Copper Efflux System Required in Murine Lung Infection by Haemophilus influenzae Composed of a Canonical ATPase Gene and Tandem Chaperone Gene Copies. Infection and Immunity, 2023, 91, .	1.0	1