The molecular basis of resistance to isoniazid, rifampin Mycobacterium tuberculosis

Respiratory Research 2, 164 DOI: 10.1186/rr54

Citation Report

#	Article	IF	Citations
1	Therapeutic Drug Monitoring in the Treatment of Tuberculosis. Drugs, 2002, 62, 2169-2183.	4.9	362
2	Antitubercular Isoniazid and Drug Resistance of Mycobacterium tuberculosis — A Review. Archiv Der Pharmazie, 2002, 335, 511-525.	2.1	56
3	New N-Alkyl-1,2-dihydro-2-thioxo-3-pyridinecarbothioamides as antituberculous agents with improved pharmacokinetics. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2541-2544.	1.0	10
4	Nicotinamide: An Oral Antimicrobial Agent with Activity against BothMycobacterium tuberculosisand Human Immunodeficiency Virus. Clinical Infectious Diseases, 2003, 36, 453-460.	2.9	100
6	Utility of an In-House Mycobacteriophage-Based Assay for Rapid Detection of Rifampin Resistance in Mycobacterium tuberculosis Clinical Isolates. Journal of Clinical Microbiology, 2003, 41, 2647-2649.	1.8	27
7	Laboratory diagnostic aspects of drug resistant tuberculosis. Frontiers in Bioscience - Landmark, 2004, 9, 2086.	3.0	62
8	The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Molecular Microbiology, 2004, 53, 275-282.	1.2	158
9	Differential Expression of Mycothiol Pathway Genes: Are they Affected by Antituberculosis Drugs?. IUBMB Life, 2004, 56, 131-138.	1.5	19
10	Ring-substituted quinolines as potential anti-tuberculosis agents. Bioorganic and Medicinal Chemistry, 2004, 12, 2501-2508.	1.4	99
11	Mycobacterial Disease in Patients with HIV Infection. , 2004, , 423-478.		0
12	Effect of rpoB Mutations Conferring Rifampin Resistance on Fitness of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2004, 48, 1289-1294.	1.4	221
13	Genomic analysis of the Mycobacterium tuberculosis complex: applications to laboratory diagnosis and genotyping. Reviews in Medical Microbiology, 2005, 16, 49-58.	0.4	2
14	Bacteriophage-based assays for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a meta-analysis. Journal of Infection, 2005, 51, 175-187.	1.7	81
15	CP-MLR directed QSAR studies on the antimycobacterial activity of functionalized alkenols—topological descriptors in modeling the activity. Bioorganic and Medicinal Chemistry, 2005, 13, 343-351.	1.4	43
16	Bacterial resistance to antibiotics: Enzymatic degradation and modification. Advanced Drug Delivery Reviews, 2005, 57, 1451-1470.	6.6	627
17	Single-nucleotide polymorphism-based differentiation and drug resistance detection in Mycobacterium tuberculosis from isolates or directly from sputum. Clinical Microbiology and Infection, 2005, 11, 122-130.	2.8	75
18	Monitoring in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm infection model. Journal of Antimicrobial Chemotherapy, 2005, 55, 528-534.	1.3	41
19	Direct Application of the INNO-LiPA Rif.TB Line-Probe Assay for Rapid Identification of Mycobacterium tuberculosis Complex Strains and Detection of Rifampin Resistance in 360 Smear-Positive Respiratory Specimens from an Area of High Incidence of Multidrug-Resistant Tuberculosis. Journal of Clinical Microbiology. 2005. 43. 4880-4884.	1.8	63

ITATION REDOD

	Сіт	CITATION REPORT	
#	Article	IF	CITATIONS
20	Phenotypic and Molecular Characterization of Mycobacterium tuberculosis Isolates Resistant to both Isoniazid and Ethambutol. Antimicrobial Agents and Chemotherapy, 2005, 49, 2218-2225.	1.4	72
21	Detection and Identification of Mycobacterium tuberculosis in Joint Biopsy Specimens by rpoB PCR Cloning and Sequencing. Journal of Clinical Microbiology, 2005, 43, 174-178.	1.8	27
22	Molecular Analysis of Isoniazid and Rifampin Resistance inMycobacterium tuberculosisIsolates Recovered from Barcelona. Microbial Drug Resistance, 2005, 11, 107-114.	0.9	22
23	Drug-resistant tuberculosis: controversies and challenges in pediatrics. Expert Review of Anti-Infective Therapy, 2005, 3, 995-1010.	2.0	17
24	Tuberculosis chemotherapy: current drug delivery approaches. Respiratory Research, 2006, 7, 118.	1.4	160
25	A new rapid and simple colorimetric method to detect pyrazinamide resistance in Mycobacterium tuberculosis using nicotinamide. Journal of Antimicrobial Chemotherapy, 2006, 58, 327-331.	1.3	48
26	A Case of Acquired Rifampin Resistance inMycobacterium bovisBacillus Calmette-Guérin-Induced Cystitis: Necessity for Treatment Guidelines. Canadian Journal of Infectious Diseases and Medical Microbiology, 2006, 17, 183-185.	0.7	3
27	Use of Smear-Positive Samples To Assess the PCR-Based Genotype MTBDR Assay for Rapid, Direct Detection of the Mycobacterium tuberculosis Complex as Well as Its Resistance to Isoniazid and Rifampin. Journal of Clinical Microbiology, 2006, 44, 4459-4463.	1.8	65
28	Concentration-Dependent <i>Mycobacterium tuberculosis</i> Killing and Prevention of Resistance by Rifampin. Antimicrobial Agents and Chemotherapy, 2007, 51, 3781-3788.	1.4	314
29	C-3 Alkyl/Arylalkyl-2,3-dideoxy Hex-2-enopyranosides as Antitubercular Agents:  Synthesis, Biologic Evaluation, and QSAR Study. Journal of Medicinal Chemistry, 2007, 50, 2942-2950.	cal 2.9	57
30	Identificazione molecolare di mutazioni conferenti resistenza a rifampicina ed isoniazide in M. tuberculosis in campioni clinici diretti mediante Genotype MTBDR (Hain Lifescience). Microbiologia Medica, 2007, 22, .	0.3	0
31	Novel anti-tuberculosis agents from MCR libraries. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5483-5486.	1.0	31
32	Mycobacterium tuberculosis resistance in HIV-infected patients from a tertiary care teaching hospital in Porto Alegre, southern Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102, 421-425.	0.7	5
33	Determination of drug resistance of the clinical strains of Mycobacterium tuberculosis to pyrazinamide. Molecular Genetics, Microbiology and Virology, 2008, 23, 184-188.	0.0	1
34	Isoniazid treatment of Mycobacterium bovis in cattle as a model for human tuberculosis. Tuberculosis, 2008, 88, 586-594.	0.8	25
35	Multidrug-Resistant Tuberculosis in Lisbon, Portugal: A Molecular Epidemiological Perspective. Microbial Drug Resistance, 2008, 14, 133-143.	0.9	57
36	A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis. International Journal of Antimicrobial Agents, 2008, 32, 207-220.	1.1	79
37	GenoType MTBDR <i>plus</i> Assay for Molecular Detection of Rifampin and Isoniazid Resistance in <i>Mycobacterium tuberculosis</i> Strains and Clinical Samples. Journal of Clinical Microbiology, 2008, 46, 3660-3667.	1.8	112

#	Article	IF	CITATIONS
38	Development of Multiplex Assay for Rapid Characterization of <i>Mycobacterium tuberculosis</i> . Journal of Clinical Microbiology, 2008, 46, 689-699.	1.8	42
39	Medications for Extensively Drug-Resistant Tuberculosis: Back to the Future?. Journal of Pharmacy Technology, 2008, 24, 82-95.	0.5	0
40	Developments on Drug Delivery Systems for the Treatment of Mycobacterial Infections. Current Topics in Medicinal Chemistry, 2008, 8, 579-591.	1.0	45
41	Molecular Techniques Applied to Infectious Diseases. , 2008, , 441-493.		0
42	Laboratory diagnosis of tuberculosis: novel and nonconventional methods. Reviews in Medical Microbiology, 2008, 19, 19-38.	0.4	0
43	Comparison of two commercial assays for the characterization of rpoB mutations in Mycobacterium tuberculosis and description of new mutations conferring weak resistance to rifampicin. Journal of Antimicrobial Chemotherapy, 2009, 64, 259-262.	1.3	25
44	Comparison of the Performances of Two In-House Rapid Methods for Antitubercular Drug Susceptibility Testing. Antimicrobial Agents and Chemotherapy, 2009, 53, 808-810.	1.4	6
45	Prospective evaluation of pyrosequencing for the rapid detection of isoniazid and rifampin resistance in clinical Mycobacterium tuberculosis isolates. European Journal of Clinical Microbiology and Infectious Diseases, 2009, 28, 33-38.	1.3	30
46	Synthesis and antimycobacterial activity of N′-[(E)-(monosubstituted-benzylidene)]-2-pyrazinecarbohydrazide derivatives. European Journal of Medicinal Chemistry, 2009, 44, 4954-4959.	2.6	49
47	Drug resistance profile of Mycobacterium tuberculosis isolates from pulmonary tuberculosis patients in Jos, Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2009, 103, 67-71.	0.7	21
49	Tuberculosis pharmacotherapy: strategies to optimize patient care. Expert Opinion on Pharmacotherapy, 2009, 10, 381-401.	0.9	85
50	Multidrug-resistant tuberculosis: Rapid molecular detection with MTBDRplus® assay in clinical samples. Revista Portuguesa De Pneumologia, 2009, 15, 353-365.	0.7	4
52	A mutation in Mycobacterium tuberculosis rpoB gene confers rifampin resistance in three HIV-TB cases. Tuberculosis, 2010, 90, 152-157.	0.8	7
53	In vitro antituberculosis activities of the constituents isolated from Haloxylon salicornicum. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4173-4176.	1.0	21
54	A regio- and stereoselective 1,3-dipolar cycloaddition for the synthesis of novel spiro-pyrrolothiazolyloxindoles and their antitubercular evaluation. European Journal of Medicinal Chemistry, 2010, 45, 5653-5661.	2.6	150
55	Screening for <i>In Vitro</i> Antimycobacterial Activity and Threeâ€Dimensional Quantitative Structure–Activity Relationship (3Dâ€QSAR) Study of 4â€{arylamino)coumarin Derivatives. Chemical Biology and Drug Design, 2010, 76, 412-424.	1.5	36
56	Systematic interpretation of molecular beacon polymerase chain reaction for identifying rpoB mutations in Mycobacterium tuberculosis isolates with mixed resistant and susceptible bacteria. Diagnostic Microbiology and Infectious Disease, 2010, 67, 37-46.	0.8	6
58	Role of oxidative stress and nitric oxide in the protective effects of α-lipoic acid and aminoguanidine against isoniazid–rifampicin-induced hepatotoxicity in rats. Food and Chemical Toxicology, 2010, 48, 1869-1875.	1.8	45

#	Article	IF	CITATIONS
59	Mechanisms of drug resistance in Mycobacterium tuberculosis and current status of rapid molecular diagnostic testing. Acta Tropica, 2011, 119, 5-10.	0.9	74
60	Treatment and Chemoprophylaxis for Paratuberculosis. Veterinary Clinics of North America - Food Animal Practice, 2011, 27, 547-557.	0.5	13
61	Laboratory Diagnosis of Tuberculosis in Resource-Poor Countries: Challenges and Opportunities. Clinical Microbiology Reviews, 2011, 24, 314-350.	5.7	387
62	Predictors of Death among Patients Who Completed Tuberculosis Treatment: A Population-Based Cohort Study. PLoS ONE, 2011, 6, e25315.	1.1	34
63	Detection of mutations associated with multidrug-resistantMycobacterium tuberculosisclinical isolates. FEMS Immunology and Medical Microbiology, 2011, 62, 321-327.	2.7	9
64	Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. Journal of Antimicrobial Chemotherapy, 2011, 66, 1417-1430.	1.3	436
65	DNA Extracted from Stained Sputum Smears Can Be Used in the MTBDR plus Assay. Journal of Clinical Microbiology, 2011, 49, 3600-3603.	1.8	13
66	Pyrosequencing for Rapid Molecular Detection of Rifampin and Isoniazid Resistance in Mycobacterium tuberculosis Strains and Clinical Specimens. Journal of Clinical Microbiology, 2011, 49, 3683-3686.	1.8	30
67	Mutation Detection and Accurate Diagnosis of Extensively Drug-Resistant Tuberculosis: Report from a Tertiary Care Center in India. Journal of Clinical Microbiology, 2011, 49, 1588-1590.	1.8	40
68	Utility of GenoType MTBDRplus assay in rapid diagnosis of multidrug resistant tuberculosis at a tertiary care centre in India. Indian Journal of Medical Microbiology, 2012, 30, 58-63.	0.3	25
69	GenoType MTBDR <i>sl</i> for Molecular Detection of Second-Line-Drug and Ethambutol Resistance in Mycobacterium tuberculosis Strains and Clinical Samples. Journal of Clinical Microbiology, 2012, 50, 30-36.	1.8	50
70	Molecular characterization of drug-resistant and -susceptible Mycobacterium tuberculosis isolated from patients with tuberculosis in Korea. Diagnostic Microbiology and Infectious Disease, 2012, 72, 52-61.	0.8	15
71	Interaction of wild type, G68R and L125M isoforms of the arylamine-N-acetyltransferase from Mycobacterium tuberculosis with isoniazid: a computational study on a new possible mechanism of resistance. Journal of Molecular Modeling, 2012, 18, 4013-4024.	0.8	22
72	Contribution of Efflux to the Emergence of Isoniazid and Multidrug Resistance in Mycobacterium tuberculosis. PLoS ONE, 2012, 7, e34538.	1.1	177
73	Detection of Mycobacterium tuberculosis and Drug Resistance: Opportunies and Challenges in Morocco. , 0, , .		0
74	Antibiotic Resistance: An Emerging Global Headache. , 2012, , .		0
75	New insight into the molecular characterization of isoniazid and rifampicin resistant Mycobacterium tuberculosis strains from Saudi Arabia. Infection, Genetics and Evolution, 2012, 12, 549-556.	1.0	13
76	The formation of an antitubercular complex [Fe(CN) ₅ (INH)] ^{3â^'} through mercury(II)â€catalyzed ligand substitution reaction: A kinetic and mechanistic study. International Journal of Chemical Kinetics, 2012, 44, 398-406.	1.0	3

#	Article	IF	CITATIONS
77	Development of a single multiplex amplification refractory mutation system PCR for the detection of rifampin-resistant Mycobacterium tuberculosis. Gene, 2013, 530, 95-99.	1.0	14
78	Experimental evolution as an efficient tool to dissect adaptive paths to antibiotic resistance. Drug Resistance Updates, 2013, 16, 96-107.	6.5	42
79	In silico analyses for the discovery of tuberculosis drug targets. Journal of Antimicrobial Chemotherapy, 2013, 68, 2701-2709.	1.3	30
80	Simple and rapid discrimination of embB codon 306 mutations in Mycobacterium tuberculosis clinical isolates by a real-time PCR assay using an LNA-TaqMan probe. Journal of Microbiological Methods, 2013, 92, 301-306.	0.7	10
81	Quinolone derivatives as antitubercular drugs. Medicinal Chemistry Research, 2013, 22, 1029-1042.	1.1	26
82	Anti-tubercular agents from Ammannia baccifera (Linn.). Medicinal Chemistry Research, 2013, 22, 16-21.	1.1	18
83	Evaluation of a bacterio-phage assay in clinical isolates ofÂMycobacterium tuberculosis. Journal of Pharmacy Research, 2013, 6, 462-465.	0.4	0
84	A genome-wide analysis of multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis Beijing genotype. Molecular Genetics and Genomics, 2013, 288, 425-436.	1.0	12
85	Comparison of Gene Expression Profiles Between Pansensitive and Multidrug-Resistant Strains of Mycobacterium tuberculosis. Current Microbiology, 2013, 67, 362-371.	1.0	19
86	Whole-Cell Screening-Based Identification of Inhibitors against the Intraphagosomal Survival of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 6372-6377.	1.4	12
87	A Modeling Framework for the Evolution and Spread of Antibiotic Resistance: Literature Review and Model Categorization. American Journal of Epidemiology, 2013, 178, 508-520.	1.6	104
88	Study of the Rifampin Monoresistance Mechanism in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 893-900.	1.4	105
89	First– and Second–Line Drugs and Drug Resistance. , 0, , .		22
90	A REVIEW ON POTENT ANTITUBERCULAR AGENT ISONIAZID AND ITS ANALOGUES. International Journal of Pharmaceutical Chemistry, 2013, 2, .	0.4	4
91	Biodiversity, Extinction, and Humanity's Future: The Ecological and Evolutionary Consequences of Human Population and Resource Use. Humanities, 2013, 2, 147-159.	0.1	9
92	Biochemical Characterization of Quinolinic Acid Phosphoribosyltransferase from Mycobacterium tuberculosis H37Rv and Inhibition of Its Activity by Pyrazinamide. PLoS ONE, 2014, 9, e100062.	1.1	21
93	Multidrug Resistant Mycobacterium tuberculosis: A Retrospective katG and rpoB Mutation Profile Analysis in Isolates from a Reference Center in Brazil. PLoS ONE, 2014, 9, e104100.	1.1	21
94	Drug Resistance Mechanisms in Mycobacterium tuberculosis. Antibiotics, 2014, 3, 317-340.	1.5	272

#	Article	IF	CITATIONS
95	Current Status of Anti-Tuberculosis Therapy: A Patent Analysis. Recent Patents on Anti-infective Drug Discovery, 2014, 9, 25-40.	0.5	4
96	Role of quinolones and quinoxaline derivatives in the advancement of treatment of tuberculosis. International Journal of Scientific World, 2014, 3, 18.	3.0	6
97	Molecular detection and characterization of resistant genes in Mycobacterium tuberculosis complex from DNA isolated from tuberculosis patients in the Eastern Cape province South Africa. BMC Infectious Diseases, 2014, 14, 479.	1.3	19
98	The Use of Functional Genomics in Conjunction with Metabolomics for <i>Mycobacterium tuberculosis</i> Research. Disease Markers, 2014, 2014, 1-12.	0.6	18
99	An Altered Mycobacterium tuberculosis Metabolome Induced bykatGMutations Resulting in Isoniazid Resistance. Antimicrobial Agents and Chemotherapy, 2014, 58, 2144-2149.	1.4	41
100	Comparison of Xpert MTB/RIF with Line Probe Assay for Detection of Rifampin-Monoresistant Mycobacterium tuberculosis. Journal of Clinical Microbiology, 2014, 52, 1846-1852.	1.8	120
101	Therapeutic Drug Monitoring in the Treatment of Tuberculosis: An Update. Drugs, 2014, 74, 839-854.	4.9	356
102	Effects of introducing Xpert MTB/RIF test on multi-drug resistant tuberculosis diagnosis in KwaZulu-Natal South Africa. BMC Infectious Diseases, 2014, 14, 442.	1.3	30
103	A Global Perspective on Pyrazinamide Resistance: Systematic Review and Meta-Analysis. PLoS ONE, 2015, 10, e0133869.	1.1	105
104	Molecular profiling of drug resistant isolates of Mycobacterium tuberculosis in the state of Santa Catarina, southern Brazil. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 618-623.	0.8	19
105	The genetic basis of the fitness costs of antimicrobial resistance: a metaâ€∎nalysis approach. Evolutionary Applications, 2015, 8, 284-295.	1.5	306
106	Molecular Analysis of Codon 548 in the <i>rpoB</i> Gene Involved in Mycobacterium tuberculosis Resistance to Rifampin. Antimicrobial Agents and Chemotherapy, 2015, 59, 1542-1548.	1.4	11
107	3D-QSAR and molecular modeling studies on 2,3-dideoxy hexenopyranosid-4-uloses as anti-tubercular agents targeting alpha-mannosidase. Bioorganic Chemistry, 2015, 59, 91-96.	2.0	5
108	Study of efflux pump gene expression in rifampicin-monoresistant Mycobacterium tuberculosis clinical isolates. Journal of Antibiotics, 2015, 68, 431-435.	1.0	45
109	rpoB gene high-resolution melt curve analysis: a rapid approach for diagnosis and screening of drug resistance in tuberculous meningitis. Diagnostic Microbiology and Infectious Disease, 2015, 83, 144-149.	0.8	14
110	Multidrug-resistant and heteroresistant Mycobacterium tuberculosis and associated gene mutations in Ethiopia. International Journal of Infectious Diseases, 2015, 39, 34-38.	1.5	23
111	Commentary: The Race Is On To Shorten the Turnaround Time for Diagnosis of Multidrug-Resistant Tuberculosis. Journal of Clinical Microbiology, 2015, 53, 3715-3718.	1.8	9
112	Dielectrophoretic characterization of antibiotic-treated Mycobacterium tuberculosis complex cells. Analytical and Bioanalytical Chemistry, 2015, 407, 7673-7680.	1.9	7

#	Article	IF	CITATIONS
113	Issues Related to the Updated 2014 Korean Guidelines for Tuberculosis. Tuberculosis and Respiratory Diseases, 2016, 79, 1.	0.7	8
114	First-Line Anti-Tubercular Drug Resistance of Mycobacterium tuberculosis in IRAN: A Systematic Review. Frontiers in Microbiology, 2016, 7, 1139.	1.5	22
115	Análisis genómico comparativo de cepas peruanas de Mycobacterium tuberculosis. Revista Peruana De Medicina De Experimental Y Salud Publica, 2016, 33, 256.	0.1	4
116	High-resolution melting analysis for molecular detection of multidrug resistance tuberculosis in Peruvian isolates. BMC Infectious Diseases, 2016, 16, 260.	1.3	22
117	Antimicrobial peptides as novel anti-tuberculosis therapeutics. Biotechnology Advances, 2016, 34, 924-940.	6.0	66
118	Drug-Resistant Tuberculosis. Infectious Disease Clinics of North America, 2016, 30, 509-522.	1.9	82
119	Mechanisms of Phenotypic Rifampicin Tolerance in <i>Mycobacterium tuberculosis</i> Beijing Genotype Strain B0/W148 Revealed by Proteomics. Journal of Proteome Research, 2016, 15, 1194-1204.	1.8	21
120	Additional synthesis on thiophene-containing trisubstituted methanes (TRSMs) as inhibitors of M. tuberculosis and 3D-QSAR studies. SAR and QSAR in Environmental Research, 2016, 27, 883-909.	1.0	3
121	Synthesis and evaluation of novel imidazo[4,5-c]pyridine derivatives as antimycobacterial agents against Mycobacterium tuberculosis. New Journal of Chemistry, 2016, 40, 9194-9204.	1.4	28
122	Rapid Detection of Mycobacterium tuberculosis Strains Resistant to Isoniazid and/or Rifampicin: Standardization of Multiplex Polymerase Chain Reaction Analysis. American Journal of Tropical Medicine and Hygiene, 2016, 95, 1257-1264.	0.6	0
123	Resistance related metabolic pathways for drug target identification in Mycobacterium tuberculosis. BMC Bioinformatics, 2016, 17, 75.	1.2	23
124	katG Ser315 and rpoB 81-bp hotspot region substitutions: Reliability for detection of drug-resistant strains of Mycobacterium tuberculosis. Journal of Global Antimicrobial Resistance, 2016, 5, 92-93.	0.9	3
125	Evidence for the critical role of a secondary site <i>rpoB</i> mutation in the compensatory evolution and successful transmission of an MDR tuberculosis outbreak strain. Journal of Antimicrobial Chemotherapy, 2016, 71, 324-332.	1.3	33
126	Antituberculosis agents bearing the 1,2-disubstituted benzimidazole scaffold. Medicinal Chemistry Research, 2017, 26, 770-778.	1.1	12
127	Antimycobacterial Agents: To Target or Not to Target. , 2017, , 83-104.		1
128	Molecular mechanisms of action, resistance, detection to the first-line anti tuberculosis drugs: Rifampicin and pyrazinamide in the post whole genome sequencing era. Tuberculosis, 2017, 105, 96-107.	0.8	34
129	Drug development against tuberculosis: Past, present and future. Indian Journal of Tuberculosis, 2017, 64, 252-275.	0.3	25
130	Mechanistic Principles Behind Molecular Mechanism of Rifampicin Resistance in Mutant RNA Polymerase Beta Subunit of <i>Mycobacterium tuberculosis</i> . Journal of Cellular Biochemistry, 2017. 118. 4594-4606.	1.2	38

#	Article	IF	CITATIONS
131	Comprehensive Whole-Genome Sequencing and Reporting of Drug Resistance Profiles on Clinical Cases of Mycobacterium tuberculosis in New York State. Journal of Clinical Microbiology, 2017, 55, 1871-1882.	1.8	116
132	Cell wall: A versatile fountain of drug targets in Mycobacterium tuberculosis. Biomedicine and Pharmacotherapy, 2017, 95, 1520-1534.	2.5	78
133	Prevalence of mutations in genes associated with rifampicin and isoniazid resistance in Mycobacterium tuberculosis clinical isolates. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2017, 8, 19-25.	0.6	22
134	Selective Deamination of Mutagens by a Mycobacterial Enzyme. Journal of the American Chemical Society, 2017, 139, 10762-10768.	6.6	5
135	Molecular detection of Isoniazid, Rifampin and Ethambutol resistance to M.Âtuberculosis and M.Âbovis in multidrug resistant tuberculosis (MDR-TB) patients in Pakistan. Microbial Pathogenesis, 2017, 110, 262-274.	1.3	5
136	Antituberculosis Agents. , 2017, , 1264-1276.e2.		1
137	New Insights in to the Intrinsic and Acquired Drug Resistance Mechanisms in Mycobacteria. Frontiers in Microbiology, 2017, 8, 681.	1.5	114
138	Rifabutin Resistance Associated with Double Mutations in rpoB Gene in Mycobacterium tuberculosis Isolates. Frontiers in Microbiology, 2017, 8, 1768.	1.5	21
139	Phenotypic and Genotypic Analysis of Multidrug-ResistantMycobacterium tuberculosisIsolates from Sudanese Patients. Tuberculosis Research and Treatment, 2017, 2017, 1-6.	0.2	18
140	Mutations in rpoB and katG genes of multidrug resistant mycobacterium tuberculosis undetectable using genotyping diagnostic methods. Pan African Medical Journal, 2017, 27, 145.	0.3	18
141	MUTATIONS IN THE RPOB GENE OF MYCOBACTERIUM TUBERCULOSIS IDENTIFIED BY SEQUENCING METHOD. Asian Journal of Pharmaceutical and Clinical Research, 2017, 10, 382.	0.3	1
142	Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis . Infection and Drug Resistance, 2017, Volume 10, 333-342.	1.1	31
143	Recent therapeutic approaches for the management of tuberculosis: Challenges and opportunities. Biomedicine and Pharmacotherapy, 2018, 99, 735-745.	2.5	58
144	Review on emergence of drug-resistant tuberculosis (MDR & XDR-TB) and its molecular diagnosis in Ethiopia. Microbial Pathogenesis, 2018, 117, 237-242.	1.3	39
145	Genetic Variations Associated with Anti-Tuberculosis Drug-Induced Liver Injury. Current Pharmacology Reports, 2018, 4, 171-181.	1.5	28
146	Practical Guidance for Clinical Microbiology Laboratories: Mycobacteria. Clinical Microbiology Reviews, 2018, 31, .	5.7	175
147	Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. Journal of Antimicrobial Chemotherapy, 2018, 73, 1138-1151.	1.3	219
148	Rapid Microarray-Based Detection of Rifampin, Isoniazid, and Fluoroquinolone Resistance in Mycobacterium tuberculosis by Use of a Single Cartridge. Journal of Clinical Microbiology, 2018, 56, .	1.8	10

#	Article	IF	CITATIONS
149	Delay in diagnosis and treatment among adult multidrug resistant tuberculosis patients in Yangon Regional Tuberculosis Center, Myanmar: a cross-sectional study. BMC Health Services Research, 2018, 18, 878.	0.9	16
150	Characterization of matrix embedded formulations for combination spray-dried particles comprising pyrazinamide and rifampicin. Journal of Drug Delivery Science and Technology, 2018, 48, 137-144.	1.4	16
151	DNA markers for tuberculosis diagnosis. Tuberculosis, 2018, 113, 139-152.	0.8	17
152	Evaluation of the GenoType MTBDR plus and MTBDR sl for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Beijing, China. Infection and Drug Resistance, 2018, Volume 11, 1627-1634.	1.1	23
153	The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Tuberculosis, 2018, 113, 200-214.	0.8	46
154	Investigations into Isoniazid Treated <i>Mycobacterium tuberculosis</i> by Electrospray Mass Spectrometry Reveals New Insights into Its Lipid Composition. Journal of Pathogens, 2018, 2018, 1-14.	0.9	11
155	Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon. Biomedicine and Pharmacotherapy, 2018, 103, 1733-1747.	2.5	36
156	Molecular insight into multiple RpoB clinical mutants of Mycobacterium tuberculosis: An attempt to probe structural variations in rifampicin binding site underlying drug resistance. International Journal of Biological Macromolecules, 2018, 120, 2200-2214.	3.6	5
157	The occurrence and frequency of genomic mutations that mediate Isoniazid and Rifampicin resistance in Mycobacterium tuberculosis isolates from untreated pulmonary Tuberculosis cases in urban Blantyre, Malawi. Malawi Medical Journal, 2018, 30, 1.	0.2	5
158	Emergence and selection of isoniazid and rifampin resistance in tuberculosis granulomas. PLoS ONE, 2018, 13, e0196322.	1.1	20
159	Novel Nanotechnology Based Delivery Systems for Chemotherapy and Prophylaxis of Tuberculosis. , 2018, , 587-620.		5
160	Drug Resistance in Mycobacterium tuberculosis. , 2018, , .		0
161	Hydrazone, benzohydrazones and isoniazid-acylhydrazones as potential antituberculosis agents. Future Microbiology, 2019, 14, 981-994.	1.0	22
162	<i>110th Anniversary</i> : Engineered Ribonucleic Acid Control Elements as Biosensors for <i>in Vitro</i> Diagnostics. Industrial & Engineering Chemistry Research, 2019, 58, 17174-17181.	1.8	1
163	Potential impact of efflux pump genes in mediating rifampicin resistance in clinical isolates of Mycobacterium tuberculosis from India. PLoS ONE, 2019, 14, e0223163.	1.1	14
164	Antibiotic resistance genes in the Actinobacteria phylum. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 1599-1624.	1.3	37
165	Comparison of Quantamatrix Multiplexed Assay Platform and GenoType MTBDR Assay Using Smear-Positive Sputum Specimens From Patients With Multidrug- Resistant/Extensively Drug-Resistant Tuberculosis in South Korea. Frontiers in Microbiology, 2019, 10, 1075.	1.5	7
166	Potent cationic antimicrobial peptides against Mycobacterium tuberculosis in vitro. Journal of Global Antimicrobial Resistance, 2019, 19, 132-135.	0.9	10

#	Article	IF	CITATIONS
167	Uncovering the Resistance Mechanism of Mycobacterium tuberculosis to Rifampicin Due to RNA Polymerase H451D/Y/R Mutations From Computational Perspective. Frontiers in Chemistry, 2019, 7, 819.	1.8	19
168	How Can the Tuberculosis Laboratory Aid in the Patient-Centered Diagnosis and Management of Tuberculosis?. Clinics in Chest Medicine, 2019, 40, 741-753.	0.8	1
169	Computational insights into pHâ€dependence of structure and dynamics of pyrazinamidase: A comparison of wild type and mutants. Journal of Cellular Biochemistry, 2019, 120, 2502-2514.	1.2	3
170	Recent updates on drug resistance in <i>Mycobacterium tuberculosis</i> . Journal of Applied Microbiology, 2020, 128, 1547-1567.	1.4	190
171	New potential drug leads against MDR-MTB: A short review. Bioorganic Chemistry, 2020, 95, 103534.	2.0	16
172	Prevalence of Antibiotic-Resistant Pulmonary Tuberculosis in Bangladesh: A Systematic Review and Meta-Analysis. Antibiotics, 2020, 9, 710.	1.5	9
173	Formulation and Bioequivalence Testing of Fixed-Dose Combination Orally Disintegrating Tablets for the Treatment of Tuberculosis in the Paediatric Population. Journal of Pharmaceutical Sciences, 2020, 109, 3105-3113.	1.6	4
174	Two Novel katG Mutations Conferring Isoniazid Resistance in Mycobacterium tuberculosis. Frontiers in Microbiology, 2020, 11, 1644.	1.5	13
175	Characterization of mutations in the rpoB gene conferring rifampicin resistance in Mycobacterium tuberculosis complex isolated from lymph nodes of slaughtered cattle from South Africa. Brazilian Journal of Microbiology, 2020, 51, 1919-1927.	0.8	2
176	Detection of mutations in the rpoB gene of rifampicin-resistant Mycobacterium tuberculosis strains inhibiting wild type probe hybridization in the MTBDR plus assay by DNA sequencing directly from clinical specimens. BMC Microbiology, 2020, 20, 284.	1.3	15
177	Direct-from-sputum rapid phenotypic drug susceptibility test for mycobacteria. PLoS ONE, 2020, 15, e0238298.	1.1	2
178	Mechanochemical Synthesis and Physicochemical Characterization of Isoniazid and Pyrazinamide Co-crystals With Glutaric Acid. Frontiers in Chemistry, 2020, 8, 595908.	1.8	11
179	Mutations Associated with Rifampicin Resistance in <i>Mycobacterium tuberculosis</i> Isolates from Moroccan Patients: Systematic Review. Interdisciplinary Perspectives on Infectious Diseases, 2020, 2020, 1-8.	0.6	11
180	Enhancing the Activity of Drugs by Conjugation to Organometallic Fragments. Chemistry - A European Journal, 2020, 26, 8676-8688.	1.7	74
181	The molecular patterns of resistance to anti-tuberculosis drugs: an analysis from Istanbul, Turkey. Journal of Chemotherapy, 2020, 32, 66-74.	0.7	3
182	Cene mutations related to rifampin resistance of tuberculosis in northwest of Iran. Gene Reports, 2020, 19, 100672.	0.4	1
183	A stereo, regioselective synthesis and discovery of antimycobaterium tuberculosis activity of novel β-lactam grafted spirooxindolopyrrolidine hybrid heterocycles. Arabian Journal of Chemistry, 2021, 14, 102938.	2.3	13
184	Rifampicin Mono-Resistant Tuberculosis—A Review of an Uncommon But Growing Challenge for Global Tuberculosis Control. Open Forum Infectious Diseases, 2021, 8, ofab018.	0.4	17

#	Article	IF	CITATIONS
185	Frequency and patterns of first- and second-line drug resistance-conferring mutations in Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients in a cross-sectional study in Tigray Region, Ethiopia. Journal of Global Antimicrobial Resistance, 2021, 24, 6-13.	0.9	11
186	Rifampin-resistance-associated mutations in the rifampin-resistance-determining region of the rpoB gene of Mycobacterium tuberculosis clinical isolates in Shanghai, PR China. Journal of Medical Microbiology, 2021, 70, .	0.7	3
187	Experimental Evolution of Magnetite Nanoparticle Resistance in Escherichia coli. Nanomaterials, 2021, 11, 790.	1.9	14
188	Development of New Therapeutics to Meet the Current Challenge of Drug Resistant Tuberculosis. Current Pharmaceutical Biotechnology, 2021, 22, 480-500.	0.9	29
189	Impact of Bi Doping into Boron Nitride Nanosheets on Electronic and Optical Properties Using Theoretical Calculations and Experiments. Nanoscale Research Letters, 2021, 16, 82.	3.1	11
191	Accurate Identification of Closely Related Mycobacterium tuberculosis Complex Species by High Resolution Tandem Mass Spectrometry. Frontiers in Cellular and Infection Microbiology, 2021, 11, 656880.	1.8	7
192	Prevalence of isoniazid resistance in cases of rifampicin resistance detected on GeneXpert MTB/RIF assay. Medical Journal Armed Forces India, 2021, , .	0.3	0
193	Structural and Genomic Insights Into Pyrazinamide Resistance in Mycobacterium tuberculosis Underlie Differences Between Ancient and Modern Lineages. Frontiers in Molecular Biosciences, 2021, 8, 619403.	1.6	2
194	The Mycobacterial Efflux Pump EfpA Can Induce High Drug Tolerance to Many Antituberculosis Drugs, Including Moxifloxacin, in Mycobacterium smegmatis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0026221.	1.4	4
195	Rifampicin-Monoresistant Tuberculosis Is Not the Same as Multidrug-Resistant Tuberculosis: a Descriptive Study from Khayelitsha, South Africa. Antimicrobial Agents and Chemotherapy, 2021, 65, e0036421.	1.4	7
196	Interaction of Host Pattern Recognition Receptors (PRRs) with <i>Mycobacterium Tuberculosis</i> and Ayurvedic Management of Tuberculosis: A Systemic Approach. Infectious Disorders - Drug Targets, 2022, 22, .	0.4	1
197	Morphology, Anatomy and Secondary Metabolites Investigations of Premna odorata Blanco and Evaluation of Its Anti-Tuberculosis Activity Using In Vitro and In Silico Studies. Plants, 2021, 10, 1953.	1.6	16
198	Challenges in Drug Discovery against Tuberculosis. , 0, , .		1
199	Targeting Molecular and Cellular Mechanisms in Tuberculosis. , 2021, , 337-353.		3
200	Network approach to mutagenesis sheds insight on phage resistance in mycobacteria. Bioinformatics, 2021, 37, 213-220.	1.8	7
201	Mycobacteria: Tuberculosis. , 2017, , 1041-1059.		1
202	Mechanisms and Detection of Antimicrobial Resistance. , 2008, , 1392-1403.		2
203	Mechanisms and Detection of Antimicrobial Resistance. , 2012, , 1421-1433.e7.		3

#	Article	IF	CITATIONS
204	Regio- and diastereoselective synthesis of spiropyrroloquinoxaline grafted indole heterocyclic hybrids and evaluation of their anti- <i>Mycobacterium tuberculosis</i> activity. RSC Advances, 2020, 10, 23522-23531.	1.7	21
206	Extensively Drug-Resistant Tuberculosis. , 0, , 337-353.		1
207	Study of Some Analogue of Currently Clinically Used Antimycobacterial Agents. International Journal of Epidemiology & Infection, 2013, 1, 33.	0.2	17
208	Combined Species Identification, Genotyping, and Drug Resistance Detection of Mycobacterium tuberculosis Cultures by MLPA on a Bead-Based Array. PLoS ONE, 2012, 7, e43240.	1.1	48
209	Efflux Pump Gene Expression in Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates. PLoS ONE, 2015, 10, e0119013.	1.1	88
210	Exposición laboral a mycobacterium bovis multirresistente en un hospital de Zaragoza. Revista Espanola De Salud Publica, 2003, 77, 201-209.	0.3	2
211	Drogas antituberculose: interações medicamentosas, efeitos adversos e utilização em situações especiais - parte 1: fármacos de primeira linha. Jornal Brasileiro De Pneumologia, 2010, 36, 626-640.	0.4	154
212	Tuberculosis - Present Medication and Therapeutic Prospects. Current Medicinal Chemistry, 2020, 27, 630-656.	1.2	2
213	Inhibition of Drug Efflux in Mycobacteria with Phenothiazines and Other Putative Efflux Inhibitors. Recent Patents on Anti-infective Drug Discovery, 2011, 6, 118-127.	0.5	45
214	Drug Resistance inMycobacterium tuberculosis. Current Issues in Molecular Biology, 2006, , .	1.0	50
215	Predictive factors of death in patients with tuberculosis: a nested case–control study. Eastern Mediterranean Health Journal, 2015, 21, 287-292.	0.3	6
216	Effect of efflux pump inhibitors on the susceptibility of Mycobacterium tuberculosis to isoniazid. Lung India, 2017, 34, 499.	0.3	18
217	Are Drug Efflux Genes Present among <i>Mycobacterium tuberculosis</i> Isolates from Patients in Lagos, Nigeria?. Journal of Biosciences and Medicines, 2020, 08, 86-98.	0.1	1
218	Molecular characterization of the rpoB gene mutations of Mycobacterium tuberculosis isolated from China. Journal of Tuberculosis Research, 2013, 01, 1-8.	0.1	13
219	Isoniazid and Rifampicin as Therapeutic Regimen in the Current Era: A Review. Journal of Tuberculosis Research, 2014, 02, 40-51.	0.1	11
220	Molecular characterization of rpoB gene encoding the RNA polymerase β subunit in rifampin-resistant Mycobacterium tuberculosis strains from south India. African Journal of Biotechnology, 2012, 11, .	0.3	5
221	Insight to pyrazinamide resistance in Mycobacterium tuberculosis by molecular docking. Bioinformation, 2009, 4, 24-29.	0.2	12
222	In silico identification and characterization of a hypothetical protein of Mycobacterium tuberculosis EAI5 as a potential virulent factor. Bioinformation, 2016, 12, 182-191.	0.2	6

# 223	ARTICLE Pediatric tuberculosis and drug resistance. Korean Journal of Pediatrics, 2009, 52, 529.	IF 1.9	CITATIONS
224	Drug Resistance by Non-Tuberculous Mycobacteria. , 2009, , 917-927.		0
225	Drug Resistance Assays for Mycobacterium tuberculosis. , 2009, , 1161-1170.		2
226	Antituberculosis agents. , 2010, , 1415-1430.		0
227	Drug Susceptibility Pattern of Mycobacterium Tuberculosis Isolates From Ghana; Correlation with Clinical Response. Mycobacterial Diseases: Tuberculosis & Leprosy, 2013, 02, .	0.1	3
229	Drug Susceptibility Testing of Mycobacteria Isolated from Humans and Cattle from Selected Sites of Ethiopia. Journal of Tuberculosis Research, 2014, 02, 125-131.	0.1	0
230	Infectious Microecology in the Diseases of the Respiratory System. Advanced Topics in Science and Technology in China, 2014, , 411-429.	0.0	0
231	Development of nitroimidazopyrans and nitroimidaoxazoles for tuberculosis chemotherapy. El Mednifico Journal, 2014, 2, 383.	0.1	0
232	Susceptibility Testing of <i>Mycobacterium frederiksbergense</i> Strains Isolated from Alfalfa Plants against Antibacterial Compounds. Open Journal of Medical Microbiology, 2015, 05, 90-96.	0.1	1
234	Molecular diagnosis of infectious diseases in São Miguel Island (Azores, Portugal): A hospital-based descriptive study. Journal of Infection in Developing Countries, 2016, 10, 956-967.	0.5	1
235	In silicostructural data analysis tothe impact of leu27pro and asp49gly mutations on pza resistance inmycobacterium tuberculosis. International Journal of Pharma and Bio Sciences, 2016, 7, .	0.1	1
236	Drug Resistance Assays for Mycobacterium tuberculosis. , 2017, , 1359-1365.		0
237	Drug Resistance of Non-tuberculous Mycobacteria. , 2017, , 1061-1071.		0
239	The Challenge of Drug-Resistant Tuberculosis: An Update. , 2019, , 33-56.		0
240	Molecular Basis of Drug Resistance in Mycobacteria. , 2019, , 3-31.		1
241	Molecular Mechanisms of Drug Resistance in Mycobacterium tuberculosis: Role of Nanoparticles Against Multi-drug-Resistant Tuberculosis (MDR-TB). , 2020, , 285-314.		6
242	Current Trends in Mycobacterium tuberculosis Pathogenesis and Drug Resistance. , 2020, , 301-322.		2
243	Phenotypic and Genotypic Characterization of Multi-Drug Resistant Mycobacterium tuberculosis. UMYU Journal of Microbiology Research, 2020, 5, 24-30.	0.1	0

#	Article	IF	CITATIONS
245	Genotypic Detection of rpoB and katG Gene Mutations Associated with Rifampicin and Isoniazid Resistance in Mycobacterium Tuberculosis Isolates: A Local Scenario (Kelantan). The Malaysian Journal of Medical Sciences, 2016, 23, 22-6.	0.3	5
247	Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. European Journal of Pharmaceutical Sciences, 2022, 170, 106103.	1.9	150
248	Application of Nanoemulsion in Tuberculosis Treatment. Advances in Chemical and Materials Engineering Book Series, 2022, , 169-193.	0.2	0
249	Spatial relationships of intra-lesion heterogeneity in Mycobacterium tuberculosis microenvironment, replication status, and drug efficacy. PLoS Pathogens, 2022, 18, e1010459.	2.1	21
254	Pyrazinamide Analogs Designed for Rational Drug Designing Strategies against Resistant Tuberculosis. Russian Journal of Bioorganic Chemistry, 2022, 48, 491-512.	0.3	3
255	Trends in the incidence of Rifampicin resistant Mycobacterium tuberculosis infection in northeastern Nigeria. Scientific African, 2022, 17, e01341.	0.7	1
256	Spectroscopic analysis to identify the binding site for Rifampicin on Bovine Serum Albumin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 283, 121721.	2.0	5
257	Ultrasensitive Detection of Multidrug-Resistant <i>Mycobacterium Tuberculosis</i> Using Superselective Primer-Based Real-Time PCR Assays. SSRN Electronic Journal, 0, , .	0.4	1
258	In silico evaluation of WHO-endorsed molecular methods to detect drug resistant tuberculosis. Scientific Reports, 2022, 12, .	1.6	1
259	Tools to Alleviate the Drug Resistance in Mycobacterium tuberculosis. Molecules, 2022, 27, 6985.	1.7	1
260	Marine Macrolides to Tackle Antimicrobial Resistance of Mycobacterium tuberculosis. Marine Drugs, 2022, 20, 691.	2.2	1
261	Evaluation of three alternatives cost-effective culture media for Mycobacterium tuberculosis detection and drug susceptibility determination using the microscopic observation drug susceptibility (MODS) assay. Tuberculosis, 2022, 137, 102273.	0.8	Ο
262	Ultrasensitive Detection of Multidrug-Resistant Mycobacterium tuberculosis Using SuperSelective Primer-Based Real-Time PCR Assays. International Journal of Molecular Sciences, 2022, 23, 15752.	1.8	2
263	Study of structurally diverse currently used and recently developed antimycobacterial drugs. Medicinal Chemistry, 2023, 19, .	0.7	0
264	Potential Use of Mycobacterium paragordonae for Antimycobacterial Drug Screening Systems. Journal of Microbiology, 2023, 61, 121-129.	1.3	1
265	Mutations and insights into the molecular mechanisms of resistance of Mycobacterium tuberculosis to first-line. Genetics and Molecular Biology, 2023, 46, .	0.6	2
266	Complete genome annotation data of Mycobacteriophages Prann and LeoAvram: New members of the family Siphoviridae. Data in Brief, 2023, 48, 109104.	0.5	0
268	Designing New Magic Bullets to Penetrate the Mycobacterial Shield: An Arduous Quest for Promising Therapeutic Candidates. Microbial Drug Resistance, 0, , .	0.9	0

#	Article	IF	CITATIONS
269	A pro-oxidant property of vitamin C to overcome the burden of latent Mycobacterium tuberculosis infection: A cross-talk review with Fenton reaction. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	0