Plant salt tolerance

Trends in Plant Science 6, 66-71 DOI: 10.1016/s1360-1385(00)01838-0

Citation Report

#	Article	IF	CITATIONS
1	International journal of the environment. Ceramurgia International, 1977, 3, 171-172.	0.3	2
2	Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance?. Trends in Plant Science, 2001, 6, 284-286.	4.3	166
3	Phylogenetic Relationships within Cation Transporter Families of Arabidopsis. Plant Physiology, 2001, 126, 1646-1667.	2.3	1,110
4	Gene Expression Profiles during the Initial Phase of Salt Stress in Rice. Plant Cell, 2001, 13, 889.	3.1	10
5	Plant mitogen-activated protein kinase signaling cascades. Current Opinion in Plant Biology, 2001, 4, 392-400.	3.5	461
6	Cell signaling under salt, water and cold stresses. Current Opinion in Plant Biology, 2001, 4, 401-406.	3.5	515
7	AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14150-14155.	3.3	441
8	Signal Transduction in Maize and Arabidopsis Mesophyll Protoplasts. Plant Physiology, 2001, 127, 1466-1475.	2.3	621
9	Learning from the Arabidopsis Experience. The Next Gene Search Paradigm. Plant Physiology, 2001, 127, 1354-1360.	2.3	183
10	Gene Expression Profiles during the Initial Phase of Salt Stress in Rice. Plant Cell, 2001, 13, 889-905.	3.1	850
11	The Arabidopsis salt overly sensitive 4 Mutants Uncover a Critical Role for Vitamin B6 in Plant Salt Tolerance. Plant Cell, 2002, 14, 575-588.	3.1	191
12	Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress,. Plant Physiology, 2002, 130, 2129-2141.	2.3	1,363
13	Characterization of SP1, a Stress-Responsive, Boiling-Soluble, Homo-Oligomeric Protein from Aspen. Plant Physiology, 2002, 130, 865-875.	2.3	85
14	An Osmotically Induced Cytosolic Ca2+ Transient Activates Calcineurin Signaling to Mediate Ion Homeostasis and Salt Tolerance of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 33075-33080.	1.6	133
15	Overexpression of a Na+/H+antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4109-4114.	3.3	122
16	Cuticular Waxes on Arabidopsis thaliana Close Relatives Thellungiella halophila and Thellungiella parvula. International Journal of Plant Sciences, 2002, 163, 309-315.	0.6	29
17	Salt Tolerance. The Arabidopsis Book, 2002, 1, e0048.	0.5	63
18	The Putative Plasma Membrane Na+/H+ Antiporter SOS1 Controls Long-Distance Na+ Transport in Plants. Plant Cell, 2002, 14, 465-477.	3.1	1,127

ATION RED

ARTICLE IF CITATIONS Cuticular Waxes of Arabidopsis. The Arabidopsis Book, 2002, 1, e0016. 0.5 80 19 OSM1/SYP61: A Syntaxin Protein in Arabidopsis Controls Abscisic Acid–Mediated and Non-Abscisic 3.1 204 Acid–Mediated Responses to Abiotic Stress. Plant Cell, 2002, 14, 3009-3028. Salt-Tolerant ATPase Activity in the Plasma Membrane of the Marine Angiosperm Zostera marina L. 21 1.5 53 Plant and Cell Physiology, 2002, 43, 1137-1145. Early Salt Stress Effects on the Changes in Chemical Composition in Leaves of Ice Plant and Arabidopsis. A Fourier Transform Infrared Spectroscopy Study. Plant Physiology, 2002, 130, 1032-1042. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic 23 336 1.3disruption of the Na+ transporter AtHKT1. FEBS Letters, 2002, 531, 157-161. Cell Signaling during Cold, Drought, and Salt Stress. Plant Cell, 2002, 14, S165-S183. 3.1 1,874 Degradation processes and nutrient constraints in sodic soils. Land Degradation and Development, 25 1.8 320 2002, 13, 275-294. Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytologist, 2002, 156, 409-415. 3.5 26 Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell and Environment, 27 2.8 702 2002, 25, 131-139. Discrimination of genes expressed in response to the ionic or osmotic effect of salt stress in soybean 2.8 with cDNA-AFLP. Plant, Cell and Environment, 2002, 25, 1617-1625. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress 29 491 2.8 response. Plant Journal, 2002, 30, 529-539. SALT ANDDROUGHTSTRESSSIGNALTRANSDUCTION INPLANTS. Annual Review of Plant Biology, 2002, 53, 8.6 4,944 247-273. Title is missing!. Russian Journal of Plant Physiology, 2002, 49, 369-380. $\mathbf{31}$ 0.5 13 Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Molecular Biology, 2002, 50, 543-550. The Activity of the Peroxidase System in the Course of Stress-Induced CAM Development. Russian 33 0.5 25 Journal of Plant Physiology, 2002, 49, 598-604. Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regulation, 34 1.8 224 2002, 37, 263-285. 35 Title is missing!. Molecular Breeding, 2002, 9, 137-147. 1.0 86 Gene cloning and function analysis of ABP9 protein which specifically binds to ABRE2 motif of maize 24

CITATION REPORT

Cat1 gene. Science Bulletin, 2002, 47, 1871.

#	Article	IF	CITATIONS
37	Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO Journal, 2002, 21, 6483-6493.	3.5	213
38	Influence of boron and calcium on the tolerance to salinity of nitrogen-fixing pea plants. Plant and Soil, 2003, 251, 93-103.	1.8	34
39	Stress and aberrant phenotypes in vitro culture. Plant Cell, Tissue and Organ Culture, 2003, 74, 103-121.	1.2	93
40	Temporal progression of gene expression responses to salt shock in maize roots. Plant Molecular Biology, 2003, 52, 873-891.	2.0	102
41	From plant tissue culture to biotechnology: Scientific revolutions, abiotic stress tolerance, and forestry. In Vitro Cellular and Developmental Biology - Plant, 2003, 39, 75-84.	0.9	43
42	Title is missing!. Plant and Soil, 2003, 250, 183-191.	1.8	106
43	Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell, Tissue and Organ Culture, 2003, 73, 101-115.	1.2	122
44	Isolation and expression analysis of salt stress-associated ESTs from contrasting rice cultivars using a PCR-based subtraction method. Theoretical and Applied Genetics, 2003, 106, 620-628.	1.8	53
45	The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Theoretical and Applied Genetics, 2003, 107, 462-469.	1.8	53
46	Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003, 218, 1-14.	1.6	2,937
47	The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. Plant Journal, 2003, 34, 257-267.	2.8	111
48	Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant Journal, 2003, 35, 675-692.	2.8	286
49	Enhanced formation of flowers in salt-stressedArabidopsisafter genetic engineering of the synthesis of glycine betaine. Plant Journal, 2003, 36, 165-176.	2.8	116
50	Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 2003, 21, 81-85.	9.4	852
51	Accumulation of SALT protein in rice plants as a response to environmental stresses. Plant Science, 2003, 164, 623-628.	1.7	71
52	Biphasic response to elevated levels of NaCl in Nicotiana occidentalis subspecies obliqua Burbidge. Plant Science, 2003, 165, 159-165.	1.7	1
53	Effects of increased salinity on gravitaxis inEuglena gracilis. Journal of Plant Physiology, 2003, 160, 651-656.	1.6	28
54	Accumulation of LEA proteins in salt (NaCl) stressed young seedlings of rice (Oryza sativaL.) cultivar Bura Rata and their degradation during recovery from salinity stress. Journal of Plant Physiology, 2003, 160, 1165-1174.	1.6	50

#	ARTICLE Plants pass the salt. Trends in Plant Science, 2003, 8, 200-201.	IF 4.3	CITATIONS
56	Na+ Tolerance and Na+ Transport in Higher Plants. Annals of Botany, 2003, 91, 503-527.	1.4	2,514
57	WATER RELATIONS OF PLANTS Salt Stress. , 2003, , 1478-1483.		2
58	Overexpression of SOD2 Increases Salt Tolerance of Arabidopsis. Plant Physiology, 2003, 133, 1873-1881.	2.3	100
59	Plant salt tolerance. Topics in Current Genetics, 0, , 241-270.	0.7	68
60	A Root-specificO-Methyltransferase Gene Expressed in Salt-tolerant Barley. Bioscience, Biotechnology and Biochemistry, 2003, 67, 966-972.	0.6	8
61	Salt spray differentially affects water status, necrosis, and growth in coastal sandplain heathland species. American Journal of Botany, 2003, 90, 1188-1196.	0.8	39
62	Light Dependency of Salinity-Induced Chloroplast Degradation. Plant Production Science, 2003, 6, 219-223.	0.9	39
63	Identification and characterization of a salt tolerance-responsive gene (AtGRP9) of Arabidopsis *. Progress in Natural Science: Materials International, 2003, 13, 50-54.	1.8	1
64	PLANT GENETIC ENGINEERING IS A FACT, IT IS AN EFFICIENT AND NECESSARY BREEDING TECHNIQUE, AND IT IS BOTH A CHALLENGE AND A SOLUTION THAT WILL BE ACCEPTED BY THE PUBLIC. Acta Horticulturae, 2003, , 425-437.	0.1	1
66	Difference of behavior of germination and growth of two types of Suaeda salsa seeds. Seed Science and Technology, 2004, 32, 739-748.	0.6	9
67	A Novel Salt-tolerant l-myo-Inositol-1-phosphate Synthase from Porteresia coarctata (Roxb.) Tateoka, a Halophytic Wild Rice. Journal of Biological Chemistry, 2004, 279, 28539-28552.	1.6	169
68	A Novel Inhibitor of 9-cis-Epoxycarotenoid Dioxygenase in Abscisic Acid Biosynthesis in Higher Plants. Plant Physiology, 2004, 135, 1574-1582.	2.3	99
69	Induction of Salt and Osmotic Stress Tolerance by Overexpression of an Intracellular Vesicle Trafficking Protein AtRab7 (AtRabG3e). Plant Physiology, 2004, 134, 118-128.	2.3	264
70	The Protein Kinase SOS2 Activates the Arabidopsis H+/Ca2+ Antiporter CAX1 to Integrate Calcium Transport and Salt Tolerance. Journal of Biological Chemistry, 2004, 279, 2922-2926.	1.6	223
71	Ovule Abortion in Arabidopsis Triggered by Stress. Plant Physiology, 2004, 135, 2358-2367.	2.3	137
72	Global Impact of Salinity and Agricultural Ecosystems. , 2002, , 3-20.		119
73	The Cotton GhNHX1 Gene Encoding a Novel Putative Tonoplast Na+/H+ Antiporter Plays an Important Role in Salt Stress. Plant and Cell Physiology, 2004, 45, 600-607.	1.5	240

#	Article	IF	CITATIONS
74	Salt-induced antioxidant metabolism defenses in maize (Zea maysL.) seedlings. Redox Report, 2004, 9, 29-36.	1.4	64
75	Salt Cress. A Halophyte and Cryophyte Arabidopsis Relative Model System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles. Plant Physiology, 2004, 135, 1718-1737.	2.3	447

Differential organ-specific response to salt stress and water deficit in nodulated bean (Phaseolus) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 6

77	Influence of rootstock, irrigation level and recycled water on water relations and leaf gas exchange of Soultanina grapevines. Environmental and Experimental Botany, 2004, 52, 185-198.	2.0	36
78	Aquaporin Functionality in Roots of Zea mays in Relation to the Interactive Effects of Boron and Salinity. Plant Biology, 2004, 6, 415-421.	1.8	35
79	Expression of a Novel Antiporter Gene from Brassica napus Resulted in Enhanced Salt Tolerance in Transgenic Tobacco Plants. Biologia Plantarum, 2004, 48, 509-515.	1.9	38
80	Recent Advances in Genetics of Salt Tolerance in Tomato. Plant Cell, Tissue and Organ Culture, 2004, 76, 101-119.	1.2	233
81	Plastid-Expressed Betaine Aldehyde Dehydrogenase Gene in Carrot Cultured Cells, Roots, and Leaves Confers Enhanced Salt Tolerance. Plant Physiology, 2004, 136, 2843-2854.	2.3	356
82	Cellular and whole-plant chloride dynamics in barley: insights into chloride?nitrogen interactions and salinity responses. Planta, 2004, 218, 615-622.	1.6	64
83	In vivo visualization of Tradescantia leaf tissue and monitoring the physiological and morphological states under different water supply conditions using optical coherence tomography. Planta, 2004, 219, 601-9.	1.6	9
84	Tissue-specific expression and functional complementation of a yeastpotassium-uptake mutant by a salt-induced ice plant gene mcSKD1. Plant Molecular Biology, 2004, 54, 881-893.	2.0	23
85	Zea mays L. amylacea from the Lluta Valley (Arica-Chile) tolerates salinity stress when high levels of boron are available. Plant and Soil, 2004, 267, 73-84.	1.8	60
86	Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant, Cell and Environment, 2004, 27, 1-14.	2.8	172
87	Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea-rhizobia symbioses: modulation by salt stress. Plant Physiology and Biochemistry, 2004, 42, 717-722.	2.8	61
88	A new lead compound for abscisic acid biosynthesis inhibitors targeting 9-cis-epoxycarotenoid dioxygenase. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3033-3036.	1.0	34
89	Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. Journal of Plant Nutrition and Soil Science, 2004, 167, 616-622.	1.1	91
90	Salinity effects on growth, proline and ion accumulation in strawberry plants. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2004, 54, 189-192.	0.3	13
91	Comparative Genomics in Salt Tolerance between Arabidopsis and Arabidopsis-Related Halophyte Salt Cress Using Arabidopsis Microarray. Plant Physiology, 2004, 135, 1697-1709.	2.3	542

	CHAIION	REPORT	
# 93	ARTICLE Salinity Tolerance in Brassica Oilseeds. Critical Reviews in Plant Sciences, 2004, 23, 157-174.	IF 2.7	Citations 249
94	Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiology, 2004, 24, 265-276.	1.4	151
95	Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 2004, 55, 2365-2384.	2.4	1,019
96	Effect of sucrose, inorganic salts, inositol, and thiamine on protease excretion during pineapple culture in temporary immersion bioreactors. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 311-316.	0.9	19
97	Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum. Gene, 2004, 341, 83-92.	1.0	105
98	Effects of saline irrigation water and heat waves on potato production in an arid environment. Field Crops Research, 2004, 90, 275-285.	2.3	41
99	Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Science, 2004, 166, 323-331.	1.7	106
100	Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Science, 2004, 166, 609-616.	1.7	108
101	Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Science, 2004, 167, 417-426.	1.7	140
102	Large scale analysis of transcripts abundance in barley subjected to several single and combined abiotic stress conditions. Plant Science, 2004, 167, 1359-1365.	1.7	55
103	Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus) Tj ETQqO	0 0 rgBT /O	verlock 10 Tf 142
104	Tamarindus indica L. seedlings are moderately salt tolerant when exposed to NaCl-induced salinity. Scientia Horticulturae, 2004, 103, 1-8.	1.7	26
105	Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). Journal of Arid Environments, 2004, 58, 463-481.	1.2	138
106	Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 inArabidopsis thaliana. FEBS Letters, 2004, 562, 189-192.	1.3	85
107	Improving crop salt tolerance. Journal of Experimental Botany, 2004, 55, 307-319.	2.4	1,718
108	Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. Journal of Plant Physiology, 2004, 161, 701-708.	1.6	96
109	Limitation of Salt Stress to Plant Growth. Books in Soils, Plants, and the Environment, 2004, , .	0.1	8
110	Accumulation of dehydrin transcripts and proteins in response to abiotic stresses in Deschampsia antarctica. Antarctic Science, 2004, 16, 175-184.	0.5	15

ARTICLE IF CITATIONS # Seed germination of Pinus halepensis provenances under NaCl stress. Israel Journal of Plant Sciences, 111 0.3 4 2004, 52, 144-148. Salinity and the growth of non-halophytic grass leaves: the role of mineral nutrient distribution. 1.1 Functional Plant Biology, 2005, 32, 973. Salinity-induced changes in the nutritional status of expanding cells may impact leaf growth 113 1.1 46 inhibition in maize. Functional Plant Biology, 2005, 32, 141. Suppression of Root Nodule Formation by Artificial Expression of the TrEnodDR1 (Coat Protein of) Tj ETQq1 1 0.784314 rgBT (Overloo 114 1.4 1069-1080. Molecular mechanisms of phytochrome signal transduction in higher plants. Colloids and Surfaces B: 115 2.5 12 Biointerfaces, 2005, 45, 154-161. Identification of Salt Stress-Induced Transcripts in Potato Leaves by cDNA–AFLP. Molecular 1.3 Biotechnology, 2005, 30, 031-040. Irrigation of Mediterranean crops with saline water: from physiology to management practices. 117 2.5137 Agriculture, Ecosystems and Environment, 2005, 106, 171-187. Response of red-osier dogwood (Cornus stolonifera) seedlings to sodium sulphate salinity: effects of 118 2.6 supplemental calcium. Physiologia Plantarum, 2005, 123, 75-81. Interaction between Medicago truncatula lines and Sinorhizobium meliloti strains for symbiotic 119 2.6 46 efficiency and nodule antioxidant activities. Physiologia Plantarum, 2005, 124, 4-11. Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant 4.1 Biotechnology Journal, 2005, 3, 275-307. Salt-stress signalling and the role of calcium in the regulation of the Arabidopsis ATHB7 gene. Plant, 121 2.8 24 Cell and Environment, 2005, 28, 202-210. Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with 2.8 493 its relative Arabidopsis thaliana. Plant Journal, 2005, 44, 826-839. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 123 9.4 1,229 2005, 37, 1141-1146. Possible Involvement of Anti-Oxidant Enzymes in the Cross-Tolerance of the Germination/Growth of 124 4.1 Wheat Seeds to Salinity and Heat Stress. Journal of Integrative Plant Biology, 2005, 47, 1211-1219. Phylogenetic relationship of salt tolerance in early Green Revolution CIMMYT wheats. Environmental 125 2.0 12 and Experimental Botany, 2005, 53, 173-184. Effects of salinity on leaf growth and survival of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Journal of Experimental Marine Biology and Ecology, 2005, 320, 57-63. Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends in 127 4.9 211 Biotechnology, 2005, 23, 238-245. Effects of salinity and possible interactions with temperature and pH on growth and photosynthesis 129 58 of Halophila johnsonii Eiseman. Marine Biology, 2005, 148, 251-260.

#	Article	IF	CITATIONS
130	Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta, 2005, 220, 384-394.	1.6	205
131	Gene expression profiling of potato responses to cold, heat, and salt stress. Functional and Integrative Genomics, 2005, 5, 201-207.	1.4	132
132	Expression profiles of hot pepper (capsicum annuum) genes under cold stress conditions. Journal of Biosciences, 2005, 30, 657-667.	0.5	112
133	Salinity and Copper-Induced Oxidative Damage and Changes in the Antioxidative Defence Systems of Anabaena doliolum. World Journal of Microbiology and Biotechnology, 2005, 21, 1291-1298.	1.7	102
134	Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica, 2005, 146, 165-176.	0.6	58
135	Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regulation, 2005, 45, 155-163.	1.8	186
136	Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regulation, 2005, 46, 31-43.	1.8	161
137	Molecular characterization of PeNhaD1: the first member of the NhaD Na+/H+ antiporter family of plant origin. Plant Molecular Biology, 2005, 58, 75-88.	2.0	77
138	Expression of a calcineurin gene improves salt stress tolerance in transgenic rice. Plant Molecular Biology, 2005, 58, 483-495.	2.0	26
139	Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Molecular Biology, 2005, 58, 561-574.	2.0	125
140	Sorghum bicolor's Transcriptome Response to Dehydration, High Salinity and ABA. Plant Molecular Biology, 2005, 58, 699-720.	2.0	262
141	Genetic Control and Mechanisms of Salt and Hyperosmotic Stress Resistance in Cyanobacteria. Russian Journal of Genetics, 2005, 41, 1311-1321.	0.2	17
142	Involvement of Long-Distance Na+ Transport in Maintaining Water Potential Gradient in the Medium-Root-Leaf System of a Halophyte Suaeda altissima. Russian Journal of Plant Physiology, 2005, 52, 489-496.	0.5	27
143	Proline Metabolism and Cross-Tolerance to Salinity and Heat Stress in Germinating Wheat Seeds. Russian Journal of Plant Physiology, 2005, 52, 793-800.	0.5	60
146	Chloroplast Genetic Engineering: Recent Advances and Future Perspectives. Critical Reviews in Plant Sciences, 2005, 24, 83-107.	2.7	100
147	Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI. Journal of Experimental Botany, 2005, 56, 3149-3158.	2.4	124
148	Osmotic and Specific Ion Effects on the Germination of Prosopis strombulifera. Annals of Botany, 2005, 96, 261-267.	1.4	132
149	Salt Stress in Thellungiella halophila Activates Na+ Transport Mechanisms Required for Salinity Tolerance. Plant Physiology, 2005, 139, 1507-1517.	2.3	176

#	Article	IF	CITATIONS
150	Analyzing the potato abiotic stress transcriptome using expressed sequence tags. Genome, 2005, 48, 598-605.	0.9	60
151	Tamarack response to salinity: effects of sodium chloride on growth and ion, pigment, and soluble carbohydrate levels. Canadian Journal of Forest Research, 2005, 35, 2806-2812.	0.8	17
152	Populus euphratica Displays Apoplastic Sodium Accumulation, Osmotic Adjustment by Decreases in Calcium and Soluble Carbohydrates, and Develops Leaf Succulence under Salt Stress. Plant Physiology, 2005, 139, 1762-1772.	2.3	261
153	AREB1 Is a Transcription Activator of Novel ABRE-Dependent ABA Signaling That Enhances Drought Stress Tolerance in Arabidopsis Â. Plant Cell, 2005, 17, 3470-3488.	3.1	826
154	Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. Journal of Plant Physiology, 2005, 162, 81-89.	1.6	91
155	Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology, 2005, 162, 929-936.	1.6	223
156	Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Science, 2005, 168, 889-899.	1.7	277
157	Effect of drought and salinity on carbon isotope discrimination in wheat cultivars. Plant Science, 2005, 168, 901-909.	1.7	65
158	Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 2005, 444, 139-158.	1.4	2,295
159	Effects of timing and duration of brackish irrigation water on fruit yield and quality of late summer melons. Agricultural Water Management, 2005, 74, 123-134.	2.4	35
160	Salinity and olive: Growth, salt tolerance, photosynthesis and yield. Agricultural Water Management, 2005, 78, 108-121.	2.4	210
161	Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 2005, 24, 23-58.	2.7	2,081
162	The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 2005, 168, 521-530.	1.1	901
163	Induced mutation and in vitro techniques as a method to induce salt tolerance in Basmati rice (Oryza) Tj ETQq1	1 0.784314 1.8	4 rggT /Overl
164	Mycosporines in Extremophilic Fungi—Novel Complementary Osmolytes?. Environmental Chemistry, 2006, 3, 105.	0.7	107
165	Response of Two Olive Cultivars to Salt Stress and Potassium Supplement. Journal of Plant Nutrition, 2006, 29, 2063-2078.	0.9	49
167	Isolation and characterization of a new Na+/H+antiporter geneOsNHA1from rice (Oryza sativaL.). DNA Sequence, 2006, 17, 24-30.	0.7	20
169	The application of proteomics to plant biology: a review. Canadian Journal of Botany, 2006, 84, 883-892.	1.2	14

# 170	ARTICLE Na+/H+ antiporters in plants and cyanobacteria. , 2006, , 163-175.	IF	CITATIONS 2
171	Effect of nitrogen deficiency, salinity and drought on proline metabolism in Sesuvium portulacastrum. , 2006, , 65-72.		7
172	Cloning, characterization and genetic engineering of FLC homolog in Thellungiella halophila. Biochemical and Biophysical Research Communications, 2006, 347, 707-714.	1.0	23
174	SALT STRESS. , 2006, , 41-99.		60
175	Genotypic variation in the response of pepper to salinity. Scientia Horticulturae, 2006, 110, 260-266.	1.7	103
176	Sennoside content and yield attributes of Cassia angustifolia Vahl. as affected by NaCl and CaCl2. Scientia Horticulturae, 2006, 111, 84-90.	1.7	20
177	Comparative EST profiles of leaf and root of Leymus chinensis, a xerophilous grass adapted to high pH sodic soil. Plant Science, 2006, 170, 1081-1086.	1.7	84
178	cDNA-AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel. Plant Science, 2006, 170, 1141-1149.	1.7	57
179	Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnology, 2006, 23, 75-83.	0.5	113
180	Ion distribution and gas exchange of hydroponically grown sunflower plants as affected by salinity. Italian Journal of Agronomy, 2006, 1, 393.	0.4	3
181	Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum) Tj ETQq0 0 0 rg	BT /Overla 1.1	pck_{45} 10 Tf 50
182	Effects of salinity levels on proteome ofSuaeda aegyptiaca leaves. Proteomics, 2006, 6, 2542-2554.	1.3	173
183	Glutathione peroxidase-like protein of Synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis. Physiologia Plantarum, 2006, 128, 251-262.	2.6	64
184	Role of oxidative stress in the extremely salt-tolerant yeastHortaea werneckii. FEMS Yeast Research, 2006, 6, 816-822.	1.1	39
185	Proline accumulates in <i>Casuarina equisetifolia</i> seedlings under salt stress. Soil Science and Plant Nutrition, 2006, 52, 21-25.	0.8	30
186	Growth, Gas Exchange, Abscisic Acid, and Calmodulin Response to Salt Stress in Three Poplars. Journal of Integrative Plant Biology, 2006, 48, 286-293.	4.1	46
187	Carbon Monoxide Alleviates Salt-Induced Oxidative Damage in Wheat Seedling Leaves. Journal of Integrative Plant Biology, 2006, 48, 249-254.	4.1	61
188	Carbon Monoxide Alleviates Wheat Seed Germination Inhibition and Counteracts Lipid Peroxidation Mediated by Salinity. Journal of Integrative Plant Biology, 2006, 48, 1168-1176.	4.1	30

#	Article	IF	Citations
189	Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant, Cell and Environment, 2006, 29, 1122-1137.	2.8	148
190	Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant, Cell and Environment, 2006, 29, 1220-1234.	2.8	232
191	Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant, Cell and Environment, 2006, 29, 1913-1923.	2.8	127
192	Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal, 2006, 45, 523-539.	2.8	1,324
193	Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant Journal, 2006, 49, 46-63.	2.8	256
194	Polyamine metabolism andÂbiosynthetic gene expression inÂArabidopsisÂthaliana under salt stress. Plant Physiology and Biochemistry, 2006, 44, 776-786.	2.8	30
195	XVSAP1 fromXerophyta viscosa improves osmotic-, salinity- and high-temperature-stress tolerance in Arabidopsis. Biotechnology Journal, 2006, 1, 1137-1146.	1.8	28
196	Plant Aquaporins: New Perspectives on Water and Nutrient Uptake in Saline Environment. Plant Biology, 2006, 8, 535-546.	1.8	77
197	Are Root Hydraulic Conductivity Responses to Salinity Controlled by Aquaporins in Broccoli Plants?. Plant and Soil, 2006, 279, 13-23.	1.8	61
198	Specific roles of potato glutamine synthetase isoenzymes in callus tissue grown under salinity: molecular and biochemical responses. Plant Cell, Tissue and Organ Culture, 2006, 87, 1-7.	1.2	13
199	Generation and analysis of expressed sequence tags from the mangrove plant, Acanthus ebracteatus Vahl. Tree Genetics and Genomes, 2006, 2, 196-201.	0.6	21
200	Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol. Biologia Plantarum, 2006, 50, 61-68.	1.9	52
201	Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plantarum, 2006, 50, 610-616.	1.9	178
202	Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza, 2006, 16, 99-109.	1.3	54
203	Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta, 2006, 224, 300-314.	1.6	199
204	A novel ABA-hypersensitive mutant in Arabidopsis defines a genetic locus that confers tolerance to xerothermic stress. Planta, 2006, 224, 889-899.	1.6	14
205	AsterÂtripolium L. andÂSesuviumÂportulacastrum L.: twoÂhalophytes, twoÂstrategies toÂsurvive inÂsaline habitats. Plant Physiology and Biochemistry, 2006, 44, 395-408.	2.8	95
206	Antioxidative response in different sorghum species under short-term salinity stress. Acta Physiologiae Plantarum, 2006, 28, 465-475.	1.0	49

#	Article	IF	CITATIONS
207	Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 2006, 56, 87-94.	2.0	678
208	Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environmental and Experimental Botany, 2006, 57, 139-153.	2.0	85
209	Leaf H+-ATPase activity and photosynthetic capacity of Cakile maritima under increasing salinity. Environmental and Experimental Botany, 2006, 57, 285-295.	2.0	116
210	Effect of pretreatment of salt, copper and temperature on ultraviolet-B-induced antioxidants in diazotrophic cyanobacteriumAnabaena doliolum. Journal of Basic Microbiology, 2006, 46, 135-144.	1.8	24
211	Ectomycorrhizal fungi affect the physiological responses of Picea glauca and Pinus banksiana seedlings exposed to an NaCl gradient. Tree Physiology, 2006, 26, 1185-1196.	1.4	29
212	Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. Journal of Experimental Botany, 2006, 57, 1909-1918.	2.4	153
213	Role of Na+and K+in Enzyme Function. Physiological Reviews, 2006, 86, 1049-1092.	13.1	274
214	The face value of ion fluxes: the challenge of determining influx in the low-affinity transport range. Journal of Experimental Botany, 2006, 57, 3293-3300.	2.4	16
215	Functional Characterization of Ice Plant SKD1, an AAA-Type ATPase Associated with the Endoplasmic Reticulum-Golgi Network, and Its Role in Adaptation to Salt Stress. Plant Physiology, 2006, 141, 135-146.	2.3	30
216	Salt-resistant and salt-sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stress. Journal of Plant Nutrition and Soil Science, 2006, 169, 542-548.	1.1	38
218	Comparative Salt Tolerance Of Perennial Grasses. Tasks for Vegetation Science, 2008, , 239-253.	0.6	10
219	The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18816-18821.	3.3	233
220	Expression Profiling of the 14-3-3 Gene Family in Response to Salt Stress and Potassium and Iron Deficiencies in Young Tomato (Solanum lycopersicum) Roots: Analysis by Real-time RT–PCR. Annals of Botany, 2006, 98, 965-974.	1.4	165
221	Functional genomics of abiotic stress tolerance in cereals. Briefings in Functional Genomics & Proteomics, 2006, 4, 343-354.	3.8	113
222	Metabolic Engineering for Betaine Accumulation in Microbes and Plants. Journal of Biological Chemistry, 2007, 282, 34185-34193.	1.6	73
223	Role of Nitric Oxide and Hydrogen Peroxide During the Salt Resistance Response. Plant Signaling and Behavior, 2007, 2, 473-474.	1.2	17
224	The Polyamine Spermine Rescues Arabidopsis from Salinity and Drought Stresses. Plant Signaling and Behavior, 2007, 2, 251-252.	1.2	52
225	Rice functional genomics research in China. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1009-1021.	1.8	28

#	Article	IF	Citations
π 226	An Enhancer Mutant of Arabidopsis salt overly sensitive 3 Mediates both Ion Homeostasis and the	1.1	127
-	Oxidative Stress Response. Molecular and Cellular Biology, 2007, 27, 5214-5224.		
227	Cytosolic Hydroxymethyldihydropterin Pyrophosphokinase/Dihydropteroate Synthase from Arabidopsis thaliana. Journal of Biological Chemistry, 2007, 282, 10749-10761.	1.6	36
228	A Downstream Mediator in the Growth Repression Limb of the Jasmonate Pathway. Plant Cell, 2007, 19, 2470-2483.	3.1	606
229	Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. Functional Plant Biology, 2007, 34, 353.	1.1	36
231	Transport Across Plant Membranes. , 0, , 75-98.		2
232	Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Science, 2007, 172, 544-555.	1.7	100
233	Cell death in response to osmotic and salt stresses in two rice (Oryza sativa L.) ecotypes. Plant Science, 2007, 172, 897-902.	1.7	24
234	Microarray analysis of 7029 gene expression patterns in burma mangrove under high-salinity stress. Plant Science, 2007, 172, 948-957.	1.7	31
235	Coordinate up-regulation of V-H+-ATPase and vacuolar Na+/H+ antiporter as a response to NaCl treatment in a C3 halophyte Suaeda salsa. Plant Science, 2007, 172, 1218-1225.	1.7	98
236	Comparative transcriptome analysis of salt-tolerant wheat germplasm lines using wheat genome arrays. Plant Science, 2007, 173, 327-339.	1.7	45
237	Isolation of salinity tolerant genes from the mangrove plant, Bruguiera cylindrica by using suppression subtractive hybridization (SSH) and bacterial functional screening. Aquatic Botany, 2007, 86, 117-122.	0.8	36
238	Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene, 2007, 404, 61-69.	1.0	56
239	Plant water status, ethylene evolution, N2-fixing efficiency, antioxidant activity and lipid peroxidation in Cicer arietinum L. nodules as affected by short-term salinization and desalinization. Journal of Plant Physiology, 2007, 164, 1161-1169.	1.6	41
240	Efficiency of biochemical protection against toxic effects of accumulated salt differentiates Thellungiella halophila from Arabidopsis thaliana. Journal of Plant Physiology, 2007, 164, 375-384.	1.6	48
241	In the halotolerant Lobularia maritima (Brassicaceae) salt adaptation correlates with activation of the vacuolar H+-ATPase and the vacuolar Na+/H+ antiporter. Journal of Plant Physiology, 2007, 164, 1278-1288.	1.6	34
242	Recent Advances in Breeding For Drought and Salt Stress Tolerance in Soybean. , 2007, , 739-773.		45
243	Expressed sequence tags from the halophyteLimonium sinense. DNA Sequence, 2007, 18, 61-67.	0.7	16
244	Modulation of Ethylene Responses Affects Plant Salt-Stress Responses. Plant Physiology, 2007, 143, 707-719.	2.3	474

#	Article	IF	CITATIONS
245	Transgenic Crops V. , 2007, , .		4
246	Identification of stress-induced genes from the drought-tolerant plant Prosopis juliflora (Swartz) DC. through analysis of expressed sequence tags. Genome, 2007, 50, 470-478.	0.9	29
247	Overexpression of sedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. Functional Plant Biology, 2007, 34, 822.	1.1	93
248	Differential response of indica rice genotypes to NaCl stress in relation to physiological and biochemical parameters. Archives of Agronomy and Soil Science, 2007, 53, 581-592.	1.3	21
249	Watermelon. , 2007, , 129-165.		1
250	Physiology of cashew plants grown under adverse conditions. Brazilian Journal of Plant Physiology, 2007, 19, 449-461.	0.5	47
251	Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnology, 2007, 24, 273-282.	0.5	115
252	MicroRNAs and their regulatory roles in animals and plants. Journal of Cellular Physiology, 2007, 210, 279-289.	2.0	500
253	Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiology and Biochemistry, 2007, 45, 822-833.	2.8	153
254	Assessment of Growth, Physiological and Biochemical Parameters and Activities of Antioxidative Enzymes in Salinity Tolerant and Sensitive Basmati Rice Varieties. Journal of Agronomy and Crop Science, 2007, 193, 398-412.	1.7	47
255	Involvement of Hydrogen Peroxide, Peroxidase and Superoxide Dismutase in Response of <i>Medicago truncatula</i> Lines Differing in Susceptibility to <i>Phoma medicaginis</i> Infection. Journal of Phytopathology, 2007, 155, 633-640.	0.5	12
256	Effect of salt stress on the expression of NHX-type ion transporters in Medicago intertexta and Melilotus indicus plants. Physiologia Plantarum, 2007, 131, 122-130.	2.6	46
257	Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant, Cell and Environment, 2007, 30, 775-785.	2.8	184
258	Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula�×alba). Plant, Cell and Environment, 2007, 30, 796-811.	2.8	99
259	A plastid-localized glycogen synthase kinase 3 modulates stress tolerance and carbohydrate metabolism. Plant Journal, 2007, 49, 1076-1090.	2.8	70
260	Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant Journal, 2007, 51, 185-197.	2.8	255
261	The SWI/SNF chromatinâ€remodeling gene <i>AtCHR12</i> mediates temporary growth arrest in <i>Arabidopsis thaliana</i> upon perceiving environmental stress. Plant Journal, 2007, 51, 874-885.	2.8	131
262	Construction of a Plant Transformationâ€ready Expression cDNA Library for <i>Thellungiella halophila</i> Using Recombination Cloning. Journal of Integrative Plant Biology, 2007, 49, 1313-1319.	4.1	8

#	Article	IF	CITATIONS
263	Expression profiling on soybean leaves reveals integration of ER- and osmotic-stress pathways. BMC Genomics, 2007, 8, 431.	1.2	90
264	Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007, 59, 206-216.	2.0	3,403
265	Salt stress response in tomato beyond the salinity tolerance threshold. Environmental and Experimental Botany, 2007, 59, 276-282.	2.0	218
266	Increasing plant vigour and tomato fruit yield under salinity by inducing plant adaptation at the earliest seedling stage. Environmental and Experimental Botany, 2007, 60, 77-85.	2.0	17
267	Biophysical and morphological leaf adaptations to drought and salinity in salt marsh grasses. Environmental and Experimental Botany, 2007, 60, 458-467.	2.0	59
268	Phylogeography of halophytes from European coastal and inland habitats. Zoologischer Anzeiger, 2007, 246, 279-292.	0.4	28
269	Inducible and constitutive mechanisms of salt stress resistance in Geum urbanum L Russian Journal of Plant Physiology, 2007, 54, 612-618.	0.5	17
270	Insights into molecular mechanisms of mutual effect between plants and the environment. A review. Agronomy for Sustainable Development, 2007, 27, 69-78.	2.2	29
271	Response ofTetranychus cinnabarinus feeding on NaCl-stressed strawberry plants. Phytoparasitica, 2007, 35, 37-49.	0.6	15
272	Transgenic tobacco expressing a ring domain-containing protein ofCapsicum annuum confers improved cold tolerance. Journal of Plant Biology, 2007, 50, 44-49.	0.9	1
273	Salt-stress signaling. Journal of Plant Biology, 2007, 50, 148-155.	0.9	45
274	Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress. Plant Cell Reports, 2007, 26, 497-506.	2.8	61
275	In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon) Tj ETQq0 0 0 rgBT /Overlock Reports, 2007, 26, 1413-1420.	10 Tf 50 2 2.8	67 Td (transv 48
276	Rubidium chloride tolerant callus cultures of rice (Oryza sativa L.) accumulate more potassium and cross tolerate to other salts. Plant Cell Reports, 2007, 26, 1647-1662.	2.8	2
277	Establishment of an efficient Agrobacterium tumefaciens-mediated leaf disc transformation of Thellungiella halophila. Plant Cell Reports, 2007, 26, 1785-1789.	2.8	12
278	Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Reports, 2007, 26, 1909-1917.	2.8	172
279	Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Molecular Breeding, 2007, 19, 137-151.	1.0	85
280	Interspecific potato somatic hybrids between Solanum berthaultii and Solanum tuberosum L. showed recombinant plastome and improved tolerance to salinity. Plant Cell, Tissue and Organ Culture, 2007, 91, 179-189.	1.2	42

#		IF	CITATIONS
281	Effects of salinity on chlorophyll fluorescence and CO ₂ fixation in C ₄ estuarine grasses. Photosynthetica, 2007, 45, 433-440.	0.9	42
282	Isolation and characterization of shs1, a sugar-hypersensitive and ABA-insensitive mutant with multiple stress responses. Plant Molecular Biology, 2007, 65, 295-309.	2.0	10
283	Ds insertion mutagenesis as an efficient tool to produce diverse variations for rice breeding. Plant Molecular Biology, 2007, 65, 385-402.	2.0	39
284	Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Molecular Biology, 2007, 65, 733-746.	2.0	88
285	Long term exogenous putrescine application improves grain yield of a salt-sensitive rice cultivar exposed to NaCl. Plant and Soil, 2007, 291, 225-238.	1.8	35
286	Mechanisms of salt tolerance in transgenic Arabidopsis thaliana constitutively overexpressing the tomato 14-3-3 protein TFT7. Plant and Soil, 2007, 301, 17-28.	1.8	28
287	Damage to the oxygen-evolving complex by superoxide anion, hydrogen peroxide, and hydroxyl radical in photoinhibition of photosystem II. Photosynthesis Research, 2007, 90, 67-78.	1.6	57
288	Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulation, 2007, 53, 185-194.	1.8	111
289	GA signaling and CO/FT regulatory module mediate salt-induced late flowering in Arabidopsis thaliana. Plant Growth Regulation, 2007, 53, 195-206.	1.8	54
290	Impact of environmental pollution on cyanobacterial proline content. Journal of Applied Phycology, 2007, 19, 625-629.	1.5	41
291	Identification of two phenotypes of Arabidopsis thaliana under in vitro salt stress conditions. Biologia Plantarum, 2007, 51, 436-442.	1.9	13
292	In vitro selection of salt tolerant cell lines in Solanum tuberosum L Biologia Plantarum, 2007, 51, 728-734.	1.9	64
293	Plasma membrane ultrastructure in embryogenic cultures of orchardgrass during NaCl stress. Biologia Plantarum, 2007, 51, 759-763.	1.9	5
294	Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt-sensitive hybrid poplar Populus×canescens. Mycorrhiza, 2007, 17, 121-131.	1.3	72
295	Heterologous expression of vacuolar H+-PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance. Protoplasma, 2007, 232, 87-95.	1.0	43
296	Monitoring of gene expression profiles and identification of candidate genes involved in drought responses in Festuca mairei. Molecular Genetics and Genomics, 2007, 277, 571-587.	1.0	28
297	Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. Journal of Biosciences, 2007, 32, 621-628.	0.5	109
298	Effects of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiologiae Plantarum, 2007, 29, 95-102.	1.0	82

#		IF	Citations
299	Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiologiae Plantarum, 2007, 29, 205-209.	1.0	175
300	Salt-tolerant reed plants contain lower Na+ and higher K+ than salt-sensitive reed plants. Acta Physiologiae Plantarum, 2007, 29, 431-438.	1.0	36
301	Germination strategies of two halophytes in Salt Desert of northwestern China. Science in China Series D: Earth Sciences, 2007, 50, 115-121.	0.9	10
302	Lipid content in higher plants under osmotic stress. Bioelectrochemistry, 2007, 70, 12-17.	2.4	13
303	Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress. Plant Physiology and Biochemistry, 2007, 45, 812-821.	2.8	88
304	Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloids and Surfaces B: Biointerfaces, 2008, 65, 220-225.	2.5	84
305	Osmotic versus toxic effects of NaCl on pepper plants. Biologia Plantarum, 2008, 52, 72-79.	1.9	51
306	Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. Biologia Plantarum, 2008, 52, 792-795.	1.9	72
307	The genetic locus At1g73660 encodes a putative MAPKKK and negatively regulates salt tolerance in Arabidopsis. Plant Molecular Biology, 2008, 67, 125-134.	2.0	53
308	Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorhiza) to salt and osmotic stress. Plant Molecular Biology, 2008, 68, 119-129.	2.0	41
309	Sex-related differences in leaf traits in an androdioecious shrub under contrasting levels of soil salinity. Plant and Soil, 2008, 310, 235-243.	1.8	9
310	In vitro evaluation of osmotic stress tolerance using a novel root recovery assay. Plant Cell, Tissue and Organ Culture, 2008, 95, 101-106.	1.2	5
311	WGA reduces the level of oxidative stress in wheat seedlings under salinity. Plant Growth Regulation, 2008, 54, 195-201.	1.8	25
312	Overexpression ofENA1 from yeast increases salt tolerance inArabidopsis. Journal of Plant Biology, 2008, 51, 159-165.	0.9	8
313	Overexpression of aThellungiella halophila CBI9 homolog,ThCBL9, confers salt and osmotic tolerances in transgenicarabidopsis thaliana. Journal of Plant Biology, 2008, 51, 25-34.	0.9	18
314	Ethnobotany and phytochemistry of plants dominant in salt marshes of the Lower Saxonian Wadden Sea, southern North Sea. Senckenbergiana Maritima, 2008, 38, 1-30.	0.5	12
315	Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced to exidative, salt, and drought stresses. Plant Cell Reports, 2008, 27, 687-698.	2.8	133
316	Toward Understanding Molecular Mechanisms of Abiotic Stress Responses in Rice. Rice, 2008, 1, 36-51.	1.7	39

#	Article	IF	CITATIONS
317	Towards salinity tolerance in Brassica: an overview. Physiology and Molecular Biology of Plants, 2008, 14, 39-49.	1.4	81
318	Highly efficient Agrobacterium-based transformation system for callus cells of the C3 halophyte Suaeda salsa. Acta Physiologiae Plantarum, 2008, 30, 729-736.	1.0	7
319	Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiologiae Plantarum, 2008, 30, 833-839.	1.0	84
320	Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Functional and Integrative Genomics, 2008, 8, 287-300.	1.4	87
321	Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. Planta, 2008, 228, 167-177.	1.6	135
322	A crossâ€species quantitative proteomic study of salt adaptation in a halotolerant environmental isolate using ¹⁵ N metabolic labelling. Proteomics, 2008, 8, 2266-2284.	1.3	35
323	Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of <i>Arabidopsis thaliana</i> . Proteomics, 2008, 8, 3536-3547.	1.3	103
324	Productivity enhancement of saltâ€affected environments through crop diversification. Land Degradation and Development, 2008, 19, 429-453.	1.8	182
325	Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry, 2008, 69, 2133-2141.	1.4	96
326	Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiology and Biochemistry, 2008, 46, 117-126.	2.8	118
327	Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP). Journal of Proteomics, 2008, 71, 391-411.	1.2	453
328	The effects of natural zeolite on salinity level of poultry litter compost. Bioresource Technology, 2008, 99, 2097-2101.	4.8	60
329	Multiple traits associated with salt tolerance in lucerne: revealing the underlying cellular mechanisms. Functional Plant Biology, 2008, 35, 640.	1.1	64
330	Molecular and functional comparisons of the vacuolar Na+/H+ exchangers originated from glycophytic and halophytic species. Journal of Zhejiang University: Science B, 2008, 9, 132-140.	1.3	36
331	Effects of NaCl on growth, ion accumulation, protein, proline contents and antioxidant enzymes activity in callus cultures of Jatropha curcas. Biologia (Poland), 2008, 63, 378-382.	0.8	41
332	Effects of salt stress on expression of nitrate transporter and assimilation-related genes in tomato roots. Russian Journal of Plant Physiology, 2008, 55, 232-240.	0.5	28
333	Comparison Analysis of Transcripts from the Halophyte <i>Thellungiella halophila</i> . Journal of Integrative Plant Biology, 2008, 50, 1327-1335.	4.1	50
334	Cloning and characterization of a flowering time gene fromThellungiella halophila. Acta Biochimica Et Biophysica Sinica, 2008, 40, 747-753.	0.9	2

#	Article	IF	CITATIONS
335	Physiological and growth responses of two different salt-sensitive cucumber cultivars to NaCl stress. Soil Science and Plant Nutrition, 2008, 54, 400-407.	0.8	38
336	Effect of grafting on the growth and ion concentrations of cucumber seedlings under NaCl stress. Soil Science and Plant Nutrition, 2008, 54, 895-902.	0.8	54
337	Functional geneâ€mining for saltâ€ŧolerance genes with the power of Arabidopsis. Plant Journal, 2008, 56, 653-664.	2.8	77
338	<i>ITN1</i> , a novel gene encoding an ankyrinâ€repeat protein that affects the ABAâ€mediated production of reactive oxygen species and is involved in saltâ€stress tolerance in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 56, 411-422.	2.8	95
339	Genetic approaches to crop improvement: responding to environmental and population changes. Nature Reviews Genetics, 2008, 9, 444-457.	7.7	396
340	Salinity tolerance in halophytes*. New Phytologist, 2008, 179, 945-963.	3.5	2,141
341	VOC emissions of Grey poplar leaves as affected by salt stress and different N sources. Plant Biology, 2008, 10, 86-96.	1.8	52
342	The SUlâ€homologous translation initiation factor <i>elFâ€1</i> is involved in regulation of ion homeostasis in rice. Plant Biology, 2008, 10, 298-309.	1.8	25
343	Functionalâ€genomicsâ€based identification of genes that regulate <i>Arabidopsis</i> responses to multiple abiotic stresses. Plant, Cell and Environment, 2008, 31, 697-714.	2.8	114
344	Mechanoâ€perception in <i>Chara</i> cells: the influence of salinity and calcium on touchâ€activated receptor potentials, action potentials and ion transport. Plant, Cell and Environment, 2008, 31, 1575-1591.	2.8	47
345	Carbon monoxide enhances salt tolerance by nitric oxideâ€mediated maintenance of ion homeostasis and upâ€regulation of antioxidant defence in wheat seedling roots. Plant, Cell and Environment, 2008, 31, 1864-1881.	2.8	153
346	Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an <i>in vitro</i> abscission system in <i>Capsicum</i> plants. Plant Journal, 2008, 56, 13-27.	2.8	95
347	Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. BMC Plant Biology, 2008, 8, 11.	1.6	69
348	Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila. BMC Plant Biology, 2008, 8, 115.	1.6	57
349	Bioengineering plant resistance to abiotic stresses by the global calcium signal system. Biotechnology Advances, 2008, 26, 503-510.	6.0	54
350	Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environmental and Experimental Botany, 2008, 63, 19-27.	2.0	121
351	Salinity-induced physiological and proteomic changes in Anabaena doliolum. Environmental and Experimental Botany, 2008, 64, 49-57.	2.0	68
352	Modulations in key enzymes of nitrogen metabolism in two high yielding genotypes of mulberry (Morus alba L.) with differential sensitivity to salt stress. Environmental and Experimental Botany, 2008, 64, 171-179.	2.0	53

#	Article	IF	CITATIONS
353	Agrobacterium and Plant Biotechnology. , 2008, , 73-147.		26
354	Expression of a Vacuolar Na+/H+ Antiporter Gene of Alfalfa Enhances Salinity Tolerance in Transgenic Arabidopsis. Acta Agronomica Sinica, 2008, 34, 557-564.	0.3	14
355	Mapping of QTL Underlying Tolerance to Alkali at Germination and Early Seedling Stages in Rice. Acta Agronomica Sinica, 2008, 34, 1719-1727.	0.3	18
356	Isolation and characterization of oxygen evolving enhancer protein 1 gene in halophyte Leymus chinensis. Journal of Biotechnology, 2008, 136, S645.	1.9	3
357	Biosaline Agriculture and High Salinity Tolerance. , 2008, , .		16
358	Modification of vacuolar proton pumps in cucumber roots under salt stress. Journal of Plant Physiology, 2008, 165, 1830-1837.	1.6	18
359	Sediment characteristics and vegetation dynamics as indicators for the potential rehabilitation of an estuary salt marsh on the arid west coast of South Africa. Journal of Arid Environments, 2008, 72, 1097-1109.	1.2	9
360	Expression profiling of the genes induced by Na2CO3 and NaCl stresses in leaves and roots of Leymus chinensis. Plant Science, 2008, 175, 784-792.	1.7	53
361	Morphological and physiological responses of the halophyte, Odyssea paucinervis (Staph) (Poaceae), to salinity. Flora: Morphology, Distribution, Functional Ecology of Plants, 2008, 203, 437-447.	0.6	45
362	SRWD: A novel WD40 protein subfamily regulated by salt stress in rice (OryzasativaL.). Gene, 2008, 424, 71-79.	1.0	47
363	Cloning and characterization of <i>TsMT3</i> , a type 3 metallothionein gene from salt cress (<i>Thellungiella salsuginea</i>). DNA Sequence, 2008, 19, 340-346.	0.7	6
364	Salinity and its effects on the functional biology of legumes. Acta Physiologiae Plantarum, 2008, 30, 595-618.	1.0	284
365	Abiotic Stress. Biotechnology in Agriculture and Forestry, 2008, , 337-355.	0.2	3
366	Genetic Engineering for Salinity Stress Tolerance. Advances in Plant Biochemistry and Molecular Biology, 2008, , 347-384.	0.5	13
367	Mechanisms of Salt Tolerance in Transgenic Arabidopsis thaliana Carrying a Peroxisomal Ascorbate Peroxidase Gene from Barley. Pedosphere, 2008, 18, 486-495.	2.1	59
368	Mechanism and controlled purification of self-assembly virus like particles in bioprocess. Journal of Biotechnology, 2008, 136, S645-S646.	1.9	0
369	Tissue culture of Leymus chinensis Trin. through mature seeds and leaves. Journal of Biotechnology, 2008, 136, S644-S645.	1.9	0
370	Overexpression of a New Rice Vacuolar Antiporter Regulating Protein OsARP Improves Salt Tolerance in Tobacco. Plant and Cell Physiology, 2008, 49, 880-890.	1.5	33

#	Article	IF	CITATIONS
371	Differential salt deposition and excretion on leaves of <i>Avicennia germinans</i> mangroves. Caribbean Journal of Science, 2008, 44, 267-271.	0.2	9
372	Protection mechanisms in the resurrection plant Xerophyta viscosa: cloning, expression, characterisation and role of XvINO1, a gene coding for a myo-inositol 1-phosphate synthase. Functional Plant Biology, 2008, 35, 26.	1.1	12
374	The Arabidopsis Halophytic Relative <i>Thellungiella halophila</i> Tolerates Nitrogen-Limiting Conditions by Maintaining Growth, Nitrogen Uptake, and Assimilation Â. Plant Physiology, 2008, 147, 1168-1180.	2.3	73
375	Chapter 2 Lipid Environmental Modulation of Activity of Photosynthetic Membrane Proteins. Behavior Research Methods, 2008, 8, 27-57.	2.3	Ο
376	Cloning and characterization of a flowering time gene from Thellungiella halophila. Acta Biochimica Et Biophysica Sinica, 2008, 40, 747-753.	0.9	5
377	Non-reciprocal interactions between K+ and Na+ ions in barley (Hordeum vulgare L.). Journal of Experimental Botany, 2008, 59, 2793-2801.	2.4	56
378	Tobacco OPBP1 Enhances Salt Tolerance and Disease Resistance of Transgenic Rice. International Journal of Molecular Sciences, 2008, 9, 2601-2613.	1.8	48
379	Interactive Effect of Moisture Levels and Salinity Levels of Soil on the Growth and Ion Relations of Halophyte. Communications in Soil Science and Plant Analysis, 2008, 39, 741-752.	0.6	14
380	Growth and nitrogen-fixing performances of medicago truncatula-Sinorhizobium meliloti symbioses under salt (NaCl) stress: Micro- and macro-symbiont contribution into symbiosis tolerance. , 2008, , 91-98.		5
381	Nitrogen Uptake by Radish, Spinach and "Chingensai―from Composted Tea Leaves, Coffee Waste and Kitchen Garbage. Compost Science and Utilization, 2008, 16, 152-158.	1.2	9
382	Effects of Boron and Salinity on Red Raspberry in Vitro. International Journal of Fruit Science, 2008, 8, 216-225.	1.2	4
383	Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. Journal of Agricultural Science, 2008, 146, 695-704.	0.6	51
384	Compatible solutes mitigate damaging effects of salt stress by reducing the impact of stress-induced reactive oxygen species. Plant Signaling and Behavior, 2008, 3, 207-208.	1.2	25
385	Growth and yield of corn irrigated with saline water. Scientia Agricola, 2008, 65, 574-580.	0.6	28
386	Cross-tolerance is associated with temperature and salinity stress during germination of barley seeds. Seed Science and Technology, 2008, 36, 689-698.	0.6	7
387	Photosynthetic performance of mangroves Rhizophora mangle and Laguncularia racemosa under field conditions. Revista Arvore, 2008, 32, 577-582.	0.5	7
388	Fitorremediação de solo salino s ódico por Atriplex nummularia e gesso de jazida. Revista Brasileira De Ciencia Do Solo, 2008, 32, 1065-1072.	0.5	26
389	Furrow Seeding with Plastic Mulching Increases Stand Establishment and Lint Yield of Cotton in a Saline Field. Agronomy Journal, 2008, 100, 1640-1646.	0.9	73

#	Article	IF	CITATIONS
390	Effects of pretreatments of some growth regulators on the stomata movements of barley seedlings grown under saline (NaCl) conditions. Plant, Soil and Environment, 2007, 53, 524-528.	1.0	6
391	Effects of some plant growth regulators on stem anatomy of radish seedlings grown under saline (NaCl) conditions. Plant, Soil and Environment, 2008, 54, 428-433.	1.0	27
392	Cellular traits for sodium tolerance in rice (Oryza sativa L.). Plant Biotechnology, 2008, 25, 247-255.	0.5	29
393	Relationship between calcium decoding elements and plant abiotic-stress resistance. International Journal of Biological Sciences, 2008, 4, 116-125.	2.6	89
394	A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism. PLoS ONE, 2008, 3, e3935.	1.1	165
395	The effects of treatment with polyamines on dry matter and some metabolites in salinity - stressed chamomile and sweet majoram seedlings. Plant, Soil and Environment, 2009, 55, 477-483.	1.0	14
397	Potential impact of climatic changes on floristic evolution of phytocoenoses in mediterranean agroecosystems. Italian Journal of Agronomy, 2009, 4, 45.	0.4	5
398	Avaliação de diploides de bananeira (Musa spp.) quanto à tolerÃ⊄ncia a salinidade. Revista Brasileira De Fruticultura, 2009, 31, 1084-1091.	0.2	6
399	Physiological Responses of Tomato Seedlings (Lycopersicon Esculentum) to Salt Stress. Modern Applied Science, 2009, 3, .	0.4	38
400	Modern Applied Science, Vol. 3, No. 3, March 2009, all in one file, Part B. Modern Applied Science, 2009, 3, .	0.4	1
402	Differential Sodium and Potassium Transport Selectivities of the Rice OsHKT2;1 and OsHKT2;2 Transporters in Plant Cells Â. Plant Physiology, 2009, 152, 341-355.	2.3	135
403	THE INFLUENCE OF FERTILISATION ON SALT (SODIUM CHLORIDE) DAMAGE IN TRANSPLANTED SCOTS PINE (<i>PINUS SYLVESTRIS</i>) AND EVERGREEN OAK (<i>QUERCUS ILEX</i>). Arboricultural Journal, 2009, 32, 253-274.	0.3	0
404	Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. Journal of Experimental Botany, 2009, 60, 939-954.	2.4	223
405	IrrE, a Global Regulator of Extreme Radiation Resistance in Deinococcus radiodurans, Enhances Salt Tolerance in Escherichia coli and Brassica napus. PLoS ONE, 2009, 4, e4422.	1.1	80
406	OTS1 and OTS2 SUMO proteases link plant development and survival under salt stress. Plant Signaling and Behavior, 2009, 4, 225-227.	1.2	23
407	Differential Sensitivity of Rice Cultivars to Salinity and Its Relation to Ion Accumulation and Root Tip Structure. Plant Production Science, 2009, 12, 453-461.	0.9	38
408	Differentially regulated kinases and phosphatases in roots may contribute to inter-cultivar difference in rice salinity tolerance. Plant Signaling and Behavior, 2009, 4, 1163-1165.	1.2	10
409	Ion flux profiles and plant ion homeostasis control under salt stress. Plant Signaling and Behavior, 2009, 4, 261-264.	1.2	40

#	Article	IF	CITATIONS
410	Identification of an Apoplastic Protein Involved in the Initial Phase of Salt Stress Response in Rice Root by Two-Dimensional Electrophoresis Â. Plant Physiology, 2009, 149, 916-928.	2.3	196
411	Regulation by salt of vacuolar H ⁺ -ATPase and H ⁺ -pyrophosphatase activities and Na ⁺ /H ⁺ exchange. Plant Signaling and Behavior, 2009, 4, 718-726.	1.2	158
412	Contrasting Responses of Photosynthesis to Salt Stress in the Glycophyte Arabidopsis and the Halophyte Thellungiella: Role of the Plastid Terminal Oxidase as an Alternative Electron Sink. Plant Physiology, 2009, 149, 1154-1165.	2.3	401
413	Yellowstone hot spring environments and the palaeo-ecophysiology of Rhynie chert plants: towards a synthesis. Plant Ecology and Diversity, 2009, 2, 111-143.	1.0	60
414	Heme Oxygenase Contributes to Alleviate Salinity Damage inGlycine maxL. Leaves. International Journal of Cell Biology, 2009, 2009, 1-9.	1.0	17
415	Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiology, 2009, 29, 1175-1186.	1.4	182
416	Comparative Profiles of Gene Expression in Leaves and Roots of Maize Seedlings under Conditions of Salt Stress and the Removal of Salt Stress. Plant and Cell Physiology, 2009, 50, 889-903.	1.5	50
417	NaCl-Induced Alternations of Cellular and Tissue Ion Fluxes in Roots of Salt-Resistant and Salt-Sensitive Poplar Species Â. Plant Physiology, 2009, 149, 1141-1153.	2.3	334
418	Expressed sequence tag analysis and cDNA array establishment of <i>Nicotiana tabacum</i> : application to salinity stress. Chinese Journal of Agricultural Biotechnology, 2009, 6, 81-89.	0.1	3
419	The extreme halophyte Salicornia veneta is depleted of the extrinsic PsbQ and PsbP proteins of the oxygen-evolving complex without loss of functional activity. Annals of Botany, 2009, 103, 505-515.	1.4	21
420	Expression analysis of two novel cotton 14-3-3 genes in root development and in response to salt stress. Progress in Natural Science: Materials International, 2009, 19, 173-178.	1.8	14
421	In vitro salinity resistance of three ectomycorrhizal fungi. Soil Biology and Biochemistry, 2009, 41, 948-953.	4.2	21
422	Role of genetic factors and environmental conditions in recombinant protein production for molecular farming. Biotechnology Advances, 2009, 27, 914-923.	6.0	40
423	Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Industrial Crops and Products, 2009, 30, 333-337.	2.5	107
424	On the mechanism of salt tolerance in olive (Olea europaea L.) under low- or high-Ca2+ supply. Environmental and Experimental Botany, 2009, 65, 72-81.	2.0	52
425	Differential regulation of the HAK5 genes encoding the high-affinity K+ transporters of Thellungiella halophila and Arabidopsis thaliana. Environmental and Experimental Botany, 2009, 65, 263-269.	2.0	73
426	Effects of Zn2+ and niflumic acid on photosynthesis in Glycine soja and Glycine max seedlings under NaCl stress. Environmental and Experimental Botany, 2009, 65, 304-309.	2.0	17
427	Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environmental and Experimental Botany, 2009, 66, 381-388.	2.0	74

#	Article	IF	CITATIONS
428	Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environmental and Experimental Botany, 2009, 67, 222-227.	2.0	242
430	SIK1/SOS2 networks: decoding sodium signals via calcium-responsive protein kinase pathways. Pflugers Archiv European Journal of Physiology, 2009, 458, 613-619.	1.3	48
431	Molecular Cloning and Expression of a Cu/Zn-Containing Superoxide Dismutase from Thellungiella halophila. Molecules and Cells, 2009, 27, 423-428.	1.0	15
432	Antioxidant activity and phenol content of Crithmum maritimum L. leaves. Plant Physiology and Biochemistry, 2009, 47, 37-41.	2.8	121
433	Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Molecular Breeding, 2009, 23, 289-298.	1.0	71
434	Molecular Cloning and Functional Analysis of a Na+/H+ Antiporter Gene ThNHX1 from a Halophytic Plant Thellungiella halophila. Plant Molecular Biology Reporter, 2009, 27, 1-12.	1.0	66
435	GUSP1 and GUSP2, Two Drought-Responsive Genes in Gossypium arboreum Have Homology to Universal Stress Proteins. Plant Molecular Biology Reporter, 2009, 27, 109-114.	1.0	34
436	Aldose reductase expression contributes in sorbitol accumulation and 4-hydroxynon-2-enal detoxification in two foxtail millet (Setaria italica L.) cultivars with different salt stress tolerance. Plant Growth Regulation, 2009, 59, 137-143.	1.8	12
437	Effect of salt stress on growth and osmotic regulation in Thellungiella and Arabidopsis callus. Plant Cell, Tissue and Organ Culture, 2009, 98, 97-103.	1.2	44
438	Beneficial Effects of Exogenous Selenium in Cucumber Seedlings Subjected to Salt Stress. Biological Trace Element Research, 2009, 132, 259-269.	1.9	179
439	Comparative transcriptional profiling under drought stress between upland and lowland rice (Oryza) Tj ETQq0 0 () rǥ₿T /Ov	erlock 10 Tf
440	Molecular characterization of GmNHX2, a Na+/H+ antiporter gene homolog from soybean, and its heterologous expression to improve salt tolerance in Arabidopsis. Science Bulletin, 2009, 54, 3536-3545.	4.3	5
441	Osmoregulation and osmoprotection in the leaf cells of two olive cultivars subjected to severe water deficit. Acta Physiologiae Plantarum, 2009, 31, 711-721.	1.0	62
442	Anatomical changes induced by increasing NaCl salinity in three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea. Acta Physiologiae Plantarum, 2009, 31, 947-960.	1.0	69
443	Salt Spray Induces Osmotic Adjustment and Tissue Rigidity in Smooth Cordgrass, Spartina alterniflora (Loisel.). Estuaries and Coasts, 2009, 32, 917-925.	1.0	22
444	Overexpression of AtNHX1, a Vacuolar Na+/H+ Antiporter from Arabidopsis thalina, in Petunia hybrida Enhances Salt and Drought Tolerance. Journal of Plant Biology, 2009, 52, 453-461.	0.9	45
445	Proteomic characterization of <i>Phragmites communis</i> in ecotypes of swamp and desert dune. Proteomics, 2009, 9, 3950-3967.	1.3	21
446	Overexpression of an ADPâ€ribose pyrophosphatase, <i>AtNUDX2</i> , confers enhanced tolerance to oxidative stress in Arabidopsis plants. Plant Journal, 2009, 57, 289-301.	2.8	77

#	Article	IF	CITATIONS
447	Isolation and functional analysis of cotton universal stress protein promoter in response to phytohormones and abiotic stresses. Molecular Biology, 2009, 43, 578-585.	0.4	22
448	Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber. Soil Science and Plant Nutrition, 2009, 55, 698-704.	0.8	73
449	2â€3 <i>H</i> â€Benzoxazolinone (BOA) induces loss of salt tolerance in saltâ€adapted plants. Plant Biology, 2009, 11, 582-590.	1.8	10
450	Salinity tolerance of <i>Populus</i> . Plant Biology, 2010, 12, 317-333.	1.8	206
451	Role of Arbuscular Mycorrhizae in the Alleviation of Ionic, Osmotic and Oxidative Stresses Induced by Salinity in <i>Cajanus cajan</i> (L.) Millsp. (pigeonpea). Journal of Agronomy and Crop Science, 2009, 195, 110-123.	1.7	123
452	Molecular characterization of putative vacuolar NHXâ€ŧype Na ⁺ /H ⁺ exchanger genes from the saltâ€resistant tree <i>Populus euphratica</i> . Physiologia Plantarum, 2009, 137, 166-174.	2.6	79
453	HIGHâ€LIGHT AND SODIUM CHLORIDE STRESS DIFFERENTIALLY REGULATE THE BIOSYNTHESIS OF ASTAXANTHIN IN <i>CHLORELLA ZOFINGIENSIS</i> (CHLOROPHYCEAE) ¹ . Journal of Phycology, 2009, 45, 635-641.	1.0	69
454	Effects of salt stress on the expression of antioxidant genes and proteins in the model legume <i>Lotus japonicus</i> . New Phytologist, 2009, 181, 851-859.	3.5	95
455	Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland <i>Mimulus guttatus</i> . New Phytologist, 2009, 183, 776-788.	3.5	154
456	Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C ₄ genus <i> Spartina </i> (Poaceae). New Phytologist, 2009, 184, 216-233.	3.5	88
457	Real-time PCR monitoring of signal transduction related genes involved in water stress tolerance mechanism of sunflower. Plant Physiology and Biochemistry, 2009, 47, 139-145.	2.8	20
458	Ameliorative effect of CaCl2 on growth, membrane permeability and nutrient uptake in Atriplex halimus subsp. schweinfurthii grown at high (NaCl) salinity. Desalination, 2009, 249, 163-166.	4.0	43
459	Effect of salt on ROS homeostasis, lipid peroxidation and antioxidant mechanisms in Pinus pinaster suspension cells. Annals of Forest Science, 2009, 66, 211-211.	0.8	11
460	Osmolyte Regulation in Abiotic Stress. , 2009, , 349-370.		14
461	Transgenic plants tolerant to abiotic stresses. Cytology and Genetics, 2009, 43, 132-149.	0.2	19
462	Overaccumulation of glycine betaine alleviates the negative effects of salt stress in wheat. Russian Journal of Plant Physiology, 2009, 56, 370-376.	0.5	30
463	Exogenous ascorbic acid or thiamine increases the resistance of sunflower and maize plants to salt stress. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2009, 57, 335-347.	0.2	18
464	A Proteomic Study of the Response to Salinity and Drought Stress in an Introgression Strain of Bread Wheat. Molecular and Cellular Proteomics, 2009, 8, 2676-2686.	2.5	241

#	Article	IF	CITATIONS
466	The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene, 2009, 436, 45-55.	1.0	171
467	HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science, 2009, 14, 660-668.	4.3	433
468	Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae, 2009, 123, 272-279.	1.7	70
469	Comparative sequence analysis of the SALT OVERLY SENSITIVE1 orthologous region in Thellungiella halophila and Arabidopsis thaliana. Genomics, 2009, 94, 196-203.	1.3	17
470	Structural analysis of 83-kb genomic DNA from Thellungiella halophila: Sequence features and microcolinearity between salt cress and Arabidopsis thaliana. Genomics, 2009, 94, 324-332.	1.3	10
471	SI-SROl1 increases salt tolerance and is a member of the radical-induced cell death 1—similar to RCD1 gene family of tomato. Plant Science, 2009, 176, 214-222.	1.7	17
472	Analysis of the metabolome and transcriptome of Brassica carinata seedlings after lithium chloride exposure. Plant Science, 2009, 177, 68-80.	1.7	54
473	Carbon monoxide mitigates salt-induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction. Plant Science, 2009, 177, 331-340.	1.7	52
474	Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought. Journal of Plant Physiology, 2009, 166, 531-542.	1.6	86
475	Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. Journal of Plant Physiology, 2009, 166, 507-520.	1.6	120
476	Overexpression of TaSTRG gene improves salt and drought tolerance in rice. Journal of Plant Physiology, 2009, 166, 1660-1671.	1.6	55
477	Physiological and growth changes in micropropagated Citrus macrophylla explants due to salinity. Journal of Plant Physiology, 2009, 166, 1923-1933.	1.6	38
478	Hydrogen peroxide- and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. Journal of Plant Physiology, 2009, 166, 1904-1913.	1.6	123
479	Improvement of Salt Tolerance Mechanisms of Barley Cultivated Under Salt Stress Using Azospirillum brasilense. Tasks for Vegetation Science, 2009, , 133-147.	0.6	62
480	Identification of Quantitative Trait Loci for Alkaline Tolerance at Early Seedling Stage of Japonica Rice Under Alkaline Stress. Acta Agronomica Sinica, 2009, 35, 301-308.	0.3	2
481	Transgenic Expression of an Ethylene Responsive Element Binding Protein of Capsicum annuum (CaEREBP-C4) in Tobacco Confers Cold Tolerance. Journal of the Korean Society for Applied Biological Chemistry, 2009, 52, 405-411.	0.9	3
482	Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh, India. Saline Systems, 2009, 5, 4.	2.0	40
484	Comparative Proteomics Study of Salt Tolerance between a Nonsequenced Extremely Halotolerant Cyanobacterium and Its Mildly Halotolerant Relative Using <i>in vivo</i> Metabolic Labeling and <i>in vitro</i> Isobaric Labeling. Journal of Proteome Research, 2009, 8, 818-828.	1.8	51

#	Article	IF	CITATIONS
485	Physiological Stress caused by Salinity in <i>Cordyline fruticosa</i> and Its Indicators. Communications in Soil Science and Plant Analysis, 2009, 40, 473-484.	0.6	13
486	Effects of Calcium Chloride on Growth, Membrane Permeability and Root Hydraulic Conductivity in Two <i>Atriplex</i> Species Grown at High (Sodium Chloride) Salinity. Journal of Plant Nutrition, 2009, 32, 1818-1830.	0.9	35
487	Salinity and Water Stress. Tasks for Vegetation Science, 2009, , .	0.6	33
488	Comparative Proteomic Analysis of Differentially Expressed Proteins in Shoots of <i>Salicornia europaea</i> under Different Salinity. Journal of Proteome Research, 2009, 8, 3331-3345.	1.8	154
489	Plant Biotechnological Approaches for the Production and Commercialization of Transgenic Crops. Biotechnology and Biotechnological Equipment, 2009, 23, 1281-1288.	0.5	8
490	Constitutive Expression of a Trypsin Protease Inhibitor Confers Multiple Stress Tolerance in Transgenic Tobacco. Plant and Cell Physiology, 2009, 50, 541-553.	1.5	82
491	A procedure for assessing the salt tolerance of lucerne (<i>Medicago sativa</i> L.) cultivar seedlings by combining agronomic and physiological indicators. New Zealand Journal of Agricultural Research, 2009, 52, 435-442.	0.9	13
492	Physiological characterization of four model Lotus diploid genotypes: L. japonicus (MG20 and Gifu), L. filicaulis, and L. burttii under salt stress. Plant Science, 2009, 177, 618-628.	1.7	13
493	Learning from Evolution: Thellungiella Generates New Knowledge on Essential and Critical Components of Abiotic Stress Tolerance in Plants. Molecular Plant, 2009, 2, 3-12.	3.9	226
494	Overexpression of SOS (Salt Overly Sensitive) Genes Increases Salt Tolerance in Transgenic Arabidopsis. Molecular Plant, 2009, 2, 22-31.	3.9	384
495	Can ornithine accumulation modulate abiotic stress tolerance in Arabidopsis?. Plant Signaling and Behavior, 2009, 4, 1099-1101.	1.2	80
496	The Role of Abscisic Acid in Stress Tolerance. , 0, , 282-297.		9
497	Using ultra-weak luminescence to evaluate NaCl stress resistance of maize varieties. , 2009, , .		0
499	Soil Salinity and Sodicity as Particular Plant/Crop Stress Factors. Books in Soils, Plants, and the Environment, 2010, , 3-21.	0.1	27
500	Specific roles of AtEXPA1 in plant growth and stress adaptation. Russian Journal of Plant Physiology, 2010, 57, 241-246.	0.5	20
501	Proline controls the level of polyamines in common sage plants under normal conditions and at UV-B irradiation. Russian Journal of Plant Physiology, 2010, 57, 422-429.	0.5	12
502	Growth, ion composition, and stomatal conductance of peas exposed to salinity. Open Life Sciences, 2010, 5, 682-691.	0.6	10
503	Protective roles of exogenous polyamines on chromosomal aberrations in Hordeum vulgare exposed to salinity. Biologia (Poland), 2010, 65, 947-953.	0.8	14

#	Article	IF	CITATIONS
504	Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. Plant Cell Reports, 2010, 29, 595-615.	2.8	84
505	Short-term salinity stress in tobacco plants leads to the onset of animal-like PCD hallmarks in planta in contrast to long-term stress. Planta, 2010, 231, 437-448.	1.6	39
506	AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta, 2010, 231, 1251-1260.	1.6	195
507	A tomato bZIP transcription factor, SIAREB, is involved in water deficit and salt stress response. Planta, 2010, 231, 1459-1473.	1.6	198
508	The sugar beet gene encoding the sodium/proton exchanger 1 (BvNHX1) is regulated by a MYB transcription factor. Planta, 2010, 232, 187-195.	1.6	41
509	Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport. Protoplasma, 2010, 245, 105-111.	1.0	20
510	Effect of NaCl on leaf H+-ATPase and the relevance to salt tolerance in two contrasting poplar species. Trees - Structure and Function, 2010, 24, 597-607.	0.9	19
511	Studies on salinity stress tolerance in sugarcane varieties. Sugar Tech, 2010, 12, 59-63.	0.9	14
512	Ultrastructural Characteristics of Three Chenopod Halophytes Lacking Salt Excretion Structures. Journal of Plant Biology, 2010, 53, 314-320.	0.9	9
513	Overexpression of OsVP1 and OsNHX1 Increases Tolerance to Drought and Salinity in Rice. Journal of Plant Biology, 2010, 53, 444-452.	0.9	70
514	Yellowing of disease? Or differentiating for adaptation? Study on Cinnamomum camphora ecotypes. Forestry Studies in China, 2010, 12, 67-73.	0.4	0
515	Modulation of symbiotic efficiency and nodular antioxidant enzyme activities in two Phaseolus vulgaris genotypes under salinity. Acta Physiologiae Plantarum, 2010, 32, 925-932.	1.0	29
516	Prolonged salt stress alters the ratios of protochlorophyllide spectral forms in dark-grown wheat (Triticum aestivum) and influences chlorophyll a accumulation following irradiation. Acta Physiologiae Plantarum, 2010, 32, 971-978.	1.0	6
517	Comparative evaluation of hydro-, chemo- , and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiologiae Plantarum, 2010, 32, 1135-1144.	1.0	65
518	Screening of genes induced by salt stress from Alfalfa. Molecular Biology Reports, 2010, 37, 745-753.	1.0	73
519	Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell, Tissue and Organ Culture, 2010, 102, 337-345.	1.2	71
520	Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars. Plant Cell, Tissue and Organ Culture, 2010, 103, 205-215.	1.2	91
521	Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell, Tissue and Organ Culture, 2010, 103, 267-277.	1.2	92

#	Article	IF	CITATIONS
522	Identification of differentially expressed transcripts involved in the salt-stress response of Salsola ferganica by suppression subtractive hybridization. Plant Cell, Tissue and Organ Culture, 2010, 103, 343-352.	1.2	11
523	Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling. Plant Molecular Biology, 2010, 72, 27-45.	2.0	110
524	A large insert Thellungiella halophila BIBAC library for genomics and identification of stress tolerance genes. Plant Molecular Biology, 2010, 72, 91-99.	2.0	17
525	Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger "AlSAP―gene isolated from the halophyte grass Aeluropus littoralis. Plant Molecular Biology, 2010, 72, 171-190.	2.0	109
526	Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Molecular Biology, 2010, 73, 251-269.	2.0	129
527	The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Molecular Biology, 2010, 74, 367-380.	2.0	120
528	Mechanisms of sodium uptake by roots of higher plants. Plant and Soil, 2010, 326, 45-60.	1.8	222
529	Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynthesis Research, 2010, 106, 155-177.	1.6	310
530	Germination response of black and yellow seed coated canola (Brassica napus) lines to chemical treatments under cold temperature conditions. Plant Growth Regulation, 2010, 60, 105-114.	1.8	11
531	Effects of NaCl on surface properties, chlorophyll fluorescence and light remission, and cellular compounds of Grewia tenax (Forssk.) Fiori and Tamarindus indica L. leaves. Plant Growth Regulation, 2010, 61, 253-263.	1.8	20
532	Comparative genomic analysis of 1047 completely sequenced cDNAs from an Arabidopsis-related model halophyte, Thellungiella halophila. BMC Plant Biology, 2010, 10, 261.	1.6	38
533	Salt tolerance in Solanum pennellii: antioxidant response and related QTL. BMC Plant Biology, 2010, 10, 58.	1.6	104
534	Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila. BMC Plant Biology, 2010, 10, 90.	1.6	59
535	Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Industrial Crops and Products, 2010, 31, 122-130.	2.5	92
536	Phytotoxicity of biosolids and screening of selected plant species with potential for mercury phytoextraction. Journal of Hazardous Materials, 2010, 173, 494-501.	6.5	42
537	Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chemistry, 2010, 119, 951-956.	4.2	104
538	Antioxidant enzyme status in Azolla microphylla in relation to salinity and possibilities of environmental monitoring. Thin Solid Films, 2010, 519, 1240-1243.	0.8	9
539	PHOTOTACTIC MOTILITY OF SYNECHOCYSTIS SP. UNIWG (CYANOBACTERIA) FROM BRACKISH ENVIRONMENT1. Journal of Phycology, 2010, 46, 102-111.	1.0	1

#	Article	IF	CITATIONS
540	Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 2010, 188, 626-637.	3.5	189
541	Effects of scion and rootstock genotypes on the anti-oxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Science and Plant Nutrition, 2010, 56, 263-271.	0.8	41
542	Growth Response to Ionic and Osmotic Stress of NaCl in Saltâ€tolerant and Saltâ€sensitive Maize. Journal of Integrative Plant Biology, 2010, 52, 468-475.	4.1	77
543	<i>Porteresia coarctata</i> (Roxb.) Tateoka, a wild rice: a potential model for studying saltâ€stress biology in rice. Plant, Cell and Environment, 2010, 33, 526-542.	2.8	82
544	A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K ⁺ /Na ⁺ ratio in leaves during salinity stress. Plant, Cell and Environment, 2010, 33, 552-565.	2.8	455
545	H ₂ O ₂ and cytosolic Ca ²⁺ signals triggered by the PM H ⁺ â€coupled transport system mediate K ⁺ /Na ⁺ homeostasis in NaClâ€stressed <i>Populus euphratica</i> cells. Plant, Cell and Environment, 2010, 33, 943-958.	2.8	164
546	Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant Journal, 2010, 62, 316-329.	2.8	335
547	Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots. Plant Journal, 2010, 64, 753-763.	2.8	145
548	Sex-specific responses and tolerances of Populus cathayana to salinity. Physiologia Plantarum, 2010, 140, 163-173.	2.6	60
549	Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Physiologia Plantarum, 2010, 138, 10-21.	2.6	70
551	Over-expression of ZmPti1, a homologue to Pti1, increases salt tolerance of Arabidopsis thaliana. African Journal of Biotechnology, 2010, 9, 656-662.	0.3	2
552	The Ecological Water-Use Strategies of Succulent Plants. Advances in Botanical Research, 2010, 55, 179-225.	0.5	173
553	Estresse hÃdrico com diferentes osmóticos em sementes de feijão e expressão diferencial de proteÃnas durante a germinação. Acta Scientiarum - Agronomy, 2010, 32, .	0.6	10
554	Impact of saline water stress on nutrient uptake and growth of cowpea. Brazilian Journal of Plant Physiology, 2010, 22, 43-48.	0.5	30
555	Mitigating effect of salicylic acid and nitrate on water relations and osmotic adjustment in maize, cv. Lluteño exposed to salinity. Ciencia E Investigacion Agraria, 2010, 37, 71-81.	0.2	2
556	Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings. African Journal of Biotechnology, 2010, 9, 7837-7846.	0.3	31
557	Ecophysiological response of Crambe maritima to airborne and soil-borne salinity. Annals of Botany, 2010, 105, 925-937.	1.4	41
558	Chlorine Ions but not Sodium Ions Alter Genome Stability of Arabidopsis thaliana. Plant and Cell Physiology, 2010, 51, 1066-1078.	1.5	64

#	Article	IF	CITATIONS
559	GROWTH AND PHYSIOLOGICAL RESPONSE OF HYDROPONICALLY-GROWN SUNFLOWER AS AFFECTED BY SALINITY AND MAGNESIUM LEVELS. Journal of Plant Nutrition, 2010, 33, 1307-1323.	0.9	23
560	Comparative Transcriptomic Profiling of a Salt-Tolerant Wild Tomato Species and a Salt-Sensitive Tomato Cultivar. Plant and Cell Physiology, 2010, 51, 997-1006.	1.5	144
561	Antioxidant responses of <i>in vitro</i> shoots of <i>Deschampsia antarctica</i> to Polyethylene glycol treatment. Antarctic Science, 2010, 22, 163-169.	0.5	10
562	Effects of Exogenous Silicon on Germination Characteristics of Cucumber Seeds under NaHCO3 Stress. , 2010, , .		2
563	Effects of Salinity Stress on the Structure of Bundle Sheath and Mesophyll Chloroplasts in NAD-Malic Enzyme and PCK Type C ₄ Plants. Plant Production Science, 2010, 13, 169-176.	0.9	38
564	Notice of Retraction: Effects of Ca(NO ₃) ₂ stress on the root volume, root-shoot ratio and chlorophyll contents of cucumber seedlings. , 2010, , .		0
565	Seed priming and salinity induced variations in wheat (Triticum aestivum L.) leaf protein profile. Seed Science and Technology, 2010, 38, 236-241.	0.6	13
566	Involvement of DAD1-like lipases in response to salt and osmotic stress inArabidopsis thaliana. Plant Signaling and Behavior, 2010, 5, 1269-1271.	1.2	11
567	Genome Structures and Halophyte-Specific Gene Expression of the Extremophile <i>Thellungiella parvula</i> in Comparison with <i>Thellungiella salsuginea</i> (<i>Thellungiella halophila</i>) and Arabidopsis. Plant Physiology, 2010, 154, 1040-1052.	2.3	97
568	Responses of Halophytes to Environmental Stresses with Special Emphasis to Salinity. Advances in Botanical Research, 2010, 53, 117-145.	0.5	77
569	Arbuscular mycorrhizal networks: process and functions. A review. Agronomy for Sustainable Development, 2010, 30, 581-599.	2.2	141
570	Salts as Potential Environmental Pollutants, Their Types, Effects on Plants and Approaches for Their Phytoremediation. , 2010, , 357-381.		9
571	Improvement in the Adaptation of <i>Lygeum Spartum</i> L. to Salinity In the Presence of Calcium. Communications in Soil Science and Plant Analysis, 2010, 41, 2301-2317.	0.6	12
572	Effects of NaCl on photosynthesis in Arabidopsis and Thellungiella leaves based on the fluorescence spectra, the fast chlorophyll fluorescence induction dynamics analysis, and the delayed fluorescence technique. Proceedings of SPIE, 2010, , .	0.8	1
573	Toxins and Their Phytoremediation. , 2010, , 1-32.		7
574	Enhanced tolerance to low temperature in tobacco by over-expression of a new maize protein phosphatase 2C, ZmPP2C2. Journal of Plant Physiology, 2010, 167, 1307-1315.	1.6	54
575	Physiological responses and relative tolerance by Chinese apple rootstocks to NaCl stress. Scientia Horticulturae, 2010, 126, 247-252.	1.7	46
576	Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 2010, 127, 147-155.	1.7	231

#	Article	IF	CITATIONS
577	Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signaling and Behavior, 2010, 5, 233-238.	1.2	235
578	Comparative Proteomics of Salt Tolerance in <i>Arabidopsis thaliana</i> and <i>Thellungiella halophila</i> . Journal of Proteome Research, 2010, 9, 2584-2599.	1.8	266
579	Identification and Functional Analysis on Abiotic Stress Response of Soybean Clâ^' Channel Gene GmCLCnt. Agricultural Sciences in China, 2010, 9, 199-206.	0.6	6
580	Plant Adaptation and Phytoremediation. , 2010, , .		59
581	Salt Stress Induced Differential Proteome and Metabolome Response in the Shoots of <i>Aeluropus lagopoides</i> (Poaceae), a Halophyte C ₄ Plant. Journal of Proteome Research, 2010, 9, 2882-2897.	1.8	134
582	Intracellular consequences of SOS1 deficiency during salt stress. Journal of Experimental Botany, 2010, 61, 1205-1213.	2.4	139
583	Alleviation of salt-induced ionic, osmotic and oxidative stresses in <i>Cajanus cajan</i> nodules by AM inoculation. Plant Biosystems, 2011, 145, 88-97.	0.8	52
584	Membrane Transport, Sensing and Signaling in Plant Adaptation to Environmental Stress. Plant and Cell Physiology, 2011, 52, 1583-1602.	1.5	248
585	Dynamic Metabonomic Responses of Tobacco <i>(Nicotiana tabacum)</i> Plants to Salt Stress. Journal of Proteome Research, 2011, 10, 1904-1914.	1.8	195
586	Use of EcoTILLING to identify natural allelic variants of rice candidate genes involved in salinity tolerance. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 300-304.	0.4	19
587	Contrasting leaf Na ⁺ uptake and transport rates conferred differences in salt tolerance of wheat genotypes. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2011, 61, 129-135.	0.3	2
588	Recent Updates on Salinity Stress in Rice: From Physiological to Molecular Responses. Critical Reviews in Plant Sciences, 2011, 30, 329-377.	2.7	178
589	The Unfolded Protein Response Induced by Salt Stress in Arabidopsis. Methods in Enzymology, 2011, 489, 319-328.	0.4	17
590	Water-Deficit Impact on Fatty Acid and Essential Oil Composition and Antioxidant Activities of Cumin (Cuminum cyminum L.) Aerial Parts. Journal of Agricultural and Food Chemistry, 2011, 59, 328-334.	2.4	53
591	Drought Stress. Advances in Botanical Research, 2011, 57, 445-493.	0.5	36
592	Identification of MicroRNAs and Their Putative Targets that Respond to Drought Stress in Solanum tuberosum. Journal of the Korean Society for Applied Biological Chemistry, 2011, 54, 317-324.	0.9	11
593	Development of New Technological Approach to Mitigate Salinization. , 2011, , 69-80.		2
594	Deciphering the Protective Role of Nitric Oxide against Salt Stress at the Physiological and Proteomic Levels in Maize. Journal of Proteome Research, 2011, 10, 4349-4364.	1.8	99

#	Article	IF	CITATIONS
595	Melon crops (Cucumis melo L., cv. Tendral) grown in a mediterranean environment under saline-sodic conditions: Part I. Yield and quality. Agricultural Water Management, 2011, 98, 1329-1338.	2.4	29
596	Mineral composition of lucerne (Medicago sativa) and white melilot (Melilotus albus) is affected by NaCl salinity of the irrigation water. Animal Feed Science and Technology, 2011, 170, 97-104.	1.1	8
597	Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass. Ecotoxicology and Environmental Safety, 2011, 74, 2050-2056.	2.9	73
598	Identification of salt responsive genes using comparative microarray analysis in Upland cotton (Gossypium hirsutum L.). Plant Science, 2011, 180, 461-469.	1.7	64
599	Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science, 2011, 181, 195-202.	1.7	65
600	Effect of seawater aerosol on leaves of six plant species potentially useful for ornamental purposes in coastal areas. Scientia Horticulturae, 2011, 128, 332-341.	1.7	36
601	Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Scientia Horticulturae, 2011, 128, 189-196.	1.7	169
602	Responses of Contrasting Rice (Oryza sativa L.) Genotypes to Salt Stress as Affected by Nutrient Concentrations. Agricultural Sciences in China, 2011, 10, 195-206.	0.6	12
603	Recent Advances in Photosynthesis Under Drought and Salinity. Advances in Botanical Research, 2011, 57, 49-104.	0.5	101
604	Salinity Tolerance of Foxtail Barley (<i>Hordeum jubatum</i>) and Desirable Pasture Grasses. Weed Science, 2011, 59, 500-505.	0.8	14
605	Atividade biológica em solo salino sódico saturado por água sob cultivo de Atriplex nummularia. Revista Ciencia Agronomica, 2011, 42, 619-627.	0.1	4
606	The efficiency of potassium fertilization methods on the growth of rice (Oryza sativa L.) under salinity stress. African Journal of Biotechnology, 2011, 10, .	0.3	4
607	Soil Salinisation and Salt Stress in Crop Production. , 0, , .		41
608	Current Knowledge in Physiological and Genetic Mechanisms Underpinning Tolerances to Alkaline and Saline Subsoil Constraints of Broad Acre Cropping in Dryland Regions. , 0, , .		3
609	AtCCX1 transports Na+ and K+ in Pitch pastoris. African Journal of Biotechnology, 2011, 10, 9743-9750.	0.3	4
610	Heat, Salinity, and Acidity, Commonly Upregulate A1aB1b Proglycinin in Soybean Embryonic Axes. , 2011, ,		4
611	Sweet Sorghum: Salt Tolerance and High Biomass Sugar Crop. , 0, , .		5
612	Efeito da nutrição de nitrato na tolerância de plantas de sorgo sudão à salinidade. Revista Ciencia Agronomica, 2011, 42, 675-683.	0.1	23

ARTICLE IF CITATIONS Soluble Carbohydrates as Osmolytes in Several Halophytes from a Mediterranean Salt Marsh. Notulae 0.5 58 613 Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39, 09. Plant Genes for Abiotic Stress., 0,,. 614 Salt tolerance in red clover (Trifolium pratense L.) seedlings. African Journal of Biotechnology, 2011, 615 0.3 20 10, 8774-8781. Biochemical and Physiological Changes in Response to Salinity in Two Durum Wheat (Triticum) Tj ETQq1 1 0.784314 rgBT /Overlock 616 Genetic Variation of HvCBF Genes and Their Association with Salinity Tolerance in Tibetan Annual 617 1.1 90 Wild Barley. PLoS ONE, 2011, 6, e22938. A critical review on halophytes: Salt tolerant plants. Journal of Medicinal Plants Research, 2011, 5, . 0.2 EFFECT OF SALINITY ON PHYSIOLOGICAL AND GROWTH PARAMETERS OF PISTACHIO (PISTACIA VERA). Acta 619 0.1 0 Horticulturae, 2011, , 155-161. Comparative genomics of two ecologically differential populations of Hibiscus tiliaceus under salt 1.1 stress. Functional Plant Biology, 2011, 38, 199. Antioxidant geneâ€"enzyme responses in <i>Medicago truncatula</i> genotypes with different degree of 621 2.6 69 sensitivity to salinity. Physiologia Plantarum, 2011, 141, 201-214. Early effects of salt stress on the physiological and oxidative status of <i>Cakile maritima</i> 2.6 159 (halophyte) and <i>Arabidopsis thaliana</i> (glycophyte). Physiologia Plantarum, 2011, 142, 128-143. Adaptation of <i>Saccharomyces cerevisiae </i>to saline stress through laboratory evolution. Journal 623 0.8 134 of Evolutionary Biology, 2011, 24, 1135-1153. Growth Properties and Ion Distribution in Different Tissues of Bread Wheat Genotypes (Triticum) Tj ETQq1 1 0.784314 rgBT Qverloc <i>ZmMKK4</i>, a novel group C mitogenâ€activated protein kinase kinase in maize (<i>Zea mays</i>), 626 confers salt and cold tolerance in transgenic <i>Arabidopsis</i>. Plant, Cell and Environment, 2011, 2.8 167 34, 1291-1303. <i>OsPUB15</i>, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. Plant Journal, 2011, 65, 194-205. 2.8 Wholeâ system responses of experimental plant communities to climate extremes imposed in different 628 3.5 220 seasons. New Phytologist, 2011, 189, 806-817. Sodium transport in plants: a critical review. New Phytologist, 2011, 189, 54-81. 399 Heme Oxygenaseâ€1 is Associated with Wheat Salinity Acclimation by Modulating Reactive Oxygen Species 630 4.1 30 Homeostasis^F. Journal of Integrative Plant Biology, 2011, 53, 653-670. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences, 2011, 10, 7-15.

#	Article	IF	CITATIONS
632	Differential responses of the antioxidant defence system and ultrastructure in a salt-adapted potato cell line. Plant Physiology and Biochemistry, 2011, 49, 1410-1419.	2.8	47
633	The ectomycorrhizal fungus (Paxillus involutus) modulates leaf physiology of poplar towards improved salt tolerance. Environmental and Experimental Botany, 2011, 72, 304-311.	2.0	55
634	<i>TaSRG</i> , a wheat transcription factor, significantly affects salt tolerance in transgenic rice and Arabidopsis. FEBS Letters, 2011, 585, 1231-1237.	1.3	48
635	Gene Expression Profiling of Plants under Salt Stress. Critical Reviews in Plant Sciences, 2011, 30, 435-458.	2.7	590
636	Exploring influential plant traits for enhancing upland cotton yield under salt stress. Frontiers of Agriculture in China, 2011, 5, 443-449.	0.2	3
637	Expression in Escherichia coli of the gene encoding ascorbate peroxidase from Brassica napus enhances salt tolerance of bacterial cells. Russian Journal of Plant Physiology, 2011, 58, 478-483.	0.5	3
638	Effect of common sage plant treatment with polyamines on the contents of proline and free and conjugated polyamines under oxidative stress. Russian Journal of Plant Physiology, 2011, 58, 776-782.	0.5	4
639	Quantitative trait loci controlling rice seed germination under salt stress. Euphytica, 2011, 178, 297-307.	0.6	139
640	Improved salt tolerance and seed cotton yield in cotton (Gossypium hirsutum L.) by transformation with betA gene for glycinebetaine synthesis. Euphytica, 2011, 181, 1-16.	0.6	33
641	Alleviation of salinity stress in broccoli using foliar urea or methyl-jasmonate: analysis of growth, gas exchange, and isotope composition. Plant Growth Regulation, 2011, 63, 55-62.	1.8	57
642	Effects of salt and osmotic stresses on free polyamine content and expression of polyamine biosynthetic genes in Vitis vinifera. Biologia Plantarum, 2011, 55, 340-344.	1.9	36
643	Effects of NaCl on the response of Mesembryanthemum crystallinum callus to Botrytis cinerea infection. Biologia Plantarum, 2011, 55, 423-430.	1.9	11
644	Overproduction of a rice aldo–keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification. Plant Molecular Biology, 2011, 75, 399-412.	2.0	122
645	Cloning and functional characterization of a cation–chloride cotransporter gene OsCCC1. Plant Molecular Biology, 2011, 75, 567-578.	2.0	66
646	Gene Expression Profiles in Response to Salt Stress in Hibiscus Tiliaceus. Plant Molecular Biology Reporter, 2011, 29, 609-617.	1.0	33
647	Expression Profile of Early Responsive Genes Under Salt Stress in Upland Cotton (Gossypium hirsutum) Tj ETQq1	1 0.78431 1.0	.4 _{.7} gBT /Ov€
648	Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHX1) from Halostachys caspica. Molecular Biology Reports, 2011, 38, 1889-1899.	1.0	66
649	Proteomic response of barley leaves to salinity. Molecular Biology Reports, 2011, 38, 5055-5063.	1.0	72

#	Article	IF	CITATIONS
650	Analysis of gene expression by ESTs from suppression subtractive hybridization library in Chenopodium album L. under salt stress. Molecular Biology Reports, 2011, 38, 5285-5295.	1.0	11
651	Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L Plant Cell, Tissue and Organ Culture, 2011, 104, 41-49.	1.2	90
652	A DREB gene from the xero-halophyte Atriplex halimus is induced by osmotic but not ionic stress and shows distinct differences from glycophytic homologues. Plant Cell, Tissue and Organ Culture, 2011, 106, 191-206.	1.2	29
653	Novel salt and alkali tolerant neotropical basidiomycetes for dye decolorisation in simulated textile effluent. World Journal of Microbiology and Biotechnology, 2011, 27, 2665-2673.	1.7	11
654	Investigations on N-rich protein (NRP) of Arabidopsis thaliana under different stress conditions. Plant Physiology and Biochemistry, 2011, 49, 293-302.	2.8	21
655	Differentially expressed genes in sensitive and tolerant rice varieties in response to salt-stress. Journal of Plant Biochemistry and Biotechnology, 2011, 20, 149-154.	0.9	22
656	Amiloride Reduces Sodium Transport and Accumulation in the Succulent Xerophyte Zygophyllum xanthoxylum Under Salt Conditions. Biological Trace Element Research, 2011, 139, 356-367.	1.9	19
657	miR171 Family Members are Involved in Drought Response in Solanum tuberosum. Journal of Plant Biology, 2011, 54, 43-48.	0.9	66
658	Identification of miR172 family members and their putative targets responding to drought stress in Solanum tuberosum. Genes and Genomics, 2011, 33, 105-110.	0.5	26
659	Intraspecific diversity: adaptive differentiation of Picea mongolica W. D. Xu ecotypes. Forestry Studies in China, 2011, 13, 189-197.	0.4	1
660	Physiological changes and essential oil composition of clary sage (Salvia sclarea L.) rosette leaves as affected by salinity. Acta Physiologiae Plantarum, 2011, 33, 153-162.	1.0	39
661	Physiological aspects of tolerance in Atriplex halimus L. to NaCl and drought. Acta Physiologiae Plantarum, 2011, 33, 547-557.	1.0	37
662	Analysis of salinity effects on basil leaf surface area, photosynthetic activity, and growth. Acta Physiologiae Plantarum, 2011, 33, 823-833.	1.0	30
663	Influence of NaCl-salinity on growth, photosynthesis, water relations and solute accumulation in Phragmites australis. Acta Physiologiae Plantarum, 2011, 33, 963-971.	1.0	44
664	Presoaking with hemin improves salinity tolerance during wheat seed germination. Acta Physiologiae Plantarum, 2011, 33, 1173-1183.	1.0	30
665	Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum Mill.). Acta Physiologiae Plantarum, 2011, 33, 1199-1209.	1.0	91
666	Physio-biochemical analysis and transcript profiling of Saccharum officinarum L. submitted to salt stress. Acta Physiologiae Plantarum, 2011, 33, 1411-1424.	1.0	13
667	Osmotic adjustment, water relations and growth attributes of the xero-halophyte Reaumuria vermiculata L. (Tamaricaceae) in response to salt stress. Acta Physiologiae Plantarum, 2011, 33, 1425-1433.	1.0	11

#	Article	IF	CITATIONS
668	Growth stimulation and inhibition by salt in relation to Na+ manipulating genes in xero-halophyte Atriplex halimus L Acta Physiologiae Plantarum, 2011, 33, 1769-1784.	1.0	16
669	Case study of a biological control: Geobacillus caldoxylosilyticus (IRD) contributes to alleviate salt stress in maize (Zea mays L.) plants. Acta Physiologiae Plantarum, 2011, 33, 2289-2299.	1.0	13
670	Differential responses of two rice varieties to salt stress. Plant Biotechnology Reports, 2011, 5, 89-103.	0.9	74
671	Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC Genomics, 2011, 12, 384.	1.2	105
672	Coordination of carbon fixation and nitrogen metabolism in <i>Salicornia europaea</i> under salinity: Comparative proteomic analysis on chloroplast proteins. Proteomics, 2011, 11, 4346-4367.	1.3	72
673	Salinity impact on fruit yield, essential oil composition and antioxidant activities of Coriandrum sativum fruit extracts. Food Chemistry, 2011, 124, 221-225.	4.2	103
674	Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Phytochemistry, 2011, 72, 1180-1191.	1.4	112
675	Salt Stress–Induced Disassembly of <i>Arabidopsis</i> Cortical Microtubule Arrays Involves 26S Proteasome–Dependent Degradation of SPIRAL1 Â. Plant Cell, 2011, 23, 3412-3427.	3.1	115
676	Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling and Behavior, 2011, 6, 175-191.	1.2	343
677	Involvement of biotechnology in climate change adaptation and mitigation: Improving agricultural yield and food security. International Journal for Biotechnology and Molecular Biology Research, 2011, 2, .	0.3	3
679	BnHO1, a haem oxygenase-1 gene from Brassica napus, is required for salinity and osmotic stress-induced lateral root formation. Journal of Experimental Botany, 2011, 62, 4675-4689.	2.4	61
680	Plant Responses to Saline and Sodic Conditions. , 2011, , 169-205.		32
681	Root K+ Acquisition in Plants: The Arabidopsis thaliana Model. Plant and Cell Physiology, 2011, 52, 1603-1612.	1.5	154
682	Ameliorative Effect of Foliar Nutrient Supply on Growth, Inorganic Ions, Membrane Permeability, and Leaf Relative Water Content of Physalis Plants under Salinity Stress. Communications in Soil Science and Plant Analysis, 2011, 42, 408-423.	0.6	12
683	Mapping Salinity Tolerance during Arabidopsis thaliana Germination and Seedling Growth. PLoS ONE, 2011, 6, e22832.	1.1	66
684	Enhancement of Salinity Tolerance during Rice Seed Germination by Presoaking with Hemoglobin. International Journal of Molecular Sciences, 2011, 12, 2488-2501.	1.8	47
685	The impact of heat and water stress conditions on the growth of the biofuel plantJatropha curcas. International Journal of Environmental Studies, 2012, 69, 273-288.	0.7	21
686	Stress-Induced GSK3 Regulates the Redox Stress Response by Phosphorylating Glucose-6-Phosphate Dehydrogenase in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 3380-3392.	3.1	151

#	Article	IF	CITATIONS
687	Effects of seed vernalisation and photoperiod on flowering induction in the halophyte Thellungiella halophila. Australian Journal of Botany, 2012, 60, 743.	0.3	19
688	Molecular Cloning and Identification of Genes Encoding Eukaryotic Initiation Factor Family 1 (LcelF1,) Tj ETQq1	1 0.784314	l rgBT /Overle
689	Transcriptional profiling analysis in Populus yunnanensis provides insights into molecular mechanisms of sexual differences in salinity tolerance. Journal of Experimental Botany, 2012, 63, 3709-3726.	2.4	43
690	<i>Paxillus involutus</i> Strains MAJ and NAU Mediate K+/Na+ Homeostasis in Ectomycorrhizal <i>Populus</i> × <i>canescens</i> under Sodium Chloride Stress Â. Plant Physiology, 2012, 159, 1771-1786.	2.3	69
691	Effect of Salt Stress on Growth and Chlorophyll Content of Some Cultivated Cotton Varieties Grown in Syria. Communications in Soil Science and Plant Analysis, 2012, 43, 1976-1983.	0.6	20
692	Molecular characterisation of the Cu/Zn superoxide dismutase gene (ZjSOD1) induced by salt stress inZoysia japonica. Journal of Horticultural Science and Biotechnology, 2012, 87, 640-646.	0.9	2
693	Comparison of inorganic solute accumulation in shoots, radicles and cotyledons of <i>Vicia cracca</i> during the seedling stage under NaCl stress. Soil Science and Plant Nutrition, 2012, 58, 24-31.	0.8	4
694	<i>In vitro</i> selection of salt-tolerant <i>Ailanthus altissima</i> Swingle. Forest Science and Technology, 2012, 8, 16-20.	0.3	0
695	The LysM Receptor-Like Kinase LysM RLK1 Is Required to Activate Defense and Abiotic-Stress Responses Induced by Overexpression of Fungal Chitinases in Arabidopsis Plants. Molecular Plant, 2012, 5, 1113-1124.	3.9	51
696	Life at the extreme: lessons from the genome. Genome Biology, 2012, 13, .	3.8	53
697	Halophytes as a source of genes for abiotic stress tolerance. Journal of Plant Biochemistry and Biotechnology, 2012, 21, 63-67.	0.9	16
698	Salinity-induced changes in protein expression in the halophytic plant Nitraria sphaerocarpa. Journal of Proteomics, 2012, 75, 5226-5243.	1.2	25
699	Identification of QTLs with main, epistatic and QTLÂ×Âenvironment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Theoretical and Applied Genetics, 2012, 125, 807-815.	1.8	122
700	Salt Stress-induced Responses in Growth and Metabolism in Callus Cultures and Differentiating In Vitro Shoots of Indian Ginseng (Withania somnifera Dunal). Journal of Plant Growth Regulation, 2012, 31, 537-548.	2.8	43
701	Molecular characterization of a novel AP2 transcription factor ThWIND1-L from Thellungiella halophila. Plant Cell, Tissue and Organ Culture, 2012, 110, 423-433.	1.2	15
703	Isolation of auxin- and 1-aminocyclopropane-1-carboxylic acid deaminase-producing bacterium and its effect on pepper growth under saline stress. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55, 607-612.	0.9	5
704	Wheat Drought-Responsive Grain Proteome Analysis by Linear and Nonlinear 2-DE and MALDI-TOF Mass Spectrometry. International Journal of Molecular Sciences, 2012, 13, 16065-16083.	1.8	75
705	Transcriptome Characterization and Sequencing-Based Identification of Salt-Responsive Genes in Millettia pinnata, a Semi-Mangrove Plant. DNA Research, 2012, 19, 195-207.	1.5	68

#	Article	IF	CITATIONS
706	Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Tree Physiology, 2012, 32, 1378-1388.	1.4	63
707	Tetraploid Black Locust (Robinia PseudoacaciaL.) Increased Salt Tolerance by Activation of the Antioxidant System. Biotechnology and Biotechnological Equipment, 2012, 26, 3351-3358.	0.5	12
708	An Insight into the Role of Salicylic Acid and Jasmonic Acid in Salt Stress Tolerance. , 2012, , 277-300.		54
709	TsHKT1;2, a HKT1 Homolog from the Extremophile Arabidopsis Relative <i>Thellungiella salsuginea</i> , Shows K+ Specificity in the Presence of NaCl Â. Plant Physiology, 2012, 158, 1463-1474.	2.3	161
710	PIN2 is required for the adaptation of Arabidopsis roots to alkaline stress by modulating proton secretion. Journal of Experimental Botany, 2012, 63, 6105-6114.	2.4	92
711	Changes in flavonoids secreted by Phaseolus vulgaris roots in the presence of salt and the plant growth-promoting rhizobacterium Chryseobacterium balustinum. Applied Soil Ecology, 2012, 57, 31-38.	2.1	43
712	SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. Journal of Plant Physiology, 2012, 169, 255-261.	1.6	170
713	Organ-dependent oxylipin signature in leaves and roots of salinized tomato plants (Solanum) Tj ETQq1 1 0.7843	14 _{.rg} BT /C)verlock 10 T
714	Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. Journal of Proteomics, 2012, 75, 4139-4150.	1.2	90
715	Mechanisms of Plant Salt Response: Insights from Proteomics. Journal of Proteome Research, 2012, 11, 49-67.	1.8	340
716	Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-Pconfers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biology, 2012, 12, 107.	1.6	131
717	Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Science, 2012, 10, 25.	0.7	89
718	A novel role for RAD54: this host protein modulates geminiviral DNA replication. FASEB Journal, 2012, 26, 1142-1160.	0.2	49
719	Transcription Factors and Genes in Abiotic Stress. , 2012, , 317-357.		7
720	Invasive Knotweeds are Highly Tolerant to Salt Stress. Environmental Management, 2012, 50, 1027-1034.	1.2	24
721	Transgenic plants for abiotic stress tolerance: current status. Archives of Agronomy and Soil Science, 2012, 58, 693-721.	1.3	31
722	Overexpression of SOS Genes Enhanced Salt Tolerance in Sweetpotato. Journal of Integrative Agriculture, 2012, 11, 378-386.	1.7	23
723	Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide - Biology and Chemistry, 2012, 27, 210-218.	1.2	177

#	Article	IF	Citations
724	Microarray and suppression subtractive hybridization analyses of gene expression in hybrid poplar (Populus albaÂ×ÂPopulus tremula var. glandulosa) cell suspension cultures after exposure to NaCl. Plant Physiology and Biochemistry, 2012, 58, 151-158.	2.8	5
725	Calcium Signalling in Plant Cells Under Environmental Stress. , 2012, , 325-360.		18
728	Salt tolerance of a cash crop halophyte Suaeda fruticosa: biochemical responses to salt and exogenous chemical treatments. Acta Physiologiae Plantarum, 2012, 34, 2331-2340.	1.0	71
729	AtSIA1, an ABC1-like kinase, regulates salt response in Arabidopsis. Biologia (Poland), 2012, 67, 1107-1111.	0.8	10
730	Physiological and molecular aspects of salt stress in plants. Cytology and Genetics, 2012, 46, 302-318.	0.2	112
731	Phytohormones and Abiotic Stress Tolerance in Plants. , 2012, , .		87
733	Genome-Wide Identification and Analysis of Grape Aldehyde Dehydrogenase (ALDH) Gene Superfamily. PLoS ONE, 2012, 7, e32153.	1.1	91
734	HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds. PLoS ONE, 2012, 7, e35764.	1.1	30
735	High Tolerance to Salinity and Herbivory Stresses May Explain the Expansion of Ipomoea Cairica to Salt Marshes. PLoS ONE, 2012, 7, e48829.	1.1	19
736	Phytotoxicity by Lead as Heavy Metal Focus on Oxidative Stress. Journal of Botany, 2012, 2012, 1-10.	1.2	36
737	Legacy and Emerging Contaminants in Plants: From the Gene to the Field. Journal of Botany, 2012, 2012, 1-2.	1.2	2
738	Do Halophytes Really Require Salts for Their Growth and Development? An Experimental Approach. Notulae Scientia Biologicae, 2012, 4, 23-29.	0.1	47
739	Calcium regulates K ⁺ /Na ⁺ homeostasis in rice (Oryza) Tj ETQq0 0	0 1gBT /O	verlock 10 Tf
740	Stress-tolerant Wild Plants: a Source of Knowledge and Biotechnological Tools for the Genetic Improvement of Stress Tolerance in Crop Plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2012, 40, 323.	0.5	13
741	Regulation of Gene Expression in Response to Abiotic Stress in Plants. , 2012, , .		6
742	Characterization of a Novel Y2K-type Dehydrin VrDhn1 from Vigna radiata. Plant and Cell Physiology, 2012, 53, 930-942.	1.5	46
743	Abiotic Stress Responses in Plants: Present and Future. , 2012, , 1-19.		111
744	Construction and characterization of a full-length cDNA library and identification of genes involved in salinity stress in wild eggplant (Solanum torvum Swartz). Horticulture Environment and Biotechnology, 2012, 53, 158-166.	0.7	4

		LPORT	
#	Article	IF	Citations
745	The pathway of auxin biosynthesis in plants. Journal of Experimental Botany, 2012, 63, 2853-2872.	2.4	463
746	Recent progress of salinity tolerance research in plants. Russian Journal of Genetics, 2012, 48, 497-505.	0.2	26
747	Role of microRNAs in Plant Adaptation to Environmental Stresses. Signaling and Communication in Plants, 2012, , 219-232.	0.5	5
748	Regulation of metabolomics in Atriplex halimus growth under salt and drought stress. Plant Growth Regulation, 2012, 67, 281-304.	1.8	51
749	Molecular characterization and expression analysis of sodium pump genes in the marine red alga Porphyra yezoensis. Molecular Biology Reports, 2012, 39, 7973-7980.	1.0	29
750	Effect of salt treatment on the glucosinolate-myrosinase system in Thellungiella salsuginea. Plant and Soil, 2012, 355, 363-374.	1.8	30
751	Varietal differences of quinoa's tolerance to saline conditions. Plant and Soil, 2012, 357, 117-129.	1.8	149
752	An Isopentyl Transferase Gene Driven by the Stress-Inducible rd29A Promoter Improves Salinity Stress Tolerance in Transgenic Tobacco. Plant Molecular Biology Reporter, 2012, 30, 519-528.	1.0	40
754	Identification and characterization of differentially expressed genes in the halophyte Halostachys caspica under salt stress. Plant Cell, Tissue and Organ Culture, 2012, 110, 1-12.	1.2	10
755	Ionic homeostasis disturbance is involved in tomato cell death induced by NaCl and salicylic acid. In Vitro Cellular and Developmental Biology - Plant, 2012, 48, 377-382.	0.9	16
756	ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Reports, 2012, 31, 1473-1484.	2.8	121
757	Alleviation of salt stress in lemongrass by salicylic acid. Protoplasma, 2012, 249, 709-720.	1.0	48
758	Improving the Performance of Wheat by Seed Priming Under Saline Conditions. Journal of Agronomy and Crop Science, 2012, 198, 38-45.	1.7	134
759	Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum) Tj ETQq1 1 0.	784314 rg 2.5	BT /Qyerlock
760	The mitigation effects of exogenous melatonin on salinityâ€induced stress in <i>Malus hupehensis</i> . Journal of Pineal Research, 2012, 53, 298-306.	3.4	444
761	Polyphenol Composition and Antioxidant Activity of Cumin (<i>Cuminum Cyminum</i> L.) Seed Extract Under Drought. Journal of Food Science, 2012, 77, C734-9.	1.5	37
762	Overexpression of Suaeda salsa stroma ascorbate peroxidase in Arabidopsis chloroplasts enhances salt tolerance of plants. South African Journal of Botany, 2012, 78, 235-245.	1.2	71
763	Sodium instead of potassium and chloride is an important macronutrient to improve leaf succulence and shoot development for halophyte Sesuvium portulacastrum. Plant Physiology and Biochemistry, 2012, 51, 53-62.	2.8	66

#	Article	IF	CITATIONS
764	Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiology and Biochemistry, 2012, 51, 47-52.	2.8	128
765	The tolerance of Jatropha curcas seedlings to NaCl: An ecophysiological analysis. Plant Physiology and Biochemistry, 2012, 54, 34-42.	2.8	50
766	Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiology and Biochemistry, 2012, 56, 62-71.	2.8	97
767	Overexpression of <i>SISOS2</i> (<i>SICIPK24</i>) confers salt tolerance to transgenic tomato. Plant, Cell and Environment, 2012, 35, 1467-1482.	2.8	101
768	Cross‧pecies Alleviation of Biotic and Abiotic Stresses by the Endophyte <i>Pseudomonas aeruginosa</i> PW09. Journal of Phytopathology, 2012, 160, 532-539.	0.5	60
769	Identification and characterization of a salt stress-inducible zinc finger protein from Festuca arundinacea. BMC Research Notes, 2012, 5, 66.	0.6	26
770	Salinity Effects on Germination and Plant Growth of Prairie Cordgrass and Switchgrass. Bioenergy Research, 2012, 5, 225-235.	2.2	69
771	Sodium plays a more important role than potassium and chloride in growth of Salicornia europaea. Acta Physiologiae Plantarum, 2012, 34, 503-513.	1.0	32
772	Physiological responses to salt stress of T2 alfalfa progenies carrying a transgene for betaine aldehyde dehydrogenase. Plant Cell, Tissue and Organ Culture, 2012, 108, 191-199.	1.2	18
773	Contribution of inorganic cations and organic compounds to osmotic adjustment in root cultures of two Centaurium species differing in tolerance to salt stress. Plant Cell, Tissue and Organ Culture, 2012, 108, 389-400.	1.2	17
774	Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant and Soil, 2012, 351, 107-119.	1.8	277
775	Ectopic expression of a LEA protein gene TsLEA1 from Thellungiella salsuginea confers salt-tolerance in yeast and Arabidopsis. Molecular Biology Reports, 2012, 39, 4627-4633.	1.0	24
776	Sesuvium portulacastrum, a plant for drought, salt stress, sand fixation, food and phytoremediation. A review. Agronomy for Sustainable Development, 2013, 33, 329-348.	2.2	67
777	Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions. Plant and Soil, 2013, 370, 175-185.	1.8	43
778	A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant and Soil, 2013, 366, 333-349.	1.8	63
779	Molecular Characterization of Chenopodium album Chloroplast Small Heat Shock Protein and Its Expression in Response to Different Abiotic Stresses. Plant Molecular Biology Reporter, 2013, 31, 1230-1241.	1.0	19
780	A Novel ABA-Responsive TaSRHP Gene from Wheat Contributes to Enhanced Resistance to Salt Stress in Arabidopsis thaliana. Plant Molecular Biology Reporter, 2013, 31, 791-801.	1.0	39
781	Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant and Soil, 2013, 370, 47-57.	1.8	94

#	Article	IF	Citations
782	Simultaneous Determination of Key Osmoregulants in Halophytes Using HPLC–ELSD. Chromatographia, 2013, 76, 1125-1130.	0.7	16
783	Characterization of physiological responses of two alfalfa half-sib families with improved salt tolerance. Plant Physiology and Biochemistry, 2013, 71, 103-111.	2.8	41
784	Plant Acclimation to Environmental Stress. , 2013, , .		13
785	Salt-stress induced changes in the leaf proteome of diploid and tetraploid mandarins with contrasting Na+ and Clâ [°] accumulation behaviour. Journal of Plant Physiology, 2013, 170, 1101-1112.	1.6	51
786	Salt Stress in Plants. , 2013, , .		50
787	Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genomics, 2013, 14, 433.	1.2	179
788	Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genomics, 2013, 14, 29.	1.2	147
789	Different evolutionary histories of two cation/proton exchanger gene families in plants. BMC Plant Biology, 2013, 13, 97.	1.6	28
790	Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach. Proteomics, 2013, 13, 2046-2062.	1.3	55
791	Identification of Traits, Genes, and Crops of the Future. , 2013, , 27-177.		1
792	Isolation and functional characterization of Salt overly sensitive 1 (SOS1) gene promoter from Salicornia brachiata. Biologia Plantarum, 2013, 57, 465-473.	1.9	14
793	Physiological mechanisms involved in the recovery of euonymus and laurustinus subjected to saline waters. Agricultural Water Management, 2013, 128, 131-139.	2.4	26
794	Comparative Metabolomics in <i>Glycine max</i> and <i>Glycine soja</i> under Salt Stress To Reveal the Phenotypes of Their Offspring. Journal of Agricultural and Food Chemistry, 2013, 61, 8711-8721.	2.4	88
795	Salt leaching leads to drier soils in disturbed semiarid woodlands of central Argentina. Oecologia, 2013, 171, 1003-1012.	0.9	23
796	Molecular characterization of cold stress-related transcription factors, CaEREBP-C1, -C2, -C3, and CaWRKY1A from Capsicum annuum L Journal of Plant Biology, 2013, 56, 106-114.	0.9	3
797	Factors involved in the rise of phosphoenolpyruvate carboxylase-kinase activity caused by salinity in sorghum leaves. Planta, 2013, 237, 1401-1413.	1.6	31
798	Ecophysiological and genomic analysis of salt tolerance of Cakile maritima. Environmental and Experimental Botany, 2013, 92, 64-72.	2.0	25
799	Salt stress, signalling and redox control in seeds. Functional Plant Biology, 2013, 40, 848.	1.1	33

ARTICLE IF CITATIONS # Balancing salinity stress responses in halophytes and non-halophytes: a comparison between 800 1.1 63 Thellungiella and Arabidopsis thaliana. Functional Plant Biology, 2013, 40, 819. The integration of activity in saline environments: problems and perspectives. Functional Plant 79 1.1 Biology, 2013, 40, 759. Molecular characterization of VvSDIR1 from Vitis vinifera and its functional analysis by heterologous 802 1.0 14 expression in Nicotiana tabacum. Protoplasma, 2013, 250, 565-576. Dose-effect correlation of chloride de-icing salt on Euonymus japonicus. Forest Science and Practice, 2013, 15, 238-245. Effects of nitric oxide on the germination of cucumber seeds and antioxidant enzymes under salinity 804 1.0 49 stress. Acta Physiologiae Plantarum, 2013, 35, 2707-2719. Effect of sodium chloride-induced stress on growth, proline, glycine betaine accumulation, antioxidative defence and bacoside A content in in vitro regenerated shoots of Bacopa monnieri (L.) Pennell. Acta Physiologiae Plantarum, 2013, 35, 1943-1953. 1.0 Changes in photosynthesis, chlorophyll fluorescence, and antioxidant enzymes of mulberry (Morus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 806

807	Physiological and Biochemical Changes of IrlVHA-c gene Transgenic Tobacco Seedlings and Self-crossed Progeny Under NaHCO3 Stress. The Journal of Northeast Agricultural University, 2013, 20, 5-13.	0.1	0
808	Effects of salinity on seed germination and early seedling growth ofÂthe Mediterranean seagrass Posidonia oceanica (L.) Delile. Estuarine, Coastal and Shelf Science, 2013, 119, 64-70.	0.9	42
809	Antioxidant enzymes activity in leaves of salt stressed Excoecaria agallocha L Asian Pacific Journal of Reproduction, 2013, 2, 304-308.	0.2	1
810	Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Research, 2013, 144, 113-118.	2.3	209
811	Assessment of salt tolerance of Nasturtium officinale R. Br. using physiological and biochemical parameters. Acta Physiologiae Plantarum, 2013, 35, 3427-3436.	1.0	5
812	Dynamics of Chloroplast Proteome in Salt-Stressed Mangrove <i>Kandelia candel</i> (L.) Druce. Journal of Proteome Research, 2013, 12, 5124-5136.	1.8	82
813	Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. South African Journal of Botany, 2013, 85, 1-9.	1.2	95
814	Lipid profiling and tolerance to low-temperature stress in Thellungiella salsuginea in comparison with Arabidopsis thaliana. Biologia Plantarum, 2013, 57, 149-153.	1.9	43
815	Overexpression of a partial fragment of the salt-responsive gene OsNUC1 enhances salt adaptation in transgenic Arabidopsis thaliana and rice (Oryza sativa L.) during salt stress. Plant Science, 2013, 213, 67-78.	1.7	19
816	Flower Development under Drought Stress: Morphological and Transcriptomic Analyses Reveal Acute Responses and Long-Term Acclimation in <i>Arabidopsis</i> . Plant Cell, 2013, 25, 3785-3807.	3.1	176
817	Genomic insights into salt adaptation in a desert poplar. Nature Communications, 2013, 4, 2797.	5.8	286

#	Article	IF	CITATIONS
818	Ionomic Responses and Correlations Between Elements and Metabolites Under Salt Stress in Wild and Cultivated Barley. Plant and Cell Physiology, 2013, 54, 1976-1988.	1.5	126
819	Enhanced salt resistance in apple plants overexpressing a Malus vacuolar Na+/H+ antiporter gene is associated with differences in stomatal behavior and photosynthesis. Plant Physiology and Biochemistry, 2013, 70, 164-173.	2.8	37
823	Genome-wide identification and characterisation of F-box family in maize. Molecular Genetics and Genomics, 2013, 288, 559-577.	1.0	63
824	Loss of AtCRK1 gene function in Arabidopsis thaliana decreases tolerance to salt. Journal of Plant Biology, 2013, 56, 306-314.	0.9	17
825	Genome-wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response. BMC Plant Biology, 2013, 13, 180.	1.6	66
826	Cytoprotective and antioxidant effects of the edible halophyte Sarcocornia perennis L. (swampfire) against lead-induced toxicity in renal cells. Ecotoxicology and Environmental Safety, 2013, 95, 44-51.	2.9	41
827	Transcriptome alteration in a rice introgression line with enhanced alkali tolerance. Plant Physiology and Biochemistry, 2013, 68, 111-117.	2.8	7
828	Influence of seed nitrogen content and biofertilizer priming on wheat germination in salinity stress conditions. Archives of Agronomy and Soil Science, 2013, 59, 791-801.	1.3	7
829	Comparison of ionic concentration, organic solute accumulation and osmotic adaptation in Kentucky bluegrass and Tall fescue under NaCl stress. Soil Science and Plant Nutrition, 2013, 59, 168-179.	0.8	12
830	Effects of Salinity on Ion Transport, Water Relations and Oxidative Damage. , 2013, , 89-114.		19
831	Potentiality of Sulphur-Containing Compounds in Salt Stress Tolerance. , 2013, , 443-472.		26
832	Transcriptome de novo assembly from next-generation sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae). Heredity, 2013, 110, 181-193.	1.2	50
833	Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environmental and Experimental Botany, 2013, 92, 144-153.	2.0	239
834	Salt crystal deposition as a reversible mechanism to enhance photoprotection in black mangrove. Trees - Structure and Function, 2013, 27, 229-237.	0.9	17
835	Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization. Plant Cell Reports, 2013, 32, 139-148.	2.8	42
836	Germination and ROS detoxification in bell pepper (Capsicum annuum L.) under NaCl stress and treatment with microalgae extracts. Protoplasma, 2013, 250, 33-42.	1.0	50
837	Sensitivity of Translation Initiation Factor elF1 as a Molecular Target of Salt Toxicity to Sodic-Alkaline Stress in the Halophytic Grass Leymus chinensis. Biochemical Genetics, 2013, 51, 101-118.	0.8	15
838	Physiological responses and tolerance to NaCl stress in different biotypes of Malus prunifolia. Euphytica, 2013, 189, 101-109.	0.6	23

#	Article	IF	CITATIONS
839	NaCl-Induced Changes of Ion Fluxes in Roots of Transgenic Bacillus thuringiensis (Bt) Cotton (Gossypium hirsutum L.). Journal of Integrative Agriculture, 2013, 12, 436-444.	1.7	11
840	Postharvest water quality affects vase life of cut Dendranthema, Dianthus, Helianthus, and Zinnia. Scientia Horticulturae, 2013, 164, 277-286.	1.7	5
841	Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract. Scientia Horticulturae, 2013, 162, 63-70.	1.7	124
842	Overexpression of tomato enhancer of SOS3-1 (LeENH1) in tobacco enhanced salinity tolerance by excluding Na+ from the cytosol. Plant Physiology and Biochemistry, 2013, 70, 150-158.	2.8	18
843	EFFECT OF PACLOBUTRAZOL AND PUTRESCINE ON ANTIOXIDANT ENZYMES ACTIVITY AND NUTRIENTS CONTENT IN SALT TOLERANT CITRUS ROOTSTOCK SOUR ORANGE UNDER SODIUM CHLORIDE STRESS. Journal of Plant Nutrition, 2013, 36, 1765-1779.	0.9	7
844	Comparative Proteomics of Thellungiella halophila Leaves from Plants Subjected to Salinity Reveals the Importance of Chloroplastic Starch and Soluble Sugars in Halophyte Salt Tolerance. Molecular and Cellular Proteomics, 2013, 12, 2174-2195.	2.5	136
845	Growing floricultural crops with brackish water. Environmental and Experimental Botany, 2013, 92, 165-175.	2.0	73
846	Molecular cloning and the expression of the Na+/H+antiporter in the monocot halophyte Leptochloa fusca (L.) Kunth. Njas - Wageningen Journal of Life Sciences, 2013, 64-65, 87-93.	7.9	14
847	Effect of genotype and exogenous application of glycinebetaine on antioxidant enzyme activity in native gels of 7-day-old salt-stressed tomato (Solanum lycopersicum) seedlings. Scientia Horticulturae, 2013, 162, 106-116.	1.7	19
848	Biotechnology for mechanisms that counteract salt stress in extremophile species: a genome-based view. Plant Biotechnology Reports, 2013, 7, 27-37.	0.9	24
849	Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiology and Biochemistry, 2013, 65, 61-66.	2.8	48
850	Physiological changes during development of rice (Oryza sativa L.) varieties differing in salt tolerance under saline field condition. Plant and Soil, 2013, 370, 89-101.	1.8	22
851	New allelic variants found in key rice saltâ€ŧolerance genes: an association study. Plant Biotechnology Journal, 2013, 11, 87-100.	4.1	120
852	Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Molecular Biology Reports, 2013, 40, 3281-3290.	1.0	104
853	Plasma Membrane Electron Pathways and Oxidative Stress. Antioxidants and Redox Signaling, 2013, 18, 2163-2183.	2.5	39
854	Effect of zinc nutrition on salinity-induced oxidative damages in wheat genotypes differing in zinc deficiency tolerance. Acta Physiologiae Plantarum, 2013, 35, 881-889.	1.0	20
855	Enhancing Plant Productivity Under Salt Stress: Relevance of Poly-omics. , 2013, , 113-156.		61
856	Approaches to Improving Salt Tolerance in Maize. , 2013, , 261-281.		3

#	ARTICLE	IF	Citations
857 858	Salt Stress and MAPK Signaling in Plants. , 2013, , 157-173. Salinity-Induced Genes and Molecular Basis of Salt-Tolerant Strategies in Mangroves. , 2013, , 53-86.		5
859	Salt Tolerance in Cereals: Molecular Mechanisms and Applications. , 2013, , 133-154.		10
860	Physiological and Molecular Features of <i>Puccinellia tenuiflora</i> Tolerating Salt and Alkalineâ€Salt Stress. Journal of Integrative Plant Biology, 2013, 55, 262-276.	4.1	65
861	Plant Tissue Culture: A Useful Measure for the Screening of Salt Tolerance in Plants. , 2013, , 465-495.		2
862	Osmoprotectants: Potential for Crop Improvement Under Adverse Conditions. , 2013, , 197-232.		60
863	Proteomics reveal cucumber Spd-responses under normal condition and salt stress. Plant Physiology and Biochemistry, 2013, 67, 7-14.	2.8	54
864	EFFECTS OF SODIUM CHLORIDE ON PHYSIOLOGICAL ASPECTS OF <i>SALICORNIA PERSICA </i> GROWTH. Journal of Plant Nutrition, 2013, 36, 401-414.	0.9	17
865	EFFECT OF POTASSIUM NUTRITION ON SOLUTE ACCUMULATION, ION COMPOSITION AND YIELD OF MAIZE HYBRIDS GROWN UNDER SALINE CONDITIONS. Journal of Plant Nutrition, 2013, 36, 143-163.	0.9	3
866	Bioprospecting and Genetic Engineering of Mangrove Genes to Enhance Salinity Tolerance in Crop Plants. , 2013, , 385-456.		5
867	Soil salinity: A neglected factor in plant ecology and biogeography. Journal of Arid Environments, 2013, 92, 14-25.	1.2	190
868	Relationship between survival and yield related traits in Solanum pimpinellifolium under salt stress. Euphytica, 2013, 190, 215-228.	0.6	49
869	Water quality effects on postharvest performance of cut calla, hydrangea, and snapdragon. Scientia Horticulturae, 2013, 153, 26-33.	1.7	10
870	Agrobacterium rhizogenes transformed soybean roots differ in their nodulation and nitrogen fixation response to genistein and salt stress. World Journal of Microbiology and Biotechnology, 2013, 29, 1327-1339.	1.7	7
871	New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61, 167.	0.3	2,818
872	Salt Tolerance in Rice: Present Scenario and Future Prospects. , 2013, , 203-211.		1
873	Role of Polyamines in Alleviating Salt Stress. , 2013, , 355-379.		11
874	Role of Nitric Oxide in Improving Plant Resistance Against Salt Stress. , 2013, , 413-424.		7

#	Article	IF	CITATIONS
875	Expression analysis of LeNHX1 gene in mycorrhizal tomato under salt stress. Journal of Microbiology, 2013, 51, 100-104.	1.3	18
876	Effects of Increasing Salinity Stress and Decreasing Water Availability on Ecophysiological Traits of Quinoa (<i><scp>C</scp>henopodium quinoa </i> <scp>W</scp> illd.) Grown in a <scp>M</scp> editerraneanâ€Type Agroecosystem. Journal of Agronomy and Crop Science, 2013, 199, 229-240.	1.7	66
877	MicroRNAs and Their Role in Salt Stress Response in Plants. , 2013, , 15-46.		17
878	Photosynthesis in Nature: A New Look. Environmental Science and Engineering, 2013, , 561-686.	0.1	6
879	Clobal identification of miRNAs and targets in Populus euphratica under salt stress. Plant Molecular Biology, 2013, 81, 525-539.	2.0	138
880	Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes?. Functional Plant Biology, 2013, 40, 805.	1.1	92
881	Seed germination, plant growth and physiological responses of <i>Salsola ikonnikovii</i> to short-term NaCl stress. Plant Biosystems, 2013, 147, 285-297.	0.8	28
882	Effects of silicon on plant resistance to environmental stresses: review. International Agrophysics, 2013, 27, 225-232.	0.7	81
883	Response of Sorghum to Abiotic Stresses: A Review. Journal of Agronomy and Crop Science, 2013, 199, 264-274.	1.7	109
884	Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 2013, 40, 832.	1.1	247
885	Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environmental and Experimental Botany, 2013, 86, 76-85.	2.0	229
886	Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environmental and Experimental Botany, 2013, 86, 60-69.	2.0	86
887	Nodule carbohydrate metabolism and polyols involvement in the response of Medicago sativa to salt stress. Environmental and Experimental Botany, 2013, 85, 43-49.	2.0	29
888	Differential response of potatoes (Solanum tuberosum L.) to salinity in an arid environment and field performance of the seed tubers grown with fresh water in the following season. Agricultural Water Management, 2013, 116, 122-127.	2.4	21
889	Differentially Delayed Root Proteome Responses to Salt Stress in Sugar Cane Varieties. Journal of Proteome Research, 2013, 12, 5681-5695.	1.8	37
890	Overexpression of the AtSTK gene increases salt, PEG and ABA tolerance in Arabidopsis. Journal of Plant Biology, 2013, 56, 375-382.	0.9	8
891	The Role of Nitrogen Availability for the Salt-Tolerance of Two Different Varieties of Durum Wheat. Bulletin of Environmental Contamination and Toxicology, 2013, 91, 711-717.	1.3	11
892	Identification of early induced genes upon water deficit in potato cell cultures by cDNA-AFLP. Journal of Plant Research, 2013, 126, 169-178.	1.2	14

#	Article	IF	CITATIONS
893	Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis. Plant Physiology and Biochemistry, 2013, 71, 37-48.	2.8	37
894	Induced effect of Na ⁺ on ganoderic acid biosynthesis in static liquid culture of <i>Ganoderma lucidum</i> via calcineurin signal transduction. Biotechnology and Bioengineering, 2013, 110, 1913-1923.	1.7	42
895	Plasma membrane permeability as an indicator of salt tolerance in plants. Biologia Plantarum, 2013, 57, 1-10.	1.9	116
896	Mapping QTLs for Traits Related to Salinity Tolerance at Seedling Stage of Rice (<i>Oryza sativa</i> L): An Agrigenomics Study of an Iranian Rice Population. OMICS A Journal of Integrative Biology, 2013, 17, 242-251.	1.0	67
897	GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. Journal of Experimental Botany, 2013, 64, 1637-1647.	2.4	115
898	RICE SALT SENSITIVE3 Forms a Ternary Complex with JAZ and Class-C bHLH Factors and Regulates Jasmonate-Induced Gene Expression and Root Cell Elongation Â. Plant Cell, 2013, 25, 1709-1725.	3.1	107
899	Physiological and Proteomic Responses of Diploid and Tetraploid Black Locust (Robinia pseudoacacia) Tj ETQqO	0 0 ₁ .8BT /	Overlock 10 T 98
900	The Physiological Importance of Glucosinolates on Plant Response to Abiotic Stress in Brassica. International Journal of Molecular Sciences, 2013, 14, 11607-11625.	1.8	284
901	Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance. Journal of Experimental Botany, 2013, 64, 3045-3060.	2.4	110
902	Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. Journal of Experimental Botany, 2013, 64, 4225-4238.	2.4	91
903	Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. Journal of Plant Ecology, 2013, 6, 177-186.	1.2	47
904	Tissue Metabolic Responses to Salt Stress in Wild and Cultivated Barley. PLoS ONE, 2013, 8, e55431.	1.1	186
905	Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress. Tree Physiology, 2013, 33, 81-95.	1.4	56
906	Physiological Response of Halophyte (<i>Suaeda altissima</i> (L.) Pall.) and Glycophyte (<i>Spinacia oleracea</i> L.) to Salinity. American Journal of Plant Sciences, 2013, 04, 427-435.	0.3	21
907	Genome-Wide Survey on Genomic Variation, Expression Divergence, and Evolution in Two Contrasting Rice Genotypes under High Salinity Stress. Genome Biology and Evolution, 2013, 5, 2032-2050.	1.1	22
908	ABF transcription factors of <i>Thellungiella salsuginea</i> . Plant Signaling and Behavior, 2013, 8, e22672.	1.2	34

Agronomic and physiological responses of pearl millet ecotype (Pennisetum
glaucum (L.) R.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

910	Differential response of rice seedlings to salt stress in relation to antioxidant enzyme activity and membrane stability index. Archives of Agronomy and Soil Science, 2013, 59, 1359-1371.	1.3	9	
-----	---	-----	---	--

#	Article	IF	CITATIONS
911	Ectopic expression of wheat <i><scp>TaCIPK14</scp></i> , encoding a calcineurin Bâ€like proteinâ€interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiologia Plantarum, 2013, 149, 367-377.	2.6	73
912	The influence of genes regulating transmembrane transport of Na+ on the salt resistance of Aeluropus lagopoides. Functional Plant Biology, 2013, 40, 860.	1.1	40
913	The Tomato 14-3-3 Protein TFT4 Modulates H+ Efflux, Basipetal Auxin Transport, and the PKS5-J3 Pathway in the Root Growth Response to Alkaline Stress Â. Plant Physiology, 2013, 163, 1817-1828.	2.3	66
914	An S-Domain Receptor-Like Kinase, OsSIK2, Confers Abiotic Stress Tolerance and Delays Dark-Induced Leaf Senescence in Rice Â. Plant Physiology, 2013, 163, 1752-1765.	2.3	110
915	Salt-induced perturbation in growth, physiological attributes, activities of antioxidant enzymes and organic solutes in mungbean (<i>Vigna radiata</i> L) cultivars differing in salinity tolerance. Archives of Agronomy and Soil Science, 2013, 59, 1695-1712.	1.3	9
916	Characterization of Ion Contents and Metabolic Responses to Salt Stress of Different Arabidopsis AtHKT1;1 Genotypes and Their Parental Strains. Molecular Plant, 2013, 6, 350-368.	3.9	61
918	- Sensing and Molecular Responses to Low Temperature in Cyanobacteria. , 2013, , 174-189.		2
919	Cold Stress Signaling and Tolerance in Rice. , 2013, , 199-210.		15
920	<scp>A</scp> rabidopsis transcription factor <scp>WRKY</scp> 8 functions antagonistically with its interacting partner <scp>VQ</scp> 9 to modulate salinity stress tolerance. Plant Journal, 2013, 74, 730-745.	2.8	250
921	Phytotoxicity of Sodium Chloride Towards Common Duckweed (Lemna Minor L.) and Yellow Lupin (Lupinus Luteus L.). Archives of Environmental Protection, 2013, 39, 117-128.	1.1	22
922	Effects of NaCl addition to the growing medium on plant hydraulics and water relations of tomato. Functional Plant Biology, 2013, 40, 459.	1.1	9
923	Abiotic Stress in Plants. , 0, , .		2
924	Abiotic Stress Tolerance in Plants with Emphasizing on Drought and Salinity Stresses in Walnut. , 2013, , .		9
925	Identification of Salt-responsive Biosynthesis Genes in Rice via Microarray Analysis. Rice Research Open Access, 2013, 01, .	0.4	0
926	Identification of RAPD markers linked to salinity tolerance in wheat. African Journal of Biotechnology, 2013, 12, 2175-2181.	0.3	4
927	Genome and Transcriptome Analyses Provide Insight into the Euryhaline Adaptation Mechanism of Crassostrea gigas. PLoS ONE, 2013, 8, e58563.	1.1	145
928	Effect of Salt Stress on Growth, Na+ Accumulation and Proline Metabolism in Potato (Solanum) Tj ETQq0 0 0 rgB	T /Overloc 1.1	k 10 Tf 50 1 105

929	Global Transcriptome Profiling of Salicornia europaea L. Shoots under NaCl Treatment. PLoS ONE, 2013, 8, e65877.	1.1	38
-----	--	-----	----

#	Article	IF	CITATIONS
930	Two Wheat Glutathione Peroxidase Genes Whose Products Are Located in Chloroplasts Improve Salt and H2O2 Tolerances in Arabidopsis. PLoS ONE, 2013, 8, e73989.	1.1	75
931	Relationship between NaCl- and H2O2-Induced Cytosolic Ca2+ Increases in Response to Stress in Arabidopsis. PLoS ONE, 2013, 8, e76130.	1.1	28
932	Crop and medicinal plants proteomics in response to salt stress. Frontiers in Plant Science, 2013, 4, 8.	1.7	81
933	Effects of Salinity on the Development of Hydroponically Grown Borage (Borago officinalis L.) Male Gametophyte. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2013, 41, 65.	0.5	6
934	Sugar alcohols-induced oxidative metabolism in cotton callus culture. African Journal of Biotechnology, 2013, 12, 2191-2200.	0.3	0
935	Differential response of maize hybrid and its parental lines to salinity stress. Czech Journal of Genetics and Plant Breeding, 2013, 49, 9-15.	0.4	9
936	Enhancing Antioxidant Properties of Germinated Thai rice (Oryza sativa L.) cv. Kum Doi Saket with Salinity. Rice Research Open Access, 2013, 01, .	0.4	16
937	Use of Trace Elements and Halotherapy in the Treatment of Human Diseases. , 2014, , .		1
938	Effects of salt stress on growth seedlings of two landrace varieties of durum wheat from the Tunisian centre (Triticum durum). African Journal of Agricultural Research Vol Pp, 2014, 9, 2528-2539.	0.2	0
939	Effet de la salinité sur la croissance et la production de biomasse de deux provenances de <i>Jatropha curcas</i> L. cultivés en serre. International Journal of Biological and Chemical Sciences, 2014, 8, 46.	0.1	4
940	Epistatic Association Mapping for Alkaline and Salinity Tolerance Traits in the Soybean Germination Stage. PLoS ONE, 2014, 9, e84750.	1.1	33
941	Proteomic Analysis of Salt-Responsive Proteins in the Leaves of Mangrove Kandelia candel during Short-Term Stress. PLoS ONE, 2014, 9, e83141.	1.1	72
942	Wheat V-H+-ATPase Subunit Genes Significantly Affect Salt Tolerance in Arabidopsis thaliana. PLoS ONE, 2014, 9, e86982.	1.1	26
943	Comparative Ecophysiological Study of Salt Stress for Wild and Cultivated Soybean Species from the Yellow River Delta, China. Scientific World Journal, The, 2014, 2014, 1-13.	0.8	15
944	The Wheat E Subunit of V-Type H+-ATPase Is Involved in the Plant Response to Osmotic Stress. International Journal of Molecular Sciences, 2014, 15, 16196-16210.	1.8	26
945	Effects of Salinity and Nutrients in Seawater on Hydroponic Culture of Red Leaf Lettuce. Environmental Control in Biology, 2014, 52, 189-195.	0.3	26
946	Growth and chlorophyll fluorescence under salinity stress in sugar beet (Beta vulgaris L.). Journal of Chitwan Medical College, 2014, 3, 1-9.	0.1	5
947	The effect of nitrogen supply on potato yield, tuber size and pathogen resistance in Solanum tuberosum exposed to Phytophthora infestans. African Journal of Agricultural Research Vol Pp, 2014, 9, 2657-2663.	0.2	3

#	Article	IF	CITATIONS
948	Growth and Reproductive Success under Saline Conditions of Three <i>Plantago</i> Species with Different Levels of Stress Tolerance. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2014, 42,	0.5	7
949	Effects of Cultivation Strategies on Hybrid Pennisetum Yield in Saline Soil. Crop Science, 2014, 54, 2772-2781.	0.8	4
951	Crescimento de leguminosas utilizadas na adubação verde em diferentes nÃveis de sais na água de irrigação. Revista Brasileira De Engenharia Agricola E Ambiental, 2014, 18, 1255-1261.	0.4	5
952	Proline and Salinity Tolerance in Plants. Biochemistry & Pharmacology: Open Access, 2014, 03, .	0.2	22
953	In vivo screening of salinity tolerance in Giant Swamp Taro (Cyrtosperma merkusii). South Pacific Journal of Natural and Applied Sciences, 2014, 32, 33.	0.2	1
954	Reactive Nitrogen Species and the Role of NO in Abiotic Stress. , 2014, , 249-266.		5
955	Vacuolar proton pumps regulation during development of Vigna unguiculata seedlings under salt stress. Theoretical and Experimental Plant Physiology, 2014, 26, 167-175.	1.1	2
956	Evolution of physiological responses to salt stress in hexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11882-11887.	3.3	159
957	Effects of salinity on flowering, morphology, biomass accumulation and leaf metabolites in an edible halophyte. AoB PLANTS, 2014, 6, plu053-plu053.	1.2	59
958	A Novel Thylakoid Ascorbate Peroxidase from Jatrophacurcas Enhances Salt Tolerance in Transgenic Tobacco. International Journal of Molecular Sciences, 2014, 15, 171-185.	1.8	31
959	Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings. Frontiers in Plant Science, 2014, 5, 570.	1.7	65
960	Regulation of Na+ fluxes in plants. Frontiers in Plant Science, 2014, 5, 467.	1.7	189
961	Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 2014, 6, plu049-plu049.	1.2	68
962	Responses of trifoliate orange (poncirus trifoliata (l.) raf.) to continuously and gradually increasing nacl concentration. Acta Botanica Croatica, 2014, 73, 285-290.	0.3	1
963	Leaf, stem and root content of proline inAtriplex canescensandSuaeda nigra. International Journal of Bio-resource and Stress Management, 2014, 5, 82.	0.1	1
964	Overexpression of the <i>Arabidopsis</i> vacuolar H ⁺ -pyrophosphatase <i>AVP1</i> gene in rice plants improves grain yield under paddy field conditions. Journal of Agricultural Science, 2014, 152, 941-953.	0.6	10
965	Improved salt tolerance of Populus davidiana × P. bolleana overexpressed LEA from Tamarix androssowii. Journal of Forestry Research, 2014, 25, 813-818.	1.7	9
966	A Wheat Allene Oxide Cyclase Gene Enhances Salinity Tolerance via Jasmonate Signaling Â. Plant Physiology, 2014, 164, 1068-1076.	2.3	198

#	Article	IF	CITATIONS
967	Overexpression of stressâ€inducible <scp>OsBURP16</scp> , the <i>β</i> subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice. Plant, Cell and Environment, 2014, 37, 1144-1158.	2.8	122
969	Leaf functional trait variation associated with salt tolerance in perennial ryegrass. Plant Biology, 2014, 16, 107-116.	1.8	6
970	Negative short-term salt effects on the soybean–Bradyrhizobium japonicum interaction and partial reversion by calcium addition. Functional Plant Biology, 2014, 41, 96.	1.1	12
971	ZmCIPK21, A Maize CBL-Interacting Kinase, Enhances Salt Stress Tolerance in Arabidopsis thaliana. International Journal of Molecular Sciences, 2014, 15, 14819-14834.	1.8	33
972	Response of fluoride stress on plasma membrane H+-ATPase and vacuolar H+- ATPase activity in semi-arid plants. Indian Journal of Plant Physiology, 2014, 19, 210-214.	0.8	6
973	Ion homeostasis in the Chloroplast. , 2014, , 465-514.		10
974	The Clutathione Peroxidase Gene Family in Thellungiella salsuginea: Genome-Wide Identification, Classification, and Gene and Protein Expression Analysis under Stress Conditions. International Journal of Molecular Sciences, 2014, 15, 3319-3335.	1.8	50
975	Potential Use of Halophytes to Remediate Saline Soils. BioMed Research International, 2014, 2014, 1-12.	0.9	257
976	Expression of SOD gene and evaluating its role in stress tolerance in NaCl and PEG stressed Lycopersicum esculentum. Turkish Journal of Botany, 2014, 38, 89-98.	0.5	31
977	Variable response of three Trifolium repens ecotypes to soil flooding by seawater. Annals of Botany, 2014, 114, 347-355.	1.4	22
978	Natural Variation of Root Traits: From Development to Nutrient Uptake. Plant Physiology, 2014, 166, 518-527.	2.3	58
979	Osmotically driven membrane process for the management of urban runoff in coastal regions. Water Research, 2014, 48, 200-209.	5.3	37
980	Root genetic research, an opportunity and challenge to rice improvement. Field Crops Research, 2014, 165, 111-124.	2.3	75
981	Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium. Gene, 2014, 537, 203-213.	1.0	18
982	Identification and functional analysis of a novel parvulin-type peptidyl-prolyl isomerase from Gossypium hirsutum. Plant Physiology and Biochemistry, 2014, 76, 58-66.	2.8	3
983	Targeted expression of L-myo- inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka confers multiple stress tolerance in transgenic crop plants. Journal of Plant Biochemistry and Biotechnology, 2014, 23, 316-330.	0.9	27
984	Cloning and characterization of gene encoding a Mn-containing superoxide dismutase in Eutrema halophilum. Biologia Plantarum, 2014, 58, 105-113.	1.9	8
985	Differential Expression of Genes for Tolerance to Salt Stress in Common Bean (Phaseolus vulgaris L.). Plant Molecular Biology Reporter, 2014, 32, 318-327.	1.0	12

#	Article	IF	CITATIONS
986	Maize ZmRAV1 contributes to salt and osmotic stress tolerance in transgenic arabidopsis. Journal of Plant Biology, 2014, 57, 28-42.	0.9	23
987	Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca) Tj ETQq1	0.78431 1.0	4 _{.ரீஜ} BT /Ovi
988	Salt-induced photoinhibition of PSII is alleviated in halophyte Thellungiella halophila by increases of unsaturated fatty acids in membrane lipids. Acta Physiologiae Plantarum, 2014, 36, 983-992.	1.0	113
989	Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 2014, 34, 455-472.	2.2	429
990	Influence of traumatic acid on growth and metabolism of Chlorella vulgaris under conditions of salt stress. Plant Growth Regulation, 2014, 73, 103-110.	1.8	15
991	Overexpression of AaPal, a peptidoglycan-associated lipoprotein from Alkalomonas amylolytica, improves salt and alkaline tolerance of Escherichia coli and Arabidopsis thaliana. Biotechnology Letters, 2014, 36, 601-607.	1.1	8
992	The influence of salinity on cell ultrastructures and photosynthetic apparatus of barley genotypes differing in salt stress tolerance. Acta Physiologiae Plantarum, 2014, 36, 1261-1269.	1.0	30
993	Using Arabidopsis-Related Model Species (ARMS): Growth, Genetic Transformation, and Comparative Genomics. Methods in Molecular Biology, 2014, 1062, 27-51.	0.4	8
994	Effect of exogenous application of nitric oxide on salt stress responses of soybean. South African Journal of Botany, 2014, 90, 131-136.	1.2	68
995	Differences in shoot Na+ accumulation between two tomato species are due to differences in ion affinity of HKT1;2. Journal of Plant Physiology, 2014, 171, 438-447.	1.6	42
996	<i>SbHKT1;4</i> , a member of the highâ€affinity potassium transporter gene family from <i>Sorghum bicolor</i> , functions to maintain optimal Na ⁺ /K ⁺ balance under Na ⁺ stress. Journal of Integrative Plant Biology, 2014, 56, 315-332.	4.1	70
997	The over-expression of Chrysanthemum crassum CcSOS1 improves the salinity tolerance of chrysanthemum. Molecular Biology Reports, 2014, 41, 4155-4162.	1.0	38
998	Identification of QTLs for salt tolerance at germination and seedling stage of Sorghum bicolor L. Moench. Euphytica, 2014, 196, 117-127.	0.6	32
999	Role of heme oxygenase-1 in spermidine-induced alleviation of salt toxicity during alfalfa seed germination. Plant and Soil, 2014, 375, 275-287.	1.8	14
1000	Expression and functional analysis of putative vacuolar Ca2+-transporters (CAXs and ACAs) in roots of salt tolerant and sensitive rice cultivars. Protoplasma, 2014, 251, 1067-1075.	1.0	30
1001	Synechocystis PCC6803 and PCC6906 dnaK2 expression confers salt and oxidative stress tolerance in Arabidopsis via reduction of hydrogen peroxide accumulation. Molecular Biology Reports, 2014, 41, 1091-1101.	1.0	11
1002	A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress. Plant Cell Reports, 2014, 33, 131-142.	2.8	64
1003	Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. Journal of Plant Physiology, 2014, 171, 670-687.	1.6	388

#	Article	IF	CITATIONS
1004	Role of <i>Bacillus licheniformis</i> in Phytoremediation of Nickel Contaminated Soil Cultivated with Rice. International Journal of Phytoremediation, 2014, 16, 554-571.	1.7	72
1005	Effects of salinity on growth, membrane permeability and root hydraulic conductivity in three saltbush species. Biochemical Systematics and Ecology, 2014, 52, 4-13.	0.6	48
1006	Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiology and Biochemistry, 2014, 78, 15-26.	2.8	159
1007	Understanding the complex nature of salinity and droughtâ€stress response in cereals using proteomics technologies. Proteomics, 2014, 14, 611-621.	1.3	41
1008	Cloning of a cytosolic ascorbate peroxidase gene from Lycium chinense Mill. and enhanced salt tolerance by overexpressing in tobacco. Gene, 2014, 543, 85-92.	1.0	22
1009	Hydrogen Peroxide (H2O2) Generation, Scavenging and Signaling in Plants. , 2014, , 557-584.		24
1010	Identification of proteins associated with ion homeostasis and salt tolerance in barley. Proteomics, 2014, 14, 1381-1392.	1.3	50
1011	Ectopic expression of an Arabidopsis dehydration-responsive element-binding factor DREB2C improves salt stress tolerance in crucifers. Plant Cell Reports, 2014, 33, 1239-1254.	2.8	24
1012	Genomic Approaches and Abiotic Stress Tolerance in Plants. , 2014, , 1-37.		6
1013	Growth and Ionic Content of Quinoa Under Saline Irrigation. Journal of Agronomy and Crop Science, 2014, 200, 246-260.	1.7	38
1014	Leaf cuticular lipids on the Shandong and Yukon ecotypes of saltwater cress, <i>Eutrema salsugineum</i> , and their response to water deficiency and impact on cuticle permeability. Physiologia Plantarum, 2014, 151, 446-458.	2.6	42
1015	Quantitative Proteomics Analysis Reveals That the Nuclear Cap-Binding Complex Proteins <i>Arabidopsis</i> CBP20 and CBP80 Modulate the Salt Stress Response. Journal of Proteome Research, 2014, 13, 2495-2510.	1.8	32
1016	Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings. Plant Growth Regulation, 2014, 72, 257-268.	1.8	65
1017	Changes in some anti-oxidative enzymes and physiological indices among sesame genotypes (SesamumÂindicum L.) in response to soil water deficits under field conditions. Acta Physiologiae Plantarum, 2014, 36, 641-650.	1.0	29
1018	Cell Signaling During Drought and Salt Stress. , 2014, , 227-239.		4
1019	Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance. Journal of Proteomics, 2014, 99, 84-100.	1.2	52
1020	Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of Experimental Botany, 2014, 65, 995-1012.	2.4	161
1021	Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Science, 2014, 225, 117-129	1.7	195

ARTICLE IF CITATIONS Deciphering early events involved in hyperosmotic stress-induced programmed cell death in tobacco 1022 2.4 44 BY-2 cells. Journal of Experimental Botany, 2014, 65, 1361-1375. Comparative profiling of membrane lipids during water stress in Thellungiella salsuginea and its 1023 1.4 relative Arabidopsis thaliana. Phytochemistry, 2014, 108, 77-86. Sensitivity of Two Quinoa (<i>Chenopodiumquinoa</i>Willd.) Varieties to Progressive Drought 1024 1.7 81 Stress. Journal of Agronomy and Crop Science, 2014, 200, 12-23. Time-course changes in growth and biochemical indices of mung bean [Vigna radiata (L.) Wilczek] genotypes under salinity. Revista Brasileira De Botanica, 2014, 37, 429-439. 0.5 $\hat{a} \in \mathbb{C}$ Omics $\hat{a} \in \mathbb{C}$ Maize Stress Response for Sustainable Food Production: Opportunities and Challenges. 1026 1.0 82 OMICS A Journal of Integrative Biology, 2014, 18, 714-732. Screening for salinity stress tolerance in rice and finger millet genotypes using shoot Na+/K+ ratio and leaf carbohydrate contents as key physiological traits. Indian Journal of Plant Physiology, 2014, 19, 0.8 156-160. Enhancing salt tolerance in eggplant by introduction of foreign halotolerance gene, HAL1 isolated 1028 0.7 9 from yeast. Horticulture Environment and Biotechnology, 2014, 55, 222-229. Anatomical adaptations of Astragalus gombiformis Pomel. under drought stress. Open Life Sciences, 1029 0.6 2014, 9, 1215-1225. Coordination of AtHKT1;1 and AtSOS1 facilitates Na+ and K+ homeostasis in Arabidopsis thaliana under 1030 0.9 22 salt stress. Journal of Plant Biology, 2014, 57, 282-290. Structural Features of Some Wheat (<i>Triticum</i>Spp.) Landraces/Cultivars Under Drought and Salt Stress. Arid Land Research and Management, 2014, 28, 355-370. PISTACHIO RESPONSES TO SALT STRESS AT VARIED LEVELS OF MAGNESIUM. Journal of Plant Nutrition, 1032 0.9 1 2014, 37, 889-906. LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt 2.8 tolerance in transgénic tobacco. Plant Cell Reports, 2014, 33, 2033-2045. Sodium chloride alleviates cadmium toxicity by reducing nitric oxide accumulation in tobacco. 1034 2.9 9 Ecotoxicology and Environmental Safety, 2014, 110, 56-60. Response to drought and salt stress in leaves of poplar (Populus alba Â× Populus glandulosa): Expression profiling by oligonucleotide microarray analysis. Plant Physiology and Biochemistry, 2014, 2.8 84, 158-168. Multiple signaling networks of extracellular ATP, hydrogen peroxide, calcium, and nitric oxide in the 1036 mediation of root ion fluxes in secretor and non-secretor mangroves under salt stress. Aquatic 0.8 44 Botany, 2014, 119, 33-43. Contrasting effects of water salinity and ozone concentration on two cultivars of durum wheat () Tj ETQq1 1 0.784314 rgBT (Qverloc Salt tolerance in Populus: Significance of stress signaling networks, mycorrhization, and soil 1038 amendments for cellular and whole-plant nutrition. Environmental and Experimental Botany, 2014, 2.0 72 107, 113-124. 1039 Developing Climate-Resilient Crops. Journal of Crop Improvement, 2014, 28, 57-87.

#	Article	IF	CITATIONS
1040	Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiology, 2014, 34, 1181-1198.	1.4	144
1041	Ectopic overexpression of a mungbean vacuolar Na+/H+ antiporter gene (VrNHX1) leads to increased salinity stress tolerance in transgenic Vigna unguiculata L. Walp. Molecular Breeding, 2014, 34, 1345-1359.	1.0	27
1042	A stress responsive gene of Fortunella crassifolia FcSISP functions in salt stress resistance. Plant Physiology and Biochemistry, 2014, 83, 10-19.	2.8	8
1043	Function of wheat Ta-UnP gene in enhancing salt tolerance in transgenic Arabidopsis and rice. Biochemical and Biophysical Research Communications, 2014, 450, 794-801.	1.0	37
1044	Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiology and Biochemistry, 2014, 83, 126-133.	2.8	132
1045	Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions. Journal of Plant Interactions, 2014, 9, 379-387.	1.0	76
1046	Effect of NaCl and isoosmotic polyethylene glycol stress on gas exchange in shoots of the C ₄ xerohalophyte Haloxylon aphyllum (Chenopodiaceae). Photosynthetica, 2014, 52, 437-443.	0.9	8
1047	The differences in physiological responses, ultrastructure changes, and Na+ subcellular distribution under salt stress among the barley genotypes differing in salt tolerance. Acta Physiologiae Plantarum, 2014, 36, 2397-2407.	1.0	13
1048	Transcriptome dynamics of a desert poplar (Populus pruinosa) in response to continuous salinity stress. Plant Cell Reports, 2014, 33, 1565-1579.	2.8	42
1049	Identification and functional characterization of sorbitol-6-phosphate dehydrogenase protein from rice and structural elucidation by in silico approach. Planta, 2014, 240, 223-238.	1.6	9
1050	Understanding the salinity issue of coal mine spoils in the context of salt cycle. Environmental Geochemistry and Health, 2014, 36, 453-465.	1.8	22
1051	Effects of 5-aminolevulinic acid on Swiss chard (Beta vulgaris L. subsp. cicla) seedling growth under saline conditions. Plant Growth Regulation, 2014, 74, 219-228.	1.8	20
1052	OsMsr9, a novel putative rice F-box containing protein, confers enhanced salt tolerance in transgenic rice and Arabidopsis. Molecular Breeding, 2014, 34, 1055-1064.	1.0	23
1053	A Lycium chinense-derived P5CS-like gene is regulated by water deficit-induced endogenous abscisic acid and overexpression of this gene enhances tolerance to water deficit stress in Arabidopsis. Molecular Breeding, 2014, 34, 1109-1124.	1.0	14
1054	A systematic proteomic analysis of NaCl-stressed germinating maize seeds. Molecular Biology Reports, 2014, 41, 3431-3443.	1.0	18
1055	Molecular characterization, heterologous expression and resistance analysis of OsLEA3-1 from Oryza sativa. Biologia (Poland), 2014, 69, 625-634.	0.8	6
1056	Involvement of ethylene in alleviation of Cd toxicity by NaCl in tobacco plants. Ecotoxicology and Environmental Safety, 2014, 101, 64-69.	2.9	16
1057	ICREGA'14 - Renewable Energy: Generation and Applications. Springer Proceedings in Energy, 2014, , .	0.2	4

#	Article	IF	CITATIONS
1058	A multi-year assessment of the environmental impact of transgenic Eucalyptus trees harboring a bacterial choline oxidase gene on biomass, precinct vegetation and the microbial community. Transgenic Research, 2014, 23, 767-777.	1.3	12
1059	APUM5, encoding a Pumilio RNA binding protein, negatively regulates abiotic stress responsive gene expression. BMC Plant Biology, 2014, 14, 75.	1.6	51
1060	Effects of Nitrogen Application on Chlorophyll Content, Water Relations, and Yield of Maize Hybrids under Saline Conditions. Communications in Soil Science and Plant Analysis, 2014, 45, 1336-1356.	0.6	11
1061	Back to the future with the AGP–Ca2+ flux capacitor. Annals of Botany, 2014, 114, 1069-1085.	1.4	77
1063	Sucrose signaling pathways leading to fructan and anthocyanin accumulation: A dual function in abiotic and biotic stress responses?. Environmental and Experimental Botany, 2014, 108, 4-13.	2.0	143
1064	ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. Journal of Plant Physiology, 2014, 171, 884-894.	1.6	206
1065	GmFNSII-Controlled Soybean Flavone Metabolism Responds to Abiotic Stresses and Regulates Plant Salt Tolerance. Plant and Cell Physiology, 2014, 55, 74-86.	1.5	88
1066	Overexpression of the receptor-like protein kinase genes AtRPK1 and OsRPK1 reduces the salt tolerance of Arabidopsis thaliana. Plant Science, 2014, 217-218, 63-70.	1.7	30
1067	Comparative physiological analysis of lotus (Nelumbo nucifera) cultivars in response to salt stress and cloning of NnCIPK genes. Scientia Horticulturae, 2014, 173, 29-36.	1.7	11
1068	Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress. EuPA Open Proteomics, 2014, 4, 40-57.	2.5	27
1069	Roles of catalase (CAT) and ascorbate peroxidase (APX) genes in stress response of eggplant (Solanum) Tj ETQq0 2015, 187, 726.	0 0 rgBT / 1.3	Overlock 10 8
1073	Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress. Scientific Reports, 2015, 5, 13639.	1.6	40
1074	Nuclearâ€localized At <scp>HSPR</scp> links abscisic acidâ€dependent salt tolerance and antioxidant defense in Arabidopsis. Plant Journal, 2015, 84, 1274-1294.	2.8	51
1075	Culinary herb growth and appearance in response to high salinity and high pH treatments in substrate-based and substrate-free conditions. Journal of Horticultural Science and Biotechnology, 2015, 90, 164-170.	0.9	2
1077	Expression of LTP genes in response to saline stress in rice seedlings. Genetics and Molecular Research, 2015, 14, 8294-8305.	0.3	6
1078	Bacteria in combination with fertilizers promote root and shoot growth of maize in saline-sodic soil. Brazilian Journal of Microbiology, 2015, 46, 97-102.	0.8	20
1079	A Cu/Zn superoxide dismutase from Jatropha curcas enhances salt tolerance of Arabidopsis thaliana. Genetics and Molecular Research, 2015, 14, 2086-2098.	0.3	21
1080	Ascorbate peroxidase from Jatropha curcas enhances salt tolerance in transgenic Arabidopsis. Genetics and Molecular Research, 2015, 14, 4879-4889.	0.3	17

	CITATION	Report	
#	Article	IF	CITATIONS
1081	Identification of Discriminant Factors after Exposure of Maize and Common Bean Plantlets to Abiotic Stresses. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43, 589-598.	0.5	6
1082	Effect of nitrogen supply on rhizobacterial propagation and soil enzyme activity in pot soil cultivated with Phytophthora infestans-infected potato plants. African Journal of Microbiology Research, 2015, 9, 469-476.	0.4	0
1083	Adequate potassium application enhances salt tolerance of moderate-halophyte Sophora alopecuroides. Plant, Soil and Environment, 2015, 61, 364-370.	1.0	7
1084	Metabolite Profiling of Diverse Rice Germplasm and Identification of Conserved Metabolic Markers of Rice Roots in Response to Long-Term Mild Salinity Stress. International Journal of Molecular Sciences, 2015, 16, 21959-21974.	1.8	92
1085	Phytomelatonin: Assisting Plants to Survive and Thrive. Molecules, 2015, 20, 7396-7437.	1.7	294
1086	Evolutionary Migration of the Disjunct Salt Cress Eutrema salsugineum (= Thellungiella salsuginea,) Tj ETQq1 1	0.784314	rgBT_/Overloc
1087	Potassium Retention under Salt Stress Is Associated with Natural Variation in Salinity Tolerance among Arabidopsis Accessions. PLoS ONE, 2015, 10, e0124032.	1.1	69
1088	Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress. PLoS ONE, 2015, 10, e0136960.	1.1	130
1089	Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst PLoS ONE, 2015, 10, e0135419.	1.1	27
1090	GsCML27, a Gene Encoding a Calcium-Binding Ef-Hand Protein from Glycine soja, Plays Differential Roles in Plant Responses to Bicarbonate, Salt and Osmotic Stresses. PLoS ONE, 2015, 10, e0141888.	1.1	45
1091	MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis. PLoS ONE, 2015, 10, e0142446.	1.1	28
1092	Development of salinity tolerance in rice by constitutive-overexpression of genes involved in the regulation of programmed cell death. Frontiers in Plant Science, 2015, 6, 175.	1.7	67
1093	Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 2015, 6, 537.	1.7	226
1094	Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced to salinity and drought in plants. Frontiers in Plant Science, 2015, 6, 725.	1.7	30
1095	Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 2015, 6, 978.	1.7	263
1097	Performance of tomato (Lycopersicon esculentum Mill.) germplasm to salinity stress. Bangladesh Journal of Botany, 2015, 44, 193-200.	0.2	8
1098	Association mapping of soybean seed germination under salt stress. Molecular Genetics and Genomics, 2015, 290, 2147-2162.	1.0	81
1099	Crop Plant Hormones and Environmental Stress. Sustainable Agriculture Reviews, 2015, , 371-400.	0.6	196

#	Article	IF	CITATIONS
1100	Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings. Environmental Science and Pollution Research, 2015, 22, 14829-14840.	2.7	43
1101	Salt Adaptation Mechanisms of Halophytes: Improvement of Salt Tolerance in Crop Plants. , 2015, , 243-279.		36
1102	Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L Plant Cell Reports, 2015, 34, 1629-1646.	2.8	128
1103	Elucidation of Abiotic Stress Signaling in Plants. , 2015, , .		12
1104	Signal Perception and Mechanism of Salt Toxicity/Tolerance in Photosynthetic Organisms: Cyanobacteria to Plants. , 2015, , 79-113.		3
1105	Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants. Plant Cell Reports, 2015, 34, 1365-1378.	2.8	87
1107	Arabidopsis thaliana Tolerates Iron Deficiency more than Thellungiella Salsuginea by Inducing Metabolic Changes at the Root Level. Acta Biologica Cracoviensia Series Botanica, 2015, 57, 44-50.	0.5	0
1108	Molecular cloning and identification of eukaryotic translation initiation factor 1 family genes (<i>elF1</i> , <i>elF1A</i> and <i>elF1B</i>) in <i>Leymus chinensis</i> (Trin.). Biotechnology and Biotechnological Equipment, 2015, 29, 609-616.	0.5	4
1109	RNA-Seq Transcriptome Analysis in Date Palm Suggests Multi-Dimensional Responses to Salinity Stress. Tropical Plant Biology, 2015, 8, 74-86.	1.0	25
1110	High-Throughput Transcriptome Analysis of Plant Stress Responses. , 2015, , 195-209.		0
1111	Potentials of Proteomics in Crop Breeding. , 2015, , 513-537.		4
1112	Wild Edible Species with Phytoremediation Properties. Procedia Environmental Sciences, 2015, 29, 98-99.	1.3	8
1113	Evaluation of Wild Halophytes of Aralo-Caspian Flora Towards Soil Restoration and Food Security Improvement. , 2015, , 63-98.		2
1114	The effect of salinity stress on survival percentage and physiological characteristics in three varieties of pistachio (Pistacia vera). Biologia (Poland), 2015, 70, 1185-1192.	0.8	4
1115	OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Science, 2015, 232, 1-12.	1.7	145
1116	Content of proline and flavonoids in the shoots of halophytes inhabiting the South Urals. Russian Journal of Plant Physiology, 2015, 62, 71-79.	0.5	33
1117	QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.). Euphytica, 2015, 203, 273-283.	0.6	44
1118	Saltâ€stress induced modulation of chlorophyll biosynthesis during deâ€etiolation of rice seedlings. Physiologia Plantarum, 2015, 153, 477-491.	2.6	81

#	Article	IF	CITATIONS
1119	Involvement of nitrogen in salt resistance ofAtriplex portulacoidesis supported by split-root experiment data and exogenous application of N-rich compounds. Journal of Plant Nutrition and Soil Science, 2015, 178, 312-319.	1.1	4
1120	G-protein Î ² subunit AGB1 positively regulates salt stress tolerance in Arabidopsis. Journal of Integrative Agriculture, 2015, 14, 314-325.	1.7	19
1121	Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 2015, 35, 461-481.	2.2	459
1122	Molybdenum application enhances adaptation of crested wheatgrass to salinity stress. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	16
1123	Physical stress modifies topâ€down and bottomâ€up forcing on plant growth and reproduction in a coastal ecosystem. Ecology, 2015, 96, 2147-2156.	1.5	21
1124	Male poplars have a stronger ability to balance growth and carbohydrate accumulation than do females in response to a shortâ€ŧerm potassium deficiency. Physiologia Plantarum, 2015, 155, 400-413.	2.6	18
1125	Over-expression of SIWRKY39 leads to enhanced resistance to multiple stress factors in tomato. Journal of Plant Biology, 2015, 58, 52-60.	0.9	77
1126	Piercing and incubation method of in planta transformation producing stable transgenic plants by overexpressing DREB1A gene in tomato (Solanum lycopersicum Mill.). Plant Cell, Tissue and Organ Culture, 2015, 120, 1139-1157.	1.2	45
1127	Adaptations of Chloroplastic Metabolism in Halophytic Plants. Progress in Botany Fortschritte Der Botanik, 2015, , 177-193.	0.1	12
1128	Elevated Levels of CYP94 Family Gene Expression Alleviate the Jasmonate Response and Enhance Salt Tolerance in Rice. Plant and Cell Physiology, 2015, 56, 779-789.	1.5	110
1129	Virusâ€induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by <i>γ</i> â€aminobutyric acid metabolic pathway. Plant, Cell and Environment, 2015, 38, 600-613.	2.8	75
1130	Managing soil salinity with permanent bed planting in irrigated production systems in Central Asia. Agriculture, Ecosystems and Environment, 2015, 202, 90-97.	2.5	54
1131	Association mapping of salinity and alkalinity tolerance in improved japonica rice (Oryza sativa L.) Tj ETQq0 0 0 rg	gBT /Overlo 0.8	ock 10 Tf 50
1132	Isolation, characterization and functional annotation of the salt tolerance genes through screening the high-quality cDNA library of the halophytic green alga Dunaliella salina (Chlorophyta). Annals of Microbiology, 2015, 65, 1293-1302.	1.1	9
1133	AtHKT1;1 and AtHAK5 mediate low-affinity Na+ uptake in Arabidopsis thaliana under mild salt stress. Plant Growth Regulation, 2015, 75, 615-623.	1.8	36
1134	Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech, 2015, 5, 355-377.	1.1	350
1135	Hydrogen Sulfide Stimulates Wheat Grain Germination and Counteracts The Effect Of Oxidative Damage Caused by Salinity Stress. Cereal Research Communications, 2015, 43, 213-224.	0.8	15

Salt stress response of wheatâ€"barley addition lines carrying chromosomes from the winter barley0.6241136"Manas― Euphytica, 2015, 203, 491-504.0.624

#	Article	IF	CITATIONS
1137	Osmolyte accumulation in leaves of Tamarix ramosissima growing under various soil conditions in the Colorado River basin. Landscape and Ecological Engineering, 2015, 11, 199-207.	0.7	2
1138	Industrial dust sulphate and its effects on biochemical and morphological characteristics of Morus (Morus alba) plant in NCR Delhi. Environmental Monitoring and Assessment, 2015, 187, 67.	1.3	29
1139	Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance. Frontiers in Plant Science, 2015, 6, 30.	1.7	47
1140	Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. Journal of Plant Physiology, 2015, 183, 54-63.	1.6	64
1142	Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Biotechnology, 2015, 14, 407-426.	3.9	433
1143	Differential transcript abundance of salt overly sensitive (SOS) pathway genes is a determinant of salinity stress tolerance of wheat. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	45
1144	Difference in physiological and biochemical responses to salt stress between Tibetan wild and cultivated barleys. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	9
1145	Application of Plant Biotechnology. , 2015, , 157-207.		12
1146	Effects of heat shock and salinity on barley growth and stress-related gene transcription. Biologia Plantarum, 2015, 59, 537-546.	1.9	29
1147	Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system. Planta, 2015, 242, 1187-1194.	1.6	80
1148	Density and Regrowth of a Forest Restio (Ischyrolepis eleocharis) under Harvest and Non-harvest Treatments in Dune Forests of Eastern Cape Province, South Africa. Economic Botany, 2015, 69, 136-149.	0.8	9
1149	Chloroplast-generated ROS dominate NaCl ⁻ induced K ⁺ efflux in wheat leaf mesophyll. Plant Signaling and Behavior, 2015, 10, e1013793.	1.2	23
1150	Abiotic Stress Tolerance and Sustainable Agriculture: A Functional Genomics Perspective. , 2015, , 439-472.		4
1151	Divergences in hormonal and enzymatic antioxidant responses of two Chicory ecotypes to salt stress. Plant Signaling and Behavior, 2015, , 00-00.	1.2	3
1152	Growth, photosynthesis and stress-inducible genes of Phragmites australis (Cav.) Trin. ex Steudel from different habitats. Aquatic Botany, 2015, 124, 54-62.	0.8	18
1153	The Arabidopsis Ca2+-dependent protein kinase CPK27 is required for plant response to salt-stress. Gene, 2015, 563, 203-214.	1.0	37
1154	Arbuscular mycorrhiza inoculum reduces root respiration and improves biomass accumulation of salt-stressed Ulmus glabra seedlings. Urban Forestry and Urban Greening, 2015, 14, 432-437.	2.3	14
1155	Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicology and Environmental Safety, 2015, 117, 96-106.	2.9	100

#	Article	IF	CITATIONS
1156	Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek, 2015, 107, 1519-1532.	0.7	161
1157	Expression of the tetrahydrofolateâ€dependent nitric oxide synthase from the green alga <i>Ostreococcus tauri</i> increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis. Plant Journal, 2015, 82, 806-821.	2.8	83
1158	Transcriptomic profiling of the salt-stress response in the halophyte Halogeton glomeratus. BMC Genomics, 2015, 16, 169.	1.2	57
1159	Genome-wide evolutionary characterization and analysis of bZIP transcription factors and their expression profiles in response to multiple abiotic stresses in Brachypodium distachyon. BMC Genomics, 2015, 16, 227.	1.2	96
1160	TraeALDH7B1-5A, encoding aldehyde dehydrogenase 7 in wheat, confers improved drought tolerance in Arabidopsis. Planta, 2015, 242, 137-151.	1.6	30
1161	Sequencing and expression analysis of salt-responsive miRNAs and target genes in the halophyte smooth cordgrass (Spartina alternifolia Loisel). Molecular Biology Reports, 2015, 42, 1341-1350.	1.0	19
1162	Salt tolerance and alterations in cytosine methylation in the interspecific hybrids of Fraxinus velutina and Fraxinus mandshurica. Euphytica, 2015, 205, 721-737.	0.6	13
1163	Ectopic expression of GroEL from Xenorhabdus nematophila in tomato enhances resistance against Helicoverpa armigera and salt and thermal stress. Transgenic Research, 2015, 24, 859-873.	1.3	16
1164	The first linkage map for a recombinant inbred line population in cotton (Gossypium barbadense) and its use in studies of PEG-induced dehydration tolerance. Euphytica, 2015, 205, 941-958.	0.6	20
1165	Identification of quantitative trait loci for Na+, K+ and Ca++ accumulation traits in rice grown under saline conditions using F2 mapping population. Revista Brasileira De Botanica, 2015, 38, 555-565.	0.5	11
1167	Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB PLANTS, 2015, 7, .	1.2	64
1168	Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research, 2015, 22, 10375-10394.	2.7	247
1170	The beta subunit of glyceraldehyde 3-phosphate dehydrogenase is an important factor for maintaining photosynthesis and plant development under salt stress—Based on an integrative analysis of the structural, physiological and proteomic changes in chloroplasts in Thellungiella halophila. Plant Science, 2015, 236, 223-238.	1.7	40
1171	Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South African Journal of Botany, 2015, 98, 84-94.	1.2	197
1172	Constitutive high-level SOS1 expression and absence of HKT1;1 expression in the salt-accumulating halophyte Salicornia dolichostachya. Plant Science, 2015, 234, 144-154.	1.7	73
1173	A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation. Journal of Plant Physiology, 2015, 175, 183-191.	1.6	60
1174	Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes. Plant Molecular Biology, 2015, 88, 193-206.	2.0	58
1176	Feasibility study of faecal sludge treatment by constructed wetlands in Sahelian context: Experiments with Oryza longistaminata and Sporobolus pyramidalis species in Ouagadougou. Ecological	1.6	17

#	Article	IF	CITATIONS
1177	The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiology, 2015, 169, pp.00605.2015.	2.3	164
1178	SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2015, 96, 377-387.	2.8	45
1179	A coastal and an interior Douglas fir provenance exhibit different metabolic strategies to deal with drought stress. Tree Physiology, 2016, 36, tpv105.	1.4	27
1180	Soil Salinity Prediction, Monitoring and Mapping Using Modern Technologies. Procedia Earth and Planetary Science, 2015, 15, 507-512.	0.6	81
1181	Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana. Plant Physiology and Biochemistry, 2015, 97, 187-195.	2.8	12
1182	Enhanced chloroplastic generation of <scp>H₂O₂</scp> in stressâ€resistant <i>Thellungiella salsuginea</i> in comparison to <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2015, 153, 467-476.	2.6	39
1183	SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in <i>Arabidopsis</i> . Journal of Experimental Botany, 2015, 66, 4683-4697.	2.4	75
1184	Anatomical adaptations of the desert species Stipa lagascae against drought stress. Biologia (Poland), 2015, 70, 1042-1052.	0.8	14
1185	Hormone Signaling: Current Perspectives on the Roles of Salicylic Acid and Its Derivatives in Plants. , 2015, , 115-136.		5
1186	Changes in the Phosphoproteome and Metabolome Link Early Signaling Events to Rearrangement of Photosynthesis and Central Metabolism in Salinity and Oxidative Stress Response in Arabidopsis. Plant Physiology, 2015, 169, 3021-3033.	2.3	53
1187	Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics, 2015, 16, 534.	1.2	144
1188	Increasing cyclic electron flow is related to Na ⁺ sequestration into vacuoles for salt tolerance in soybean. Journal of Experimental Botany, 2015, 66, 6877-6889.	2.4	73
1189	Analysis of methylation-sensitive amplified polymorphism in different cotton accessions under salt stress based on capillary electrophoresis. Genes and Genomics, 2015, 37, 713-724.	0.5	15
1190	An insight into cotton genetic engineering (Gossypium hirsutum L.): current endeavors and prospects. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	11
1191	Stress Tolerance Profiling of a Collection of Extant Salt-Tolerant Rice Varieties and Transgenic Plants Overexpressing Abiotic Stress Tolerance Genes. Plant and Cell Physiology, 2015, 56, 1867-1876.	1.5	32
1192	Bottle gourd rootstock-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress. Journal of Plant Physiology, 2015, 186-187, 50-58.	1.6	30
1193	NaCl-induced physiological and biochemical changes in two cyanobacteria Nostoc muscorum and Phormidium foveolarum acclimatized to different photosynthetically active radiation. Journal of Photochemistry and Photobiology B: Biology, 2015, 151, 221-232.	1.7	30
1194	Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34 , in Arabidopsis enhances salt-tolerance of the transgenic plants. Plant Physiology and Biochemistry, 2015, 96, 311-320.	2.8	93

#	Article	IF	CITATIONS
1195	Comparative effects of gibberellic acid, kinetin and salicylic acid on emergence, seedling growth and the antioxidant defence system of sweet sorghum (Sorghum bicolor) under salinity and temperature stresses. Crop and Pasture Science, 2015, 66, 145.	0.7	41
1196	Expression of a cyclophilin OsCyp2-P isolated from a salt-tolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation. Functional and Integrative Genomics, 2015, 15, 395-412.	1.4	41
1197	Proteomic analysis of changes in the Kandelia candel chloroplast proteins reveals pathways associated with salt tolerance. Plant Science, 2015, 231, 159-172.	1.7	50
1198	A vacuolar antiporter is differentially regulated in leaves and roots of the halophytic wild rice Porteresia coarctata (Roxb.) Tateoka. Molecular Biology Reports, 2015, 42, 1091-1105.	1.0	34
1199	Towards plant salinity tolerance-implications from ion transporters and biochemical regulation. Plant Growth Regulation, 2015, 76, 13-23.	1.8	32
1200	Overexpression of wheat NF-YA10 gene regulates the salinity stress response in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2015, 86, 34-43.	2.8	57
1201	Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biology and Biochemistry, 2015, 81, 108-123.	4.2	383
1202	Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Critical Reviews in Biotechnology, 2015, 35, 425-437.	5.1	265
1203	MicroRNAâ€Based Biotechnology for Plant Improvement. Journal of Cellular Physiology, 2015, 230, 1-15.	2.0	188
1204	Overexpression of a miR393-Resistant Form of Transport Inhibitor Response Protein 1 (mTIR1) Enhances Salt Tolerance by Increased Osmoregulation and Na+ Exclusion in Arabidopsis thaliana. Plant and Cell Physiology, 2015, 56, 73-83.	1.5	92
1205	Abiotic Stress Responses in Legumes: Strategies Used toÂCope with Environmental Challenges. Critical Reviews in Plant Sciences, 2015, 34, 237-280.	2.7	212
1206	Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environmental and Experimental Botany, 2015, 111, 1-12.	2.0	129
1207	NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana. Journal of Plant Physiology, 2015, 174, 5-15.	1.6	112
1208	Physiological and proteomic analyses of salt stress response in the halophyte <scp><i>H</i></scp> <i>alogeton glomeratus</i> . Plant, Cell and Environment, 2015, 38, 655-669.	2.8	99
1209	On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats. Plant, Cell and Environment, 2015, 38, 1794-1816.	2.8	109
1210	Effect of MgCl2 and double concentration of Murashige and Skoog medium on in vitro plantlet and root cultures generation in halophytic grasswort Salicornia brachiata. Plant Cell, Tissue and Organ Culture, 2015, 120, 563-570.	1.2	10
1211	Comparative expression of candidate genes involved in sodium transport and compartmentation in citrus. Environmental and Experimental Botany, 2015, 111, 52-62.	2.0	29
1212	Salt tolerance in two tall wheatgrass species is associated with selective capacity for K+ over Na+. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	13

#	Article	IF	CITATIONS
1213	Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 2015, 22, 4056-4075.	2.7	845
1214	Sodium extrusion associated with enhanced expression of SOS1 underlies different salt tolerance between Medicago falcata and Medicago truncatula seedlings. Environmental and Experimental Botany, 2015, 110, 46-55.	2.0	32
1215	Cloning and characterization of a novel vacuolar Na+/H+ antiporter gene (VuNHX1) from drought hardy legume, cowpea for salt tolerance. Plant Cell, Tissue and Organ Culture, 2015, 120, 19-33.	1.2	18
1216	Small <scp>RNA</scp> deep sequencing identifies novel and saltâ€stressâ€regulated <scp>microRNAs</scp> from roots of <i>Medicago sativa</i> and <i>Medicago truncatula</i> . Physiologia Plantarum, 2015, 154, 13-27.	2.6	46
1217	Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. Annals of Botany, 2015, 115, 465-479.	1.4	57
1218	Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, 2015, , .	0.6	9
1219	Anatomical and physiological adaptations of mangroves. Wetlands Ecology and Management, 2015, 23, 357-370.	0.7	33
1220	Anatomical and ultrastructural adaptations of seagrass leaves: an evaluation of the southern Atlantic groups. Protoplasma, 2015, 252, 3-20.	1.0	5
1221	Developmental acquisition of salt tolerance in the halophyte Atriplex halimus L. is related to differential regulation of salt inducible genes. Plant Growth Regulation, 2015, 75, 165-178.	1.8	11
1222	Adequate potassium application enhances salt tolerance of moderate-halophyte Sophora alopecuroides. Plant, Soil and Environment, 2015, 61, 364-370.	1.0	3
1223	Characterization of partial DREB and SOD genes from three Bali local rice cultivars. AIP Conference Proceedings, 2016, , .	0.3	0
1225	Effect of sowing time on the growth and yield of sweet corn (Zea mays L.) cultivated during fall-winter period in Subtropical climate. Australian Journal of Crop Science, 2016, 10, 831-841.	0.1	3
1226	Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of Molecular Sciences, 2016, 17, 1582.	1.8	44
1227	Exploration and Utilization of Salt-Tolerant Barley Germplasm. , 2016, , 75-113.		0
1228	Identification, characterization, and expression profiling of salt-stress tolerant proton gradient regulator 5 (PGR5) in Gossypium arboreum. Turkish Journal of Biology, 2016, 40, 889-898.	2.1	1
1229	A New Insight of Salt Stress Signalingin Plant. Molecules and Cells, 2016, 39, 447-459.	1.0	230
1230	Divergences in Hormonal and Enzymatic Antioxidant Responses of Two Chicory Ecotypes to Salt Stress1. Planta Daninha, 2016, 34, 199-208.	0.5	4
1001			

#	Article	IF	CITATIONS
1232	Silicon Mitigates Salinity Stress by Regulating the Physiology, Antioxidant Enzyme Activities, and Protein Expression in <i>Capsicum annuum</i> â€̃Bugwang'. BioMed Research International, 2016, 2016, 1-14.	0.9	84
1233	Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants. Current Genomics, 2016, 17, 343-357.	0.7	66
1234	Exogenous Chemical Treatments Have Differential Effects in Improving Salinity Tolerance of Halophytes. , 2016, , 213-229.		1
1235	De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum) Seedlings and Identification of Salt Tolerance Genes. Genes, 2016, 7, 12.	1.0	20
1236	Identification of Reference Genes for Quantitative Real-Time PCR in Date Palm (Phoenix dactylifera L.) Subjected to Drought and Salinity. PLoS ONE, 2016, 11, e0166216.	1.1	24
1237	Effects of Soil Salinity on Sucrose Metabolism in Cotton Leaves. PLoS ONE, 2016, 11, e0156241.	1.1	37
1238	Heterologous Expression of AtWRKY57 Confers Drought Tolerance in Oryza sativa. Frontiers in Plant Science, 2016, 7, 145.	1.7	94
1239	Comparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress. Frontiers in Plant Science, 2016, 7, 424.	1.7	41
1240	Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species. Frontiers in Plant Science, 2016, 7, 473.	1.7	45
1241	Transcriptional Profiles of Drought-Related Genes in Modulating Metabolic Processes and Antioxidant Defenses in Lolium multiflorum. Frontiers in Plant Science, 2016, 7, 519.	1.7	81
1242	Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. Frontiers in Plant Science, 2016, 7, 548.	1.7	209
1243	Ethylene Antagonizes Salt-Induced Growth Retardation and Cell Death Process via Transcriptional Controlling of Ethylene-, BAG- and Senescence-Associated Genes in Arabidopsis. Frontiers in Plant Science, 2016, 7, 696.	1.7	45
1244	The Photosynthesis, Na+/K+ Homeostasis and Osmotic Adjustment of Atriplex canescens in Response to Salinity. Frontiers in Plant Science, 2016, 7, 848.	1.7	74
1245	De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress. Frontiers in Plant Science, 2016, 7, 931.	1.7	74
1246	Identification of Putative RuBisCo Activase (TaRca1)—The Catalytic Chaperone Regulating Carbon Assimilatory Pathway in Wheat (Triticum aestivum) under the Heat Stress. Frontiers in Plant Science, 2016, 7, 986.	1.7	38
1247	Micrasterias as a Model System in Plant Cell Biology. Frontiers in Plant Science, 2016, 7, 999.	1.7	39
1248	The Role of Silicon in Higher Plants under Salinity and Drought Stress. Frontiers in Plant Science, 2016, 7, 1072.	1.7	259
1249	Proteomic Response of Hordeum vulgare cv. Tadmor and Hordeum marinum to Salinity Stress: Similarities and Differences between a Glycophyte and a Halophyte. Frontiers in Plant Science, 2016, 07,	1.7	51

#	Article	IF	CITATIONS
1250	Proteomic Studies on the Effects of Lipo-Chitooligosaccharide and Thuricin 17 under Unstressed and Salt Stressed Conditions in Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7, 1314.	1.7	50
1251	OsPEX11, a Peroxisomal Biogenesis Factor 11, Contributes to Salt Stress Tolerance in Oryza sativa. Frontiers in Plant Science, 2016, 7, 1357.	1.7	44
1252	Sulfur Mediated Alleviation of Mn Toxicity in Polish Wheat Relates to Regulating Mn Allocation and Improving Antioxidant System. Frontiers in Plant Science, 2016, 7, 1382.	1.7	48
1253	Assessment of Stress Tolerance, Productivity, and Forage Quality in T1 Transgenic Alfalfa Co-overexpressing ZxNHX and ZxVP1-1 from Zygophyllum xanthoxylum. Frontiers in Plant Science, 2016, 7, 1598.	1.7	26
1254	Ability to Remove Na+ and Retain K+ Correlates with Salt Tolerance in Two Maize Inbred Lines Seedlings. Frontiers in Plant Science, 2016, 7, 1716.	1.7	72
1255	Identification and Analysis of NaHCO3 Stress Responsive Genes in Wild Soybean (Glycine soja) Roots by RNA-seq. Frontiers in Plant Science, 2016, 7, 1842.	1.7	31
1256	Characterization and Function of Sodium Exchanger Genes in Aeluropus lagopoides Under NaCl Stress. , 2016, , 1-16.		5
1257	Salinity Tolerance Mechanism of Economic Halophytes From Physiological to Molecular Hierarchy for Improving Food Quality. Current Genomics, 2016, 17, 207-214.	0.7	51
1258	Open encapsulation-vitrification for cryopreservation of algae. Cryobiology, 2016, 73, 232-239.	0.3	17
1259	Molecular dissection of <i>Oryza sativa saltâ€induced <scp>RING</scp> Finger Protein 1</i> (<i><scp>OsSIRP1</scp></i>): possible involvement in the sensitivity response to salinity stress. Physiologia Plantarum, 2016, 158, 168-179.	2.6	31
1260	Subcellular compartmentation of sugars in wheat leaves under the influence of salinity and boron toxicity. Journal of Plant Nutrition, 2016, 39, 2100-2105.	0.9	2
1261	Joint genetic and network analyses identify loci associated with root growth under NaCl stress in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2016, 39, 918-934.	2.8	53
1262	Overâ€expression of <i><scp>AtGSTU19</scp></i> provides tolerance to salt, drought and methyl viologen stresses in <i>Arabidopsis</i> . Physiologia Plantarum, 2016, 156, 164-175.	2.6	75
1263	Induced maize salt tolerance by rhizosphere inoculation of <i>Bacillus amyloliquefaciens</i> SQR9. Physiologia Plantarum, 2016, 158, 34-44.	2.6	208
1264	Effects of environmental stress on seed germination and seedling growth of Salsola ferganica (Chenopodiaceae). Acta Ecologica Sinica, 2016, 36, 456-463.	0.9	22
1265	Evaluation of NaCl Salinity Tolerance of Four Fig Genotypes Based on Vegetative Growth and Ion Content in Leaves, Shoots, and Roots. Hortscience: A Publication of the American Society for Hortcultural Science, 2016, 51, 1427-1434.	0.5	8
1266	Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.). Scientific Reports, 2016, 6, 21476.	1.6	78
1267	Sodium uptake of Iris wilsonii and its photosynthetic responses to high-salinity stress in microcosm submerged beds. Water Science and Technology, 2016, 74, 2185-2191.	1.2	0

~			_	
Cr	ΓΔΤΙ	ON	12 F C	ORT
\sim			IVEL	

#	Article	IF	CITATIONS
1268	Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Scientific Reports, 2016, 6, 19467.	1.6	84
1269	Proteomic responses in shoots of the facultative halophyte Aeluropus littoralis (Poaceae) under NaCl salt stress. Functional Plant Biology, 2016, 43, 1028.	1.1	12
1270	Suppression of OsVPE3 Enhances Salt Tolerance by Attenuating Vacuole Rupture during Programmed Cell Death and Affects Stomata Development in Rice. Rice, 2016, 9, 65.	1.7	35
1271	Investigation of Growth, Free Amino Acids, and Carbohydrate Concentration in the Roots of Perennial Ryegrass in Response to Soil Salinity at Subsurface Soil Depths. Journal of the American Society for Horticultural Science, 2016, 141, 539-547.	0.5	2
1272	Recovery capacity of the edible halophyte Crithmum maritimum from temporary salinity in relation to nutrient accumulation and nitrogen metabolism. Biologia (Poland), 2016, 71, 1345-1352.	0.8	2
1273	Association mapping validates previously identified quantitative trait loci for salt tolerance in rice (Oryza sativa L.). Molecular Breeding, 2016, 36, 1.	1.0	4
1274	AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Molecular Genetics and Genomics, 2016, 291, 1545-1559.	1.0	153
1276	Overexpression of wheat ubiquitin gene, Ta-Ub2, improves abiotic stress tolerance of Brachypodium distachyon. Plant Science, 2016, 248, 102-115.	1.7	39
1277	Glyoxalase Pathway and Drought Stress Tolerance in Plants. , 2016, , 379-399.		4
1278	Molecular cloning, characterization and expression analysis of a heat shock protein 10 (Hsp10) from Pennisetum glaucum (L.), a C4 cereal plant from the semi-arid tropics. Molecular Biology Reports, 2016, 43, 861-870.	1.0	19
1279	Glutamate receptors are involved in mitigating effects of amino acids on seed germination of Arabidopsis thaliana under salt stress. Environmental and Experimental Botany, 2016, 130, 68-78.	2.0	35
1280	Allantoin accumulation mediated by allantoinase downregulation and transport by Ureide Permease 5 confers salt stress tolerance to Arabidopsis plants. Plant Molecular Biology, 2016, 91, 581-595.	2.0	67
1281	Association of SNP Haplotypes of HKT Family Genes with Salt Tolerance in Indian Wild Rice Germplasm. Rice, 2016, 9, 15.	1.7	91
1282	Coâ€expression of tonoplast Cation/H ⁺ antiporter and H ⁺ â€pyrophosphatase from xerophyte <i>Zygophyllum xanthoxylum</i> improves alfalfa plant growth under salinity, drought and field conditions. Plant Biotechnology Journal, 2016, 14, 964-975.	4.1	98
1283	Genomics of Salinity. , 2016, , 179-194.		0
1284	The spatial and seasonal variation characteristics of fine roots in different plant configuration modes in new reclamation saline soil of humid climate in China. Ecological Engineering, 2016, 86, 231-238.	1.6	14
1285	Halophytes as a source of salt tolerance genes and mechanisms: a case study for the Salt Lake area, Turkey. Functional Plant Biology, 2016, 43, 575.	1.1	21
1286	Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions. Molecular Breeding, 2016, 36, 1.	1.0	36

#	Article	IF	CITATIONS
1287	Stress and Mycorrhizal Plant. Fungal Biology, 2016, , 63-79.	0.3	5
1288	Exogenous Diethyl Aminoethyl Hexanoate, a Plant Growth Regulator, Highly Improved the Salinity Tolerance of Important Medicinal Plant Cassia obtusifolia L Journal of Plant Growth Regulation, 2016, 35, 330-344.	2.8	21
1289	Integrated proteomics and metabolomics for dissecting the mechanism of global responses to salt and alkali stress in Suaeda corniculata. Plant and Soil, 2016, 402, 379-394.	1.8	49
1290	Treatment with spermidine protects chrysanthemum seedlings against salinity stress damage. Plant Physiology and Biochemistry, 2016, 105, 260-270.	2.8	15
1291	Identification and characterization of a novel iron deficiency and salt stress responsive transcription factor IDEF1 in Porteresia coarctata. Biologia Plantarum, 2016, 60, 469-481.	1.9	2
1292	Eco-physiological responses of Aeluropus lagopoides (grass halophyte) and Suaeda nudiflora (non-grass halophyte) under individual and interactive sodic and salt stress. South African Journal of Botany, 2016, 105, 36-44.	1.2	37
1293	Differential responses of three coastal grassland species to seawater flooding. Journal of Plant Ecology, 0, , rtw037.	1.2	5
1294	Recent Advances on Mycorrhizal Fungi. Fungal Biology, 2016, , .	0.3	7
1295	Influence of exogenous application of some phytoprotectants on growth, yield and pod quality of snap bean under NaCl salinity. Annals of Agricultural Sciences, 2016, 61, 1-13.	1.1	25
1297	Oxidative defense metabolites induced by salinity stress in roots of Salicornia herbacea. Journal of Plant Physiology, 2016, 206, 133-142.	1.6	26
1298	Proteomic changes in kenaf (Hibiscus cannabinus L.) leaves under salt stress. Industrial Crops and Products, 2016, 91, 255-263.	2.5	12
1299	White willow sexual regeneration capacity under estuarine conditions in times of climate change. Estuarine, Coastal and Shelf Science, 2016, 180, 51-58.	0.9	9
1300	Interaction effects of water salinity and hydroponic growth medium on eggplant yield, water-use efficiency, and evapotranspiration. International Soil and Water Conservation Research, 2016, 4, 99-107.	3.0	23
1302	Boron Toxicity in Salt-Affected Soils and Effects on Plants. , 2016, , 259-286.		1
1303	Silicon: A Beneficial Nutrient Under Salt Stress, Its Uptake Mechanism and Mode of Action. , 2016, , 287-301.		12
1304	<i>Sulla carnosa</i> modulates root invertase activity in response to the inhibition of longâ€distance sucrose transport under magnesium deficiency. Plant Biology, 2016, 18, 1031-1037.	1.8	10
1305	Photosynthesis, antioxidant system and gene expression of bermudagrass in response to low temperature and salt stress. Ecotoxicology, 2016, 25, 1445-1457.	1.1	38
1306	Enhanced Salt Tolerance under Nitrate Nutrition is Associated with Apoplast Na ⁺ Content in Canola (<i>Brassica. napus</i> L.) and Rice (<i>Oryza sativa</i> L.) Plants. Plant and Cell Physiology, 2016, 57, 2323-2333.	1.5	19

		CITATION RE	CITATION REPORT		
#	Article		IF	Citations	
1307	Investigating Abiotic Stress Response Machinery in Plants: The Metabolomic Approach. ,	2016, , 303-319.		2	
1308	Difference in root K ⁺ retention ability and reduced sensitivity of K ⁺ retention ability and reduced sensitivity and reduced sensit		2.4	127	
1309	Effectiveness of potassium in mitigating the salt-induced oxidative stress in contrasting genotypes. Journal of Plant Nutrition, 2016, 39, 1926-1935.	tomato	0.9	14	
1310	Gene expression at Suaeda salsa seed germination under salinity. Russian Journal of Plar 2016, 63, 542-548.	t Physiology,	0.5	1	
1311	Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncu adapted to different natural environments. Functional Plant Biology, 2016, 43, 949.	s species	1.1	34	
1312	Use of Biotechnology in Soybean Production Under Environmental Stresses. , 2016, , 1-2	22.		3	
1313	Role of Genetics and Genomics in Mitigating Abiotic Stresses in Soybeans. , 2016, , 205-	228.		2	
1315	Effects of humic acid and Ca(NO ₃) ₂ on nutrient contents in p (<i>Capsicum annuum</i>) seedling under salt stress. Acta Agriculturae Scandinavica - S and Plant Science, 2016, 66, 613-618.		0.3	3	
1316	A multilevel investigation to discover why <i>Kandelia candel</i> thrives in high salinity. and Environment, 2016, 39, 2486-2497.	Plant, Cell	2.8	31	
1317	Ectomycorrhizal inoculation of Populus nigra modifies the response of absorptive root re and root surface enzyme activity to salinity stress. Flora: Morphology, Distribution, Func Ecology of Plants, 2016, 224, 123-129.	espiration tional	0.6	8	
1318	A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation. Physiology, 2016, 171, 2854-2868.	Plant	2.3	44	
1319	Physiological and proteomic responses to salt stress in chloroplasts of diploid and tetrap locust (Robinia pseudoacacia L.). Scientific Reports, 2016, 6, 23098.	oloid black	1.6	56	
1320	Plant Salt Stress: Adaptive Responses, Tolerance Mechanism and Bioengineering for Salt Botanical Review, The, 2016, 82, 371-406.	: Tolerance.	1.7	216	
1322	Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypi seedlings. Scientific Reports, 2016, 6, 34548.	um hirsutum)	1.6	88	
1323	Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (<i></i>	Oryza) Tj ETQq0 0 0 rgB1	/Qverlock	R 10 Tf 50 18	
1324	The Evaluation of Seed Germination on 12 Soybean Cultivars Under Different Salinity St Plant Breeding and Seed Science, 2016, 73, 39-51.	ress Levels.	0.1	0	
1325	A novel TaSST gene from wheat contributes to enhanced resistance to salt stress in Arab thaliana and Oryza sativa. Acta Physiologiae Plantarum, 2016, 38, 1.	pidopsis	1.0	4	
1326	Phosphoenolpyruvate carboxylase (PEPC) and PEPC-kinase (PEPC-k) isoenzymes in Arab role in control and abiotic stress conditions. Planta, 2016, 244, 901-913.	idopsis thaliana:	1.6	34	

#	Article	IF	CITATIONS
1327	Global proteomic mapping of alkali stress regulated molecular networks in Helianthus tuberosus L Plant and Soil, 2016, 409, 175-202.	1.8	23
1328	Salt tolerance conferred by expression of a global regulator IrrE from Deinococcus radiodurans in oilseed rape. Molecular Breeding, 2016, 36, 1.	1.0	8
1329	Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum. Environmental and Experimental Botany, 2016, 130, 162-173.	2.0	26
1330	Osmotic Adjustment and Plant Adaptation to Drought Stress. , 2016, , 105-143.		38
1332	S nutrition alleviates salt stress by maintaining the assemblage of photosynthetic organelles in Kentucky bluegrass (Poa pratensis L.). Plant Growth Regulation, 2016, 79, 367-375.	1.8	6
1333	Using electromagnetic induction method to reveal dynamics of soil water and salt during continual rainfall events. Biosystems Engineering, 2016, 152, 3-13.	1.9	8
1334	Antioxidative ability and membrane integrity in salt-induced responses of Casuarina glauca Sieber ex Spreng. in symbiosis with N2-fixing Frankia Thr or supplemented with mineral nitrogen. Journal of Plant Physiology, 2016, 196-197, 60-69.	1.6	20
1335	Salt tolerance function of the novel C2H2-type zinc finger protein TaZNF in wheat. Plant Physiology and Biochemistry, 2016, 106, 129-140.	2.8	36
1336	Manipulation of Programmed Cell Death Pathways Enhances Osmotic Stress Tolerance in Plants: Physiological and Molecular Insights. , 2016, , 439-464.		3
1338	Identification and characterization of a PutCu/Zn-SOD gene from Puccinellia tenuiflora (Turcz.) Scribn. et Merr Plant Growth Regulation, 2016, 79, 55-64.	1.8	31
1339	Antiporter NHX2 differentially induced in Mesembryanthemum crystallinum natural genetic variant under salt stress. Plant Cell, Tissue and Organ Culture, 2016, 124, 361-375.	1.2	4
1340	Salt effects on functional traits in model and in economically important <i>Lotus</i> species. Plant Biology, 2016, 18, 703-709.	1.8	6
1341	A homologue of vitamin K epoxide reductase in <i>Solanum lycopersicum</i> is involved in resistance to osmotic stress. Physiologia Plantarum, 2016, 156, 311-322.	2.6	2
1342	Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three <i>Brassica</i> species. Physiologia Plantarum, 2016, 158, 135-151.	2.6	58
1343	Two-dimensional blue native/SDS-PAGE analysis of whole cell lysate protein complexes of rice in response to salt stress. Journal of Plant Physiology, 2016, 200, 90-101.	1.6	8
1344	Drought Tolerant Wild Species Are the Important Sources of Genes and Molecular Mechanisms Studies: Implication for Developing Drought Tolerant Crops. , 2016, , 401-426.		0
1345	Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings. Plant Cell Reports, 2016, 35, 1769-1782.	2.8	42
1346	Proline and glycine betaine accumulation in two succulent halophytes under natural and experimental conditions. Plant Biosystems, 2016, 150, 904-915.	0.8	33

#	Article	IF	CITATIONS
1347	Methane-rich water alleviates NaCl toxicity during alfalfa seed germination. Environmental and Experimental Botany, 2016, 129, 37-47.	2.0	31
1348	Effects of spatiotemporal variation of soil salinity on fine root distribution in different plant configuration modes in new reclamation coastal saline field. Environmental Science and Pollution Research, 2016, 23, 6639-6650.	2.7	3
1349	Determination of arsenic extraction byVetiveria zizanioides(L.) Nash plant for phytoremediation application. Chemistry and Ecology, 2016, 32, 1-11.	0.6	10
1350	Salt and drought stresses in safflower: a review. Agronomy for Sustainable Development, 2016, 36, 1.	2.2	143
1351	Quantitative proteomics reveals an important role of GsCBRLK in salt stress response of soybean. Plant and Soil, 2016, 402, 159-178.	1.8	12
1352	Epigenetic mechanisms of salt tolerance and heterosis in Upland cotton (Gossypium hirsutum L.) revealed by methylation-sensitive amplified polymorphism analysis. Euphytica, 2016, 208, 477-491.	0.6	24
1353	Salt-responsive mechanisms in chromosome segment substitution lines of rice (Oryza sativa L. cv.) Tj ETQq0 0 0 r	gBT_/Overl 2.8	oçk 10 Tf 50

1354	H ₂ O ₂ and ABA signaling are responsible for the increased Na ⁺ efflux and water uptake in <i>Gossypium hirsutum</i> L. roots in the non-saline side under non-uniform root zone salinity. Journal of Experimental Botany, 2016, 67, 2247-2261.	2.4	64
1355	lsolation and characterization of a tonoplast Na ⁺ /H ⁺ antiporter from the halophyte Nitraria sibirica. Biologia Plantarum, 2016, 60, 113-122.	1.9	13
1356	Over-expression of a DUF1644 protein gene, SIDP361, enhances tolerance to salt stress in transgenic rice. Journal of Plant Biology, 2016, 59, 62-73.	0.9	28
1357	Physiological characteristics, gas exchange, and plant ion relations of quinoa to different saline groundwater depths and water salinity. Archives of Agronomy and Soil Science, 2016, 62, 1347-1367.	1.3	21
1358	A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Scientia Horticulturae, 2016, 201, 153-166.	1.7	70
1359	MicroRNA and target gene responses to salt stress in grafted cucumber seedlings. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	13
1360	Effects of salinity on the photosynthetic apparatus of two Paulownia lines. Plant Physiology and Biochemistry, 2016, 101, 54-59.	2.8	48
1361	Structural analysis of the α subunit of Na + /K + ATPase genes in invertebrates. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 196-197, 11-18.	0.7	13
1362	Genotypic variation in response to salinity in a new sexual germplasm of Cenchrus ciliaris L Plant Physiology and Biochemistry, 2016, 102, 53-61.	2.8	3
1363	A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture, 2016, 125, 387-398.	1.2	117
1364	Impact and pollution indices of urban dust on selected plant species for green belt development: mitigation of the air pollution in NCR Delhi, India. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	53

#	Article	IF	CITATIONS
1365	External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiology and Biochemistry, 2016, 103, 143-153.	2.8	114
1366	The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis. Planta, 2016, 244, 59-73.	1.6	49
1367	ZxSKOR is important for salinity and drought tolerance of Zygophyllum xanthoxylum by maintaining K+ homeostasis. Plant Growth Regulation, 2016, 80, 195-205.	1.8	26
1368	<i>Nax</i> loci affect SOS1-like Na ⁺ /H ⁺ exchanger expression and activity in wheat. Journal of Experimental Botany, 2016, 67, 835-844.	2.4	95
1369	Proteomics, photosynthesis and salt resistance in crops: An integrative view. Journal of Proteomics, 2016, 143, 24-35.	1.2	66
1370	Protective effect of exogenous spermidine on ion and polyamine metabolism in Kentucky bluegrass under salinity stress. Horticulture Environment and Biotechnology, 2016, 57, 11-19.	0.7	17
1371	Comparison of NaCl-induced programmed cell death in the obligate halophyte Cakile maritima and the glycophyte Arabidospis thaliana. Plant Science, 2016, 247, 49-59.	1.7	23
1372	A novel Cys2/His2 zinc finger protein gene from sweetpotato, lbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis. Planta, 2016, 243, 783-797.	1.6	90
1373	Responses of growth, antioxidants and gene expression in smooth cordgrass (Spartina alterniflora) to various levels of salinity. Plant Physiology and Biochemistry, 2016, 99, 162-170.	2.8	20
1374	Contribution of Osmolyte Accumulation to Abiotic Stress Tolerance in Wild Plants Adapted to Different Stressful Environments. , 2016, , 13-25.		14
1375	Polyamines: Osmoprotectants in Plant Abiotic Stress Adaptation. , 2016, , 97-127.		24
1376	The effects of exogenous antioxidant germanium (Ge) on seed germination and growth of <i>Lycium ruthenicum</i> Murr subjected to NaCl stress. Environmental Technology (United Kingdom), 2016, 37, 909-919.	1.2	16
1377	Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). Plant Cell Reports, 2016, 35, 329-346.	2.8	72
1378	Molecular Basis for Adaptation of Oysters to Stressful Marine Intertidal Environments. Annual Review of Animal Biosciences, 2016, 4, 357-381.	3.6	113
1379	GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma, 2016, 253, 1265-1281.	1.0	117
1380	Role of xylo-oligosaccharides in protection against salinity-induced adversities in Chinese cabbage. Environmental Science and Pollution Research, 2016, 23, 1254-1264.	2.7	29
1381	Effect of rootstock on salinity tolerance of sweet almond (cv. Mazzetto). South African Journal of Botany, 2016, 102, 50-59.	1.2	26
1382	De novo transcriptome sequencing of Acer palmatum and comprehensive analysis of differentially expressed genes under salt stress in two contrasting genotypes. Molecular Genetics and Genomics, 2016, 291, 575-586	1.0	16

#	Article	IF	CITATIONS
1383	Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica, 2016, 54, 19-27.	0.9	221
1384	Selenium (Se) improves drought tolerance in crop plants – a myth or fact?. Journal of the Science of Food and Agriculture, 2016, 96, 372-380.	1.7	63
1385	Salt Stress Delayed Flowering and Reduced Reproductive Success of Chickpea (<i>Cicer arietinum</i>) Tj ETQq0 (Crop Science, 2016, 202, 125-138.	0 0 rgBT /0 1.7	Overlock 10 34
1386	The impact of selenium application on enzymatic and non-enzymatic antioxidant systems in <i>Zea mays </i> roots treated with combined osmotic and heat stress. Archives of Agronomy and Soil Science, 2017, 63, 261-275.	1.3	35
1387	Use of IR thermography in screening wheat (<i>Triticum aestivum</i> L.) cultivars for salt tolerance. Archives of Agronomy and Soil Science, 2017, 63, 161-170.	1.3	5
1388	Foliar-applied trehalose modulates growth, mineral nutrition, photosynthetic ability, and oxidative defense system of rice (<i>Oryza sativa</i> L.) under saline stress. Journal of Plant Nutrition, 2017, 40, 584-599.	0.9	36
1389	<i>Arabidopsis</i> phosphoinositideâ€specific phospholipase C 4 negatively regulates seedling salt tolerance. Plant, Cell and Environment, 2017, 40, 1317-1331.	2.8	35
1390	Metabolomics Analysis Reveals the Salt-Tolerant Mechanism in Glycine soja. Journal of Plant Growth Regulation, 2017, 36, 460-471.	2.8	76
1391	Salt Tolerance in Apple Seedlings is Affected by an Inhibitor of ABA 8′-Hydroxylase CYP707A. Journal of Plant Growth Regulation, 2017, 36, 643-650.	2.8	12
1392	Amelioration of Salt Stress on Bermudagrass by the Fungus <i>Aspergillus aculeatus</i> . Molecular Plant-Microbe Interactions, 2017, 30, 245-254.	1.4	25
1393	Effect of halotolerant endophytic bacteria isolated from <i>Salicornia europaea</i> L. on the growth of fodder beet (<i>Beta vulgaris</i> L.) under salt stress. Archives of Agronomy and Soil Science, 2017, 63, 1404-1418.	1.3	52
1394	Regulation of plants metabolism in response to salt stress: an omics approach. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	22
1395	Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Science, 2017, 257, 74-83.	1.7	130
1396	Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes. Scientific Reports, 2017, 7, 42958.	1.6	91
1397	A barley mutant with improved salt tolerance through ion homeostasis and ROS scavenging under salt stress. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	13
1398	Brassinosteroid (BR) and arbuscular mycorrhizal (AM) fungi alleviate salinity in wheat. Journal of Plant Nutrition, 2017, 40, 1091-1098.	0.9	13
1399	Identification of up-regulated genes provides integrated insight into salt-induced tolerance mechanisms in Sesuvium portulacastrum roots. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	3
1400	The calciumâ€dependent protein kinase (CDPK) and CDPKâ€related kinase gene families in <i>Hevea brasiliensis</i> —comparison with five other plant species in structure, evolution, and expression. FEBS Open Bio, 2017, 7, 4-24.	1.0	40

#	Article	IF	CITATIONS
1401	Interactive salt—Alkali stress and exogenous Ca 2+ effects on growth and osmotic adjustment of Lolium multiflorum in a coastal estuary. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 229, 92-99.	0.6	10
1402	Forest structure and soil properties of mangrove ecosystems under different management scenarios: Experiences from the intensely humanized landscape of Indian Sunderbans. Ocean and Coastal Management, 2017, 140, 22-33.	2.0	35
1403	Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radical Biology and Medicine, 2017, 106, 315-328.	1.3	165
1404	Effects of magnetized water treatment on growth characteristics and ion absorption, transportation, and distribution in <i>Populus</i> × <i>euramericana</i> â€~Neva' under NaCl stress. Canadian Journal of Forest Research, 2017, 47, 828-838.	0.8	13
1405	Overexpression of a cytosolic ascorbate peroxidase from Panax ginseng enhanced salt tolerance in Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture, 2017, 129, 337-350.	1.2	10
1406	Characterization of LhSorP5CS, a gene catalyzing proline synthesis in Oriental hybrid lily Sorbonne: molecular modelling and expression analysis. , 2017, 58, 10.		11
1407	Arbuscular Mycorrhizal Fungi and Tolerance of Salt Stress in Plants. , 2017, , 67-97.		31
1408	Genomic clustering of adaptive loci during parallel evolution of an Australian wildflower. Molecular Ecology, 2017, 26, 3687-3699.	2.0	29
1409	Potential Use of Alluvial Groundwater for Irrigation in Arid Zones - Mhamid Oasis (S Morocco). Ecological Chemistry and Engineering S, 2017, 24, 129-140.	0.3	5
1410	Transcriptional regulation of salinity stress in plants: A short review. Plant Gene, 2017, 11, 160-169.	1.4	69
1411	The AtrbohF -dependent regulation of ROS signaling is required for melatonin-induced salinity tolerance in Arabidopsis. Free Radical Biology and Medicine, 2017, 108, 465-477.	1.3	128
1412	A Magnesium Transporter OsMGT1 Plays a Critical Role in Salt Tolerance in Rice. Plant Physiology, 2017, 174, 1837-1849.	2.3	105
1413	Molecular characterization and expression analysis of pearl millet plasma membrane proteolipid 3 () Tj ETQq0 0 0	rgBT /Ove 1.4	rlock 10 Tf 5 13
1414	Combined effects of soil salinity and high temperature on photosynthesis and growth of quinoa plants (Chenopodium quinoa). Functional Plant Biology, 2017, 44, 665.	1.1	58
1415	Water Management for Enhancing Crop Nutrient Use Efficiency and Reducing Losses. Advances in Olericulture, 2017, , 247-265.	0.4	1
1416	Interactive effects of salt and alkali stresses on growth, physiological responses and nutrient (N, P) removal performance of Ruppia maritima. Ecological Engineering, 2017, 104, 177-183.	1.6	24

5

1417	Physiological and anatomical responses of Phyllostachys vivax and Arundinaria fortunei (Gramineae) under salt stress. Revista Brasileira De Botanica, 2017, 40, 79-91.	0.5	4
1418	Quantitative remote sensing of soil electrical conductivity using ETM+ and ground measured data. International Journal of Remote Sensing, 2017, 38, 123-140.	1.3	28

#	Article	IF	CITATIONS
1419	Morphoâ€physiological response of <scp><i>Retama monosperma</i></scp> to extreme salinity levels. Ecohydrology, 2017, 10, e1871.	1.1	3
1420	Changes in protein profile of Platycladus orientalis (L.) roots and leaves in response to drought stress. Tree Genetics and Genomes, 2017, 13, 1.	0.6	5
1421	Genome-wide association study of salt tolerance at the seed germination stage in rice. BMC Plant Biology, 2017, 17, 92.	1.6	120
1422	The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis. Journal of Plant Physiology, 2017, 215, 48-58.	1.6	41
1423	Spinach biomass yield and physiological response to interactive salinity and water stress. Agricultural Water Management, 2017, 190, 31-41.	2.4	65
1424	Antioxidant Defense Mechanisms of Salinity Tolerance in Rice Genotypes. Rice Science, 2017, 24, 155-162.	1.7	125
1425	The K+/H+ antiporter AhNHX1 improved tobacco tolerance to NaCl stress by enhancing K+ retention. Journal of Plant Biology, 2017, 60, 259-267.	0.9	26
1426	Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst). Trees - Structure and Function, 2017, 31, 1479-1490.	0.9	18
1427	Recent Developments in Forward Osmosis Processes. Water Intelligence Online, 2017, 16, 9781780408125.	0.3	9
1428	Analysis of plant growth and biochemical parameters in Amsonia orientalis after in vitro salt stress. Horticulture Environment and Biotechnology, 2017, 58, 231-239.	0.7	10
1429	The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1. Plant Science, 2017, 259, 71-85.	1.7	62
1430	Phytoremediation of Metal- and Salt-Affected Soils. , 2017, , 211-231.		4
1431	micro <scp>RNA</scp> s contribute to enhanced salt adaptation of the autopolyploid <i>Hordeum bulbosum</i> compared with its diploid ancestor. Plant Journal, 2017, 91, 57-69.	2.8	44
1432	Morpho-physiological and transcriptome profiling reveal novel zinc deficiency-responsive genes in rice. Functional and Integrative Genomics, 2017, 17, 565-581.	1.4	32
1433	Beneficial Rhizobacterium <i>Bacillus amyloliquefaciens</i> SQR9 Induces Plant Salt Tolerance through Spermidine Production. Molecular Plant-Microbe Interactions, 2017, 30, 423-432.	1.4	61
1434	Mineral Nutrient Acquisition by Cotton Cultivars Grown under Salt Stress. Communications in Soil Science and Plant Analysis, 2017, 48, 846-856.	0.6	6
1435	A Novel Wheat Nicotianamine Synthase Gene, TaNAS-D, Confers High Salt Tolerance in Transgenic Arabidopsis. Plant Molecular Biology Reporter, 2017, 35, 252-264.	1.0	5
1437	Improved salt tolerance of medicinal plant Codonopsis pilosula by Bacillus amyloliquefaciens GB03. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	12

#	Article	IF	CITATIONS
1438	Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecological Indicators, 2017, 74, 384-391.	2.6	174
1439	Glycinebetaine-Mediated Abiotic Oxidative-Stress Tolerance in Plants: Physiological and Biochemical Mechanisms. , 2017, , 111-133.		24
1440	VvMYBA6 in the promotion of anthocyanin biosynthesis and salt tolerance in transgenic Arabidopsis. Plant Biotechnology Reports, 2017, 11, 299-314.	0.9	22
1441	Cloning of a functional mannose-6-phosphate reductase (M6PR) gene homolog from Egyptian celery plants (Apium graveolens): overexpression in non-mannitol producing plants resulted in mannitol accumulation in transgenic individuals. 3 Biotech, 2017, 7, 341.	1.1	4
1442	Cytosolic monodehydroascorbate reductase gene affects stress adaptation and grain yield under paddy field conditions in Oryza sativa L. japonica. Molecular Breeding, 2017, 37, 1.	1.0	8
1443	Current Trends in Salinity and Waterlogging Tolerance. , 2017, , 177-220.		2
1444	PnF3H, a flavanone 3-hydroxylase from the Antarctic moss Pohlia nutans, confers tolerance to salt stress and ABA treatment in transgenic Arabidopsis. Plant Growth Regulation, 2017, 83, 489-500.	1.8	27
1445	iTRAQ-based comparative proteomic analysis reveals tissue-specific and novel early-stage molecular mechanisms of salt stress response in Carex rigescens. Environmental and Experimental Botany, 2017, 143, 99-114.	2.0	38
1446	Ectopic expression of cucumber (Cucumis sativus L.) CsTIR/AFB genes enhance salt tolerance in transgenic Arabidopsis. Plant Cell, Tissue and Organ Culture, 2017, 131, 107-118.	1.2	4
1447	Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana. Scientific Reports, 2017, 7, 10795.	1.6	81
1448	The Tomato DOF Daily Fluctuations 1, TDDF1 acts as flowering accelerator and protector against various stresses. Scientific Reports, 2017, 7, 10299.	1.6	30
1449	Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis. Scientific Reports, 2017, 7, 10031.	1.6	77
1450	Genotypic differences in physiological and biochemical responses to salinity stress in melon () Tj ETQqO O O rgBT Biochemistry, 2017, 119, 294-311.	Overlock 2.8	10 Tf 50 267 83
1451	Salt tolerance response revealed by RNA-Seq in a diploid halophytic wild relative of sweet potato. Scientific Reports, 2017, 7, 9624.	1.6	22
1452	Populus euphratica J3 mediates root K+/Na+ homeostasis by activating plasma membrane H+-ATPase in transgenic Arabidopsis under NaCl salinity. Plant Cell, Tissue and Organ Culture, 2017, 131, 75-88.	1.2	35
1453	MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXINâ€mediated cytosolic calcium signaling in <i>Arabidopsis</i> . New Phytologist, 2017, 216, 163-177.	3.5	135
1454	Spatial and Temporal Variation of Soil and Water Salinity in the Southâ€Western and Southâ€Central Coastal Region of Bangladesh. Irrigation and Drainage, 2017, 66, 854-871.	0.8	15
1455	Effects of 5â€aminolevulinic acid on water uptake, ionic toxicity, and antioxidant capacity of Swiss chard (<i>Beta vulgaris</i> L.) under sodicâ€alkaline conditions. Journal of Plant Nutrition and Soil Science, 2017, 180, 535-543.	1.1	13

#	Article	IF	CITATIONS
1456	The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2017, 491, 642-648.	1.0	47
1457	Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, 2017, , .	0.6	4
1458	From inland to the coast: Spatial and environmental signatures on the genetic diversity in the colonization of the South Atlantic Coastal Plain. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 28, 47-57.	1.1	18
1459	Expression of a Na+/H+ antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana. Journal of Plant Physiology, 2017, 218, 109-120.	1.6	58
1460	Does the Cost of Adaptation to Extremely Stressful Environments Diminish Over Time? A Literature Synthesis on How Plants Adapt to Heavy Metals and Pesticides. Evolutionary Biology, 2017, 44, 411-426.	0.5	12
1461	Molecular characterization and function analysis of the rice <i>OsDUF946</i> family. Biotechnology and Biotechnological Equipment, 2017, 31, 477-485.	0.5	10
1462	Biotechnological Perspective of Reactive Oxygen Species (ROS)-Mediated Stress Tolerance in Plants. , 2017, , 53-87.		3
1463	Salt stress tolerance; what do we learn from halophytes?. Journal of Plant Biology, 2017, 60, 431-439.	0.9	45
1464	A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Research, 2017, 27, 1327-1340.	5.7	170
1465	Physiological processes associated with salinity tolerance in an alfalfa halfâ€sib family. Journal of Agronomy and Crop Science, 2017, 203, 506-518.	1.7	23
1466	β-Cyclodextrin–hemin enhances tolerance against salinity in tobacco seedlings by reestablishment of ion and redox homeostasis. Plant Growth Regulation, 2017, 81, 533-542.	1.8	6
1467	UBIQUITIN-SPECIFIC PROTEASES function in plant development and stress responses. Plant Molecular Biology, 2017, 94, 565-576.	2.0	55
1468	Exogenously Applied 24-Epibrassinolide (EBL) Ameliorates Detrimental Effects of Salinity by Reducing K+ Efflux via Depolarization-Activated K+ Channels. Plant and Cell Physiology, 2017, 58, 802-810.	1.5	48
1469	Immunomodulatory and antioxidant protective effect of <i>Sarcocornia perennis</i> L. (swampfire) in lead intoxicated rat. Toxicology Mechanisms and Methods, 2017, 27, 697-706.	1.3	21
1470	Morpho-anatomical and photosynthetic responses of Taxodium hybrid 'Zhongshanshan' 406 to prolonged flooding. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 231, 29-37.	0.6	11
1471	Plant-Microbe Interactions in Adaptation of Agricultural Crops to Abiotic Stress Conditions. , 2017, , 163-200.		91
1472	Changes in antioxidant enzyme activity in response to salinity-induced oxidative stress during early growth of sweet basil. Horticulture Environment and Biotechnology, 2017, 58, 240-246.	0.7	15
1473	Relation between salt tolerance and biochemical changes in cumin (Cuminum cyminum ÂL.) seeds. Journal of Food and Drug Analysis, 2017, 25, 391-402.	0.9	43

#	Article	IF	CITATIONS
1474	The influence of salinity on growth, morphology, leaf ultrastructure, and cell viability of the seagrass Halodule wrightii Ascherson. Protoplasma, 2017, 254, 1529-1537.	1.0	9
1475	Distinct gene networks drive differential response to abrupt or gradual water deficit in potato. Gene, 2017, 597, 30-39.	1.0	14
1476	Potential use and perspectives of nitric oxide donors in agriculture. Journal of the Science of Food and Agriculture, 2017, 97, 1065-1072.	1.7	40
1477	Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant and Soil, 2017, 410, 335-356.	1.8	309
1478	Enzymatic and Biochemical Responses of Sesame to Sodium Chloride at Germination and Early Seedling Growth. International Journal of Vegetable Science, 2017, 23, 87-101.	0.6	3
1479	Silicon: a beneficial nutrient for maize crop to enhance photochemical efficiency of photosystem II under salt stress. Archives of Agronomy and Soil Science, 2017, 63, 599-611.	1.3	41
1480	Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiologia Plantarum, 2017, 159, 290-312.	2.6	157
1481	Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants. Environmental and Experimental Botany, 2017, 133, 70-77.	2.0	25
1482	Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chemistry, 2017, 214, 129-136.	4.2	110
1483	Differentially expressed gene analysis of Tamarix chinensis provides insights into NaCl-stress response. Trees - Structure and Function, 2017, 31, 645-658.	0.9	13
1484	Proteomic response of oat leaves to long-term salinity stress. Environmental Science and Pollution Research, 2017, 24, 3387-3399.	2.7	27
1485	Effect of NaCl stress on physiological, antioxidant enzymes and anatomical responses of Astragalus gombiformis. Biologia (Poland), 2017, 72, 1454-1466.	0.8	10
1486	Physiological, anatomical and antioxidant responses to salinity in the Mediterranean pastoral grass plant Stipa lagascae. Crop and Pasture Science, 2017, 68, 872.	0.7	14
1487	Biochemical and Molecular Responses in Higher Plants Under Salt Stress. , 2017, , 117-151.		1
1488	Molecular cloning and functional characterisation of an H+-pyrophosphatase from Iris lactea. Scientific Reports, 2017, 7, 17779.	1.6	11
1489	Soil quality effects on regeneration of annual <i>Medicago</i> pastures in the Swartland of South Africa. African Journal of Range and Forage Science, 2017, 34, 201-208.	0.6	13
1490	A major QTL on chromosome 7HS controls the response of barley seedling to salt stress in the Nure × Tremois population. BMC Genetics, 2017, 18, 79.	2.7	16
1491	Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB PLANTS, 2017, 9, plx009.	1.2	78

#	Article	IF	CITATIONS
1492	Dissecting Tissue-Specific Transcriptomic Responses from Leaf and Roots under Salt Stress in Petunia hybrida Mitchell. Genes, 2017, 8, 195.	1.0	4
1493	Biotic and Abiotic Stresses Activate Different Ca2+ Permeable Channels in Arabidopsis. Frontiers in Plant Science, 2017, 8, 83.	1.7	41
1494	Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots. Frontiers in Plant Science, 2017, 8, 107.	1.7	17
1495	Genome-Wide Association Study Reveals the Genetic Architecture Underlying Salt Tolerance-Related Traits in Rapeseed (Brassica napus L.). Frontiers in Plant Science, 2017, 8, 593.	1.7	89
1496	Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters. Frontiers in Plant Science, 2017, 8, 829.	1.7	214
1497	Generation, Annotation, and Analysis of a Large-Scale Expressed Sequence Tag Library from Arabidopsis pumila to Explore Salt-Responsive Genes. Frontiers in Plant Science, 2017, 8, 955.	1.7	16
1498	OsSAPK2 Confers Abscisic Acid Sensitivity and Tolerance to Drought Stress in Rice. Frontiers in Plant Science, 2017, 8, 993.	1.7	244
1499	Divergence in Life History Traits between Two Populations of a Seed-Dimorphic Halophyte in Response to Soil Salinity. Frontiers in Plant Science, 2017, 8, 1028.	1.7	12
1500	Overexpression of Glycerol-3-Phosphate Acyltransferase from Suaeda salsa Improves Salt Tolerance in Arabidopsis. Frontiers in Plant Science, 2017, 8, 1337.	1.7	137
1501	Salt-Sensitive Signaling Networks in the Mediation of K+/Na+ Homeostasis Gene Expression in Glycyrrhiza uralensis Roots. Frontiers in Plant Science, 2017, 8, 1403.	1.7	24
1502	Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns. Frontiers in Plant Science, 2017, 8, 1438.	1.7	65
1503	Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue. Frontiers in Plant Science, 2017, 8, 2032.	1.7	21
1504	Overexpression of S-Adenosyl-l-Methionine Synthetase 2 from Sugar Beet M14 Increased Arabidopsis Tolerance to Salt and Oxidative Stress. International Journal of Molecular Sciences, 2017, 18, 847.	1.8	65
1505	A Salt Overly Sensitive Pathway Member from Brassica juncea BjSOS3 Can Functionally Complement ΔAtsos3 in Arabidopsis. Current Genomics, 2017, 19, 60-69.	0.7	17
1506	Exploration for the Salinity Tolerance-Related Genes from Xero-Halophyte Atriplex canescens Exploiting Yeast Functional Screening System. International Journal of Molecular Sciences, 2017, 18, 2444.	1.8	15
1507	Enhanced Nitrogen and Phosphorus Removal by Woody Plants with Deep-Planting Technique for the Potential Environmental Management of Carcass Burial Sites. Sustainability, 2017, 9, 155.	1.6	7
1508	Grain Yield, Dry Weight and Phosphorus Accumulation and Translocation in Two Rice (Oryza sativa L.) Varieties as Affected by Salt-Alkali and Phosphorus. Sustainability, 2017, 9, 1461.	1.6	23
1509	Salt-Stress Response Mechanisms Using de Novo Transcriptome Sequencing of Salt-Tolerant and Sensitive Corchorus spp. Genotypes. Genes, 2017, 8, 226.	1.0	38

#	Article	IF	CITATIONS
1510	Physiological and Transcriptomic Responses of Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) to Salt Stress. International Journal of Molecular Sciences, 2017, 18, 1953.	1.8	28
1511	Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 2017, 7, 18.	1.3	872
1512	Response of Chlorophyll, Carotenoid and SPAD-502 Measurement to Salinity and Nutrient Stress in Wheat (Triticum aestivum L.). Agronomy, 2017, 7, 61.	1.3	164
1513	Functional Characterization of Selected Universal Stress Protein from Salvia miltiorrhiza (SmUSP) in Escherichia coli. Genes, 2017, 8, 224.	1.0	23
1514	The Fungus Aspergillus aculeatus Enhances Salt-Stress Tolerance, Metabolite Accumulation, and Improves Forage Quality in Perennial Ryegrass. Frontiers in Microbiology, 2017, 8, 1664.	1.5	41
1515	Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS ONE, 2017, 12, e0185017.	1.1	103
1516	Changes in secondary metabolites in the halophytic putative crop species Crithmum maritimum L., Triglochin maritima L. and Halimione portulacoides (L.) Aellen as reaction to mild salinity. PLoS ONE, 2017, 12, e0176303.	1.1	41
1517	Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biology, 2017, 17, 140.	1.6	63
1518	Improving germination indices of alfalfa cultivars under saline stress by inoculation with benefi cial bacteria. Seed Science and Technology, 2017, 45, 475-484.	0.6	6
1519	Biochemical mechanisms of salinity tolerance in new promising salt tolerant cereal, tritipyrum (TriticumDurum× Thinopyrum Bessarabicum). Australian Journal of Crop Science, 2017, 11, 701-710.	0.1	1
1520	Salicylic acid and ascorbic acid retrieve activity of antioxidative enzymes and structure of Caralluma tuberculata calli on PEG stress. General Physiology and Biophysics, 2017, 36, 167-174.	0.4	5
1521	Improved Salinity Resilience in Black Bean by Seed Elicitation Using Organic Compounds. Agronomy Journal, 2017, 109, 1991-2003.	0.9	6
1522	The effects of salt and drought stress on phenolic accumulation in greenhouse-grown Hypericum pruinatum. Italian Journal of Agronomy, 2017, 12, .	0.4	26
1523	Multifarious Role of ROS in Halophytes: Signaling and Defense. , 2018, , 207-223.		9
1524	Omics-Based Strategies for Improving Salt Tolerance in Maize (Zea mays L.). , 2018, , 243-266.		5
1525	Transcription profile analysis of Lycopersicum esculentum leaves, unravels volatile emissions and gene expression under salinity stress. Plant Physiology and Biochemistry, 2018, 126, 11-21.	2.8	20
1526	Sensitivity and uncertainty analysis of the HYDRUS-1D model for root water uptake in saline soils. Crop and Pasture Science, 2018, 69, 163.	0.7	17
1527	Influence of silicon on spring wheat seedlings under salt stress. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	29

#	Article	IF	CITATIONS
1528	Characterization of halotolerant, pigmented, plant growth promoting bacteria of groundnut rhizosphere and its in-vitro evaluation of plant-microbe protocooperation to withstand salinity and metal stress. Science of the Total Environment, 2018, 630, 231-242.	3.9	56
1529	Quantitative Phosphoproteomic and Metabolomic Analyses Reveal GmMYB173 Optimizes Flavonoid Metabolism in Soybean under Salt Stress. Molecular and Cellular Proteomics, 2018, 17, 1209-1224.	2.5	72
1530	Transcriptome profiling of genes involved in photosynthesis in Elaeagnus angustifolia L. under salt stress. Photosynthetica, 2018, 56, 998-1009.	0.9	56
1531	Salinity Stress Responses and Adaptive Mechanisms in Major Glycophytic Crops: The Story So Far. , 2018, , 1-39.		9
1532	Transcription Factor-Based Genetic Engineering for Salinity Tolerance in Crops. , 2018, , 185-211.		3
1533	A WRKY transcription factor, PcWRKY33, from Polygonum cuspidatum reduces salt tolerance in transgenic Arabidopsis thaliana. Plant Cell Reports, 2018, 37, 1033-1048.	2.8	44
1534	The role of plant cation/proton antiporter gene family in salt tolerance. Biologia Plantarum, 2018, 62, 617-629.	1.9	37
1535	Differential responses of two Egyptian barley (Hordeum vulgare L.) cultivars to salt stress. Plant Physiology and Biochemistry, 2018, 127, 425-435.	2.8	47
1536	An Overview of the Genetics of Plant Response to Salt Stress: Present Status and the Way Forward. Applied Biochemistry and Biotechnology, 2018, 186, 306-334.	1.4	62
1537	Natural Biostimulants Improve Saline Soil Characteristics and Salt Stressed-Sorghum Performance. Communications in Soil Science and Plant Analysis, 2018, 49, 967-983.	0.6	69
1538	Salinity stress on various physiological and biochemical attributes of two distinct maize (<i>Zea) Tj ETQq0 0 0 rgE</i>	3T/Qverlo	ck 10 Tf 50 3
1539	Single-Gene Versus Multigene Transfer Approaches for Crop Salt Tolerance. , 2018, , 359-379.		1
1540	Strategies to Mitigate the Salt Stress Effects on Photosynthetic Apparatus and Productivity of Crop Plants. , 2018, , 85-136.		52
1541	Plant Osmoregulation as an Emergent Waterâ€Saving Adaptation. Water Resources Research, 2018, 54, 2781-2798.	1.7	18
1542	Glutamate Receptor Homolog3.4 is Involved in Regulation of Seed Germination Under Salt Stress in Arabidopsis. Plant and Cell Physiology, 2018, 59, 978-988.	1.5	52
1543	Long-term salt stress influence on vegetative growth and foliar nutrient changes in mango () Tj ETQq1 1 0.78431	4 [gBT /Ov	verlock 10 Tf
1544	Lack of mitochondrial thioredoxin <i>o</i> 1 is compensated by antioxidant components under salinity in <i>Arabidopsis thaliana</i> plants. Physiologia Plantarum, 2018, 164, 251-267.	2.6	17
1545	Integrative application of cyanobacteria and antioxidants improves common bean performance under saline conditions. Scientia Horticulturae, 2018, 233, 61-69	1.7	40

#	Article	IF	CITATIONS
1546	Exogenous nanosilica improves germination and growth of cucumber by maintaining K+/Na+ ratio under elevated Na+ stress. Plant Physiology and Biochemistry, 2018, 125, 164-171.	2.8	77
1547	Drought Effects on Growth, Water Content and Osmoprotectants in Four Olive Cultivars with Different Drought Tolerance. International Journal of Fruit Science, 2018, 18, 254-267.	1.2	33
1548	Short-term high CO 2 treatment reduces water loss and decay by modulating defense proteins and organic osmolytes in Cardinal table grape after cold storage and shelf-life. Scientia Horticulturae, 2018, 234, 27-35.	1.7	25
1549	Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (<i>Pistacia vera</i> L.) rootstocks. Journal of Plant Interactions, 2018, 13, 73-82.	1.0	252
1550	Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 2018, 24, 239-249.	1.4	62
1551	SIP1, a novel SOS2 interaction protein, is involved in salt-stress tolerance in Arabidopsis. Plant Physiology and Biochemistry, 2018, 124, 167-174.	2.8	12
1552	Effects of waterlogging, salinity and their combination on stress indices and yield attributes in pigeonpea (Cajanus cajan L. Millsp.) genotypes. Indian Journal of Plant Physiology, 2018, 23, 65-76.	0.8	12
1553	Bioimaging of the elemental distribution in cocoa beans by means of LA-ICP-TQMS. Journal of Analytical Atomic Spectrometry, 2018, 33, 187-194.	1.6	15
1554	Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana. Nucleic Acids Research, 2018, 46, 1777-1792.	6.5	57
1555	WRKY71 Acts Antagonistically Against Salt-Delayed Flowering in Arabidopsis thaliana. Plant and Cell Physiology, 2018, 59, 414-422.	1.5	47
1556	De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14. Computational Biology and Chemistry, 2018, 75, 1-10.	1.1	21
1557	Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea. Journal of Photochemistry and Photobiology B: Biology, 2018, 183, 275-287.	1.7	61
1558	A differential tolerance to mild salt stress conditions among six Italian rice genotypes does not rely on Na + exclusion from shoots. Journal of Plant Physiology, 2018, 226, 145-153.	1.6	33
1559	Cellular mechanisms to survive salt in the halophyte Cakile maritima. Plant Science, 2018, 272, 173-178.	1.7	12
1560	Redox Protein Thioredoxins: Function Under Salinity, Drought and Extreme Temperature Conditions. , 2018, , 123-162.		11
1561	Comparative Transcriptome Analysis of Seedling Stage of Two Sorghum Cultivars Under Salt Stress. Journal of Plant Growth Regulation, 2018, 37, 986-998.	2.8	24
1562	Rosmarinic acid ameliorates the negative effects of salinity in in vitro-regenerated potato explants (Solanum tuberosum L.). Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	5
1563	Biotechnological Tools for Enhancing Abiotic Stress Tolerance in Plant. , 2018, , 147-172.		5

#	Article	IF	CITATIONS
1564	Salinity effect on some of the morphophysiological traits of three plantago species (Plantago spp.). Scientia Horticulturae, 2018, 236, 43-51.	1.7	19
1565	Aspirin priming circumvents the salinity-induced effects on wheat emergence and seedling growth by regulating starch metabolism and antioxidant enzyme activities. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	65
1566	Spermine Pre-Treatment Improves Some Physiochemical Parameters and Sodium Transporter Gene Expression of Pumpkin Seedlings under Salt Stress. Russian Journal of Plant Physiology, 2018, 65, 222-228.	0.5	4
1567	Microbial Biomass and Activity in Relation to Accessibility of Organic Carbon in Saline Soils of Coastal Agro-Ecosystem. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2018, 88, 633-643.	0.4	7
1568	Influence of foliar application of polyamines on growth, gas-exchange characteristics, and chlorophyll fluorescence in Bakraii citrus under saline conditions. Photosynthetica, 2018, 56, 731-742.	0.9	46
1569	Overexpression of abiotic stress-induced AtMYBL-O results in negative modulation of abscisic acid signaling through the downregulation of abscisic acid-responsive genes in Arabidopsis thaliana. Plant Growth Regulation, 2018, 84, 25-36.	1.8	7
1570	Impact of chloride (NaCl, KCl) and sulphate (Na ₂ SO ₄ ,) Tj ETQq0 0 0 rgBT /Overlock 10 of Agronomy and Crop Science, 2018, 204, 137-146.	Tf 50 507 1.7	Td (K _{2 33}
1571	The effects of silicon on nutrient levels and yields of tomatoes under saline stress in artificial medium culture. Journal of Plant Nutrition, 2018, 41, 123-135.	0.9	6
1572	Shift in physiological and biochemical processes in wheat supplied with zinc and potassium under saline condition. Journal of Plant Nutrition, 2018, 41, 19-28.	0.9	27
1573	Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety, 2018, 147, 881-896.	2.9	340
1574	Cascades of Ionic and Molecular Networks Involved in Expression of Genes Underpin Salinity Tolerance in Cotton. Journal of Plant Growth Regulation, 2018, 37, 668-679.	2.8	18
1575	Changes of phosphorus fractions in saline soil amended with municipal solid waste compost and mineral fertilizers in a mustard-pearl millet cropping system. Catena, 2018, 160, 32-40.	2.2	39
1576	Comparative Proteomics of Contrasting Maize Genotypes Provides Insights into Salt-Stress Tolerance Mechanisms. Journal of Proteome Research, 2018, 17, 141-153.	1.8	49
1577	Transcriptomic and proteomic feature of salt stress-regulated network in Jerusalem artichoke (Helianthus tuberosus L.) root based on de novo assembly sequencing analysis. Planta, 2018, 247, 715-732.	1.6	46
1578	Genome-wide analysis and expression profiling of PP2C clade D under saline and alkali stresses in wild soybean and Arabidopsis. Protoplasma, 2018, 255, 643-654.	1.0	35
1579	TsNAC1 Is a Key Transcription Factor in Abiotic Stress Resistance and Growth. Plant Physiology, 2018, 176, 742-756.	2.3	62
1580	Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 2018, 495, 286-291.	1.0	605
1581	Approved Genetically Engineered Foods: Types, Properties, and Economic Concerns. , 2018, , 85-107.		1

#	Article	IF	CITATIONS
1582	Proteomics-Based Investigation of Salt-Responsive Mechanisms in Roots of Bradyrhizobium japonicum-Inoculated Glycine max and Glycine soja Seedlings. Journal of Plant Growth Regulation, 2018, 37, 266-277.	2.8	1
1583	Evaluation of salinity tolerance in honeysuckle (<i>Lonicera japonica</i>) using growth, ion accumulation, lipid peroxidation, and non-enzymatic and enzymatic antioxidants system criteria. Journal of Horticultural Science and Biotechnology, 2018, 93, 185-195.	0.9	5
1584	Role of sodium ion transporters and osmotic adjustments in stress alleviation of Cynodon dactylon under NaCl treatment: a parallel investigation with rice. Protoplasma, 2018, 255, 175-191.	1.0	14
1585	Relationship of Salinity Tolerance to Na+ Exclusion, Proline Accumulation, and Antioxidant Enzyme Activity in Rice Seedlings. Agriculture (Switzerland), 2018, 8, 166.	1.4	29
1587	Physiological and protein responses in leaves of Nitraria billardieri seedlings to moderate salt stress. Journal of Plant Interactions, 2018, 13, 522-531.	1.0	0
1588	Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays. Journal of Integrative Agriculture, 2018, 17, 2612-2623.	1.7	11
1590	The Damage of Root, Leaf and Chloroplast Ultrastructure on Maize Seedlings Caused by Salinity Stress. IOP Conference Series: Earth and Environmental Science, 2018, 197, 012054.	0.2	6
1592	Physiological and biochemical characterization of rootlets response to salt stress in two <i>Medicago truncatula</i> Gaertn. ecotypes. Plant Root, 2018, 12, 1-10.	0.3	2
1594	Overexpression of CCCH zinc finger protein gene delays flowering time and enhances salt tolerance in Arabidopsis by increasing fatty acid unsaturation. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	16
1595	Halophytism: What Have We Learnt From <i>Arabidopsis thaliana</i> Relative Model Systems?. Plant Physiology, 2018, 178, 972-988.	2.3	44
1596	Characterization of LiMAPK gene in response to salinity stress in Tiger lily (Lilium lancifolium Thunb.). Biotechnology and Biotechnological Equipment, 2018, 32, 1154-1166.	0.5	1
1597	Exogenous application of gibberellic acid participates in up-regulation of lipid biosynthesis under salt stress in rice. Theoretical and Experimental Plant Physiology, 2018, 30, 335-345.	1.1	13
1598	It's Hard to Avoid Avoidance: Uncoupling the Evolutionary Connection between Plant Growth, Productivity and Stress "Tolerance― International Journal of Molecular Sciences, 2018, 19, 3671.	1.8	29
1599	Adaptation Mechanism of Salt Excluders under Saline Conditions and Its Applications. International Journal of Molecular Sciences, 2018, 19, 3668.	1.8	95
1600	Biochemical Markers of Salt Stress in European Larch (Larix decidua). Notulae Scientia Biologicae, 2018, 10, 430-438.	0.1	4
1601	Rootstock Alleviates Salt Stress in Grafted Mulberry Seedlings: Physiological and PSII Function Responses. Frontiers in Plant Science, 2018, 9, 1806.	1.7	47
1602	Screening for Salt Tolerance in Four Local Varieties of Phaseolus lunatus from Spain. Agriculture (Switzerland), 2018, 8, 201.	1.4	11
1603	The Arabidopsis Ca2+-Dependent Protein Kinase CPK12 Is Involved in Plant Response to Salt Stress. International Journal of Molecular Sciences, 2018, 19, 4062.	1.8	27

#	Article	IF	CITATIONS
1604	The Protective Effect of Exogenous Putrescine in the Response of Tea Plants (Camellia sinensis) to Salt Stress. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1640-1646.	0.5	22
1605	Hydrogen Sulfide Mediates K+ and Na+ Homeostasis in the Roots of Salt-Resistant and Salt-Sensitive Poplar Species Subjected to NaCl Stress. Frontiers in Plant Science, 2018, 9, 1366.	1.7	41
1606	H2O2 Signature and Innate Antioxidative Profile Make the Difference Between Sensitivity and Tolerance to Salt in Rice Cells. Frontiers in Plant Science, 2018, 9, 1549.	1.7	13
1607	Expression analysis of IncRNA AK370814 involved in the barley vitamin B6 salvage pathway under salinity. Molecular Biology Reports, 2018, 45, 1597-1609.	1.0	23
1608	Transcriptional profiling reveals that a MYB transcription factor MsMYB4 contributes to the salinity stress response of alfalfa. PLoS ONE, 2018, 13, e0204033.	1.1	31
1609	Compliant plant wearables for localized microclimate and plant growth monitoring. Npj Flexible Electronics, 2018, 2, .	5.1	119
1610	Streptomyces sp. strain SK68, isolated from peanut rhizosphere, promotes growth and alleviates salt stress in tomato (Solanum lycopersicum cv. Micro-Tom). Journal of Microbiology, 2018, 56, 753-759.	1.3	16
1611	Transgene Pyramiding of Salt Responsive Protein 3-1 (SaSRP3-1) and SaVHAc1 From Spartina alterniflora L. Enhances Salt Tolerance in Rice. Frontiers in Plant Science, 2018, 9, 1304.	1.7	14
1612	Association mapping of salt tolerance traits at germination stage of rapeseed (Brassica napus L.). Euphytica, 2018, 214, 1.	0.6	14
1613	SENSITIVE TO SALT1, An Endoplasmic Reticulum-Localized Chaperone, Positively Regulates Salt Resistance. Plant Physiology, 2018, 178, 1390-1405.	2.3	27
1614	Overexpression of PeHKT1;1 Improves Salt Tolerance in Populus. Genes, 2018, 9, 475.	1.0	31
1615	Serratia liquefaciens KM4 Improves Salt Stress Tolerance in Maize by Regulating Redox Potential, Ion Homeostasis, Leaf Gas Exchange and Stress-Related Gene Expression. International Journal of Molecular Sciences, 2018, 19, 3310.	1.8	109
1616	Association Analysis and Identification of ZmHKT1;5 Variation With Salt-Stress Tolerance. Frontiers in Plant Science, 2018, 9, 1485.	1.7	51
1617	Identification of Glutathione Peroxidase (GPX) Gene Family in Rhodiola crenulata and Gene Expression Analysis under Stress Conditions. International Journal of Molecular Sciences, 2018, 19, 3329.	1.8	16
1618	Exogenous myo-inositol alleviates salinity-induced stress in Malus hupehensis Rehd. Plant Physiology and Biochemistry, 2018, 133, 116-126.	2.8	61
1619	Exogenous Pi supplementation improved the salt tolerance of maize (Zea mays L.) by promoting Na+ exclusion. Scientific Reports, 2018, 8, 16203.	1.6	20
1620	Combined effects of NaCl and Cd2+ stress on the photosynthetic apparatus of Thellungiella salsuginea. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1274-1287.	0.5	24
1621	Role of foliar application of sulfur-containing compounds on maize (Zea mays L. var. Malka and hybrid) Tj ETQq1	0.78431	4 fgBT /Ove

#	Article	IF	CITATIONS
1622	Heterologous Expression of the Transcription Factor EsNAC1 in Arabidopsis Enhances Abiotic Stress Resistance and Retards Growth by Regulating the Expression of Different Target Genes. Frontiers in Plant Science, 2018, 9, 1495.	1.7	16
1623	Identification of Salt Stress Responding Genes Using Transcriptome Analysis in Green Alga Chlamydomonas reinhardtii. International Journal of Molecular Sciences, 2018, 19, 3359.	1.8	71
1624	A new Na ⁺ /H ⁺ antiporter gene <i>KvNHX1</i> isolated from the halophyte <i>Kosteletzkya virginica</i> improves salt tolerance in transgenic tobacco. Biotechnology and Biotechnological Equipment, 2018, 32, 1378-1386.	0.5	16
1625	Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation. Frontiers in Microbiology, 2018, 9, 2309.	1.5	134
1627	Evaluation of Key Antimicrobial Properties of Moringa oleifera in Relation to Its Use as a Hand-Washing Product. Water (Switzerland), 2018, 10, 1154.	1.2	1
1628	In Vitro Production of Bacosides from Bacopa monnieri. , 2018, , 289-301.		0
1629	Overexpression of the ABC transporter gene TsABCG11 increases cuticle lipids and abiotic stress tolerance in Arabidopsis. Plant Biotechnology Reports, 2018, 12, 303-313.	0.9	16
1630	NaCl-induced changes in vacuolar H+-ATPase expression and vacuolar membrane lipid composition of two shrub willow clones differing in their response to salinity. Plant Growth Regulation, 2018, 86, 445-453.	1.8	5
1631	The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice. BMC Plant Biology, 2018, 18, 203.	1.6	83
1632	Application of nanomaterial graphene oxide on biochemical traits of Milk thistle (Silybum marianum) Tj ETQq1 1	0.784314 0.1	rgBT /Overlo
1633	Identification of SNPs and Candidate Genes Associated With Salt Tolerance at the Seedling Stage in Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2018, 9, 1011.		50
	Cotton (Cossyptant hirsattant L.). Hontlers in Plant Science, 2010, 9, 1011.	1.7	
1634	Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription. Plant Science, 2018, 276, 181-188.	1.7	30
1634 1635	Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription. Plant Science,		30 5
	Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription. Plant Science, 2018, 276, 181-188. Both NaCl and H2O2 Long-Term Stresses Affect Basal Cytosolic Ca2+ Levels but Only NaCl Alters	1.7	
1635	Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription. Plant Science, 2018, 276, 181-188. Both NaCl and H2O2 Long-Term Stresses Affect Basal Cytosolic Ca2+ Levels but Only NaCl Alters Cytosolic Ca2+ Signatures in Arabidopsis. Frontiers in Plant Science, 2018, 9, 1390. The Tropical Invasive Seagrass, Halophila stipulacea, Has a Superior Ability to Tolerate Dynamic Changes in Salinity Levels Compared to Its Freshwater Relative, Vallisneria americana. Frontiers in	1.7	5
1635 1636	Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription. Plant Science, 2018, 276, 181-188. Both NaCl and H2O2 Long-Term Stresses Affect Basal Cytosolic Ca2+ Levels but Only NaCl Alters Cytosolic Ca2+ Signatures in Arabidopsis. Frontiers in Plant Science, 2018, 9, 1390. The Tropical Invasive Seagrass, Halophila stipulacea, Has a Superior Ability to Tolerate Dynamic Changes in Salinity Levels Compared to Its Freshwater Relative, Vallisneria americana. Frontiers in Plant Science, 2018, 9, 950. Molecular cloning of glutathione peroxidase gene of Antarctic ice microalga <i>Chlamydomonas Molecular cloning of glutathione peroxidase gene of Antarctic ice microalga <i>Chlamydomonas Sp. ICEâ€L and its expression changes under temperature and salinity stress. Phycological Research, 2018,</i></i>	1.7 1.7 1.7	5 40
1635 1636 1637	Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription. Plant Science, 2018, 276, 181-188. Both NaCl and H2O2 Long-Term Stresses Affect Basal Cytosolic Ca2+ Levels but Only NaCl Alters Cytosolic Ca2+ Signatures in Arabidopsis. Frontiers in Plant Science, 2018, 9, 1390. The Tropical Invasive Seagrass, Halophila stipulacea, Has a Superior Ability to Tolerate Dynamic Changes in Salinity Levels Compared to Its Freshwater Relative, Vallisneria americana. Frontiers in Plant Science, 2018, 9, 950. Molecular cloning of glutathione peroxidase gene of Antarctic ice microalga <i>Chlamydomonas Sp. ICEâ€L and its expression changes under temperature and salinity stress. Phycological Research, 2018, 66, 173-181. Calcium signaling during salt stress and in the regulation of ion homeostasis. Journal of</i>	1.7 1.7 1.7 0.8	5 40 1

#	Article	IF	CITATIONS
1641	Inducing drought tolerance in greenhouse grown Juglans regia by imposing controlled salt stress: The role of osmotic adjustment. Scientia Horticulturae, 2018, 239, 181-192.	1.7	30
1642	Biosynthesis of riccionidins and marchantins is regulated by R2R3-MYB transcription factors in Marchantia polymorpha. Journal of Plant Research, 2018, 131, 849-864.	1.2	50
1643	Strengthening desert plant biotechnology research in the United Arab Emirates: a viewpoint. Physiology and Molecular Biology of Plants, 2018, 24, 521-533.	1.4	14
1644	Ionic Basis of Salt Tolerance in Plants: Nutrient Homeostasis and Oxidative Stress Tolerance. , 2018, , 325-362.		20
1645	Effect of selenium application on phenylalanine ammonia-lyase (PAL) activity, phenol leakage and total phenolic content in garlic (Allium sativum L .) under NaCl stress. Information Processing in Agriculture, 2018, 5, 339-344.	2.9	30
1646	Fumarylacetoacetate hydrolase is involved in salt stress response in Arabidopsis. Planta, 2018, 248, 499-511.	1.6	8
1647	Using Growth and Ionic Contents of Wheat Seedlings as Rapid Screening Tool for Salt Tolerance. Journal of Crop Science and Biotechnology, 2018, 21, 173-181.	0.7	5
1648	Influence of salinity and Fusarium oxysporum as the stress factors on morpho-physiological and yield attributes in onion. Physiology and Molecular Biology of Plants, 2018, 24, 1093-1101.	1.4	22
1649	Role of salt-induced RING finger protein 3 (OsSIRP3), a negative regulator of salinity stress response by modulating the level of its target proteins. Environmental and Experimental Botany, 2018, 155, 21-30.	2.0	7
1650	Management of Soil Problems. , 2018, , .		36
1651	Comparing yield and growth characteristics of four pastoral plant species under two salinity soil levels. Land Degradation and Development, 2018, 29, 3104-3111.	1.8	7
1653	Growth, physiological adaptation, and NHX gene expression analysis of Iris halophila under salt stress. Environmental Science and Pollution Research, 2018, 25, 25207-25216.	2.7	14
1654	24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review. Plant Physiology and Biochemistry, 2018, 130, 69-79.	2.8	129
1655	Quantitative proteomic analysis using iTRAQ to identify salt-responsive proteins during the germination stage of two Medicago species. Scientific Reports, 2018, 8, 9553.	1.6	18
1656	Title: Enhanced salt tolerance and photosynthetic performance: Implication of ɤmino butyric acid application in salt-exposed lettuce (Lactuca sativa L.) plants. Plant Physiology and Biochemistry, 2018, 130, 157-172.	2.8	72
1657	Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings. Plant Physiology and Biochemistry, 2018, 130, 94-104.	2.8	65
1658	Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H+ ATPase activity. Microbiological Research, 2018, 215, 89-101.	2.5	47
1659	Transcriptome analysis of sweet Sorghum inbred lines differing in salt tolerance provides novel insights into salt exclusion by roots. Plant and Soil, 2018, 430, 423-439.	1.8	52

#	Article	IF	CITATIONS
1660	Transcriptome and Cell Physiological Analyses in Different Rice Cultivars Provide New Insights Into Adaptive and Salinity Stress Responses. Frontiers in Plant Science, 2018, 9, 204.	1.7	65
1661	Wheat F-Box Protein Gene TaFBA1 Is Involved in Plant Tolerance to Heat Stress. Frontiers in Plant Science, 2018, 9, 521.	1.7	123
1662	The Response of Photosynthetic Functions of F1 Cutting Seedlings From Physocarpus amurensis Maxim (♀) × Physocarpus opulifolius "Diabolo―(â™,) and the Parental Seedlings to Salt Stress. Frontiers in Pla Science, 2018, 9, 714.	nt1.7	30
1663	Genotype by Environment Interaction Unravels Influence on Secondary Metabolite Quality in Cassava Infested by Bemisia tabaci. Journal of Agricultural Science, 2018, 10, 192.	0.1	0
1664	Molecular characterization of Brassica napus stress related transcription factors, BnMYB44 and BnVIP1, selected based on comparative analysis of Arabidopsis thaliana and Eutrema salsugineum transcriptomes. Molecular Biology Reports, 2018, 45, 1111-1124.	1.0	21
1665	Growth, physiology, and transcriptional analysis of Two contrasting Carex rigescens genotypes under Salt stress reveals salt-tolerance mechanisms. Journal of Plant Physiology, 2018, 229, 77-88.	1.6	41
1666	Threeâ€dimensional mapping of soil salinity in the southern coastal area of Laizhou Bay, China. Land Degradation and Development, 2018, 29, 3772-3782.	1.8	11
1668	Effects of Salt Stress on Plant Growth, Antioxidant Capacity, Glandular Trichome Density, and Volatile Exudates of Schizonepeta tenuifolia Briq International Journal of Molecular Sciences, 2018, 19, 252.	1.8	107
1669	Nitric Oxide Is Required for Melatonin-Enhanced Tolerance against Salinity Stress in Rapeseed (Brassica napus L.) Seedlings. International Journal of Molecular Sciences, 2018, 19, 1912.	1.8	136
1670	Integration of proteomic and transcriptomic profiles reveals multiple levels of genetic regulation of salt tolerance in cotton. BMC Plant Biology, 2018, 18, 128.	1.6	42
1671	A C2H2 zinc-finger protein OsZFP213 interacts with OsMAPK3 to enhance salt tolerance in rice. Journal of Plant Physiology, 2018, 229, 100-110.	1.6	61
1672	Metabolite profiling and gene expression of Na/K transporter analyses reveal mechanisms of the difference in salt tolerance between barley and rice. Plant Physiology and Biochemistry, 2018, 130, 248-257.	2.8	44
1673	Saline-alkaline tolerance of hygrophilous plant species during their asexual propagation and continued growth stages. South African Journal of Botany, 2018, 118, 129-137.	1.2	14
1674	Large-scale de novo transcriptome analysis reveals specific gene expression and novel simple sequence repeats markers in salinized roots of the euhalophyte Salicornia europaea. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	2
1675	Saline and Sodic Soils. , 2018, , 255-298.		21
1676	Functional characterization of the NhaA Na+/H+ antiporter from the green picoalga Ostreococcus tauri. Archives of Biochemistry and Biophysics, 2018, 649, 37-46.	1.4	2
1677	A chalcone synthase gene AeCHS from Abelmoschus esculentus regulates flavonoid accumulation and abiotic stress tolerance in transgenic Arabidopsis. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	48
1678	Comparative metabolic and ionomic profiling of two cultivars of Stevia rebaudiana Bert. (Bertoni) grown under salinity stress. Plant Physiology and Biochemistry, 2018, 129, 56-70.	2.8	26

#	Article	IF	CITATIONS
1679	Genome-wide identification and analyses of the rice <i>OsDUF936</i> family. Biotechnology and Biotechnological Equipment, 2018, 32, 309-315.	0.5	11
1680	Molecular characterization and function analysis of the rice OsDUF829 family. Biotechnology and Biotechnological Equipment, 2018, 32, 550-557.	0.5	4
1681	Effectiveness of bacterial inoculation in alleviation of salinity on water status, mineral content, gas exchange and photosynthetic parameters of Viburnum tinus L. plants. Scientia Horticulturae, 2018, 237, 303-310.	1.7	5
1682	Heterologous Expression of a Novel Zoysia japonica C2H2 Zinc Finger Gene, ZjZFN1, Improved Salt Tolerance in Arabidopsis. Frontiers in Plant Science, 2018, 9, 1159.	1.7	34
1683	Temporal and spatial changes in ion homeostasis, antioxidant defense and accumulation of flavonoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) L PLoS ONE, 2018, 13, e0193394.	1.1	27
1684	Silicon mediates sodium transport and partitioning in maize under moderate salt stress. Environmental and Experimental Botany, 2018, 155, 681-687.	2.0	56
1685	Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regulation, 2018, 86, 323-331.	1.8	71
1686	Metabolomic and transcriptomic analyses reveal the reasons why Hordeum marinum has higher salt tolerance than Hordeum vulgare. Environmental and Experimental Botany, 2018, 156, 48-61.	2.0	45
1687	Comparative analysis of water deficit and salt tolerance mechanisms in Silene. South African Journal of Botany, 2018, 117, 193-206.	1.2	20
1688	Rhizospheric bacterial isolates of grass pea (LathyrusÂsativusL.) endowed with multiple plant growthÂpromoting traits. Journal of Applied Microbiology, 2018, 125, 1786-1801.	1.4	17
1689	Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Functional Plant Biology, 2018, 45, 1096.	1.1	82
1690	Evaluation of salt-tolerant germplasm and screening of the salt-tolerance traits of sweet sorghum in the germination stage. Functional Plant Biology, 2018, 45, 1073.	1.1	74
1691	Response of Plants to Salinity Stress and the Role of Salicylic Acid in Modulating Tolerance Mechanisms: Physiological and Proteomic Approach. , 2018, , 103-136.		4
1692	Evolution of heatâ€ s hock protein expression underlying adaptive responses to environmental stress. Molecular Ecology, 2018, 27, 3040-3054.	2.0	148
1693	Novel Perspectives of Biotic and Abiotic Stress Tolerance Mechanism in Actinobacteria. , 2018, , 235-244.		7
1694	Genome-Wide Association Studies (GWAS) for Abiotic Stress Tolerance in Plants. , 2018, , 135-150.		22
1695	Differential influence of molybdenum and tungsten on the growth of barley seedlings and the activity of aldehyde oxidase under salinity. Journal of Plant Physiology, 2018, 228, 189-196.	1.6	9
1696	NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum. Scientific Reports, 2018, 8, 8873.	1.6	56

#	Article	IF	CITATIONS
1697	Rice in Saline Soils: Physiology, Biochemistry, Genetics, and Management. Advances in Agronomy, 2018, 148, 231-287.	2.4	100
1698	Okra growth and drought tolerance when exposed to water regimes at different growth stages. International Journal of Vegetable Science, 2019, 25, 226-258.	0.6	12
1699	Transcriptomic analysis of Aegilops tauschii during long-term salinity stress. Functional and Integrative Genomics, 2019, 19, 13-28.	1.4	30
1700	Supplemental calcium nitrate mitigates NaCl-induced biochemical, physiological, and antioxidant changes in sesame. International Journal of Vegetable Science, 2019, 25, 3-26.	0.6	3
1701	Identification of physiological and biochemical markers for salt (NaCl) stress in the seedlings of mungbean [Vigna radiata (L.) Wilczek] genotypes. Saudi Journal of Biological Sciences, 2019, 26, 1053-1060.	1.8	18
1702	Salt stress in rice: multivariate analysis separates four components of beneficial silicon action. Protoplasma, 2019, 256, 331-347.	1.0	12
1703	Influence of exogenously applied nitric oxide on strawberry (<i>Fragaria × ananassa</i>) plants grown under iron deficiency and/or saline stress. Physiologia Plantarum, 2019, 165, 247-263.	2.6	47
1704	Natural variation in cytokinin maintenance improves salt tolerance in apple rootstocks. Plant, Cell and Environment, 2019, 42, 424-436.	2.8	32
1705	Role of Endophytes in Plant Health and Abiotic Stress Management. , 2019, , 119-144.		42
1706	Methods for grafting Arabidopsis thaliana and Eutrema salsugineum. Plant Methods, 2019, 15, 93.	1.9	8
1707	Avenues of the membrane transport system in adaptation of plants to abiotic stresses. Critical Reviews in Biotechnology, 2019, 39, 861-883.	5.1	53
1708	Effect of soil aeration on root morphology and photosynthetic characteristics of potted tomato plants (Solanum lycopersicum) at different NaCl salinity levels. BMC Plant Biology, 2019, 19, 331.	1.6	47
1709	Insights into Physiological Mechanisms of Salt Stress Tolerance in Djulis (Chenopodium formosanum) Tj ETQq0 C) 0 rgBT /C	overlock 10 Th
1710	LOS2 gene plays a potential role in barley (Hordeum vulgare L.) salinity tolerance as a hub gene. Molecular Breeding, 2019, 39, 1.	1.0	8
1711	Exploiting Differential Gene Expression to Discover Ionic and Osmotic-Associated Transcripts in the Halophyte Grass Aeluropus littoralis. Biological Procedures Online, 2019, 21, 14.	1.4	12
1712	Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress. Biomolecules, 2019, 9, 285.	1.8	412
1713	Responses to Drought in Seedlings of European Larch (Larix decidua Mill.) from Several Carpathian Provenances. Forests, 2019, 10, 511.	0.9	4
1714	Transcriptome profiling of Puccinellia tenuiflora during seed germination under a long-term saline-alkali stress. BMC Genomics, 2019, 20, 589.	1.2	34

#	Article	IF	CITATIONS
1715	A rice really interesting new gene <scp>H</scp> 2â€type <scp>E</scp> 3 ligase, <scp>OsSIRH2â€14</scp> , enhances salinity tolerance via ubiquitin/26 <scp>S</scp> proteasomeâ€mediated degradation of saltâ€related proteins. Plant, Cell and Environment, 2019, 42, 3061-3076.	2.8	39
1716	Phytohormone involved in salt tolerance regulation of <i>Elaeagnus angustifolia</i> L. seedlings. Journal of Forest Research, 2019, 24, 235-242.	0.7	10
1718	The responses of a soil bacterial community under saline stress are associated with Cd availability in long-term wastewater-irrigated field soil. Chemosphere, 2019, 236, 124372.	4.2	41
1719	Stimulating antioxidant defenses, antioxidant gene expression, and salt tolerance in Pisum sativum seedling by pretreatment using licorice root extract (LRE) as an organic biostimulant. Plant Physiology and Biochemistry, 2019, 142, 292-302.	2.8	62
1720	Exogenous salicylic acid improves the germination of <i>Limonium bicolor</i> seeds under salt stress. Plant Signaling and Behavior, 2019, 14, e1644595.	1.2	38
1721	Plant Growth-Promoting Bacteria for Improving Crops Under Saline Conditions. Soil Biology, 2019, , 329-352.	0.6	3
1722	Salinity Stress-Dependent Coordination of Metabolic Networks in Relation to Salt Tolerance in Plants. Soil Biology, 2019, , 401-422.	0.6	3
1723	The relationship between cuticular lipids and associated gene expression in above ground organs of Thellungiella salsugineum (Pall.) Al-Shehbaz & Warwick. Plant Science, 2019, 287, 110200.	1.7	4
1724	Comparative physiological and metabolomic analyses reveal mechanisms of Aspergillus aculeatus-mediated abiotic stress tolerance in tall fescue. Plant Physiology and Biochemistry, 2019, 142, 342-350.	2.8	14
1725	Response of saffron (Crocus sativus L.) to irrigation water salinity, irrigation regime and planting method: Physiological growth and gas exchange. Scientia Horticulturae, 2019, 257, 108714.	1.7	9
1726	Salinity Stress Alters Root Morphology and Root Hair Traits in Brassica napus. Plants, 2019, 8, 192.	1.6	74
1727	Agro-interventions for Sustainable Management of Salt-affected Vertisols in India. , 2019, , 653-703.		1
1728	Phosphorus Limitation Improved Salt Tolerance in Maize Through Tissue Mass Density Increase, Osmolytes Accumulation, and Na+ Uptake Inhibition. Frontiers in Plant Science, 2019, 10, 856.	1.7	49
1729	Transcriptomic and alternative splicing analyses reveal mechanisms of the difference in salt tolerance between barley and rice. Environmental and Experimental Botany, 2019, 166, 103810.	2.0	24
1730	Functional Validation of <i>JcWRKY2</i> , a Group III Transcription Factor Toward Mitigating Salinity Stress in Transgenic Tobacco. DNA and Cell Biology, 2019, 38, 1278-1291.	0.9	7
1733	Morphological and metabolic responses to salt stress of rice (Oryza sativa L.) cultivars which differ in salinity tolerance. Plant Physiology and Biochemistry, 2019, 144, 427-435.	2.8	59
1734	Comparison between the Transcriptomes of â€~KDML105' Rice and a Salt-Tolerant Chromosome Segment Substitution Line. Genes, 2019, 10, 742.	1.0	5
1735	Chemical and Transcriptomic Analysis of Cuticle Lipids under Cold Stress in Thellungiella salsuginea. International Journal of Molecular Sciences, 2019, 20, 4519.	1.8	19

#	Article	IF	CITATIONS
1736	The effect of salt stress on the growth of 3 species of Nitraria seedlings. IOP Conference Series: Earth and Environmental Science, 2019, 346, 012025.	0.2	1
1739	Regulation of ABI5 expression by ABF3 during salt stress responses in Arabidopsis thaliana. , 2019, 60, 16.		47
1740	Supplemental potassium mediates antioxidant metabolism, physiological processes, and osmoregulation to confer salt stress tolerance in cabbage (Brassica oleracea L.). Horticulture Environment and Biotechnology, 2019, 60, 853-869.	0.7	16
1741	Saltâ€Treated Roots of <i>Oryza australiensis</i> Seedlings are Enriched with Proteins Involved in Energetics and Transport. Proteomics, 2019, 19, e1900175.	1.3	6
1742	Overexpression of the Arabidopsis glutathione peroxidase-like 5 gene (AtGPXL5) resulted in altered plant development and redox status. Environmental and Experimental Botany, 2019, 167, 103849.	2.0	15
1744	Halotolerant Rhizobacterial Strains Mitigate the Adverse Effects of NaCl Stress in Soybean Seedlings. BioMed Research International, 2019, 2019, 1-15.	0.9	69
1745	Effects of NaHCO3 Acclimation on Rye (Secale Cereale) Growth Under Sodic-Alkaline Stress. Plants, 2019, 8, 314.	1.6	8
1746	Evaluation of the Environmental Factors Modulating Indole-3-acetic Acid (IAA) Production by Trichoderma harzianum InaCC F88. IOP Conference Series: Earth and Environmental Science, 2019, 308, 012060.	0.2	7
1747	Exogenous melatonin improves seed germination in <i>Limonium bicolor</i> under salt stress. Plant Signaling and Behavior, 2019, 14, 1659705.	1.2	61
1748	Drought and salinity stresses in barley: Consequences and mitigation strategies. Australian Journal of Crop Science, 2019, , 810-820.	0.1	26
1749	Design of Management and Control System of Aero-engine Nozzle Processing Line. Journal of Physics: Conference Series, 2019, 1267, 012070.	0.3	0
1750	Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiology and Molecular Biology of Plants, 2019, 25, 1107-1119.	1.4	56
1751	Membrane Lipid Remodeling in Response to Salinity. International Journal of Molecular Sciences, 2019, 20, 4264.	1.8	107
1752	Overexpression of CrCOMT from Carex rigescens increases salt stress and modulates melatonin synthesis in Arabidopsis thaliana. Plant Cell Reports, 2019, 38, 1501-1514.	2.8	37
1753	Effects of Salt Stress on the Leaf Shape and Scaling of Pyrus betulifolia Bunge. Symmetry, 2019, 11, 991.	1.1	13
1754	Sheepgrass (Leymus chinensis): An Environmentally Friendly Native Grass for Animals. , 2019, , .		3
1755	Photochemistry and proteomics of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress. Ecotoxicology and Environmental Safety, 2019, 184, 109624.	2.9	38
1756	The Glutamate Receptor-Like Protein GLR3.7 Interacts With 14-3-3ï‰ and Participates in Salt Stress Response in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 1169.	1.7	57

#	Article	IF	Citations
1757	Growth and physiological responses of four kiwifruit genotypes to salt stress and resistance evaluation. Journal of Integrative Agriculture, 2019, 18, 83-95.	1.7	23
1758	Improving plant growth and alleviating photosynthetic inhibition from salt stress using AMF in alfalfa seedlings. Journal of Plant Interactions, 2019, 14, 482-491.	1.0	31
1759	Root-Associated Microbial Communities of Abies nordmanniana: Insights Into Interactions of Microbial Communities With Antioxidative Enzymes and Plant Growth. Frontiers in Microbiology, 2019, 10, 1937.	1.5	24
1760	Combined Boron Toxicity and Salinity Stress—An Insight into Its Interaction in Plants. Plants, 2019, 8, 364.	1.6	30
1761	Overexpression of the Cytokinin Oxidase/dehydrogenase (CKX) from Medicago sativa Enhanced Salt Stress Tolerance of Arabidopsis. Journal of Plant Biology, 2019, 62, 374-386.	0.9	27
1762	Identification and evolutionary characterization of salt-responsive transcription factors in the succulent halophyte Suaeda fruticosa. PLoS ONE, 2019, 14, e0222940.	1.1	9
1763	Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton. Plant Science, 2019, 281, 72-81.	1.7	70
1764	TaZFP1, a C2H2 type-ZFP gene of T. aestivum, mediates salt stress tolerance of plants by modulating diverse stress-defensive physiological processes. Plant Physiology and Biochemistry, 2019, 136, 127-142.	2.8	25
1765	Glassworts: From Wild Salt Marsh Species to Sustainable Edible Crops. Agriculture (Switzerland), 2019, 9, 14.	1.4	61
1766	CYSTM3 negatively regulates salt stress tolerance in Arabidopsis. Plant Molecular Biology, 2019, 99, 395-406.	2.0	25
1767	Peanut genes encoding tetrapyrrole biosynthetic enzymes, AhHEMA1 and AhFC1, alleviating the salt stress in transgenic tobacco. Plant Physiology and Biochemistry, 2019, 137, 14-24.	2.8	9
1768	Expression Pattern and Function Analysis of AtPPRT1, a Novel Negative Regulator in ABA and Drought Stress Responses in Arabidopsis. International Journal of Molecular Sciences, 2019, 20, 394.	1.8	14
1769	The Growth Promotion of Two Salt-Tolerant Plant Groups with PGPR Inoculation: A Meta-Analysis. Sustainability, 2019, 11, 378.	1.6	89
1770	High-Affinity K+ Transporters from a Halophyte, <i>Sporobolus virginicus</i> , Mediate Both K+ and Na+ Transport in Transgenic Arabidopsis, <i>X. laevis</i> Oocytes and Yeast. Plant and Cell Physiology, 2019, 60, 176-187.	1.5	12
1771	Antioxidant enzymes and cell wall formation in tobacco plants under salt stress. AIP Conference Proceedings, 2019, , .	0.3	1
1772	Understanding the Environmental Impact of a Mine Dam Rupture in Brazil: Prospects for Remediation. Journal of Environmental Quality, 2019, 48, 439-449.	1.0	38
1773	Transgenic Arabidopsis overexpressing MsSNAT enhances salt tolerance via the increase in autophagy, and the reestablishment of redox and ion homeostasis. Environmental and Experimental Botany, 2019, 164, 20-28.	2.0	30
1774	Polyphenol-enriched spelt husk extracts improve growth and stress-related biochemical parameters under moderate salt stress in maize plants. Plant Physiology and Biochemistry, 2019, 141, 95-104.	2.8	18

#	Article	IF	CITATIONS
1775	Hydrogen peroxide alleviates P starvation in rice by facilitating P remobilization from the root cell wall. Journal of Plant Physiology, 2019, 240, 153003.	1.6	2
1776	Comparative transcriptome analysis reveals unique genetic adaptations conferring salt tolerance in a xerohalophyte. Functional Plant Biology, 2019, 46, 670.	1.1	10
1777	The Interaction Between Plants and Bacterial Endophytes Under Salinity Stress. Reference Series in Phytochemistry, 2019, , 591-607.	0.2	13
1778	Tethering of Multi-Vesicular Bodies and the Tonoplast to the Plasma Membrane in Plants. Frontiers in Plant Science, 2019, 10, 636.	1.7	24
1779	Reaumuria trigyna transcription factor RtWRKY23 enhances salt stress tolerance and delays flowering in plants. Journal of Plant Physiology, 2019, 239, 38-51.	1.6	15
1780	Organic amendments for mitigating soil salinity in rice. Research in Agriculture, Livestock and Fisheries, 2019, 6, 11-17.	0.1	4
1781	Effect of irrigation salinity on the growth and yield of two Aus rice cultivars of Bangladesh. Jahangirnagar University Journal of Biological Sciences, 2019, 7, 1-12.	0.2	8
1782	Autotetraploidization in Ziziphus jujuba Mill. var. spinosa enhances salt tolerance conferred by active, diverse stress responses. Environmental and Experimental Botany, 2019, 165, 92-107.	2.0	20
1783	Estimating Arsenic Mobility and Phytotoxicity Using Two Different Phosphorous Fertilizer Release Rates in Soil. Agronomy, 2019, 9, 111.	1.3	5
1784	Identification of Salt and Drought Biochemical Stress Markers in Several Silene vulgaris Populations. Sustainability, 2019, 11, 800.	1.6	19
1785	A novel sweetpotato bZIP transcription factor gene, IbbZIP1, is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Cell Reports, 2019, 38, 1373-1382.	2.8	44
1786	Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	55
1787	Organic and inorganic remediation of soils affected by salinity in the Sebkha of Sed El Mesjoune – Marrakech (Morocco). Soil and Tillage Research, 2019, 193, 153-160.	2.6	41
1788	24-epibrassinolide pre-treatment alleviates the salt-induced deleterious effects in medicinal pumpkin (Cucurbita pepo) by enhancement of GABA content and enzymatic antioxidants. South African Journal of Botany, 2019, 124, 111-117.	1.2	8
1789	Quinoa: In Perspective of Global Challenges. Agronomy, 2019, 9, 176.	1.3	49
1790	Applications of Molecular Markers to Develop Resistance Against Abiotic Stresses in Wheat. , 2019, , 393-420.		12
1791	A nonâ€ŧandem <scp>CCCH</scp> â€ŧype zincâ€finger protein, lbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytologist, 2019, 223, 1918-1936.	3.5	89
1792	Abiotic Stress Signaling in Wheat Crop. , 2019, , 261-282.		4

#	Article	IF	Citations
1793	Md <scp>MYB</scp> 46 could enhance salt and osmotic stress tolerance in apple by directly activating stressâ€responsive signals. Plant Biotechnology Journal, 2019, 17, 2341-2355.	4.1	127
1794	Pre-breeding: the role of antioxidant enzymes on maize in salt stress tolerance. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	4
1795	Coâ€expression of <i>Arabidopsis AtAVP1</i> and <i>AtNHX1</i> to Improve Salt Tolerance in Soybean. Crop Science, 2019, 59, 1133-1143.	0.8	15
1796	Mapping of quantitative trait loci for seedling salt tolerance in maize. Molecular Breeding, 2019, 39, 1.	1.0	35
1797	Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products, 2019, 135, 311-320.	2.5	199
1798	Impact of Arbuscular Mycorrhizal Fungi on Photosynthesis, Water Status, and Gas Exchange of Plants Under Salt Stress–A Meta-Analysis. Frontiers in Plant Science, 2019, 10, 457.	1.7	109
1799	Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale, 2019, 11, 10511-10523.	2.8	60
1800	Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiology, 2019, 19, 80.	1.3	146
1801	Isolation and expression analysis of Salt Overly Sensitive gene family in grapevine (Vitisvinifera) in response to salt and PEG stress. PLoS ONE, 2019, 14, e0212666.	1.1	16
1802	Progress in Understanding the Physiological and Molecular Responses of Populus to Salt Stress. International Journal of Molecular Sciences, 2019, 20, 1312.	1.8	34
1803	Interspecific hybridization improves the performance of Lotus spp. under saline stress. Plant Science, 2019, 283, 202-210.	1.7	7
1804	The Effect of AtHKT1;1 or AtSOS1 Mutation on the Expressions of Na+ or K+ Transporter Genes and Ion Homeostasis in Arabidopsis thaliana under Salt Stress. International Journal of Molecular Sciences, 2019, 20, 1085.	1.8	31
1805	An In Vitro System for Studying the Effect of Salt Stress in Groundnut (Arachis hypogaea L.). Current Biotechnology, 2019, 7, 464-471.	0.2	3
1807	Tetraploid exhibits more tolerant to salinity than diploid in sugar beet (Beta vulgaris L.). Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	7
1808	Expression of the high-affinity K+ transporter 1 (PpHKT1) gene from almond rootstock â€~Nemaguard' improved salt tolerance of transgenic Arabidopsis. PLoS ONE, 2019, 14, e0214473.	1.1	15
1809	Enhanced melatonin production via aralkylamine N-acetyltransferase overexpression enhances NaCl resistance in transgenic Chlamydomonas reinhardtii (Volvocales, Chlorophyceae). Phycologia, 2019, 58, 154-162.	0.6	0
1810	Antarctic Extremophiles: Biotechnological Alternative to Crop Productivity in Saline Soils. Frontiers in Bioengineering and Biotechnology, 2019, 7, 22.	2.0	40
1811	Ameliorative Capability of Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhizal Fungi (AMF) Against Salt Stress in Plant. , 2019, , 409-448.		19

#	Article	IF	CITATIONS
1812	Boosting the Brassica napus L. tolerance to salinity by the halotolerant strain Pseudomonas stutzeri ISE12. Environmental and Experimental Botany, 2019, 163, 55-68.	2.0	35
1813	The Role of Melatonin in Salt Stress Responses. International Journal of Molecular Sciences, 2019, 20, 1735.	1.8	122
1814	Signaling Molecules in Ecophysiological Response Mechanisms of Salt-Stressed Plants. , 2019, , 1-18.		3
1815	Integrative roles of nitric oxide and hydrogen sulfide in melatoninâ€induced tolerance of pepper (<scp><i>Capsicum annuum</i></scp> L.) plants to iron deficiency and salt stress alone or in combination. Physiologia Plantarum, 2020, 168, 256-277.	2.6	216

1816 Transcriptomic Analysis of Seed Germination Under Salt Stress in Two Desert Sister Species (Populus) Tj ETQq0 0 0.rgBT /Overlock 10 Tf

1817	Selective manipulation of the inositol metabolic pathway for induction of salt-tolerance in indica rice variety. Scientific Reports, 2019, 9, 5358.	1.6	19
1818	Effects of calcium and phosphorus enrichment on yield and physiological characteristics of Salicornia persica under different salinity levels. Journal of Plant Nutrition, 2019, 42, 971-981.	0.9	3
1819	Pricing longevity-linked derivatives using a stochastic mortality model. Communications in Statistics - Theory and Methods, 2019, 48, 5923-5942.	0.6	1
1820	A R2R3-type MYB transcription factor gene from soybean, GmMYB12, is involved in flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis. Plant Biotechnology Reports, 2019, 13, 219-233.	0.9	24
1821	Draft Genome Analysis Offers Insights Into the Mechanism by Which Streptomyces chartreusis WZS021 Increases Drought Tolerance in Sugarcane. Frontiers in Microbiology, 2018, 9, 3262.	1.5	39
1822	Physiological and comparative proteomic analyses of saline-alkali NaHCO3-responses in leaves of halophyte Puccinellia tenuiflora. Plant and Soil, 2019, 437, 137-158.	1.8	41
1823	Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress. BMC Plant Biology, 2019, 19, 66.	1.6	98
1824	Saline Agriculture: A Climate Smart Integrated Approach for Climate Change Resilience in Degraded Land Areas. , 2019, , 1-19.		1
1825	NaCl- and cold-induced stress activate different Ca2+-permeable channels in Arabidopsis thaliana. Plant Growth Regulation, 2019, 87, 217-225.	1.8	9
1826	Cakile maritima, a promising model for halophyte studies and a putative cash crop for saline agriculture. Advances in Agronomy, 2019, 155, 45-78.	2.4	21
1827	Cytosolic Glucose-6-Phosphate Dehydrogenase Is Involved in Seed Germination and Root Growth Under Salinity in Arabidopsis. Frontiers in Plant Science, 2019, 10, 182.	1.7	42
1828	Screening for Salt and Water Stress Tolerance in Fir (Abies alba) Populations. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47, 1063-1072.	0.5	5
1829	Effects of anthocyanin pigment on salt resistance reaction in <i>perilla frutescens</i> . Ningen To Kankyo, 2019, 45, 2-11.	0.3	0

#	Article	IF	CITATIONS
1830	PpAKR1A, a Novel Aldo-Keto Reductase from Physcomitrella Patens, Plays a Positive Role in Salt Stress. International Journal of Molecular Sciences, 2019, 20, 5723.	1.8	13
1831	Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. International Journal of Molecular Sciences, 2019, 20, 5321.	1.8	260
1832	Salinity Stress in Arid and Semi-Arid Climates: Effects and Management in Field Crops. , 0, , .		65
1833	Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Scientific Reports, 2019, 9, 19788.	1.6	60

Salinity types and level-based effects on the growth, physiology and nutrient contents of maize (Zea) Tj ETQq0 0 0 $\underset{0.74}{0.84}$ T/Overlock 10 Tf

1836	Performance Comparison of Machine Learning Algorithms for Estimating the Soil Salinity of Salt-Affected Soil Using Field Spectral Data. Remote Sensing, 2019, 11, 2605.	1.8	21
1837	NaCl-responsive ROS scavenging and energy supply in alkaligrass callus revealed from proteomic analysis. BMC Genomics, 2019, 20, 990.	1.2	19
1838	Genome-Wide Identification and Analysis of the Cytochrome B5 Protein Family in Chinese Cabbage (<i>Brassica rapa</i> L. ssp. <i>Pekinensis</i>). International Journal of Genomics, 2019, 2019, 1-16.	0.8	8
1839	Seedling responses to salinity of 26 Neotropical tree species. AoB PLANTS, 2019, 11, plz062.	1.2	7
1840	Expression, Subcellular Localization, and Interactions of CPK Family Genes in Maize. International Journal of Molecular Sciences, 2019, 20, 6173.	1.8	9
1841	Functional Analysis of Ion Transport Properties and Salt Tolerance Mechanisms of RtHKT1 from the Recretohalophyte <i>Reaumuria trigyna</i> . Plant and Cell Physiology, 2019, 60, 85-106.	1.5	18
1842	Salinity stress detection in rice crops using time series MODIS VI data. International Journal of Remote Sensing, 2019, 40, 8186-8202.	1.3	18
1843	Physiological and TMT-based proteomic analysis of oat early seedlings in response to alkali stress. Journal of Proteomics, 2019, 193, 10-26.	1.2	41
1844	5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review. Plant Growth Regulation, 2019, 87, 357-374.	1.8	85
1845	The soda lakes of Nhecolândia: A conservation opportunity for the Pantanal wetlands. Perspectives in Ecology and Conservation, 2019, 17, 9-18.	1.0	19
1846	Progress and perspective on drought and salt stress tolerance in cotton. Industrial Crops and Products, 2019, 130, 118-129.	2.5	192
1847	Changes in some antioxidant enzymes and physiological indices of purple coneflower (Echinacea) Tj ETQq0 0 0 r field condition. Scientia Horticulturae, 2019, 247, 390-399.	gBT /Over 1.7	ock 10 Tf 5 26
1848	Interactive effects of climate and topography on soil salinity and vegetation zonation in Northâ€African continental saline depressions. Journal of Vegetation Science, 2019, 30, 312-321.	1.1	13

#	Article	IF	CITATIONS
1849	Integrative moringa and licorice extracts application improves Capsicum annuum fruit yield and declines its contaminant contents on a heavy metals-contaminated saline soil. Ecotoxicology and Environmental Safety, 2019, 169, 50-60.	2.9	69
1850	Comparative physiological and proteomic analyses of the chloroplasts in halophyte Sesuvium portulacastrum under differential salt conditions. Journal of Plant Physiology, 2019, 232, 141-150.	1.6	24
1851	The synergistic effects of sodium and potassium on the xerophyte Apocynum venetum in response to drought stress. Plant Physiology and Biochemistry, 2019, 135, 489-498.	2.8	29
1852	The Interaction Between Plants and Bacterial Endophytes Under Salinity Stress. Reference Series in Phytochemistry, 2019, , 1-17.	0.2	9
1853	Soil microâ€organisms and competitive ability of a tussock grass species in a dry ecosystem. Journal of Ecology, 2019, 107, 1215-1225.	1.9	19
1854	Effect of Epichloë gansuensis endophyte on the activity of enzymes of nitrogen metabolism, nitrogen use efficiency and photosynthetic ability of Achnatherum inebrians under various NaCl concentrations. Plant and Soil, 2019, 435, 57-68.	1.8	25
1855	Municipal solid waste (MSW): Strategies to improve salt affected soil sustainability: A review. Waste Management, 2019, 84, 38-53.	3.7	135
1856	Phosphatidic Acid Directly Regulates PINOID-Dependent Phosphorylation and Activation of the PIN-FORMED2 Auxin Efflux Transporter in Response to Salt Stress. Plant Cell, 2019, 31, 250-271.	3.1	97
1857	Genome-wide identification of the HKT genes in five Rosaceae species and expression analysis of HKT genes in response to salt-stress in Fragaria vesca. Genes and Genomics, 2019, 41, 325-336.	0.5	18
1858	Identification of microRNAs responding to salt stress in barley by high-throughput sequencing and degradome analysis. Environmental and Experimental Botany, 2019, 160, 59-70.	2.0	29
1859	The apple yang cycle's gene MdDEP1 enhances salt and drought tolerance, as well as triggers early-flowering in Arabidopsis. Scientia Horticulturae, 2019, 248, 154-162.	1.7	4
1860	Effects of continuous application flue-gas desulfurization gypsum and brackish ice on soil chemical properties and maize growth in a saline soil in coastal area of China. Soil Science and Plant Nutrition, 2019, 65, 82-89.	0.8	6
1861	The impact of foliar fertilizers on growth and biochemical responses of <i>Thymus vulgaris</i> to salinity stress. Arid Land Research and Management, 2019, 33, 297-320.	0.6	12
1862	Proteomic Analysis of a Rice Mutant sd58 Possessing a Novel d1 Allele of Heterotrimeric G Protein Alpha Subunit (RGA1) in Salt Stress with a Focus on ROS Scavenging. International Journal of Molecular Sciences, 2019, 20, 167.	1.8	24
1863	Hydrogen sulfide may function downstream of hydrogen peroxide in salt stress-induced stomatal closure in Vicia faba. Functional Plant Biology, 2019, 46, 136.	1.1	31
1864	High salt tolerant plant growth promoting rhizobacteria from the common ice-plant Mesembryanthemum crystallinum L. Rhizosphere, 2019, 9, 10-17.	1.4	25
1865	Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. Environmental and Experimental Botany, 2019, 161, 41-49.	2.0	109
1866	Antioxidant Defenses in Wild Growing Halophyte <i>Crithmum maritimum</i> from Inland and Coastline Populations. Chemistry and Biodiversity, 2019, 16, e1800448.	1.0	11

#	Article	IF	CITATIONS
1867	Soybean PI 675847 A as a new source of salt tolerance. Plant Genetic Resources: Characterisation and Utilisation, 2019, 17, 33-44.	0.4	3
1868	Can licorice root extract be used as an effective natural biostimulant for salt-stressed common bean plants?. South African Journal of Botany, 2019, 121, 294-305.	1.2	68
1869	What do we know about salt stress in bryophytes?. Plant Biosystems, 2019, 153, 478-489.	0.8	12
1870	Overexpression of LeNHX2 and SISOS2 increases salt tolerance and fruit production in double transgenic tomato plants. Plant Physiology and Biochemistry, 2019, 135, 77-86.	2.8	28
1871	Plant growth and yield of cucumber plants grafted on different commercial and local rootstocks grown under salinity stress. Saudi Journal of Biological Sciences, 2019, 26, 1134-1139.	1.8	17
1872	Increase of nitrogen to promote growth of poplar seedlings and enhance photosynthesis under NaCl stress. Journal of Forestry Research, 2019, 30, 1209-1219.	1.7	2
1873	The involvement of wheat Uâ€box E3 ubiquitin ligase TaPUB1 in salt stress tolerance. Journal of Integrative Plant Biology, 2020, 62, 631-651.	4.1	59
1874	Effect of foliar application of potassium fertilizers on soybean plants under salinity stress. Journal of the Saudi Society of Agricultural Sciences, 2020, 19, 261-269.	1.0	33
1875	A R2R3-MYB transcription factor VvMYBF1 from grapevine (<i>Vitis vinifera</i> L.) regulates flavonoids accumulation and abiotic stress tolerance in transgenic <i>Arabidopsis</i> . Journal of Horticultural Science and Biotechnology, 2020, 95, 147-161.	0.9	13
1876	The role of methane in plant physiology: a review. Plant Cell Reports, 2020, 39, 171-179.	2.8	34
1877	SNP mindert die gefÄ ¤ rlichen Auswirkungen von Salzbelastungen bei ApfelbÄ ¤ men. Erwerbs-Obstbau, 2020, 62, 107-115.	0.5	7
1878	Irrigation water quality and mulching effects on tuber yield and soil properties in potato (Solanum) Tj ETQq1	1 0.784314 rg 2.3	gBT_/Overloci
1879	Combined effects of salinity and drought on physiological and biochemical characteristics of pistachio rootstocks. Scientia Horticulturae, 2020, 261, 108970.	1.7	49
1880	Effect of NaCl stress and supplemental CaCl2 on carotenoid accumulation in germinated yellow maize kernels. Food Chemistry, 2020, 309, 125779.	4.2	13
1881	Saltâ€ŧolerance diversity in diploid and polyploid cotton (<i>Gossypium</i>) species. Plant Journal, 2020, 101, 1135-1151.	2.8	34
1882	Growth and physiological effects of single and combined Cu, NaCl, and water stresses on Atriplex atacamensis and A. halimus. Environmental and Experimental Botany, 2020, 169, 103919.	2.0	10
1883	Stomatal and Photosynthetic Traits Are Associated with Investigating Sodium Chloride Tolerance of Brassica napus L. Cultivars. Plants, 2020, 9, 62.	1.6	55
1884	Changes in phenolic profile, soluble sugar, proline, and antioxidant enzyme activities of Polygonumequisetiforme in response to salinity. Turkish Journal of Botany, 2020, 44, 25-35.	0.5	25

C	E A 751	ON	REPO	DT
				ו גוו

#	Article	IF	CITATIONS
1885	Transcriptome analysis of salt stress response in halophyte Atriplex centralasiatica leaves. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	8
1888	The cloning and characterization of <i>hypersensitive to salt stress</i> mutant, affected in quinolinate synthase, highlights the involvement of NAD in stressâ€induced accumulation of ABA and proline. Plant Journal, 2020, 102, 85-98.	2.8	31
1889	Selecting high performance rootstocks for pistachio cultivars under salinity stress based on their morpho-physiological characteristics. International Journal of Fruit Science, 2020, 20, S29-S47.	1.2	9
1890	Adaptations in Imperata cylindrica (L.) Raeusch. and Cenchrus ciliaris L. for altitude tolerance. Biologia (Poland), 2020, 75, 183-198.	0.8	10
1892	Rosmarinic acid inhibits programmed cell death in Solanum tuberosum L. calli under high salinity. Plant Physiology and Biochemistry, 2020, 147, 54-65.	2.8	9
1893	A WRKY transcription factor, FtWRKY46, from Tartary buckwheat improves salt tolerance in transgenic Arabidopsis thaliana. Plant Physiology and Biochemistry, 2020, 147, 43-53.	2.8	36
1894	Mesocotyl elongation, an essential trait for dry-seeded rice (Oryza sativa L.): a review of physiological and genetic basis. Planta, 2020, 251, 27.	1.6	29
1895	The mechanisms of improving coastal saline soils by planting rice. Science of the Total Environment, 2020, 703, 135529.	3.9	75
1896	Identification of salt-responsive genes from C4 halophyte Suaeda nudiflora through suppression subtractive hybridization and expression analysis under individual and combined treatment of salt and elevated carbon dioxide conditions. Physiology and Molecular Biology of Plants, 2020, 26, 163-172.	1.4	4
1897	Global identification and analysis of microRNAs involved in salt stress responses in two alfalfa (<i>Medicago sativa</i> â€~Millennium') lines. Canadian Journal of Plant Science, 2020, 100, 445-455.	0.3	11
1898	Investigation of an Antioxidative System for Salinity Tolerance in Oenanthe javanica. Antioxidants, 2020, 9, 940.	2.2	33
1899	Melatonin improves K+ and Na+ homeostasis in rice under salt stress by mediated nitric oxide. Ecotoxicology and Environmental Safety, 2020, 206, 111358.	2.9	65
1900	Genome-wide identification of NF-YA gene family in cotton and the positive role of GhNF-YA10 and GhNF-YA23 in salt tolerance. International Journal of Biological Macromolecules, 2020, 165, 2103-2115.	3.6	12
1901	Potassium: A key modulator for cell homeostasis. Journal of Biotechnology, 2020, 324, 198-210.	1.9	57
1902	Effect of soil salinization on the productivity of pasture in the arid land. IOP Conference Series: Earth and Environmental Science, 2020, 548, 072063.	0.2	0
1903	RNA-seq reveals the salt tolerance of Ipomoea pes-caprae, a wild relative of sweet potato. Journal of Plant Physiology, 2020, 255, 153276.	1.6	17
1904	Overexpression of MdMIPS1 enhances salt tolerance by improving osmosis, ion balance, and antioxidant activity in transgenic apple. Plant Science, 2020, 301, 110654.	1.7	20
1905	Responses to Increased Salinity and Severe Drought in the Eastern Iberian Endemic Species Thalictrum maritimum (Ranunculaceae), Threatened by Climate Change. Plants, 2020, 9, 1251.	1.6	5

#	Article	IF	CITATIONS
1906	Transcriptomic profile analysis of the halophyte Suaeda rigida response and tolerance under NaCl stress. Scientific Reports, 2020, 10, 15148.	1.6	10
1907	Increased adaptation of an energy willow cultivar to soil salinity by duplication of its genome size. Biomass and Bioenergy, 2020, 140, 105655.	2.9	8
1908	Multidimensional Evaluation for Detecting Salt Tolerance of Bread Wheat Genotypes Under Actual Saline Field Growing Conditions. Plants, 2020, 9, 1324.	1.6	63
1909	Translocation of photoassimilates in melon vines and fruits under salinity using 13C isotope. Scientia Horticulturae, 2020, 274, 109659.	1.7	5
1910	Ectopic expression of apple hexose transporter MdHT2.2 reduced the salt tolerance of tomato seedlings with decreased ROS-scavenging ability. Plant Physiology and Biochemistry, 2020, 156, 504-513.	2.8	10
1911	Activation tagging identifies Arabidopsis transcription factor AtMYB68 for heat and drought tolerance at yield determining reproductive stages. Plant Journal, 2020, 104, 1535-1550.	2.8	23
1912	Agricultural Land Degradation: Processes and Problems Undermining Future Food Security. , 2020, , 17-61.		28
1913	Foliage application and seed priming with nitric oxide causes mitigation of salinity-induced metabolic adversaries in broccoli (Brassica oleracea L.) plants. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	37
1914	A comparative study of the growth and physiological parameters of two oat (<i>Avena sativa</i> L.) lines under salinity stress. Soil Science and Plant Nutrition, 2020, 66, 847-853.	0.8	6
1915	Message in a bottle: the Mediterranean Sea currents acted as protagonists in shaping the distribution of the sea daffodil (<i>Pancratium maritimum</i> , Amaryllidaceae). Botanical Journal of the Linnean Society, 2020, 194, 207-220.	0.8	6
1916	Early effects of salt stress on the physiological and oxidative status of the halophyte Lobularia maritima. Functional Plant Biology, 2020, 47, 912.	1.1	31
1917	MdINT1 enhances apple salinity tolerance by regulating the antioxidant system, homeostasis of ions, and osmosis. Plant Physiology and Biochemistry, 2020, 154, 689-698.	2.8	9
1918	Exogenous allantoin improves the salt tolerance of sugar beet by increasing putrescine metabolism and antioxidant activities. Plant Physiology and Biochemistry, 2020, 154, 699-713.	2.8	27
1920	Potassium is a potential toxicant for Arabidopsis thaliana under saline conditions. Journal of Plant Nutrition and Soil Science, 2020, 183, 455-467.	1.1	9
1921	Bioprospecting of biodiversity for improvement of agronomic traits in plants. , 2020, , 1-24.		2
1922	Protection against salinity stress in black cumin involves karrikin and calcium by improving gas exchange attributes, ascorbate–glutathione cycle and fatty acid compositions. SN Applied Sciences, 2020, 2, 1.	1.5	10
1923	A Salt-Signaling Network Involving Ethylene, Extracellular ATP, Hydrogen Peroxide, and Calcium Mediates K+/Na+ Homeostasis in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 8683.	1.8	17
1924	Sulfur nanoparticles mediated improvement of salt tolerance in wheat relates to decreasing oxidative stress and regulating metabolic activity. Physiology and Molecular Biology of Plants, 2020, 26, 2209-2223.	1.4	27

#	Article	IF	CITATIONS
1925	Comprehensive dissection into morpho-physiologic responses, ionomic homeostasis, and transcriptomic profiling reveals the systematic resistance of allotetraploid rapeseed to salinity. BMC Plant Biology, 2020, 20, 534.	1.6	12
1926	Salt-responsive transcriptome analysis of triticale reveals candidate genes involved in the key metabolic pathway in response to salt stress. Scientific Reports, 2020, 10, 20669.	1.6	16
1927	Dual role of MdSND1 in the biosynthesis of lignin and in signal transduction in response to salt and osmotic stress in apple. Horticulture Research, 2020, 7, 204.	2.9	34
1928	MfbHLH38, a Myrothamnus flabellifolia bHLH transcription factor, confers tolerance to drought and salinity stresses in Arabidopsis. BMC Plant Biology, 2020, 20, 542.	1.6	47
1929	Responses to Salt Stress in Portulaca: Insight into Its Tolerance Mechanisms. Plants, 2020, 9, 1660.	1.6	16
1930	A comprehensive analysis of cotton VQ gene superfamily reveals their potential and extensive roles in regulating cotton abiotic stress. BMC Genomics, 2020, 21, 795.	1.2	17
1931	Physiological and biochemical insights for salt stress tolerance in the habitat-indifferent halophyte Salsola drummondii during the vegetative stage. Botany, 2020, 98, 673-689.	0.5	11
1932	Physiological and antioxidant responses of cultivated and wild barley under salt stress. Plant, Soil and Environment, 2020, 66, 334-344.	1.0	16
1933	Water relations, photosynthesis, xylem embolism and accumulation of carbohydrates and cyclitols in two Eucalyptus species (E. camaldulensis and E. torquata) subjected to dehydration–rehydration cycle. Trees - Structure and Function, 2020, 34, 1439-1452.	0.9	11
1934	Volatile Organic Compounds from Rhizobacteria Increase the Biosynthesis of Secondary Metabolites and Improve the Antioxidant Status in Mentha piperita L. Grown under Salt Stress. Agronomy, 2020, 10, 1094.	1.3	33
1935	Photosynthetic and transcriptomic responses of two C4 grass species with different NaCl tolerance. Journal of Plant Physiology, 2020, 253, 153244.	1.6	7
1936	Overexpression of SIMDHAR in transgenic tobacco increased salt stress tolerance involving S-nitrosylation regulation. Plant Science, 2020, 299, 110609.	1.7	20
1937	Transcriptome profiling and gene expression analyses of eggplant (Solanum melongena L.) under heat stress. PLoS ONE, 2020, 15, e0236980.	1.1	9
1938	Contrasting Responses of Plastid Terminal Oxidase Activity Under Salt Stress in Two C4 Species With Different Salt Tolerance. Frontiers in Plant Science, 2020, 11, 1009.	1.7	9
1939	Zinc nutrition in chickpea (Cicer arietinum): a review. Crop and Pasture Science, 2020, 71, 199.	0.7	41
1940	Expression of Multiple Exogenous Insect Resistance and Salt Tolerance Genes in Populus nigra L Frontiers in Plant Science, 2020, 11, 1123.	1.7	7
1941	Salt stress-induced H2O2 and Ca2+ mediate K+/Na+ homeostasis in Pyropia haitanensis. Journal of Applied Phycology, 2020, 32, 4199-4210.	1.5	17
1942	Effects of windbreak Forest according to tree species and planting methods based on wind tunnel experiments. Forest Science and Technology, 2020, 16, 188-194.	0.3	4

#	Article	IF	CITATIONS
1943	Genome-Wide Identification of the Gossypium hirsutum NHX Genes Reveals That the Endosomal-Type GhNHX4A Is Critical for the Salt Tolerance of Cotton. International Journal of Molecular Sciences, 2020, 21, 7712.	1.8	19
1944	Morphological and physiological responses of two willow species from different habitats to salt stress. Scientific Reports, 2020, 10, 18228.	1.6	17
1945	Overexpression of MzASMT 1, a Gene From Malus zumi Mats, Enhances Salt Tolerance in Transgenic Tobacco. Frontiers in Plant Science, 2020, 11, 561903.	1.7	10
1946	Gaining Insight into Exclusive and Common Transcriptomic Features Linked to Drought and Salinity Responses across Fruit Tree Crops. Plants, 2020, 9, 1059.	1.6	9
1947	H2S Regulation of Metabolism in Cucumber in Response to Salt-Stress Through Transcriptome and Proteome Analysis. Frontiers in Plant Science, 2020, 11, 1283.	1.7	42
1948	Exogenous trehalose ameliorates methyl viologen induced oxidative stress through regulation of stomatal pore opening and glutathione metabolism in tomato seedlings. Vegetos, 2020, 33, 665-681.	0.8	3
1949	Rootstocks increase grapevine tolerance to NaCl through ion compartmentalization and exclusion. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	10
1950	Proteome dynamics and transcriptome profiling in sorghum [Sorghum bicolor (L.) Moench] under salt stress. 3 Biotech, 2020, 10, 412.	1.1	23
1951	Comparative transcriptome profiling of rice colonized with beneficial endophyte, Piriformospora indica, under high salinity environment. Molecular Biology Reports, 2020, 47, 7655-7673.	1.0	17
1952	Transcriptomic Analysis of Short-Term Salt Stress Response in Watermelon Seedlings. International Journal of Molecular Sciences, 2020, 21, 6036.	1.8	24
1953	Adaptation of Recretohalophytes to Salinity. , 2020, , 1-21.		4
1954	A D-lactate dehydrogenase from rice is involved in conferring tolerance to multiple abiotic stresses by maintaining cellular homeostasis. Scientific Reports, 2020, 10, 12835.	1.6	12
1955	Emerging Research in Alternative Crops. Environment & Policy, 2020, , .	0.4	18
1956	Effect of Overexpression of JERFs on Intracellular K+/Na+ Balance in Transgenic Poplar (Populus alba) Tj ETQq1 1	0.784314 1.7	rgBT /Overlo
1957	A DNA Methylation Reader–Chaperone Regulator–Transcription Factor Complex Activates <i>OsHKT1;5</i> Expression during Salinity Stress. Plant Cell, 2020, 32, 3535-3558.	3.1	63
1958	Optimization-Based Water-Salt Dynamic Threshold Analysis of Cotton Root Zone in Arid Areas. Water (Switzerland), 2020, 12, 2449.	1.2	7
1959	Genetic basis of ion exclusion in salinity stressed wheat: implications in improving crop yield. Plant Growth Regulation, 2020, 92, 479-496.	1.8	25
1960	Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses. Agronomy, 2020, 10, 1308.	1.3	22

#	Article	IF	CITATIONS
1961	The Plant Family Brassicaceae. , 2020, , .		12
1962	Mechanistic Insights of the Interaction of Plant Growth-Promoting Rhizobacteria (PGPR) With Plant Roots Toward Enhancing Plant Productivity by Alleviating Salinity Stress. Frontiers in Microbiology, 2020, 11, 1952.	1.5	127
1963	Diversity of arbuscular mycorrhizal fungi (AMF) and soils potential infectivity of Vachellia nilotica (L.) P.J.H. Hurter Mabb. rhizosphere in Senegalese salt-affected soils. African Journal of Biotechnology, 2020, 19, 487-499.	0.3	3
1964	Identification, Characterization, and Stress Responsiveness of Glucose-6-phosphate Dehydrogenase Genes in Highland Barley. Plants, 2020, 9, 1800.	1.6	7
1965	Salinity Effects on Germination and Plant Growth of Haloxylon Ammodendron at Qaidam Basin. Journal of Physics: Conference Series, 2020, 1578, 012234.	0.3	2
1966	Principal mechanism of tolerance to abiotic stresses in Cynara cardunculus L Acta Horticulturae, 2020, , 109-116.	0.1	1
1967	The effects of saltwater intrusion on germination success of standard and alternative crops. Environmental and Experimental Botany, 2020, 180, 104254.	2.0	13
1968	Effect of Mild Salinity Stress on the Growth, Fatty Acid and Carotenoid Compositions, and Biological Activities of the Thermal Freshwater Microalgae Scenedesmus sp Biomolecules, 2020, 10, 1515.	1.8	23
1969	SsPsaH, a H subunit of the photosystem I reaction center of Suaeda salsa, confers the capacity of osmotic adjustment in tobacco. Genes and Genomics, 2020, 42, 1455-1465.	0.5	7
1970	Overexpression of a tonoplast Na+/H+ antiporter from the halophytic shrub Nitraria sibirica improved salt tolerance and root development in transgenic poplar. Tree Genetics and Genomes, 2020, 16, 1.	0.6	11
1971	Identification, Association of Natural Variation and Expression Analysis of ZmNAC9 Gene Response to Low Phosphorus in Maize Seedling Stage. Plants, 2020, 9, 1447.	1.6	1
1973	Hypersaline water from desalinization plants causes oxidative damage in Posidonia oceanica meadows. Science of the Total Environment, 2020, 736, 139601.	3.9	17
1975	Chemical Composition and Plant Growth of Centaurea raphanina subsp. mixta Plants Cultivated under Saline Conditions. Molecules, 2020, 25, 2204.	1.7	20
1976	Overexpression of LeNHX4 improved yield, fruit quality and salt tolerance in tomato plants (Solanum) Tj ETQq1 1	0,784314 1.0	rgBT /Overl
1977	Salinity and its tolerance strategies in plants. , 2020, , 47-76.		16
1978	Ethylene was Involved in Ca2+-Regulated Na+ Homeostasis, Na+ Transport and Cell Ultrastructure During Adventitious Rooting in Cucumber Explants Under Salt Stress. Journal of Plant Biology, 2020, 63, 311-320.	0.9	4
1979	Exogenous Abscisic Acid Alleviates Harmful Effect of Salt and Alkali Stresses on Wheat Seedlings. International Journal of Environmental Research and Public Health, 2020, 17, 3770.	1.2	29
1980	Role of osmoprotectants in salinity tolerance inÂwheat. , 2020, , 93-106.		7

#	Article	IF	CITATIONS
1981	Genome-wide analysis and transcript profiling identify several abiotic and biotic stress-responsive Glutathione S-transferase genes in soybean. Plant Gene, 2020, 23, 100239.	1.4	8
1982	Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science: Nano, 2020, 7, 2214-2228.	2.2	97
1983	Effect of foliar application of amino acids on the salinity tolerance of tomato plants cultivated under hydroponic system. Scientia Horticulturae, 2020, 272, 109509.	1.7	42
1984	The trihelix transcription factor OsGTÎ ³ -2 is involved adaption to salt stress in rice. Plant Molecular Biology, 2020, 103, 545-560.	2.0	53
1985	Saline and Arid Soils: Impact on Bacteria, Plants, and Their Interaction. Biology, 2020, 9, 116.	1.3	40
1986	Soil salinity detection and monitoring using Landsat data: a case study from Kot Addu, Pakistan. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	11
1987	Nitrate Promotes Germination Under Inhibition by NaCl or High Concentration of Glucose. Plants, 2020, 9, 707.	1.6	8
1988	Coâ€culture of shrimp with commercially important plants: a review. Reviews in Aquaculture, 2020, 12, 2411-2428.	4.6	11
1989	Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance. Journal of Zhejiang University: Science B, 2020, 21, 426-441.	1.3	22
1990	Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa. Frontiers in Plant Science, 2020, 11, 592.	1.7	16
1991	Salinity Stress-Mediated Suppression of Expression of Salt Overly Sensitive Signaling Pathway Genes Suggests Negative Regulation by AtbZIP62 Transcription Factor in Arabidopsis thaliana. International Journal of Molecular Sciences, 2020, 21, 1726.	1.8	47
1993	Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves. Scientific Reports, 2020, 10, 4236.	1.6	28
1994	Ion concentration and energy response of two wheat cultivars to salt stress. Journal of Plant Nutrition, 2020, 43, 1447-1457.	0.9	3
1995	Transcriptome analysis uncovers the gene expression profile of salt-stressed potato (Solanum) Tj ETQq1 1 0.7843	814 rgBT 1.6	Overlock 10
1996	Silicon Improves Rice Salinity Resistance by Alleviating Ionic Toxicity and Osmotic Constraint in an Organ-Specific Pattern. Frontiers in Plant Science, 2020, 11, 260.	1.7	49
1997	Influence of salt stress on the rhizosphere soil bacterial community structure and growth performance of groundnut (Arachis hypogaea L.). International Microbiology, 2020, 23, 453-465.	1.1	34
1998	Comparative time-course transcriptome analysis in contrasting Carex rigescens genotypes in response to high environmental salinity. Ecotoxicology and Environmental Safety, 2020, 194, 110435.	2.9	14
1999	E2 conjugases UBC1 and UBC2 regulate MYB42â€mediated SOS pathway in response to salt stress in <i>Arabidopsis</i> . New Phytologist, 2020, 227, 455-472.	3.5	73

#	Article	IF	CITATIONS
2000	Salinity tolerance in barley during germination—homologs and potential genes. Journal of Zhejiang University: Science B, 2020, 21, 93-121.	1.3	30
2001	Short-Term Effects of Salt Stress on the Amino Acids of Phragmites australis Root Exudates in Constructed Wetlands. Water (Switzerland), 2020, 12, 569.	1.2	27
2002	Plant response to salinity: an analysis of ROS formation, signaling, and antioxidant defense. Turkish Journal of Botany, 2020, 44, 1-13.	0.5	49
2003	Heat shock induced stress tolerance in plants: Physiological, biochemical, and molecular mechanisms of acquired tolerance. , 2020, , 161-174.		9
2004	Heterologous expression of a chimeric gene, OsDST-SRDX, enhanced salt tolerance of transgenic switchgrass (Panicum virgatum L.). Plant Cell Reports, 2020, 39, 723-736.	2.8	1
2005	A Salt Tolerance Evaluation Method for Sunflower (Helianthus annuus L.) at the Seed Germination Stage. Scientific Reports, 2020, 10, 10626.	1.6	37
2006	Adaptation to Extreme Antarctic Environments Revealed by the Genome of a Sea Ice Green Alga. Current Biology, 2020, 30, 3330-3341.e7.	1.8	48
2007	Water and salt stresses do not trigger bottom-up effects on plant-mediated indirect interactions between a leaf chewer and a sap-feeder. Journal of Pest Science, 2020, 93, 1267-1280.	1.9	7
2008	Transcriptomic Profiling of Pomegranate Provides Insights into Salt Tolerance. Agronomy, 2020, 10, 44.	1.3	9
2009	Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum). BMC Genomics, 2020, 21, 131.	1.2	26
2010	Exogenous melatonin mitigates the salinity damages and improves the growth of pistachio under salinity stress. Journal of Plant Nutrition, 2020, 43, 1468-1484.	0.9	39
2011	Understanding Mechanisms of Salinity Tolerance in Barley by Proteomic and Biochemical Analysis of Near-Isogenic Lines. International Journal of Molecular Sciences, 2020, 21, 1516.	1.8	45
2012	The wheat E3 ligase TaPUB26 is a negative regulator in response to salt stress in transgenic Brachypodium distachyon. Plant Science, 2020, 294, 110441.	1.7	16
2013	Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (Fragaria × ananassa Duch.). Plant Physiology and Biochemistry, 2020, 149, 313-323.	2.8	90
2014	Overexpression of Grapevine VvIAA18 Gene Enhanced Salt Tolerance in Tobacco. International Journal of Molecular Sciences, 2020, 21, 1323.	1.8	19
2015	Environmental constraints and stress physiology. , 2020, , 279-356.		1
2016	Effect of salinity stress on plant growth and root yield of carrot. Progressive Agriculture, 2020, 30, 263-274.	0.4	5
2017	Alnus glutinosa L. Gaertn. as potential tree for brackish and saline habitats. Global Ecology and Conservation, 2020, 22, e00977.	1.0	6

#	Article	IF	CITATIONS
2018	AtPPRT1 negatively regulates salt stress response in Arabidopsis seedlings. Plant Signaling and Behavior, 2020, 15, 1732103.	1.2	14
2019	Increased autophagic activity in roots caused by overexpression of the autophagy-related gene MdATG10 in apple enhances salt tolerance. Plant Science, 2020, 294, 110444.	1.7	32
2020	A study on the effects of salinity and pH on PSII function in mulberry seedling leaves under saline–alkali mixed stress. Trees - Structure and Function, 2020, 34, 693-706.	0.9	27
2021	Development and characterization of an EMS-mutagenized wheat population and identification of salt-tolerant wheat lines. BMC Plant Biology, 2020, 20, 18.	1.6	34
2022	A CBL-interacting protein kinase AdCIPK5 confers salt and osmotic stress tolerance in transgenic tobacco. Scientific Reports, 2020, 10, 418.	1.6	10
2023	Physiological characterization of a pepper hybrid rootstock designed to cope with salinity stress. Plant Physiology and Biochemistry, 2020, 148, 207-219.	2.8	18
2024	Evaluating the potential drought tolerance of pansy through its physiological and biochemical responses to drought and recovery periods. Scientia Horticulturae, 2020, 265, 109225.	1.7	21
2025	Photosynthetic Regulation Under Salt Stress and Salt-Tolerance Mechanism of Sweet Sorghum. Frontiers in Plant Science, 2019, 10, 1722.	1.7	179
2026	A Na+/H+ antiporter, K2-NhaD, improves salt and drought tolerance in cotton (Gossypium hirsutum L.). Plant Molecular Biology, 2020, 102, 553-567.	2.0	16
2027	Transcriptome Analysis of Drought-Resistant and Drought-Sensitive Sorghum (Sorghum bicolor) Genotypes in Response to PEG-Induced Drought Stress. International Journal of Molecular Sciences, 2020, 21, 772.	1.8	79
2028	Soil quality shapes the composition of microbial community stress response and core cell metabolism functional genes. Applied Soil Ecology, 2020, 148, 103483.	2.1	11
2029	Effect of exogenous application of IAA and GA3 on growth, protein content, and antioxidant enzymes of Solanum tuberosum L. grown in vitro under salt stress. In Vitro Cellular and Developmental Biology - Plant, 2020, 56, 377-389.	0.9	46
2030	Mangrove species diversity, stand structure and zonation pattern in relation to environmental factors —ÂA case study at Sundarban delta, east coast of India. Regional Studies in Marine Science, 2020, 35, 101111.	0.4	23
2031	Combined Proteomics and Metabolism Analysis Unravels Prominent Roles of Antioxidant System in the Prevention of Alfalfa (Medicago sativa L.) against Salt Stress. International Journal of Molecular Sciences, 2020, 21, 909.	1.8	34
2032	Overexpression of a proton pumping gene OVP1 enhances salt stress tolerance, root growth and biomass yield by regulating ion balance in rice (Oryza sativa L.). Environmental and Experimental Botany, 2020, 175, 104033.	2.0	8
2033	Selenium and Salt Interactions in Black Gram (Vigna mungo L): Ion Uptake, Antioxidant Defense System, and Photochemistry Efficiency. Plants, 2020, 9, 467.	1.6	36
2035	Plant science's next top models. Annals of Botany, 2020, 126, 1-23.	1.4	34
2036	Effects of Alkalinity and Acidity of the Root Medium on Defense Systems in Triticum aestivum and Secale cereale. Russian Journal of Plant Physiology, 2020, 67, 334-343.	0.5	3

#	ARTICLE Responses to Water Deficit and Salt Stress in Silver Fir (Abies alba Mill.) Seedlings. Forests, 2020, 11,	IF	CITATIONS
2037	395.	0.9	11
2038	Expression of Genes Involved in Heavy Metal Trafficking in Plants Exposed to Salinity Stress and Elevated Cd Concentrations. Plants, 2020, 9, 475.	1.6	24
2039	Alfalfa MsCBL4 enhances calcium metabolism but not sodium transport in transgenic tobacco under salt and saline–alkali stress. Plant Cell Reports, 2020, 39, 997-1011.	2.8	24
2040	Resemblance and Difference of Seedling Metabolic and Transporter Gene Expression in High Tolerance Wheat and Barley Cultivars in Response to Salinity Stress. Plants, 2020, 9, 519.	1.6	18
2041	MicroRNA-mediated regularity functions under salinity stress in plants. , 2020, , 415-434.		0
2042	Molecular mechanisms in plant growth promoting bacteria (PGPR) to resist environmental stress in plants. , 2020, , 221-233.		19
2043	Role of rhizobacteria in alleviating salt stress. , 2020, , 279-294.		4
2044	Salt variation induces oxidative stress response in aquatic macrophytes: The case of the Eurasian water-milfoil Myriophyllum spicatum L. (Saxifragales: Haloragaceae). Estuarine, Coastal and Shelf Science, 2020, 239, 106756.	0.9	8
2045	Salinity responses of three halophytes from inland saltmarshes of Jaén (southern Spain). Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 266, 151589.	0.6	28
2046	Novel insights into salinity-induced lipogenesis and carotenogenesis in the oleaginous astaxanthin-producing alga Chromochloris zofingiensis: a multi-omics study. Biotechnology for Biofuels, 2020, 13, 73.	6.2	62
2047	Tissue Tolerance Coupled With Ionic Discrimination Can Potentially Minimize the Energy Cost of Salinity Tolerance in Rice. Frontiers in Plant Science, 2020, 11, 265.	1.7	31
2048	Expression Analyses of Soybean VOZ Transcription Factors and the Role of GmVOZ1G in Drought and Salt Stress Tolerance. International Journal of Molecular Sciences, 2020, 21, 2177.	1.8	21
2049	Comparative Transcriptome Analysis of Halophyte Zoysia macrostachya in Response to Salinity Stress. Plants, 2020, 9, 458.	1.6	22
2050	UV-B Priming of Oryza sativa Seeds Augments the Innate Tolerance Potential in a Tolerant Variety more Effectively Toward NaCl and PEG Stressors. Journal of Plant Growth Regulation, 2021, 40, 1166-1180.	2.8	14
2051	Exogenous salicylic acid application against mitodepressive and clastogenic effects induced by salt stress in barley apical meristems. Biologia (Poland), 2021, 76, 341-350.	0.8	5
2052	Exogenous Application of Melatonin Induces Tolerance to Salt Stress by Improving the Photosynthetic Efficiency and Antioxidant Defense System of Maize Seedling. Journal of Plant Growth Regulation, 2021, 40, 1270-1283.	2.8	67
2053	Functional characterization of the Arabidopsis SERRATE under salt stress. Plant Diversity, 2021, 43, 71-77.	1.8	6
2054	Ameliorants and salt tolerant varieties improve rice-wheat production in soils undergoing sodification with alkali water irrigation in Indo–Gangetic Plains of India. Agricultural Water Management, 2021, 243, 106492.	2.4	44

ARTICLE IF CITATIONS Overexpression of a RNA silencing suppressor, B2 protein encoded by Flock House virus, in tobacco 2055 0.6 11 plants results in tolerance to salt stress. Phytoparasitica, 2021, 49, 299-316. A maize calcineurin Bâ€like interacting protein kinase ZmCIPK42 confers salt stress tolerance. 2.6 Physiologia Plantarum, 2021, 171, 161-172. In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress. 2057 2.8 24 Plant Cell Reports, 2021, 40, 29-42. Participatory selection of CWRâ€derived saltâ€tolerant rice lines adapted to the coastal zone of the 0.8 Mekong Delta. Crop Science, 2021, 61, 277-288. Heterologous expression of the Limonium bicolor MYB transcription factor LbTRY in Arabidopsis 2059 thaliana increases salt sensitivity by modifying root hair development and osmotic homeostasis. Plant 1.7 28 Science, 2021, 302, 110704. Involvement of Hydrogen Peroxide in Cotton Leaf Abscission Induced by Thidiazuron. Journal of Plant Growth Regulation, 2021, 40, 1667-1673. 2.8 Cross Talk Between Heme Oxygenase 1 and Lateral Root Development for Salt Tolerance., 2021,, 2062 0 355-365. Genotypic Selection in Vegetables for Adaptation to Climate Change. Advances in Olericulture, 2021, , 2063 0.4 61-89. Physiological and Molecular Responses to Salinity Due to Excessive Na+ in Plants., 2021, , 291-303. 2064 1 Mineral Nutrition of Plants Under Soil Water Deficit Condition: A Review., 2021, 287-391. 2065 2066 The Response of Maize Physiology under Salinity Stress and Its Coping Strategies., 0,,. 15 <i&gt;ln vitro&lt;/i&gt; Germination and Early Vegetative Growth of Five Tomato (&lt;i&gt;Solanum lycopersicum&lt;/i&gt; L.) Varieties under Salt Stress Conditions. 2067 0.3 American Journal of Plant Sciences, 2021, 12, 796-817 Effect of Hydrogen Sulfide on Osmotic Adjustment of Plants Under Different Abiotic Stresses. Plant 2068 0.4 2 in Challenging Environments, 2021, , 73-85. Host-targeted salt stress affects fitness and vector performance of bird cherry-oat aphid 2069 (Rhopalosiphum padi L.) on wheat. Arthropod-Plant Interactions, 2021, 15, 47-58. 2070 Advances in Genomic Designing for Abiotic Stress Tolerance in Sorghum., 2021, 193-221. 0 QTL controlling fiber quality traits under salt stress in upland cotton (Gossypium hirsutum L.). 2071 1.8 Theoretical and Applied Genetics, 2021, 134, 661-685. The role of fungi in abiotic stress tolerance of plants., 2021, , 117-154. 2072 2 Regulation of membrane transporters in plants in response to drought stress., 2021, , 261-272.

		CITATION REPORT		
#	Article		IF	CITATIONS
2074	Current approaches in horticultural crops to mitigate the effect of salt stress. , 2021, ,	259-273.		0
2075	De novo transcriptome in roots of switchgrass (Panicum virgatum L.) reveals gene exp and act network under alkaline salt stress. BMC Genomics, 2021, 22, 82.	ression dynamic	1.2	25
2076	The salinization problems and soil hydromorphism as components of land desertificati zone of Tajikistan and the liquidation ways of them. E3S Web of Conferences, 2021, 2		0.2	0
2077	Yeast as plant growth promoter and biocontrol agent. , 2021, , 429-457.			2
2078	Plant Abiotic Stress Tolerance Mechanisms. , 2021, , 29-59.			2
2079	Genome-Wide Identification of the NHX Gene Family in Punica granatum L. and Their E Patterns under Salt Stress. Agronomy, 2021, 11, 264.	xpressional	1.3	17
2080	Mycorrhiza: Plant Growth-Promoting and Biocontrol Agent Ability Under the Abiotic St Conditions. Sustainable Development and Biodiversity, 2021, , 503-527.	ress	1.4	0
2081	Apple MdSAT1 encodes a bHLHm1 transcription factor involved in salinity and drough Planta, 2021, 253, 46.	responses.	1.6	19
2082	Plant genes for abiotic stress in legumes. , 2021, , 291-301.			4
2083	Response of seven African eggplant (Solanum macrocarpon L.) cultivars produced in B stress at seedling stage. African Journal of Agricultural Research Vol Pp, 2021, 17, 292		0.2	1
2084	Genome-wide search and structural and functional analyses for late embryogenesis-ab gene family in poplar. BMC Plant Biology, 2021, 21, 110.	undant (LEA)	1.6	18
2085	Effects of water deficit on leaves and fruit quality during the development period in to Food Science and Nutrition, 2021, 9, 1949-1960.	mato plant.	1.5	28
2086	Nitric Oxide Mitigates the Salt-Induced Oxidative Damage in Mustard by UpRegulating Various Enzymes. Journal of Plant Growth Regulation, 2021, 40, 2409-2432.	the Activity of	2.8	18
2087	Exogenously Used 24-Epibrassinolide Promotes Drought Tolerance in Maize Hybrids by and Water Productivity in an Arid Environment. Plants, 2021, 10, 354.	/ Improving Plant	1.6	60
2088	Exogenous Serotonin Improves Salt Tolerance in Rapeseed (Brassica napus L.) Seedling 2021, 11, 400.	ζs. Agronomy,	1.3	10
2089	Advances in Sensing, Response and Regulation Mechanism of Salt Tolerance in Rice. In Journal of Molecular Sciences, 2021, 22, 2254.	ternational	1.8	37
2090	The miR172/ <i>IDS1</i> signaling module confers salt tolerance through maintaining in cereal crops. New Phytologist, 2021, 230, 1017-1033.	ROS homeostasis	3.5	70
2091	Strategies in improving plant salinity resistance and use of salinity resistant plants for sustainability. Critical Reviews in Environmental Science and Technology, 2022, 52, 21	economic 50-2196.	6.6	47

	CITAT	CITATION REPORT	
#	Article	IF	CITATIONS
2092	The effect of humic acid (HA) and zinc oxide nanoparticles (ZnO-NPS) on in vitro regeneration of date palm (Phoenix dactylifera L.) cv. Quntar. Plant Cell, Tissue and Organ Culture, 2021, 145, 445-456.	1.2	18
2093	Influence of salinity stress on morphological, nutritional and physiological attributes in different cultivars of Prunus amygdalus L Journal of Plant Nutrition, 2021, 44, 1758-1769.	0.9	6
2094	The impact of different Zinc (Zn) levels on growth and nutrient uptake of Basil (Ocimum basilicum L.) grown under salinity stress. PLoS ONE, 2021, 16, e0246493.	1.1	46
2095	Differential Morphophysiological and Biochemical Responses of Cotton Genotypes Under Various Salinity Stress Levels During Early Growth Stage. Frontiers in Plant Science, 2021, 12, 622309.	1.7	29
2096	A novel sweetpotato RING-H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis. Plant Science, 2021, 304, 110802.	1.7	25
2097	Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics. Sensors, 2021, 21, 2129.	2.1	76
2098	Comparative physiological and metabolic analyzes of two Italian ryegrass (Lolium multiflorum) cultivars with contrasting salinity tolerance. Physiologia Plantarum, 2021, 172, 1688-1699.	2.6	11
2099	Silicon alleviates salt stress-induced potassium deficiency by promoting potassium uptake and translocation in rice (Oryza sativa L.). Journal of Plant Physiology, 2021, 258-259, 153379.	1.6	28
2100	Transcriptomic analysis reveals potential pathways associated with salt resistance in pecan (Carya) Tj ETG	Qq0 0 0 rgBT /Overl	oçk 10 Tf 5(
2101	Growth, leaf gas exchange and physiological parameters of two Glycyrrhiza glabra L. populations subjected to salt stress condition. Rhizosphere, 2021, 17, 100319.	1.4	19
2102	Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. Journal of Proteomics, 2021, 234, 104097.	1.2	45
2103	A novel salt inducible WRKY transcription factor gene, AhWRKY75, confers salt tolerance in transgenic peanut. Plant Physiology and Biochemistry, 2021, 160, 175-183.	2.8	51
2104	Evolution and identification of DREB transcription factors in the wheat genome: modeling, docking and simulation of DREB proteins associated with salt stress. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7191-7204.	2.0	7

2106	Transcriptomic Analysis of Rice Plants Overexpressing PsGAPDH in Response to Salinity Stress. Genes, 2021, 12, 641.	1.0	9
2107	Biphasic activation of survival and death pathways in Arabidopsis thaliana cultured cells by sorbitol-induced hyperosmotic stress. Plant Science, 2021, 305, 110844.	1.7	0
2108	Response of Lawn Grasses to Salinity Stress and Protective Potassium Effect. Agronomy, 2021, 11, 843.	1.3	6
2109	Understanding the mechanistic basis of adaptation of perennial <i>Sarcocornia quinqueflora</i> species to soil salinity. Physiologia Plantarum, 2021, 172, 1997-2010.	2.6	18
	Driming with calibylic acid 12 caratene and tructophan modulates growth, phonolics and ecceptial oil		

Priming with salicylic acid, Î²-carotene and tryptophan modulates growth, phenolics and essential oil components of Ocimum basilicum L. grown under salinity. Scientia Horticulturae, 2021, 281, 109964.

IF ARTICLE CITATIONS Response of wheat varieties to salinity: growth, yield and ion analysis. Plant Science Today, 2021, 8, 2111 0.4 1 301-311. The brassinosteroid biosynthesis enzyme gene PeCPD improves plant growth and salt tolerance in Populus tomentosa. Industrial Crops and Products, 2021, 162, 113218. 2.5 Effect of ABA on physiological characteristics and expression of salt tolerance-related genes in 2113 1.0 2 Tartary buckwheat. Acta Physiologiae Plantarum, 2021, 43, 1. Construction of Saline-Alkali Tolerance Evaluation System and Isolation of Differentially Expressed Genes in High-Oleic Peanut (Arachis hypogaea L.). Journal of Biobased Materials and Bioenergy, 2021, 15, 2114 145-155.

CITATION REPORT

Beneficial Effects of Exogenous Melatonin on Overcoming Salt Stress in Sugar Beets (Beta vulgaris) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

2116	Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress. Agriculture (Switzerland), 2021, 11, 463.	1.4	104
2117	Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express, 2021, 11, 74.	1.4	17
2118	Bacillus thuringiensis and Silicon Modulate Antioxidant Metabolism and Improve the Physiological Traits to Confer Salt Tolerance in Lettuce. Plants, 2021, 10, 1025.	1.6	25
2119	Genome-wide association mapping of sodium and potassium concentration in rice grains and shoots under alternate wetting and drying and continuously flooded irrigation. Theoretical and Applied Genetics, 2021, 134, 2315-2334.	1.8	8
2120	Plastic shed soil salinity in China: Current status and next steps. Journal of Cleaner Production, 2021, 296, 126453.	4.6	30
2121	Different tolerance to salinity of two populations of Oenothera drummondii with contrasted biogeographical origin. Plant Physiology and Biochemistry, 2021, 162, 336-348.	2.8	2
2122	Sequential Antioxidants Foliar Application Can Alleviate Negative Consequences of Salinity Stress in Vicia faba L Plants, 2021, 10, 914.	1.6	11
2123	Physiological and Biochemical Mechanisms of Exogenously Applied Selenium for Alleviating Destructive Impacts Induced by Salinity Stress in Bread Wheat. Agronomy, 2021, 11, 926.	1.3	42
2124	Physiological responses to salinity among warmâ€season turfgrasses of contrasting salinity tolerance. Journal of Agronomy and Crop Science, 2021, 207, 669-678.	1.7	2
2125	Proteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlings. Nitric Oxide - Biology and Chemistry, 2021, 111-112, 14-30.	1.2	29
2126	Physiochemical Responses of Stevia rebaudiana Bertoni Subjected to Sodium Chloride (NaCl) Salinity and Exogenous Salicylic Acid Application. Gesunde Pflanzen, 2021, 73, 509-520.	1.7	6
2127	Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	92
2128	Foliar Nourishment with Nano-Selenium Dioxide Promotes Physiology, Biochemistry, Antioxidant Defenses, and Salt Tolerance in Phaseolus vulgaris. Plants, 2021, 10, 1189.	1.6	41

#	Article	IF	Citations
2129	A Combined Morphological and Molecular Evolutionary Analysis of Karst-Environment Adaptation for the Genus Urophysa (Ranunculaceae). Frontiers in Plant Science, 2021, 12, 667988.	1.7	2
2130	Transcriptome sequencing and comparative analysis of differentially expressed genes in the roots of Musa Paradisiaca under salt stress. Plant Biotechnology Reports, 2021, 15, 389-401.	0.9	3
2131	NaCl-Induced Elicitation Alters Physiology and Increases Accumulation of Phenolic Compounds in Melissa officinalis L. International Journal of Molecular Sciences, 2021, 22, 6844.	1.8	17
2132	Overexpression of β-cyanoalanine synthase of Prunus persica increases salt tolerance by modulating ROS metabolism and ion homeostasis. Environmental and Experimental Botany, 2021, 186, 104431.	2.0	15
2133	Understanding the roles of osmolytes for acclimatizing plants to changing environment: a review of potential mechanism. Plant Signaling and Behavior, 2021, 16, 1913306.	1.2	72
2134	Rehabilitation of a Riparian Site Contaminated by Tailings from the Fundão Dam, Brazil, Using Different Remediation Strategies. Environmental Toxicology and Chemistry, 2021, 40, 2359-2373.	2.2	10
2135	Glomus etunicatum improved salt tolerance in Dalbergia latifolia Roxb. through physiological adjustment. IOP Conference Series: Earth and Environmental Science, 2021, 782, 042030.	0.2	0
2136	Melatonin Improves Cotton Salt Tolerance by Regulating ROS Scavenging System and Ca2 + Signal Transduction. Frontiers in Plant Science, 2021, 12, 693690.	1.7	44
2137	Comparative Transcriptome Analysis of Two Contrasting Chinese Cabbage (Brassica rapa L.) Genotypes Reveals That Ion Homeostasis Is a Crucial Biological Pathway Involved in the Rapid Adaptive Response to Salt Stress. Frontiers in Plant Science, 2021, 12, 683891.	1.7	10
2138	The barley SHN1-type transcription factor HvSHN1 imparts heat, drought and salt tolerances in transgenic tobacco. Plant Physiology and Biochemistry, 2021, 164, 44-53.	2.8	18
2139	Effects of salt stress levels on nutritional quality and microorganisms of alfalfa-influenced soil. PeerJ, 2021, 9, e11729.	0.9	15
2140	Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnology Advances, 2021, 49, 107754.	6.0	96
2141	Genome-wide identification, characterization, and expression analysis of the monovalent cation-proton antiporter superfamily in maize, and functional analysis of its role in salt tolerance. Genomics, 2021, 113, 1940-1951.	1.3	13
2142	Evaluation of Salt Tolerance in Italian Ryegrass at Different Developmental Stages. Agronomy, 2021, 11, 1487.	1.3	1
2143	Haplotype Analysis of BADH1 by Next-Generation Sequencing Reveals Association with Salt Tolerance in Rice during Domestication. International Journal of Molecular Sciences, 2021, 22, 7578.	1.8	11
2144	Transcriptomic Analysis of Salt-Stress-Responsive Genes in Barley Roots and Leaves. International Journal of Molecular Sciences, 2021, 22, 8155.	1.8	23
2145	A rice transcription factor, <scp> <i>OsMADS57</i> </scp> , positively regulates high salinity tolerance in transgenic <scp><i>Arabidopsis thaliana</i> </scp> and <scp><i>Oryza sativa</i> </scp> plants. Physiologia Plantarum, 2021, 173, 1120-1135.	2.6	20
2146	The synergistic effects of silicon and selenium on enhancing salt tolerance of maize plants. Environmental and Experimental Botany, 2021, 187, 104482.	2.0	20

#	Article	IF	CITATIONS
2147	Differences in Ionic, Enzymatic, and Photosynthetic Features Characterize Distinct Salt Tolerance in Eucalyptus Species. Plants, 2021, 10, 1401.	1.6	6
2148	Short-Term Responses to Salinity of Soybean and Chenopodium album Grown in Single and Mixed-Species Hydroponic Systems. Agronomy, 2021, 11, 1481.	1.3	6
2149	Effects of different fertilizers on some soil enzymes activity and chlorophyll contents of two cotton (<i>G. hirsutum</i> L.) varieties grown in a saline and non-saline soil. Journal of Plant Nutrition, 2022, 45, 95-106.	0.9	14
2150	GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings. Theoretical and Applied Genetics, 2021, 134, 3305-3318.	1.8	54
2151	Melatonin Enhances Seed Germination and Seedling Growth of Medicago sativa Under Salinity via a Putative Melatonin Receptor MsPMTR1. Frontiers in Plant Science, 2021, 12, 702875.	1.7	36
2152	Melatonin regulates antioxidant strategy in response to continuous salt stress in rice seedlings. Plant Physiology and Biochemistry, 2021, 165, 239-250.	2.8	38
2153	Influence of Phosphite Supply in the MS Medium on Root Morphological Characteristics, Fresh Biomass and Enzymatic Behavior in Five Genotypes of Potato (Solanum tuberosum L.). Horticulturae, 2021, 7, 265.	1.2	3
2154	Genomic Variation Landscape of the Model Salt Cress Eutrema salsugineum. Frontiers in Plant Science, 2021, 12, 700161.	1.7	1
2155	Combining Genome and Gene Co-expression Network Analyses for the Identification of Genes Potentially Regulating Salt Tolerance in Rice. Frontiers in Plant Science, 2021, 12, 704549.	1.7	7
2156	Bermudagrass CdWRKY50 gene negatively regulates plants' response to salt stress. Environmental and Experimental Botany, 2021, 188, 104513.	2.0	7
2157	VvSNAT1 overexpression enhances melatonin production and salt tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2021, 166, 485-494.	2.8	24
2158	Silicon nutrition stimulates Salt-Overly Sensitive (SOS) pathway to enhance salinity stress tolerance and yield in rice. Plant Physiology and Biochemistry, 2021, 166, 593-604.	2.8	24
2159	Early detection of plant stress using the internal electrical conductivity of Capsicum annuum in response to temperature and salinity stress. Plant Growth Regulation, 2021, 95, 371-380.	1.8	11
2160	Effects of Sodium Chloride on Algae and Crustaceans—The Neighbouring Links of the Water Trophic Chain. Water (Switzerland), 2021, 13, 2493.	1.2	4
2161	Salt stress downregulates 2-hydroxybutyrylation in Arabidopsis siliques. Journal of Proteomics, 2022, 250, 104383.	1.2	8
2162	SbCASP4 improves salt exclusion by enhancing the root apoplastic barrier. Planta, 2021, 254, 81.	1.6	9
2163	<i>In situ</i> synthesis of zeolites by geopolymerization with NaOH/KOH mixed solution and their potential application for Cd(II) immobilization in paddy soil. Clay Minerals, 2021, 56, 156-167.	0.2	2
2164	Combined Effect of Salinity and Zinc Nutrition on Some Physiological and Biochemical Properties of Rosemary. Communications in Soil Science and Plant Analysis, 2021, 52, 2921-2932.	0.6	1

#	Article	IF	CITATIONS
2165	Genetic and biochemical studies on some Egyptian wheat genotypes under drought stress. Bulletin of the National Research Centre, 2021, 45, .	0.7	2
2166	No escape: The influence of substrate sodium on plant growth and tissue sodium responses. Ecology and Evolution, 2021, 11, 14231-14249.	0.8	11
2167	The genome sequence provides insights into salt tolerance of <i>Achnatherum splendens</i> (Gramineae), a constructive species of alkaline grassland. Plant Biotechnology Journal, 2022, 20, 116-128.	4.1	18
2168	Transcriptional analysis of salt-responsive genes to salinity stress in three salt-tolerant and salt-sensitive Barely cultivars. South African Journal of Botany, 2021, 141, 457-465.	1.2	1
2169	Differential Regulation of NAPDH Oxidases in Salt-Tolerant Eutrema salsugineum and Salt-Sensitive Arabidopsis thaliana. International Journal of Molecular Sciences, 2021, 22, 10341.	1.8	7
2170	Physio-Biochemical and Agronomic Responses of Faba Beans to Exogenously Applied Nano-Silicon Under Drought Stress Conditions. Frontiers in Plant Science, 2021, 12, 637783.	1.7	42
2171	Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Scientia Horticulturae, 2021, 288, 110340.	1.7	49
2172	Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis, scavenging reactive oxygen species and coordinating with phytohormone signal pathways. Industrial Crops and Products, 2021, 169, 113671.	2.5	34
2173	Can the transcriptional regulation of NHX1, SOS1 and HKT1 genes handle the response of two pomegranate cultivars to moderate salt stress?. Scientia Horticulturae, 2021, 288, 110309.	1.7	11
2174	Physiological and comparative transcriptome analysis of leaf response and physiological adaption to saline alkali stress across pH values in alfalfa (Medicago sativa). Plant Physiology and Biochemistry, 2021, 167, 140-152.	2.8	37
2175	Comparative studies on the stress responses of two Bupleurum (Apiaceae) species in support of conservation programmes. Environmental and Experimental Botany, 2021, 191, 104616.	2.0	4
2176	Casparian bands and suberin lamellae: Key targets for breeding salt tolerant crops?. Environmental and Experimental Botany, 2021, 191, 104600.	2.0	18
2177	Behaviour of flotation tailings from a rare earth element deposit at high salinity. Journal of Environmental Management, 2021, 300, 113773.	3.8	0
2178	Transcriptional characterization of the biostimulant effect of Moringa oleifera leaf extracts using Arabidopsis thaliana as a model South African Journal of Botany, 2022, 144, 250-256.	1.2	6
2179	Responses of halophytes to nitric oxide (NO). , 2022, , 391-406.		1
2180	Update, Conclusions, and Recommendations of "Mitigating Environmental Stresses for Agricultural Sustainability in Egypt― Springer Water, 2021, , 561-590.	0.2	1
2181	Calcium signaling network in abiotic stress tolerance in plants. , 2021, , 297-314.		1
2182	Responses of Terrestrial Plants to Metallic Nanomaterial Exposure: Mechanistic Insights, Emerging Technologies, and New Research Avenues. Nanotechnology in the Life Sciences, 2021, , 165-191.	0.4	2

#	Article	IF	CITATIONS
2183	Adaptation of Recretohalophytes to Salinity. , 2021, , 991-1011.		1
2184	NHX1, HKT, and monovalent cation transporters regulate K+ and Na+ transport during abiotic stress. , 2021, , 1-27.		0
2185	Genetic engineering of ion transporters for osmotic stress tolerance. , 2021, , 133-166.		0
2186	Characterization of trehalose-6-phosphate synthase and Na+/H+ antiporter genes in Vuralia turcica and expression analysis under salt and cadmium stresses. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20200252.	0.3	2
2187	Oxidative stress biomarkers in cyanobacteria exposed to heavy metals. , 2021, , 385-403.		1
2188	Can Conservation Agriculture Deliver Its Benefits in Arid Soils?: An Overview. , 2021, , 267-287.		1
2189	Photosynthetic and cellular responses in plants under saline conditions. , 2021, , 293-365.		2
2190	Genome-wide association among soybean accessions for the genetic basis of salinity-alkalinity tolerance during germination. Crop and Pasture Science, 2021, 72, 255.	0.7	5
2191	Biochemical responses of wheat to silicon application under salinity. Journal of Plant Nutrition and Soil Science, 2021, 184, 255-262.	1.1	12
2192	Phytoremediation of Salt-Affected Soils Using Halophytes. , 2021, , 2261-2278.		1
2193	Identification and fine mapping of qGR6.2, a novel locus controlling rice seed germination under salt stress. BMC Plant Biology, 2021, 21, 36.	1.6	26
2194	Natural variation in the promoter of <i>GsERD15B</i> affects salt tolerance in soybean. Plant Biotechnology Journal, 2021, 19, 1155-1169.	4.1	34
2195	Genetic engineering of legumes for abiotic stress tolerance. , 2021, , 371-393.		0
2198	Salt effect on growth, photosynthesis, seed yield and oil composition of the potential crop halophyte Cakile maritima. , 2006, , 55-63.		5
2199	Dissecting Qtls For Tolerance to Drought and Salinity. , 2007, , 381-411.		9
2200	Perspectives on Genetics and Genomics of the Brassicaceae. , 2011, , 617-632.		5
2201	Prospects of Halophytes in Understanding and Managing Abiotic Stress Tolerance. , 2012, , 29-56.		71
2202	Nitrogen-Use-Efficiency (NUE) in Plants Under NaCl Stress. , 2013, , 415-437.		13

#	Article	IF	CITATIONS
2203	The Responses of Salt-Affected Plants to Cadmium. , 2013, , 439-463.		6
2204	Auxin in Plant Growth and Stress Responses. , 2014, , 1-35.		19
2205	Phytoremediation of Salt-Affected Soils Using Halophytes. , 2020, , 1-18.		7
2206	Regulatory Role of Rhizobacteria to Induce Drought and Salt Stress Tolerance in Plants. Sustainable Development and Biodiversity, 2019, , 279-335.	1.4	12
2207	Neurotransmitters in Signalling and Adaptation to Salinity Stress in Plants. Signaling and Communication in Plants, 2020, , 49-73.	0.5	6
2208	Drought and Salt Stress in Cereals. Sustainable Agriculture Reviews, 2015, , 1-31.	0.6	8
2209	Salt Stress Tolerance in Casuarina glauca and Its Relation with Nitrogen-Fixing Frankia Bacteria. , 2016, , 143-151.		2
2210	Nitrogen Management in Rice-Wheat Cropping System in Salt-Affected Soils. , 2016, , 67-89.		3
2211	Silicon in Agriculture. Sustainable Agriculture Reviews, 2017, , 233-260.	0.6	8
2212	Response of Amaranthus sp. to Salinity Stress: A Review. Environment & Policy, 2020, , 245-263.	0.4	7
2213	Crop Potential of Six Salicornia bigelovii Populations Under Two Salinity Water Treatments Cultivated in a Desert Environment: A Field Study. Environment & Policy, 2020, , 313-333.	0.4	3
2214	Functional genomics to discover genes for salt tolerance in annual and perennial plants. , 2008, , 273-286.		3
2215	Molecular Tools for Enhancing Salinity Tolerance in Plants. , 2010, , 373-405.		9
2216	Arbuscular Mycorrhizal Networks: Process and Functions. , 2011, , 907-930.		13
2217	Yield and Growth Responses of Autochthonous Pearl Millet Ecotype (Pennisetum glaucum (L.) R. Br.) Under Saline Water Irrigation in Tunisia. , 2013, , 437-450.		2
2218	Functional Marker Development Across Species in Selected Traits. , 2013, , 467-515.		16
2219	Genetic Engineering for Enhancing Abiotic Stress Tolerance. Focus on Biotechnology, 2003, , 223-243.	0.4	3
2220	Salt Tolerance: Placing Advances in Molecular Genetics into a Physiological and Agronomic Context. , 2003 53-69		14

#	Article	IF	CITATIONS
2221	Unravelling the Genetic Basis of Drought Tolerance in Crops. , 2003, , 71-122.		11
2222	ROS Mediated Plant Defense Against Abiotic Stresses. , 2019, , 481-515.		2
2223	Potentiality of Plant Growth-Promoting Rhizobacteria in Easing of Soil Salinity and Environmental Sustainability. , 2019, , 21-58.		3
2224	The Two-Component System: Transducing Environmental and Hormonal Signals. , 2019, , 247-278.		4
2225	Abiotic Stress Responses and Tolerance Mechanisms for Sustaining Crop Productivity in Sugarcane. , 2020, , 29-47.		1
2226	Metabolic Engineering of Stress Protectant Secondary Metabolites to Confer Abiotic Stress Tolerance in Plants. Energy, Environment, and Sustainability, 2019, , 207-227.	0.6	4
2227	Phenolics: A Game Changer in the Life Cycle of Plants. , 2020, , 241-275.		6
2228	Inter-Organismal Signaling in the Rhizosphere. Rhizosphere Biology, 2021, , 255-293.	0.4	12
2229	Growth and Development Dynamics in Agronomic Crops Under Environmental Stress. , 2019, , 83-114.		7
2230	Heavy metals-resistant bacteria (HM-RB): Potential bioremediators of heavy metals-stressed Spinacia oleracea plant. Ecotoxicology and Environmental Safety, 2020, 198, 110685.	2.9	78
2231	Phenological, morpho-physiological and proteomic responses of Triticum boeoticum to drought stress. Plant Physiology and Biochemistry, 2020, 156, 95-104.	2.8	7
2232	The effectiveness of zinc in alleviating salinity stress on pistachio seedlings. Fruits, 2016, 71, 433-445.	0.3	2
2233	Transcriptomic characterization of candidate genes responsive to salt tolerance of <i>Miscanthus</i> energy crops. GCB Bioenergy, 2017, 9, 1222-1237.	2.5	13
2234	Comparison of partial least square regression, support vector machine, and deep-learning techniques for estimating soil salinity from hyperspectral data. Journal of Applied Remote Sensing, 2018, 12, 1.	0.6	26
2235	De novo assembly of mulberry (Morus alba L.) transcriptome and identification of candidate unigenes related to salt stress responses. Russian Journal of Plant Physiology, 2017, 64, 738-748.	0.5	11
2236	Alleviation of Salinity Stress in White Corn (Zea mays L.) Plant by Exogenous Application of Salicylic Acid. American Journal of Life Sciences, 2013, 1, 248.	0.3	10
2237	Involvement of OsGF14b Adaptation in the Drought Resistance of Rice Plants. Rice, 2019, 12, 82.	1.7	24
2238	QTL Mapping and Candidate Gene Analysis for Alkali Tolerance in Japonica Rice at the bud Stage Based on Linkage Mapping and Genome-Wide Association Study. Rice, 2020, 13, 48.	1.7	36

#	Article	IF	CITATIONS
2239	Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. BMC Plant Biology, 2020, 20, 568.	1.6	27
2240	Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? A meta-analysis. , 2020, 61, 13.		36
2241	Molecular Dissection of Abiotic Stress Tolerance in Sorghum and Rice. Books in Soils, Plants, and the Environment, 2004, , .	0.1	2
2242	Arabidopsis Genome Initiative. , 2010, , 175-204.		1
2243	Tolerance to Abiotic Stresses. , 2006, , 521-591.		2
2244	The effect of NaCl salinity and temperature on the germination of three thyme populations. International Journal of Biosciences, 2014, 5, 50-59.	0.4	1
2245	The effect of salinity stress on survival percentage and physiological characteristics in three varieties of pistachio (Pistacia vera L). International Journal of Biosciences, 2015, 6, 79-93.	0.4	1
2246	Evaluation of NaCl Tolerance in the Physical Reduction of Jatropha Curcus L. Seedlings. Agricultural Science, 2014, 2, 23-35.	0.3	1
2248	Salt Tolerance Analysis of Crops using the SWAP Model. Biosciences, Biotechnology Research Asia, 2017, 14, 643-649.	0.2	1
2249	Sodium Nitroprusside Improves Performance of Barley (Hordeum vulgare L.) Under Salt Stress. Biosciences, Biotechnology Research Asia, 2018, 15, 603-610.	0.2	2
2250	Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste, 2016, 103, 229-238.	0.3	109
2251	An Arabidopsis Mitochondrial Uncoupling Protein Confers Tolerance to Drought and Salt Stress in Transgenic Tobacco Plants. PLoS ONE, 2011, 6, e23776.	1.1	82
2252	H2 Enhances Arabidopsis Salt Tolerance by Manipulating ZAT10/12-Mediated Antioxidant Defence and Controlling Sodium Exclusion. PLoS ONE, 2012, 7, e49800.	1.1	131
2253	Extracellular ATP Signaling Is Mediated by H2O2 and Cytosolic Ca2+ in the Salt Response of Populus euphratica Cells. PLoS ONE, 2012, 7, e53136.	1.1	70
2254	Promoter of CaZF, a Chickpea Gene That Positively Regulates Growth and Stress Tolerance, Is Activated by an AP2-Family Transcription Factor CAP2. PLoS ONE, 2013, 8, e56737.	1.1	9
2255	K+ Efflux and Retention in Response to NaCl Stress Do Not Predict Salt Tolerance in Contrasting Genotypes of Rice (Oryza sativa L.). PLoS ONE, 2013, 8, e57767.	1.1	46
2256	Differential Responses of CO2 Assimilation, Carbohydrate Allocation and Gene Expression to NaCl Stress in Perennial Ryegrass with Different Salt Tolerance. PLoS ONE, 2013, 8, e66090.	1.1	28
2257	Transcriptomic and Physiological Variations of Three Arabidopsis Ecotypes in Response to Salt Stress. PLoS ONE, 2013, 8, e69036.	1.1	45

#	Article	IF	CITATIONS
2258	TaCIPK29, a CBL-Interacting Protein Kinase Gene from Wheat, Confers Salt Stress Tolerance in Transgenic Tobacco. PLoS ONE, 2013, 8, e69881.	1.1	98
2259	Transcriptome Analysis of Salicornia europaea under Saline Conditions Revealed the Adaptive Primary Metabolic Pathways as Early Events to Facilitate Salt Adaptation. PLoS ONE, 2013, 8, e80595.	1.1	41
2260	Genome-Wide Screening of Salt Tolerant Genes by Activation-Tagging Using Dedifferentiated Calli of Arabidopsis and Its Application to Finding Gene for Myo-Inositol-1-P-Synthase. PLoS ONE, 2015, 10, e0115502.	1.1	9
2261	Comparative Transcriptome Profiling of the Maize Primary, Crown and Seminal Root in Response to Salinity Stress. PLoS ONE, 2015, 10, e0121222.	1.1	31
2262	High Throughput Sequencing of Small RNAs in the Two Cucurbita Germplasm with Different Sodium Accumulation Patterns Identifies Novel MicroRNAs Involved in Salt Stress Response. PLoS ONE, 2015, 10, e0127412.	1.1	16
2263	Metabolic Profiles Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt Stress. PLoS ONE, 2016, 11, e0159622.	1.1	106
2264	Effects of Salt Stress on Three Ecologically Distinct Plantago Species. PLoS ONE, 2016, 11, e0160236.	1.1	60
2265	The Arabidopsis Gene zinc finger protein 3(ZFP3) Is Involved in Salt Stress and Osmotic Stress Response. PLoS ONE, 2016, 11, e0168367.	1.1	53
2266	Transcriptome analysis of hexaploid hulless oat in response to salinity stress. PLoS ONE, 2017, 12, e0171451.	1.1	41
2267	Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots. PLoS ONE, 2017, 12, e0176076.	1.1	47
2268	Confirmation of Drought Tolerance of Ectopically Expressed Gene in Soybean. Molecules and Cells, 2018, 41, 413-422.	1.0	21
2269	A Fertirrigação e o Processo de Salinização de Solos em Ambiente Protegido. Nativa, 2014, 2, 180-186.	0.2	6
2270	Recent advances in genetic manipulation of crops: A promising approach to address the global food and industrial applications. Plant Science Today, 2020, 7, 70-92.	0.4	8
2271	Alleviation of Salt Stress in Cucumis Sativus L. Through Seed Priming with Calcium Chloride. Indian Journal of Applied Research, 2011, 3, 22-25.	0.0	11
2272	Proline Induced Modulation in Physiological Responses in Wheat Plants. Journal of Agriculture and Environmental Sciences, 2019, 8, .	0.0	7
2273	Influence of salinity on aliphatic and indole glucosinolates in broccoli (Brassica oleracea var.) Tj ETQq1 1 0.78431	4 rgBT /0\	verlgck 10 T
2274	Efeito do NaCl sobre o crecimento ea multiplicação in vitro de bananeira. Revista Brasileira De Fruticultura, 2005, 27, 194-197.	0.2	2
2275	O estresse salino retarda o desenvolvimento morfofisiológico e a ativação de galactosidases de parede celular em caules de Vigna unguiculata. Acta Botanica Brasilica, 2011, 25, 17-24.	0.8	2

#	Article	IF	CITATIONS
2276	Germinação, vigor e crescimento de cultivares de feijoeiro em soluções salinas. Revista Brasileira De Engenharia Agricola E Ambiental, 2009, 13, 882-889.	0.4	9
2277	Chlorophyll a fluorescence as indicative of the salt stress on Brassica napus L. Brazilian Journal of Plant Physiology, 2011, 23, 245-253.	0.5	30
2278	Physiological and biochemical traits as tools to screen sensitive and resistant varieties of tomatoes exposed to salt stress. Brazilian Journal of Plant Physiology, 2012, 24, 281-292.	0.5	25
2279	Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant, Soil and Environment, 2008, 54, 382-388.	1.0	92
2280	Effects of NaCl stress on growth and ion homeostasis in pomegranate tissues. European Journal of Horticultural Science, 2020, 85, 42-50.	0.3	5
2281	Licorice Root Extract Boosts <i>Capsicum annuum</i> L. Production and Reduces Fruit Contamination on a Heavy Metals-Contaminated Saline Soil. International Letters of Natural Sciences, 0, 73, 1-16.	1.0	6
2282	Cyanobacteria and Glutathione Applications Improve Productivity, Nutrient Contents, and Antioxidant Systems of Salt-Stressed Soybean Plant. International Letters of Natural Sciences, 0, 76, 72-85.	1.0	5
2283	Influence of Salt Stress on Proline and Glycine Betaine Accumulation in Tomato (<i>Solanum lycopersicum</i> L.). Journal of Horticulture and Plant Research, 0, 1, 19-25.	0.0	4
2284	Cekaman Garam NaCl danTeknik Aplikasi Azolla pada Tanaman Padi. Jurnal Ilmu Pertanian Indonesia, 2020, 25, 349-355.	0.1	1
2285	Sodium-resistant plant growth-promoting rhizobacteria isolated from a halophyte, Salsola grandis, in saline-alkaline soils of Turkey. Eurasian Journal of Soil Science, 2017, 6, 216-216.	0.2	7
2286	Prediction of dry matter accumulation in bitter vetch. Legume Research, 2017, , .	0.0	3
2287	Abiotic Stress Response of Field Crops: Recent Approach. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 1761-1769.	0.0	5
2288	METHYL JASMONATE BRINGS ABOUT RESISTANCE AGAINST SALINITY STRESSED TOMATO PLANTS BY ALTERING BIOCHEMICAL AND PHYSIOLOGICAL PROCESSES. Pakistan Journal of Agricultural Sciences, 2016, 53, 35-41.	0.1	20
2289	Improvement of Horticultural Crops for Abiotic Stress Tolerance: An Introduction. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1068-1069.	0.5	13
2290	Exogenous Glycine Betaine Ameliorates the Adverse Effect of Salt Stress on Perennial Ryegrass. Journal of the American Society for Horticultural Science, 2012, 137, 38-46.	0.5	107
2291	Growth Response and Gene Expression in Antioxidant-related Enzymes in Two Bermudagrass Genotypes Differing in Salt Tolerance. Journal of the American Society for Horticultural Science, 2012, 137, 134-143.	0.5	46
2292	Stomatal and Metabolic Limitations to Photosynthesis Resulting from NaCl Stress in Perennial Ryegrass Genotypes Differing in Salt Tolerance. Journal of the American Society for Horticultural Science, 2013, 138, 350-357.	0.5	15
2293	Physiological Effect of Potato Genotypes and Salicylic Acid on Plantlets Growth and Microtuber Production under Salt Stress. Hortscience Journal of Suez Canal University, 2018, 7, 7-14.	0.1	2

CITATION REPOI	5Т.

#	Article	IF	CITATIONS
2294	ENHANCEMENT OF PLANT GROWTH, CHEMICAL COMPOSITION AND SECONDARY METABOLITES OF ESSENTIAL OIL OF SALT-STRESSED CORIANDER (CORIANDRUM SATIVUM L.) PLANTS USING SELENIUM, NANO-SELENIUM, AND GLYCINE BETAINE. Scientific Journal of Flowers and Ornamental Plants, 2019, 6, 151-173.	0.4	13
2295	Role of Cyclic Nucleotide Gated Channels in Stress Management in Plants. Current Genomics, 2016, 17, 315-329.	0.7	92
2296	Looking at Halophytic Adaptation to High Salinity Through Genomics Landscape. Current Genomics, 2017, 18, 542-552.	0.7	42
2297	Plant Responses to Abiotic Stresses: Shedding Light on Salt, Drought, Cold and Heavy Metal Stress. , 2011, , 39-64.		25
2299	Production of Genetically Modified Grape (Vitis vinifera L.) Plants. International Journal of Horticulture Agriculture and Food Science, 2018, 2, 111-120.	0.0	2
2300	Effect of salt stress on some sweet corn (Zea mays L. var. saccharata) genotypes. Archives of Biological Sciences, 2015, 67, 993-1000.	0.2	11
2301	Effects of partial defoliation on the growth, ion relations and photosynthesis of Lycium chinense Mill. under salt stress. Archives of Biological Sciences, 2015, 67, 1185-1194.	0.2	9
2302	Salinity effects on yield, yield components and nutrient ions in rapeseed genotypes. Journal of Agricultural Sciences (Belgrade), 2012, 57, 19-29.	0.1	11
2303	Comparative analysis of drought responses in Phaseolus vulgaris (common bean) and P. coccineus (runner bean) cultivars. The EuroBiotech Journal, 2017, 1, 247-252.	0.5	14
2304	Improve the salinity stress by using ascorbic acid on Germination, Growth Parameters, Water Relations, Organic and Inorganic Components of Sweet Pepper (Capsicum annuum, L.) Plant. Journal of Advances in Agriculture, 2015, 4, 331-349.	0.1	2
2305	The genus <i>Portulaca</i> as a suitable model to study the mechanisms of plant tolerance to drought and salinity. The EuroBiotech Journal, 2018, 2, 104-113.	0.5	11
2306	Compared salt tolerance of five local wheat (<i>Triticum aestivum</i> L.) cultivars of Albania based on morphology, pigment synthesis and glutathione content. The EuroBiotech Journal, 2020, 4, 42-52.	0.5	8
2307	Variations in water relations, stomatal characteristics, and plant growth between quinoa and pea under salt-stress conditions. Pakistan Journal of Botany, 2020, 52, .	0.2	8
2308	The Drought Effect on Seed Germination and Seedling Growth in Bread Wheat (Triticum aestivum L.). International Journal of Agriculture Environment and Food Sciences, 2017, 1, 33-37.	0.2	29
2309	INITIAL SPROUT GROWTH OF POTATO SEED MINITUBERS UNDER SALT STRESS. Revista De Agricultura Neotropical, 2016, 3, 7-11.	0.3	1
2310	Responses of Conocarpus lancifolius to environmental stress: a case study in the semi-arid land of Kuwait. Phyton, 2012, 81, 181-190.	0.4	4
2311	Relationship between leaf gas-exchange characteristics and the performance of Ziziphus spina-christi (L.) Willd. seedlings subjected to salt stress. Photosynthetica, 2019, 57, 897-903.	0.9	5
2312	Effects of environmental salinity on carbon isotope discrimination and stomatal conductance in Spartina grasses. Marine Ecology - Progress Series, 2006, 313, 305-310.	0.9	12

#	Article	IF	CITATIONS
2313	Expression of a Vacuolar Na ⁺ /H ⁺ Antiporter Gene of Alfalfa Enhances Salinity Tolerance in Transgenic <i>Arabidopsis</i> . Acta Agronomica Sinica(China), 2008, 34, 557-564.	0.1	8
2314	Mapping of QTLs Underlying Tolerance to Alkali at Germination and Early Seedling Stages in Rice. Acta Agronomica Sinica(China), 2009, 34, 1719-1727.	0.1	3
2315	Screening and Identification of Proteins Interacting with ERF Transcription Factor W17 in Wheat. Acta Agronomica Sinica(China), 2011, 37, 803-810.	0.1	2
2316	Effects of Exogenous Proline on Nitrate Reduction in Melon Seedlings under Salt Stress. Zhi Wu Ke Xue Xue Bao, 2011, 29, 118-123.	0.1	3
2317	Different Physiological Responses of Male and Female Ginkgo biloba (Ginkgoaceae) Seedlings to Salt Stress. Acta Botanica Yunnanica, 2010, 31, 447-453.	0.1	4
2318	Effects of Salinity and Sodicity Stresses on Pollen Surface Characteristics and Viability of Rice [*] . Ying Yong Yu Huan Jing Sheng Wu Xue Bao = Chinese Journal of Applied and Environmental Biology, 2010, 16, 63-66.	0.1	1
2319	Tissue and Induction Expression Profiles of Rice Phospholipid Hydroperoxide Glutathione Peroxidase at Protein Level *. Progress in Biochemistry and Biophysics, 2009, 36, 77-82.	0.3	2
2320	EXPERIMENTAL INVESTIGATION INTO TOXIC IMPACT OF ROAD MAINTENANCE SALT ON GRASS VEGETATION. Journal of Environmental Engineering and Landscape Management, 2006, 14, 83-88.	0.4	16
2321	MATHEMATICAL MODELLING OF GROWTH INTENSITY OF ROADSIDE PLANTS. Journal of Environmental Engineering and Landscape Management, 2006, 14, 215-224.	0.4	2
2322	Seasonal changes of inorganic and organic osmolyte content in three endemic Limonium species of Lake Tuz (Turkey). Turkish Journal of Botany, 0, , .	0.5	8
2323	Shoot and Root Characteristics of Converted Race Stocks Accessions of upland Cotton (Gossypium) Tj ETQq0 0 99-106.	0 rgBT /Ov 0.2	verlock 10 Tf 12
2324	Nutritional Status in Shoots of Barley Genotypes as Affected by Salinity of Irrigation Water. American Journal of Plant Physiology, 2008, 3, 89-95.	0.2	11
2325	Response of Pea Plants to Natural Bio-stimulants Under Soil Salinity Stress. American Journal of Plant Physiology, 2016, 12, 28-37.	0.2	7
2326	Involvement of Sugars in the Response of Pepper Plants to Salinity: Effect of Calcium Application. Asian Journal of Plant Sciences, 2004, 3, 455-462.	0.2	4
2327	Genetic Diversity, Salinity Tolerance and Physiological Responses to NaCl of Six Rice (Oryza sativa L.) Cultivars. Asian Journal of Plant Sciences, 2005, 4, 562-573.	0.2	25
2328	Response of Catharanthus roseus Shoots to Salinity and Drought in Relation to Vincristine Alkaloid Content. Asian Journal of Plant Sciences, 2007, 6, 1223-1228.	0.2	23
2329	Comparative Study of Tolerant and Sensitive Cultivars of Brassica napus in Response to Salt Conditions. Asian Journal of Plant Sciences, 2008, 7, 594-598.	0.2	16
2330	Effect of Temperature, Iso-Osmotic Concentrations of NaCl and PEG Agents on Germination and Some Seedling Growth Yield Components in Rice (Oryza sativa L.). Asian Journal of Plant Sciences, 2009, 8, 409-416.	0.2	8

#	Article	IF	CITATIONS
2331	Production of Flavonoids in Callus Culture of Anthocephalus indicus A. Rich. Asian Journal of Plant Sciences, 2012, 12, 40-45.	0.2	2
2332	Insight into the Role of Antioxidant Enzymes for Salt Tolerance in Plants. International Journal of Botany, 2010, 6, 456-464.	0.2	31
2333	Salt Stress Effects on the Vegetative Growth of Pleurotus tuberregium (FR) Sing. Journal of Biological Sciences, 2007, 7, 1278-1281.	0.1	9
2334	Effects of Brewery, Textile and Paint Effluent on Seed Germination of Leafy Vegetables-Amaranthus hybridus and Celosia argentea (Amaranthaceae). Journal of Biological Sciences, 2010, 10, 151-156.	0.1	11
2335	Halophila beccarii Aschers (Hydrocharitaceae) Responses to Different Salinity Gradient. Journal of Fisheries and Aquatic Science, 2013, 8, 462-471.	0.1	6
2336	Sodium and Proline Accumulation as Osmoregulators in Tolerance of Sugar Beet Genotypes to Salinity. Pakistan Journal of Biological Sciences, 2007, 10, 4081-4086.	0.2	21
2337	Efficacy of Dietetics in Low Resource Communities: Dietary Intake and BMI of Type 2 Diabetics Living in Karachi Before and After Receiving Dietician`s Guidance. Pakistan Journal of Biological Sciences, 2008, 11, 1324-1329.	0.2	3
2338	Growth and Some Physiological Parameters of Four Sugar Beet (Beta vulgaris L.) Cultivars as Affected by Salinity. Pakistan Journal of Biological Sciences, 2008, 11, 1390-1393.	0.2	10
2339	Ecophysiological Responses to Stresses in Plants: A General Approach. Pakistan Journal of Biological Sciences, 2012, 15, 506-516.	0.2	11
2340	Overexpression of Arabidopsis Dehydration-Responsive Element-Binding Protein 2A Confers Tolerance to Salinity Stress to Transgenic Canola. Pakistan Journal of Biological Sciences, 2014, 17, 619-629.	0.2	7
2341	Protein Profiles in Response to Salt Stress in Seeds of Brassica napus. Research Journal of Environmental Sciences, 2009, 3, 225-231.	0.5	3
2342	Biomass Accumulation and Proline Content of Six Citrus Rootstocks as Influenced by Long-Term Salinity. Research Journal of Environmental Sciences, 2010, 4, 158-165.	0.5	7
2343	Isolation, Characterization, and Use for Plant Growth Promotion Under Salt Stress, of ACC Deaminase-Producing Halotolerant Bacteria Derived from Coastal Soil. Journal of Microbiology and Biotechnology, 2010, 20, 1577-1584.	0.9	331
2344	Plant community diversity in the Chobe Enclave, Botswana: Insights for functional habitat heterogeneity for herbivores. Koedoe, 2020, 62, .	0.3	5
2345	A User-Friendly Theoretical Mathematical Model for the Prediction of Food Safety in a Food Production Chain. Journal of Food Processing & Technology, 2015, 06, .	0.2	2
2346	Marker-free Transgenic Tomato with Engineered Mannitol Accumulation Confers Tolerance to Multiple Abiotic Stresses. Cell & Developmental Biology, 2012, 2, .	0.3	1
2347	Enhancing Antioxidant Properties of Germinated Thai rice (Oryza sativa L.) cv. Kum Doi Saket with Salinity. Rice Research Open Access, 2016, 4, .	0.4	5
2348	Water Stress Effects on Leaf Growth and Chlorophyll Content but Not the Grain Yield in Traditional Rice (<i>Oryza sativa</i> Linn.) Genotypes of Assam, India II. Protein and Proline Status in Seedlings under PEG Induced Water Stress. American Journal of Plant Sciences, 2012, 03. 971-980.	0.3	82

#	Article	IF	CITATIONS
2349	Cloning of Three Antiporter Genes from Arabidopsis and Rice for Over-Expressing Them in Farmer Popular Tomato Varieties of Bangladesh. American Journal of Plant Sciences, 2014, 05, 3957-3963.	0.3	1
2350	Growth and Physiological Attributes of Tomato (<i>Lycopersicon) Tj ETQq1 1 0.784314 rgBT /Ove Sciences, 2016, 07, 453-460.</i>	rlock 10 T [.] 0.3	f 50 707 Td 6
2351	Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Regions Using Remote Sensing Technology: A Review. Advances in Remote Sensing, 2013, 02, 373-385.	0.2	256
2352	Molecular Mechanism of Plant Adaption to High Salinity. Journal of Plant Biotechnology, 2005, 32, 1-14.	0.1	9
2353	Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells. Journal of Plant Biotechnology, 2006, 33, 1-9.	0.1	2
2354	Increased biomass and enhanced tolerance to salt stress in Chinese cabbage overexpressing Arabidopsis H ⁺ -PPase (AVP1). Journal of Plant Biotechnology, 2012, 39, 253-260.	0.1	4
2356	Solute patterns of four halophytic plant species at Suncheon Bay in Korea. Journal of Ecology and Environment, 2014, 37, 131-137.	1.6	4
2357	Ion Transporters and Abiotic Stress Tolerance in Plants. , 2012, 2012, 1-13.		78
2358	NaCl Effects on <i>In Vitro</i> Germination and Growth of Some Senegalese Cowpea (<i>Vigna) Tj ETQq0 0 0 rgE</i>	BT_/Qverloo	ck 10 Tf 50 4
2359	Improving salt-tolerance in plant through modern techniques. International Journal for Agro Veterinary and Medical Sciences, 2011, 5, 73.	0.1	2
2360	Optimizing the binding activity of the AP2/ERF transcription factor with the GCC box element from Brassica napus by directed evolution. BMB Reports, 2010, 43, 567-572.	1.1	15
2361	Protein hydrolysate as a component of salinized soil in the cultivation of Ageratum houstonianum Mill. (Asteraceae). Acta Agrobotanica, 2015, 68, 247-253.	1.0	5
2363	The hope, hype, & reality of genetic engineering: remarkable stories from agriculture, industry, medicine, and the environment. Choice Reviews, 2004, 42, 42-0283-42-0283.	0.4	4
2364	Effect of salt stress on growth, gas exchange attributes and chlorophyll contents of pea (Pisum) Tj ETQq1 1 0.784	1314 rgBT 0.2	/gverlock 1
2366	Growth and physiological responses of five Malus species to the pH of hydroponic solutions. African Journal of Agricultural Research Vol Pp, 2012, 7, .	0.2	1
2367	Combating salinity stress effects on cotton with agronomic practices. African Journal of Agricultural Research Vol Pp, 2012, 7, .	0.2	10
2370	Plants' Challenges in a Salinized World: The Case of Capsicum. African Journal of Biotechnology, 2012, 11, .	0.3	7
2371	Impact of salinity stress on seed germination indices of maize (Zea mays L.) genotypes. Kragujevac Journal of Science, 2014, , 155-166.	0.1	2

#	Article	IF	Citations
2372	Moderately low nitrogen application mitigate the negative effects of salt stress on annual ryegrass seedlings. PeerJ, 2020, 8, e10427.	0.9	13
2373	Identification and comparative analysis of the <i>CIPK</i> gene family and characterization of the cold stress response in the woody plant <i>Prunus mume</i> . PeerJ, 2019, 7, e6847.	0.9	20
2374	Selection of reliable reference genes for quantitative RT-PCR in garlic under salt stress. PeerJ, 2019, 7, e7319.	0.9	19
2375	Genome-wide characterization and expression analysis of aquaporins in salt cress (<i>Eutrema) Tj ETQq1 1 0.784</i>	314 rgBT	/Oyerlock 10
2376	Phenotypic and Genotypic Analyses of Drought Tolerance in Korean and Tunisian Wheat Cultivars. Plant Breeding and Biotechnology, 2014, 2, 139-150.	0.3	7
2377	Overexpression of <i>BrTSR53</i> Gene Improves Tolerance of Rice Plant to Salt Stress. Plant Breeding and Biotechnology, 2015, 3, 376-383.	0.3	5
2378	The negative effects of Calcium Chloride on Kodo millet (Paspalum scrobiculatum) germplasm during germination. IOSR Journal of Agriculture and Veterinary Science, 2013, 6, 63-74.	0.1	1
2379	Effect of seaweed extract of Sargassum vulgare on germination behavior of two bean cultivars (Phaseolus vulgaris L) under salt stress. IOSR Journal of Agriculture and Veterinary Science, 2014, 7, 116-120.	0.1	11
2380	Exogenous Gibberellic Acid Supplementation Renders Growth and Yield Protection Against Salinity Induced Oxidative Damage Through Upregulating Antioxidant Metabolism in Fenugreek (Trigonella) Tj ETQq0 0 C) rgBT /Ov	erløck 10 Tf 5
2381	The cotton GhMYB4 gene enhances salt and drought tolerance in transgenic Arabidopsis. Agronomy Journal, 2021, 113, 4762.	0.9	4
2382	Foliar Supplementation of Clove Fruit Extract and Salicylic Acid Maintains the Performance and Antioxidant Defense System of Solanum tuberosum L. under Deficient Irrigation Regimes. Horticulturae, 2021, 7, 435.	1.2	8
2383	Ion transporters and their exploration for conferring abiotic stress tolerance in plants. Plant Growth Regulation, 2022, 96, 1-23.	1.8	6
2384	Pepper Novel Pseudo Response Regulator Protein CaPRR2 Modulates Drought and High Salt Tolerance. Frontiers in Plant Science, 2021, 12, 736421.	1.7	7
2385	Limoniastrum guyonianum behavior under seasonal conditions fluctuations of Sabkha AÃ ⁻ n MaÃ ⁻ der (Tunisia). Plant Physiology and Biochemistry, 2021, 168, 305-320.	2.8	2
2386	Novel QTL identification and candidate gene analysis for enhancing salt tolerance in soybean (Glycine) Tj ETQqO	0 Q.rgBT /0	Overlock 10 T
2387	Molecular Mechanisms of Plant Responses and Tolerance of Drought and Cold Stress. , 2003, , 30-37.		1
2388	Functional Genomics of Plant Abiotic Stress Tolerance. , 2003, , .		1

2389	The Physiological Basis of Soybean Yield Potential and Environmental Adaptation. Books in Soils, Plants, and the Environment, 2004, , .	0.1	0
------	--	-----	---

#	Article	IF	CITATIONS
2390	Molecular Bases of Plant Adaptation to Abiotic Stress and Approaches to Enhance Tolerance to Hostile Environments. , 0, , .		1
2391	Gene technology makes it possible to alter plants to meet requirements of agriculture, nutrition, and industry. , 2005, , 557-593.		0
2392	Use of Genetic Engineering to Control Ripening, Reduce Spoilage, and Maintain Quality of Fruits and Vegetables. , 2005, , 397-438.		0
2394	Salinity Tolerance. , 2006, , 121-175.		5
2395	Effect of Cropping Methods and Salinity Stress on Wheat Agronomic Characteristics. Pakistan Journal of Biological Sciences, 2006, 9, 2667-2671.	0.2	0
2396	Effect of Salt Levels and Cropping Methods on Wheat Agronomic Characteristics. Pakistan Journal of Biological Sciences, 2007, 10, 950-954.	0.2	1
2397	Isolation and characterization of ethyl methane sulfonate(EMS) Arabidopsis mutants capable of germination under saline conditions Journal of Life Science, 2007, 17, 641-645.	0.2	0
2398	Corrigendum to: Protection mechanisms in the resurrection plant Xerophyta viscosa: cloning, expression, characterisation and role of XvINO1, a gene coding for a myo-inositol 1-phosphate synthase. Functional Plant Biology, 2008, 35, 171.	1.1	2
2399	Expressing the Tyrosine Phosphatase (CaTPP1) Gene from Capsicum annuum in Tobacco Enhances Cold and Drought Tolerances. Journal of Applied Biological Chemistry, 2008, 51, 50-56.	0.2	0
2400	Effect of R. leguminisarum Pre-incubated with Inducers, Naringenin and Methyl-jasmonate, on Nitrogen Fixation and the Growth of Pea at Different Salinity Levels. Korean Journal of Environmental Agriculture, 2008, 27, 362-367.	0.0	1
2401	Progress in Mechanisms of Mutual Effect between Plants and the Environment. , 2009, , 297-308.		1
2402	Effect of Nitric Oxide on Ions Absorption in Excised Root Tips of Wheat Seedlings under Drought Stress. Acta Agronomica Sinica(China), 2009, 35, 530-534.	0.1	0
2403	Identification of Quantitative Trait Loci for Alkaline Tolerance at Early Seedling Stage under Alkaline Stress in <i>Japonica</i> Rice. Acta Agronomica Sinica(China), 2009, 35, 301-308.	0.1	1
2404	10.1007/s11183-008-2010-3. , 2010, 55, 232.		0
2405	Possible Roles of the Leaves of Two Paspalum Species in Salinity Tolerance. Asian Journal of Plant Sciences, 2010, 9, 94-98.	0.2	3
2406	Responses of Photosynthetic Efficiency and Ascorbate Peroxidase Induced by Salt Stress in Rice (Oryza) Tj ETQq1	1 _{0.2} 78432	l4rgBT /C∨
2407	Responses of Green Beans (Phaseolus vulgaris L.) in Terms of Dry Matter Production, Nitrogen Uptake, and Water Absorption under Salt-Stress Conditions. Books in Soils, Plants, and the Environment, 2010, , 879-897.	0.1	0
2408	Effect of Naturally Low Temperature Stress on Cold Resistance of Fennel Varieties Resource. Communications in Computer and Information Science, 2011, , 370-374.	0.4	0

#	Article	IF	CITATIONS
2409	Salt Tolerance in MungbeanVigna radiata[L.] Genotypes: Role of Proline and Glycinebetaine. Journal of Functional and Environmental Botany, 2011, 1, 139.	0.1	3
2410	ALLEVIATION OF SALINITY STRESS IN LETTUCE DURING GERMINATION BY SEED PRIMING. Journal of Plant Production, 2011, 2, 725-737.	0.0	2
2411	Enhancing Productivity and Performance of Oil Seed Crops under Environmental Stresses. , 2012, , 139-161.		3
2412	Plasma Membrane Na ⁺ /H ⁺ Antiporter Is Involved in Plant Salt Tolerance. Chinese Bulletin of Botany, 2011, 46, 206-215.	0.0	0
2413	Ascorbate peroxidase gene from Brassica napus enhances salt and drought tolerances in Arabidopsis thaliana. African Journal of Biotechnology, 2011, 10, .	0.3	0
2414	Efficacy of seawater salinity on osmotic adjustment and solutes allocation in wheat (Triticum) Tj ETQq1 1 0.7843 2012, 4, .	14 rgBT /(1.0	Overlock 10 2
2415	SALINITY STRESS IN AGRICULTURAL LAND: CHALLENGES AND OPPORTUNITIES. , 2012, , 134-151.		0
2416	Salinity effect and seed priming treatments on the germination of Suaeda salsa in the tidal marsh of the Yellow River estuary. African Journal of Biotechnology, 2012, 11, .	0.3	0
2417	Enhanced accumulation of root hydrogen peroxide is associated with reduced antioxidant enzymes under isoosmotic NaCl and Na2SO4 salinities. African Journal of Biotechnology, 2012, 11, .	0.3	0
2418	Cellular Mechanisms of Environmental Adaptation: Learning from Non-Arabidopsis Model Species. Progress in Botany Fortschritte Der Botanik, 2013, , 137-151.	0.1	0
2419	CRESCIMENTO DO MARACUJAZEIRO AMARELO SOB ESTRESSE SALINO E BIOFERTILIZAÇÃO EM AMBIENTE PROTEGIDO CONTRA PERDAS HÃÐRICAS. Holos, 0, 4, 55.	0.0	5
2420	Effect of Wind Break on the Early Growth of Pinus thunbergii at Saemangum Sea-wall. Korean Journal of Agricultural and Forest Meteorology, 2013, 15, 210-218.	0.2	2
2421	Isolation and Identification of a New Gene Related to Salt Tolerance in Chinese Cabbage. Horticultural Science and Technology, 2013, 31, 748-755.	0.9	2
2422	Expression Analysis of <i>Arabidopsis thaliana</i> Genes <i>ARCAH1</i> ã€ <i>ARCAH2</i> and the Response to Sodium Chloride Stress During Seed Germination. Genomics and Applied Biology, 0, , .	0.0	0
2423	Halophytes and Salt Stress: Histo-Anatomical Features in Halophytes—Formative Effect, Adaptation or a Simple Response to an Intensely Abiotic Factor?. , 2014, , 39-43.		1
2424	The Potential of Castor as a Biodiesel Feedstock Crop for the Arabian Peninsula. Springer Proceedings in Energy, 2014, , 1-9.	0.2	1
2426	Physiological and Ionic Expressions of Different Hybrids of Maize (Zea Mays L.) under Different Salinity Levels. Universal Journal of Agricultural Research, 2014, 2, 168-173.	0.1	1
2427	Screening of salt-tolerance plants using transgenic Arabidopsis that express a salt cress cDNA library. Journal of Plant Biotechnology, 2014, 41, 81-88.	0.1	2

#	Article	IF	CITATIONS
2428	PERFORMANCE OF TOMATO (LYSOPERSICON ESCULENTUM) GERMPLASMS GROWN IN BANGLADESH FOR SALINITY TOLERANCE MPLASM. Agrivita, 2014, 36, .	0.2	2
2430	Role of Na+ manipulating genes in Phragmites australis adaptation to different habitats. Scientific Journal for Damietta Faculty of Science, 2014, 3, 1-9.	0.2	0
2431	Selection of Salt Tolerant Somaclones for Development of Salt Stress Tolerant Varieties. Plant, 2015, 3, 37.	0.1	2
2432	NaCl as a physiological modulator of synthesis of compatible solutes and antioxidant potential in sangam (Clerodendron inerme L.). Journal of Plant Stress Physiology, 2015, 1, 26.	0.1	0
2433	The Curation and Analysis of Rice Stress-Resistance Genes Based on RiceWiki. Hans Journal of Computational Biology, 2015, 05, 29-40.	0.0	0
2434	The expression profiles of genes encoding the potassium TPK channels and NHX Na ⁺ /H ⁺ exchanger in barley under salinity and water stress conditions. Reports National Academy of Science of Ukraine, 2015, , 152-156.	0.0	0
2435	Effects of Ozone and Soil Salinity, Singly and in Combination, on Growth, Yield and Leaf Gas Exchange Rates of Two Bangladeshi Wheat Cultivars. Asian Journal of Atmospheric Environment, 2015, 9, 173-186.	0.4	4
2436	Variation in Accumulation of Phenolics in Some Native Rice Cultivars of North Kerala, India in Response to Salt Stress. Asian Journal of Agricultural Research, 2015, 9, 315-324.	0.4	3
2437	Transformation or rice by genes encoding the potassium TPK channels improves the plant relative growth rates under salinity and drought stress conditions. Reports National Academy of Science of Ukraine, 2015, , 104-110.	0.0	0
2438	THE EFFECT OF SALINITY AND NITROGEN DEFICIENCY ON THE CHANGES IN SELECTED PHYSIOLOGICAL PARAMETERS OF COMMON BEAN (PHASEOLEUS VULGARIS L.) GROWN IN HYDROPONIC CULTURES. Journal of Ecological Engineering, 2016, 17, 321-327.	0.5	1
2439	The Physiological Role of Proline and Sodium as Osmotic Stress Signal Components of Some Crop Plants. Triticeae Genomics and Genetics, 0, , .	0.0	2
2440	Diversity in growth and expression pattern of PoHKT1 and PoVHA transporter genes under NaCl stress in Portulaca oleracea taxa. Genetika, 2016, 48, 233-248.	0.1	1
2441	Identification of Salt-responsive Biosynthesis Genes in Rice via Microarray Analysis. Rice Research Open Access, 2016, 4, .	0.4	0
2444	Development and Evaluation of a Synthetic Alfalfa Variety for Tolerance to Salinity. Journal of Crop Breeding, 2016, 8, 176-182.	0.4	3
2445	Role of Calcium and Vegetation in salinity and desertification (Western India). Environment Conservation Journal, 2016, 17, 119-135.	0.1	0
2446	Chapter 1 Environmental Stress and Stress Biology in Plants. , 2016, , 1-38.		0
2447	Chapter 1 Mechanisms of Silicon-Mediated Alleviation of Abiotic Stress in Plants. , 2016, , 1-28.		0
2448	Chapter 1 Environmental Stress and Stress Biology in Plants. , 2016, , 1-38.		0

#	Article	IF	CITATIONS
2449	Seed Germination and Early Growth of Physic Nut Seedlings Under Salinity Stress. Scientia Agraria Paranaensis, 2016, 15, 416-420.	0.1	0
2450	DROUGHT AND SALT STRESS INDUCED ANATOMICAL CHANGES IN LEAVES AND STEMS OF INDIAN BORAGE PLANTS (PLECTRANTHUS AMBOINICUS, LOUREIRO SPRENGEL). Menoufia Journal of Plant Production, 2017, 2, 25-37.	0.1	1
2451	Salinity Effects on Direct Shoot Regeneration of Two Male Populus Clones. International Journal of Biotech Trends and Technology, 2017, 20, 1-9.	0.2	0
2452	Birleşmiş Milletlerin 2015 sonrası Kalkınma Hedefleri (SDC) için Kapasite Oluşturma, suyla ilişkili felak ve gıda güvensizliği: Orta Doğu Fırat Havzası'nda su kıtlığűnın susamın biyokimyasal ve bù etkisi. KahramanmaraÅŸ SütAЧż İmam Üniversitesi Tarım Ve DoÄŸa Dergisi, 0, , .	etler 1⁄4 yÃ 1⁄4me	si s e olan
2453	Soil Properties, Growth, Mineral Content and Ultra-structural Leaf Morphology of Swiss Chard in Response to Landfill Leachates Used as Irrigation Water. International Journal of Agriculture and Biology, 2017, 19, 403-409.	0.2	2
2454	The Effect of Drought and Salinity Stress on Seed Germination of (Alyssum Homalocarpum). Journal of Crop Breeding, 2017, 9, 139-146.	0.4	1
2455	GSTF1 gene expression at local Albanian wheat cultivar Dajti under salinity and heat conditions. The EuroBiotech Journal, 2017, 1, 253-257.	0.5	2
2456	The effect of water salinity on seed yield and seed yield components of miracle genotypes of Fennel (Foeniculum vulgare Mill.). Arid Biome, 2017, 7, 67-78.	0.1	0
2457	Salt tolerance in triticale plants R1 obtained from cell selection. Myronivka Bulletin, 2017, 5, 82-91.	0.1	0
2458	Physiological Responses of Chickpea Genotypes under Varying Salinity Levels. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 2086-2090.	0.0	0
2459	Initial Growth and Gas Exchanges of Plants of Colored Cotton Submitted to Saline Stress. Agricultural Sciences, 2018, 09, 1652-1663.	0.2	2
2460	ENHANCEMENT OF SALT TOLERANCE IN WATERMELON USING GRAFTING. Arab Universities Journal of Agricultural Sciences, 2018, 26, 327-335.	0.0	1
2461	EVALUATION OF THE GENETIC VARIATION FOR SOME GENOTYPES IN COTTON (GOSSYPIUM BARBADENSE L.) TO WATER STRESS. Menoufia Journal of Plant Production, 2018, 3, 165-186.	0.1	0
2462	In vitro Şartlar Altında 'Bursa Siyahı' (Ficus carica L.) İncir Çeşidinin Morfolojisi Üzerine Tuzun Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 0, , .	0.1	0
2463	EFFECT OF SALICYLIC ACID APPLICATION ON THE GROWTH AND ACTIVE CONSTITUENTS OF FENNEL PLANTS UNDER SALINITY STRESS CONDITIONS. Menoufia Journal of Plant Production, 2018, 3, 209-225.	0.1	0
2464	Effect of Salinity and Salicylic Acid on Morphological and Photosynthetic Pigments Changes of Callus of Artichoke (Cynara scolymus L.). Journal of Crop Breeding, 2018, 10, 128-138.	0.4	1
2465	Bazı Tarla Bitkilerinin Tuz Stresine Gösterdikleri Adaptasyon Mekanizmaları. KahramanmaraÅŸ Sütçü Ä Üniversitesi Tarım Ve Doğa Dergisi, 2018, 21, 800-808.	°mam 0.2	10
2466	Tolerance of mango ginger (Curcuma amada Roxb.) against sodic stress soil: Effects on growth, rhizome yield, water relation, photosynthetic pigments, antioxidative enzymes, cations and heavy metals concentration. Horticulture International Journal, 2018, 2, .	0.2	1

		Report	
#	ARTICLE Olive cuttings survival influences with saline water irrigation. Horticulture International Journal,	IF	CITATIONS
2467	2018, 2, .	0.2	0
2468	Aqueous Leaf Extract of Duranta repens Promotes Seed Germination and Seedling Growth of Salinity-Stressed Solanum lycopersicum Seedlings Fountain Journal of Natural and Applied Sciences, 2018, 7, .	0.1	0
2469	An Enigma in the Genetic Responses of Plants to Salt Stresses. , 2019, , 105-132.		0
2470	Impact of Plant-Microbe Interactions on Plant Metabolism Under Saline Environment. , 2019, , 113-127.		Ο
2471	Role of Signaling Pathways in Improving Salt Stress in Plants. , 2019, , 183-211.		1
2472	Genomics and Molecular Mechanisms of Plant's Response to Abiotic and Biotic Stresses. , 2019, , 131-146.		1
2473	Saline–Alkaline Resistance: Physiological and Ecological Characteristics of Sheepgrass (Leymus) Tj ETQq0 0 0	rgBT /Ovei	rlock 10 Tf 50
2474	The Physiological Response of Three <i>Narcissus pseudonarcissus</i> under NaCl Stress. American Journal of Plant Sciences, 2019, 10, 447-461.	0.3	3
2475	MicroRNA as aÂTool for Mitigating Abiotic Stress in Rice (Oryza sativa L.). , 2019, , 109-133.		9
2476	Stress Protectant Secondary Metabolites and their Metabolic Engineering to Enhance Abiotic Stress Tolerance in Plants. , 2019, , 197-216.		4
2477	Application of Microbial Biotechnology in Improving Salt Stress and Crop Productivity. , 2019, , 133-159.		3
2479	Response of Iranian Rice Recombinant Inbred Lines (Oryza sativa L.) to Salt Stress in Seedling Stage. Journal of Crop Breeding, 2019, 11, 65-84.	0.4	3
2480	Selenium-induced improvements in the ornamental value and salt stress resistance of <i>Plectranthus scutellarioides</i> (L) R. Br Folia Horticulturae, 2019, 31, 213-221.	0.6	9
2481	Participation of ions of silicon in adaptation of plants to adverse factors. Vìsnik Harkìvsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu Serìâ Bìologiâ, 2019, 2019, 23-38.	0.1	0
2482	Salinity-induced changes in growth morphology, gas exchange and leaf abscisic acid level of fifteen polyembryonic mango (Mangifera indica L.) genotypes. Israel Journal of Plant Sciences, 2019, 66, 170-181.	0.3	3
2483	Saline Agriculture: A Climate Smart Integrated Approach for Climate Change Resilience in Degraded Land Areas. , 2020, , 2287-2305.		Ο
2484	The Interaction Effect of Humic Substances and Mineral Phosphorus Fertilization on Forage Yield and some Macronutrients Uptake of Triticale under different Soil Salinity Levels Journal of Soil Sciences and Agricultural Engineering, 2019, 10, 499-505.	0.0	0
2485	Modifying sugarcane mineral levels through sodium chloride and mannitol exposure in temporary immersion bioreactors. In Vitro Cellular and Developmental Biology - Plant, 2020, 56, 169-176.	0.9	1

#	Article	IF	CITATIONS
2486	Initial Survival Analysis of <i>Pinus thunbergii</i> and <i>Quercus serrata</i> Tree Belts in the Saemangeum Reclaimed Land. Journal of Agriculture & Life Science, 2019, 53, 51-62.	0.1	0
2487	Tuzluluğa Maruz Allium cepa L. Tohumlarında Üzüm Çekirdeği Ekstresinin Sitogenetik ve Fizyolojik Etkileri. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	0.1	0
2488	Ultradilutions of Natrum muriaticum in the agronomic performance of cherry tomatoes submitted to saline stress. Revista De Ciencias Agroveterinarias, 2019, 18, 412-420.	0.0	0
2489	Morpho-Physiological Responses of Quinoa (Chenopodium quinoa Willd.) Varieties to Salinity in a Hydroponic System. American Journal of Plant Physiology, 2019, 15, 41-51.	0.2	1
2490	Characterization of a Gamma Radiation-Induced Salt-Tolerant Silage Maize Mutant. Han'guk Yukchong Hakhoe Chi, 2019, 51, 318-325.	0.2	3
2492	Evaluation of Seed Yield and Accumulation Status of Sodium, Potassium and Magnesium Ions in Different Tissues of Sensitive and Tolerant Wheat (Triticum aestivum L.) Varieties. Journal of Crop Breeding, 2019, 11, 174-184.	0.4	1
2493	Flower Crop Response to Biotic and Abiotic Stresses. , 2020, , 477-491.		0
2494	Halophytes for Utilizing and Restoring Coastal Saline Soils of India: Emphasis on Agroforestry Mode. , 2020, , 481-524.		0
2495	REDUCE THE HURTFUL EFFECTS OF SEA WATER SALINITY ON GROWTH, SOME PHYSIOLOGICAL AND ANATOMICAL CHARACTERS AS WELL AS YIELD OF Phaseolus vulgaris L. BY USING HUMIC ACID, PROLINE AND NAPHTHALENE ACETIC ACID. Zagazig Journal of Agricultural Research, 2020, 47, 459-476.	0.1	0
2497	The rice Aux/IAA transcription factor gene OsIAA18 enhances salt and osmotic tolerance in Arabidopsis. Biologia Plantarum, 0, 64, 454-464.	1.9	14
2498	Effects of betacyanin on salt tolerance in Swiss chard (<i>Beta vulgaris</i> var. <i>cicla</i>). Ningen To Kankyo, 2020, 46, 3-13.	0.3	0
2499	Salinity modulates crop plants suitability as hosts for Cuscuta campestris parasitism. Journal of the Saudi Society of Agricultural Sciences, 2022, 21, 324-330.	1.0	1
2500	Melatonin Confers Plant Cadmium Tolerance: An Update. International Journal of Molecular Sciences, 2021, 22, 11704.	1.8	48
2501	Aquaponic production of sea asparagus and Pacific white shrimp using biofloc technology: Different irrigation regimes affect plant production of bioactive compounds and antioxidant capacity. Aquaculture Research, 2022, 53, 1001-1010.	0.9	2
2502	Plastidial Expression of 3β-Hydroxysteroid Dehydrogenase and Progesterone 5β-Reductase Genes Confer Enhanced Salt Tolerance in Tobacco. International Journal of Molecular Sciences, 2021, 22, 11736.	1.8	3
2503	Effect of Tytanit® on the Physiological Activity of Wild Strawberry (Fragaria vesca L.) Grown in Salinity Conditions. Acta Universitatis Cibiniensis Series E: Food Technology, 2020, 24, 279-288.	0.6	1
2505	EFFECT OF SALINE STRESS ON GROWTH OF FRUIT PLANTS (REVIEW ARTICLE). Mesopotamia Journal of Agriculture, 2020, 48, 51-59.	0.1	0
2506	Functional Screening of Salt Stress Tolerance Genes Using Transgenic Arabidopsis thaliana Lines Overexpressing Brassica rapa Full-length Genes and Brassica napus Transformation. Han'guk Yukchong Hakhoe Chi, 2020, 52, 297-309.	0.2	1

	Сітаті	ION REPORT	
# 2507	ARTICLE Tissue tolerance mechanisms conferring salinity tolerance in a halophytic perennial species <i>Nitraria sibirica</i> Pall Tree Physiology, 2021, 41, 1264-1277.	IF 1.4	Citations
2508	Compatible Solute Engineering: An Approach for Plant Growth Under Climate Change. , 2021, , 241-257.		0
2509	Cyanobacteria and salinity stressÂtolerance. , 2022, , 253-280.		3
2510	Jatropha Plantation in Oman. Environment & Policy, 2020, , 295-311.	0.4	1
2511	Current Status of Nanosensors in Biological Sciences. , 2020, , 15-41.		0
2512	Special Anatomical Features of Halophytes: Implication for Salt Tolerance. Signaling and Communication in Plants, 2020, , 119-135.	0.5	0
2514	Selection of Five Rice Varieties (Oryza sativa) Under Salinity Stress in Climate Field Schools. Climate Change Management, 2020, , 799-811.	0.6	1
2515	Molecular and Biotechnological Interventions for Improving Brassicaceae Crops for Abiotic Stress Tolerance. , 2020, , 437-450.		2
2516	Climate Change and Plant Abiotic Stress: Responses, Sensing, and Signaling. , 2020, , 587-604.		0
2517	Mitigation of Salinity Stress by Using the Vermicompost and Vermiwash. , 2020, , 345-356.		3
2518	Role of Serine/Threonine Phosphatase PP2A Class and Its Regulators in Salinity Stress Tolerance in Plants. , 2020, , 53-66.		0
2521	Engineering Fructan Biosynthesis Against Abiotic Stress. , 2021, , 145-170.		0
2522	Relationships between Methods of Electron Conductivity for Masa Soil and Effects on Tomato Growth under Saline Condition. Japanese Journal of Farm Work Research, 2020, 55, 3-11.	0.2	1
2523	Isolation, characterization and screening of PGPR capable of providing relief in salinity stress. Eurasian Journal of Soil Science, 2020, 9, 85-91.	0.2	8
2524	Developing a salinity tolerance indicator for tree varieties at challenging sites and urban forests based on inferences of physiological responses: an example of Ulmus pumila. Trees - Structure and Function, 2022, 36, 593-607.	0.9	1
2525	Precipitation to remove calcium ions from stabilized human urine as a pre-treatment for reverse osmosis. Water Science and Technology, 2021, 84, 3755-3768.	1.2	3
2527	Boron-Calcium Relationship in Biological Nitrogen Fixation under Physiological and Salt-Stressing Conditions. , 2004, , 139-170.		1
2534	Influence of foliar spray with some calcium sources on flowering, fruit set, yield and fruit quality of olive Kalmata and Manzanillo cultivars under salt stress. Bulletin of the National Research Centre, 2020, 44, .	0.7	4

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2537	Abiotic Stress: Its Outcome and Tolerance in Plants. Rhizosphere Biology, 2021, , 79-106.		0.4	1
2538	Gene Expression Analysis in Cultivated Wheat Plants under Salinity and ABA Treatments. N Biology Research Communications, 2014, 3, 9-19.	Лоlecular	0.2	3
2539	Analysis of overwintering indexes ofÂwinter wheat in alpine regions and establishment of resistance model. Field Crops Research, 2022, 275, 108347.	a cold	2.3	9
2540	Involvement of brassinosteroids in plant response to salt stress. , 2022, , 237-253.			4
2541	Exogenous pig blood-derived protein hydrolysates as a promising method for alleviation of in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 2022, 294, 110779.	⁻ salt stress	1.7	15
2542	Receptor-like cytoplasmic kinase OsRLCK241 functions as an important regulator of absci synthesis and response in rice. Environmental and Experimental Botany, 2022, 194, 10474		2.0	2
2543	Exogenous Myo-Inositol Alleviates Salt Stress by Enhancing Antioxidants and Membrane S the Upregulation of Stress Responsive Genes in Chenopodium quinoa L Plants, 2021, 10		1.6	15
2544	OsSIRH2-23, a rice salt-induced RING finger protein H2-23, contributes to insensitivity to s Environmental and Experimental Botany, 2022, 194, 104715.	alinity stress.	2.0	2
2545	Increased salinity and groundwater levels lead to degradation of the Robinia pseudoacacia the Yellow River Delta. Journal of Forestry Research, 0, , 1.	forest in	1.7	10
2546	Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understand physiological mechanisms. Plant Biology, 2022, 24, 227-239.	ing the	1.8	219
2547	Adaptation of plants to salt stress: the role of the ion transporters. Journal of Plant Bioche and Biotechnology, 2021, 30, 668-683.	mistry	0.9	13
2548	Vacuolar H+-pyrophosphatase HVP10 enhances salt tolerance via promoting Na+ transloc root vacuoles. Plant Physiology, 2022, 188, 1248-1263.	ation into	2.3	15
2549	Positive Salt Tolerance Modulation via Vermicompost Regulation of SOS1 Gene Expression Antioxidant Homeostasis in Viciafaba Plant. Plants, 2021, 10, 2477.	ו and	1.6	9
2550	Nuclear Translocation of Soybean MPK6, GmMPK6, Is Mediated by Hydrogen Peroxide in S Plants, 2021, 10, 2611.	alt Stress.	1.6	6
2551	Biochar as an organic soil conditioner for mitigating salinity stress in tomato. Soil Science Nutrition, 2021, 67, 693-706.	and Plant	0.8	28
2552	Salt Stress Induces Paramylon Accumulation and Fine-Tuning of the Macro-Organization c Membranes in Euglena gracilis Cells. Frontiers in Plant Science, 2021, 12, 725699.	f Thylakoid	1.7	5
2553	The halophyte gene ScVTC2 confers resistance to oxidative stress via AsA-mediated photo enhancement. Plant Physiology and Biochemistry, 2021, 169, 138-148.	synthetic	2.8	4
2554	Sucrose-Induced Tolerance to and Recovery from Deicing Salt Damage in Containerized Ile aquifolium L. and Quercus robur L Arboriculture and Urban Forestry, 2006, 32, 277-285.	x	0.2	2

#	Article	IF	Citations
2555	Influence of temperature processing on the constitutive and inducible resistance of rye seedlings to chloride salinization. , 2021, , 134-140.		0
2556	The jasmonate biosynthesis Gene OsOPR7 can mitigate salinity induced mitochondrial oxidative stress. Plant Science, 2022, 316, 111156.	1.7	8
2557	Changes in biochemical properties and pectin nanostructures of juice sacs during the granulation process of pomelo fruit (Citrus grandis). Food Chemistry, 2022, 376, 131876.	4.2	18
2558	The Influence of Commercial Film-Forming Polymers on Reducing Salt Spray Injury in Evergreen Oak () Tj ETQq1 1 185-192.	0.784314 0.2	rgBT /Over 2
2559	Trade-off between shoot and root dry weight along with a steady CO ₂ assimilation rate ensures the survival of Eucalyptus camaldulensis under salt stress. Journal of Forest Science, 2020, 66, 452-460.	0.5	2
2561	Morphological, physiological, biochemical, and transcriptome studies reveal the importance of transporters and stress signaling pathways during salinity stress in Prunus. Scientific Reports, 2022, 12, 1274.	1.6	15
2563	Glucosinolates and Its Role in Mitigating Abiotic and Biotic Stress in <i>Brassicaceae</i> . Physiology, 0, , .	4.0	6
2565	Genetic background and cis-organization regulate ALDH7B4 gene expression in Eutrema salsugineum: a promoter analysis case study. Planta, 2022, 255, 52.	1.6	2
2568	Thymol improves salinity tolerance of tobacco by increasing the sodium ion efflux and enhancing the content of nitric oxide and glutathione. BMC Plant Biology, 2022, 22, 31.	1.6	7
2569	A Comprehensive Evaluation of Salt Tolerance in Tomato (Var. Ailsa Craig): Responses of Physiological and Transcriptional Changes in RBOH's and ABA Biosynthesis and Signalling Genes. International Journal of Molecular Sciences, 2022, 23, 1603.	1.8	19
2570	Salinity induced redox metabolic shift influence hormonal profile and germination performance of two contrasting indica rice cultivars. Annals of Systems Biology, 2022, 5, 001-007.	0.1	0
2571	Salinity and Salt-Priming Impact on Growth, Photosynthetic Performance, and Nutritional Quality of Edible Mesembryanthemum crystallinum L Plants, 2022, 11, 332.	1.6	5
2572	Selenium transporters and their role in plant development and stress. , 2022, , 307-336.		2
2574	Cuticular lipids and associated gene expression analysis under <scp>NaCl</scp> stress in <i>Thellungiella salsuginea</i> . Physiologia Plantarum, 2022, 174, e13625.	2.6	1
2575	Genome-wide analysis reveals the spatiotemporal expression patterns of SOS3 genes in the maize B73 genome in response to salt stress. BMC Genomics, 2022, 23, 60.	1.2	2
2576	Exploring the Adaptive Responses of Plants to Abiotic Stresses Using Transcriptome Data. Agriculture (Switzerland), 2022, 12, 211.	1.4	22
2577	RNA- and miRNA-interference to enhance abiotic stress tolerance in plants. Journal of Plant Biochemistry and Biotechnology, 2022, 31, 689-704.	0.9	13
2578	Cationic modified lignin: Regulation of synthetic microspheres for achieving anti-photolysis and sustained release of the abscisic acid. Industrial Crops and Products, 2022, 177, 114573.	2.5	6

#	Article	IF	CITATIONS
2579	Experimental evidence from Suaeda glauca explains why the species is not naturally distributed in non-saline soils. Science of the Total Environment, 2022, 817, 153028.	3.9	4
2580	Two Aquaporin Genes, GhPIP2;7 and GhTIP2;1, Positively Regulate the Tolerance of Upland Cotton to Salt and Osmotic Stresses. Frontiers in Plant Science, 2021, 12, 780486.	1.7	8
2581	Integrated transcriptomic and proteomic analysis of <i>Tritipyrum</i> provides insights into the molecular basis of salt tolerance. PeerJ, 2021, 9, e12683.	0.9	2
2582	Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells. Scientific Reports, 2021, 11, 24504.	1.6	26
2584	Stomatal regulation and adaptation to salinity in glycophytes and halophytes. Advances in Botanical Research, 2022, , .	0.5	0
2586	Negative Impacts of Sea-Level Rise on Soil Microbial Involvement in Carbon Metabolisms. SSRN Electronic Journal, 0, , .	0.4	0
2587	Effect of Nitric Oxide on Garlic Plants Grown in Greenhouses Under Salinity Stress. SSRN Electronic Journal, 0, , .	0.4	0
2588	NHX-Type Na+/H+ Antiporter Gene Expression Under Different Salt Levels and Allelic Diversity of HvNHX in Wild and Cultivated Barleys. Frontiers in Genetics, 2021, 12, 809988.	1.1	8
2589	The potential role of arbuscular mycorrhizae fungi and mixed substrate in the physiological and agronomical behaviour of tomato plants irrigated with saline reclaimed wastewater. Acta Horticulturae, 2022, , 33-40.	0.1	0
2590	Cadmium-Tolerant Rhizospheric Bacteria of the C3/CAM Intermediate Semi-Halophytic Common Ice Plant (Mesembryanthemum crystallinum L.) Grown in Contaminated Soils. Frontiers in Plant Science, 2022, 13, 820097.	1.7	2
2591	Application of enzymatic hydrolysate of Ulva clathrata as biostimulant improved physiological and metabolic adaptation to salt-alkaline stress in wheat. Journal of Applied Phycology, 2022, 34, 1779-1789.	1.5	2
2592	Ecosystem Carbon Stock and Stable Isotopic Signatures of Soil Organic Carbon Sources Across the Mangrove Ecosystems of Kerala, Southern India. Wetlands, 2022, 42, 1.	0.7	7
2593	Response to salinity of the submerged aquatic vegetation species (extit{Najas indica}) (Willd.) Cham Tạp ChÃ-Khoa HỀ Và CÁ´ng Nghệ Biển, 2022, 22, 29-35.	0.1	1
2594	Impact of Nanomaterials on the Regulation of Gene Expression and Metabolomics of Plants under Salt Stress. Plants, 2022, 11, 691.	1.6	11
2595	Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops. Heredity, 2022, 128, 497-518.	1.2	34
2596	Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. International Journal of Molecular Sciences, 2022, 23, 3741.	1.8	71
2597	Role of <scp>lncRNAs</scp> in <i>cis</i> ―and <i>transâ€</i> regulatory responses to salt in <i>Populus trichocarpa</i> . Plant Journal, 2022, 110, 978-993.	2.8	26
2598	Root Na+ Content Negatively Correlated to Salt Tolerance Determines the Salt Tolerance of Brassica napus L. Inbred Seedlings. Plants, 2022, 11, 906.	1.6	12

#	Article	IF	Citations
2599	Phytoremediation Strategies for Rehabilitation of Soils Affected by Red Mud: the Mariana Tailing Dam Collapse (Minas Gerais, Brazil). Eurasian Soil Science, 2022, 55, 673-685.	0.5	4
2600	Surface disinfection influences the antioxidant capacity and GABA content of salineâ€ŧreated brown rice (<i>Oryza sativa</i> L.). Cereal Chemistry, 0, , .	1.1	0
2601	Modern plant biotechnology as a strategy in addressing climate change and attainingÂfood security. Agriculture and Food Security, 2022, 11, .	1.6	48
2602	Plant Salinity Sensors: Current Understanding and Future Directions. Frontiers in Plant Science, 2022, 13, 859224.	1.7	26
2603	Positive effects of NaCl on the photoreaction and carbon assimilation efficiency in Suaeda salsa. Plant Physiology and Biochemistry, 2022, 177, 32-37.	2.8	11
2604	Seed priming with melatonin: A promising approach to combat abiotic stress in plants. Plant Stress, 2022, 4, 100071.	2.7	25
2605	Spectral monitoring of salinity stress in tomato plants. Biosystems Engineering, 2022, 217, 26-40.	1.9	6
2606	MpSnRK2.10 confers salt stress tolerance in apple via the ABA signaling pathway. Scientia Horticulturae, 2022, 298, 110998.	1.7	4
2607	Significant response of microbial community to increased salinity across wetland ecosystems. Geoderma, 2022, 415, 115778.	2.3	20
2608	Biocontrol activity of anti-salinity Bacillus mesonae H20-5 against Bacterial wilt in different tomato cultivars. Biological Control, 2022, 169, 104869.	1.4	2
2609	Potential of Halophyte as a Crop and Genetic Resource. Japanese Journal of Crop Science, 2021, 90, 373-381.	0.1	0
2610	Label-free Quantitative Proteomic Analysis of Drought-Responsive Proteins in Panax ginseng Meyer. Korean Journal of Medicinal Crop Science, 2021, 29, 369-379.	0.1	0
2611	Characterization of the Glehnia littoralis Non-specific Phospholipase C Gene GlNPC3 and Its Involvement in the Salt Stress Response. Frontiers in Plant Science, 2021, 12, 769599.	1.7	2
2612	Äa dạng di truyá»n cá»§a hổgene OsHKT ở 41 giống lúa địa phƺơng Äồng bằng sông Cá»u Lo Science, 2021, 57, 224-230.	ng. Tap Ch	i Khoa Hoc =
2613	Mild Salinity Stimulates Biochemical Activities and Metabolites Associated with Anticancer Activities in Black Horehound (Ballota nigra L.). Agronomy, 2021, 11, 2538.	1.3	5
2614	Genome-Wide Identification, Primary Functional Characterization of the NHX Gene Family in Canavalia rosea, and Their Possible Roles for Adaptation to Tropical Coral Reefs. Genes, 2022, 13, 33.	1.0	4
2615	NHX Gene Family in Camellia sinensis: In-silico Genome-Wide Identification, Expression Profiles, and Regulatory Network Analysis. Frontiers in Plant Science, 2021, 12, 777884.	1.7	8
2616	Comprehensive effects of salt stress and peanut cultivars on the rhizosphere bacterial community diversity of peanut. Archives of Microbiology, 2022, 204, 15.	1.0	3

#	Article	IF	CITATIONS
2618	Endophytic Actinobacteria in Biosynthesis of Bioactive Metabolites and Their Application in Improving Crop Yield and Sustainable Agriculture. , 2022, , 119-150.		3
2619	Foliar Application of Spermidine Reduced the Negative Effects of Salt Stress on Oat Seedlings. Frontiers in Plant Science, 2022, 13, 846280.	1.7	7
2620	Exogenous application of melatonin improves salt tolerance of sugar beet (Beta vulgaris L.) seedlings. Acta Physiologiae Plantarum, 2022, 44, 1.	1.0	7
2621	Mitigation of salinity stress in cucumber seedlings by exogenous hydrogen sulfide. Journal of Plant Research, 2022, 135, 517-529.	1.2	18
2622	A Comprehensive Identification and Function Analysis of Serine/Arginine-Rich (SR) Proteins in Cotton (Gossypium spp.). International Journal of Molecular Sciences, 2022, 23, 4566.	1.8	4
2721	Transcriptome analysis reveals the main metabolic pathway of c-GMP induced by salt stress in tomato		

#	Article	IF	CITATIONS
2735	Physioâ€biochemical and molecular characterization of a rice <i>droughtâ€insensitive TILLING line 1</i> (<i>ditl1</i>) mutant. Physiologia Plantarum, 2022, 174, e13718.	2.6	7
2736	Salinity tolerance mechanisms of an Arctic Pelagophyte using comparative transcriptomic and gene expression analysis. Communications Biology, 2022, 5, .	2.0	7
2737	Negative impacts of sea-level rise on soil microbial involvement in carbon metabolism. Science of the Total Environment, 2022, 838, 156087.	3.9	7
2738	Detecting and Mapping Salt-Affected Soil with Arid Integrated Indices in Feature Space Using Multi-Temporal Landsat Imagery. Remote Sensing, 2022, 14, 2599.	1.8	10
2739	Dissecting the Molecular Regulation of Natural Variation in Growth and Senescence of Two Eutrema salsugineum Ecotypes. International Journal of Molecular Sciences, 2022, 23, 6124.	1.8	0
2740	Post-disaster recovery plan for a rural settler's community affected by the Fundão dam tailings in Brazil. Journal of Rural Studies, 2022, 93, 55-66.	2.1	4
2741	Juggling with reactive oxygen species and antioxidant defense system – A coping mechanism under salt stress. Plant Stress, 2022, 5, 100093.	2.7	19
2744	Role of beneficial microbial gene pool in mitigating salt/nutrient stress of plants in saline soils through underground phytostimulating signalling molecules. Pedosphere, 2023, 33, 153-171.	2.1	10
2745	SLAH1 is involved in the long-distance transport of Clâ^' from roots into shoots in the Clâ^'-tolerant xerophyte Pugionium cornutum under salt stress. Plant and Soil, 2022, 479, 631-648.	1.8	2
2746	Comparative proteomic analysis of chromosome segment substitution lines of Thai jasmine rice KDML105 under short-term salinity stress. Planta, 2022, 256, .	1.6	4
2747	Salinity levels affect the lysine nutrient requirements and nutrient metabolism of juvenile genetically improved farmed tilapia (<i>Oreochromis niloticus</i>). British Journal of Nutrition, 2023, 129, 564-575.	1.2	4
2748	Transcriptomic Profile Analysis of Populus talassica × Populus euphratica Response and Tolerance under Salt Stress Conditions. Genes, 2022, 13, 1032.	1.0	3
2749	N6-methyladenosine methylation analysis reveals transcriptome-wide expression response to salt stress in rice roots. Environmental and Experimental Botany, 2022, 201, 104945.	2.0	4
2750	Abiotic stress responses and tolerance in wheat under climate change. , 2022, , 137-155.		0
2751	Molecular Manipulation of Mir398 Increases Rice Grain Yield Under Different Conditions. SSRN Electronic Journal, 0, , .	0.4	0
2752	Physiological response mechanism of oilseed rape to abiotic stress and the stress-resistant cultivation regulation. , 2022, , 207-234.		0
2753	An Efficient Machine Learning Enabled Non-Destructive Technique for Remote Monitoring of Sugarcane Crop Health. IEEE Access, 2022, 10, 75956-75970.	2.6	0
2754	Application of geostatistical techniques to assess groundwater quality in the Lower Anayari catchment in Ghana. HydroResearch, 2022, 5, 35-47.	1.7	2

#	Article	IF	CITATIONS
2755	Biology Adaptation of Medicago Legumes for Tolerance Against Salinity Stress Compared to Other Plants. Journal of Plant Sciences, 2022, 17, 88-94.	0.2	0
2756	Halotolerant native bacteria <i>Enterobacter</i> 64S1 and <i>Pseudomonas</i> 42P4 alleviate saline stress in tomato plants. Physiologia Plantarum, 2022, 174, .	2.6	12
2757	Endo-adaptive mechanisms of mesophytic plants' functioning as a component of ecosystem resistance. IOP Conference Series: Earth and Environmental Science, 2022, 1049, 012071.	0.2	1
2758	Spermidine Modify Antioxidant Activity in Cucumber Exposed to Salinity Stress. Agronomy, 2022, 12, 1554.	1.3	2
2760	Pivotal Role of Phytohormones and Their Responsive Genes in Plant Growth and Their Signaling and Transduction Pathway under Salt Stress in Cotton. International Journal of Molecular Sciences, 2022, 23, 7339.	1.8	17
2761	Salt tolerance screening of a newly developed wheat variety (AZRC-DK-84) in saline environment using halophytic grass (Cenchrus penisettiformis) as a test model. Acta Physiologiae Plantarum, 2022, 44, .	1.0	5
2762	Multi-Omics and Integrative Approach towards Understanding Salinity Tolerance in Rice: A Review. Biology, 2022, 11, 1022.	1.3	14
2763	Osmotic adjustment of tomato under mild soil salinity can enhance drought resistance. Environmental and Experimental Botany, 2022, 202, 105004.	2.0	7
2764	Overexpressing PhytochromeInteractingFactor 8 of Myrothamnus flabellifolia Enhanced Drought and Salt Tolerance in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 8155.	1.8	5
2765	Comparative genomics reveals the molecular mechanism of salt adaptation for zoysiagrasses. BMC Plant Biology, 2022, 22, .	1.6	5
2766	Impact of polyploidy on plant tolerance to abiotic and biotic stresses. Frontiers in Plant Science, 0, 13,	1.7	36
2767	Physio-chemical response of brinjal (Solanum melongena L.) genotypes to soil salinity. Plant Physiology Reports, 2022, 27, 521-537.	0.7	1
2768	Saline-Alkali Tolerance in Rice: Physiological Response, Molecular Mechanism, and QTL Identification and Application to Breeding. Rice Science, 2022, 29, 412-434.	1.7	26
2769	Exogenous melatonin promotes the growth of alfalfa (Medicago sativa L.) under NaCl stress through multiple pathways. Ecotoxicology and Environmental Safety, 2022, 242, 113938.	2.9	13
2770	SPAD monitoring of saline vegetation based on Gaussian mixture model and UAV hyperspectral image feature classification. Computers and Electronics in Agriculture, 2022, 200, 107236.	3.7	9
2771	Recent advances and mechanistic insights on Melatonin-mediated salt stress signaling in plants. Plant Physiology and Biochemistry, 2022, 188, 97-107.	2.8	7
2773	Exogenous spermidine and calcium alleviate waterlogging stress in cherry tomato at the seedling stage. Scientia Horticulturae, 2023, 307, 111504.	1.7	5
2774	Effects of irrigation and nitrogen fertilization on mitigating salt-induced Na ⁺ toxicity and sustaining sea rice growth. Open Life Sciences, 2022, 17, 1165-1173.	0.6	1

#	Article	IF	CITATIONS
2775	Accelerating soil aggregate formation: a review on microbial processes as the critical step in a post-mining rehabilitation context. Soil Research, 2023, 61, 209-223.	0.6	6
2776	Application of Remote Sensing and GIS Techniques in Assessment of Salt Affected Soils for Management in Large Scale Soil Survey. Environmental Science and Engineering, 2022, , 131-161.	0.1	2
2777	Cytokinin Signaling in Plants Under Salt Stress. Signaling and Communication in Plants, 2022, , 189-212.	0.5	1
2778	Categories of exogenous substances and their effect on alleviation of plant salt stress. European Journal of Agronomy, 2023, 142, 126656.	1.9	16

The proline-rich protein MdPRP6 confers tolerance to salt stress in transgenic apple (Malus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 582 To

2780	Transcriptomic profiling revealed the role of 24-epibrassinolide in alleviating salt stress damage in tall fescue (Festuca arundinacea). Frontiers in Plant Science, 0, 13, .	1.7	2
2781	Alleviation of Salt Stress in Solanum tuberosum L. by Exogenous Application of Indoleacetic acid and l-Tryptophan. Journal of Plant Growth Regulation, 2023, 42, 3257-3273.	2.8	5
2782	Higher activity of PSI compared to PSII accounts for the beneficial effect of silicon on barley (Hordeum vulgare L.) plants challenged with salinity. Photosynthetica, 2022, 60, 508-520.	0.9	4
2783	Spirulina platensis extract improves the production and defenses of the common bean grown in a heavy metals-contaminated saline soil. Journal of Environmental Sciences, 2023, 129, 240-257.	3.2	14
2784	Molecular Pathways of WRKY Genes in Regulating Plant Salinity Tolerance. International Journal of Molecular Sciences, 2022, 23, 10947.	1.8	7
2785	A soybean sodium/hydrogen exchanger GmNHX6 confers plant alkaline salt tolerance by regulating Na+/K+ homeostasis. Frontiers in Plant Science, 0, 13, .	1.7	10
2786	Effect of a Biostimulant Based on Polyphenols and Glycine Betaine on Tomato Plants' Responses to Salt Stress. Agronomy, 2022, 12, 2142.	1.3	15
2787	The evolutionary rate of leaf osmotic strength drives diversification of <i>Primulina</i> species in karst regions. Journal of Systematics and Evolution, 0, , .	1.6	0
2788	Global transcriptome analyses and regulatory mechanisms in Halothece sp. PCC 7418 exposed to abiotic stresses. Applied Microbiology and Biotechnology, 2022, 106, 6641-6655.	1.7	4
2789	Genetic manipulation for abiotic stress resistance traits in crops. Frontiers in Plant Science, 0, 13, .	1.7	9
2790	Calcium Lignosulfonate Can Mitigate the Impact of Salt Stress on Growth, Physiological, and Yield Characteristics of Two Barley Cultivars (Hordeum vulgare L.). Agriculture (Switzerland), 2022, 12, 1459.	1.4	7
2791	DgCspC gene overexpression improves cotton yield and tolerance to drought and salt stress comparison with wild-type plants. Frontiers in Plant Science, 0, 13, .	1.7	3
2792	Physiological and molecular responses of roots differ from those of leaves in spinach plants subjected to short-term drought stress. South African Journal of Botany, 2022, 151, 9-17.	1.2	6

#	Article	IF	CITATIONS
2793	Mutation of Os4BGlu18, monolignol β-glucosidase, improves salinity insensitivity in a rice. Environmental and Experimental Botany, 2022, 204, 105076.	2.0	0
2794	BIOSILICE FOLIAR Y EDÂFICO EN LA TOLERANCIA DEL MAÃZ MORADO A LA SALINIDAD, EN LABORATORIO AYACUCHO. Investigacioìn, 2021, 29, 65-72.	0.0	0
2795	Genomic Designing for Abiotic Stress-Resistant Cassava. , 2022, , 1-16.		1
2796	Transgenics and Crop Improvement. , 2022, , 131-347.		0
2797	Reducing Water Salinity at Flowering Stage Decreases Days to Flowering and Promotes Plant Growth and Yield in Chile Pepper. Hortscience: A Publication of the American Society for Hortcultural Science, 2022, 57, 1128-1134.	0.5	0
2799	Exogenous naphthaleneacetic acid alleviated alkalinity-induced morpho-physio-biochemical damages in Cyperus esculentus L. var. sativus Boeck. Frontiers in Plant Science, 0, 13, .	1.7	6
2800	Comparative Physiological and Transcriptomic Analysis Provide New Insights of Crucial Pathways and Genes Regulating Kenaf Salt Tolerance. Journal of Plant Growth Regulation, 2023, 42, 3582-3605.	2.8	2
2801	Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Biotechnology and Genetic Engineering Reviews, 0, , 1-37.	2.4	26
2802	Alleviation of drought and salt stress in vegetables: crop responses and mitigation strategies. Plant Growth Regulation, 2023, 99, 177-194.	1.8	22
2803	Integrated physiological and transcriptional dissection reveals the core genes involving nutrient transport and osmoregulatory substance biosynthesis in allohexaploid wheat seedlings under salt stress. BMC Plant Biology, 2022, 22, .	1.6	3
2804	Applied Biotechnological Approaches for Reducing Yield Gap in Melon Grown Under Saline and Drought Stresses: an Overview. Journal of Soil Science and Plant Nutrition, 2023, 23, 139-151.	1.7	2
2805	Source assessment of tropical-marshland sediment for evaluating seawater intrusion in Chandipur, India: An integrated granulometric and stable isotope approach. Estuarine, Coastal and Shelf Science, 2022, 278, 108096.	0.9	4
2806	Invasive device-associated hospital infection rates, etiological agents, and their antibiotic susceptibilities in the medical intensive care unit of a university hospital in Turkey. Turkish Journal of Medical Sciences, 0, , .	0.4	3
2807	Improvement of Lactuca sativa slat Tolerance by Plastid Transformation with BADH Gene. Maǧallaẗ ǧÄmiÊ»a Al-anbÄr Li-l-Ê»ulÅ«m Al-á¹£irfaẗ, 2013, 7, 42-48.	áº <u></u> 0.0	0
2808	Licorice Root Extract Boosts <i>Capsicum annuum</i> L. Production and Reduces Fruit Contamination on a Heavy Metals-Contaminated Saline Soil. International Letters of Natural Sciences, 0, 73, 1-16.	1.0	0
2809	Response of Salt-Stressed Common Bean Plant Performances to Foliar Application of Phosphorus (MAP). International Letters of Natural Sciences, 0, 72, 7-20.	1.0	3
2810	Enhancement of Salt Tolerance via <i>Glomus geosporum</i> Inoculation in <i>Telfairia occidentalis</i> Hook. F. Seedlings. International Letters of Natural Sciences, O, 76, 13-22.	1.0	0
2811	Mitigation of Salinity Stress Effects on Growth, Physio-Chemical Parameters and Yield of Snapbean (<i>Phaseolus vulgaris</i> L.) by Exogenous Application of Glycine Betaine. International Letters of Natural Sciences, 0, 76, 60-71.	1.0	1

#	Article	IF	CITATIONS
2812	Cyanobacteria and Glutathione Applications Improve Productivity, Nutrient Contents, and Antioxidant Systems of Salt-Stressed Soybean Plant. International Letters of Natural Sciences, 0, 76, 72-85.	1.0	0
2813	Relative contribution of ion exclusion and tissue tolerance traits govern the differential response of rice towards salt stress at seedling and reproductive stages. Environmental and Experimental Botany, 2023, 206, 105131.	2.0	10
2814	Molecular manipulations of miR398 increase rice grain yield under different conditions. Frontiers in Plant Science, 0, 13, .	1.7	2
2815	Effects of NaCl Stress on the Growth, Physiological Characteristics and Anatomical Structures of Populus talassica × Populus euphratica Seedlings. Plants, 2022, 11, 3025.	1.6	5
2816	Integrative application of heavy metal–resistant bacteria, moringa extracts, and nano-silicon improves spinach yield and declines its contaminant contents on a heavy metal–contaminated soil. Frontiers in Plant Science, 0, 13, .	1.7	7
2818	Use of Biostimulants to Improve Salinity Tolerance in Cereals. , 2022, , 471-517.		2
2819	Identification of the <scp> <i>GAPDH</i> </scp> gene family in <i>Citrullus lanatus</i> and functional characteristics of <scp> <i>CIGAPC2</i> </scp> in <i>Arabidopsis thaliana</i> . Plant Biology, 0, , .	1.8	1
2821	The role of shoot-derived RNAs transported to plant root in response to abiotic stresses. Plant Science, 2023, 328, 111570.	1.7	2
2822	Rhizosphere microbes enhance plant salt tolerance: Toward crop production in saline soil. Computational and Structural Biotechnology Journal, 2022, 20, 6543-6551.	1.9	14
2823	Ecological risk assessment and phytomanagement of trace metals in the sediments of mangroves associated with the Ramsar sites of Kerala, southern India. Environmental Science and Pollution Research, 0, , .	2.7	0
2824	The Δ1-pyrroline-5-carboxylate synthetase family performs diverse physiological functions in stress responses in pear (Pyrus betulifolia). Frontiers in Plant Science, 0, 13, .	1.7	2
2825	Exogenous Ethylene Promotes the Germination of Cotton Seeds Under Salt Stress. Journal of Plant Growth Regulation, 2023, 42, 3923-3933.	2.8	4
2826	Effects of Oak Leaf Extract, Biofertilizer, and Soil Containing Oak Leaf Powder on Tomato Growth and Biochemical Characteristics under Water Stress Conditions. Agriculture (Switzerland), 2022, 12, 2082.	1.4	7
2827	Physiological and Biochemical Changes in Vegetable and Field Crops under Drought, Salinity and Weeds Stresses: Control Strategies and Management. Agriculture (Switzerland), 2022, 12, 2084.	1.4	19
2828	Comparative Analysis of Physiological, Hormonal and Transcriptomic Responses Reveal Mechanisms of Saline-Alkali Tolerance in Autotetraploid Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2022, 23, 16146.	1.8	8
2829	Salt stress proteins in plants: An overview. Frontiers in Plant Science, 0, 13, .	1.7	19
2830	De novo transcriptome analysis for exploration of genes responding to salinity in a halophyte New Zealand spinach (Tetragonia tetragonioides). Plant Biotechnology Reports, 2022, 16, 741-755.	0.9	2
2831	Assessment of seedling traits of rice landraces under different saline conditions. Journal of Applied and Natural Science, 2022, 14, 1252-1263.	0.2	0

#	Article	IF	Citations
2832	Physiological, Morphological and Biochemical Responses of Exogenous Hydrogen Sulfide in Salt-Stressed Tomato Seedlings. Sustainability, 2023, 15, 1098.	1.6	9
2833	Drought, salt, and combined stresses in plants: Effects, tolerance mechanisms, and strategies. Advances in Agronomy, 2023, , 107-163.	2.4	4
2834	A nuclear-located glyceraldehyde-3-phosphate dehydrogenase affects salt stress response processes in Arabidopsis thaliana as a senescence component. Journal of Plant Biochemistry and Biotechnology, 2024, 33, 24-33.	0.9	0
2835	Plant growth promoting microorganisms mediated abiotic stress tolerance in crop plants: a critical appraisal. Plant Growth Regulation, 2023, 100, 7-24.	1.8	9
2836	A Medicago truncatula lncRNA MtCIR1 negatively regulates response to salt stress. Planta, 2023, 257, .	1.6	5
2839	Identification of Salinity Tolerant Stable Sugarcane Cultivars Using AMMI, GGE and Some Other Stability Parameters under Multi Environments of Salinity Stress. Sustainability, 2023, 15, 1119.	1.6	6
2840	Exogenous γ-aminobutyric acid (GABA) mitigated salinity-induced impairments in mungbean plants by regulating their nitrogen metabolism and antioxidant potential. Frontiers in Plant Science, 0, 13, .	1.7	13
2841	Mechanisms of plant saline-alkaline tolerance. Journal of Plant Physiology, 2023, 281, 153916.	1.6	18
2842	RAP2.6 enhanced salt stress tolerance by reducing Na+ accumulation and stabilizing the electron transport in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2023, 195, 134-143.	2.8	2
2843	Salt stress affects the fruit quality of Lycium ruthenicum Murr Industrial Crops and Products, 2023, 193, 116240.	2.5	5
2844	Different Tactics of Synthesized Zinc Oxide Nanoparticles, Homeostasis Ions, and Phytohormones as Regulators and Adaptatively Parameters to Alleviate the Adverse Effects of Salinity Stress on Plants. Life, 2023, 13, 73.	1.1	6
2845	Boosting Sustainable Agriculture by Arbuscular Mycorrhiza under Stress Condition: Mechanism and Future Prospective. BioMed Research International, 2022, 2022, 1-28.	0.9	6
2846	Biomimetic Strategies for Developing Abiotic Stress-Tolerant Tomato Cultivars: An Overview. Plants, 2023, 12, 86.	1.6	2
2847	Prominent Effects of Zinc Oxide Nanoparticles on Roots of Rice (Oryza sativa L.) Grown under Salinity Stress. Stresses, 2023, 3, 33-46.	1.8	19
2848	Advantages of using halotolerant/halophilic bacteria in agriculture. , 2023, , 133-149.		0
2849	Transcription elongation factor AtSPT4-2 positively modulates salt tolerance in Arabidopsis thaliana. BMC Plant Biology, 2023, 23, .	1.6	2
2850	How does silicon help alleviate biotic and abiotic stresses in plants? Mechanisms and future prospects. , 2023, , 359-402.		3
2851	HvNCX, a prime candidate gene for the novel qualitative locus qS7.1 associated with salinity tolerance in barley. Theoretical and Applied Genetics, 2023, 136, .	1.8	2

#	Article	IF	CITATIONS
2852	Multi-trait Halotolerant Plant Growth-promoting Bacteria Mitigate Induced Salt Stress and Enhance Growth of Amaranthus Viridis. Journal of Soil Science and Plant Nutrition, 2023, 23, 1860-1883.	1.7	12
2853	GT Transcription Factors of Rosa rugosa Thunb. Involved in Salt Stress Response. Biology, 2023, 12, 176.	1.3	Ο
2854	Identification of Differential-Expressed Genes in Banana-Biostimulant Interaction Using Suppression Subtractive Hybridization. Agronomy, 2023, 13, 415.	1.3	1
2855	Effect of Saline Treatment on Seed Germination of Adzuki Beans. Seed Science and Technology, 2023, 51, 31-42.	0.6	1
2856	A practical method to investigate the effect of volatile organic compounds emitted by rhizobacteria on plant growth under conditions of salt stress. MethodsX, 2023, 10, 102099.	0.7	2
2858	Exogenous Melatonin Application Induced Morpho-Physiological and Biochemical Regulations Conferring Salt Tolerance in Ranunculus asiaticus L Horticulturae, 2023, 9, 228.	1.2	9
2859	Effect of high alkalinity on shrimp gills: Histopathological alternations and cell specific responses. Ecotoxicology and Environmental Safety, 2023, 256, 114902.	2.9	3
2860	NaCl Facilitates Cell Wall Phosphorus Reutilization in Abscisic Acid Dependent Manner in Phosphorus Deficient Rice Root. Rice Science, 2023, 30, 138-147.	1.7	0
2861	Exploitation of renewable energy sources for water desalination using biological tools. Environmental Science and Pollution Research, 2023, 30, 32193-32213.	2.7	4
2862	Characterization of HAK protein family in Casuarina equisetifolia and the positive regulatory role of CeqHAK6 and CeqHAK11 genes in response to salt tolerance. Frontiers in Plant Science, 0, 13, .	1.7	3
2863	Transcriptome Landscapes of Salt-Susceptible Rice Cultivar IR29 Associated with a Plant Growth Promoting Endophytic Streptomyces. Rice, 2023, 16, .	1.7	7
2864	Combined abiotic stresses in wheat species. , 2023, , 273-282.		4
2865	Antioxidant and molecular response of mutant and native rice (Oryza sativa L.) varieties grown under salt stress. , 2023, 78, 1199-1210.		1
2866	Salicylic Acid: A Phenolic Molecule with Multiple Roles in Salt-Stressed Plants. Journal of Plant Growth Regulation, 2023, 42, 4581-4605.	2.8	8
2867	Silicon Increased Sodium Transporter Gene Expressions in Apple Under Short- and Long-Term Salt Stress. Erwerbs-Obstbau, 0, , .	0.5	0
2868	Alfalfa growth and nitrogen fixation constraints in salt-affected soils are in part offset by increased nitrogen supply. Frontiers in Plant Science, 0, 14, .	1.7	7
2869	Sulfur-Containing Compounds from Plants. , 2023, , 363-402.		1
2870	Exogenous Salicylic Acid Improves Growth and Physiological Status of Two Pistacia Species Under Salinity Stress. Erwerbs-Obstbau, 0, , .	0.5	0

#	Article	IF	CITATIONS
2871	GmMPK6 Positively Regulates Salt Tolerance through Induction of GmRbohI1 in Soybean. Antioxidants, 2023, 12, 601.	2.2	2
2872	Endophytic Fungi Regulate HbNHX1 Expression and Ion Balance in Hordeum bogdanii under Alkaline Stress. Journal of Fungi (Basel, Switzerland), 2023, 9, 331.	1.5	0
2873	The role of phytomelatonin receptor 1-mediated signaling in plant growth and stress response. Frontiers in Plant Science, 0, 14, .	1.7	5
2874	The effect of salinity on anatomical characteristics of two halophyte species from Turkey. Botany Letters, 0, , 1-10.	0.7	0
2875	Plant Growth, Ion Accumulation and Essential Oil Content of Salvia officinalis Mill. and S. tomentosa L. Grown under Different Salt Stress. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergi 2021, 24, 505-514.	st).2	7
2876	Research Progress on Improvement of Saline Alkali Soil. , 2023, 3, 36-42.		0
2877	Individual and mutual effects of elevated carbon dioxide and temperature on salt and cadmium uptake and translocation by rice seedlings. Frontiers in Plant Science, 0, 14, .	1.7	2
2878	Identification and analysis of isoflavone reductase gene family in Gossypium hirsutum L Scientific Reports, 2023, 13, .	1.6	2
2879	Sustainable agricultural practices using potassium-solubilizing microorganisms (KSMs) in coastal regions: a critical review on the challenges and opportunities. Environment, Development and Sustainability, 0, , .	2.7	0
2880	Application of GABA (\hat{I}^3 -aminobutyric acid) to improve saline stress tolerance of chufa (Cyperus) Tj ETQq1 1 0.784 assimilation. South African Journal of Botany, 2023, 157, 540-552.	314 rgBT 1.2	Overlock 1 2
2881	Turfgrass Salinity Stress and Tolerance—A Review. Plants, 2023, 12, 925.	1.6	9
2901	Physiology and Abiotic Stresses. , 2023, , 261-271.		0
2906	Halotolerance mechanisms in salt‑tolerant cyanobacteria. Advances in Applied Microbiology, 2023, , .	1.3	0
2910	Metabolic and genomic traits of PGPR in salinity stress. , 2023, , 233-243.		0
2914	Nitric oxide biosynthesis under stressful environments. , 2023, , 17-30.		0
2922	Melatonin-Mediated Salt Stress Tolerance in Plants. Plant in Challenging Environments, 2023, , 299-312.	0.4	0
2931	Advances and future presents of pitrie suids in agriculture 2022 261 285		0
	Advances and future prospect of nitric oxide in agriculture. , 2023, , 261-285.		0

		CITATION F	CITATION REPORT	
#	Article		IF	CITATIONS
2936	Insights in Metabolomics Responses to Drought and Salinity Stress in Crop Plants. , 20	23, , 221-236.		0
2940	Proteomics Response of Medicinal Plants to Salt Stress. , 2023, , 227-241.			0
2941	Potential Impacts of Climate Change on the Sustainability of Crop Production in the W India. Earth and Environmental Sciences Library, 2023, , 237-264.	Vest Bengal,	0.3	0
2952	Salinity and Its Impact on Sustainable Crop Production. Earth and Environmental Scien 2023, , 29-92.	ces Library,	0.3	1
2981	Seed priming with engineered nanomaterials for mitigating abiotic stress in plants. , 20)24, , 229-247.		0