Modification of Human Erythrocyte Pyruvate Kinase by Bromopyruvate

Journal of Enzyme Inhibition and Medicinal Chemistry 16, 457-464 DOI: 10.1080/14756360109162395

Citation Report

#	Article	IF	Citations
1	Transport by SLC5A8 with subsequent inhibition of histone deacetylase 1 (HDAC1) and HDAC3 underlies the antitumor activity of 3â€bromopyruvate. Cancer, 2009, 115, 4655-4666.	2.0	57
2	3-Bromopyruvate: A New Targeted Antiglycolytic Agent and a Promise for Cancer Therapy. Current Pharmaceutical Biotechnology, 2010, 11, 510-517.	0.9	110
3	Metabolic oxidative stress elicited by the copper(II) complex [Cu(isaepy)2] triggers apoptosis in SH-SY5Y cells through the induction of the AMP-activated protein kinase/p38MAPK/p53 signalling axis: evidence for a combined use with 3-bromopyruvate in neuroblastoma treatment. Biochemical Journal, 2011, 437, 443-453.	1.7	34
4	3-bromopyruvate: Targets and outcomes. Journal of Bioenergetics and Biomembranes, 2012, 44, 7-15.	1.0	127
5	MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nature Genetics, 2013, 45, 104-108.	9.4	204
6	Differential 3-bromopyruvate inhibition of cytosolic and mitochondrial human serine hydroxymethyltransferase isoforms, key enzymes in cancer metabolic reprogramming. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1506-1517.	1.1	37
7	Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies. PLoS ONE, 2017, 12, e0176403.	1.1	64
8	Tumor Energy Metabolism and Potential of 3-Bromopyruvate as an Inhibitor of Aerobic Glycolysis: Implications in Tumor Treatment. Cancers, 2019, 11, 317.	1.7	119
9	Some comments on enzyme kinetics studies. Turkish Journal of Biochemistry, 2020, 45, 677-679.	0.3	0
10	Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Research, 2009, 29, 4909-18.	0.5	107