Semidiscrete Central-Upwind Schemes for Hyperbolic Hamilton--Jacobi Equations

SIAM Journal of Scientific Computing 23, 707-740 DOI: 10.1137/s1064827500373413

Citation Report

#	Article	IF	CITATIONS
1	Central-Upwind Schemes for the Saint-Venant System. ESAIM: Mathematical Modelling and Numerical Analysis, 2002, 36, 397-425.	0.8	229
2	An efficient shock-capturing central-type scheme for multidimensional relativistic flows. Astronomy and Astrophysics, 2002, 390, 1177-1186.	2.1	174
3	A Fourth-Order Central WENO Scheme for Multidimensional Hyperbolic Systems of Conservation Laws. SIAM Journal of Scientific Computing, 2002, 24, 480-506.	1.3	121
4	Shock-Capturing and Front-Tracking Methods for Granular Avalanches. Journal of Computational Physics, 2002, 175, 269-301.	1.9	112
5	A Smoothness Indicator for Adaptive Algorithms for Hyperbolic Systems. Journal of Computational Physics, 2002, 178, 323-341.	1.9	42
6	On the Construction, Comparison, and Local Characteristic Decomposition for High-Order Central WENO Schemes. Journal of Computational Physics, 2002, 183, 187-209.	1.9	217
7	Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numerical Methods for Partial Differential Equations, 2002, 18, 584-608.	2.0	260
8	High-order semi-discrete central-upwind schemes for multi-dimensional Hamilton–Jacobi equations. Journal of Computational Physics, 2003, 189, 63-87.	1.9	48
9	On the Artificial Compression Method for Second-Order Nonoscillatory Central Difference Schemes for Systems of Conservation Laws. SIAM Journal of Scientific Computing, 2003, 24, 1157-1174.	1.3	100
10	High-Order Central WENO Schemes for Multidimensional Hamilton-Jacobi Equations. SIAM Journal on Numerical Analysis, 2003, 41, 1339-1369.	1.1	59
11	Central Schemes for Multidimensional Hamilton-Jacobi Equations. SIAM Journal of Scientific Computing, 2003, 25, 767-791.	1.3	23
12	An efficient shock-capturing central-type scheme for multidimensional relativistic flows. Astronomy and Astrophysics, 2003, 400, 397-413.	2.1	210
14	SELF-SIMILAR SOLUTIONS OF TWO-DIMENSIONAL CONSERVATION LAWS. Journal of Hyperbolic Differential Equations, 2004, 01, 445-492.	0.3	15
15	3D code for simulations of fluid flows. European Physical Journal D, 2004, 54, C59-C64.	0.4	0
16	On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method. Journal of Computational Physics, 2004, 195, 17-48.	1.9	187
17	A central-constrained transport scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 2004, 196, 393-416.	1.9	92
18	Non-oscillatory central schemes for one- and two-dimensional MHD equations: I. Journal of Computational Physics, 2004, 201, 261-285.	1.9	68
19	Numerical Entropy Production for Central Schemes. SIAM Journal of Scientific Computing, 2004, 25, 1382-1415.	1.3	33

#	Article	IF	CITATIONS
20	Compressible two-phase flows by central and upwind schemes. ESAIM: Mathematical Modelling and Numerical Analysis, 2004, 38, 477-493.	0.8	24
21	On a hybrid finite-volume-particle method. ESAIM: Mathematical Modelling and Numerical Analysis, 2004, 38, 1071-1091.	0.8	18
22	Central schemes for conservation laws with application to shallow water equations. , 2005, , 225-246.		33
23	Simulations of Relativistic Forceâ€free Magnetohydrodynamic Turbulence. Astrophysical Journal, 2005, 621, 324-327.	1.6	44
24	Modeling particle size distribution in emulsion polymerization reactors. Progress in Polymer Science, 2005, 30, 1019-1048.	11.8	77
25	Visual simulation of shallow-water waves. Simulation Modelling Practice and Theory, 2005, 13, 716-726.	2.2	55
26	High-order shock-capturing methods for modeling dynamics of the solar atmosphere. Physica D: Nonlinear Phenomena, 2005, 201, 1-26.	1.3	3
27	Variants of relaxed schemes and two-dimensional gas dynamics. Journal of Computational and Applied Mathematics, 2005, 175, 41-62.	1.1	13
28	POD-based feedback control of the burgers equation by solving the evolutionary HJB equation. Computers and Mathematics With Applications, 2005, 49, 1113-1126.	1.4	34
29	A CWENO-type central-upwind scheme for ideal MHD equations. Applied Mathematics and Computation, 2005, 168, 600-612.	1.4	18
30	Computations of shallow water equations with high-order central-upwind schemes on triangular meshes. Applied Mathematics and Computation, 2005, 170, 296-313.	1.4	8
31	Different strategies of the central approach to the numerical hydrodynamics. Computer Physics Communications, 2005, 169, 238-242.	3.0	0
32	Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws. Numerical Methods for Partial Differential Equations, 2005, 21, 536-552.	2.0	79
33	On the practical importance of the SSP property for Runge-Kutta time integrators for some common Godunov-type schemes. International Journal for Numerical Methods in Fluids, 2005, 48, 271-303.	0.9	17
34	A solution-adaptive central-constraint transport scheme for magnetohydrodynamics. Computer Physics Communications, 2005, 170, 153-174.	3.0	25
35	Local error analysis for approximate solutions of hyperbolic conservation laws. Advances in Computational Mathematics, 2005, 22, 79-99.	0.8	24
36	A front-tracking method for the simulation of three-phase flow in porous media. Computational Geosciences, 2005, 9, 29-59.	1.2	38
37	Self-gravitational adaptive mesh magnetohydrodynamics withÂtheÂNIRVANA code. Astronomy and Astrophysics, 2005, 435, 385-395.	2.1	60

# 38	ARTICLE On the efficiency of AMR in NIRVANA3. , 2005, , 391-401.	IF	CITATIONS 0
39	A stable semi-discrete central scheme for the two-dimensional incompressible Euler equations. IMA Journal of Numerical Analysis, 2005, 25, 507-522.	1.5	5
40	Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations. IMA Journal of Numerical Analysis, 2005, 25, 113-138.	1.5	17
41	On degenerate saturated-diffusion equations with convection. Nonlinearity, 2005, 18, 609-630.	0.6	15
42	Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids. SIAM Journal of Scientific Computing, 2005, 27, 532-552.	1.3	17
44	Simulation of Mixing Effects in Antisolvent Crystallization Using a Coupled CFD-PDF-PBE Approach. Crystal Growth and Design, 2006, 6, 1291-1303.	1.4	106
45	Central WENO Schemes for Hamilton–Jacobi Equations on Triangular Meshes. SIAM Journal of Scientific Computing, 2006, 28, 2229-2247.	1.3	34
46	CWENO-type central-upwind schemes for multidimensional Saint-Venant system of shallow water equations. Applied Numerical Mathematics, 2006, 56, 1001-1017.	1.2	20
47	On a practical implementation of particle methods. Applied Numerical Mathematics, 2006, 56, 1418-1431.	1.2	14
48	Explicit solutions to a convection-reaction equation and defects of numerical schemes. Journal of Computational Physics, 2006, 220, 511-531.	1.9	6
49	Adaptive Central-Upwind Schemes for Hamilton–Jacobi Equations with Nonconvex Hamiltonians. Journal of Scientific Computing, 2006, 27, 323-333.	1.1	7
50	Staggered Finite Difference Schemes for Conservation Laws. Journal of Scientific Computing, 2006, 27, 403-418.	1.1	5
51	On the Total Variation of High-Order Semi-Discrete Central Schemes for Conservation Laws. Journal of Scientific Computing, 2006, 27, 163-175.	1.1	9
52	Finite-Volume-Particle Methods for Models of Transport of Pollutant in Shallow Water. Journal of Scientific Computing, 2006, 27, 189-199.	1.1	21
53	Finite volume schemes for multi-dimensional hyperbolic systems based on the use of bicharacteristics. Applications of Mathematics, 2006, 51, 205-228.	0.9	11
54	Tracking discontinuities in shallow water equations and ideal magnetohydrodynamics equations via Ghost Fluid Method. Applied Numerical Mathematics, 2006, 56, 1555-1569.	1.2	10
55	Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton–Jacobi equations. Applied Numerical Mathematics, 2006, 56, 1211-1224.	1.2	33
56	Computations of steady and unsteady transport of pollutant in shallow water. Mathematics and Computers in Simulation, 2006, 71, 31-43.	2.4	4

# 57	ARTICLE Fourth-order balanced source term treatment in central WENO schemes for shallow water equations. Journal of Computational Physics, 2006, 218, 228-245.	IF 1.9	CITATIONS
58	A steady state capturing and preserving method for computing hyperbolic systems with geometrical source terms having concentrations. Journal of Computational Physics, 2006, 219, 322-390.	1.9	9
59	Magnetohydrodynamic Turbulent Mixing Layers: Equilibrium Cooling Models. Astrophysical Journal, 2006, 648, 1043-1051.	1.6	28
60	FLUID SIMULATION USING AN ADAPTIVE SEMI-DISCRETE CENTRAL-UPWIND SCHEME. International Journal of Computational Methods, 2007, 04, 283-297.	0.8	2
61	Non-oscillatory central-upwind scheme for hyperbolic conservation laws. International Journal of Computational Fluid Dynamics, 2007, 21, 11-19.	0.5	4
62	Lattice-Boltzmann type relaxation systems and high order relaxation schemes for the incompressible Navier-Stokes equations. Mathematics of Computation, 2007, 77, 943-966.	1.1	5
63	MHD models of stellar core collapse with GenASiS. Journal of Physics: Conference Series, 2007, 78, 012016.	0.3	1
64	Adaptive Semidiscrete Central-Upwind Schemes for Nonconvex Hyperbolic Conservation Laws. SIAM Journal of Scientific Computing, 2007, 29, 2381-2401.	1.3	86
65	A New Sticky Particle Method for Pressureless Gas Dynamics. SIAM Journal on Numerical Analysis, 2007, 45, 2408-2441.	1.1	32
66	Central Discontinuous Galerkin Methods on Overlapping Cells with a Nonoscillatory Hierarchical Reconstruction. SIAM Journal on Numerical Analysis, 2007, 45, 2442-2467.	1.1	97
67	Numerical Solution of a Two-Class LWR Traffic Flow Model by High-Resolution Central-Upwind Scheme. Lecture Notes in Computer Science, 2007, , 17-24.	1.0	3
68	Relaxation WENO schemes for multidimensional hyperbolic systems of conservation laws. Numerical Methods for Partial Differential Equations, 2007, 23, 1211-1234.	2.0	9
69	Computations of transport of pollutant in shallow water. Applied Mathematical Modelling, 2007, 31, 490-498.	2.2	13
70	Tracking entropy wave in ideal MHD equations by weighted ghost fluid method. Applied Mathematical Modelling, 2007, 31, 2503-2514.	2.2	7
71	Numerical simulation for two-phase flows using hybrid scheme. Applied Mathematics and Computation, 2007, 186, 980-991.	1.4	8
72	A time-accurate explicit multi-scale technique for gas dynamics. Journal of Computational Physics, 2007, 226, 282-300.	1.9	22
73	Numerical modeling of multiphase first-contact miscible flows. Part 1. Analytical Riemann solver. Transport in Porous Media, 2007, 67, 375-393.	1.2	10
74	A low dissipation essentially non-oscillatory central scheme. Computer Physics Communications, 2007, 176, 522-530.	3.0	4

#	Article	IF	CITATIONS
75	Shearingbox-implementation for the central-upwind, constraint-transport MHD-code NIRVANA. Computer Physics Communications, 2007, 176, 652-659.	3.0	25
76	An efficient ghost fluid method for compressible multifluids in Lagrangian coordinate. Applied Numerical Mathematics, 2008, 58, 859-870.	1.2	0
77	New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. Journal of Computational Physics, 2008, 227, 5736-5757.	1.9	50
78	A variable relaxation scheme for multiphase, multicomponent flow. Transport in Porous Media, 2008, 71, 345-377.	1.2	2
79	A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numerische Mathematik, 2008, 111, 169-205.	0.9	106
80	On discreteness of the Hopf equation. Acta Mathematicae Applicatae Sinica, 2008, 24, 423-440.	0.4	11
81	On the numerical solution of a driven thin film equation. Journal of Computational Physics, 2008, 227, 7246-7263.	1.9	16
82	New high-resolution scheme for three-dimensional nonlinear hyperbolic conservation laws. Applied Mathematics and Computation, 2008, 198, 770-786.	1.4	5
83	A new fourth-order non-oscillatory central scheme for hyperbolic conservation laws. Applied Numerical Mathematics, 2008, 58, 674-688.	1.2	16
84	The NIRVANA code: Parallel computational MHD with adaptive mesh refinement. Computer Physics Communications, 2008, 179, 227-244.	3.0	91
85	Local turbulence simulations for the multiphase ISM. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1577-1588.	1.6	29
86	Interface tracking method for compressible multifluids. ESAIM: Mathematical Modelling and Numerical Analysis, 2008, 42, 991-1019.	0.8	23
87	Relativistic Hydrodynamic Flows Using Spatial and Temporal Adaptive Structured Mesh Refinement. Astrophysical Journal, Supplement Series, 2008, 176, 467-483.	3.0	73
88	Magnetic field generation by the stationary accretion shock instability. Journal of Physics: Conference Series, 2008, 125, 012006.	0.3	3
89	Multiphase ISM simulations: comparing NIRVANA and ZEUS. Astronomy and Astrophysics, 2009, 499, 633-641.	2.1	6
90	Adaptive multi-resolution central-upwind schemes for systems of conservation laws. International Journal of Computational Fluid Dynamics, 2009, 23, 723-735.	0.5	4
91	Well-Balanced Bottom Discontinuities Treatment for High-Order Shallow Water Equations WENO Scheme. Journal of Engineering Mechanics - ASCE, 2009, 135, 684-696.	1.6	29
92	Fast explicit operator splitting method for convection-diffusion equations. International Journal for Numerical Methods in Fluids, 2009, 59, 309-332.	0.9	27

#	Article	IF	CITATIONS
93	Implementation of semiâ€discrete, nonâ€staggered central schemes in a colocated, polyhedral, finite volume framework, for highâ€speed viscous flows. International Journal for Numerical Methods in Fluids, 2010, 63, 1-21.	0.9	177
94	An accurate and efficient Riemann solver with tangent velocities for Godunov schemes in special relativistic hydrodynamics. International Journal for Numerical Methods in Fluids, 2010, 64, 1-22.	0.9	0
95	An efficient and conservative hybrid method for solving multidimensional conservation laws. Numerical Methods for Partial Differential Equations, 2009, 25, 1029-1066.	2.0	3
96	Fully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model. Journal of Scientific Computing, 2009, 40, 211-256.	1.1	45
97	Growth of the MRI in accretion discs - the influence of radiation transport. Monthly Notices of the Royal Astronomical Society, 2009, 394, 1887-1896.	1.6	6
98	A multidimensional magnetohydrodynamics code based on semidiscrete central WENO and PPM schemes. New Astronomy, 2009, 14, 31-36.	0.8	2
99	A central conservative scheme for general rectangular grids. Journal of Computational Physics, 2009, 228, 2119-2131.	1.9	12
100	Two-dimensional central-upwind schemes for curvilinear grids and application to gas dynamics with angular momentum. Computer Physics Communications, 2009, 180, 2283-2302.	3.0	13
101	An efficient WENO scheme for solving hyperbolic conservation laws. Applied Mathematics and Computation, 2009, 212, 37-50.	1.4	11
102	Discontinuous Galerkin methods for the chemotaxis and haptotaxis models. Journal of Computational and Applied Mathematics, 2009, 224, 168-181.	1.1	51
103	A relaxation scheme for a multi-class Lighthill-Whitham-Richards traffic flow model. Journal of Zhejiang University: Science A, 2009, 10, 1835-1844.	1.3	8
104	New Interior Penalty Discontinuous Galerkin Methods for the Keller–Segel Chemotaxis Model. SIAM Journal on Numerical Analysis, 2009, 47, 386-408.	1.1	60
105	Central-Upwind Schemes for Two-Layer Shallow Water Equations. SIAM Journal of Scientific Computing, 2009, 31, 1742-1773.	1.3	81
106	Exact Maximum Entropy Closure of the Hydrodynamical Model for Si Semiconductors: The 8-Moment Case. SIAM Journal on Applied Mathematics, 2009, 70, 710-734.	0.8	33
107	A central scheme for shallow water flows along channels with irregular geometry. ESAIM: Mathematical Modelling and Numerical Analysis, 2009, 43, 333-351.	0.8	38
108	Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows. Journal of Computational Physics, 2010, 229, 1970-1993.	1.9	164
109	Simulation and visualization of the Saint-Venant system using GPUs. Computing and Visualization in Science, 2010, 13, 341-353.	1.2	28
110	Towards spatially distributed quantitative assessment of tsunami inundation models. Ocean Dynamics, 2010, 60, 1115-1138.	0.9	31

#	Article	IF	CITATIONS
111	A Central Discontinuous Galerkin Method forÂHamilton-Jacobi Equations. Journal of Scientific Computing, 2010, 45, 404-428.	1.1	33
112	A Fast Explicit Operator Splitting Method for Passive Scalar Advection. Journal of Scientific Computing, 2010, 45, 200-214.	1.1	17
113	A fourthâ€order central Rungeâ€Kutta scheme for hyperbolic conservation laws. Numerical Methods for Partial Differential Equations, 2010, 26, 1675-1692.	2.0	12
114	Global and local central nonâ€upwind finite volume schemes for hyperbolic conservation laws in porous media. International Journal for Numerical Methods in Fluids, 2010, 64, 793-811.	0.9	4
115	Upwind-biased FORCE schemes with applications to free-surface shallow flows. Journal of Computational Physics, 2010, 229, 6362-6380.	1.9	15
116	Vertical structure and turbulent saturation level in fully radiative protoplanetary disc models. Monthly Notices of the Royal Astronomical Society, 2010, 409, 1297-1306.	1.6	47
117	Investigating the influence of magnetic fields upon structure formation with amiga- a c code for cosmological magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 2010, 403, 453-473.	1.6	11
118	GENERATION OF MAGNETIC FIELDS BY THE STATIONARY ACCRETION SHOCK INSTABILITY. Astrophysical Journal, 2010, 713, 1219-1243.	1.6	55
119	A HYBRID SCHEME FOR THREE-DIMENSIONAL INCOMPRESSIBLE TWO-PHASE FLOWS. International Journal of Applied Mechanics, 2010, 02, 889-905.	1.3	5
120	Target Detection Based on Elastic Wave Propagation Equations. , 2010, , .		0
120 121	Target Detection Based on Elastic Wave Propagation Equations. , 2010, , . Bending Crystals: Emergence of Fractal Dislocation Structures. Physical Review Letters, 2010, 105, 105501.	2.9	0 39
120 121 122	Target Detection Based on Elastic Wave Propagation Equations. , 2010, , . Bending Crystals: Emergence of Fractal Dislocation Structures. Physical Review Letters, 2010, 105, 105501. A multilevel method for finite volume discretization of the two-dimensional nonlinear shallow-water equations. Ocean Modelling, 2010, 33, 235-256.	2.9	0 39 13
120 121 122 122	Target Detection Based on Elastic Wave Propagation Equations. , 2010, , . Bending Crystals: Emergence of Fractal Dislocation Structures. Physical Review Letters, 2010, 105, 105501. A multilevel method for finite volume discretization of the two-dimensional nonlinear shallow-water equations. Ocean Modelling, 2010, 33, 235-256. Boundary value problems for the shallow water equations with topography. Journal of Geophysical Research, 2011, 116, .	2.9 1.0 3.3	0 39 13 14
120 121 122 124 125	Target Detection Based on Elastic Wave Propagation Equations. , 2010, , .Bending Crystals: Emergence of Fractal Dislocation Structures. Physical Review Letters, 2010, 105, 105501.A multilevel method for finite volume discretization of the two-dimensional nonlinear shallow-water equations. Ocean Modelling, 2010, 33, 235-256.Boundary value problems for the shallow water equations with topography. Journal of Geophysical Research, 2011, 116, .A Modified Third-Order Semi-Discrete Central-Upwind Scheme for MHD Simulation. Chinese Physics Letters, 2011, 28, 075205.	2.9 1.0 3.3 1.3	0 39 13 14
120 121 122 124 125 126	Target Detection Based on Elastic Wave Propagation Equations. , 2010, , . Bending Crystals: Emergence of Fractal Dislocation Structures. Physical Review Letters, 2010, 105, 105501. A multilevel method for finite volume discretization of the two-dimensional nonlinear shallow-water equations. Ocean Modelling, 2010, 33, 235-256. Boundary value problems for the shallow water equations with topography. Journal of Geophysical Research, 2011, 116, . A Modified Third-Order Semi-Discrete Central-Upwind Scheme for MHD Simulation. Chinese Physics Letters, 2011, 28, 075205. Magnetic clouds in the solar wind: a numerical assessment of analytical models. Astronomy and Astrophysics, 2011, 536, A100.	2.9 1.0 3.3 1.3 2.1	0 39 13 14 0 4
120 121 122 124 125 126	Target Detection Based on Elastic Wave Propagation Equations. , 2010, , .Bending Crystals: Emergence of Fractal Dislocation Structures. Physical Review Letters, 2010, 105, 105501.A multilevel method for finite volume discretization of the two-dimensional nonlinear shallow-water equations. Ocean Modelling, 2010, 33, 235-256.Boundary value problems for the shallow water equations with topography. Journal of Geophysical Research, 2011, 116, .A Modified Third-Order Semi-Discrete Central-Upwind Scheme for MHD Simulation. Chinese Physics Letters, 2011, 28, 075205.Magnetic clouds in the solar wind: a numerical assessment of analytical models. Astronomy and Astrophysics, 2011, 536, A100.Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system. ESAIM: Mathematical Modelling and Numerical Analysis, 2011, 45, 423-446.	2.9 1.0 3.3 1.3 2.1 0.8	0 39 13 14 0 4 80
120 121 122 124 125 126 127 128	Target Detection Based on Elastic Wave Propagation Equations. , 2010, , .Bending Crystals: Emergence of Fractal Dislocation Structures. Physical Review Letters, 2010, 105, 105501.A multilevel method for finite volume discretization of the two-dimensional nonlinear shallow-water equations. Ocean Modelling, 2010, 33, 235-256.Boundary value problems for the shallow water equations with topography. Journal of Geophysical Research, 2011, 116, .A Modified Third-Order Semi-Discrete Central-Upwind Scheme for MHD Simulation. Chinese Physics Letters, 2011, 28, 075205.Magnetic clouds in the solar wind: a numerical assessment of analytical models. Astronomy and Astrophysics, 2011, 536, A100.Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system. ESAIM: Mathematical Modelling and Numerical Analysis, 2011, 45, 423-446.Central WENO scheme for the integral form of contravariant shallowâ€water equations. International Journal for Numerical Methods in Fluids, 2011, 67, 939-959.	2.9 1.0 3.3 1.3 2.1 0.8 0.9	0 39 13 14 0 4 80 15

	CITATION RE	PORT	
#	Article	IF	CITATIONS
130	High resolution central schemes for multi-dimensional non-linear acoustic simulation of silencers in internal combustion engines. Mathematical and Computer Modelling, 2011, 54, 1720-1724.	2.0	7
131	A semi-discrete central scheme for magnetohydrodynamics on orthogonal–curvilinear grids. Journal of Computational Physics, 2011, 230, 1035-1063.	1.9	55
132	Alternating Evolution Schemes for Hyperbolic Conservation Laws. SIAM Journal of Scientific Computing, 2011, 33, 3210-3240.	1.3	7
133	A HYBRID SOLAR WIND MODEL OF THE CESE+HLL METHOD WITH A YIN-YANG OVERSET GRID AND AN AMR GRID. Astrophysical Journal, 2011, 734, 50.	1.6	68
134	Magnetic Reconnection Under Solar Coronal Conditions with the 2.5D AMR Resistive MHD Model. Chinese Physics Letters, 2011, 28, 089601.	1.3	9
135	AN EFFICIENT THIRD-ORDER SCHEME FOR THREE-DIMENSIONAL HYPERBOLIC CONSERVATION LAWS. International Journal of Modeling, Simulation, and Scientific Computing, 2012, 03, 1250015.	0.9	0
136	NUMERICAL SIMULATION OF 2D LIQUID SLOSHING. International Journal of Applied Mechanics, 2012, 04, 1250014.	1.3	1
137	A Multidimensional Radiation Magnetohydrodynamics Code Based on Flux-Limited Diffusion and HLLD. Publication of the Astronomical Society of Japan, 2012, 64, .	1.0	2
138	Turbulent magnetic field amplification from spiral SASI modes in core-collapse supernovae. Journal of Physics: Conference Series, 2012, 402, 012027.	0.3	1
139	A Semidiscrete Finite Volume Constrained Transport Method on Orthogonal Curvilinear Grids. SIAM Journal of Scientific Computing, 2012, 34, A763-A791.	1.3	16
140	Block-Structured Adaptive Mesh Refinement on Curvilinear-Orthogonal Grids. SIAM Journal of Scientific Computing, 2012, 34, C102-C121.	1.3	8
141	High-Resolution Finite Volume Central Schemes for a Compressible Two-Phase Model. SIAM Journal of Scientific Computing, 2012, 34, B861-B880.	1.3	14
142	New adaptive artificial viscosity method for hyperbolic systems of conservation laws. Journal of Computational Physics, 2012, 231, 8114-8132.	1.9	49
143	Simulation of Hypersonic Flow and Radiation over a Mars Reentry Vehicle Using OpenFOAM. , 2012, , .		11
144	High order well-balanced scheme for river flow modeling. Mathematics and Computers in Simulation, 2012, 82, 1773-1787.	2.4	1
145	Computer modelling of haematopoietic stem cells migration. Computers and Mathematics With Applications, 2012, 64, 337-349.	1.4	4
146	Analytical Solutions Involving Shock Waves for Testing Debris Avalanche Numerical Models. Pure and Applied Geophysics, 2012, 169, 1847-1858.	0.8	14
147	TURBULENT MAGNETIC FIELD AMPLIFICATION FROM SPIRAL SASI MODES: IMPLICATIONS FOR CORE-COLLAPSE SUPERNOVAE AND PROTO-NEUTRON STAR MAGNETIZATION. Astrophysical Journal, 2012, 751, 26.	1.6	78

#	Article	IF	Citations
148	A Finite Volume Upwind-Biased Centred Scheme for Hyperbolic Systems of Conservation Laws: Application to Shallow Water Equations. Communications in Computational Physics, 2012, 12, 1183-1214.	0.7	11
149	DIFFUSION OF ENERGETIC PARTICLES IN TURBULENT MAGNETOHYDRODYNAMIC PLASMAS. Astrophysical Journal, 2012, 750, 150.	1.6	9
150	Approximations of the Carrier–Greenspan periodic solution to the shallow water wave equations for flows on a sloping beach. International Journal for Numerical Methods in Fluids, 2012, 69, 763-780.	0.9	15
151	A generalized 1-dimensional particle transport method for convection diffusion reaction model. Afrika Matematika, 2012, 23, 21-39.	0.4	6
152	A New fourth order central WENO method for 3D hyperbolic conservation laws. Applied Mathematics and Computation, 2012, 218, 10258-10270.	1.4	13
153	Efficient shallow water simulations on GPUs: Implementation, visualization, verification, and validation. Computers and Fluids, 2012, 55, 1-12.	1.3	105
154	Is Dislocation Flow Turbulent in Deformed Crystals?. Computing in Science and Engineering, 2012, 14, 33-39.	1.2	8
155	Mach reflection in detonations propagating through a gas with a concentration gradient. Shock Waves, 2013, 23, 201-206.	1.0	37
156	Numerical simulation of pollutant transport in a shallow-water system on the Cell heterogeneous processor. Journal of Supercomputing, 2013, 65, 1089-1103.	2.4	2
157	A semiâ€discrete central scheme for scalar hyperbolic conservation laws with heterogeneous storage coefficient and its application to porous media flow. International Journal for Numerical Methods in Fluids, 2013, 73, 205-224.	0.9	14
158	A new locally conservative numerical method for two-phase flow in heterogeneous poroelastic media. Computers and Geotechnics, 2013, 48, 192-207.	2.3	19
159	Multilevel finite volume methods and boundary conditions for geophysical flows. Computers and Fluids, 2013, 74, 66-90.	1.3	4
160	Numerical investigation of a modified family of centered schemes applied to multiphase equations with nonconservative sources. Journal of Computational Physics, 2013, 255, 266-292.	1.9	9
161	Alternating Evolution Schemes for HamiltonJacobi Equations. SIAM Journal of Scientific Computing, 2013, 35, A122-A149.	1.3	9
162	Analysis on capabilities of density-based solvers within OpenFOAM to distinguish aerothermal variables in diffusion boundary layer. Chinese Journal of Aeronautics, 2013, 26, 1370-1379.	2.8	14
163	The Riemann problem for one dimensional generalized Chaplygin gas dynamics. Journal of Mathematical Analysis and Applications, 2013, 403, 434-450.	0.5	55
164	A Non-oscillatory Central Scheme for One-Dimensional Two-Layer Shallow Water Flows along Channels with Varying Width. Journal of Scientific Computing, 2013, 55, 499-528.	1.1	5
165	3-D numerical calculation of magnetic drag parachute. Science China Technological Sciences, 2013, 56, 2059-2065.	2.0	3

#	Article	IF	CITATIONS
166	Scaling theory of continuum dislocation dynamics in three dimensions: Self-organized fractal pattern formation. International Journal of Plasticity, 2013, 46, 94-129.	4.1	31
167	A hybrid DSMC/Navier–Stokes frame to solve mixed rarefied/nonrarefied hypersonic flows over nanoâ€plate and microâ€cylinder. International Journal for Numerical Methods in Fluids, 2013, 72, 937-	966.9	27
168	Improved ninth order WENO scheme for hyperbolic conservation laws. Applied Mathematics and Computation, 2013, 219, 8198-8212.	1.4	5
169	THREE-LAYER APPROXIMATION OF TWO-LAYER SHALLOW WATER EQUATIONS. Mathematical Modelling and Analysis, 2013, 18, 675-693.	0.7	17
171	Boundary Conditions for Limited Area Models Based on the Shallow Water Equations. Communications in Computational Physics, 2013, 14, 664-702.	0.7	7
172	Solving Two-Mode Shallow Water Equations Using Finite Volume Methods. Communications in Computational Physics, 2014, 16, 1323-1354.	0.7	5
173	Numerical Study of Singularity Formation in Relativistic Euler Flows. Communications in Computational Physics, 2014, 16, 348-364.	0.7	1
174	Central-Upwind Scheme for Savage–Hutter Type Model of Submarine Landslides and Generated Tsunami Waves. Computational Methods in Applied Mathematics, 2014, 14, 177-201.	0.4	19
175	Properties of balanced and imbalanced relativistic alfvénic magnetohydrodynamic turbulence. Journal of the Korean Physical Society, 2014, 65, 871-875.	0.3	6
176	A compressible singleâ€ŧemperature conservative twoâ€phase model with phase transitions. International Journal for Numerical Methods in Fluids, 2014, 76, 282-311.	0.9	16
177	IMBALANCED RELATIVISTIC FORCE-FREE MAGNETOHYDRODYNAMIC TURBULENCE. Astrophysical Journal, 2014, 780, 30.	1.6	25
178	Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients. Numerische Mathematik, 2014, 127, 595-639.	0.9	46
179	High-resolution semi-discrete Hermite central-upwind scheme for multidimensional Hamilton–Jacobi equations. Applied Numerical Mathematics, 2014, 80, 22-45.	1.2	4
180	GENASIS: GENERAL ASTROPHYSICAL SIMULATION SYSTEM. I. REFINABLE MESH AND NONRELATIVISTIC HYDRODYNAMICS. Astrophysical Journal, Supplement Series, 2014, 210, 17.	3.0	13
181	Numerical modelling of three-phase immiscible flow in heterogeneous porous media with gravitational effects. Mathematics and Computers in Simulation, 2014, 97, 234-259.	2.4	25
182	Multidimensional Riemann problem with self-similar internal structure. Part I – Application to hyperbolic conservation laws on structured meshes. Journal of Computational Physics, 2014, 277, 163-200.	1.9	90
183	A higher order Finite Volume resolution method for a system related to the inviscid primitive equations in a complex domain. Numerische Mathematik, 2014, 128, 431-461.	0.9	5
184	An Eulerian–Lagrangian method for optimization problems governed by multidimensional nonlinear hyperbolic PDEs. Computational Optimization and Applications, 2014, 59, 689-724.	0.9	13

#	Article	IF	CITATIONS
185	Numerical model of currents generated by sources and sinks in a circular rotating channel. Izvestiya - Atmospheric and Oceanic Physics, 2014, 50, 292-303.	0.2	4
186	PEDESTRIAN FLOW MODELS WITH SLOWDOWN INTERACTIONS. Mathematical Models and Methods in Applied Sciences, 2014, 24, 249-275.	1.7	26
187	Hysteretic enhancement of carbon dioxide trapping in deep aquifers. Computational Geosciences, 2014, 18, 899-912.	1.2	4
188	Exact Jacobians for implicit Navier–Stokes simulations of equilibrium real gas flows. Journal of Computational Physics, 2014, 270, 459-477.	1.9	22
189	Alternating evolution discontinuous Galerkin methods for Hamilton–Jacobi equations. Journal of Computational Physics, 2014, 258, 31-46.	1.9	8
190	A Riemann problem solution methodology for a class of evolutionary mixture equations with an arbitrary number of components. Applied Numerical Mathematics, 2014, 76, 145-165.	1.2	1
191	Investigation of aerodynamic characteristics of rarefied flow around NACA 0012 airfoil using DSMC and NS solvers. European Journal of Mechanics, B/Fluids, 2014, 48, 59-74.	1.2	40
192	Adaptation of Kurganov-Tadmor Numerical Scheme for Applying in Combination with the PISO Method in Numerical Simulation of Flows in a Wide Range of Mach Numbers. Procedia Computer Science, 2015, 66, 43-52.	1.2	69
193	Method of Distributions for Uncertainty Quantification. , 2015, , 1-22.		5
194	Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics. Living Reviews in Solar Physics, 2015, 1, 3.	5.0	61
195	Pressureâ€based adaption indicator for compressible euler equations. Numerical Methods for Partial Differential Equations, 2015, 31, 1844-1874.	2.0	7
196	Hydraulics of floods upstream of horseshoe canyons and waterfalls. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1227-1250.	1.0	12
197	Wellâ€balanced positivity preserving centralâ€upwind scheme for the shallow water system with friction terms. International Journal for Numerical Methods in Fluids, 2015, 78, 355-383.	0.9	70
198	An Accurate Smoothness Indicator for Shallow Water Flows along Channels with Varying Width. Applied Mechanics and Materials, 2015, 771, 157-160.	0.2	3
199	Compressible bubble dynamic simulations with central-upwind schemes. Journal of Physics: Conference Series, 2015, 656, 012087.	0.3	0
200	Well-balanced central-upwind scheme for a fully coupled shallow water system modeling flows over erodible bed. Journal of Computational Physics, 2015, 300, 202-218.	1.9	25
201	Vorticity deposition, structure generation and the approach to self-similarity in colliding blast wave experiments. High Energy Density Physics, 2015, 14, 6-12.	0.4	5
202	High-order finite volume shallow water model on the cubed-sphere: 1D reconstruction scheme. Applied Mathematics and Computation, 2015, 266, 316-327.	1.4	5

#	Article	IF	Citations
203	Validation of Tools to Accelerate High-Speed CFD Simulations Using OpenFOAM. , 2015, , .		2
204	Investigation of jet formation from the blast wave of a locally heated laser-irradiated target. High Energy Density Physics, 2015, 15, 82-92.	0.4	2
205	A Fast Explicit Operator Splitting Method for Modified Buckley–Leverett Equations. Journal of Scientific Computing, 2015, 64, 837-857.	1.1	7
206	Conservation law modelling of entrainment in layered hydrostatic flows. Journal of Fluid Mechanics, 2015, 772, 272-294.	1.4	11
207	Computational fluid dynamics modeling of mixing effects for crystallization in coaxial nozzles. Chemical Engineering and Processing: Process Intensification, 2015, 97, 213-232.	1.8	22
208	Divergence-free approximate Riemann solver for the quasi-neutral two-fluid plasma model. Journal of Computational Physics, 2015, 299, 863-886.	1.9	19
209	Development of a Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows. , 2015, , .		7
210	A twoâ€dimensional numerical scheme of dry/wet fronts for the Saintâ€Venant system of shallow water equations. International Journal for Numerical Methods in Fluids, 2015, 77, 159-182.	0.9	28
211	Elastic collisions among peakon solutions for the Camassa–Holm equation. Applied Numerical Mathematics, 2015, 93, 30-46.	1.2	15
212	High-order accurate monotone compact running scheme for multidimensional hyperbolic equations. Applied Numerical Mathematics, 2015, 93, 150-163.	1.2	23
213	A simple two-dimensional extension of the HLL Riemann solver for hyperbolic systems of conservation laws. Journal of Computational Physics, 2015, 280, 643-675.	1.9	30
214	ASHEE-1.0: aÂcompressible, equilibrium–Eulerian model for volcanic ash plumes. Geoscientific Model Development, 2016, 9, 697-730.	1.3	51
215	Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids. Advances in Mathematical Physics, 2016, 2016, 1-7.	0.4	9
216	Numerical Methods for Hamilton–Jacobi Type Equations. Handbook of Numerical Analysis, 2016, , 603-626.	0.9	10
217	A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part One: Zero-Dimensional Analysis. Aerospace, 2016, 3, 34.	1.1	40
218	A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis. Aerospace, 2016, 3, 45.	1.1	43
219	The Riemann Problem. Handbook of Numerical Analysis, 2016, 17, 19-54.	0.9	6
220	Computational magnetoâ€hydrodynamic modeling of hypersonic flows with resolved shock wave diffusion. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 621-622.	0.2	1

#	Article	IF	CITATIONS
221	Hypersonic simulations using open-source CFD and DSMC solvers. AIP Conference Proceedings, 2016, , .	0.3	2
222	Generation of large-scale structures and vortex systems in numerical experiments for rotating annular channels. Journal of Applied Mechanics and Technical Physics, 2016, 57, 1239-1253.	0.1	2
223	Numerical linearized MHD model of flapping oscillations. Physics of Plasmas, 2016, 23, 062905.	0.7	5
224	Compressible simulations of bubble dynamics with central-upwind schemes. International Journal of Computational Fluid Dynamics, 2016, 30, 129-140.	0.5	12
225	Application of a Multi-dimensional Limiting Process to Central-Upwind Schemes for Solving Hyperbolic Systems of Conservation Laws. Journal of Scientific Computing, 2016, 69, 274-291.	1.1	3
226	A limiting strategy for the back and forth error compensation and correction method for solving advection equations. Mathematics of Computation, 2016, 85, 1263-1280.	1.1	5
227	Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations. Journal of Computational Physics, 2016, 321, 908-926.	1.9	37
228	Stochastic Galerkin framework with locally reduced bases for nonlinear two-phase transport in heterogeneous formations. Computer Methods in Applied Mechanics and Engineering, 2016, 310, 367-387.	3.4	11
229	A central-upwind scheme with artificial viscosity for shallow-water flows in channels. Advances in Water Resources, 2016, 96, 323-338.	1.7	18
230	Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction. Acta Astronautica, 2016, 128, 431-439.	1.7	22
231	On Invariant-Preserving Finite Difference Schemes for the Camassa-Holm Equation and the Two-Component Camassa-Holm System. Communications in Computational Physics, 2016, 19, 1015-1041.	0.7	8
232	Central Schemes. Handbook of Numerical Analysis, 2016, 17, 525-548.	0.9	7
233	A SECOND-ORDER DIVERGENCE-CONSTRAINED MULTIDIMENSIONAL NUMERICAL SCHEME FOR RELATIVISTIC TWO-FLUID ELECTRODYNAMICS. Astrophysical Journal, 2016, 831, 100.	1.6	9
234	High speed flow verification using open source CFD software. AIP Conference Proceedings, 2016, , .	0.3	0
235	Central-upwind scheme for shallow water equations with discontinuous bottom topography. Bulletin of the Brazilian Mathematical Society, 2016, 47, 91-103.	0.3	7
236	Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows. Computers and Fluids, 2016, 136, 193-206.	1.3	30
237	Stochastic Galerkin Formulations for \$\$hbox {CO}_2\$\$ CO 2 Transport in Aquifers: Numerical Solutions with Uncertain Material Properties. Transport in Porous Media, 2016, 114, 457-483.	1.2	4
238	Solving two-phase shallow granular flow equations with a well-balanced NOC scheme on multiple GPUs. Computers and Fluids, 2016, 134-135, 90-110.	1.3	9

#	Article	IF	CITATIONS
239	An accurate scheme to solve cluster dynamics equations using a Fokker–Planck approach. Computer Physics Communications, 2016, 207, 170-178.	3.0	19
240	Computational Methodology for Investigating the Transient Interaction Between a Reaction Control Jet and a Hypersonic Crossflow. , 2016, , .		3
241	Seventh order Hermite WENO scheme for hyperbolic conservation laws. Computers and Fluids, 2016, 131, 66-80.	1.3	26
242	Microstructure in plasticity without nonconvexity. Computational Mechanics, 2016, 57, 387-403.	2.2	8
243	A well-balanced positivity-preserving central-upwind scheme for shallow water equations on unstructured quadrilateral grids. Computers and Fluids, 2016, 126, 25-40.	1.3	27
244	Galerkin-finite element methods for the shallow water equations with characteristic boundary conditions. IMA Journal of Numerical Analysis, 2017, 37, 266-295.	1.5	6
245	New methods for analyzing transport phenomena in supersonic ejectors. International Journal of Heat and Fluid Flow, 2017, 64, 23-40.	1.1	36
246	Transient numerical model of magma ascent dynamics: application to the explosive eruptions at the Soufrière HillsÂVolcano. Journal of Volcanology and Geothermal Research, 2017, 336, 118-139.	0.8	17
247	Numerical Modeling and Simulation of Supersonic Flows in Propulsion Systems by Open-Source Solvers. , 2017, , .		6
248	A semi-discrete central scheme for incompressible multiphase flow in porous media in several space dimensions. Mathematics and Computers in Simulation, 2017, 140, 24-52.	2.4	3
249	Second-Order Fully Discrete Central-Upwind Scheme for Two-Dimensional Hyperbolic Systems of Conservation Laws. SIAM Journal of Scientific Computing, 2017, 39, A947-A965.	1.3	22
250	Numerical modeling of submarine turbidity currents over erodible beds using unstructured grids. Ocean Modelling, 2017, 113, 157-170.	1.0	5
251	Thrust Calculation for Low-Reynolds-Number Micronozzles. Journal of Spacecraft and Rockets, 2017, 54, 287-298.	1.3	5
252	Three-dimensional shallow water system: A relaxation approach. Journal of Computational Physics, 2017, 333, 160-179.	1.9	5
253	A density-based method with semi-discrete central-upwind schemes for ideal magnetohydrodynamics. Archive of Applied Mechanics, 2017, 87, 667-683.	1.2	3
254	Two-dimensional numerical simulations of detonation cellular structures in H2O2Ar mixtures with OpenFOAM®. International Journal of Hydrogen Energy, 2017, 42, 26102-26113.	3.8	20
255	Foam front advance during improved oil recovery: similarity solutions at early times near the top of the front. Journal of Fluid Mechanics, 2017, 828, 527-572.	1.4	8
256	A Morphing Continuum Approach to Supersonic Flow Over a Compression Ramp. , 2017, , .		2

#	Article	IF	Citations
257	Hybrid RANS/LES of a supersonic combustor. Aerospace Science and Technology, 2017, 69, 563-573.	2.5	12
258	Morphing continuum theory for turbulence: Theory, computation, and visualization. Physical Review E, 2017, 96, 043108.	0.8	9
259	rhoCentralRfFoam: An OpenFOAM solver for high speed chemically active flows – Simulation of planar detonations –. Computer Physics Communications, 2017, 219, 209-222.	3.0	34
260	Higher-order accurate space-time schemes for computational astrophysics—Part I: finite volume methods. Living Reviews in Solar Physics, 2017, 3, 2.	5.0	39
261	A central-upwind geometry-preserving method for hyperbolic conservation laws on the sphere. Communications in Applied Mathematics and Computational Science, 2017, 12, 81-107.	0.7	10
263	On the influence of the local maxima of total pressure on the current sheet stability to the kink-like (flapping) mode. Physics of Plasmas, 2018, 25, .	0.7	5
264	Transient interaction between a reaction control jet and a hypersonic crossflow. Physics of Fluids, 2018, 30, .	1.6	14
265	Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes. Journal of Computational Physics, 2018, 358, 36-52.	1.9	57
266	Numerical and experimental evidence of the Fabri-choking in a supersonic ejector. International Journal of Heat and Fluid Flow, 2018, 69, 194-209.	1.1	50
267	Error analysis of the high order scheme for homogenization of Hamilton–Jacobi equation. Applied Numerical Mathematics, 2018, 126, 138-159.	1.2	3
268	Computational Aeroelastic Analysis using an Enhanced OpenFOAM-based CFD-CSD Solver. , 2018, , .		0
269	Modeling shallow water flows on general terrains. Advances in Water Resources, 2018, 121, 316-332.	1.7	14
270	Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body. Computers and Fluids, 2018, 172, 483-491.	1.3	9
271	Higher Order Finite Volume Central Schemes for Multi-dimensional Hyperbolic Problems. Journal of Scientific Computing, 2018, 75, 941-969.	1.1	3
272	Hybrid Computational Fluid Dynamics/Thermoacoustic-Solver Approach to Model Acoustics in Combustion Simulations. Journal of Propulsion and Power, 2018, 34, 636-646.	1.3	0
273	High-Order Semi-Discrete Central-Upwind Schemes with Lax–Wendroff-Type Time Discretizations for Hamilton–Jacobi Equations. Computational Methods in Applied Mathematics, 2018, 18, 559-580.	0.4	10
274	Well-balanced schemes for the shallow water equations with Coriolis forces. Numerische Mathematik, 2018, 138, 939-973.	0.9	28
275	Finite Volume Method with Explicit Scheme Technique for Solving Heat Equation. Journal of Physics: Conference Series, 2018, 1097, 012089.	0.3	4

#	Article	IF	Citations
276	Performance investigation of an argon fueled magnetoplasmadynamic thruster with applied magnetic field. Journal of Applied Physics, 2018, 124, 223301.	1.1	4
277	Foam–liquid front motion in Eulerian coordinates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180290.	1.0	2
278	"lrregularization―of systems of conservation laws. Materials Theory, 2018, 2, .	2.2	1
279	Morphing Continuum Simulation of Transonic Flow over Axisymmetric Hill. AIAA Journal, 2018, 56, 4321-4330.	1.5	5
280	A Single-Use Microthruster Concept for Small Satellite Attitude Control in Formation-Flying Applications. Aerospace, 2018, 5, 119.	1.1	6
281	Unsteady turbulent line plumes. Journal of Fluid Mechanics, 2018, 856, 103-134.	1.4	1
282	Granular flows in a rotating drum and on an inclined plane: Analytical and numerical solutions. Physics of Fluids, 2018, 30, .	1.6	6
283	Numerical investigation of a pulsed reaction control jet in hypersonic crossflow. Physics of Fluids, 2018, 30, .	1.6	14
284	Analysis of nonequilibrium effects and flow instability in immiscible two-phase flow in porous media. Advances in Water Resources, 2018, 122, 291-303.	1.7	7
285	Current sheet bending as destabilizing factor in magnetotail dynamics. Physics of Plasmas, 2018, 25, .	0.7	5
286	A Non-Equilibrium Sediment Transport Model for Dam Break Flow over Moveable Bed Based on Non-Uniform Rectangular Mesh. Water (Switzerland), 2018, 10, 616.	1.2	11
287	Directionally Targeted Jet Noise Suppression: Benefits of Asymmetric Downstream Fluidic Injection. , 2018, , .		2
288	The CRONOS Code for Astrophysical Magnetohydrodynamics. Astrophysical Journal, Supplement Series, 2018, 236, 53.	3.0	25
289	The compound-choking theory as an explanation of the entrainment limitation in supersonic ejectors. Energy, 2018, 158, 524-536.	4.5	36
290	A new sequential method for three-phase immiscible flow in poroelastic media. Journal of Computational Physics, 2018, 373, 493-532.	1.9	11
291	Well-Balanced Central-Upwind Schemes for \$\$2,imes ,2\$\$ Systems of Balance Laws. Springer Proceedings in Mathematics and Statistics, 2018, , 345-361.	0.1	11
292	Numerical simulation of Argon fuelled self-field magnetoplasmadynamic thrusters using the central-upwind scheme flux interpolations. European Journal of Mechanics, B/Fluids, 2018, 72, 645-663.	1.2	0
293	A torsional sub-milli-Newton thrust balance based on a spring leaf strain gauge sensor. Review of Scientific Instruments, 2018, 89, 075101.	0.6	9

#	Article	IF	CITATIONS
294	Inter-Phase Momentum and Energy Transfer Effects of Nano-Aerosols on the Performance of Supersonic Intake Systems. , 2018, , .		1
295	An assessment of OpenFOAM solver on RANS simulations of round supersonic free jets. Journal of Computational Science, 2018, 28, 18-31.	1.5	27
296	A macroscopic traffic model based on weather conditions. Chinese Physics B, 2018, 27, 070202.	0.7	14
297	The effects of Gurney flap on the aerodynamic performance of NACA 0012 airfoil in the rarefied gas flow. Computers and Fluids, 2018, 170, 93-105.	1.3	13
298	Finite-volume schemes for shallow-water equations. Acta Numerica, 2018, 27, 289-351.	6.3	61
299	A hybrid pressureâ€based solver for nonideal singleâ€phase fluid flows at all speeds. International Journal for Numerical Methods in Fluids, 2018, 88, 79-99.	0.9	42
300	A solution method for one-dimensional shallow water equations using flux limiter centered scheme for open Venturi channels. Journal of Computational Multiphase Flows, 2018, 10, 228-238.	0.8	4
301	Well-balanced positivity preserving central-upwind scheme with a novel wet/dry reconstruction on triangular grids for the Saint-Venant system. Journal of Computational Physics, 2018, 374, 213-236.	1.9	23
302	An Alternative Formulation of Discontinous Galerkin Schemes for Solving Hamilton–Jacobi Equations. Journal of Scientific Computing, 2019, 78, 1023-1044.	1.1	1
303	Computational investigations into heat transfer over a double wedge in hypersonic flows. Aerospace Science and Technology, 2019, 92, 839-846.	2.5	14
304	Conservative Third-Order Central-Upwind Schemes for Option Pricing Problems. Vietnam Journal of Mathematics, 2019, 47, 813-833.	0.4	0
308	Incompressible Solvers for Single-Phase Flow. , 2019, , 143-173.		0
309	Solvers for Incompressible Immiscible Flow. , 2019, , 289-336.		0
310	Compressible Multiphase Flow. , 2019, , 337-412.		0
311	The AD-OO Framework for Reservoir Simulation. , 2019, , 413-474.		0
312	Grid Coarsening. , 2019, , 518-557.		1
313	Upscaling Petrophysical Properties. , 2019, , 558-596.		1
315	Grids in Subsurface Modeling. , 2019, , 55-110.		0

		CITATION	Report	
# 316	ARTICLE Mathematical Models for Multiphase Flow. , 2019, , 231-271.		IF	CITATIONS
318	One-Dimensional/Two-Dimensional Coupling Approach with Quadrilateral Confluence Modeling River Systems. Journal of Scientific Computing, 2019, 81, 1297-1328.	Region for	1.1	4
319	Numerical simulation of model problems in plasticity based on field dislocation mechan and Simulation in Materials Science and Engineering, 2019, 27, 085012.	nics. Modelling	0.8	10
320	Numerical study on the start and unstart phenomena in a scramjet inlet-isolator model 2019, 14, e0224994.	I. PLoS ONE,	1.1	8
321	Modeling Reservoir Rocks. , 2019, , 21-54.			0
322	Mathematical Models for Single-Phase Flow. , 2019, , 113-142.			1
323	Consistent Discretizations on Polyhedral Grids. , 2019, , 174-201.			0
325	Compressible Flow and Rapid Prototyping. , 2019, , 202-228.			0
326	Discretizing Hyperbolic Transport Equations. , 2019, , 272-288.			0
327	The transition from "double-gradient―to ballooning unstable mode in bent magne sheet. Physics of Plasmas, 2019, 26, .	etotail-like current	0.7	1
328	Path-conservative central-upwind schemes for nonconservative hyperbolic systems. ES Mathematical Modelling and Numerical Analysis, 2019, 53, 959-985.	AIM:	0.8	29
329	The effect of Knudsen layer on rarefied hypersonic gas flows. AIP Conference Proceedin	1gs, 2019, , .	0.3	1
330	Numerical modeling of Knudsen layer effects in high-speed microscale gas flows. AIP C Proceedings, 2019, , .	onference	0.3	0
331	Numerical Simulation of Acoustic Shielding Effect on Supersonic Jets. , 2019, , .			7
332	Implementation of Knudsen Layer Phenomena in Rarefied High-Speed Gas Flows. Journ Engineering, 2019, 32, .	al of Aerospace	0.8	5
333	Hybrid Artificial Viscosity–Central-Upwind Scheme for Recirculating Turbulent Shallo Flows. Journal of Hydraulic Engineering, 2019, 145, 04019041.	w Water	0.7	9
334	Verification and Validation of a Morphing Continuum Approach to Hypersonic Flow Sir 2019, , .	nulations. ,		1
335	An extension of Darcy's law incorporating dynamic length scales. Advances in Wat 129, 70-79.	er Resources, 2019,	1.7	13

#	ARTICLE An open-source density-based solver for two-phase <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
336	altimg="si11.svg"> <mml:msub><mml:mtext>CO</mml:mtext><mml:mtext>2</mml:mtext></mml:msub> compressible flows: Verification and validation. International Journal of Refrigeration, 2019, 106, 526-538.	m a.ts h >	20
337	On entropy stable schemes for degenerate parabolic multispecies kinematic flow models. Numerical Methods for Partial Differential Equations, 2019, 35, 1847-1872.	2.0	2
338	An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces. Journal of Computational Physics, 2019, 391, 259-279.	1.9	15
339	Modeling of a reaction control jet interacting with high-speed cross-flow in slip flow regime. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233, 5029-5044.	0.7	1
340	Effect of Knudsen Layer on the heat transfer in hypersonic rarefied gas flows. International Journal of Thermal Sciences, 2019, 142, 134-141.	2.6	8
341	Comparison of Shallow Water Solvers: Applications for Dam-Break and Tsunami Cases with Reordering Strategy for Efficient Vectorization on Modern Hardware. Water (Switzerland), 2019, 11, 639.	1.2	16
342	LES and RANS modelling of under-expanded jets with application to gaseous fuel direct injection for advanced propulsion systems. International Journal of Heat and Fluid Flow, 2019, 76, 309-334.	1.1	28
343	Modeling of Knudsen Layer Effects in the Micro-Scale Backward-Facing Step in the Slip Flow Regime. Micromachines, 2019, 10, 118.	1.4	9
344	Nonequilibrium Effects in Immiscible Two-Phase Flow. Advances in Science, Technology and Innovation, 2019, , 81-84.	0.2	1
345	Adaptive Filtered Schemes for First Order Hamilton-Jacobi Equations. Lecture Notes in Computational Science and Engineering, 2019, , 389-398.	0.1	3
346	A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations. Journal of Scientific Computing, 2019, 80, 538-554.	1.1	35
347	Performance assessment of supersonic and hypersonic intake systems with nano-particle injection. Acta Astronautica, 2019, 159, 609-621.	1.7	6
348	A WENO finite-difference scheme for a new class of Hamilton–Jacobi equations in nonlinear solid mechanics. Computer Methods in Applied Mechanics and Engineering, 2019, 349, 17-44.	3.4	13
349	Design of a Sounding Rocket Flight Experiment to Validate Transonic Drag Minimized Waveriders. , 2019, , .		0
350	A low—storage Runge—Kutta OpenFOAM solver for compressible low—Mach number flows: aeroacoustic and thermo—fluid dynamic applications. E3S Web of Conferences, 2019, 128, 10001.	0.2	0
351	NUMERICAL ENTROPY PRODUCTION AS SMOOTHNESS INDICATOR FOR SHALLOW WATER EQUATIONS. ANZIAM Journal, 2019, 61, 398-415.	0.3	0
352	Flow Diagnostics. , 2019, , 477-517.		0
353	Numerical Assessment of Intake Buzz with Nano-Particles across a Supersonic External Compression Intake. , 2019, , .		0

#	Article	IF	CITATIONS
354	Numerical investigation of a chemically reacting and rarefied hypersonic flow field. Shock Waves, 2019, 29, 857-871.	1.0	3
355	Fourth-order accurate finite-volume CWENO scheme for astrophysical MHD problems. Monthly Notices of the Royal Astronomical Society, 2019, 482, 416-437.	1.6	10
356	On the role of pore-fluid pressure evolution and hypoplasticity in debris flows. European Journal of Mechanics, B/Fluids, 2019, 74, 363-379.	1.2	2
357	A numerical study on the impact of chemical modeling on simulating methane-air detonations. Fuel, 2019, 240, 289-298.	3.4	15
358	Dynamic traffic assignment using the macroscopic fundamental diagram: A Review of vehicular and pedestrian flow models. Transportation Research Part B: Methodological, 2020, 137, 99-118.	2.8	32
359	Solution verification of multiphase flows with one-way coupling. Journal of Computational Physics, 2020, 402, 109033.	1.9	1
360	Current Status of MHD Simulations for Space Weather. Atmosphere, Earth, Ocean & Space, 2020, , 1-123.	0.4	2
361	Effects of Variable Total Pressures on Instability and Extinction of Rotating Detonation Combustion. Flow, Turbulence and Combustion, 2020, 104, 261-290.	1.4	62
362	Unsteady draining of reservoirs over weirs and through constrictions. Journal of Fluid Mechanics, 2020, 882, .	1.4	4
363	A High-Resolution Primitive Variable Solver for Compressible Flow Simulation. , 2020, , .		0
364	Modelling n-heptane dilute spray flames in a model supersonic combustor fueled by hydrogen. Fuel, 2020, 264, 116809.	3.4	27
365	Numerical simulation of transpiration cooling experiments in supersonic flow using OpenFOAM. CEAS Space Journal, 2020, 12, 247-265.	1.1	9
366	Numerical investigations of mixed supersonic and subsonic combustion modes in a model combustor. International Journal of Hydrogen Energy, 2020, 45, 1045-1060.	3.8	24
367	A detailed review on <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si52.svg"><mml:mrow><mml:msub><mml:mrow><mml:mtext>CO</mml:mtext></mml:mrow><mml:n two-phase ejector flow modeling. Thermal Science and Engineering Progress, 2020, 20, 100647.</mml:n </mml:msub></mml:mrow></mml:math>	hrov⊉.8 <mn< td=""><td>าl:nลา>2</td></mn<>	าl:n ลา >2
368	Moving-Water Equilibria Preserving Partial Relaxation Scheme for the Saint-Venant System. SIAM Journal of Scientific Computing, 2020, 42, A2206-A2229.	1.3	6
369	Large eddy simulation of non-reacting flow and mixing fields in a rotating detonation engine. Fuel, 2020, 280, 118534.	3.4	24
370	Convergence of adaptive filtered schemes for first order evolutionary Hamilton–Jacobi equations. Numerische Mathematik, 2020, 145, 271-311.	0.9	1
371	The Sod gasdynamics problem as a tool for benchmarking face flux construction in the finite volume method. Scientific African, 2020, 10, e00573.	0.7	2

#	Article	IF	CITATIONS
372	Scaling Analysis of Twoâ€Phase Flow in Fractal Permeability Fields. Water Resources Research, 2020, 56, e2020WR028214.	1.7	7
373	An adaptive well-balanced positivity preserving central-upwind scheme on quadtree grids for shallow water equations. Computers and Fluids, 2020, 208, 104633.	1.3	7
374	Modelling and Simulation of Transpiration Cooling Systems for Atmospheric Re-Entry. Aerospace, 2020, 7, 89.	1.1	2
375	Large eddy simulation of turbulent supersonic hydrogen flames with OpenFOAM. Fuel, 2020, 282, 118812.	3.4	44
376	Application of the sparse-Lagrangian multiple mapping conditioning approach to a model supersonic combustor. Physics of Fluids, 2020, 32, .	1.6	23
377	Operational mode transition in a rotating detonation engine. Journal of Zhejiang University: Science A, 2020, 21, 721-733.	1.3	13
378	Performance of rotating detonation engine with stratified injection. Journal of Zhejiang University: Science A, 2020, 21, 734-744.	1.3	8
379	Transverse beam envelope structures in strongly coupled stimulated Brillouin scattering. Physics of Plasmas, 2020, 27, 102707.	0.7	Ο
380	Incorporation of Morphing Theory to Aerodynamic Flows. Journal of Engineering Mechanics - ASCE, 2020, 146, 04020078.	1.6	0
381	Origin and chaotic propagation of multiple rotating detonation waves in hydrogen/air mixtures. Fuel, 2020, 275, 117986.	3.4	75
382	Verification and Validation of a High-Fidelity Open-Source Simulation Tool for Supersonic Aircraft Aerodynamic Analysis. , 2020, , .		2
383	A well-balanced central-upwind scheme for the thermal rotating shallow water equations. Journal of Computational Physics, 2020, 411, 109414.	1.9	18
384	Weak Local Residuals as Smoothness Indicators in Adaptive Mesh Methods for Shallow Water Flows. Symmetry, 2020, 12, 345.	1.1	1
385	Numerical simulation of wave mode transition in rotating detonation engine with OpenFOAM. International Journal of Hydrogen Energy, 2020, 45, 19989-19995.	3.8	21
386	Positivity preserving schemes for the fractional Klein-Kramers equation with boundaries. Communications in Nonlinear Science and Numerical Simulation, 2020, 91, 105444.	1.7	0
387	High-resolution central-upwind scheme for second-order macroscopic traffic flow models. International Journal of Modern Physics C, 2020, 31, 2050097.	0.8	2
388	Jet Noise in Airframe Integration and Shielding. Applied Sciences (Switzerland), 2020, 10, 511.	1.3	15
389	A pressure-based solution framework for sub- and supersonic flows considering real-gas effects and phase separation under engine-relevant conditions. Computers and Fluids, 2020, 202, 104452.	1.3	12

#	Article	IF	Citations
390	Positive Definite Advection Transport Algorithm for Conservation Law Equations on Nonuniform Irregular Grids. Mathematical Problems in Engineering, 2020, 2020, 1-15.	0.6	0
391	Direct computation of aeroacoustic fields in laminar flows: Solver development and assessment of wall temperature effects on radiated sound around bluff bodies. Computers and Fluids, 2020, 203, 104517.	1.3	5
392	Scalability of OpenFOAM Density-Based Solver with Runge–Kutta Temporal Discretization Scheme. Scientific Programming, 2020, 2020, 1-11.	0.5	7
393	Thermal versus isothermal rotating shallow water equations: comparison of dynamical processes by simulations with a novel well-balanced central-upwind scheme. Geophysical and Astrophysical Fluid Dynamics, 2021, 115, 125-154.	0.4	11
394	A wellâ€balanced positivityâ€preserving centralâ€upwind scheme for oneâ€dimensional blood flow models. International Journal for Numerical Methods in Fluids, 2021, 93, 369-395.	0.9	3
395	Eulerian <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:math> Lagrangian modelling of rotating detonative combustion in partially pre-vaporized n-heptane sprays with hydrogen addition. Fuel. 2021. 290. 119808.	3.4	43
396	Numerical simulation of flame acceleration and deflagration-to-detonation transition in ammonia-hydrogen–oxygen mixtures. International Journal of Hydrogen Energy, 2021, 46, 1273-1287.	3.8	19
397	A new ninthâ€order central Hermite weighted essentially nonoscillatory scheme for hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 2021, 93, 1645-1667.	0.9	3
398	Eulerian-Lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: Validations and verifications. Fuel, 2021, 286, 119402.	3.4	65
399	Dynamics of detonation transmission and propagation in a curved chamber: a numerical and experimental analysis. Combustion and Flame, 2021, 223, 460-473.	2.8	18
400	Adaptive Moving Mesh Central-Upwind Schemes for Hyperbolic System of PDEs: Applications to Compressible Euler Equations and Granular Hydrodynamics. Communications on Applied Mathematics and Computation, 2021, 3, 445-479.	0.7	7
401	Coastal ocean forecasting on the GPU using a two-dimensional finite-volume scheme. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 73, 1876341.	0.8	3
402	Hyperbolicity-Preserving and Well-Balanced Stochastic Galerkin Method for Shallow Water Equations. SIAM Journal of Scientific Computing, 2021, 43, A929-A952.	1.3	6
403	A proposed wavy shield for suppression of supersonic jet noise utilizing reflections. International Journal of Aeroacoustics, 2021, 20, 4-34.	0.8	5
404	Error quantification among CFD solvers for high-speed, non-adiabatic, wall-bounded turbulent flows , 2021, , .		1
405	An assessment of the OpenFOAM implementation of the KNP scheme to simulate strong explosions. Shock Waves, 2021, 31, 193-202.	1.0	6
406	Semi-discrete central-upwind Rankine-Hugoniot schemes for hyperbolic systems of conservation laws. Journal of Computational Physics, 2021, 428, 110078.	1.9	4
407	LES of H2-air jet combustion in high enthalpy supersonic crossflow. Physics of Fluids, 2021, 33, .	1.6	20

#	Article	IF	CITATIONS
408	<scp>octo-tiger</scp> : a new, 3D hydrodynamic code for stellar mergers that uses <scp>hpx</scp> parallelization. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5345-5382.	1.6	15
409	Numerical investigation on cellular detonation reflection over wedges with rounded corner. Acta Astronautica, 2021, 181, 503-515.	1.7	10
410	On the distributions of fuel droplets and <i>in situ</i> vapor in rotating detonation combustion with prevaporized <i>n</i> -heptane sprays. Physics of Fluids, 2021, 33, .	1.6	57
411	On the interaction between a diffraction shock wave and a cylindrical sulfur hexafluoride bubble. AIP Advances, 2021, 11, .	0.6	3
412	Numerical dissipation switch for two-dimensional central-upwind schemes. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, 713-734.	0.8	7
413	Stability Analysis of High-Speed Intakes with Nanoparticle Injection. AIAA Journal, 2021, 59, 1786-1797.	1.5	4
414	Numerical solution of Saint-Venant equation using Runge-Kutta fourth-order method. Journal of Physics: Conference Series, 2021, 1872, 012036.	0.3	1
415	Simulation of high pressure, direct injection processes of gaseous fuels by a density-based OpenFOAM solver. Physics of Fluids, 2021, 33, .	1.6	20
416	Effect of nonideal fluid behavior on the jet mixing process under high-pressure and supersonic flow conditions. Journal of Supercritical Fluids, 2021, 172, 105195.	1.6	9
417	Development of supercritical motion and internal jumps within lock-release radial currents and draining flows. Physical Review Fluids, 2021, 6, .	1.0	2
418	Multiplicity of Flow Regimes in Thin Fluid Layers in Rotating Annular Channels. Fluid Dynamics, 2021, 56, 587-599.	0.2	2
419	Modeling shock-wave strength near a partially opened diaphragm in a shock tube. Shock Waves, 2021, 31, 499-508.	1.0	2
420	Large Eddy simulation of a supersonic lifted hydrogen flame with perfectly stirred reactor model. Combustion and Flame, 2021, 230, 111441.	2.8	15
421	Numerical simulation of two-dimensional detonation propagation in partially pre-vaporized n-heptane sprays. , 2021, 1, .		1
422	The initial flow structures and oscillations of an underexpanded impinging jet. Aerospace Science and Technology, 2021, 115, 106740.	2.5	9
423	Dam-break reflection. Quarterly Journal of Mechanics and Applied Mathematics, 2021, 74, 441-465.	0.5	3
424	A well-balanced positivity-preserving numerical scheme for shallow water models with variable density. Computers and Fluids, 2021, 231, 105156.	1.3	6
425	Under-Expanded Jets Characterization by Means of CFD Numerical Simulation Using an Open FOAM Density-Based Solver. , 0, , .		9

#	Article	IF	CITATIONS
426	Numerical simulation of detonation reflections over cylindrical convex-straight coupled surfaces. International Journal of Hydrogen Energy, 2021, 46, 32273-32283.	3.8	7
427	Verification and Validation of High-Fidelity Open-Source Simulation Tools for Supersonic Aircraft Aerodynamic Analysis. Journal of Verification, Validation and Uncertainty Quantification, 2021, 6, .	0.3	5
428	Large eddy simulation of a supersonic lifted hydrogen flame with sparse-Lagrangian multiple mapping conditioning approach. Combustion and Flame, 2022, 238, 111756.	2.8	5
429	Numerical investigation of pre-detonator in rotating detonation engine. International Journal of Hydrogen Energy, 2021, 46, 31428-31438.	3.8	21
430	A central-upwind scheme for two-layer shallow-water flows with friction and entrainment along channels. ESAIM: Mathematical Modelling and Numerical Analysis, 0, , .	0.8	0
431	Performance analysis of a strut-aided hypersonic scramjet by full-scale IDDES modeling. Aerospace Science and Technology, 2021, 117, 106941.	2.5	15
432	Rotating detonative combustion in partially pre-vaporized dilute n-heptane sprays: Droplet size and equivalence ratio effects. Fuel, 2021, 304, 121481.	3.4	36
433	Analysis of a model of field crack mechanics for brittle materials. Computer Methods in Applied Mechanics and Engineering, 2021, 386, 114061.	3.4	5
434	Influence of concentration gradient on detonation re-initiation in a bifurcated channel. Fuel, 2022, 307, 121895.	3.4	13
435	Breakdown of similarity solutions: a perturbation approach for front propagation during foam-improved oil recovery. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20200691.	1.0	1
437	Method of Distributions for Uncertainty Quantification. , 2017, , 763-783.		5
438	ROW Methods Adapted to Network Simulation for Fluid Flow. Mathematics in Industry, 2016, , 801-808.	0.1	2
439	How to Solve Systems of Conservation Laws Numerically Using the Graphics Processor as a High-Performance Computational Engine. , 2007, , 211-264.		8
441	A Central-Upwind Scheme for Nonlinear Water Waves Generated by Submarine Landslides. , 2008, , 635-642.		5
442	Simulation of Tsunami and Flash Floods. , 2008, , 489-498.		9
443	Central-Upwind Schemes for Boussinesq Paradigm Equations. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2011, , 267-281.	0.2	14
444	An Adaptive Artificial Viscosity Method for the Saint-Venant System. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2013, , 125-141.	0.2	3
445	High-order central WENO schemes for 1D Hamilton-Jacobi equations. , 2003, , 45-54.		2

#	Article	IF	CITATIONS
446	Investigations of autoignition and propagation of supersonic ethylene flames stabilized by a cavity. Applied Energy, 2020, 265, 114795.	5.1	22
447	Low-dissipation centred schemes for hyperbolic equations in conservative and non-conservative form. Journal of Computational Physics, 2020, 416, 109545.	1.9	6
448	On the interactions between a propagating shock wave and evaporating water droplets. Physics of Fluids, 2020, 32, .	1.6	21
451	Morphing continuum analysis of energy transfer in compressible turbulence. Physical Review Fluids, 2018, 3, .	1.0	7
452	Development of a New Algorithm for Modeling Viscous Transonic Flow on Unstructured Grids at High Reynolds Numbers. Journal of Fluids Engineering, Transactions of the ASME, 2021, 143, .	0.8	5
453	A TREATMENT OF CONTACT DISCONTINUITY FOR CENTRAL UPWIND SCHEME BY CHANGING FLUX FUNCTIONS. Journal of the Korean Society for Industrial and Applied Mathematics, 2013, 17, 29-45.	0.0	2
454	The significance of spatial reconstruction in finite volume methods for the shallow water equations. Applied Mathematical Sciences, 0, 8, 1411-1420.	0.0	2
456	Parallelisation of a finite volume method for hydrodynamic inundation modelling. ANZIAM Journal, 0, 49, 558.	0.0	3
457	On the best quantity reconstructions for a well balanced finite volume method used to solve the shallow water wave equations with a wet/dry interface. ANZIAM Journal, 0, 51, 48.	0.0	12
458	A new analytical solution for testing debris avalanche numerical models. ANZIAM Journal, 0, 51, 349.	0.0	6
459	Numerical entropy production for shallow water flows. ANZIAM Journal, 0, 51, 1.	0.0	11
460	A well balanced scheme for the shallow water wave equations in open channels with (discontinuous) varying width and bed. ANZIAM Journal, 0, 52, 967.	0.0	3
461	Numerical simulation and experimental validation of a hypersonic flow for numerical modulation of re-entry phenomena prediction using adaptive mesh refinement. International Journal of Computational Methods and Experimental Measurements, 2013, 1, 381-394.	0.1	3
462	Magneto-plasmadynamic thruster modelling with coaxial induced magnetic field. International Journal of Computational Methods and Experimental Measurements, 2016, 4, 380-392.	0.1	2
463	Second order all speed method for the isentropic Euler equations. Kinetic and Related Models, 2012, 5, 155-184.	0.5	17
464	Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2009, 4, 431-451.	0.5	27
465	Well-balanced scheme for gas-flow in pipeline networks. Networks and Heterogeneous Media, 2019, 14, 659-676.	0.5	6
466	Central Schemes and Second Order Boundary Conditions for 1D Interface and Piston Problems in Lagrangian Coordinates. Communications in Computational Physics, 2010, 8, 797-822.	0.7	4

#	Article	IF	CITATIONS
467	Finite-Volume-Particle Methods for the Two-Component Camassa-Holm System. Communications in Computational Physics, 2020, 27, 480-502.	0.7	4
468	Numerical Analysis of Transonic Flow around Cones. Open Journal of Fluid Dynamics, 2020, 10, 279-290.	0.3	6
469	A New Framework for Modeling Shock-Turbulence Interactions. , 0, , .		3
470	A Second-Order Well-Balanced Positivity Preserving Central-Upwind Scheme for the Saint-Venant System. Communications in Mathematical Sciences, 2007, 5, 133-160.	0.5	303
471	A simple Eulerian finite-volume method for compressible fluids in domains with moving boundaries. Communications in Mathematical Sciences, 2008, 6, 531-556.	0.5	18
472	Numerical method for optimal control problems governed by nonlinear hyperbolic systems of PDEs. Communications in Mathematical Sciences, 2015, 13, 15-48.	0.5	21
473	Moving-water equilibria preserving central-upwind schemes for the shallow water equations. Communications in Mathematical Sciences, 2016, 14, 1643-1663.	0.5	21
474	Hybrid Finite-Volume-Particle Method for Dusty Gas Flows. SMAI Journal of Computational Mathematics, 0, 3, 139-180.	0.0	4
475	Octo-Tiger's New Hydro Module and Performance Using HPX+CUDA on ORNL's Summit. , 2021, , .		5
476	Hybrid Multifluid Algorithms Based on the Path-Conservative Central-Upwind Scheme. Journal of Scientific Computing, 2021, 89, 1.	1.1	1
478	Semi-discrete Schemes for Hamilton-Jacobi Equations on Unstructured Grids. , 2004, , 623-630.		0
479	A Comparison Between Relaxation and Kurganov—Tadmor Schemes. Mathematics in Industry, 2008, , 236-240.	0.1	0
480	A Second Order Central Scheme for Hamilton-Jacobi Equations on Triangular Grids. Lecture Notes in Computer Science, 2009, , 476-485.	1.0	0
481	Quasi-Lagrangian Acceleration of Eulerian Methods. Communications in Computational Physics, 2009, 6, 743-757.	0.7	1
482	Dust, Chemistry & amp; Radiation Transport in MRI-Turbulent Protoplanetary Discs. , 2011, , 103-116.		0
483	CENTRAL SCHEMES WITH LAX-WENDROFF TYPE TIME DISCRETIZATIONS. Bulletin of the Korean Mathematical Society, 2011, 48, 873-896.	0.3	0
484	Modifying and Reducing Numerical Dissipation in A Two-Dimensional Central-Upwind Scheme. Advances in Applied Mathematics and Mechanics, 2012, 4, 340-353.	0.7	0
485	Title is missing!. Jurnal Ilmu Komputer Dan Informasi, 2012, 5, 1.	0.5	2

#	Article	IF	Citations
486	Maximum Principle of Central Schemes with k-monotone Fluxes. Series in Contemporary Applied Mathematics, 2012, , 227-237.	0.8	0
487	The alternating evolution methods for first order nonlinear partial differential equations. Communications in Information and Systems, 2013, 13, 291-325.	0.3	0
488	A Kinetic-Theory Description of Fluids. , 2013, , 68-132.		0
489	Numerical Relativistic Hydrodynamics: High-Order Methods. , 2013, , 459-490.		0
490	Numerical Relativistic Hydrodynamics: Finite-Difference Methods. , 2013, , 386-413.		0
491	Relativistic Perfect Fluids. , 2013, , 133-189.		0
492	Numerical Relativistic Hydrodynamics: HRSC Methods. , 2013, , 414-458.		0
493	Relativistic Hydrodynamics of Selfgravitating Fluids. , 2013, , 593-658.		0
494	Linear and Nonlinear Hydrodynamic Waves. , 2013, , 190-257.		0
495	A Brief Review of General Relativity. , 2013, , 2-67.		1
496	Formulations of the Einstein–Euler Equations. , 2013, , 318-385.		0
497	Reaction Fronts: Detonations and Deflagrations. , 2013, , 258-284.		0
498	Relativistic Non-Perfect Fluids. , 2013, , 285-316.		0
499	Relativistic Hydrodynamics of Non-Selfgravitating Fluids. , 2013, , 492-592.		0
500	High resolution tsunami inundation simulations. , 0, , .		0
501	A Well-Balanced 2-D Model for Dam-Break Flow with Wetting and Drying. Journal of Fluid Flow, Heat and Mass Transfer, 0, , .	0.0	0
502	Generation of large-scale structures and vortex systems in numerical experiments for rotating annular channels. Computational Continuum Mechanics, 2015, 8, 408-422.	0.1	0
503	A HIGH ORDER CENTRAL-UPWIND SCHEME FOR HYPERBOLIC CONSERVATION LAWS. Journal of Applied Analysis and Computation, 2015, 5, 453-464.	0.2	0

#	Article	IF	CITATIONS
505	An improved WENO-Z scheme for a multi-class Lighthill-Whitham-Richards traffic flow model. , 2016, , .		0
506	Dynamically Adaptive Tree Grid Modeling of Flood Inundation Based on Shallow Water Equations. , 2017, , 15-25.		0
507	A Simple Finite-Volume Method on a Cartesian Mesh for Pedestrian Flows with Obstacles. Springer Proceedings in Mathematics and Statistics, 2017, , 43-55.	0.1	0
508	Modeling the sandpit dynamics in river flows. Hydrodynamics and Acoustics, 2018, 1, 132-159.	0.2	0
509	NUMERICAL INVESTIGATION OF MULTI-SPECIES UNDER-EXPANDED SONIC JETS. , 2018, , .		1
510	NUMERICAL ANALYSIS OF HYPERSONIC FLOW COUPLED WITH RADIATION AROUND BLUNT-NOSED MODELS. , 2019, , .		0
511	ON NUMERICAL SIMULATION OF FLOW PROBLEMS BY DISCONTINUOUS GALERKIN AND FINITE VOLUME TECHNIQUES. , 0, , .		0
512	Hypersonic Flow Simulation towards Space Propulsion Geometries. , 0, , .		1
513	Boltzmann–Curtiss Description for Flows Under Translational Nonequilibrium. Journal of Fluids Engineering, Transactions of the ASME, 2020, 142, .	0.8	1
514	Numerical entropy production as smoothness indicator for shallow water equations. ANZIAM Journal, 0, 61, 398-415.	0.0	0
515	Fifth-Order A-WENO Schemes Based on the Adaptive Diffusion Central-Upwind Rankine-Hugoniot Fluxes. Communications on Applied Mathematics and Computation, 2023, 5, 295-314.	0.7	3
516	The Case of Multidimensional Systems. Applied Mathematical Sciences (Switzerland), 2021, , 425-579.	0.4	0
517	Estudio numérico de la generación, propagación e interacción con paredes de ondas explosivas. , 2020, , .		0
518	Operator splitting based central-upwind schemes for shallow water equations with moving bottom topography. Communications in Mathematical Sciences, 2020, 18, 2149-2168.	0.5	6
520	A well-balanced numerical model for depth-averaged two-layer shallow water flows. Computational and Applied Mathematics, 2021, 40, 1.	1.0	1
521	Extinction of incident hydrogen/air detonation in fine water sprays. Physics of Fluids, 2021, 33, 116109.	1.6	23
522	Simulation and modal analysis of transonic shock buffets on a NACA-0012 airfoil. , 2022, , .		2
523	Hyperbolicity-preserving and well-balanced stochastic Galerkin method for two-dimensional shallow water equations. Journal of Computational Physics, 2022, 452, 110901.	1.9	7

#	Article	IF	CITATIONS
524	A semi-discrete Lagrangian–Eulerian scheme for hyperbolic-transport models. Journal of Computational and Applied Mathematics, 2022, 406, 114011.	1.1	6
525	Role of concentration gradient in the re-initiation of H2/O2 detonation in a 90° bifurcated channel. Aerospace Science and Technology, 2022, 120, 107281.	2.5	6
526	Nonequilibrium Effects in Hypersonic Combustion Modeling. Journal of Propulsion and Power, 2022, 38, 523-540.	1.3	6
527	Influence of Vibration-dissociation Coupling and Number of Reactions in Hypersonic Non-equilibrium Flows. Journal of Fluids Engineering, Transactions of the ASME, 2022, , .	0.8	1
528	An adaptive centralâ€upwind scheme on quadtree grids for variable density shallow water equations. International Journal for Numerical Methods in Fluids, 0, , .	0.9	0
529	Comparing Low-Mach and Fully-Compressible CFD Solvers for Phenomenological Modeling of Nanosecond Pulsed Plasma Discharges with and without Turbulence. , 2022, , .		2
530	A structure-preserving algorithm for surface water flows with transport processes. Advances in Computational Mathematics, 2022, 48, 1.	0.8	5
531	Effect of obstacles on the detonation diffraction and subsequent re-initiation. International Journal of Hydrogen Energy, 2022, 47, 6936-6954.	3.8	18
532	Direct numerical simulation of compressible interfacial multiphase flows using a mass–momentum–energy consistent volume-of-fluid method. Computers and Fluids, 2022, 236, 105267.	1.3	1
533	Critical condition and transient evolution of methane detonation extinction by fine water droplet curtains. Fuel, 2022, 315, 123133.	3.4	6
534	A study of the mesh effect on a rocket plume simulation. Results in Engineering, 2022, , 100366.	2.2	2
535	Development and application of a magnetohydrodynamic solver in OpenFOAM. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	Ο
536	Well-Balanced Path-Conservative Central-Upwind Schemes Based on Flux Globalization. SSRN Electronic Journal, 0, , .	0.4	0
537	Effects of Thermodynamic Conditions and Nozzle Geometry in Gaseous Fuels Direct Injection Process for Advanced Propulsion Systems. , 0, , .		4
538	Pulsating propagation and extinction of hydrogen detonations in ultrafine water sprays. Combustion and Flame, 2022, 241, 112086.	2.8	9
539	On the evolutions of induction zone structure in wedge-stabilized oblique detonation with water mist flows. Combustion and Flame, 2022, 241, 112122.	2.8	6
540	Processing and visualization of the results of parametric numerical calculations. Journal of Physics: Conference Series, 2021, 2127, 012025.	0.3	0
541	On the Efficiency of Staggered C-Grid Discretization for the Inviscid Shallow Water Equations from the Perspective of Nonstandard Calculus. Mathematics, 2022, 10, 1387.	1.1	0

#	Article	IF	CITATIONS
542	Numerical study on detonation reflections over concave and convex double wedges. International Journal of Hydrogen Energy, 2022, 47, 17033-17044.	3.8	5
543	Flux Globalization Based Well-Balanced Path-Conservative Central-Upwind Scheme for Two-Layer Thermal Rotating Shallow Water Equations. SSRN Electronic Journal, 0, , .	0.4	0
544	A Unified Consistent Algorithm for the [[Equation]] -Based Compressible Multifluid Flow Model. SSRN Electronic Journal, 0, , .	0.4	0
545	Numerical simulation of forced acoustic gas oscillations with large amplitude in closed tube. Wave Motion, 2022, , 102941.	1.0	0
547	Pulsating one-dimensional detonation in ammonia-hydrogen–air mixtures. International Journal of Hydrogen Energy, 2022, 47, 21517-21536.	3.8	11
548	An Improved Density-Based Compressible Flow Solver in OpenFOAM for Unsteady Flow Calculations. Forum for Interdisciplinary Mathematics, 2022, , 43-66.	0.8	1

549 è;'空é−´éžè§"å^™è§£ä½"物ä,ీŒé−´éš"æ⁻"æ°"动干扰数值å^†æž• Scientia Sinica: Physica, MechanicæÆ Astronomica, 202

550	A Well-Balanced Asymptotic Preserving Scheme for the Two-Dimensional Rotating Shallow Water Equations with Nonflat Bottom Topography. SIAM Journal of Scientific Computing, 2022, 44, A1655-A1680.	1.3	3
551	Downstream fluidic injection based directionally targeted jet noise reduction system. , 2022, , .		0
552	Validation and Verification of pimpleCentralFOAM and a 1D-ERAM Solver for Analysis of an Ejector-Ramjet. , 2022, , .		4
553	Prediction and visualization of supersonic nozzle flows using OpenFOAM. Journal of Visualization, 2022, 25, 1227-1247.	1.1	2
554	Development and verification of a high-speed compressible reactive flow solver in OpenFOAM. Journal of Computational Science, 2022, 63, 101780.	1.5	6
555	Flux Globalization Based Well-Balanced Path-Conservative Central-Upwind Schemes for Shallow Water Models. Journal of Scientific Computing, 2022, 92, .	1.1	5
556	Ignition and deflagration-to-detonation transition modes in ethylene/air mixtures behind a reflected shock. Physics of Fluids, 2022, 34, .	1.6	10
557	New mapped unequal-sized trigonometric WENO scheme for hyperbolic conservation laws. Computers and Fluids, 2022, 245, 105585.	1.3	0
558	Fifth-order A-WENO schemes based on the path-conservative central-upwind method. Journal of Computational Physics, 2022, 469, 111508.	1.9	4
559	Interactions between a propagating detonation wave and circular water cloud in hydrogen/air mixture. Combustion and Flame, 2022, 245, 112369.	2.8	4
560	Numerical Analysis of High Speed Flow Applications using Various Flux Schemes. Trends in Sciences, 2022, 19, 5813.	0.2	0

~		-	
(т	ATIO	NIV	DT
	ALIO	IN IN	 N 1

#	ARTICLE Numerical fluid dynamics for FRG flow equations: Zero-dimensional QFTs as numerical test cases. III. Shock and rarefaction waves in RG flows reveal limitations of the <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
561	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>N</mml:mi> <mml:mo stretchy="false">â†'<mml:mi>â^ž</mml:mi> limit in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>O</mml:mi><mml:mo< td=""><td>1.6</td><td>8</td></mml:mo<></mml:math </mml:mo 	1.6	8
562	stretchy="false">(<mml:mi>N</mml:mi> <mml:mo stretchy="false">)Effects of injection parameters on propagation patterns of hydrogen-fueled rotating detonation waves. International Journal of Hydrogen Energy, 2022, 47, 38811-38822.</mml:mo>	3.8	12
563	Numerical fluid dynamics for FRG flow equations: Zero-dimensional QFTs as numerical test cases. I. The <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>O</mml:mi><mml:mo stretchy="false">(<mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mo </mml:math> model. Physical Review D, 2022, 106.	1.6	11
564	Effect ofÂPulsed Fuel Injection onÂScramjet Combustion Efficiency Using OpenFOAM. Lecture Notes in Mechanical Engineering, 2023, , 65-71.	0.3	Ο
565	The traveling wavefront for foam flow in two-layer porous media. Computational Geosciences, 2022, 26, 1549-1561.	1.2	1
567	Analysis of the oscillations induced by a supersonic jet applied to produce nanofibers. International Journal of Mechanical Sciences, 2023, 238, 107826.	3.6	2
568	OpenFOAMTM Simulation of the Shock Wave Reflection in Unsteady Flow. Symmetry, 2022, 14, 2048.	1.1	1
569	A Finite Difference Mapped WENO Scheme with Unequal-Size Stencils for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2022, 93, .	1.1	0
570	Well-balanced numerical method for atmospheric flow equations with gravity. Applied Mathematics and Computation, 2023, 439, 127587.	1.4	1
571	Simulación mediante OpenFOAM de la reflexión de ondas de choque en superficies sólidas curvas. , 2022, , .		0
572	Consideraciones sobre la variación de la entalpÃa en la dinámica de los gases estacionaria e inestacionaria. , 2022, , .		0
573	Validation for Aerodynamic Performance on Over-Expanded State of Single Expansion Ramp Nozzle Configuration. Aerospace, 2022, 9, 715.	1.1	1
574	Computational analysis in underexpanded jets simulations. Fluid Dynamics Research, 0, , .	0.6	0
575	A method to quantify the supersonic discharge of airbag cold gas inflators. Experiments in Fluids, 2022, 63, .	1.1	1
576	基于å应欧拉æ−¹çï‹æŠ•å½±ç®—æ³•çš"广域庺度æº"ä½"ç^†ç,,敺值æ¨j拟ç"ç©¶. Zhongguo Kexı	ue Josia u Ke	exu e /Scientia
577	Catalytic wall effects for hypersonic nozzle flow in thermochemical non-equilibrium. Acta Astronautica, 2023, 203, 48-59.	1.7	2
578	Well-balanced path-conservative central-upwind schemes based on flux globalization. Journal of Computational Physics, 2023, 474, 111773.	1.9	4

579	A numerical investigation into the influence of the surfactant injection technique on the foam flow in heterogeneous porous media. Advances in Water Resources, 2023, 171, 104358.	1.7	2	
-----	--	-----	---	--

#	Article	IF	CITATIONS
580	Flux globalization based well-balanced path-conservative central-upwind scheme for two-layer thermal rotating shallow water equations. Journal of Computational Physics, 2023, 474, 111790.	1.9	2
581	Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2022, 18, 310-340.	0.5	2
582	Flux globalization based well-balanced central-upwind scheme for one-dimensional blood flow models. Calcolo, 2023, 60, .	0.6	2
583	Effect of obstacles behind the pre-detonator tube on the re-initiation of diffracted detonation wave. International Journal of Hydrogen Energy, 2023, 48, 4860-4874.	3.8	3
584	CFD simulations of under-expanded hydrogen jets under high-pressure injection conditions. Journal of Physics: Conference Series, 2022, 2385, 012051.	0.3	6
585	Large Eddy Simulation of Combustion for High-Speed Airbreathing Engines. Aerospace, 2022, 9, 785.	1.1	6
586	Large eddy simulation of flame and thermal-acoustic characteristics in a strut-based scramjet with dynamic thickened flame model. Case Studies in Thermal Engineering, 2023, 41, 102560.	2.8	4
587	Structure and dynamics of spray detonation in n-heptane droplet/vapor/air mixtures. Combustion and Flame, 2023, 249, 112603.	2.8	7
588	Effects of dilute coal char particle suspensions on propagating methane detonation wave. Combustion and Flame, 2023, 249, 112618.	2.8	2
597	Effects of Thermal/Chemical Nonequilibrium on a High-Mach Ethylene-Fueled Scramjet. Journal of Propulsion and Power, 2023, 39, 562-579.	1.3	2
598	Numerical investigation of high-pressure transcritical shock-droplet interaction and mixing layer using VLE-based CFD accelerated by ISAT. , 2023, , .		3
599	RR to MR Over a Moving Wedge at A High Supersonic Flow. , 2023, , .		0
600	Validation and Verification of reactingPimpleCentralFOAM for Ejector Ramjet Applications. , 2023, , .		1
601	Unsteady Supersonic Flow over a 2-D Morphing Shock Control Bump Using Different Velocity Profiles. , 2023, , .		0
602	Unsteadiness of hypersonic flows over a double wedge. , 2023, , .		0
603	A flux globalization based well-balanced path-conservativeÂcentral-upwind scheme for the shallow water flows in channels. , 0, , .		0
604	Computational and Experimental Study of Nonequilibrium Flow in Plasma Wind Tunnel. Journal of Thermophysics and Heat Transfer, 0, , 1-14.	0.9	0
605	Flow and radiation modeling over a Martian entry vehicle. Acta Astronautica, 2023, 205, 172-184.	1.7	2

#	Article	IF	CITATIONS
606	A Depthâ€Averaged Description of Submarine Avalanche Flows and Induced Surface Waves. Journal of Geophysical Research F: Earth Surface, 2023, 128, .	1.0	2
607	Modelling mooring line snap loads using a high-order finite-volume approach. Ocean Engineering, 2023, 275, 113803.	1.9	2
608	From Task-Based GPU Work Aggregation to Stellar Mergers: Turning Fine-Grained CPU Tasks into Portable GPU Kernels. , 2022, , .		3
609	An efficient semi-implicit friction source term treatment for modeling overland flow. Advances in Water Resources, 2023, 173, 104391.	1.7	2
610	Modeling particle collisions in moderately dense curtain impacted by an incident shock wave. Physics of Fluids, 2023, 35, .	1.6	4
611	A spectral MUSCL scheme for gPC-Galerkin method to uncertain hyperbolic equations. AIP Advances, 2023, 13, 025032.	0.6	0
612	2.5D AMR MHD Magnetic Reconnection Model. Kongjian Kexue Xuebao, 2012, 32, 785.	0.2	1
613	Adaptive central-upwind scheme on triangular grids for the Saint–Venant system. Communications in Mathematical Sciences, 2023, 21, 671-708.	0.5	0
614	Steady rotation of a Mach shock: experimental and numerical evidences. Experiments in Fluids, 2023, 64, .	1.1	0
615	Micro-nozzle flow and thrust prediction with high-density ratio using DSMC selection limiter. Frontiers in Space Technologies, 0, 4, .	0.8	2
616	Dynamic Transition of Unsteady Supersonic Flow From Mach to Regular Reflection Over a Moving Wedge. Journal of Fluids Engineering, Transactions of the ASME, 2023, 145, .	0.8	1
617	Numerical investigation of the effect of equivalence ratio on the propagation characteristics and performance of rotating detonation engine. International Journal of Hydrogen Energy, 2023, 48, 24074-24088.	3.8	6
618	A new two-dimensional blood flow model with arbitrary cross sections. , 2023, 57, 1657-1690.		1
619	Investigations on Hydrogen Injections Using a Real-Fluid Approach. , 0, , .		2
620	Numerical Simulation of Pitching Airfoil in the Slip Flow Regime. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2024, 48, 103-118.	0.8	0
621	A unified consistent source term computational algorithm for the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"><mml:mi>γ</mml:mi>-based compressible multi-fluid flow model. Computers and Fluids 2023 105899</mml:math 	1.3	0
625	Effects of enthalpy on convective Heating of a large angle blunt cone in Martian atmosphere. , 2023, , .		0
626	Performance of the Hypersonic Intake in Varied Free-Stream Conditions. , 2023, , .		0

#	Article	IF	CITATIONS
627	Noise prediction of a single-stream under-expanded jet in OpenFOAM. , 2023, , .		0
657	Reducing Numerical Artifacts by Sacrificing Well-Balance for Rotating Shallow-Water Flow. Springer Proceedings in Mathematics and Statistics, 2023, , 181-189.	0.1	0
678	Resolvent-based framework for jet noise reduction of a low-bypass ratio coannular nozzle. , 2024, , .		0
679	Surrogate Modeling of the Aerodynamic Performance for Airfoils in Transonic Regime. , 2024, , .		0
680	Study of Wall Temperature Effects on Shock-Wave Turbulent Boundary Layer Interaction using Large Eddy Simulations. , 2024, , .		0
681	Three-Dimensional Large-Eddy Simulation of Non-Premixed H ₂ -Air Annular Rotating Detonation Combustor. , 2024, , .		0
689	Computational Modelling of Hypersonic Nozzles: The Influence of Enthalpy on the Flow Thermochemistry. , 0, , .		0