Tropical storms and the flood hydrology of the central A

Water Resources Research 37, 2143-2168 DOI: 10.1029/2000wr900310

Citation Report

#	Article	IF	CITATIONS
1	Stochastic modeling of flood peaks using the generalized extreme value distribution. Water Resources Research, 2002, 38, 41-1-41-12.	4.2	123
2	Geomorphic impacts of flash flooding in a forested headwater basin. Journal of Hydrology, 2002, 269, 236-250.	5.4	84
4	Multiple-Timescale Intercomparison of Two Radar Products and Rain Gauge Observations over the Arkansas–Red River Basin. Weather and Forecasting, 2003, 18, 1207-1229.	1.4	28
5	Space–Time Variability of Rainfall and Extreme Flood Response in the Menomonee River Basin, Wisconsin. Journal of Hydrometeorology, 2003, 4, 506-517.	1.9	46
6	Land-use change and hydrologic processes: a major focus for the future. Hydrological Processes, 2004, 18, 2183-2186.	2.6	422
7	Hydrological consequences of land use change: A review of the state-of-science. Geophysical Monograph Series, 2004, , 13-29.	0.1	21
8	Spatial distribution of the largest rainfall-runoff floods from basins between 2.6 and 26,000 km2in the United States and Puerto Rico. Water Resources Research, 2004, 40, .	4.2	59
9	Tropical cyclones and the flood hydrology of Puerto Rico. Water Resources Research, 2005, 41, .	4.2	34
10	Unraveling the Gordian Knot: Interactions among vegetation, topography, and soil properties in the central and southern Appalachians. Journal of the Torrey Botanical Society, 2006, 133, 321-361.	0.3	42
11	8 Review of effects of large floods in resistant-boundary channels. Developments in Earth Surface Processes, 2007, 11, 181-211.	2.8	6
12	Forest operations, extreme flooding events, and considerations for hydrologic modeling in the Appalachians—A review. Forest Ecology and Management, 2007, 242, 77-98.	3.2	102
13	The groundwater–land-surface–atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations. Advances in Water Resources, 2007, 30, 2447-2466.	3.8	226
14	Shape measures of rain shields as indicators of changing environmental conditions in a landfalling tropical storm. Meteorological Applications, 2008, 15, 259-271.	2.1	13
15	Climate Change, Landâ€Use Change, and Floods: Toward an Integrated Assessment. Geography Compass, 2008, 2, 1549-1579.	2.7	91
16	Forecasting effects of sea-level rise and windstorms on coastal and inland ecosystems. Frontiers in Ecology and the Environment, 2008, 6, 255-263.	4.0	65
17	Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series. Remote Sensing of Environment, 2009, 113, 62-72.	11.0	211
18	Detection of flooding responses at the river basin scale enhanced by land use change. Water Resources Research, 2009, 45, .	4.2	39
19	Assessment of initial soil moisture conditions for event-based rainfall–runoff modelling. Journal of Hydrology, 2010, 387, 176-187.	5.4	179

ARTICLE IF CITATIONS # Characterisation of selected extreme flash floods in Europe and implications for flood risk 20 5.4 479 management. Journal of Hydrology, 2010, 394, 118-133. Hydrological analysis of a flash flood across a climatic and geologic gradient: The September 18, 2007 event in Western Slovenia. Journal of Hydrology, 2010, 394, 182-197. 5.4 The Hydrology and Hydrometeorology of Flooding in the Delaware River Basin. Journal of 22 1.9 44 Hydrometeorology, 2010, 11, 841-859. Modeling Extreme Rainfall, Winds, and Surge from Hurricane Isabel (2003). Weather and Forecasting, 2010, 25, 1342-1361. Flood peak distributions for the eastern United States. Water Resources Research, 2010, 46, . 24 4.2 218 Reply to comment by Jack Lewis et al. on "Forests and floods: A new paradigm sheds light on ageâ€old 4.2 controversies― Water Resources Research, 2010, 46, . Extreme rainfall and flooding from orographic thunderstorms in the central Appalachians. Water 26 4.2 31 Resources Research, 2011, 47, . Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). Journal of Geophysical Research, 3.3 2011, 116, n/a-n/a. A paradigm shift in understanding and quantifying the effects of forest harvesting on floods in snow 28 4.2 34 environments. Water Resources Research, 2012, 48, . Flash floods and debris flow in the city area of Messina, north-east part of Sicily, Italy in October 2009: the case of the Giampilieri catchment. Natural Hazards and Earth System Sciences, 2012, 12, 3.6 1295-1309. Analysis of flash flood regimes in the North-Western and South-Eastern Mediterranean regions. 30 3.6 96 Natural Hazards and Earth System Sciences, 2012, 12, 1255-1265. A space and time framework for analyzing human anticipation of flash floods. Journal of Hydrology, 5.4 2013, 482, 14-24. 7.9 Analysis of Flash-Flood Runoff Response, with Examples from Major European Events., 2013, 95-104. 32 4 Processes Influencing Rain-Field Growth and Decay after Tropical Cyclone Landfall in the United 1.5 States. Journal of Applied Meteorology and Climatology, 2013, 52, 1085-1096. Flooding associated with predecessor rain events over the Midwest United States. Environmental 34 5.218 Research Letters, 2013, 8, 024007. Reply to comment by Bathurst on $\hat{a} \in \infty A$ paradigm shift in understanding and quantifying the effects of forest harvesting on floods in snow environmentsâ 🗧 Water Resources Research, 2014, 50, 2759-2764. Catchment-scale storm velocity: quantification, scale dependence and effect on flood response. 36 2.6 28 Hydrological Sciences Journal, 2014, 59, 1363-1376. North Atlantic Tropical Cyclones and U.S. Flooding. Bulletin of the American Meteorological Society, 2014, 95, 1381-1388.

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	Rainfall organization control on the flood response of mild-slope basins. Journal of Hydrology, 2014, 510, 565-577.	5.4	19
39	Sensitivity analysis of main variables present in flash flood processes. Application in two Spanish catchments: ArA _i s and AguilÃ ³ n. Environmental Earth Sciences, 2014, 71, 2925-2939.	2.7	20
40	Validation of remotely sensed rainfall over major climatic regions in Northeast Tanzania. Physics and Chemistry of the Earth, 2014, 67-69, 55-63.	2.9	56
41	Mapping the role of tropical cyclones on the hydroclimate of the southeast United States: 2002–2011. International Journal of Climatology, 2014, 34, 494-517.	3.5	37
42	Flood response for the watersheds of the <scp>F</scp> ernow <scp>E</scp> xperimental <scp>F</scp> orest in the central <scp>A</scp> ppalachians. Water Resources Research, 2015, 51, 4431-4453.	4.2	4
43	Predicting landscape sensitivity to present and future floods in the Pacific Northwest, USA. Hydrological Processes, 2015, 29, 5337-5353.	2.6	14
44	Variations in Streamflow Response to Large Hurricane-Season Storms in a Southeastern U.S. Watershed. Journal of Hydrometeorology, 2015, 16, 55-69.	1.9	32
45	Floods in mountain environments: A synthesis. Geomorphology, 2016, 272, 1-9.	2.6	69
46	Extreme Rainfall from Landfalling Tropical Cyclones in the Eastern United States: Hurricane Irene (2011). Journal of Hydrometeorology, 2016, 17, 2883-2904.	1.9	30
47	Floods in Mountain Basins. GeoPlanet: Earth and Planetary Sciences, 2016, , 23-37.	0.2	8
48	An empirical assessment of which inland floods can be managed. Journal of Environmental Management, 2016, 167, 38-48.	7.8	17
49	Uncertainty and Bias in Satellite-Based Precipitation Estimates over Indian Subcontinental Basins: Implications for Real-Time Streamflow Simulation and Flood Prediction*. Journal of Hydrometeorology, 2016, 17, 615-636.	1.9	56
50	Mapping Flash Flood Severity in the United States. Journal of Hydrometeorology, 2017, 18, 397-411.	1.9	78
51	Comparing the Spatial Patterns of Rainfall and Atmospheric Moisture among Tropical Cyclones Having a Track Similar to Hurricane Irene (2011). Atmosphere, 2017, 8, 165.	2.3	15
52	Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño-Southern Oscillation. Journal of Hydrology, 2018, 559, 698-710.	5.4	54
53	A probabilistic framework to evaluate the uncertainty of design hydrograph: case study of Swannanoa River watershed. Hydrological Sciences Journal, 2018, 63, 1776-1790.	2.6	9
54	Projection of Landfalling–Tropical Cyclone Rainfall in the Eastern United States under Anthropogenic Warming. Journal of Climate, 2018, 31, 7269-7286.	3.2	37
55	Diagnosing Moisture Sources for Flash Floods in the United States. Part I: Kinematic Trajectories. Journal of Hydrometeorology, 2019, 20, 1495-1509.	1.9	5

CITATION REPORT

#	Article	IF	CITATIONS
56	Can Land Cover Changes Mitigate Large Floods? A Reflection Based on Partial Least Squares-Path Modeling. Water (Switzerland), 2019, 11, 684.	2.7	18
57	The Mighty Susquehanna—Extreme Floods in Eastern North America During the Past Two Millennia. Geophysical Research Letters, 2019, 46, 3398-3407.	4.0	7
58	Hydroâ€meteorological approach for the estimation of hurricaneâ€induced floods. Journal of Flood Risk Management, 2019, 12, .	3.3	2
59	Effect of infiltration rate changes in urban soils on stormwater runoff process. Geoderma, 2020, 363, 114158.	5.1	43
60	Assessing United States County-Level Exposure for Research on Tropical Cyclones and Human Health. Environmental Health Perspectives, 2020, 128, 107009.	6.0	19
61	Identifying Runoff Production Mechanisms for Dam Safety Applications in the Colorado Front Range. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	1.9	3
62	Floods in the Mediterranean area: The role of soil moisture and precipitation. , 2020, , 191-218.		1
63	Soil Moisture Responses Associated with Significant Tropical Cyclone Rainfall Events. Journal of Operational Meteorology, 0, , 1-17.	0.9	1
64	Soil Moisture Responses Associated with Significant Tropical Cyclone Rainfall Events. Journal of Operational Meteorology, 0, , 1-17.	0.9	0
68	Hydrometeorology and hydrology of flooding in Cape Fear River basin during Hurricane Florence in 2018. Journal of Hydrology, 2021, 603, 127139.	5.4	6
69	Tropical Cyclone Flooding in the Carolinas. Journal of Hydrometeorology, 2022, 23, 53-70.	1.9	2
70	Analysis of Flash-Flood Runoff Response, With Examples From Major European Events. , 2013, , 100-109.		1
71	Understanding the role of initial soil moisture and precipitation magnitude in flood forecast using a hydrometeorological modelling system. Hydrological Processes, 2022, 36, .	2.6	8
72	The hydrological impact of tropical cyclones on soil moisture using a sensor based hybrid deep learning model. Acta Geophysica, 2022, 70, 2933-2951.	2.0	2
73	Different responses of event-based flood to typhoon and non-typhoon rainstorms under land use change in Xixi Basin of southeastern China. Catena, 2024, 234, 107562.	5.0	0