Aromaticity of Phosphorus Heterocycles

Chemical Reviews 101, 1229-1246

DOI: 10.1021/cr990321x

Citation Report

#	Article	IF	CITATIONS
1	Phosphole-Containing π-Conjugated Systems: From Model Molecules to Polymer Films on Electrodes. Chemistry - A European Journal, 2001, 7, 4222-4236.	1.7	238
2	Palladium Complexes of a Novel Family of P,N-Chelates, the 2-(2-Pyridyl)phospholes: Synthesis, Structural Characterization, and Catalytic Activity for Olefin/CO Copolymerization. Organometallics, 2002, 21, 1591-1602.	1.1	74
3	Influence of building block aromaticity in the determination of electronic properties of five-membered heterocyclic oligomers. Physical Chemistry Chemical Physics, 2002, 4, 1522-1530.	1.3	68
5	Diphosphanylketenimines: New Reagents for the Synthesis of Unique Phosphorus Heterocycles. Chemistry - A European Journal, 2002, 8, 3872-3878.	1.7	27
6	Synthesis of the First 2H-1,2-Azaphosphole Complexes with P,C and P,N Ylide Functional Groups. European Journal of Inorganic Chemistry, 2002, 2002, 957-967.	1.0	8
7	Synthesis and Reactivity Towards Cationic Group 11 Metal Centers of an Extended Silacalix-[3]-phosphinine Macrocycle. European Journal of Inorganic Chemistry, 2002, 2002, 2034-2039.	1.0	20
8	Site-selective phosphorylation of arylphospholes through reaction with phosphorus tribromide. Journal of Organometallic Chemistry, 2002, 643-644, 32-38.	0.8	11
9	Phosphorus stabilized carbenes: theoretical predictions. Journal of Organometallic Chemistry, 2002, 643-644, 278-284.	0.8	42
10	Structureâ€"property relationships in phosphole oligomers: a theoretical insight. Journal of Organometallic Chemistry, 2002, 643-644, 194-201.	0.8	23
11	Synthetic, structural and theoretical studies on the new 2,3-dihydro-1,2,4-thia-, selena- and tellura-diphospholes, P2EC2But2(H)Me, (E=S, Se, Te) and their [M(CO)5] complexes (M=Cr, Mo, W). Journal of Organometallic Chemistry, 2002, 659, 84-91.	0.8	9
12	A study of the coordination ability of 2,5-di(2-pyridyl)phospholes on Ru centres. Journal of Organometallic Chemistry, 2002, 663, 118-126.	0.8	9
13	To What Extent Can Nine-Membered Monocycles Be Aromatic?. European Journal of Organic Chemistry, 2003, 2003, 1923-1930.	1.2	23
14	Cycloaddition Behavior of 1,2-Thiaphospholes: Reactions with Diazocumulenes and with Cyclopentadiene. European Journal of Organic Chemistry, 2003, 2003, 1894-1903.	1.2	11
15	Phosphaorganische Chemie: Panorama und Perspektiven. Angewandte Chemie, 2003, 115, 1616-1643.	1.6	195
17	Chemistry of Bridging Phosphanes: Pdl Dimers Bearing 2,5-Dipyridylphosphole Ligands. Chemistry - A European Journal, 2003, 9, 3785-3795.	1.7	68
18	Phospha-Organic Chemistry: Panorama and Perspectives. Angewandte Chemie - International Edition, 2003, 42, 1578-1604.	7.2	575
19	A 1-Methyl-Phosphininium Compound: Synthesis, X-Ray Crystal Structure, and DFT Calculations. Angewandte Chemie - International Edition, 2003, 42, 4940-4944.	7.2	35
20	Facts and artifacts about aromatic stability estimation. Tetrahedron, 2003, 59, 1657-1665.	1.0	175

#	Article	IF	CITATIONS
21	The molecular structure of Cr[(CH2)2PMe2]3: dimethylphosphonium-bis-methylide chromium compounds as inner-phosphonium-alkyl-ate- or 2-phospha-allyl-complexes?. Journal of Organometallic Chemistry, 2003, 683, 261-266.	0.8	19
22	Reactivity of heterophospholes toward 1,3-dipolar cycloaddition of diazo compounds?an FMO analysis. Journal of Physical Organic Chemistry, 2003, 16, 504-512.	0.9	13
23	Linear organic π-conjugated systems featuring the heavy Group 14 and 15 elements. Coordination Chemistry Reviews, 2003, 244, 1-44.	9.5	324
24	Structureâ^'Property Relationships in Phosphole-Containing Ï€-Conjugated Systems: A Quantum Chemical Study. Journal of Physical Chemistry A, 2003, 107, 838-846.	1.1	52
25	Density Functional Theory Study on Dimerizations of Phospholesâ€. Organometallics, 2003, 22, 5526-5533.	1.1	15
26	Synthesis and Electronic Properties of Alternating α,αâ€⁻-Thiophene-Phosphole Oligomers. Organic Letters, 2003, 5, 3467-3470.	2.4	67
27	Do Möbius Silabenzene and Möbius Phosphabenzene Exist? Ab Initio MO and Density Functional Study of Electrocyclic Ring-Opening Reactions of Hetero-Dewar Benzenes Containing Silicon or Phosphorus. Organometallics, 2003, 22, 5454-5462.	1.1	8
28	Organometallic Complexes of Boron, Silicon, and Phosphorus Analogues of Azoles. Advances in Heterocyclic Chemistry, 2003, 85, 1-66.	0.9	6
29	Are polarizabilities useful as aromaticity indices? Tests on azines, azoles, oxazoles and thiazoles. Journal of Computational Methods in Sciences and Engineering, 2004, 4, 427-438.	0.1	3
30	Can thecyclo-P5 Ligand Introduce Basicity at the Transition Metal Center in Metallocenes? A Hybrid Density Functional Study on thecyclo-P5 Analogues of Metallocenes of Fe, Ru and Os. European Journal of Inorganic Chemistry, 2004, 2004, 2723-2732.	1.0	39
31	Pnicogen heterobenzenes. Computational and Theoretical Chemistry, 2004, 674, 125-129.	1.5	11
32	Ring carbo-mers of "aromatic―heterocycles. Physical Chemistry Chemical Physics, 2004, 6, 303-309.	1.3	21
33	Titanocene and zirconocene complexes of a phosphorus analog of an Arduengo's carbene: Application in the synthesis of 1,3-diphosphafulvenes. Chemical Communications, 2004, , 1274-1275.	2.2	29
34	Organometallic Complexes of Benzannelated Phospholyls:  Synthesis and Characterization of Benzophospholyl and the First iso-Benzophospholyl Metal Complexes. Organometallics, 2004, 23, 3683-3693.	1.1	33
35	A New Family of P,N Chelates:  Stereoselective Synthesis of 2-Pyridyl-2-phospholenes in the Coordination Sphere of Palladium(II) Complexes. Organometallics, 2004, 23, 6191-6201.	1.1	34
36	The Literature of Heterocyclic Chemistry, Part VIII, 1999–2001. Advances in Heterocyclic Chemistry, 2004, 87, 1-83.	0.9	17
37	Unusual geometries in main group chemistry. Chemical Society Reviews, 2004, 33, 210.	18.7	60
38	Aromaticity as a Cornerstone of Heterocyclic Chemistry. Chemical Reviews, 2004, 104, 2777-2812.	23.0	662

3

#	Article	IF	CITATIONS
39	Organophosphorus π-conjugated materials: the rise of a new field. Journal of Organometallic Chemistry, 2005, 690, 2482-2487.	0.8	34
40	Substituent effect on low coordination phosphorus chemistry. Journal of Organometallic Chemistry, 2005, 690, 2597-2602.	0.8	25
41	DFT study of "all-metal―aromatic compounds. Coordination Chemistry Reviews, 2005, 249, 2740-2762.	9.5	167
42	On the tautomerism, planarity, and vibrations of phospholes. Chemical Physics, 2005, 313, 123-132.	0.9	21
43	Tautomerism of 1,3-diphospholes. Chemical Physics Letters, 2005, 406, 173-178.	1.2	7
44	Synthesis and Properties of [NiCp*(2,5-tBu2PC4H2)], a 20-Valence-Electron Phosphanickelocene. Chemistry - A European Journal, 2005, 11, 5381-5390.	1.7	29
45	Ï€-Conjugated derivatives containing phosphole rings: synthesis, properties and coordination chemistry. Comptes Rendus Chimie, 2005, 8, 1186-1193.	0.2	15
46	Energetic Aspects of Cyclic Pi-Electron Delocalization:Â Evaluation of the Methods of Estimating Aromatic Stabilization Energies. Chemical Reviews, 2005, 105, 3773-3811.	23.0	559
47	A Theoretical Study of the Formation of the Parent Phosphinine C5H5P from the Flash Vacuum Thermolysis of Diallylvinylphosphine. Journal of Organic Chemistry, 2005, 70, 4637-4642.	1.7	10
48	All-Metal Aromaticity and Antiaromaticity. Chemical Reviews, 2005, 105, 3716-3757.	23.0	529
49	Theoretical and Experimental Reevaluation of the Basicity of \hat{l} »3-Phosphinine. Journal of Physical Chemistry A, 2005, 109, 2957-2963.	1.1	27
50	A Study of Mono- and 1,1â€~-Diphosphaferrocenes as Building Blocks for Ï€-Conjugated Systems. Organometallics, 2005, 24, 5369-5376.	1.1	18
51	Catalysed low temperature H2 release from nitrogen heterocycles. New Journal of Chemistry, 2006, 30, 1675.	1.4	121
52	Organophosphorus π-Conjugated Materials. Chemical Reviews, 2006, 106, 4681-4727.	23.0	965
53	An aromatic–antiaromatic switch in P-heteroles. A small change in delocalisation makes a big reactivity difference. Organic and Biomolecular Chemistry, 2006, 4, 996.	1.5	67
54	Toward Functional π-Conjugated Organophosphorus Materials: Design of Phosphole-Based Oligomers for Electroluminescent Devices. Journal of the American Chemical Society, 2006, 128, 983-995.	6.6	255
55	On the Aromaticity of the Planar Hydrogen-Bonded (HF)3Trimer. Journal of Chemical Theory and Computation, 2006, 2, 761-764.	2.3	26
56	Hungarian Chemistry in the 21 st Century. Nachrichten Aus Der Chemie, 2006, 54, 530-531.	0.0	0

#	Article	IF	CITATIONS
57	Phosphaalkene, phospholyl and phosphinine ligands: New tools in coordination chemistry and catalysis. Coordination Chemistry Reviews, 2006, 250, 627-681.	9.5	413
58	Synthesis and characterization of \hat{l}^2 -diketiminato complexes of antimony (III) halides. Journal of Organometallic Chemistry, 2006, 691, 4250-4256.	0.8	25
59	What are the pKa values of organophosphorus compounds?. Tetrahedron, 2006, 62, 4453-4462.	1.0	140
60	Theoretical elucidation of the regioselectivity in a tandem 1,4-hydride addition/acylation of diethylphosphonocoumarin. Computational and Theoretical Chemistry, 2006, 759, 177-187.	1.5	6
61	Tuning of Electronic Properties in Thienyl-Phosphole π-Conjugated Systems through P-Functionalization Monitored by Raman Spectroscopy. Chemistry - A European Journal, 2006, 12, 3759-3767.	1.7	26
62	Recent Advances in Metallabenzene Chemistry. Angewandte Chemie - International Edition, 2006, 45, 3914-3936.	7.2	274
63	CO Fixation to Stable Acyclic and Cyclic Alkyl Amino Carbenes: Stable Amino Ketenes with a Small HOMO–LUMO Gap. Angewandte Chemie - International Edition, 2006, 45, 3488-3491.	7.2	289
64	Testing Phosphanes in the Palladium Catalysed Allylation of Secondary and Primary Amines. European Journal of Inorganic Chemistry, 2006, 2006, 3911-3922.	1.0	44
67	Functional phosphorus-based π-conjugated systems: Structural diversity without multistep synthesis. Pure and Applied Chemistry, 2007, 79, 201-212.	0.9	30
68	Preparation, Structure, and Biological Properties of Phosphorus Heterocycles with a C – P Ring System. , 2007, , 173-222.		6
69	Study of metal nanoparticles stabilised by mixed ligand shell: a striking blue shift of the surface-plasmon band evidencing the formation of Janus nanoparticles. Journal of Materials Chemistry, 2007, 17, 3509.	6.7	63
70	Dithienophosphinine. Organometallics, 2007, 26, 6497-6500.	1.1	16
71	Transient Palladadiphosphanylcarbenes: Singlet Carbenes with an "Inverse―Electronic Configuration (pï€2instead of σ2) and Unusual Transannular Metalâ^'Carbene Interactions (Ï€C→PdDonation and) Tj ETQq0 C) O 6 g/BT /C	Ove rb ock 10 Tf
72	Phosphinines as ligands in homogeneous catalysis: recent developments, concepts and perspectives. Dalton Transactions, 2007, , 5505.	1.6	165
73	Experimental and theoretical study of phosphinine sulfides. New Journal of Chemistry, 2007, 31, 1493.	1.4	28
74	Synthesis and Photophysical Properties of Phosphole-Cored Dendrimers. Organic Letters, 2007, 9, 3611-3614.	2.4	37
75	Aromatic $1 < i > H < /i > -[1,2]$ Diphosphole with a Planar Tricoordinated Phosphorus, Plus $\hat{i} < \sup > 2 < /\sup > -Coordination Mode between Ruthenium(0) and a Phosphaalkene. Organometallics, 2007, 26, 5050-5058.$	1.1	23
76	Neural Networks as a Tool To Classify Compounds According to Aromaticity Criteria. Chemistry - A European Journal, 2007, 13, 3913-3923.	1.7	29

#	Article	IF	Citations
77	Synthesis of the 2,4,5-Tri-tert-butyl-1,3-diphospholide Anion by Phosphinidene Elimination from 2,4,6-Tri-tert-butyl-1,3,5-triphosphabenzene on Treatment with the Amide Li[NPh(SiMe3)]. Chemistry - A European Journal, 2007, 13, 7121-7128.	1.7	16
78	Electronic properties of tricoordinated phosphorus in hexagonal phosphininium compounds and molecular aromaticity. Journal of Computational Chemistry, 2007, 28, 1467-1475.	1.5	9
79	1,3-Dipolarophile Character of an Extremely Bulky Phosphaalkyne Mes*C≡P (Mes* = 2,4,6-tBu3C6H2) Leading to the Formation of 1,2,4-Diazaphospholes with Unique Hydrogen Bonding Properties. European Journal of Inorganic Chemistry, 2007, 2007, 3491-3496.	1.0	8
80	Recent Developments in Phospholeâ€Containing Oligo―and Polythiophene Materials. European Journal of Inorganic Chemistry, 2007, 2007, 3611-3628.	1.0	125
81	Does the Planar Aromatic Phosphorus Analogue of Pyridone Exist?. European Journal of Organic Chemistry, 2007, 2007, 1669-1677.	1.2	7
82	Why are Phosphole Oxides Unstable? The Phenomenon of Antiaromaticity as a Destabilizing Factor. European Journal of Organic Chemistry, 2007, 2007, 4765-4771.	1.2	23
83	The important role of the phosphorus lone pair in phosphole aromaticity. Heteroatom Chemistry, 2007, 18, 754-758.	0.4	28
84	Effects of group 14–16 heteroatoms on the aromaticity of benzene at DFT level. Computational and Theoretical Chemistry, 2007, 816, 153-160.	1.5	21
85	On the aromaticity of trimethylboroxine: A photoelectron spectroscopic study. Chemical Physics Letters, 2007, 440, 70-72.	1.2	10
86	Synthesis and characterization of novel π-conjugated polymers with phosphole ring derivatives. Journal of Polymer Science Part A, 2007, 45, 2867-2875.	2.5	23
87	Magnetotropicity of phosphole and its arsenic analogue. Theoretical Chemistry Accounts, 2007, 118, 89-97.	0.5	16
88	Synthesis of Conjugated Polymers Containing Phosphole with the 5-Member Fused Carbocycle. Polymer Bulletin, 2007, 58, 645-652.	1.7	26
89	Using three major criteria to evaluate aromaticity of five-member C-containing rings and their Si-, N-, and P-substituted aromatic heterocyclics. Structural Chemistry, 2007, 18, 25-31.	1.0	20
90	Comparative Study on the Structural, Optical, and Electrochemical Properties of Bithiopheneâ€Fused Benzo[<i>c</i>]phospholes. Chemistry - A European Journal, 2008, 14, 8102-8115.	1.7	75
91	Phosphorusâ€Based Heteropentacenes: Efficiently Tunable Materials for Organic nâ€Type Semiconductors. Chemistry - A European Journal, 2008, 14, 9878-9889.	1.7	130
92	P-Chirogenic Benzo-Fused Phenoxaphosphane: Synthesis, Resolution and Study of the Stereochemical Properties of the Corresponding Palladium Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 1309-1317.	1.0	17
93	Dual Supermesityl Stabilization: A Roomâ€Temperatureâ€Stable 1,2,4â€Triphosphole Radical, Sigmatropic Hydrogen Rearrangements, and Tetraphospholide Anion. European Journal of Inorganic Chemistry, 2008, 2008, 2386-2390.	1.0	29
94	Coordination chemistry of phosphole ligands: From supramolecular assemblies to OLEDs. Comptes Rendus Chimie, 2008, 11, 628-640.	0.2	39

#	Article	IF	CITATIONS
95	Diels–Alder reactions involving CP– functionality. Tetrahedron, 2008, 64, 10945-10976.	1.0	38
96	Six-membered Rings with One Phosphorus Atom. , 2008, , 1003-1037.		O
97	Phospholes., 2008,, 1029-1147.		17
98	Ï€-Conjugated phosphole derivatives: synthesis, optoelectronic functions and coordination chemistry. Dalton Transactions, 2008, , 6865.	1.6	184
99	Base-Mediated Cyclization Reaction of 2-Alkynylphenylphosphine Oxides: Synthesis and Photophysical Properties of Benzo[<i>b</i>)phosphole Oxides. Organic Letters, 2008, 10, 2689-2692.	2.4	99
100	Dual Supermesityl Stabilization: 1-Alkyl-1 <i>H</i> -[1,2,4]triphospholes, with Among the Most Planar and Least Sterically Hindered Ïf ³ ,î» ³ -Phosphorus Atoms, and Novel C ₂ P ₃ S ₄ Folded Heterocycles. Organometallics, 2008, 27, 5118-5121.	1.1	5
101	Three or Four Heteroatoms including at least One Phosphorus. , 2008, , 583-601.		1
102	Electronic Structure and Bonding in Neutral and Dianionic Boradiphospholes: R′BC ₂ P ₂ R ₂ (R=H, <i>t</i> Bu, R′=H, Ph). Chemistry - A European Journal, 2009, 15, 8429-8442.	1.7	7
103	Synthesis, Electronic Properties, and Reactivity of Phospholes and 1,1′â€Biphospholes Bearing 2―or 3â€Thienyl <i>C</i> â€Substituents. Chemistry - A European Journal, 2009, 15, 4914-4924.	1.7	57
104	Ambident PCN Heterocycles: N―and Pâ€Phosphanylation of Lithium 1,3â€Benzazaphospholides. Chemistry - A European Journal, 2009, 15, 12263-12272.	1.7	16
105	Geometries, stability and aromaticity of , [M(Al2P2)]â^' (M=Li, Na, K, Cu) and N(Al2P2) (N=Be, Mg, Ca, Zn) clusters. Computational and Theoretical Chemistry, 2009, 900, 44-49.	1.5	2
106	Structures and aromaticity of the planar Al2P2 nâ^' (n=1–4) clusters. Science in China Series B: Chemistry, 2009, 52, 2237-2242.	0.8	2
107	Highly Unsaturated Phosphorus Compounds: Generation and Reactions on Both Multiple Bonds of Vinyl Phosphaalkyne. Organometallics, 2009, 28, 2410-2416.	1.1	13
108	Diphosphines with Strongly Polarized Pâ^'P Bonds: Hybrids between Covalent Molecules and Donorâ^'Acceptor Adducts with Flexible Molecular Structures. Journal of the American Chemical Society, 2009, 131, 10763-10774.	6.6	49
109	How Aromaticity Affects the Chemical and Physicochemical Properties of Heterocycles: A Computational Approach. Topics in Heterocyclic Chemistry, 2009, , 155-202.	0.2	16
110	Ladder Ï€â€Conjugated Materials Containing Mainâ€Group Elements. Chemistry - an Asian Journal, 2009, 4, 1386-1400.	1.7	300
111	Benzo[<i>b</i>]phosphole ontaining ï€â€Electron Systems: Synthesis Based on an Intramolecular <i>trans</i>)â€Halophosphanylation and Some Insights into Their Properties. Chemistry - an Asian Journal, 2009, 4, 1729-1740.	1.7	104
112	New Trends in Chemistry and Application of Aromatic and Related Selenaheterocycles. Topics in Heterocyclic Chemistry, 2009, , 288-340.	0.2	8

#	Article	IF	CITATIONS
113	Aromaticity of Six-Membered Rings with One Heteroatom. Topics in Heterocyclic Chemistry, 2009, , 204-246.	0.2	12
114	Aromatic Phosphorus Heterocycles. Topics in Heterocyclic Chemistry, 2009, , 27-81.	0.2	49
115	Design and synthesis of phosphole-based π systems for novel organic materials. Organic and Biomolecular Chemistry, 2009, 7, 1258.	1.5	279
116	Heterocycles from Phosphoniumâ^'lodonium Ylides. Photochemical Synthesis of λ ⁵ -Phosphinolines. Journal of Organic Chemistry, 2009, 74, 9428-9432.	1.7	41
117	1,2,3-Triphosphole derivatives as reactive intermediates. Chemical Communications, 2009, , 1745.	2.2	32
118	1-(2,4,6-Trialkylphenyl)-1H-Phospholes with a Flattened P-Pyramid: Synthesis and Reactivity. Topics in Heterocyclic Chemistry, 2010, , 149-173.	0.2	7
119	Oligothiophene Bearing 1-Hydroxy-1-oxodithieno[2,3- <i>b</i> :3′,2′- <i>d</i>]phosphole as a Novel Anchoring Group for Dye-sensitized Solar Cells. Chemistry Letters, 2010, 39, 448-450.	0.7	41
120	Pyridoâ€Annulated 1,3â€Azaphospholes: Synthesis of 1,3â€Azaphospholo[5,4â€ <i>b</i>) pyridines and Preliminar Reactivity Studies. European Journal of Inorganic Chemistry, 2010, 2010, 3307-3316.	У _{1.0}	21
122	Towards Spontaneous Heterolysis of the Homonuclear PP Bond in Diphosphines: The Case of Diazaphospholeniumtriphospholides. Chemistry - A European Journal, 2010, 16, 2857-2865.	1.7	14
123	3,4â€Dithiaphosphole and 3,3′,4,4′â€Tetrathiaâ€1,1′â€Biphosphole Ï€â€Conjugated Systems: S Makes the Chemistry - A European Journal, 2010, 16, 11340-11356.	he Impact. 1.7	. 45
125	Stable Cyclic Carbenes and Related Species beyond Diaminocarbenes. Angewandte Chemie - International Edition, 2010, 49, 8810-8849.	7.2	980
126	Electronic structure of two phosphorus compounds. Journal of Electron Spectroscopy and Related Phenomena, 2010, 182, 76-80.	0.8	0
127	Recent developments in the chemistry of donor-functionalized phosphinines. Comptes Rendus Chimie, 2010, 13, 1127-1143.	0.2	48
128	Thiophene-fused phospholo [3,2-b] phospholes and their dichalcogenides: Synthesis and structure–photophysical properties relationships. Comptes Rendus Chimie, 2010, 13, 1082-1090.	0.2	18
129	Structural and bonding aspects of molybdenum tricarbonyl complexes of 2,4,6-tritertiarybutyl-1,3,5-triphosphabenzene, P3C3But3 and some λ3,λ3,λ5- and λ3,λ5,λ5-alkylated derivative Comptes Rendus Chimie, 2010, 13, 1063-1072.	2 :0. 2	16
130	Recent Developments in the Chemistry of N-Heterocyclic Phosphines. Topics in Heterocyclic Chemistry, 2010, , 63-102.	0.2	22
131	Synthesis of a 1-boratabenzene-(2,3,4,5-tetramethylphosphole): towards a planar monophosphole. Chemical Communications, 2010, 46, 6816.	2.2	30
132	Monocyclic Hetarenes with π-Electron Aromatic Sextet. Advances in Heterocyclic Chemistry, 2010, 99, 61-105.	0.9	12

#	Article	IF	CITATIONS
134	Diazaphospholenes: $\langle i \rangle N \langle i \rangle$ -Heterocyclic Phosphines between Molecules and Lewis Pairs. Accounts of Chemical Research, 2010, 43, 1307-1316.	7.6	128
135	Is delocalization a prerequisite for stability of ring systems? A case study of some inorganic rings. Dalton Transactions, 2010, 39, 4126.	1.6	33
136	Intense fluorescence of 1-aryl-2,3,4,5-tetraphenylphosphole oxides in the crystalline state. New Journal of Chemistry, 2010, 34, 1537.	1.4	43
137	Phosphole-based ï€-conjugated electroluminescent materials for OLEDs. New Journal of Chemistry, 2010, 34, 1603.	1.4	57
138	Planarity takes over in the CxHxP6â^'x (x = 0â€"6) series at x = 4. Physical Chemistry Chemical Physics, 2011, 13, 20549.	1.3	37
139	\hat{l}_{\pm} -Phosphino Amino Acids: Synthesis, Structure, and Reactivity. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 666-677.	0.8	14
140	Folding of a Supramolecular Framework Based on a Tetrametallic Clip Driven by Ï€â [~] Ï€ Interactions. Inorganic Chemistry, 2011, 50, 3183-3185.	1.9	16
141	Synthesis and Characterization of a Stable Cyclic <i>gem</i> -Bis(phosphaylide): a 4Ï€-Electron Three-Membered Heterocycle. Inorganic Chemistry, 2011, 50, 7949-7951.	1.9	19
142	Coordination-Driven Supramolecular Assembly of Phosphole-Based π-Conjugated Ligands. Catalysis By Metal Complexes, 2011, , 343-373.	0.6	7
143	Electrocyclization of Phosphahexatrienes: An Approach to λ5-Phosphinines. Journal of Organic Chemistry, 2011, 76, 6125-6133.	1.7	16
144	Aromaticity in heterocyclic analogues of benzene: comprehensive analysis of structural aspects, electron delocalization and magnetic characteristics. Physical Chemistry Chemical Physics, 2011, 13, 20536.	1.3	58
145	Phosphorus Compounds. Catalysis By Metal Complexes, 2011, , .	0.6	45
146	Phosphinine-Based Ligands in Homogeneous Catalysis: State of the Art and Future Perspectives. Catalysis By Metal Complexes, 2011, , 151-181.	0.6	13
147	Density functional theoretical investigation of the aromatic nature of BN substituted benzene and four ring polyaromatic hydrocarbons. Physical Chemistry Chemical Physics, 2011, 13, 20627.	1.3	48
148	Application of Electron Delocalization Indicators in the Study of Electrophilic Aromatic Substitution Reactions. Current Organic Chemistry, 2011, 15, 3627-3651.	0.9	5
149	Inorganic metallocenes: The structures and aromaticity of sandwich compounds of the transition elements with inorganic rings. Coordination Chemistry Reviews, 2011, 255, 2746-2763.	9.5	38
150	P–N-Heterocycles: synthesis of biaryl-type 1,3-benzazaphospholes with ortho-substituted phenyl or 2-heteroaryl groups. Dalton Transactions, 2011, 40, 211-224.	1.6	33
151	Analogy between sulfuryl and phosphino groups: the aromaticity of thiophene-oxide. Structural Chemistry, 2011, 22, 1385-1392.	1.0	12

#	Article	IF	CITATIONS
152	A MP2 and DFT study of the aromatic character of polyphosphaphospholes. Is the pyramidality the only factor to take into consideration?. Journal of Molecular Modeling, 2011, 17, 1267-1272.	0.8	14
154	Intramolecular Cycloaddition Reactions of 1â€Alkenylâ€3,4,5â€triarylâ€1,2â€diphosphacyclopentaâ€2,4â€dienes. European Journal of Organic Chemistry, 2011, 2011, 4910-4918.	· 1.2	11
155	Syntheses and coordination chemistry of bis(4â€pyridyl)―and mixed (4â€pyridyl) (2â€pyridyl)â€phospholes. Heteroatom Chemistry, 2011, 22, 339-347.	0.4	15
156	Chiral and Extended Ï€â€Conjugated Bis(2â€pyridyl)phospholes as Assembling N,P,N Pincers for Coordinationâ€Driven Synthesis of Supramolecular [2,2]Paracyclophane Analogues. Chemistry - A European Journal, 2011, 17, 1337-1351.	1.7	43
157	The Conversion of Furans into Phosphinines. Chemistry - A European Journal, 2011, 17, 10745-10751.	1.7	38
158	Computational study of the interaction of indole-like molecules with water and hydrogen sulfide. Journal of Chemical Physics, 2011, 135, 134310.	1.2	10
159	Ambident Reactivity of PËCHâ€'Nâ€'Heterocycles: Lithiation and Substitution Sites. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 683-687.	0.8	3
160	Phosphonylation of N-Heterocycles and Synthesis of Pyrido-Fused 1,3-Azaphospholes. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 688-693.	0.8	1
161	A MP2 and DFT study of the influence of complexation on the aromatic character of phosphole. Journal of Molecular Modeling, 2012, 18, 765-770.	0.8	2
162	First Annelated Azaphosphole-Ferrocenes: Synthetic Pathways and Structures. Organometallics, 2012, 31, 5986-5989.	1.1	18
163	\ddot{l} f2-P Ligands: convenient syntheses of N-methyl-1,3-benzazaphospholes. Tetrahedron Letters, 2012, 53, 5012-5014.	0.7	25
164	Tautomeric equilibria and aromaticity of phosphodiazoles: An ab initio study. Computational and Theoretical Chemistry, 2012, 980, 92-100.	1.1	10
165	Some novel molecular frameworks involving representative elements. Physical Chemistry Chemical Physics, 2012, 14, 14784.	1.3	10
166	Combining form with function – the dawn of phosphole-based functional materials. Dalton Transactions, 2012, 41, 7792.	1.6	195
169	Facile self-assembly of the first diphosphametacyclophane. Chemical Communications, 2012, 48, 5766.	2.2	23
170	Ab initio and DFT study of the dipole (hyper) polarizabilities of p-nitrophenylphosphine molecule. Journal of Computational Methods in Sciences and Engineering, 2012, 12, 407-421.	0.1	O
171	Spectroscopic and stability studies on unsymmetrical 1,3â€dialkylâ€1,3â€diphosphacyclobutaneâ€2,4â€diyls. Journal of Physical Organic Chemistry, 2012, 25, 733-737.	0.9	12
172	Peculiarities of the M–π interaction in phosphacymantrene derivatives upon the Mn(CO)3 fragment orientation: Experimental and theoretical electron density study. Journal of Molecular Structure, 2012, 1014, 81-91.	1.8	12

#	Article	IF	CITATIONS
173	Annelated P-containing heterocycles from aryl- and hetaryl-substituted phosphonium iodonium ylides with a methoxycarbonyl-group. Tetrahedron, 2013, 69, 7395-7402.	1.0	17
174	Palladium(0)â€Catalyzed Crossâ€Couplings of 2â€Bromophosphinine. European Journal of Organic Chemistry, 2013, 2013, 4756-4759.	1.2	8
175	Phosphonium-lodonium Ylides with Heteroatomic Groups in the Synthesis of Annelated P-Containing Heterocycles. Journal of Organic Chemistry, 2013, 78, 11691-11697.	1.7	21
176	Direct Arylations for Study of the Air-Stable P-Heterocyclic Biradical: From Wide Electronic Tuning to Characterization of the Localized Radicalic Electrons. Journal of the American Chemical Society, 2013, 135, 17610-17616.	6.6	43
177	Phosphanyl-substituted π-excess σ2P heterocycles: Coordination behaviour of 2-di-tert-butylphosphanyl-1-neopentyl-1,3-benzazaphosphole towards CuCl, HgCl2 and [Rh(COD)2]BF4. RSC Advances, 2013, 3, 17726.	1.7	15
178	Syntheses and Structures of an "Alumole―and Its Dianion. Angewandte Chemie - International Edition, 2013, 52, 10031-10034.	7.2	77
179	Coplanar Tetracyclic Ï€â€Excess σ ² P Ligands. European Journal of Inorganic Chemistry, 2013, 2013, 4220-4227.	1.0	18
180	Ï€-Excess Ïf 2P ligands: synthesis of biaryl-type 1,3-benzazaphosphole hybrid ligands and formation of P^P′–M(CO)4 chelate complexes. Dalton Transactions, 2013, 42, 9523.	1.6	26
181	Developments in the Coordination Chemistry of Phosphinines. European Journal of Inorganic Chemistry, 2013, 2013, 187-202.	1.0	139
182	Versatile Cycloaddition Reactions of 1-Alkyl-1,2-Diphospholes. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 238-242.	0.8	11
183	Synthetic Tuning of Electronic and Photophysical Properties of 2-Aryl-1,3-Benzothiaphospholes. Journal of Organic Chemistry, 2013, 78, 7462-7469.	1.7	29
184	Phospholes – Development and Recent Advances. Mendeleev Communications, 2013, 23, 117-130.	0.6	65
185	Oxazol-2-ylidenes. A new class of stable carbenes?. RSC Advances, 2013, 3, 7970.	1.7	32
186	Syntheses of 2â€Unsubstituted 1 <i>H</i> à€1,3â€Benzazaphospholes from <i>N</i> à€Formylâ€2â€bromoanilide Heteroatom Chemistry, 2013, 24, 452-459.	^{S.} O.4	15
188	Synthesis, Structure, and Reactivity of Lewis Base Stabilized Plumbacyclopentadienylidenes. Chemistry - A European Journal, 2013, 19, 16946-16953.	1.7	32
189	Alkali and transition metal phospholides. Russian Chemical Reviews, 2014, 83, 555-574.	2.5	33
190	Coordination Behaviour of a Hexadentate 1,1′â€Ferrocenyleneâ€Bridged Bisphosphole towards Coinage Metal Centres. European Journal of Inorganic Chemistry, 2014, 2014, 1751-1759.	1.0	18
191	Metal-Free $\ddot{l}f$ -Bond Metathesis in Ammonia Activation by a Diazadiphosphapentalene. Journal of the American Chemical Society, 2014, 136, 16764-16767.	6.6	75

#	Article	IF	CITATIONS
192	Ïf ² P,Oâ€Hybrid Ligands: Synthesis of the First 4â€Hydroxyâ€1,3â€benzazaphospholes by <i>ortho</i> àê£Lithiation of <i>m</i> â6Amidophenyl Diethyl Phosphates. European Journal of Inorganic Chemistry, 2014, 2014, 5958-5968.	1.0	8
193	Substituent effect on the aromaticity of the silolide anion. Structural Chemistry, 2014, 25, 377-387.	1.0	16
194	Triazaphospholes versus Triazoles: An Investigation of the Differences between "Click―Derived Chelating Phosphorus- and Nitrogen-Containing Heterocycles. Organometallics, 2014, 33, 511-516.	1.1	35
195	Tunable self-assembly properties of amphiphilic phosphole alkynylgold(<scp>i</scp>) complexes through variation of the extent of the aromatic l̃€-surface at the alkynyl moieties. Chemical Communications, 2014, 50, 13272-13274.	2,2	32
196	Impact of high Ï€-density on the coordination properties of Ï€-excess aromatic neutral σ2P ligands – P(Ĩ€)-donor bonds to Ag+and HgCl2. Dalton Transactions, 2014, 43, 51-54.	1.6	31
197	P-chiral phosphorus heterocycles: a straightforward synthesis. Chemical Communications, 2014, 50, 5826-5828.	2.2	23
198	Hydrogen Activation by an Aromatic Triphosphabenzene. Journal of the American Chemical Society, 2014, 136, 13453-13457.	6.6	71
199	Preparation of Dithienylphospholes by 1,1â€Carboboration. Chemistry - A European Journal, 2014, 20, 11883-11893.	1.7	23
200	Enantiomerically Pure N Chirally Substituted 1,3-Benzazaphospholes: Synthesis, Reactivity toward <i>t</i> BuLi, and Conversion to Functionalized Benzazaphospholes and Catalytically Useful Dihydrobenzazaphospholes. Organometallics, 2014, 33, 804-816.	1.1	27
201	N,N′-Fused Bisphosphole: Heteroaromatic Molecule with Two-Coordinate and Formally Divalent Phosphorus. Synthesis, Electronic Structure, and Chemical Properties. Inorganic Chemistry, 2014, 53, 3243-3252.	1.9	35
202	Solvent-controlled lithiation of PC–N-heterocycles: Synthesis of mono- and bis(trimethylsilyl)-tert-butyl-dihydrobenzazaphospholes – A new type of highly bulky andÂbasicÂphosphine ligands. Journal of Organometallic Chemistry, 2014, 763-764, 44-51.	0.8	16
204	Recent Developments in the Chemistry of Pyridyl-functionalized, Low-coordinate Phosphorus Heterocycles. Chemistry Letters, 2014, 43, 1390-1404.	0.7	45
205	Pyridylâ€Functionalised 3 <i>H</i> à€1,2,3,4â€Triazaphospholes: Synthesis, Coordination Chemistry and Photophysical Properties of Lowâ€Coordinate Phosphorus Compounds. Chemistry - A European Journal, 2015, 21, 11096-11109.	1.7	48
206	Ï€â€Excess σ ² P=C–N–Heterocycles: Catalytic <i>P</i> à€Arylation and Alkylation of <i>N</i> â€Alkylâ€1,3â€benzazaphospholes and Isolation of <i>P</i> , Si>Nâ€Disubstituted DihydrobenzazaÂphosphole <i>P</i> à6€Oxides. European Journal of Inorganic Chemistry, 2015, 2015, 3995-4005.	1.0	11
208	Effects of pnictogen and chalcogen bonds on the aromaticities of carbazole-like and dibenzofuran-like molecular skeletons: Cambridge Crystallographic Data Centre (CCDC) Study. Journal of Physical Organic Chemistry, 2015, 28, 490-496.	0.9	9
209	Phosphaindazole: A Phosphorus–Carbon Aromatic Heterocycle. European Journal of Inorganic Chemistry, 2015, 2015, 2046-2051.	1.0	5
210	The Triboracyclopropenyl Dianion: The Lightest Possible Mainâ€Groupâ€Element Hýckel Ï€â€Aromatic. Angewandte Chemie - International Edition, 2015, 54, 15084-15088.	7.2	58
212	Facile Synthesis and Properties of 2â€Î» ⁵ â€Phosphaquinolines and 2â€Î» ⁵ â€Phosphaquinolinâ€2â€ones. Angewandte Chemie - International Edition, 2015, 54, 13318-1	13322.	36

#	Article	IF	CITATIONS
213	Aromatic behaviour of benzene and naphthalene upon pnictogen substitution. Tetrahedron, 2015, 71, 826-839.	1.0	31
214	Ï€-Rich σ ² P-Heterocycles: Bent Î∙ ¹ -P- and ν ² -P-Coordinated 1,3-Benzazaphosphole Copper(I) Halide Complexes. Inorganic Chemistry, 2015, 54, 2117-2127.	1.9	26
215	Environmentâ€Sensitive Fluorescent Probe: A Benzophosphole Oxide with an Electronâ€Donating Substituent. Angewandte Chemie - International Edition, 2015, 54, 4539-4543.	7.2	162
216	Phosphorus-Based Chromophores: Emitters for OLEDs. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 845-853.	0.8	12
217	\hat{I} -Rich \hat{I} / I / I -Ligands: Unusual Coordination Behavior of 1H-1,3-Benzazaphospholes Toward Late Transition Metals. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 806-815.	0.8	10
218	Synthesis and Properties of Benzophospholo[3,2- <i>b</i>)benzofuran Derivatives. Journal of Organic Chemistry, 2015, 80, 3790-3797.	1.7	28
220	2-(2′-Pyridyl)-4,6-diphenylphosphinine versus 2-(2′-pyridyl)-4,6-diphenylpyridine: synthesis and characterization of novel Cr ⁰ , Mo ⁰ and W ⁰ carbonyl complexes containing chelating P,N and N,N ligands. Dalton Transactions, 2015, 44, 10304-10314.	1.6	13
221	Stability and Reactivity of 1,3-Benzothiaphosphole: Metalation and Diels–Alder Chemistry. Organometallics, 2015, 34, 5366-5373.	1.1	5
222	Influence of Pâ€Bonded Bulky Substituents on Electronic Interactions in Ferrocenylâ€Substituted Phospholes. Chemistry - A European Journal, 2015, 21, 11545-11559.	1.7	39
223	Ï€-Rich Ïf2P-Heterocycles: d10-Transition Metal Complexes of 1H-1,3-Benzazaphospholes with Unusual Coordination. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 951-952.	0.8	1
224	Transition-Metal Carbonyl Complexes of 2,5-Diferrocenyl-1-phenyl-1 <i>H</i> -phosphole. Organometallics, 2015, 34, 4293-4304.	1.1	33
225	Edge modification of PAHs: the effect of embedded heterocycles on the aromaticity pattern. Structural Chemistry, 2015, 26, 1351-1357.	1.0	15
226	$\hat{l}\cdot 1$ -silolyl-FeCp(CO) 2 complexes. Is there a way to sila-ferrocene?. Journal of Organometallic Chemistry, 2015, 799-800, 291-298.	0.8	4
227	Ï€-Rich Ïf2P-Heterocycles: Syntheses, Reactivity, and Application Potential of 1,3-Benzazaphospholes. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 949-950.	0.8	1
228	Ï∈-Excess aromatic Ï f 2P ligands: Unprecedented reductive Câ f "C coupling of neopentylbenzazaphosphole at the PCHâ f "N group by Fe3(CO)12 to an heterocyclic 1,2-bis(phosphido)-Fe2(CO)6 complex. Journal of Organometallic Chemistry, 2015, 776, 60-63.	0.8	8
229	Effect of Mono- and Poly-CH/P Exchange(s) on the Aromaticity of the Tropylium Ion. Molecules, 2016, 21, 1099.	1.7	4
230	Direct Synthesis of Phospholyl Lithium from White Phosphorus. Angewandte Chemie - International Edition, 2016, 55, 9187-9190.	7.2	67
231	Ein Cyclotriboranâ€Dianion und das Triborâ€Kation – "leichte Enden―der HÃ⅓ckelâ€Regel. Angewandte Chemie, 2016, 128, 1998-2000.	1.6	6

#	Article	IF	Citations
232	The Heavier Analogues of Alkenes: A Theoretical Comparison of Unsaturated Group 15/14 Systems. European Journal of Inorganic Chemistry, 2016, 2016, 709-717.	1.0	7
234	Direct Synthesis of Phospholyl Lithium from White Phosphorus. Angewandte Chemie, 2016, 128, 9333-9336.	1.6	16
235	First-principle investigation on growth patterns and properties of cobalt-doped lithium nanoclusters. Journal of Molecular Modeling, 2016, 22, 133.	0.8	3
236	Ï€-Conjugated phospholes and their incorporation into devices: components with a great deal of potential. Chemical Society Reviews, 2016, 45, 5296-5310.	18.7	216
237	1,1―and 1,4â€Addition Reactions with 3a,6aâ€Diazaâ€1,4â€diphosphapentalene Containing Twoâ€Coordinate a Formally Divalent Phosphorus. European Journal of Inorganic Chemistry, 2016, 2016, 3629-3633.	and 1.0	18
238	Chemical properties of 3a,6a-diaza-1,4-diphosphapentalene. Addition of polyhalohydrocarbons. Russian Chemical Bulletin, 2016, 65, 2658-2667.	0.4	15
239	A Cyclotriborane Dianion and the Triboron Cation: "Light Ends―of the Hýckel Rule. Angewandte Chemie - International Edition, 2016, 55, 1962-1964.	7.2	8
240	A computational study of azaphospholes: anions and neutral tautomers. Structural Chemistry, 2016, 27, 1531-1542.	1.0	9
241	A Rational Synthetic Approach to 2,5â€Diphenylâ€Î²â€silyl Phospholes. European Journal of Inorganic Chemistry, 2016, 2016, 718-725.	1.0	15
242	Synthesis and Photoluminescence Properties of Cu ^I Complexes with Chelating Phosphinito Phosphinine Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 633-638.	1.0	31
243	Electronâ \in Rich Aromatic 1,3â \in Heterophospholes â \in " Recent Syntheses and Impact of High Electron Density at $ f $ sup>2P on the Reactivity. European Journal of Inorganic Chemistry, 2016, 2016, 575-594.	1.0	23
244	Photochromism of diarylethene derivatives having benzophosphole and benzothiophene groups. Dyes and Pigments, 2016, 126, 186-193.	2.0	11
245	Aromaticity and conformational flexibility of five-membered monoheterocycles: pyrrole-like and thiophene-like structures. Structural Chemistry, 2016, 27, 101-109.	1.0	6
246	Electronic interactions in gold(I) complexes of 2,5-diferrocenyl-1-phenyl-1H-phosphole. Journal of Organometallic Chemistry, 2016, 803, 104-110.	0.8	17
247	Stimuli-responsive chromism in organophosphorus chemistry. Dalton Transactions, 2016, 45, 1850-1855.	1.6	48
248	Aromaticity of 1,4-dehydrotropylium ion and its mono- and poly-phospha analogues. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 674-682.	0.8	3
249	Strategies toward phosphorus-containing PAHs and the effect of P-substitution on the electronic properties. Pure and Applied Chemistry, 2017, 89, 341-355.	0.9	9
250	DFT study of host-dopant systems of DPVBi with organophosphorus π-conjugated materials. Computational and Theoretical Chemistry, 2017, 1113, 61-71.	1.1	3

#	Article	IF	CITATIONS
251	Electronic structure, stability, and aromaticity of H $_2$ B $_2$ XH (X = N, P) molecules: A theoretical study. Computational and Theoretical Chemistry, 2017, 1113, 120-125.	1.1	2
252	1,4â€Diphosphinines from Imidazoleâ€2â€ŧhiones. Angewandte Chemie - International Edition, 2017, 56, 9231-9235.	7.2	38
253	Significant π-stacking effect between 2,4,6-triphenyl-1-phosphabenzenes. Structural Chemistry, 2017, 28, 1243-1253.	1.0	2
254	A Guide for the Design of Functional Polyaromatic Organophosphorus Materials. Chemistry - A European Journal, 2017, 23, 13919-13928.	1.7	41
255	Phosphorusâ€Containing Polycyclic Aromatic Hydrocarbons. ChemPhysChem, 2017, 18, 2618-2630.	1.0	66
256	A Straightforward Synthesis of 1,2-Azaphosphindoles. European Journal of Inorganic Chemistry, 2017, 2017, 2504-2509.	1.0	7
257	Phosphinine – synthesis of a heavy sibling of pyridine (microreview). Chemistry of Heterocyclic Compounds, 2017, 53, 858-860.	0.6	10
258	Planar lithium silolide: aromaticity, with significant contribution of non-classical resonance structures. Chemical Communications, 2017, 53, 11064-11067.	2.2	16
259	1,4â€Diphosphinine aus Imidazolâ€2â€thionen. Angewandte Chemie, 2017, 129, 9359-9363.	1.6	14
260	Heterocyclic Building Blocks for Organic Semiconductors. Advances in Heterocyclic Chemistry, 2017, 121, 133-171.	0.9	54
261	Multidentate Phosphanyl Phosphinines: Synthesis and Properties. Chemistry - A European Journal, 2018, 24, 8432-8437.	1.7	14
262	Synthesis and Photophysical Properties of \hat{l} » (sup>5-Phosphinines as a Tunable Fluorophore. Journal of the American Chemical Society, 2018, 140, 2046-2049.	6.6	46
263	Inorganic Aromaticity of Mn ₆ -Ring Cluster in Layered Li(Ni _{0.5} Mn _{0.5})O ₂ . Journal of Physical Chemistry C, 2018, 122, 4125-4132.	1.5	10
264	1,4-Additions of tricyclic 1,4-diphosphinines – a novel system to study σ-bond activation and π–π dispersion interactions. Chemical Communications, 2018, 54, 1182-1184.	2.2	17
266	On the reactivity of P-chloro dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]phosphole oxide. Canadian Journal of Chemistry, 2018, 96, 555-560.	0.6	2
267	A Oneâ€Step Germole to Silole Transformation and a Stable Isomer of a Disilabenzene. Chemistry - A European Journal, 2018, 24, 848-854.	1.7	26
268	Topics of 1,3-diphosphacyclobutane-2,4-diyl derivatives: Structural aspects and functionality of isolable heavier congeners of cyclobutane-1,3-diyl and the related molecules. Tetrahedron Letters, 2018, 59, 1-13.	0.7	21
269	Expanding the chemistry of ring-fused 1,4-diphosphinines by stable mono anion formation. Chemical Communications, 2018, 54, 13555-13558.	2.2	14

#	Article	IF	CITATIONS
270	One Step Forward: A Novel "Step-Conjugated―Biphosphole. CheM, 2018, 4, 2485-2488.	5.8	0
271	Photoluminescent Phosphinine Cu(I) Halide Complexes: Temperature Dependence of the Photophysical Properties and Applications as a Molecular Thermometer. Inorganic Chemistry, 2018, 57, 13235-13245.	1.9	31
272	An Unexpected "Step-Conjugated―Biphosphole via Unique P–P Bond Formation. CheM, 2018, 4, 2628-2643.	5.8	10
273	A theoretical study of the properties of ninetyâ€ŧwo "aromaticâ€∙six―membered rings including benzene, azines, phosphinines and azaphosphinines. Heteroatom Chemistry, 2018, 29, .	0.4	14
274	Synthesis of Azaphosphinines by Directed Inverseâ€Electronâ€Demand Heteroâ€Diels–Alder Reactions with Na(OCP). Chemistry - A European Journal, 2018, 24, 11573-11577.	1.7	17
275	Effect of heteroatom doping on the hydrogenation of volleyballene. Journal of Raman Spectroscopy, 2019, 50, 1519-1526.	1.2	2
276	Hydrogen activation by isomeric aromatic phosphabenzene: A theoretical study. Polyhedron, 2019, 170, 690-694.	1.0	1
278	Phosphaaluminirenes: Synthons for Main Group Heterocycles. Journal of the American Chemical Society, 2019, 141, 16971-16982.	6.6	30
279	Making the unconventional $\hat{1}\frac{1}{4}$ (sup>2-P bridging binding mode more conventional in phosphinine complexes. Chemical Science, 2019, 10, 3168-3180.	3.7	25
280	Application of the Extended HOMED (Harmonic Oscillator Model of Aromaticity) Index to Simple and Tautomeric Five-Membered Heteroaromatic Cycles with C, N, O, P, and S Atoms. Symmetry, 2019, 11, 146.	1.1	24
281	Doping Sumanene with Both Chalcogens and Phosphorus(V): Oneâ€Step Synthesis, Coordination, and Selective Response Toward Ag ^I . Angewandte Chemie - International Edition, 2019, 58, 3819-3823.	7.2	40
282	Polymetallic Cu(I) complexes based on bridging phosphine ligands. , 2019, , 21-59.		3
283	Dismantling the Hyperconjugation of Ï€â€Conjugated Phosphorus Heterocycles. Chemistry - A European Journal, 2019, 25, 9035-9044.	1.7	22
284	P-Protected Diphosphadibenzo[<i>a</i> , <i>e</i>)pentalenes and Their Mono- and Dicationic P-Bridged Ladder Stilbenes. Organic Letters, 2019, 21, 2033-2038.	2.4	20
285	Dibenzo[$\langle i \rangle b \langle i \rangle, \langle i \rangle e \langle i \rangle$] phosphindolizines synthesized by a ring-closing metathesis of benzo[$\langle i \rangle b \langle i \rangle$] phospholes with two vinyl tethers. Chemical Communications, 2019, 55, 4909-4912.	2.2	7
286	Reaction of 3a,6a-Diaza-1,4-diphosphapentalene with Substituted Acetylenes. Russian Journal of General Chemistry, 2019, 89, 51-58.	0.3	3
287	[â€ \cdot 4+2] versus [â€ \cdot 2+2] Homodimerization in P(V) Derivatives of 2,4-Disubstituted Phospholes. Heteroatom Chemistry, 2019, 2019, 1-10.	0.4	1
288	Doping Sumanene with Both Chalcogens and Phosphorus(V): Oneâ€Step Synthesis, Coordination, and Selective Response Toward Ag I. Angewandte Chemie, 2019, 131, 3859-3863.	1.6	7

#	Article	IF	CITATIONS
289	Manifestation of exo-cyclic aromaticity in triangular heterocyclic $\hfill B_{2}\hfill B_$	0.8	2
290	Phospholones from Diacetylenic Ketones: Synthesis, Properties, and Reactivity. Journal of Organic Chemistry, 2019, 84, 3491-3499.	1.7	3
291	Phosphorous-Based Heterocycles. , 2019, , 457-468.		1
292	Synthesis of a Trivalent P â€Chloroâ€Dithienophosphole and Its Reactivity with Organometallic Reagents. European Journal of Inorganic Chemistry, 2019, 2019, 1612-1620.	1.0	6
293	Re I Complexes of Pyridylphosphinines and 2,2′â€Bipyridine Derivatives: A Comparison. European Journal of Inorganic Chemistry, 2019, 2019, 1575-1585.	1.0	6
294	Ï∈-Excess-aromatic and non-aromatic 1,3-azaphospholes – impact of annulation and multiple reactivity. Pure and Applied Chemistry, 2019, 91, 761-771.	0.9	2
296	Chemistry of αâ€Phosphanyl αâ€Amino Acids. European Journal of Inorganic Chemistry, 2019, 2019, 1507-1518.	1.0	11
297	Copper atalyzed [3+2] Cycloaddition Reactions of Isocyanoacetates with Phosphaalkynes to Prepare 1,3â€Azaphospholes. Angewandte Chemie, 2019, 131, 1180-1185.	1.6	3
298	Effect of Arsenic Coordination State on the Structure, Aromaticity, and Optical Properties of Dithieno[3,2â€∢i>b⟨ i>:2′,3′â€∢i>d⟨ i>]arsoles. European Journal of Inorganic Chemistry, 2019, 2019, 1539	1 -1 :543.	9
299	Copperâ€Catalyzed [3+2] Cycloaddition Reactions of Isocyanoacetates with Phosphaalkynes to Prepare 1,3â€Azaphospholes. Angewandte Chemie - International Edition, 2019, 58, 1168-1173.	7.2	16
300	Stabilization of neutral tricoordinate pyramidal boron: Enhanced Lewis acidity and profound reactivity. Polyhedron, 2020, 175, 114193.	1.0	2
301	Isolation of singlet carbene derived 2-phospha-1,3-butadienes and their sequential one-electron oxidation to radical cations and dications. Chemical Science, 2020, 11, 1975-1984.	3.7	19
302	1,2-(Benz)Azaphospholes: A Slow Beginning to a Bright Future. Comments on Inorganic Chemistry, 2020, 40, 25-51.	3.0	3
303	Diphosphametacyclophanes: Structural and Electronic Influences of Substituent Variation within a Family of Bis(diketophosphanyl) Macrocycles. Journal of Organic Chemistry, 2020, 85, 14697-14707.	1.7	4
304	Dual Reactivity of 3a,6a-Diaza-1,4-diphosphapentalene: π-Donor versus n-Donor. Inorganic Chemistry, 2020, 59, 11337-11346.	1.9	11
305	Gas-phase spectroscopic characterization of neutral and ionic polycyclic aromatic phosphorus heterocycles (PAPHs). Monthly Notices of the Royal Astronomical Society, 2020, 500, 2564-2576.	1.6	7
306	1,3,4-Azadiphospholides as building blocks for scorpionate and bidentate ligands in multinuclear complexes. Dalton Transactions, 2020, 49, 8201-8208.	1.6	2
307	Cycloadditions of 1H â€1,3â€Benzazaphospholes with o â€Chloranil. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 959-963.	0.6	1

#	ARTICLE	IF	CITATIONS
308	Synthesis, Electronic Properties and OLED Devices of Chromophores Based on l̂» ⁵ â€Phosphinines. Chemistry - A European Journal, 2020, 26, 10534-10543.	1.7	26
309	Synthesis of N,P â€Disecondary o â€Arylphosphanylanilines via o â€R 1 NHC 6 H 4 P(R)O 2 Et Precursors and Preliminary Study of Cyclocondensations with (EtO) 3 CH/NH 4 PF 6. European Journal of Inorganic Chemistry, 2020, 2020, 182-190.	1.0	2
310	Integrating firefly algorithm with density functional theory for global optimization of Al42 \hat{a} clusters. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	7
311	[4+2] Cycloaddition reactions of 1-alkyl-2,3,4,5-tetraphenylphosphole derivatives. Russian Chemical Bulletin, 2020, 69, 492-495.	0.4	1
312	Phospholes, benzannulated forms, and analogs. , 2020, , 565-690.		0
313	Synthesis of 1,2,4-azadiphosphole derivatives based on vanadium-catalyzed [2+2+1] cycloaddition reactions of azobenzenes with phosphaalkynes. RSC Advances, 2020, 10, 12730-12733.	1.7	6
314	2â€(Dimethylamino)phosphinine: A Phosphorusâ€Containing Aniline Derivative. Angewandte Chemie - International Edition, 2021, 60, 3581-3586.	7.2	12
315	2â€(Dimethylamino)phosphinin: Ein phosphorhaltiges Anilinderivat. Angewandte Chemie, 2021, 133, 3625-3630.	1.6	4
316	lsolation of a 16Ï€â€Electrons 1,4â€Diphosphinineâ€1,4â€diide with a Planar C ₄ P ₂ Rir Chemistry - A European Journal, 2021, 27, 3055-3064.	^{ng.} 1.7	20
317	Sterically constrained tricyclic phosphine: redox behaviour, reductive and oxidative cleavage of P–C bonds, generation of a dilithium phosphaindole as a promising synthon in phosphine chemistry. Chemical Science, 2021, 12, 3460-3474.	3.7	3
318	Six-membered Rings With One Phosphorus Atom. , 2021, , 685-685.		0
319	Six-Membered Rings With Two or More Heteroatoms With at Least One Phosphorus., 2022,, 735-767.		1
320	Theoretical Determination of pKas of P(1)-H Phospholes and their Comparison with N(1)-H Azoles. Australian Journal of Chemistry, 2021, , .	0.5	2
321	NICS—Nucleus-independent Chemical Shift. , 2021, , 99-154.		25
322	Synthesis, structural characterization, and optical properties of benzo[<i>f</i>]naphtho[2,3- <i>b</i>]phosphoindoles. Beilstein Journal of Organic Chemistry, 2021, 17, 671-677.	1.3	0
323	A Benzodiphosphaborolediide. Chemistry - A European Journal, 2021, 27, 16342-16346.	1.7	5
324	Heavier element-containing aromatics of $[4n+2]$ -electron systems. Chemical Society Reviews, 2021, 50, 10594-10673.	18.7	32
326	How Aromaticity Affects the Chemical and Physicochemical Properties of Heterocycles: A Computational Approach. Topics in Heterocyclic Chemistry, 2008, , 155.	0.2	1

#	Article	IF	Citations
327	Aromatic Phosphorus Heterocycles. Topics in Heterocyclic Chemistry, 2008, , 27.	0.2	1
328	Phosphides of Non-Metals., 2016,, 127-210.		1
329	Characterization of a 3,4-Dihydro-1,3,4-triphosphacyclopenta[a]indene as an Isomer of a Mes*-substituted 1,3,6-Triphosphafulvene (Mes* = 2,4,6-t-Bu3C6H2). Heterocycles, 2004, 63, 2591.	0.4	3
330	Synthesis and Properties of Highly Stable P-Heterocyclic Singlet Biradicals and Related Compounds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 731-741.	0.0	2
331	New Trends in Chemistry and Application of Aromatic and Related Selenaheterocycles. Topics in Heterocyclic Chemistry, 2008, , 288.	0.2	1
332	Aromaticity of Six-Membered Rings with One Heteroatom. Topics in Heterocyclic Chemistry, 2008, , .	0.2	0
333	Development of novel syntheses of organophosphorus compounds: from a simple P-C bond formation to phosphacycles. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-11.	0.8	1
334	Au(<scp>i</scp>)-mediated N ₂ -elimination from triazaphospholes: a one-pot synthesis of novel N ₂ P ₂ -heterocycles. Chemical Communications, 2021, 58, 310-313.	2.2	6
335	Organophosphorus and Related Group 15 Polymers., 2021,,.		1
336	Tuning the Electronic Properties of Main-Group Species by N-Heterocyclic Vinyl (NHV) Scaffolds. Accounts of Chemical Research, 2022, 55, 457-470.	7.6	30
337	Palladium-catalyzed stereospecific C–P coupling toward diverse PN-heterocycles. CheM, 2022, 8, 569-579.	5.8	10
338	Theoretical insights into the nature of the semipolar bonds X-O (X=N, P). Journal of Molecular Structure, 2022, 1255, 132409.	1.8	1
339	Rapid Computational Approach Towards Designing Singlet-Fission Chromophores by Tuning the Diradical Character of Heteroatom-Doped Polycyclic Aromatic Hydrocarbons Using the Atom-Specific Fukui Function. Journal of Physical Chemistry A, 2022, 126, 1579-1590.	1.1	3
340	Conferring all-nitrogen aromatics extra stability by acidic trapping. Journal of Molecular Liquids, 2022, 355, 118939.	2.3	1
341	Straightforward Access to Multifunctional Ï€â€Conjugated Pâ€Heterocycles Featuring an Internal Ylidic Bond**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
342	Straightforward Access to Multifunctional Ï€â€Conjugated Pâ€Heterocycles Featuring an Internal Ylidic Bond**. Angewandte Chemie, 2022, 134, .	1.6	2
343	A new access to diazaphospholes <i>via</i> cycloaddition–cycloreversion reactions on triazaphospholes. Chemical Communications, 2022, 58, 7745-7748.	2.2	2
344	Synthesis of 2-Phospha[7]helicene, a Helicene with a Terminal Phosphinine Ring. Organic Letters, 2022, 24, 4756-4761.	2.4	4

#	Article	IF	CITATIONS
345	Conjugation between 3D and 2D aromaticity: does it really exist? The case of carborane-fused heterocycles. Chemical Science, 2022, 13, 11388-11393.	3.7	5
346	Bending Ferrocenes with Low Coordinated Bridging Units: The Investigation of Carbenes and Their Analogues with a Ferrocenophane Backbone. Organometallics, 2022, 41, 2551-2561.	1.1	2
347	Stability of Carbocyclic Phosphinyl Radicals: Effect of Ring Size, Delocalization, and Sterics. Inorganic Chemistry, 2022, 61, 16266-16281.	1.9	3
349	Yellow to blue switching of fluorescence by the tuning of the pentaphenylphosphole structure: phosphorus electronic state <i>vs.</i> ring conjugation. Physical Chemistry Chemical Physics, 2022, 24, 25307-25315.	1.3	1
350	Annulation of phosphole sulfides $\langle i \rangle via \langle i \rangle$ [3 + 2] cycloaddition with nitrones. Organic Chemistry Frontiers, 0, , .	2.3	1
352	Propeller-like structure-stabilized phosphole and its aromaticity-promoted electrochemiluminescence. Sensors and Actuators B: Chemical, 2023, 375, 132977.	4.0	0
353	Novel Metallo-Supramolecular Polymers with 1-Thioxophosphole Main-Chain Units and Remarkable Photoinduced Changes in Their Resonance Raman Spectra. Polymers, 2022, 14, 5207.	2.0	0
354	Stereospecific nickel-catalyzed [4+2] heteroannulation of alkynes with aminophosphanes. Science Advances, 2023, 9, .	4.7	3
355	Highly Conjugated Bis(benzo[<i>b</i>]phosphole)― <i>P</i> â€oxides: Synthesis and Electrochemical, Optical, and Computational Studies. European Journal of Organic Chemistry, 0, , .	1.2	0
356	Reductive Asymmetric Azaâ€Mislowâ€Evans Rearrangement by 1,3,2â€Diazaphospholene Catalysis**. Angewandte Chemie, 2023, 135, .	1.6	0
357	Reductive Asymmetric Azaâ€Mislowâ€Evans Rearrangement by 1,3,2â€Diazaphospholene Catalysis**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
358	Boundaries of the Hyperconjugation from π-Extended Six-Membered Phosphorus Heterocycles. Inorganic Chemistry, 2023, 62, 4097-4105.	1.9	3