Myotonic Dystrophy Type 2 Caused by a CCTG Expansion

Science 293, 864-867 DOI: 10.1126/science.1062125

Citation Report

#	Article	IF	CITATIONS
1	BIOMEDICINE: Reconstructing Myotonic Dystrophy. Science, 2001, 293, 816-817.	6.0	63
2	Neuromuscular disorders: gene location. Neuromuscular Disorders, 2001, 11, 764-773.	0.3	0
4	Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Human Molecular Genetics, 2001, 10, 2717-2726.	1.4	197
5	Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Human Molecular Genetics, 2001, 10, 2165-2170.	1.4	381
6	Long CTG·CAG Repeats from Myotonic Dystrophy Are Preferred Sites for Intermolecular Recombination. Journal of Biological Chemistry, 2002, 277, 34074-34086.	1.6	40
7	Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Human Molecular Genetics, 2002, 11, 191-198.	1.4	250
9	Mutant DMPK 3′-UTR transcripts disrupt C2C12 myogenic differentiation by compromising MyoD. Journal of Cell Biology, 2002, 159, 419-429.	2.3	52
10	Neuronal intranuclear inclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers. Brain, 2002, 125, 1760-1771.	3.7	474
11	Identification of transcriptional targets for Six5: implication for the pathogenesis of myotonic dystrophy type 1. Human Molecular Genetics, 2002, 11, 1045-1058.	1.4	35
12	Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Human Molecular Genetics, 2002, 11, 805-814.	1.4	401
13	Transcription and nuclear transport of CAG/CTG trinucleotide repeats in yeast. Nucleic Acids Research, 2002, 30, 3540-3547.	6.5	17
14	Repeat expansion and neurological disease. , 2002, , 32-54.		4
15	Pathophysiology of myotonia and periodic paralysis. , 2002, , 1183-1206.		5
16	Myotonic syndromes. Current Opinion in Neurology, 2002, 15, 545-552.	1.8	75
17	Somatic Instability of CTG Expansion in Cancer Tissue?. Internal Medicine, 2002, 41, 253-253.	0.3	3
19	Temporomandibular joint and masticatory muscle involvement in myotonic dystrophy: A study by magnetic resonance imaging. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2002, 94, 262-271.	1.6	31
20	Expanded CUG Repeats Trigger Aberrant Splicing of ClC-1 Chloride Channel Pre-mRNA and Hyperexcitability of Skeletal Muscle in Myotonic Dystrophy. Molecular Cell, 2002, 10, 35-44.	4.5	611
21	Loss of the Muscle-Specific Chloride Channel in Type 1 Myotonic Dystrophy Due to Misregulated Alternative Splicing. Molecular Cell, 2002, 10, 45-53.	4.5	556

ιτλτιώνι Ρερώ

		CITATION R	EPORT	
#	ARTICLE		IF	CITATIONS
23	Neuromuscular disorders: gene location. Neuromuscular Disorders, 2002, 12, 82-100.		0.3	1
24	Dominantly inherited, non-coding microsatellite expansion disorders. Current Opinion and Development, 2002, 12, 266-271.	in Genetics	1.5	127
25	Genetics (molecular biology) and Meniere's disease. Otolaryngologic Clinics of North A 35, 497-516.	vmerica, 2002,	0.5	41
26	Genetic diseases of muscle. Neurologic Clinics, 2002, 20, 645-678.		0.8	38
27	Diagnostic testing in neurogenetics. Principles, limitations, and ethical considerations. Clinics, 2002, 20, 627-643.	Neurologic	0.8	15
28	Untranslated Element in Neurofilament mRNA Has Neuropathic Effect on Motor Neuro Transgenic Mice. Journal of Neuroscience, 2002, 22, 7662-7670.	ns of	1.7	36
29	Modified Rapid Expansion Detection Method to Analyze CAG/CTG Repeat Expansions. 2002, 32, 1006-1010.	BioTechniques,	0.8	2
30	Repeat Analysis Pooled Isolation and Detection (RAPID) Cloning of Microsatellite Expan 217, 61-72.	nsions. , 2003,		0
31	Chemotherapeutically induced deletion of expanded triplet repeats. Mutation Researcl and Molecular Mechanisms of Mutagenesis, 2002, 508, 107-119.	ו - Fundamental	0.4	24
32	Muscular dystrophy: toxic RNA to blame. Drug Discovery Today, 2002, 7, 982-984.		3.2	0
33	Myotonic dystrophy: Clinical and molecular parallels between myotonic dystrophy type Current Neurology and Neuroscience Reports, 2002, 2, 465-470.	? 1 and type 2.	2.0	85
34	Sequence divergence of rice microsatellites in Oryza and other plant species. Molecula Genomics, 2002, 268, 331-343.	r Genetics and	1.0	83
35	Untangling the human estrogen receptor gene structure. Journal of Neural Transmissic 567-583.	ın, 2002, 109,	1.4	29
36	Hyperkalaemia and selective hypoaldosteronism in myotonic dystrophy*. Clinical Endo 56, 151-152.	crinology, 2002,	1.2	0
37	Myotonic dystrophy type 2. European Journal of Neurology, 2002, 9, 441-447.		1.7	54
38	Anticipation and CAG•CTG repeat expansion in schizophrenia and bipolar affective of Psychiatry Reports, 2003, 5, 145-154.	lisorder. Current	2.1	11
39	Physical map and haplotype analysis of 16q-linked autosomal dominant cerebellar atax in Japan. Journal of Human Genetics, 2003, 48, 0111-0118.	ia (ADCA) type III	1.1	27
40	Cell-Specific RNA-Binding Proteins in Human Disease. Trends in Cardiovascular Medicin 188-195.	e, 2003, 13,	2.3	63

#	Article	IF	CITATIONS
41	Developmental expression of mouse muscleblind genes Mbnl1, Mbnl2 and Mbnl3. Gene Expression Patterns, 2003, 3, 459-462.	0.3	113
42	Lack of correlation between the reduction of serum immunoglobulin concentration and the CTG repeat expansion in patients with type 1 Dystrofia Myotonica. Journal of Neuroimmunology, 2003, 144, 100-104.	1.1	15
43	Minisatellite DNA mutation rate in dandelions increases with leafâ€ŧissue concentrations of Cr, Fe, Mn, and Ni. Environmental Toxicology and Chemistry, 2003, 22, 2093-2099.	2.2	25
44	Prevalence of myotonic dystrophy in Israeli Jewish communities: Inter-community variation and founder premutations. American Journal of Medical Genetics Part A, 2003, 119A, 273-278.	2.4	18
45	Tremor and ataxia in fragile X premutation carriers: Blinded videotape study. Annals of Neurology, 2003, 53, 616-623.	2.8	104
46	Ribonuclear inclusions in skeletal muscle in myotonic dystrophy types 1 and 2. Annals of Neurology, 2003, 54, 760-768.	2.8	160
47	PROMM and deafness: exclusion of ZNF9 as the disease gene in DFNA18 suggests a polygenic origin of the PROMM/DM2 phenotype. Clinical Genetics, 2003, 63, 73-75.	1.0	5
48	Hammerhead ribozyme-mediated destruction of nuclear foci in myotonic dystrophy myoblasts. Molecular Therapy, 2003, 7, 670-680.	3.7	87
49	Pre-mRNA splicing and human disease. Genes and Development, 2003, 17, 419-437.	2.7	1,072
50	Changes in Myotonic Dystrophy Protein Kinase Levels and Muscle Development in Congenital Myotonic Dystrophy. American Journal of Pathology, 2003, 162, 1001-1009.	1.9	45
51	Unpaired Structures in SCA10 (ATTCT)n·(AGAAT)n Repeats. Journal of Molecular Biology, 2003, 326, 1095-1111.	2.0	90
52	Expression and distribution of a small-conductance calcium-activated potassium channel (SK3) protein in skeletal muscles from myotonic muscular dystrophy patients and congenital myotonic mice. Neuroscience Letters, 2003, 347, 191-195.	1.0	13
53	Quantification of brain atrophy in patients with myotonic dystrophy and proximal myotonic myopathy: a controlled 3-dimensional magnetic resonance imaging study. Neuroscience Letters, 2003, 348, 73-76.	1.0	53
54	Frequency and coverage of trinucleotide repeats in eukaryotes. Gene, 2003, 317, 117-125.	1.0	31
55	Confirmation of the Type 2 Myotonic Dystrophy (CCTG) Expansion Mutation in Patients with Proximal Myotonic Myopathy/Proximal Myotonic Dystrophy of Different European Origins: A Single Shared Haplotype Indicates an Ancestral Founder Effect. American Journal of Human Genetics, 2003, 73, 835-848.	2.6	132
56	Myotonic Dystrophy Type 2: Human Founder Haplotype and Evolutionary Conservation of the Repeat Tract. American Journal of Human Genetics, 2003, 73, 849-862.	2.6	92
57	Neuromuscular disorders: gene location. Neuromuscular Disorders, 2003, 13, 97-108.	0.3	2
59	Assessment of cardiovascular autonomic function in myotonic dystrophy type 2 (DM2/PROMM). Neuromuscular Disorders, 2003, 13, 289-293.	0.3	24

#	Article	IF	CITATIONS
61	Executive dysfunction and avoidant personality trait in myotonic dystrophy type 1 (DM-1) and in proximal myotonic myopathy (PROMM/DM-2). Neuromuscular Disorders, 2003, 13, 813-821.	0.3	198
62	Muscular dystrophy overview: genetics and diagnosis. Neurologic Clinics, 2003, 21, 795-816.	0.8	15
63	Genomic approaches to identifying transcriptional regulators of osteoblast differentiation. Genome Biology, 2003, 4, 222.	13.9	35
64	A Proteomic Analysis of Arginine-methylated Protein Complexes. Molecular and Cellular Proteomics, 2003, 2, 1319-1330.	2.5	323
65	Syndromic Immunodeficiencies: Genetic Syndromes Associated with Immune Abnormalities. Critical Reviews in Clinical Laboratory Sciences, 2003, 40, 587-642.	2.7	35
66	Molecular genetics of spinocerebellar ataxia type 8 (SCA8). Cytogenetic and Genome Research, 2003, 100, 175-183.	0.6	32
67	Finns with CARD15/N0D2 variants have more familial and invasive coeliac disease. Journal of Medical Genetics, 2003, 40, 757-757.	1.5	0
68	Structures of trinucleotide repeats in human transcripts and their functional implications. Nucleic Acids Research, 2003, 31, 5463-5468.	6.5	71
69	Effects of sequence on repeat expansion during DNA replication. Nucleic Acids Research, 2003, 31, 7159-7164.	6.5	15
70	Histopathological differences of myotonic dystrophy type 1 (DM1) and PROMM/DM2. Neurology, 2003, 60, 1854-1857.	1.5	158
71	SCA10 and ATTCT repeat expansion: clinical features and molecular aspects. Cytogenetic and Genome Research, 2003, 100, 184-188.	0.6	30
72	A tRNAAla mutation causing mitochondrial myopathy clinically resembling myotonic dystrophy. Journal of Medical Genetics, 2003, 40, 752-757.	1.5	11
73	Spontaneous chromosome loss and colcemid resistance in lymphocytes from patients with myotonic dystrophy type 1. Cytogenetic and Genome Research, 2003, 100, 224-229.	0.6	12
74	The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions; implications for the cerebellar tremor/ataxia syndrome. Human Molecular Genetics, 2003, 12, 949-959.	1.4	253
75	Transgenic mouse models for myotonic dystrophy type 1 (DM1). Cytogenetic and Genome Research, 2003, 100, 230-242.	0.6	46
76	Why is SCA12 different from other SCAs?. Cytogenetic and Genome Research, 2003, 100, 189-197.	0.6	75
77	A Muscleblind Knockout Model for Myotonic Dystrophy. Science, 2003, 302, 1978-1980.	6.0	661
78	Gene Expression Profile of the Human Trabecular Meshwork: NEIBank Sequence Tag Analysis. , 2003, 44, 2588.		158

#	Article	IF	CITATIONS
79	Myotonic dystrophy type 2. Neurology, 2003, 60, 657-664.	1.5	461
80	RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Research, 2003, 31, 5469-5482.	6.5	191
81	Dominant ataxias and Friedreich ataxia. Current Opinion in Neurology, 2003, 16, 507-514.	1.8	20
82	The Molecular Era of Myology. Journal of Neuropathology and Experimental Neurology, 2003, 62, 1203-1210.	0.9	3
83	Neurofilament RNA Causes Neurodegeneration with Accumulation of Ubiquitinated Aggregates in Cultured Motor Neurons. Journal of Neuropathology and Experimental Neurology, 2003, 62, 936-950.	0.9	11
84	The skeletal muscle channelopathies: distinct entities and overlapping syndromes. Current Opinion in Neurology, 2003, 16, 559-568.	1.8	18
85	Title is missing!. Current Opinion in Neurology, 2003, 16, 507-514.	1.8	9
86	Clinical Approach to a Patient Presenting With Muscle Stiffness. Journal of Clinical Neuromuscular Disease, 2003, 4, 150-160.	0.3	4
87	Chapter 23 Skeletal muscle channelopathies: myotonias, periodic paralyses and malignant hyperthermia. Handbook of Clinical Neurophysiology, 2003, 2, 457-483.	0.0	2
88	Epidemiological and Genetic Studies of Myotonic Dystrophy Type 1 in Taiwan. Neuroepidemiology, 2003, 22, 283-289.	1.1	25
89	Chapter 5 Pathology and pathogenesis of muscle diseases. Handbook of Clinical Neurophysiology, 2003, , 67-98.	0.0	0
90	Muscle biopsy and cell cultures: potential diagnostic tools in hereditary skeletal muscle channelopathies. European Journal of Histochemistry, 2003, 47, 17.	0.6	13
91	7.5 Störungen des Nervensystems mit myotonieänlichen Symptomen. , 2003, , .		0
92	A Role for Myotonic Dystrophy Protein Kinase in Synaptic Plasticity. Journal of Neurophysiology, 2003, 89, 1177-1186.	0.9	17
93	Biomolecular identification of (CCTG)n mutation in myotonic dystrophy type 2 (DM2) by FISH on muscle biopsy. European Journal of Histochemistry, 2004, 48, 437.	0.6	56
94	Mouse Models of Triplet Repeat Diseases. , 2004, 277, 003-016.		1
95	An expansion in the ZNF9 gene causes PROMM in a previously described family with an incidental CLCN1 mutation. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 343-343.	0.9	34
96	CELF6, a Member of the CELF Family of RNA-binding Proteins, Regulates Muscle-specific Splicing Enhancer-dependent Alternative Splicing. Journal of Biological Chemistry, 2004, 279, 17756-17764.	1.6	80

#	Article	IF	CITATIONS
97	Sudden cardiac death in myotonic dystrophy type 2. Neurology, 2004, 63, 2402-2404.	1.5	160
98	Inhibition of myogenesis in transgenic mice expressing the human DMPK 3'-UTR. Human Molecular Genetics, 2004, 13, 589-600.	1.4	28
99	Muscleblind protein, MBNL1/EXP, binds specifically to CHHG repeats. Human Molecular Genetics, 2004, 13, 495-507.	1.4	154
100	Correlating phenotype and genotype in the periodic paralyses. Neurology, 2004, 63, 1647-1655.	1.5	285
101	Multiple domains control the subcellular localization and activity of ETR-3, a regulator of nuclear and cytoplasmic RNA processing events. Journal of Cell Science, 2004, 117, 3519-3529.	1.2	52
102	Hairpin Structure-forming Propensity of the (CCTG·CAGG) Tetranucleotide Repeats Contributes to the Genetic Instability Associated with Myotonic Dystrophy Type 2. Journal of Biological Chemistry, 2004, 279, 41715-41726.	1.6	57
103	Characterization of the Pattern of Cognitive Impairment in Myotonic Dystrophy Type 1. Archives of Neurology, 2004, 61, 1943-7.	4.9	147
104	Tuning Function of Tandemly Repeating Sequences: A Molecular Device for Fast Adaptation. , 2004, , 115-138.		37
105	Truncated ClC-1 mRNA in myotonic dystrophy exerts a dominant-negative effect on the Cl current. Neurology, 2004, 63, 2371-2375.	1.5	28
106	Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Human Molecular Genetics, 2004, 13, 3079-3088.	1.4	471
107	Musculoskeletal Pain in Patients With Myotonic Dystrophy Type 2. Archives of Neurology, 2004, 61, 1938-42.	4.9	58
108	Chemically induced increases and decreases in the rate of expansion of a CAG{middle dot}CTG triplet repeat. Nucleic Acids Research, 2004, 32, 2865-2872.	6.5	61
109	Homozygosity for CCTG mutation in myotonic dystrophy type 2. Brain, 2004, 127, 1868-1877.	3.7	58
110	A non-DM1, non-DM2 multisystem myotonic disorder with frontotemporal dementia: phenotype and suggestive mapping of the DM3 locus to chromosome 15q21-24. Brain, 2004, 127, 1979-1992.	3.7	38
111	Trinucleotide repeats and neurodegenerative disease. Brain, 2004, 127, 2385-2405.	3.7	160
112	Genetically-Linked Syndromes in Intellectual Disabilities. Journal of Policy and Practice in Intellectual Disabilities, 2004, 1, 31-41.	1.7	6
113	Muscleblind proteins regulate alternative splicing. EMBO Journal, 2004, 23, 3103-3112.	3.5	438
114	Pathogenic RNA repeats: an expanding role in genetic disease. Trends in Genetics, 2004, 20, 506-512.	2.9	101

#	Article	IF	CITATIONS
115	The Spinocerebellar Ataxia 8 Noncoding RNA Causes Neurodegeneration and Associates with Staufen in Drosophila. Current Biology, 2004, 14, 302-308.	1.8	163
116	Cranial magnetic resonance imaging in genetically proven myotonic dystrophy type 1 and 2. Journal of Neurology, 2004, 251, 710-4.	1.8	66
117	Myotonic dystrophy type 2 and related myotonic disorders. Journal of Neurology, 2004, 251, 1173-1182.	1.8	72
118	Improvement of the diagnostic procedure in proximal myotonic myopathy/myotonic dystrophy type 2. Neurogenetics, 2004, 5, 55-59.	0.7	14
119	Modafinil decreases hypersomnolence and improves mood in patients with myotonic dystrophy. Current Neurology and Neuroscience Reports, 2004, 4, 49-50.	2.0	0
120	Novel CAG/CTG repeat expansion mutations do not contribute to the genetic risk for most cases of bipolar disorder or schizophrenia. American Journal of Medical Genetics Part A, 2004, 124B, 15-19.	2.4	9
121	Muscle pathology in 57 patients with myotonic dystrophy type 2. Muscle and Nerve, 2004, 29, 275-281.	1.0	82
122	Cardiac and skeletal muscle involvement in myotonic dystrophy type 2 (DM2): A quantitative31P-MRS and MRI study. Muscle and Nerve, 2004, 30, 636-644.	1.0	23
123	Hereditary muscular diseases and symptoms from the gastrointestinal tract. Scandinavian Journal of Gastroenterology, 2004, 39, 1-4.	0.6	8
124	Intron-derived microRNAs—fine tuning of gene functions. Gene, 2004, 342, 25-28.	1.0	111
125	Myogenic defects in myotonic dystrophy. Developmental Biology, 2004, 265, 294-301.	0.9	54
126	New methods for molecular diagnosis and demonstration of the (CCTG)n mutation in myotonic dystrophy type 2 (DM2). Neuromuscular Disorders, 2004, 14, 274-283.	0.3	42
127	Molecular Architecture of CAG Repeats in Human Disease Related Transcripts. Journal of Molecular Biology, 2004, 340, 665-679.	2.0	72
128	Microsatellites Within Genes: Structure, Function, and Evolution. Molecular Biology and Evolution, 2004, 21, 991-1007.	3.5	943
129	Gene Location. Neuromuscular Disorders, 2004, 14, 85-106.	0.3	2
130	Clinical and genetic analysis of a family with PROMM. Journal of Clinical Neuroscience, 2004, 11, 603-605.	0.8	8
131	Myotonic Dystrophy: RNA Pathogenesis Comes into Focus. American Journal of Human Genetics, 2004, 74, 793-804.	2.6	190
132	Somatic and Germline Instability of the ATTCT Repeat in Spinocerebellar Ataxia Type 10. American Journal of Human Genetics, 2004, 74, 1216-1224.	2.6	73

#	Article	IF	CITATIONS
133	Insulin Receptor Splicing Alteration in Myotonic Dystrophy Type 2. American Journal of Human Genetics, 2004, 74, 1309-1313.	2.6	151
134	Spinocerebellar Ataxia Type 8: Molecular Genetic Comparisonsand Haplotype Analysis of 37 Families with Ataxia. American Journal of Human Genetics, 2004, 75, 3-16.	2.6	88
135	Congenital Myotonic Dystrophy: Assisted Ventilation Duration and Outcome. Pediatrics, 2004, 113, 811-816.	1.0	76
137	GENETICS OF REPEAT EXPANSION DISEASES. CONTINUUM Lifelong Learning in Neurology, 2005, 11, 59-78.	0.4	0
138	GENETICS of MUSCLE DISEASE. CONTINUUM Lifelong Learning in Neurology, 2005, 11, 95-114.	0.4	0
139	The Muscular Dystrophies: From Genes to Therapies. Physical Therapy, 2005, 85, 1372-1388.	1.1	83
141	Recent progress in spinocerebellar ataxia type-10 (SCA10). Cerebellum, 2005, 4, 37-42.	1.4	59
142	Proximal myotonic dystrophy mimicking progressive muscular atrophy. European Journal of Neurology, 2005, 12, 160-161.	1.7	5
143	Two infantile cases of congenital myotonic dystrophy with cholelithiasis/cholestasis. Pediatrics International, 2005, 47, 586-588.	0.2	6
144	Diseases of Unstable Repeat Expansion: Mechanisms and Common Principles. Nature Reviews Genetics, 2005, 6, 743-755.	7.7	716
145	Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene, 2005, 24, 3419-3426.	2.6	226
146	Some flavonoids and DHEA-S prevent the cis-effect of expanded CTG repeats in a stable PC12 cell transformant. Biochemical Pharmacology, 2005, 69, 503-516.	2.0	15
147	Molecular diagnosis of inheritable neuromuscular disorders. Part II: Application of genetic testing in neuromuscular disease. Muscle and Nerve, 2005, 31, 431-451.	1.0	18
148	Hyper-CK-emia as the sole manifestation of myotonic dystrophy type 2. Muscle and Nerve, 2005, 31, 764-767.	1.0	33
149	Clinical and molecular aspects of the myotonic dystrophies: A review. Muscle and Nerve, 2005, 32, 1-18.	1.0	208
150	Genetics and molecular pathogenesis of the myotonic dystrophies. Current Neurology and Neuroscience Reports, 2005, 5, 55-60.	2.0	43
152	Muscle and myotonic diseases. , 2005, , 357-437.		0
153	RNA Splicing Manipulation: Strategies to Modify Gene Expression for a Variety of Therapeutic Outcomes. Current Gene Therapy, 2005, 5, 467-483.	0.9	41

#	Article	IF	CITATIONS
154	Transgenic mice expressing CUC-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Human Molecular Genetics, 2005, 14, 1539-1547.	1.4	218
155	Identification of Putative New Splicing Targets for ETR-3 Using Sequences Identified by Systematic Evolution of Ligands by Exponential Enrichment. Molecular and Cellular Biology, 2005, 25, 879-887.	1.1	88
156	The structural basis of myotonic dystrophy from the crystal structure of CUG repeats. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16626-16631.	3.3	161
157	Myotonic dystrophy associated expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to Drosophila. Human Molecular Genetics, 2005, 14, 873-883.	1.4	77
158	Molecular Genetics of Spinocerebellar Ataxia Type 8 (SCA8). RNA Biology, 2005, 2, 49-52.	1.5	20
160	Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy. Journal of Cell Science, 2005, 118, 2923-2933.	1.2	168
161	Increased Negative Superhelical Density in Vivo Enhances the Genetic Instability of Triplet Repeat Sequences. Journal of Biological Chemistry, 2005, 280, 37366-37376.	1.6	51
162	Advances in mechanisms of genetic instability related to hereditary neurological diseases. Nucleic Acids Research, 2005, 33, 3785-3798.	6.5	200
163	The pathogenic agent in Drosophila models of â€~polyglutamine' diseases. Human Molecular Genetics, 2005, 14, 1041-1048.	1.4	37
164	Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Human Molecular Genetics, 2005, 14, 2189-2200.	1.4	247
165	Length-dependent energetics of (CTG)n and (CAG)n trinucleotide repeats. Nucleic Acids Research, 2005, 33, 4065-4077.	6.5	47
166	Polymorphic CUG Repeats in Human mRNAs and Their Effects on Gene Expression. RNA Biology, 2005, 2, 149-156.	1.5	6
167	Molecular diagnosis of neurogenetic disorders involving trinucleotide repeat expansions. Expert Review of Molecular Diagnostics, 2005, 5, 101-109.	1.5	8
168	Gene Table: Gene Location. Neuromuscular Disorders, 2005, 15, 89-114.	0.3	2
169	Characterization of a single nucleotide polymorphism in the ZNF9 gene and analysis of association with myotonic dystrophy type II (DM2) in the Italian population. Molecular and Cellular Probes, 2005, 19, 71-74.	0.9	3
170	Tau protein as a differential biomarker of tauopathies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1739, 179-197.	1.8	262
171	Intronic microRNAs. Biochemical and Biophysical Research Communications, 2005, 326, 515-520.	1.0	111
172	RNA pathogenesis of the myotonic dystrophies. Neuromuscular Disorders, 2005, 15, 5-16.	0.3	166

#	Article	IF	CITATIONS
175	Gene Table: Gene Location. Neuromuscular Disorders, 2006, 16, 64-90.	0.3	8
176	Molecular pathogenesis of spinocerebellar ataxias. Brain, 2006, 129, 1357-1370.	3.7	350
178	Gene Silencing In Vitro and In Vivo Using Intronic MicroRNAs. , 2006, 342, 295-312.		35
179	PATHOMECHANISMS IN CHANNELOPATHIES OF SKELETAL MUSCLE AND BRAIN. Annual Review of Neuroscience, 2006, 29, 387-415.	5.0	188
181	Effect of the [CCTG]n repeat expansion on ZNF9 expression in myotonic dystrophy type II (DM2). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 329-334.	1.8	44
182	Emerging roles of chloride channels in human diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 404-413.	1.8	55
183	Identification of NADH dehydrogenase 1 α subcomplex 5 capable to transform murine fibroblasts and overexpressed in human cervical carcinoma cell lines. Biochemical and Biophysical Research Communications, 2006, 339, 852-857.	1.0	4
184	DM2 CCTG•CAGG Repeats are Crossover Hotspots that are More Prone to Expansions than the DM1 CTG•CAG Repeats in Escherichia coli. Journal of Molecular Biology, 2006, 360, 21-36.	2.0	19
185	Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Human Molecular Genetics, 2006, 15, 2087-2097.	1.4	445
187	Overview of the Field. , 2006, , 3-17.		1
188	Genetic Basis of Neurologic and Neuromuscular Diseases. , 2006, , 267-280.		0
190	Inherited Disorders of the Neuromuscular Junction. International Anesthesiology Clinics, 2006, 44, 91-106.	0.3	7
191	Gene Expression Analysis in Myotonic Dystrophy: Indications for a Common Molecular Pathogenic Pathway in DM1 and DM2. Gene Expression, 2006, 13, 339-351.	0.5	39
192	A Woman With Spontaneous Focal Muscle Movements. Journal of Clinical Neuromuscular Disease, 2006, 8, 35-44.	0.3	2
193	Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nature Genetics, 2006, 38, 758-769.	9.4	408
194	Molecular mechanisms of muscular dystrophies: old and new players. Nature Reviews Molecular Cell Biology, 2006, 7, 762-773.	16.1	300
195	Interaction of musleblind, CUG-BP1 and hnRNP H proteins in DM1-associated aberrant IR splicing. EMBO Journal, 2006, 25, 4271-4283.	3.5	135
196	RNAi: a potential therapy for the dominantly inherited nucleotide repeat diseases. Gene Therapy, 2006, 13, 525-531.	2.3	34

		CITATION REPORT	
#	Article	IF	CITATIONS
197	Non-coding RNAs in the nervous system. Journal of Physiology, 2006, 575, 333-341.	1.3	144
198	Mouse Models of Triplet Repeat Diseases. Molecular Biotechnology, 2006, 32, 147-158.	1.3	20
200	Distinct neuromuscular phenotypes in myotonic dystrophy types 1 and 2. Journal of Neurology, 253, 753-761.	2006, 1.8	101
201	Flies deficient in Muscleblind protein model features of myotonic dystrophy with altered splice f of Z-band associated transcripts. Human Genetics, 2006, 120, 487-499.	iorms 1.8	38
202	Current perspectives in intronic micro RNAs (miRNAs). Journal of Biomedical Science, 2006, 13,	5-15. 2.6	74
203	An improved method for Southern DNA and Northern RNA blotting using a Mupid®-2 Mini-Gel electrophoresis unit. Journal of Proteomics, 2006, 68, 139-143.	2.4	1
204	DNA structures, repeat expansions and human hereditary disorders. Current Opinion in Structur Biology, 2006, 16, 351-358.	ral 2.6	211
205	Myotonic Dystrophies Type 1 and 2: A Summary on Current Aspects. Seminars in Pediatric Neur 2006, 13, 71-79.	ology, 1.0	113
206	Chemical modifiers of unstable expanded simple sequence repeats: What goes up, could come Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 598, 15-34	down. 0.4 4.	63
207	Cognitive impairment in neuromuscular disorders. Muscle and Nerve, 2006, 34, 16-33.	1.0	74
208	Brain1H magnetic resonance spectroscopic differences in myotonic dystrophy type 2 and ty	1. Muscle 1.0	32
209	Myotonic dystrophy protein kinase monoclonal antibody generation from a coiled-coil template Journal of Molecular Recognition, 2006, 19, 215-226.	. 1.1	4
210	DM2 intronic expansions: evidence for CCUG accumulation without flanking sequence or effect ZNF9 mRNA processing or protein expression. Human Molecular Genetics, 2006, 15, 1808-1815	s on 1.4	99
211	Replication fork regression in repetitive DNAs. Nucleic Acids Research, 2006, 34, 6044-6050.	6.5	83
212	Isolation and Identification of Gene-Specific MicroRNAs. , 2006, 342, 313-320.		7
214	The MicroRNA: Overview of the RNA Gene That Modulates Gene Functions. , 2006, 342, 1-18.		49
215	The role of ataxin 10 in the pathogenesis of spinocerebellar ataxia type 10. Neurology, 2006, 67	', 607-613. 1.5	60
216	Dominant Non-Coding Repeat Expansions in Human Disease. , 2006, 1, 67-83.		18

		CITATION REPOR	RT	
#	Article	IF		CITATIONS
217	Intronic MicroRNA (miRNA). Journal of Biomedicine and Biotechnology, 2006, 2006, 1-13.	3.0	0	125
218	MBNL1 and CUCBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1. Human Molecular Genetics, 2006, 15, 2138-2145.	1.4	4	129
219	RNA-dominant diseases. Human Molecular Genetics, 2006, 15, R162-R169.	1.4	4	189
221	Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CU model for myotonic dystrophy. Proceedings of the National Academy of Sciences of the United of America, 2006, 103, 11748-11753.	G) States 3.:	3	312
222	RNA-MEDIATED NEUROMUSCULAR DISORDERS. Annual Review of Neuroscience, 2006, 29, 259)-277. 5.0	0	442
223	Non-B DNA Conformations Formed by Long Repeating Tracts of Myotonic Dystrophy Type 1, My Dystrophy Type 2, and Friedreich's Ataxia Genes, Not the Sequences per se, Promote Mutagene Flanking Regions. Journal of Biological Chemistry, 2006, 281, 24531-24543.	votonic sis in 1.6	5	25
224	Muscle Chloride Channel Dysfunction in Two Mouse Models of Myotonic Dystrophy. Journal of General Physiology, 2007, 129, 79-94.	0.'	9	98
225	Screening of Genes Associated with Termination of the Critical Period of Visual Cortex Plasticity Rats. Current Eye Research, 2007, 32, 709-716.	in o.	7	4
227	Muscle Diseases: The Muscular Dystrophies. Annual Review of Pathology: Mechanisms of Diseas 2, 87-109.	;e, 2007, 9.0	6	120
228	Defining early steps in mRNA transport: mutant mRNA in myotonic dystrophy type I is blocked a into SC-35 domains. Journal of Cell Biology, 2007, 178, 951-964.	it entry 2.:	3	60
229	MBNL binds similar RNA structures in the CUG repeats of myotonic dystrophy and its pre-mRNA substrate cardiac troponin T. Rna, 2007, 13, 2238-2251.		5	153
230	Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic A Research, 2007, 35, 5474-5486.	cids 6.	5	192
231	The Myotonic Dystrophy Type 2 Protein ZNF9 Is Part of an ITAF Complex That Promotes Cap-inc Translation. Molecular and Cellular Proteomics, 2007, 6, 1049-1058.	lependent 2.8	5	51
232	Chapter 6 Mechanisms Underlying Noncoding Repeat Expansions. Blue Books of Neurology, 20 170-185.	07,, 0.	1	0
233	Inflammatory Cells Invading Muscle Fibers in Myotonic Dystrophy Type 2. Journal of Clinical Neuromuscular Disease, 2007, 8, 212-216.	0.	3	0
234	Myotonic dystrophy: RNA-mediated muscle disease. Current Opinion in Neurology, 2007, 20, 57	72-576. 1.8	3	152
235	Gene table: Gene location. Neuromuscular Disorders, 2007, 17, 81-119.	0.	3	1
236	Expression of MBNL and CELF mRNA transcripts in muscles with myotonic dystrophy. Neuromu Disorders, 2007, 17, 306-312.	scular 0.	3	20

#	Article	IF	CITATIONS
237	Myotonic disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 86, 61-76.	1.0	1
238	Myotonic dystrophy: Emerging mechanisms for DM1 and DM2. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 195-204.	1.8	164
239	Length-dependent toxicity of untranslated CUG repeats on Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2007, 352, 774-779.	1.0	26
240	Expression pattern of muscleblind-like proteins differs in differentiating myoblasts. Biochemical and Biophysical Research Communications, 2007, 361, 151-155.	1.0	18
241	Haploinsuffciency for Znf9 in Znf9+/â^' Mice Is Associated with Multiorgan Abnormalities Resembling Myotonic Dystrophy. Journal of Molecular Biology, 2007, 368, 8-17.	2.0	81
242	Detection of an unstable non-coding tandem repeat in the ZNF291 gene. Molecular and Cellular Probes, 2007, 21, 405-407.	0.9	2
243	Ribonuclease Dicer Cleaves Triplet Repeat Hairpins into Shorter Repeats that Silence Specific Targets. Molecular Cell, 2007, 25, 575-586.	4.5	176
244	Molecular Pathology in Clinical Practice. , 2007, , .		8
245	Noncoding RNAs and RNA Editing in Brain Development, Functional Diversification, and Neurological Disease. Physiological Reviews, 2007, 87, 799-823.	13.1	275
246	Replication Fork Stalling at Natural Impediments. Microbiology and Molecular Biology Reviews, 2007, 71, 13-35.	2.9	433
247	Trinucleotide Repeat Disorders. Annual Review of Neuroscience, 2007, 30, 575-621.	5.0	1,289
248	Degenerative Motor, Sensory, and Autonomic Disorders. , 2007, , 781-811.		5
249	Muscular Dystrophies. , 2007, , 925-934.		1
251	RNA-Based Disorders of Muscle and Brain. , 2007, , 125-133.		0
252	Non-coding RNAs – development of man-made vector-based intronic microRNAs (miRNAs). , 0, , 22-41.		0
253	Dynamic mutations as digital genetic modulators of brain development, function and dysfunction. BioEssays, 2007, 29, 525-535.	1.2	84
254	Huntington's disease-like 2 is associated with CUG repeat-containing RNA foci. Annals of Neurology, 2007, 61, 272-282.	2.8	143
255	Severity, type, and distribution of myotonic discharges are different in type 1 and type 2 myotonic dystrophy. Muscle and Nerve, 2007, 35, 479-485.	1.0	78

#	Article	IF	CITATIONS
256	Cerebral involvement in myotonic dystrophies. Muscle and Nerve, 2007, 36, 294-306.	1.0	212
257	Defective mRNA in myotonic dystrophy accumulates at the periphery of nuclear splicing speckles. Genes To Cells, 2007, 12, 1035-1048.	0.5	80
258	The MicroRNA (miRNA): Overview of the RNA Genes that Modulate Gene Function. Molecular Biotechnology, 2008, 38, 257-268.	1.3	179
259	Myotonic dystrophy type 2 in Japan: ancestral origin distinct from Caucasian families. Neurogenetics, 2008, 9, 61-63.	0.7	21
260	High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany. Journal of Neurology, 2008, 255, 1731-1736.	1.8	55
261	Myotonic dystrophy 1 in the nervous system: From the clinic to molecular mechanisms. Journal of Neuroscience Research, 2008, 86, 18-26.	1.3	35
262	MBNL1 associates with YBâ€₁ in cytoplasmic stress granules. Journal of Neuroscience Research, 2008, 86, 1994-2002.	1.3	64
263	Differential diagnosis of myotonic disorders. Muscle and Nerve, 2008, 37, 293-299.	1.0	66
264	Oculomotor involvement in myotonic dystrophy type 2. Muscle and Nerve, 2008, 38, 1326-1329.	1.0	3
265	Preferential central nucleation of type 2 myofibers is an invariable feature of myotonic dystrophy type 2. Muscle and Nerve, 2008, 38, 1405-1411.	1.0	48
266	Myotonic dystrophy protein kinase is expressed in embryonic myocytes and is required for myotube formation. Developmental Dynamics, 2008, 237, 2353-2366.	0.8	17
267	Does proximal myotonic myopathy show anticipation?. Human Mutation, 2008, 29, E100-E102.	1.1	8
268	Myotonic dystrophy type 2 found in two of sixtyâ€ŧhree persons diagnosed as having fibromyalgia. Arthritis and Rheumatism, 2008, 58, 3627-3631.	6.7	37
269	Myotonic Dystrophy: Therapeutic Strategies for the Future. Neurotherapeutics, 2008, 5, 592-600.	2.1	40
270	Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1. Nature Structural and Molecular Biology, 2008, 15, 1343-1351.	3.6	141
271	RNA toxicity in myotonic muscular dystrophy induces NKX2-5 expression. Nature Genetics, 2008, 40, 61-68.	9.4	75
272	MBNL3/CHCR prevents myogenic differentiation by inhibiting MyoD-dependent gene transcription. Differentiation, 2008, 76, 299-309.	1.0	24
273	Colocalization of ribonuclear inclusions with muscle blind like-proteins in a family with myotonic dystrophy type 2 associated with a short CCTG expansion. Journal of the Neurological Sciences, 2008, 275, 159-163.	0.3	12

#	ARTICLE	IF	CITATIONS
275	Skeletal Muscle Function. , 2008, , 459-484.		8
276	Primary Immunodeficiency Diseases. , 2008, , .		23
277	Muskelerkrankungen. Neurophysiologie-Labor, 2008, 30, 58-97.	0.0	0
278	A review of equine muscle disorders. Neuromuscular Disorders, 2008, 18, 277-287.	0.3	66
279	Gastrointestinal involvement is frequent in Myotonic Dystrophy type 2. Neuromuscular Disorders, 2008, 18, 646-649.	0.3	50
280	Growth-dependent effect of muscleblind knockdown on Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2008, 366, 705-709.	1.0	12
281	Genetic Syndromic Immunodeficiencies with Antibody Defects. Immunology and Allergy Clinics of North America, 2008, 28, 715-736.	0.7	10
282	RNA Binding Specificity of <i>Drosophila</i> Muscleblind. Biochemistry, 2008, 47, 7284-7294.	1.2	15
283	Thermodynamics of Unstable DNA Structures from the Kinetics of the Microgene PCR. Journal of Physical Chemistry B, 2008, 112, 13149-13156.	1.2	4
285	Expanded CTG repeats within the <i>DMPK</i> 3′ UTR causes severe skeletal muscle wasting in an inducible mouse model for myotonic dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2646-2651.	3.3	168
286	Molecular Effects of the CTG Repeats in Mutant Dystrophia Myotonica Protein Kinase Gene. Current Genomics, 2008, 9, 509-516.	0.7	21
287	Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes. Microbiology and Molecular Biology Reviews, 2008, 72, 686-727.	2.9	450
288	Repeat Length and RNA Expression Level Are Not Primary Determinants in CUG Expansion Toxicity in Drosophila Models. PLoS ONE, 2008, 3, e1466.	1.1	13
290	Type 2 Myotonic Dystrophy Can Be Predicted by the Combination of Type 2 Muscle Fiber Central Nucleation and Scattered Atrophy. Journal of Neuropathology and Experimental Neurology, 2008, 67, 319-325.	0.9	33
291	MHC Class II Deficiency. , 2009, , 1306-1308.		0
292	Ribonuclear inclusions as biomarker of myotonic dystrophy type 2, even in improperly frozen or defrozen skeletal muscle biopsies. European Journal of Histochemistry, 2009, 53, 13.	0.6	16
293	RNA/MBNL1-containing foci in myoblast nuclei from patients affected by myotonic dystrophy type 2: an immunocytochemical study. European Journal of Histochemistry, 2009, 53, 18.	0.6	28

#	Article	IF	CITATIONS
294	Muscle and Nerve Biopsy. , 2009, , 2069-2088.		1
295	Nerve and Muscle Disease. , 0, , 337-410.		1
297	Large Scale Analysis of Small Repeats via Mining of the Human Genome. , 2009, , .		1
298	The Genetic Approach to Hypotonia in the Neonate. NeoReviews, 2009, 10, e600-e607.	0.4	3
299	Reduction of the Rate of Protein Translation in Patients with Myotonic Dystrophy 2. Journal of Neuroscience, 2009, 29, 9042-9049.	1.7	81
300	Technical standards and guidelines for myotonic dystrophy type 1 testing. Genetics in Medicine, 2009, 11, 552-555.	1.1	29
301	Reversal of RNA Dominance by Displacement of Protein Sequestered on Triplet Repeat RNA. Science, 2009, 325, 336-339.	6.0	364
302	GSK3β-cyclin D3-CUGBP1-eIF2 pathway in aging and in Myotonic Dystrophy. Cell Cycle, 2009, 8, 2356-2359.	1.3	22
303	Altered RNA splicing contributes to skeletal muscle pathology in Kennedy disease knock-in mice. DMM Disease Models and Mechanisms, 2009, 2, 500-507.	1.2	35
304	RNA Gain-of-Function in Spinocerebellar Ataxia Type 8. PLoS Genetics, 2009, 5, e1000600.	1.5	245
305	A Z-DNA sequence reduces slipped-strand structure formation in the myotonic dystrophy type 2 (CCTG)·(CAGG) repeat. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3270-3275.	3.3	25
306	How much expansion to be diseased?. Neurology, 2009, 72, 484-485.	1.5	6
307	Premutation allele pool in myotonic dystrophy type 2. Neurology, 2009, 72, 490-497.	1.5	59
308	MBNL and CELF proteins regulate alternative splicing of the skeletal muscle chloride channel CLCN1. Nucleic Acids Research, 2009, 37, 6477-6490.	6.5	80
309	Development of histone deacetylase inhibitors as therapeutics for neurological disease. Future Neurology, 2009, 4, 775-784.	0.9	25
310	Strong association between myotonic dystrophy type 2 and autoimmune diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 1293-1295.	0.9	37
311	Absence of a differentiation defect in muscle satellite cells from DM2 patients. Neurobiology of Disease, 2009, 36, 181-190.	2.1	64
312	Genic non-coding microsatellites in the rice genome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups. BMC Genomics, 2009, 10,	1.2	56

#	Article	IF	CITATIONS
313	Consejo genético en las enfermedades neurológicas. FMC Formacion Medica Continuada En Atencion Primaria, 2009, 16, 92-102.	0.0	2
314	RNAâ€mediated neurodegeneration in repeat expansion disorders. Annals of Neurology, 2010, 67, 291-300.	2.8	192
315	Genetic instabilities of (CCTG)·(CAGG) and (ATTCT)·(AGAAT) diseaseâ€associated repeats reveal multiple pathways for repeat deletion. Molecular Carcinogenesis, 2009, 48, 336-349.	1.3	15
316	Identification of <i>Caenorhabditis elegans</i> K02H8.1 (CeMBL), a functional ortholog of mammalian MBNL proteins. Journal of Neuroscience Research, 2009, 87, 1090-1097.	1.3	11
317	Myotonic dystrophy type 2 with focal asymmetric muscle weakness and no electrical myotonia. Muscle and Nerve, 2009, 39, 383-385.	1.0	22
318	Comparative transcriptional and biochemical studies in muscle of myotonic dystrophies (DM1 and) Tj ETQq1 1 C).784314 r	gBT/Overloc
319	Myotone Dystrophien – und ihre Differenzialdiagnosen. Medizinische Genetik, 2009, 21, 381-392.	0.1	2
320	Structure of dystrophia myotonica protein kinase. Protein Science, 2009, 18, 782-791.	3.1	22
321	Spinocerebellar Ataxia Type 31 Is Associated with "Inserted―Penta-Nucleotide Repeats Containing (TGGAA)n. American Journal of Human Genetics, 2009, 85, 544-557.	2.6	260
322	Insulin Receptor Isoforms and Insulin Receptor/Insulin-Like Growth Factor Receptor Hybrids in Physiology and Disease. Endocrine Reviews, 2009, 30, 586-623.	8.9	889
323	Rational and Modular Design of Potent Ligands Targeting the RNA That Causes Myotonic Dystrophy 2. ACS Chemical Biology, 2009, 4, 345-355.	1.6	103
324	RNA and Disease. Cell, 2009, 136, 777-793.	13.5	991
325	Dysphagia is present but mild in myotonic dystrophy type 2. Neuromuscular Disorders, 2009, 19, 196-198.	0.3	29
326	Ribonuclear inclusions and MBNL1 nuclear sequestration do not affect myoblast differentiation but alter gene splicing in myotonic dystrophy type 2. Neuromuscular Disorders, 2009, 19, 335-343.	0.3	25
327	Left ventricular dysfunction and cardiac arrhythmias are frequent in type 2 myotonic dystrophy: A case control study. Neuromuscular Disorders, 2009, 19, 468-472.	0.3	62
328	Scaled-down genetic analysis of myotonic dystrophy type 1 and type 2. Neuromuscular Disorders, 2009, 19, 759-762.	0.3	21
329	Pathogenic RNAs in microsatellite expansion disease. Neuroscience Letters, 2009, 466, 99-102.	1.0	17
330	Rational Design of Ligands Targeting Triplet Repeating Transcripts That Cause RNA Dominant Disease: Application to Myotonic Muscular Dystrophy Type 1 and Spinocerebellar Ataxia Type 3. Journal of the American Chemical Society. 2009. 131. 9767-9779.	6.6	172

#	Article	IF	CITATIONS
331	Analysis of Repetitive Regions in Myotonic Dystrophy Type 1 and 2. Current Protocols in Human Genetics, 2009, 61, Unit 9.6.	3.5	3
332	The Role of Shock-Induced Nonregenerative Depolarizations in Ventricular Fibrillation and Defibrillation: The Graded Response Hypothesis. , 2009, , 189-217.		1
333	siRNA and miRNA Gene Silencing. Methods in Molecular Biology, 2009, , .	0.4	5
334	Controlling the Specificity of Modularly Assembled Small Molecules for RNA via Ligand Module Spacing: Targeting the RNAs That Cause Myotonic Muscular Dystrophy. Journal of the American Chemical Society, 2009, 131, 17464-17472.	6.6	89
335	Distrofia miotónica congénita. Hallazgos clÃnicos, electrofisiológicos y genéticos de nuestra casuÃstica. Rehabilitacion, 2009, 43, 144-150.	0.2	0
336	Muscleblind-Like Proteins. American Journal of Pathology, 2009, 174, 216-227.	1.9	65
337	Expression of RNA CCUG Repeats Dysregulates Translation and Degradation of Proteins in Myotonic Dystrophy 2 Patients. American Journal of Pathology, 2009, 175, 748-762.	1.9	77
338	Intron-Mediated RNA Interference and microRNA Biogenesis. Methods in Molecular Biology, 2009, 487, 1-27.	0.4	34
339	Orthopaedic Manifestations of Congenital Myotonic Dystrophy During Childhood and Adolescence. Journal of Pediatric Orthopaedics, 2009, 29, 208-213.	0.6	39
340	Simple Sequence Repeat Polymorphisms (SSRPs) for Evaluation of Molecular Diversity and Germplasm Classification of Minor Crops. Molecules, 2009, 14, 4546-4569.	1.7	124
341	Pathogenic mechanisms of myotonic dystrophy. Biochemical Society Transactions, 2009, 37, 1281-1286.	1.6	251
342	Long tandem repeats as a form of genomic copy number variation: structure and length polymorphism of a chromosome 5p repeat in control and schizophrenia populations. Psychiatric Genetics, 2009, 19, 64-71.	0.6	22
343	Myotonic Dystrophies 1 and 2: Complex Diseases with Complex Mechanisms. Current Genomics, 2010, 11, 77-90.	0.7	82
344	Muscle Development and Regeneration in Normal and Pathological Conditions: Learning from Drosophila. Current Pharmaceutical Design, 2010, 16, 929-941.	0.9	12
345	Pharmacological treatment for muscle weakness and wasting in myotonic dystrophy. The Cochrane Library, 0, , .	1.5	0
347	Routinely frozen biopsies of human skeletal muscle are suitable for morphological and immunocytochemical analyses at transmission electron microscopy. European Journal of Histochemistry, 2010, 54, 31.	0.6	13
348	The use of buccal cells for rapid diagnosis of myotonic dystrophy type 1. Translational Neuroscience, 2010, 1, .	0.7	3
349	Repeat expansion diseases: when a good RNA turns bad. Wiley Interdisciplinary Reviews RNA, 2010, 1, 173-192.	3.2	6

ARTICLE IF CITATIONS Differences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies 350 3.9 63 DM1 and DM2. Acta Neuropathologica, 2010, 119, 465-479. Novel myosin heavy chain immunohistochemical double staining developed for the routine diagnostic 28 separatión of I, IIA and IIX fibers. Acta Neuropathologica, 2010, 119, 495-500. Brain involvement in myotonic dystrophies: neuroimaging and neuropsychological comparative study 352 1.8 101 in DM1 and DM2. Journal of Neurology, 2010, 257, 1246-1255. Anesth \widetilde{A} ©sie et dystrophie myotonique de type 2: une s \widetilde{A} ©rie de cas. Canadian Journal of Anaesthesia, 2010, 57, 248-255. MRI in the assessment of muscular pathology: a comparison between limb-girdle muscular 354 4.7 77 dystrophies, hyaline body myopathies and myotonic dystrophies. Radiologia Medica, 2010, 115, 585-599. Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models. Journal of Genetics, 2010, 89, 497-526. 0.4 24 Proteome profile in Myotonic Dystrophy type 2 myotubes reveals dysfunction in protein processing 356 2.1 17 and mitochondrial pathways. Neurobiology of Disease, 2010, 38, 273-280. Epigenetic changes and non-coding expanded repeats. Neurobiology of Disease, 2010, 39, 21-27. 2.1 358 Database of exact tandem repeats in the Zebrafish genome. BMC Genomics, 2010, 11, 347. 1.2 4 Regulatory RNAs in brain function and disorders. Brain Research, 2010, 1338, 36-47. 1.1 Analysis of MTMR1 expression and correlation with muscle pathological features in juvenile/adult onset myotonic dystrophy type 1 (DM1) and in myotonic dystrophy type 2 (DM2). Experimental and 360 0.9 16 Moleculár Pathológy, 2010, 89, 158-168. CNBP: A multifunctional nucleic acid chaperone involved in cell death and proliferation control. 361 1.5 IUBMB Life, 2010, 62, 707-714. The Role of Flexibility in the Rational Design of Modularly Assembled Ligands Targeting the RNAs that 362 1.3 31 Cause the Myotonic Dystrophies. ChemBioChem, 2010, 11, 375-382. QRS prolongation in myotonic muscular dystrophy and diffuse fibrosis on cardiac magnetic 1.9 resonance. Magnetic Résonance in Medicine, 2010, 64, 107-114. Absent, unrecognized, and minimal myotonic discharges in myotonic dystrophy type 2. Muscle and 364 1.0 45 Nerve, 2010, 41, 758-762. Altered <i>MEF2</i> isoforms in myotonic dystrophy and other neuromuscular disorders. Muscle and Nerve, 2010, 42, 856-863. The pathobiology of splicing. Journal of Pathology, 2010, 220, 152-163. 335 366 2.1The myotonic dystrophy type 2 (<i>DM2</i>) gene product zinc finger protein 9 (ZNF9) is associated with sarcomeres and normally localized in DM2 patients' muscles. Neuropathology and Applied 1.8

CITATION REPORT

Neurobiology, 2010, 36, 275-284.

\sim		<u> </u>	
			ЪΤ
	ITAL	KLPU	IN I

#	Article	IF	CITATIONS
368	Progress in therapeutic antisense applications for neuromuscular disorders. European Journal of Human Genetics, 2010, 18, 146-153.	1.4	33
369	Muscling in: Gene therapies for muscular dystrophy target RNA. Nature Medicine, 2010, 16, 170-171.	15.2	11
370	Muscling in: Uncovering the origins of rhabdomyosarcoma. Nature Medicine, 2010, 16, 171-173.	15.2	112
371	Repeat expansion disease: progress and puzzles in disease pathogenesis. Nature Reviews Genetics, 2010, 11, 247-258.	7.7	425
372	Mendelian genetics of male infertility. Annals of the New York Academy of Sciences, 2010, 1214, E1-E17.	1.8	48
374	Myotonic dystrophy. , 0, , 347-362.		1
375	Structural and functional alterations of the cell nucleus in skeletal muscle wasting: the evidence in situ. European Journal of Histochemistry, 2010, 54, 44.	0.6	28
376	RNA Surveillance: Molecular Approaches in Transcript Quality Control and their Implications in Clinical Diseases. Molecular Medicine, 2010, 16, 53-68.	1.9	14
377	Molecular therapy in myotonic dystrophy: focus on RNA gain-of-function. Human Molecular Genetics, 2010, 19, R90-R97.	1.4	39
378	Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1. Human Molecular Genetics, 2010, 19, 1066-1075.	1.4	130
379	Poor sleep quality and fatigue but no excessive daytime sleepiness in myotonic dystrophy type 2. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 963-967.	0.9	43
380	The Expanding World of Myotonic Dystrophies: How Can They Be Detected?. Genetic Testing and Molecular Biomarkers, 2010, 14, 733-741.	0.3	11
381	RNA-binding Protein Muscleblind-like 3 (MBNL3) Disrupts Myocyte Enhancer Factor 2 (Mef2) β-Exon Splicing. Journal of Biological Chemistry, 2010, 285, 33779-33787.	1.6	35
382	Inactivation of hnRNP K by Expanded Intronic AUUCU Repeat Induces Apoptosis Via Translocation of PKCδ to Mitochondria in Spinocerebellar Ataxia 10. PLoS Genetics, 2010, 6, e1000984.	1.5	102
383	CCUG Repeats Reduce the Rate of Global Protein Synthesis in Myotonic Dystrophy Type 2. Reviews in the Neurosciences, 2010, 21, 19-28.	1.4	12
384	Comparative analysis of brain structure, metabolism, and cognition in myotonic dystrophy 1 and 2. Neurology, 2010, 74, 1108-1117.	1.5	111
385	Conserved developmental alternative splicing of muscleblind-like (MBNL) transcripts regulates MBNL localization and activity. RNA Biology, 2010, 7, 43-55.	1.5	51
386	Alternative splicing and muscular dystrophy. RNA Biology, 2010, 7, 441-452.	1.5	55

#	Article	IF	CITATIONS
387	Non-Alcoholic Steatohepatitis in Myotonic Dystrophy: DMPK Gene Mutation, Insulin Resistance and Development of Steatohepatitis. Case Reports in Gastroenterology, 2010, 4, 100-103.	0.3	12
388	Muscleblind-like 1 (Mbnl1) Promotes Insulin Receptor Exon 11 Inclusion via Binding to a Downstream Evolutionarily Conserved Intronic Enhancer. Journal of Biological Chemistry, 2010, 285, 25426-25437.	1.6	64
391	Intron-Mediated RNA Interference, Intronic MicroRNAs, and Applications. Methods in Molecular Biology, 2010, 629, 203-235.	0.4	27
392	Tackling the pathogenesis of RNA nuclear retention in myotonic dystrophy. Biology of the Cell, 2010, 102, 515-523.	0.7	10
393	Validation of Sensitivity and Specificity of Tetraplet-Primed PCR (TP-PCR) in the Molecular Diagnosis of Myotonic Dystrophy Type 2 (DM2). Journal of Molecular Diagnostics, 2010, 12, 601-606.	1.2	22
394	The myotonic dystrophies: diagnosis and management. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 358-367.	0.9	297
395	Variable Tandem Repeats Accelerate Evolution of Coding and Regulatory Sequences. Annual Review of Genetics, 2010, 44, 445-477.	3.2	530
396	Human Gene Mutation: Mechanisms and Consequences. , 2010, , 319-363.		6
397	APPΔNL695 expression in murine tissue downregulates CNBP expression. Neuroscience Letters, 2010, 482, 57-61.	1.0	12
398	CTG repeat lengths of the DMPK gene in myotonic dystrophy patients compared to healthy controls in Thailand. Journal of Clinical Neuroscience, 2010, 17, 1520-1522.	0.8	4
399	Hereditary muscular dystrophies and the heart. Neuromuscular Disorders, 2010, 20, 479-492.	0.3	215
400	Roles of trinucleotide-repeat RNA in neurological disease and degeneration. Trends in Neurosciences, 2010, 33, 292-298.	4.2	66
401	Mutant (CCTG)n Expansion Causes Abnormal Expression of Zinc Finger Protein 9 (ZNF9) in Myotonic Dystrophy Type 2. American Journal of Pathology, 2010, 177, 3025-3036.	1.9	70
402	RNA Therapeutics. Methods in Molecular Biology, 2010, 629, v-vii.	0.4	5
403	Instability of the DNA repeats mutation in humans hereditary disorders. , 2011, , .		0
404	The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease. Brain, 2011, 134, 3530-3546.	3.7	199
405	Myotonic Dystrophy Type 1 RNA Crystal Structures Reveal Heterogeneous 1 × 1 Nucleotide UU Internal Loop Conformations. Biochemistry, 2011, 50, 9928-9935.	1.2	42
406	NMR Spectroscopy and Molecular Dynamics Simulation of r(CCGCUGCGG)2Reveal a Dynamic UU Internal Loop Found in Myotonic Dystrophy Type 1. Biochemistry, 2011, 50, 599-601.	1.2	27

#	Article	IF	CITATIONS
407	Cellular toxicity of expanded RNA repeats: focus on RNA foci. Human Molecular Genetics, 2011, 20, 3811-3821.	1.4	211
408	Spinocerebellar degenerations. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2011, 100, 113-140.	1.0	22
409	RNA Pathologies in Neurological Disorders. Advances in Neurobiology, 2011, , 399-415.	1.3	0
410	Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nature Structural and Molecular Biology, 2011, 18, 840-845.	3.6	248
411	Defining potentially conserved RNA regulons of homologous zinc-finger RNA-binding proteins. Genome Biology, 2011, 12, R3.	13.9	30
412	Treatment and Management of Muscular Dystrophies. , 2011, , 343-372.		3
413	Myotonic dystrophy types 1 and 2. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2011, 101, 193-237.	1.0	58
414	RNA Foci, CUGBP1, and ZNF9 Are the Primary Targets of the Mutant CUG and CCUG Repeats Expanded in Myotonic Dystrophies Type 1 and Type 2. American Journal of Pathology, 2011, 179, 2475-2489.	1.9	33
415	Gain of RNA function in pathological cases: Focus on myotonic dystrophy. Biochimie, 2011, 93, 2006-2012.	1.3	37
416	Saccharomyces cerevisiae Gis2 interacts with the translation machinery and is orthogonal to myotonic dystrophy type 2 protein ZNF9. Biochemical and Biophysical Research Communications, 2011, 406, 13-19.	1.0	34
417	Alternative splicing of PDLIM3/ALP, for α-actinin-associated LIM protein 3, is aberrant in persons with myotonic dystrophy. Biochemical and Biophysical Research Communications, 2011, 409, 64-69.	1.0	29
418	Myotonic dystrophy mouse models: towards rational therapy development. Trends in Molecular Medicine, 2011, 17, 506-517.	3.5	77
419	Upgrading molecular diagnostics of myotonic dystrophies: Multiplexing for simultaneous characterization of the DMPK and ZNF9 repeat motifs. Molecular and Cellular Probes, 2011, 25, 182-185.	0.9	21
421	Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type 1. Neuromuscular Disorders, 2011, 21, 81-88.	0.3	109
423	Low Intraocular Pressure Resulting from Ciliary Body Detachment in Patients with Myotonic Dystrophy. Ophthalmology, 2011, 118, 260-264.	2.5	55
424	Repeat-Primed Polymerase Chain Reaction in Myotonic Dystrophy Type 2 Testing. Genetic Testing and Molecular Biomarkers, 2011, 15, 133-136.	0.3	10
425	Cultured myoblasts from patients affected by myotonic dystrophy type 2 exhibit senescence-related features: ultrastructural evidence. European Journal of Histochemistry, 2011, 55, 26.	0.6	22
426	Long Tract of Untranslated CAG Repeats Is Deleterious in Transgenic Mice. PLoS ONE, 2011, 6, e16417.	1.1	61

		CITATION R	EPORT	
#	Article		IF	CITATIONS
427	NA Metabolism in Neurodegenerative Disease. Current Chemical Biology, 2011, 5, .		0.2	0
428	RNA Splicing Manipulation: Strategies to Modify Gene Expression for a Variety of Thera Outcomes. Current Gene Therapy, 2011, 11, 259-275.	peutic	0.9	18
429	Autosomal dominant Late-onset Quadriceps Myopathy: Three Patients of a Taiwanese Medicine, 2011, 50, 1175-1181.	Kindred. Internal	0.3	0
430	Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN expansion in the CNBP (ZNF9) gene. Clinical Genetics, 2011, 80, 574-580.	11 mutation and	1.0	22
431	Alternative splicing of myomesin 1 gene is aberrantly regulated in myotonic dystrophy Cells, 2011, 16, 961-972.	type 1. Genes To	0.5	35
432	Brugada-like cardiac disease in myotonic dystrophy type 2: report of two unrelated pati Journal of Neurology, 2011, 18, 191-194.	ients. European	1.7	13
433	Misregulated alternative splicing of BIN1 is associated with T tubule alterations and mu in myotonic dystrophy. Nature Medicine, 2011, 17, 720-725.	scle weakness	15.2	299
434	Dutch myotonic dystrophy type 2 patients and a North-African DM2 family carry the co founder haplotype. European Journal of Human Genetics, 2011, 19, 567-570.	mmon European	1.4	7
435	Population frequency of myotonic dystrophy: higher than expected frequency of myoto type 2 (DM2) mutation in Finland. European Journal of Human Genetics, 2011, 19, 776	onic dystrophy -782.	1.4	119
436	Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes C 9p-Linked FTD and ALS. Neuron, 2011, 72, 245-256.	Chromosome	3.8	4,176
437	RNA splicing: disease and therapy. Briefings in Functional Genomics, 2011, 10, 151-164	4.	1.3	79
438	Expansion of Intronic GGCCTG Hexanucleotide Repeat in NOP56 Causes SCA36, a Type Ataxia Accompanied by Motor Neuron Involvement. American Journal of Human Geneti 121-130.	of Spinocerebellar cs, 2011, 89,	2.6	244
439	RNA processing is altered in skeletal muscle nuclei of patients affected by myotonic dys Histochemistry and Cell Biology, 2011, 135, 419-425.	strophy.	0.8	18
440	High disease impact of myotonic dystrophy type 2 on physical and mental functioning. Neurology, 2011, 258, 1820-1826.	Journal of	1.8	26
441	Muscleblind participates in RNA toxicity of expanded CAG and CUG repeats in Caenorh Cellular and Molecular Life Sciences, 2011, 68, 1255-1267.	abditis elegans.	2.4	62
442	The Muscular Dystrophies: Distinct Pathogenic Mechanisms Invite Novel Therapeutic A Current Rheumatology Reports, 2011, 13, 199-207.	pproaches.	2.1	14
443	The four Zn fingers of MBNL1 provide a flexible platform for recognition of its RNA bind BMC Molecular Biology, 2011, 12, 20.	ling elements.	3.0	35
444	Perspectives on gene therapy in myotonic dystrophy type 1. Journal of Neuroscience Re 275-285.	esearch, 2011, 89,	1.3	24

#	Article	IF	CITATIONS
445	Differential susceptibility of muscles to myotonia and force impairment in a mouse model of myotonic dystrophy. Muscle and Nerve, 2011, 43, 818-827.	1.0	8
446	Therapeutics development in myotonic dystrophy type 1. Muscle and Nerve, 2011, 44, 160-169.	1.0	43
447	X•hromosomeâ€located microRNAs in immunity: Might they explain male/female differences?. BioEssays, 2011, 33, 791-802.	1.2	220
448	Research Resource: New and Diverse Substrates for the Insulin Receptor Isoform A Revealed by Quantitative Proteomics After Stimulation With IGF-II or Insulin. Molecular Endocrinology, 2011, 25, 1456-1468.	3.7	48
449	CAG repeat RNA as an auxiliary toxic agent in polyglutamine disorders. RNA Biology, 2011, 8, 565-571.	1.5	42
450	Opportunities and challenges for the development of antisense treatment in neuromuscular disorders. Expert Opinion on Biological Therapy, 2011, 11, 1025-1037.	1.4	11
451	Epigenetics in Nucleotide Repeat Expansion Disorders. Seminars in Neurology, 2011, 31, 470-483.	0.5	37
452	Myotonic dystrophy, when simple repeats reveal complex pathogenic entities: new findings and future challenges. Human Molecular Genetics, 2011, 20, R116-R123.	1.4	75
453	The origin of genetic instability in CCTG repeats. Nucleic Acids Research, 2011, 39, 6260-6268.	6.5	26
454	Mutant CAG repeats of Huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference. Nucleic Acids Research, 2011, 39, 3852-3863.	6.5	164
455	Cancer Risk Among Patients With Myotonic Muscular Dystrophy. JAMA - Journal of the American Medical Association, 2011, 306, 2480-6.	3.8	99
456	Selective inhibition of MBNL1–CCUG interaction by small molecules toward potential therapeutic agents for myotonic dystrophy type 2 (DM2) â€. Nucleic Acids Research, 2011, 39, 8881-8890.	6.5	40
457	Stochastic and reversible aggregation of mRNA with expanded CUG-triplet repeats. Journal of Cell Science, 2011, 124, 1703-1714.	1.2	65
458	Laboratory Abnormalities in Patients With Myotonic Dystrophy Type 2. Archives of Neurology, 2011, 68, 1180.	4.9	26
459	Identification of MBNL1 and MBNL3 domains required for splicing activation and repression. Nucleic Acids Research, 2011, 39, 2769-2780.	6.5	44
460	Zebrafish deficient for Muscleblind-like 2 exhibit features of myotonic dystrophy. DMM Disease Models and Mechanisms, 2011, 4, 381-392.	1.2	34
461	Myotonic Dystrophy Protein Kinase Is Critical for Nuclear Envelope Integrity*. Journal of Biological Chemistry, 2011, 286, 40296-40306.	1.6	19
462	Non-ATG–initiated translation directed by microsatellite expansions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 260-265.	3.3	826

#	Article	IF	CITATIONS
463	Systemic Disorders. , 2011, , 1098-1182.		1
464	Inherited Retinal Degenerations With Systemic Manifestations. International Ophthalmology Clinics, 2012, 52, 119-147.	0.3	1
465	Myotonic dystrophy. Current Opinion in Neurology, 2012, 25, 609-613.	1.8	24
466	New function for the RNA helicase p68/DDX5 as a modifier of MBNL1 activity on expanded CUG repeats. Nucleic Acids Research, 2012, 40, 3159-3171.	6.5	71
467	Four parameters increase the sensitivity and specificity of the exon array analysis and disclose 25 novel aberrantly spliced exons in myotonic dystrophy. Journal of Human Genetics, 2012, 57, 368-374.	1.1	15
468	Myotonic Dystrophy: From Bench to Bedside. Seminars in Neurology, 2012, 32, 246-254.	0.5	39
469	Histopathological features in subsequent muscle biopsies in a warmblood mare with myotonic dystrophy. Veterinary Quarterly, 2012, 32, 187-192.	3.0	5
470	Myotonic dystrophy type 2 is rare in the Japanese population. Journal of Human Genetics, 2012, 57, 219-220.	1.1	12
471	Spinocerebellar ataxia type 10. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 103, 507-519.	1.0	15
472	Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. European Journal of Human Genetics, 2012, 20, 1203-1208.	1.4	129
473	Sleep Disturbances in Myotonic Dystrophy Type 2. European Neurology, 2012, 68, 377-380.	0.6	31
474	Combinatorial Mutagenesis of MBNL1 Zinc Fingers Elucidates Distinct Classes of Regulatory Events. Molecular and Cellular Biology, 2012, 32, 4155-4167.	1.1	22
475	A role for PLC $\hat{1}^21$ in myotonic dystrophies type 1 and 2. FASEB Journal, 2012, 26, 3042-3048.	0.2	24
477	Mouse model of muscleblind-like 1 overexpression: skeletal muscle effects and therapeutic promise. Human Molecular Genetics, 2012, 21, 4645-4654.	1.4	67
478	Rational Design of Bioactive, Modularly Assembled Aminoglycosides Targeting the RNA that Causes Myotonic Dystrophy Type 1. ACS Chemical Biology, 2012, 7, 1984-1993.	1.6	57
479	The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurology, The, 2012, 11, 891-905.	4.9	390
480	Genotype and phenotype study of 34 Spanish patients diagnosed with oculopharyngeal muscular dystrophy. Journal of Neurology, 2012, 259, 1546-1552.	1.8	19
481	Co-segregation of DM2 with a recessive CLCN1 mutation in juvenile onset of myotonic dystrophy type 2. Journal of Neurology, 2012, 259, 2090-2099.	1.8	47

#	Article	IF	CITATIONS
482	Correlates of tumor development in patients with myotonic dystrophy. Journal of Neurology, 2012, 259, 2161-2166.	1.8	38
483	Rapid detection of large expansions in progressive myoclonus epilepsy type 1, myotonic dystrophy type 2 and spinocerebellar ataxia type 8. Neurologia I Neurochirurgia Polska, 2012, 46, 113-120.	0.6	11
484	Design of a Bioactive Small Molecule That Targets the Myotonic Dystrophy Type 1 RNA via an RNA Motif–Ligand Database and Chemical Similarity Searching. Journal of the American Chemical Society, 2012, 134, 4731-4742.	6.6	129
485	A rapid immunohistochemical test to distinguish congenital myotonic dystrophy from X-linked myotubular myopathy. Neuromuscular Disorders, 2012, 22, 225-230.	0.3	10
486	Screening for mutations in Spanish families with myotonia. Functional analysis of novel mutations in CLCN1 gene. Neuromuscular Disorders, 2012, 22, 231-243.	0.3	31
487	Cerebral and muscle MRI abnormalities in myotonic dystrophy. Neuromuscular Disorders, 2012, 22, 483-491.	0.3	52
488	Skeletal muscle involvement in myotonic dystrophy type 2. A comparative muscle ultrasound study. Neuromuscular Disorders, 2012, 22, 492-499.	0.3	23
489	Sequestration of MBNL1 in tissues of patients with myotonic dystrophy type 2. Neuromuscular Disorders, 2012, 22, 604-616.	0.3	13
490	Neurodegeneration the RNA way. Progress in Neurobiology, 2012, 97, 173-189.	2.8	76
491	Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of CaV1.1 calcium channel. Human Molecular Genetics, 2012, 21, 1312-1324.	1.4	146
492	If you build a rare disease registry, will they enroll and will they use it? Methods and data from the National Registry of Myotonic Dystrophy (DM) and Facioscapulohumeral Muscular Dystrophy (FSHD). Contemporary Clinical Trials, 2012, 33, 302-311.	0.8	53
493	Utilizing the GAAA Tetraloop/Receptor To Facilitate Crystal Packing and Determination of the Structure of a CUG RNA Helix. Biochemistry, 2012, 51, 8330-8337.	1.2	36
494	Myotonic Dystrophy Type 1 or Steinert's Disease. Advances in Experimental Medicine and Biology, 2012, 724, 239-257.	0.8	56
495	Positive muscle phenomena—diagnosis, pathogenesis and associated disorders. Nature Reviews Neurology, 2012, 8, 97-107.	4.9	14
496	Increased Cancer Risks in Myotonic Dystrophy. Mayo Clinic Proceedings, 2012, 87, 130-135.	1.4	80
498	Nuclear ribonucleoprotein-containing foci increase in size in non-dividing cells from patients with myotonic dystrophy type 2. Histochemistry and Cell Biology, 2012, 138, 699-707.	0.8	17
499	Myotonic Dystrophy. , 2012, , 955-968.		1
500	The Unstable CCTG Repeat Responsible for Myotonic Dystrophy Type 2 Originates from an AluSx Element Insertion into an Early Primate Genome. PLoS ONE, 2012, 7, e38379.	1.1	26

			CITATION REPOR	T
#	Article		IF	CITATION
501	Ubiquitous Expression of CUG or CAG Trinucleotide Repeat RNA Causes Common Mor Defects in a Drosophila Model of RNA-Mediated Pathology. PLoS ONE, 2012, 7, e3851	phological 6.	1.1	L 9
502	Clinical Characteristics and Analysis of CLCN1 in Patients with "EMG Disease". Journal o	f Clinical		

	Стл	ation Report	
#	Article	IF	CITATIONS
519	Pain in patients with myotonic dystrophy type 2: A postal survey in finland. Muscle and Nerve, 2012, 45 70-74.	j, 1.0	46
520	Alternative splicing of human insulin receptor gene (INSR) in type I and type II skeletal muscle fibers of patients with myotonic dystrophy type 1 and type 2. Molecular and Cellular Biochemistry, 2013, 380, 259-265.	1.4	41
521	Trinucleotide Repeat Protocols. Methods in Molecular Biology, 2013, , .	0.4	3
522	Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules. Nature Communications, 2013, 4, 2044.	5.8	76
523	MicroRNA Protocols. Methods in Molecular Biology, 2013, , .	0.4	2
524	Genetic Variants in Alzheimer's Disease. , 2013, , .		9
525	Human Gene Mutation in Inherited Disease. , 2013, , 1-48.		6
526	Diagnostic odyssey of patients with myotonic dystrophy. Journal of Neurology, 2013, 260, 2497-2504.	1.8	77
527	Myotonic Dystrophies. , 2013, , 1-30.		0
528	The Alternative Heart: Impact of Alternative Splicing in Heart Disease. Journal of Cardiovascular Translational Research, 2013, 6, 945-955.	1.1	76
529	Therapeutic advances in muscular dystrophy. Annals of Neurology, 2013, 74, 404-411.	2.8	70
530	Molecular mechanisms of muscle atrophy in myotonic dystrophies. International Journal of Biochemistry and Cell Biology, 2013, 45, 2280-2287.	1.2	42
531	Antisense Oligonucleotides: Rising Stars in Eliminating RNA Toxicity in Myotonic Dystrophy. Human Gene Therapy, 2013, 24, 499-507.	1.4	44
532	Rational design of chemical genetic probes of RNA function and lead therapeutics targeting repeating transcripts. Drug Discovery Today, 2013, 18, 1228-1236.	3.2	23
533	RNA dysfunction and aggrephagy at the centre of an amyotrophic lateral sclerosis/frontotemporal dementia disease continuum. Brain, 2013, 136, 1345-1360.	3.7	76
534	Proteomic analyses and identification of arginine methylated proteins differentially recognized by autosera from anti-Sm positive SLE patients. Journal of Biomedical Science, 2013, 20, 27.	2.6	8
535	Reducing Levels of Toxic RNA with Small Molecules. ACS Chemical Biology, 2013, 8, 2528-2537.	1.6	71
536	Mechanistic studies for the role of cellular nucleic-acid-binding protein (CNBP) in regulation of c-myc transcription, Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4769-4777.	1.1	37

#	Article	IF	CITATIONS
537	RNA toxicity in human disease and animal models: From the uncovering of a new mechanism to the development of promising therapies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1390-1409.	1.8	60
538	Crafting precise multivalent architectures. MedChemComm, 2013, 4, 493-509.	3.5	37
539	Cellular and molecular mechanisms underlying muscular dystrophy. Journal of Cell Biology, 2013, 201, 499-510.	2.3	203
540	The MicroRNA. Methods in Molecular Biology, 2013, 936, 1-19.	0.4	17
541	The diagnosis and treatment of myotonic disorders. Muscle and Nerve, 2013, 47, 632-648.	1.0	61
542	Splicing biomarkers of disease severity in myotonic dystrophy. Annals of Neurology, 2013, 74, 862-872.	2.8	215
543	An unusual case with myotonia. Kaohsiung Journal of Medical Sciences, 2013, 29, 172-175.	0.8	0
544	Uninterrupted CCTG tracts in the myotonic dystrophy type 2 associated locus. Neuromuscular Disorders, 2013, 23, 591-598.	0.3	18
545	Isolation and Identification of Gene-Specific MicroRNAs. Methods in Molecular Biology, 2013, 936, 271-278.	0.4	2
546	The changing scene of amyotrophic lateral sclerosis. Nature Reviews Neuroscience, 2013, 14, 248-264.	4.9	860
547	The Unstable Repeats—Three Evolving Faces of Neurological Disease. Neuron, 2013, 77, 825-843.	3.8	192
548	Expanded complexity of unstable repeat diseases. BioFactors, 2013, 39, 164-175.	2.6	17
549	Skeletal Muscle Degenerative Diseases and Strategies for Therapeutic Muscle Repair. Annual Review of Pathology: Mechanisms of Disease, 2013, 8, 441-475.	9.6	64
550	Fragile X-associated tremor/ataxia syndrome (FXTAS): pathology and mechanisms. Acta Neuropathologica, 2013, 126, 1-19.	3.9	142
551	Gene Silencing In Vitro and In Vivo Using Intronic MicroRNAs. Methods in Molecular Biology, 2013, 936, 209-229.	0.4	21
552	RNA-mediated toxicity in neurodegenerative disease. Molecular and Cellular Neurosciences, 2013, 56, 406-419.	1.0	80
553	RNA Interference Targeting CUG Repeats in a Mouse Model of Myotonic Dystrophy. Molecular Therapy, 2013, 21, 380-387.	3.7	87
555	Transcriptional changes and developmental abnormalities in a zebrafish model of myotonic dystrophy type 1. DMM Disease Models and Mechanisms, 2014, 7, 143-55.	1.2	25

#	Article	IF	CITATIONS
556	Repeat-associated non-ATG (RAN) translation in neurological disease. Human Molecular Genetics, 2013, 22, R45-R51.	1.4	136
557	Non-Coding RNAs in Muscle Dystrophies. International Journal of Molecular Sciences, 2013, 14, 19681-19704.	1.8	31
558	Reexpression of pyruvate kinase M2 in type 1 myofibers correlates with altered glucose metabolism in myotonic dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13570-13575.	3.3	65
559	A defective Krab-domain zinc-finger transcription factor contributes to altered myogenesis in myotonic dystrophy type 1. Human Molecular Genetics, 2013, 22, 5188-5198.	1.4	11
560	Restless legs syndrome and daytime sleepiness are prominent in myotonic dystrophy type 2. Neurology, 2013, 81, 157-164.	1.5	36
561	Beyond the Binding Site: In Vivo Identification of tbx2, smarca5 and wnt5b as Molecular Targets of CNBP during Embryonic Development. PLoS ONE, 2013, 8, e63234.	1.1	17
562	Altered expression and splicing of Ca ²⁺ metabolism genes in myotonic dystrophies DM1 and DM2. Neuropathology and Applied Neurobiology, 2013, 39, 390-405.	1.8	22
563	Manumycin A corrects aberrant splicing of Clcn1 in myotonic dystrophy type 1 (DM1) mice. Scientific Reports, 2013, 3, 2142.	1.6	21
564	Muscleblind-like1 undergoes ectopic relocation in the nuclei of skeletal muscles in myotonic dystrophy and sarcopenia. European Journal of Histochemistry, 2013, 57, 15.	0.6	16
566	Overexpression of CUGBP1 in Skeletal Muscle from Adult Classic Myotonic Dystrophy Type 1 but Not from Myotonic Dystrophy Type 2. PLoS ONE, 2013, 8, e83777.	1.1	29
567	Antisense Therapy in Neurology. Journal of Personalized Medicine, 2013, 3, 144-176.	1.1	53
568	Sleep-Wake Cycle and Daytime Sleepiness in the Myotonic Dystrophies. Journal of Neurodegenerative Diseases, 2013, 2013, 1-13.	1.1	23
570	A preliminary evaluation of lake morphometric traits influence on the maximum growing depth of macrophytes. Journal of Limnology, 2014, 73, .	0.3	9
571	SPLICING ABNORMALITIES IN MYOTONIC DYSTROPHIES. Istituto Lombardo - Accademia Di Scienze E Lettere - Incontri Di Studio, 2014, , 9-23.	0.0	0
572	CLINICAL ASPECTS AND MANAGEMENT OF MYOTONIC DYSTROPHIES. Istituto Lombardo - Accademia Di Scienze E Lettere - Incontri Di Studio, 0, , 41-65.	0.0	0
573	CELL NUCLEAR ALTERATIONS IN MYOTONIC DYSTROPHY. Istituto Lombardo - Accademia Di Scienze E Lettere - Incontri Di Studio, 2014, , 25-40.	0.0	0
574	Genome Wide Identification of Aberrant Alternative Splicing Events in Myotonic Dystrophy Type 2. PLoS ONE, 2014, 9, e93983.	1.1	27
575	Development of an AP-FRET Based Analysis for Characterizing RNA-Protein Interactions in Myotonic Dystrophy (DM1). PLoS ONE, 2014, 9, e95957.	1.1	14

#	Article	IF	CITATIONS
576	RNA Transcription and Maturation in Skeletal Muscle Cells are Similarly Impaired in Myotonic Dystrophy and Sarcopenia: The Ultrastructural Evidence. Frontiers in Aging Neuroscience, 2014, 6, 196.	1.7	11
577	Borderlines between Sarcopenia and Mild Late-Onset Muscle Disease. Frontiers in Aging Neuroscience, 2014, 6, 267.	1.7	15
578	Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Frontiers in Molecular Neuroscience, 2014, 6, 57.	1.4	69
579	Premature senescence in primary muscle cultures of myotonic dystrophy type 2 is not associated with p16 induction. European Journal of Histochemistry, 2014, 58, 2444.	0.6	27
580	Towards Understanding RNA-Mediated Neurological Disorders. Journal of Genetics and Genomics, 2014, 41, 473-484.	1.7	14
581	The Challenge of Next Generation Sequencing in the Context of Neuromuscular Diseases. Journal of Neuromuscular Diseases, 2014, 1, 135-149.	1.1	25
582	DDX6 regulates sequestered nuclear CUG-expanded DMPK-mRNA in dystrophia myotonica type 1. Nucleic Acids Research, 2014, 42, 7186-7200.	6.5	45
583	Clinical and genetic analysis of the first known Asian family with myotonic dystrophy type 2. Journal of Human Genetics, 2014, 59, 129-133.	1.1	4
584	CNBP regulates wing development in <i>Drosophila melanogaster</i> by promoting IRES-dependent translation of dMyc. Cell Cycle, 2014, 13, 434-439.	1.3	17
585	Genetic Syndromes with Evidence of Immune Deficiency. , 2014, , 281-324.		3
585 586	Genetic Syndromes with Evidence of Immune Deficiency. , 2014, , 281-324. RNA imaging in living cells – methods and applications. RNA Biology, 2014, 11, 1083-1095.	1.5	3 77
585 586 587	Genetic Syndromes with Evidence of Immune Deficiency., 2014, , 281-324. RNA imaging in living cells – methods and applications. RNA Biology, 2014, 11, 1083-1095. Risk of cancer in relatives of patients with myotonic dystrophy: a populationâ€based cohort study. European Journal of Neurology, 2014, 21, 1192-1197.	1.5	3 77 12
585 586 587 589	Genetic Syndromes with Evidence of Immune Deficiency., 2014, , 281-324. RNA imaging in living cells – methods and applications. RNA Biology, 2014, 11, 1083-1095. Risk of cancer in relatives of patients with myotonic dystrophy: a populationâ€based cohort study. European Journal of Neurology, 2014, 21, 1192-1197. Value of short exercise and short exercise with cooling tests in the diagnosis of myotonic dystrophies (DM1 AND DM2). Muscle and Nerve, 2014, 49, 277-283.	1.5 1.7 1.0	3 77 12 6
585 586 587 589	Cenetic Syndromes with Evidence of Immune Deficiency., 2014, , 281-324. RNA imaging in living cells – methods and applications. RNA Biology, 2014, 11, 1083-1095. Risk of cancer in relatives of patients with myotonic dystrophy: a populationâ€based cohort study. European Journal of Neurology, 2014, 21, 1192-1197. Value of short exercise and short exercise with cooling tests in the diagnosis of myotonic dystrophies (DM1 AND DM2). Muscle and Nerve, 2014, 49, 277-283. Inferring short tandem repeat variation from paired-end short reads. Nucleic Acids Research, 2014, 42, e16-e16.	1.5 1.7 1.0 6.5	3 77 12 6 54
585 586 587 589 590	Genetic Syndromes with Evidence of Immune Deficiency., 2014, , 281-324. RNA imaging in living cells – methods and applications. RNA Biology, 2014, 11, 1083-1095. Risk of cancer in relatives of patients with myotonic dystrophy: a populationâ€based cohort study. European Journal of Neurology, 2014, 21, 1192-1197. Value of short exercise and short exercise with cooling tests in the diagnosis of myotonic dystrophies (DM1 AND DM2). Muscle and Nerve, 2014, 49, 277-283. Inferring short tandem repeat variation from paired-end short reads. Nucleic Acids Research, 2014, 42, e16-e16. Transcriptionally correlated subcellular dynamics of MBNL1 during lens development and their implication for the molecular pathology of myotonic dystrophy type 1. Biochemical Journal, 2014, 458, 267-280.	1.5 1.7 1.0 6.5 1.7	3 77 12 6 54 9
585 586 587 589 590 591	Genetic Syndromes with Evidence of Immune Deficiency., 2014, 281-324. RNA imaging in living cells – methods and applications. RNA Biology, 2014, 11, 1083-1095. Risk of cancer in relatives of patients with myotonic dystrophy: a populationâCbased cohort study. European Journal of Neurology, 2014, 21, 1192-1197. Value of short exercise and short exercise with cooling tests in the diagnosis of myotonic dystrophies (DM1 AND DM2). Muscle and Nerve, 2014, 49, 277-283. Inferring short tandem repeat variation from paired-end short reads. Nucleic Acids Research, 2014, 42, e16-e16. Transcriptionally correlated subcellular dynamics of MBNL1 during lens development and their implication for the molecular pathology of myotonic dystrophy type 1. Biochemical Journal, 2014, 458, 267-280. Arrhythmias in Patients With Neurologic Disorders., 2014, 993-999.	1.5 1.7 1.0 6.5 1.7	3 77 12 6 54 9
585 586 587 589 590 591 592	Genetic Syndromes with Evidence of Immune Deficiency., 2014, , 281-324. RNA imaging in living cells – methods and applications. RNA Biology, 2014, 11, 1083-1095. Risk of cancer in relatives of patients with myotonic dystrophy: a populationâ€based cohort study. European Journal of Neurology, 2014, 21, 1192-1197. Value of short exercise and short exercise with cooling tests in the diagnosis of myotonic dystrophies (DM1 AND DM2). Muscle and Nerve, 2014, 49, 277-283. Inferring short tandem repeat variation from paired-end short reads. Nucleic Acids Research, 2014, 42, e16-e16. Transcriptionally correlated subcellular dynamics of MBNL1 during lens development and their implication for the molecular pathology of myotonic dystrophy type 1. Biochemical Journal, 2014, 458, 267-280. Arrhythmias in Patients With Neurologic Disorders., 2014, 993-999. A common gene expression signature in Huntington's disease patient brain regions. BMC Medical Genomics, 2014, 7, 60.	1.5 1.7 1.0 6.5 1.7 0.7	3 77 12 6 54 9 1

#	Article	IF	CITATIONS
595	MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic Acids Research, 2014, 42, 10873-10887.	6.5	168
596	Evolutionary Conservation and Expression of Human RNA-Binding Proteins and Their Role in Human Genetic Disease. Advances in Experimental Medicine and Biology, 2014, 825, 1-55.	0.8	119
597	Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing. Bioinformatics, 2014, 30, 815-822.	1.8	61
598	High-content screening identifies small molecules that remove nuclear foci, affect MBNL distribution and CELF1 protein levels via a PKC-independent pathway in myotonic dystrophy cell lines. Human Molecular Genetics, 2014, 23, 1551-1562.	1.4	69
599	Alternative splicing alterations of <scp>Ca</scp> ²⁺ handling genes are associated with <scp>Ca</scp> ²⁺ signal dysregulation in myotonic dystrophy type 1 (<scp>DM</scp> 1) and type 2 (<scp>DM</scp> 2) myotubes. Neuropathology and Applied Neurobiology, 2014, 40, 464-476.	1.8	35
600	Methods to enable the design of bioactive small molecules targeting RNA. Organic and Biomolecular Chemistry, 2014, 12, 1029-1039.	1.5	68
601	Novel high-performance purification protocol of recombinant CNBP suitable for biochemical and biophysical characterization. Protein Expression and Purification, 2014, 93, 23-31.	0.6	6
602	Recent Advances in Myotonic Dystrophy Type 2. Current Neurology and Neuroscience Reports, 2014, 14, 429.	2.0	8
603	Quencher-free molecular beacons as probes for oligonucleotides containing CAG repeat sequences. Chemical Communications, 2014, 50, 1561-1563.	2.2	17
604	Lomofungin and dilomofungin: inhibitors of MBNL1-CUG RNA binding with distinct cellular effects. Nucleic Acids Research, 2014, 42, 6591-6602.	6.5	46
607	Does quantitative EMG differ myotonic dystrophy type 2 and type 1?. Journal of Electromyography and Kinesiology, 2014, 24, 755-761.	0.7	6
608	Progression of muscle histopathology but not of spliceopathy in myotonic dystrophy type 2. Neuromuscular Disorders, 2014, 24, 1042-1053.	0.3	18
609	Structure of the Myotonic Dystrophy Type 2 RNA and Designed Small Molecules That Reduce Toxicity. ACS Chemical Biology, 2014, 9, 538-550.	1.6	61
610	A Toxic RNA Catalyzes the In Cellulo Synthesis of Its Own Inhibitor. Angewandte Chemie - International Edition, 2014, 53, 10956-10959.	7.2	50
611	Bridging Integrator 1 (BIN1) Protein Expression Increases in the Alzheimer's Disease Brain and Correlates with Neurofibrillary Tangle Pathology. Journal of Alzheimer's Disease, 2014, 42, 1221-1227.	1.2	98
612	RNA–protein interactions in unstable microsatellite diseases. Brain Research, 2014, 1584, 3-14.	1.1	51
613	Widespread RNA metabolism impairment in sporadic inclusion body myositis TDP43-proteinopathy. Neurobiology of Aging, 2014, 35, 1491-1498.	1.5	36
614	Most expression and splicing changes in myotonic dystrophy type 1 and type 2 skeletal muscle are shared with other muscular dystrophies. Neuromuscular Disorders, 2014, 24, 227-240.	0.3	36

#	Article	IF	CITATIONS
615	Arginine methylation of the cellular nucleic acid binding protein does not affect its subcellular localization but impedes RNA binding. FEBS Letters, 2014, 588, 1542-1548.	1.3	19
616	Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiology of Aging, 2014, 35, 1779.e5-1779.e13.	1.5	234
617	Macular dystrophies mimicking age-related macular degeneration. Progress in Retinal and Eye Research, 2014, 39, 23-57.	7.3	74
618	Ophthalmic manifestations of inherited neurodegenerative disorders. Nature Reviews Neurology, 2014, 10, 349-362.	4.9	38
619	Repeat associated non-ATG (RAN) translation: new starts in microsatellite expansion disorders. Current Opinion in Genetics and Development, 2014, 26, 6-15.	1.5	104
620	Cellular nucleic acid binding protein suppresses tumor cell metastasis and induces tumor cell death by downregulating heterogeneous ribonucleoprotein K in fibrosarcoma cells. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2244-2252.	1.1	15
621	Abnormal Splicing of NEDD4 in Myotonic Dystrophy Type 2. American Journal of Pathology, 2014, 184, 2322-2332.	1.9	16
622	Myotonic Dystrophy. Neurologic Clinics, 2014, 32, 705-719.	0.8	293
623	Molecular targets to treat muscular dystrophies. Swiss Medical Weekly, 2014, 144, w13916.	0.8	5
624	HeteroGenome: database of genome periodicity. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau040-bau040.	1.4	7
625	The pathogenicity of splicing defects: mechanistic insights into pre― <scp>mRNA</scp> processing inform novel therapeutic approaches. EMBO Reports, 2015, 16, 1640-1655.	2.0	127
626	The role of RNA metabolism in neurological diseases. Balkan Journal of Medical Genetics, 2015, 18, 5-14.	0.5	13
627	Myotonic Dystrophy Type 2: An Update on Clinical Aspects, Genetic and Pathomolecular Mechanism. Journal of Neuromuscular Diseases, 2015, 2, S59-S71.	1.1	50
628	Loss of muscleblind-like 1 results in cardiac pathology and persistence of embryonic splice isoforms. Scientific Reports, 2015, 5, 9042.	1.6	69
629	Clinical, pathological and genetic characteristics of a pedigree with myotonic dystrophy type 1. Experimental and Therapeutic Medicine, 2015, 10, 1931-1936.	0.8	2
630	Channelopathies of Skeletal Muscle Excitability. , 2015, 5, 761-790.		175
631	New insights into the genetic instability in CCTG repeats. FEBS Letters, 2015, 589, 3058-3063.	1.3	17
632	S phase block following <i>MEC1ATR</i> inactivation occurs without severe dNTP depletion. Biology Open, 2015, 4, 1739-1743.	0.6	6

#	Article	IF	CITATIONS
633	The genetic basis of amyotrophic lateral sclerosis: recent breakthroughs. Advances in Genomics and Genetics, 0, , 327.	0.8	11
634	The Myotonic Dystrophies. , 2015, , 1153-1168.		1
635	Variable Ethnic Frequency and Risk Ratio of DMPK Gene: A Meta-Analysis Survey. Journal of Steroids & Hormonal Science, 2015, 06, .	0.1	2
636	"Skeletal Muscle MicroRNAs: Their Diagnostic and Therapeutic Potential in Human Muscle Diseasesâ€. Journal of Neuromuscular Diseases, 2015, 2, 1-11.	1.1	35
637	The Impact of Pregnancy on Myotonic Dystrophy: A Registry-Based Study. Journal of Neuromuscular Diseases, 2015, 2, 447-452.	1.1	33
638	Gene and splicing therapies for neuromuscular diseases. Frontiers in Bioscience - Landmark, 2015, 20, 1190-1233.	3.0	13
639	Neferine Attenuates the Protein Level and Toxicity of Mutant Huntingtin in PC-12 Cells via Induction of Autophagy. Molecules, 2015, 20, 3496-3514.	1.7	80
640	Muscle wasting in myotonic dystrophies: a model of premature aging. Frontiers in Aging Neuroscience, 2015, 7, 125.	1.7	72
641	Cortical and Subcortical Grey and White Matter Atrophy in Myotonic Dystrophies Type 1 and 2 Is Associated with Cognitive Impairment, Depression and Daytime Sleepiness. PLoS ONE, 2015, 10, e0130352.	1.1	79
642	Expansion of <i>CTG18.1</i> Trinucleotide Repeat in <i>TCF4</i> Is a Potent Driver of Fuchs' Corneal Dystrophy. , 2015, 56, 4531.		48
644	Regulation of Skeletal Muscle Development and Disease by microRNAs. Results and Problems in Cell Differentiation, 2015, 56, 165-190.	0.2	15
645	Reduction of toxic RNAs in myotonic dystrophies type 1 and type 2 by the RNA helicase p68/DDX5. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8041-8045.	3.3	30
646	Myotonic Disorders and Channelopathies. Seminars in Neurology, 2015, 35, 360-368.	0.5	7
647	A novel gold-based molecular beacon for probing CNG DNA repeat sequences. Tetrahedron Letters, 2015, 56, 542-545.	0.7	9
648	Myotonic Dystrophy. , 2015, , 697-718.		0
649	Sleep and breathing disorders in myotonic dystrophy type 2. Acta Neurologica Scandinavica, 2015, 132, 42-48.	1.0	20
650	<i>ABLIM1</i> splicing is abnormal in skeletal muscle of patients with <scp>DM</scp> 1 and regulated by <scp>MBNL</scp> , <scp> CELF</scp> and <scp>PTBP</scp> 1. Genes To Cells, 2015, 20, 121-134.	0.5	23
651	SCN4A mutation as modifying factor of Myotonic Dystrophy Type 2 phenotype. Neuromuscular Disorders, 2015, 25, 301-307.	0.3	39

#	Article	IF	Citations
652	Peripheral nerve involvement in myotonic dystrophy type 2 – similar or different than in myotonic dystrophy type 1?. Neurologia I Neurochirurgia Polska, 2015, 49, 164-170.	0.6	9
653	Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy. Human Molecular Genetics, 2015, 24, 4971-4983.	1.4	43
654	RNA Structures as Mediators of Neurological Diseases and as Drug Targets. Neuron, 2015, 87, 28-46.	3.8	105
655	The Repeat Expansion Diseases: The dark side of DNA repair. DNA Repair, 2015, 32, 96-105.	1.3	55
656	Characterization and distribution of repetitive elements in association with genes in the human genome. Computational Biology and Chemistry, 2015, 57, 29-38.	1.1	11
657	Case 30-2015. New England Journal of Medicine, 2015, 373, 1251-1261.	13.9	2
658	Development and Validation of a New Molecular Diagnostic Assay for Detection of Myotonic Dystrophy Type 2. Genetic Testing and Molecular Biomarkers, 2015, 19, 703-709.	0.3	9
659	Use of Whole-Exome Sequencing for Diagnosis of Limb-Girdle Muscular Dystrophy. JAMA Neurology, 2015, 72, 1424.	4.5	164
660	Identification and Characterization of Modified Antisense Oligonucleotides Targeting <i>DMPK</i> in Mice and Nonhuman Primates for the Treatment of Myotonic Dystrophy Type 1. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 329-340.	1.3	106
661	Patient-Reported Impact of Symptoms in Myotonic Dystrophy Type 2 (PRISM-2). Neurology, 2015, 85, 2136-2146.	1.5	44
662	A fly model for the CCUG-repeat expansion of myotonic dystrophy type 2 reveals a novel interaction with MBNL1. Human Molecular Genetics, 2015, 24, 954-962.	1.4	17
663	Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 594-606.	1.8	262
665	Nuclear localization of MBNL1: splicing-mediated autoregulation and repression of repeat-derived aberrant proteins. Human Molecular Genetics, 2015, 24, 740-756.	1.4	54
666	Sequencing technologies and tools for short tandem repeat variation detection. Briefings in Bioinformatics, 2015, 16, 193-204.	3.2	32
667	Epigenetics and Epigenomics in Human Health and Disease. , 2016, , 51-74.		0
668	miR-30-5p Regulates Muscle Differentiation and Alternative Splicing of Muscle-Related Genes by Targeting MBNL. International Journal of Molecular Sciences, 2016, 17, 182.	1.8	61
669	Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy. PLoS Genetics, 2016, 12, e1006316.	1.5	79
670	<i>In vivo</i> assessment of muscle membrane properties in myotonic dystrophy. Muscle and Nerve, 2016, 54, 249-257.	1.0	16

#	Article	IF	CITATIONS
671	The competing mini-dumbbell mechanism: new insights into CCTG repeat expansion. Signal Transduction and Targeted Therapy, 2016, 1, 16028.	7.1	10
672	Mechanistic determinants of MBNL activity. Nucleic Acids Research, 2016, 44, gkw915.	6.5	56
673	Unusual structures of CCTG repeats and their participation in repeat expansion. Biomolecular Concepts, 2016, 7, 331-340.	1.0	10
674	A Molecular Signature of Myalgia in Myotonic Dystrophy 2. EBioMedicine, 2016, 7, 205-211.	2.7	16
675	No relevant excess prevalence of myotonic dystrophy type 2 in patients with suspected fibromyalgia syndrome. Neuromuscular Disorders, 2016, 26, 370-373.	0.3	5
676	Comparison of small molecules and oligonucleotides that target a toxic, non-coding RNA. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2605-2609.	1.0	15
678	A G-Rich Motif in the IncRNA Braveheart Interacts with a Zinc-Finger Transcription Factor to Specify the Cardiovascular Lineage. Molecular Cell, 2016, 64, 37-50.	4.5	133
679	Molecular Diagnosis of Myotonic Dystrophy. Current Protocols in Human Genetics, 2016, 91, 9.29.1-9.29.19.	3.5	4
680	Medication adherence in patients with myotonic dystrophy and facioscapulohumeral muscular dystrophy. Journal of Neurology, 2016, 263, 2528-2537.	1.8	7
681	IncRNA Structure: Message to the Heart. Molecular Cell, 2016, 64, 1-2.	4.5	43
682	Genome- and cell-based strategies in therapy of muscular dystrophies. Biochemistry (Moscow), 2016, 81, 678-690.	0.7	5
684	Ophthalmic findings in myotonic dystrophy type 2: a case series. Journal of Neurology, 2016, 263, 2552-2554.	1.8	4
685	Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10. Nature Communications, 2016, 7, 11647.	5.8	49
686	Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nature Communications, 2016, 7, 11067.	5.8	155
687	Muscleblind-like 3 deficit results in a spectrum of age-associated pathologies observed in myotonic dystrophy. Scientific Reports, 2016, 6, 30999.	1.6	19
688	Brain tumors in patients with myotonic dystrophy: a populationâ€based study. European Journal of Neurology, 2016, 23, 542-547.	1.7	14
689	Hypo- and Hyper-Assembly Diseases of RNA–Protein Complexes. Trends in Molecular Medicine, 2016, 22, 615-628.	3.5	59
690	Identification of variants in MBNL1 in patients with a myotonic dystrophy-like phenotype. European	1.4	5

	CITATION	Report	
#	Article	IF	CITATIONS
691	Splicing of human chloride channel 1. Biochemistry and Biophysics Reports, 2016, 5, 63-69.	0.7	3
693	Unstable repeat expansions in neurodegenerative diseases: nucleocytoplasmic transport emerges on the scene. Neurobiology of Aging, 2016, 39, 174-183.	1.5	32
694	A bouquet of DNA structures: Emerging diversity. Biochemistry and Biophysics Reports, 2016, 5, 388-395.	0.7	89
695	Muscleblind-like 1 suppresses breast cancer metastatic colonization and stabilizes metastasis suppressor transcripts. Genes and Development, 2016, 30, 386-398.	2.7	52
697	RNA FISH for detecting expanded repeats in human diseases. Methods, 2016, 98, 115-123.	1.9	28
698	Approaches to Validate and Manipulate RNA Targets with Small Molecules in Cells. Annual Review of Pharmacology and Toxicology, 2016, 56, 123-140.	4.2	58
699	Watson–Crick-like pairs in CCUG repeats: evidence for tautomeric shifts or protonation. Rna, 2016, 22, 22-31.	1.6	14
700	Antisense transcription of the myotonic dystrophy locus yields low-abundant RNAs with and without (CAC)n repeat. RNA Biology, 2017, 14, 1374-1388.	1.5	25
701	PLC-β1 and cell differentiation: An insight into myogenesis and osteogenesis. Advances in Biological Regulation, 2017, 63, 1-5.	1.4	34
702	Myotonic dystrophy type 2 and modifier genes: an update on clinical and pathomolecular aspects. Neurological Sciences, 2017, 38, 535-546.	0.9	40
703	Myotonic dystrophy: disease repeat range, penetrance, age of onset, and relationship between repeat size and phenotypes. Current Opinion in Genetics and Development, 2017, 44, 30-37.	1.5	80
704	Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds. DMM Disease Models and Mechanisms, 2017, 10, 487-497.	1.2	65
705	2D and 3D FISH of expanded repeat RNAs in human lymphoblasts. Methods, 2017, 120, 49-57.	1.9	3
706	CNBP acts as a key transcriptional regulator of sustained expression of interleukin-6. Nucleic Acids Research, 2017, 45, 3280-3296.	6.5	36
707	Optical Mapping Approaches on Muscleblindâ€Like Compound Knockout Mice for Understanding Mechanistic Insights Into Ventricular Arrhythmias in Myotonic Dystrophy. Journal of the American Heart Association, 2017, 6, .	1.6	15
708	RNA metabolism in neurodegenerative disease. DMM Disease Models and Mechanisms, 2017, 10, 509-518.	1.2	102
709	Protein sequestration as a normal function of long noncoding RNAs and a pathogenic mechanism of RNAs containing nucleotide repeat expansions. Human Genetics, 2017, 136, 1247-1263.	1.8	26
710	Faulty RNA splicing: consequences and therapeutic opportunities in brain and muscle disorders. Human Genetics, 2017, 136, 1215-1235.	1.8	15

#	Article	IF	CITATIONS
711	Delusional and psychotic disorders in juvenile myotonic dystrophy typeâ€1. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 359-366.	1.1	4
712	Primary Immunodeficiency Diseases. , 2017, , .		22
713	(CCUG)n RNA toxicity in a Drosophila model for myotonic dystrophy type 2 (DM2) activates apoptosis. DMM Disease Models and Mechanisms, 2017, 10, 993-1003.	1.2	8
715	Modelling the three-dimensional structure of the right-terminal domain of pospiviroids. Scientific Reports, 2017, 7, 711.	1.6	8
716	A Modular Approach to the Discovery and Affinity Maturation of Sequence-Selective RNA-Binding Compounds. Topics in Medicinal Chemistry, 2017, , 17-45.	0.4	1
717	Expanded CCUG repeat RNA expression in Drosophila heart and muscle trigger Myotonic Dystrophy type 1-like phenotypes and activate autophagocytosis genes. Scientific Reports, 2017, 7, 2843.	1.6	12
718	Biomolecular diagnosis of myotonic dystrophy type 2: a challenging approach. Journal of Neurology, 2017, 264, 1705-1714.	1.8	7
719	A flow cytometry-based screen identifies MBNL1 modulators that rescue splicing defects in myotonic dystrophy type I. Human Molecular Genetics, 2017, 26, 3056-3068.	1.4	28
720	Myotonic dystrophy: approach to therapy. Current Opinion in Genetics and Development, 2017, 44, 135-140.	1.5	85
721	The Human CCHC-type Zinc Finger Nucleic Acid-Binding Protein Binds G-Rich Elements in Target mRNA Coding Sequences and Promotes Translation. Cell Reports, 2017, 18, 2979-2990.	2.9	106
722	Pigmentation phenotype, photosensitivity and skin neoplasms in patients with myotonic dystrophy. European Journal of Neurology, 2017, 24, 713-718.	1.7	13
723	Functional identification of an <i>EXPA</i> gene (<i>NcEXPA8</i>) isolated from the tree <i>Neolamarckia cadamba</i> . Biotechnology and Biotechnological Equipment, 2017, 31, 1116-1125.	O.5	7
724	Pediatric Electromyography. , 2017, , .		2
725	Nuclear poly(A) binding protein 1 (PABPN1) and Matrin3 interact in muscle cells and regulate RNA processing. Nucleic Acids Research, 2017, 45, 10706-10725.	6.5	60
726	High frequency of gastrointestinal manifestations in myotonic dystrophy type 1 and type 2. Neurology, 2017, 89, 1348-1354.	1.5	52
727	RAN Translation Regulated by Muscleblind Proteins in Myotonic Dystrophy Type 2. Neuron, 2017, 95, 1292-1305.e5.	3.8	116
728	RNA-binding proteins in neurodegeneration: mechanisms in aggregate. Genes and Development, 2017, 31, 1509-1528.	2.7	177
729	Highly fluorescence quenching graphene oxide-based oligodeoxynucleotide hairpin systems for probing CNG DNA repeat sequences. Tetrahedron Letters, 2017, 58, 3301-3305.	0.7	10

#	Article	IF	CITATIONS
730	Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9. Cell, 2017, 170, 899-912.e10.	13.5	213
731	Assessing the influence of age and gender on the phenotype of myotonic dystrophy type 2. Journal of Neurology, 2017, 264, 2472-2480.	1.8	38
732	Design and Synthesis of Cyclic Mismatchâ€Binding Ligands (CMBLs) with Variable Linkers by Ringâ€Closing Metathesis and their Photophysical and DNA Repeat Binding Properties. Chemistry - A European Journal, 2017, 23, 11385-11396.	1.7	9
733	AuNP-CTG based probing system targeting CAG repeat DNA and RNA sequences. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3772-3775.	1.0	3
734	Myotonic Dystrophy Type 1. , 2017, , 1999-2011.		1
735	Natural History of Spinocerebellar Ataxia Type 31: a 4-Year Prospective Study. Cerebellum, 2017, 16, 518-524.	1.4	25
736	Cutaneous features of myotonic dystrophy types 1 and 2: Implication of premature aging and vitamin D homeostasis. Neuromuscular Disorders, 2017, 27, 163-169.	0.3	18
737	Peripheral neuropathy in patients with myotonic dystrophy type 2. Acta Neurologica Scandinavica, 2017, 135, 568-575.	1.0	9
738	Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules, 2017, 22, 2027.	1.7	49
739	RegulationÂofÂDNAÂReplicationÂthroughÂNatural ImpedimentsÂinÂtheÂEukaryoticÂGenome. Genes, 2017, 8,	9 8. 0	41
740	Drosophila melanogaster As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases. Frontiers in Cellular Neuroscience, 2017, 11, 70.	1.8	16
741	Myotonic Dystrophies: State of the Art of New Therapeutic Developments for the CNS. Frontiers in Cellular Neuroscience, 2017, 11, 101.	1.8	78
742	LOX-1 and Its Splice Variants: A New Challenge for Atherosclerosis and Cancer-Targeted Therapies. International Journal of Molecular Sciences, 2017, 18, 290.	1.8	29
743	Receptor and post-receptor abnormalities contribute to insulin resistance in myotonic dystrophy type 1 and type 2 skeletal muscle. PLoS ONE, 2017, 12, e0184987.	1.1	35
744	RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathologica Communications, 2017, 5, 63.	2.4	58
745	Association of peripheral neuropathy with sleep-related breathing disorders in myotonic dystrophies. Neuropsychiatric Disease and Treatment, 2017, Volume 13, 133-140.	1.0	5
746	Dilated Cardiomyopathy and Cardioskeletal Involvement. , 2017, , 85-111.		0
747	Identification of Insulin Receptor Splice Variant B in Neurons by in situ Detection in Human Brain Samples. Scientific Reports, 2018, 8, 4070.	1.6	14

#	Article	IF	CITATIONS
748	Evidence for a relatively high proportion of DM2 mutations in a large group of Polish patients. Neurologia I Neurochirurgia Polska, 2018, 52, 736-742.	0.6	0
749	Quantitative Methods to Monitor RNA Biomarkers in Myotonic Dystrophy. Scientific Reports, 2018, 8, 5885.	1.6	39
750	Tandem repeats mediating genetic plasticity in health and disease. Nature Reviews Genetics, 2018, 19, 286-298.	7.7	300
751	Repeat expansion diseases. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 147, 105-123.	1.0	266
752	MicroRNA Protocols. Methods in Molecular Biology, 2018, , .	0.4	4
753	The MicroRNA. Methods in Molecular Biology, 2018, 1733, 1-25.	0.4	19
754	Isolation and Identification of Gene-Specific MicroRNAs. Methods in Molecular Biology, 2018, 1733, 173-180.	0.4	4
755	Gene Silencing In Vitro and In Vivo Using Intronic MicroRNAs. Methods in Molecular Biology, 2018, 1733, 107-126.	0.4	4
756	Hearing impairment in patients with myotonic dystrophy type 2. Neurology, 2018, 90, e615-e622.	1.5	11
757	Cardiovascular Manifestations of Myotonic Dystrophy. , 2018, , 579-587.		0
758	Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chemical Reviews, 2018, 118, 1599-1663.	23.0	64
759	Altered levels of the splicing factor muscleblind modifies cerebral cortical function in mouse models of myotonic dystrophy. Neurobiology of Disease, 2018, 112, 35-48.	2.1	9
760	Early onset posterior subscapular cataract in a series of myotonic dystrophy type 2 patients. Eye, 2018, 32, 622-625.	1.1	14
761	An engineered RNA binding protein with improved splicing regulation. Nucleic Acids Research, 2018, 46, 3152-3168.	6.5	15
762	Expanded [CCTG]n repetitions are not associated with abnormal methylation at the CNBP locus in myotonic dystrophy type 2 (DM2) patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 917-924.	1.8	12
763	Diversification of the muscle proteome through alternative splicing. Skeletal Muscle, 2018, 8, 8.	1.9	63
764	Clinical Handbook of Neuromuscular Medicine. , 2018, , .		0
765	Qualitative and Quantitative Aspects of Pain in Patients With Myotonic Dystrophy Type 2. Journal of Pain, 2018, 19, 920-930.	0.7	19

#	Article	IF	CITATIONS
766	Dysautonomia as Onset Symptom of Myotonic Dystrophy Type 2. European Neurology, 2018, 79, 166-170.	0.6	1
767	Diseases of Muscle. , 2018, , 9-43.		0
768	Myotonic Dystrophy Type 2, Proximal Myotonic Myopathy. , 2018, , 209-212.		0
769	Detection of expanded RNA repeats using thermostable group II intron reverse transcriptase. Nucleic Acids Research, 2018, 46, e1-e1.	6.5	14
770	Arrhythmia in Neurological Disease. , 2018, , 949-961.		0
771	Sarcolemmal excitability in the myotonic dystrophies. Muscle and Nerve, 2018, 57, 595-602.	1.0	12
774	Modeling of Myotonic Dystrophy Cardiac Phenotypes in Drosophila. Frontiers in Neurology, 2018, 9, 473.	1.1	6
775	A potential role of extended simple sequence repeats in competing endogenous RNA crosstalk. RNA Biology, 2018, 15, 1399-1409.	1.5	20
776	Molecular Defects in the DM Central Nervous System. , 2018, , 115-131.		0
777	FXS-Like Phenotype in Two Unrelated Patients Carrying a Methylated Premutation of the FMR1 Gene. Frontiers in Genetics, 2018, 9, 442.	1.1	7
778	The GIS2 Gene Is Repressed by a Zinc-Regulated Bicistronic RNA in Saccharomyces cerevisiae. Genes, 2018, 9, 462.	1.0	4
779	Towards clinical outcome measures in myotonic dystrophy type 2: a systematic review. Current Opinion in Neurology, 2018, 31, 599-609.	1.8	8
780	Myotonic Dystrophy Type 2 – Data from the Serbian Registry. Journal of Neuromuscular Diseases, 2018, 5, 461-469.	1.1	10
781	Genome-wide Identification of Structure-Forming Repeats as Principal Sites of Fork Collapse upon ATR Inhibition. Molecular Cell, 2018, 72, 222-238.e11.	4.5	55
782	Trinucleotide Repeat Expansion Diseases, RNAi, and Cancer. Trends in Cancer, 2018, 4, 684-700.	3.8	19
783	Analysis of extracellular mRNA in human urine reveals splice variant biomarkers of muscular dystrophies. Nature Communications, 2018, 9, 3906.	5.8	38
785	Comparative Sleep Disturbances in Myotonic Dystrophy Types 1 and 2. Current Neurology and Neuroscience Reports, 2018, 18, 102.	2.0	19
786	Genetics of Myotonic Dystrophy. , 2018, , 1-18.		0

#	Article	IF	CITATIONS
787	Molecular Mechanisms of Myotonic Dystrophy: RNA-Mediated Pathogenesis and RNA-Binding Proteins. , 2018, , 19-43.		2
788	Clinical Features of Skeletal Muscle and Their Underlying Molecular Mechanism. , 2018, , 45-61.		0
789	The Use of Tricyclo-DNA Oligomers for the Treatment of Genetic Disorders. Biomedicines, 2018, 6, 2.	1.4	10
790	Myotonic Dystrophies: Targeting Therapies for Multisystem Disease. Neurotherapeutics, 2018, 15, 872-884.	2.1	33
791	Repeat-associated non-ATG (RAN) translation. Journal of Biological Chemistry, 2018, 293, 16127-16141.	1.6	81
792	The Amino Acid Composition of Quadruplex Binding Proteins Reveals a Shared Motif and Predicts New Potential Quadruplex Interactors. Molecules, 2018, 23, 2341.	1.7	51
793	Biological functions, regulatory mechanisms, and disease relevance of RNA localization pathways. FEBS Letters, 2018, 592, 2948-2972.	1.3	32
794	An Overview of Recent Advances and Clinical Applications of Exon Skipping and Splice Modulation for Muscular Dystrophy and Various Genetic Diseases. Methods in Molecular Biology, 2018, 1828, 31-55.	0.4	45
795	Energy Landscapes of Mini-Dumbbell DNA Octanucleotides. Journal of Chemical Theory and Computation, 2018, 14, 3870-3876.	2.3	6
796	rbFOX1/MBNL1 competition for CCUG RNA repeats bindingÂcontributes to myotonic dystrophy typeÂ1/typeÂ2 differences. Nature Communications, 2018, 9, 2009.	5.8	61
798	Antisense oligonucleotides in neurological disorders. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641877693.	1.5	100
799	SCN4A as modifier gene in patients with myotonic dystrophy type 2. Scientific Reports, 2018, 8, 11058.	1.6	15
800	Of Mice and Men: Advances in the Understanding of Neuromuscular Aspects of Myotonic Dystrophy. Frontiers in Neurology, 2018, 9, 519.	1.1	30
801	Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiological Reviews, 2018, 98, 1205-1240.	13.1	31
803	Alternative splicing in cardiomyopathy. Biophysical Reviews, 2018, 10, 1061-1071.	1.5	34
804	Graves' disease and celiac disease in a patient with myotonic dystrophy type 2. Neuromuscular Disorders, 2018, 28, 878-880.	0.3	6
805	Core Clinical Phenotypes in Myotonic Dystrophies. Frontiers in Neurology, 2018, 9, 303.	1.1	104
806	Cells of Matter—In Vitro Models for Myotonic Dystrophy. Frontiers in Neurology, 2018, 9, 361.	1.1	13

#	Article	IF	Citations
807	Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Frontiers in Neurology, 2018, 9, 368.	1.1	51
808	Distribution and Structure of DM2 Repeat Tract Alleles in the German Population. Frontiers in Neurology, 2018, 9, 463.	1.1	15
809	Muscle-Specific Mis-Splicing and Heart Disease Exemplified by RBM20. Genes, 2018, 9, 18.	1.0	26
810	Cancer phenotype in myotonic dystrophy patients: Results from a metaâ€analysis. Muscle and Nerve, 2018, 58, 517-522.	1.0	22
811	The Role of RNA in Biological Phase Separations. Journal of Molecular Biology, 2018, 430, 4685-4701.	2.0	94
812	Reduction of Cellular Nucleic Acid Binding Protein Encoded by a Myotonic Dystrophy Type 2 Gene Causes Muscle Atrophy. Molecular and Cellular Biology, 2018, 38, .	1.1	17
813	Myotonic Dystrophy—A Progeroid Disease?. Frontiers in Neurology, 2018, 9, 601.	1.1	34
814	Models and mechanisms of repeat expansion disorders: a worm's eye view. Journal of Genetics, 2018, 97, 665-677.	0.4	8
815	CNBP Homologues Gis2 and Znf9 Interact with a Putative G-Quadruplex-Forming 3′ Untranslated Region, Altering Polysome Association and Stress Tolerance in <i>Cryptococcus neoformans</i> . MSphere, 2018, 3, .	1.3	11
816	Generation and Neuronal Differentiation of hiPSCs From Patients With Myotonic Dystrophy Type 2. Frontiers in Physiology, 2018, 9, 967.	1.3	3
817	Repeat-Associated Non-ATG Translation in Neurological Diseases. Cold Spring Harbor Perspectives in Biology, 2018, 10, a033019.	2.3	33
818	RNA Degradation in Neurodegenerative Disease. Advances in Neurobiology, 2018, 20, 103-142.	1.3	25
819	Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. Advances in Neurobiology, 2018, 20, 213-238.	1.3	5
820	Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy. International Journal of Molecular Sciences, 2019, 20, 3365.	1.8	69
821	Repeat-associated RNA structure and aberrant splicing. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194405.	0.9	23
822	Heat Shock Proteins Involved in Neuromuscular Pathologies. Heat Shock Proteins, 2019, , 433-458.	0.2	0
823	A New View of the T-Loop Junction: Implications for Self-Primed Telomere Extension, Expansion of Disease-Related Nucleotide Repeat Blocks, and Telomere Evolution. Frontiers in Genetics, 2019, 10, 792.	1.1	29
824	TNNT2 Missplicing in Skeletal Muscle as a Cardiac Biomarker in Myotonic Dystrophy Type 1 but Not in Myotonic Dystrophy Type 2. Frontiers in Neurology, 2019, 10, 992.	1.1	8

#	Article	IF	CITATIONS
825	High incidence of falls in patients with myotonic dystrophy type 1 and 2: A prospective study. Neuromuscular Disorders, 2019, 29, 758-765.	0.3	10
826	Consensus-based care recommendations for adults with myotonic dystrophy type 2. Neurology: Clinical Practice, 2019, 9, 343-353.	0.8	41
827	Deprivation of Muscleblind-Like Proteins Causes Deficits in Cortical Neuron Distribution and Morphological Changes in Dendritic Spines and Postsynaptic Densities. Frontiers in Neuroanatomy, 2019, 13, 75.	0.9	20
828	A Promising Future for Stem-Cell-Based Therapies in Muscular Dystrophies—In Vitro and In Vivo Treatments to Boost Cellular Engraftment. International Journal of Molecular Sciences, 2019, 20, 5433.	1.8	12
829	Bioactive Aliphatic Polycarbonates Carrying Guanidinium Functions: An Innovative Approach for Myotonic Dystrophy Type 1 Therapy. ACS Omega, 2019, 4, 18126-18135.	1.6	7
830	RNase H amplified RNA probe and graphene oxide system for highly sensitive detection of (CAG)n DNA repeat sequences. Nanotechnology, 2019, 30, 465502.	1.3	7
831	Global Increase in Circular RNA Levels in Myotonic Dystrophy. Frontiers in Genetics, 2019, 10, 649.	1.1	24
832	Reproductive Cancer Risk Factors in Women With Myotonic Dystrophy (DM): Survey Data From the US and UK DM Registries. Frontiers in Neurology, 2019, 10, 1071.	1.1	5
833	The Added Value of Cardiac Magnetic Resonance in Muscular Dystrophies. Journal of Neuromuscular Diseases, 2019, 6, 389-399.	1.1	10
834	Muscleblind‑like 1 destabilizes Snail mRNA and suppresses the metastasis of colorectal cancer cells via the Snail/E‑cadherin axis. International Journal of Oncology, 2019, 54, 955-965.	1.4	14
835	The myotonic dystrophy experience: a North American crossâ€ s ectional study. Muscle and Nerve, 2019, 59, 457-464.	1.0	21
836	New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiology of Disease, 2019, 130, 104515.	2.1	60
837	ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics, 2019, 35, 4754-4756.	1.8	183
838	The DM-scope registry: a rare disease innovative framework bridging the gap between research and medical care. Orphanet Journal of Rare Diseases, 2019, 14, 122.	1.2	10
839	CNBP controls tumor cell biology by regulating tumorâ€promoting gene expression. Molecular Carcinogenesis, 2019, 58, 1492-1501.	1.3	13
840	Gene Therapy and Gene Editing for Myotonic Dystrophy. , 2019, , 525-548.		0
841	Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron, 2019, 102, 294-320.	3.8	176
842	Repetition. New England Journal of Medicine, 2019, 380, 1762-1767.	13.9	1

ARTICLE IF CITATIONS Molecular Basis of Muscle Disease., 2019, , 13-39. 1 843 Aberrant insulin receptor expression is associated with insulin resistance and skeletal muscle 844 1.1 23 atrophy in myotonic dystrophies. PLoS ONE, 2019, 14, e0214254. 845 Genetic Convergence Brings Clarity to the Enigmatic Red Line in ALS. Neuron, 2019, 101, 1057-1069. 3.8 111 Repeat-associated non-AUG (RAN) translation: insights from pathology. Laboratory Investigation, 2019, 846 39 99, 929-942. Body composition analysis in patients with myotonic dystrophy types 1 and 2. Neurological Sciences, 847 0.9 11 2019, 40, 1035-1040. CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS ONE, 2019, 14, e0212198. 848 1.1 Sleep Complaints, Sleep and Breathing Disorders in Myotonic Dystrophy Type 2. Current Neurology 849 2.0 11 and Neuroscience Reports, 2019, 19, 9. Characterization of Iron Accumulation in Deep Gray Matter in Myotonic Dystrophy Type 1 and 2 Using Quantitative Susceptibility Mapping and R2* Relaxometry: A Magnetic Resonance Imaging Study at 3 1.1 10 Tesla. Frontiers in Neurology, 2019, 10, 1320. Primary Neurons and Differentiated NSC-34 Cells Are More Susceptible to Arginine-Rich ALS Dipeptide 851 Repeat Protein-Associated Toxicity than Non-Differentiated NSC-34 and CHO Cells. International 1.8 13 Journal of Molecular Sciences, 2019, 20, 6238. Dante: genotyping of known complex and expanded short tandem repeats. Bioinformatics, 2019, 35, 1.8 1310-1317. RNA processing in skeletal muscle biology and disease. Transcription, 2019, 10, 1-20. 853 1.7 28 Transcriptome alterations in myotonic dystrophy skeletal muscle and heart. Human Molecular 1.4 104 Genetics, 2019, 28, 1312-1321. Human Genomic Variants and Inherited Disease., 2019, , 125-200. 855 2 Unprecedented hydrophobic stabilizations from a reverse wobble TÂ-T mispair in DNA minidumbbell. Journal of Biomolécular Structure and Dynamics, 2020, 38, 1946-1953. The potential of engineered eukaryotic RNAâ€binding proteins as molecular tools and therapeutics. 858 3.2 13 Wiley Interdisciplinary Reviews RNA, 2020, 11, e1573. Myopathies. , 2020, , 765-768. Critical assessment of bioinformatics methods for the characterization of pathological repeat 860 3.25 expansions with single-molecule sequencing data. Briefings in Bioinformatics, 2020, 21, 1971-1986. An Overview of Alternative Splicing Defects Implicated in Myotonic Dystrophy Type I. Genes, 2020, 11, 1109.

#	Article	IF	CITATIONS
862	How to capture activities of daily living in myotonic dystrophy type 2?. Neuromuscular Disorders, 2020, 30, 796-806.	0.3	2
863	Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1. Molecular Therapy, 2020, 28, 2527-2539.	3.7	15
864	Fetal Macrocephaly: A Novel Sonographic Finding in Congenital Myotonic Dystrophy. AJP Reports, 2020, 10, e294-e299.	0.4	1
865	Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes, 2020, 11, 1418.	1.0	11
866	Diagnosis of Myotonic Dystrophy Based on Resting State fMRI Using Convolutional Neural Networks. , 2020, 2020, 1714-1717.		2
867	Large scale in silico characterization of repeat expansion variation in human genomes. Scientific Data, 2020, 7, 294.	2.4	12
868	Gapmers. Methods in Molecular Biology, 2020, , .	0.4	1
870	From Mice to Humans: An Overview of the Potentials and Limitations of Current Transgenic Mouse Models of Major Muscular Dystrophies and Congenital Myopathies. International Journal of Molecular Sciences, 2020, 21, 8935.	1.8	10
871	Utility and Results from a Patient-Reported Online Survey in Myotonic Dystrophies Types 1 and 2. European Neurology, 2020, 83, 523-533.	0.6	9
872	Oxidative Stress in DNA Repeat Expansion Disorders: A Focus on NRF2 Signaling Involvement. Biomolecules, 2020, 10, 702.	1.8	17
873	Mechanisms of Genome Protection and Repair. Advances in Experimental Medicine and Biology, 2020, , .	0.8	2
874	Validation of Motor Outcome Measures in Myotonic Dystrophy Type 2. Frontiers in Neurology, 2020, 11, 306.	1.1	9
875	High-Resolution Structures of DNA Minidumbbells Comprising Type II Tetraloops with a Purine Minor Groove Residue. Journal of Physical Chemistry B, 2020, 124, 5131-5138.	1.2	4
876	Precise Targeted Cleavage of a r(CUG) Repeat Expansion in Cells by Using a Small-Molecule–Deglycobleomycin Conjugate. ACS Chemical Biology, 2020, 15, 849-855.	1.6	15
877	Pulse-Field capillary electrophoresis of repeat-primed PCR amplicons for analysis of large repeats in Spinocerebellar Ataxia Type 10. PLoS ONE, 2020, 15, e0228789.	1.1	10
878	Genetic syndromes with evidence of immune deficiency. , 2020, , 61-97.		1
879	TOP mRNPs: Molecular Mechanisms and Principles of Regulation. Biomolecules, 2020, 10, 969.	1.8	43
880	Progress toward the development of the small molecule equivalent of small interfering RNA. Current Opinion in Chemical Biology, 2020, 56, 63-71.	2.8	13

#	Article	IF	CITATIONS
881	Localization elements and zip codes in the intracellular transport and localization of messenger RNAs in <i>Saccharomyces cerevisiae</i> . Wiley Interdisciplinary Reviews RNA, 2020, 11, e1591.	3.2	11
882	On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. Journal of Biological Chemistry, 2020, 295, 4134-4170.	1.6	178
883	A Toxic RNA Catalyzes the Cellular Synthesis of Its Own Inhibitor, Shunting It to Endogenous Decay Pathways. Cell Chemical Biology, 2020, 27, 223-231.e4.	2.5	18
884	Genome-wide analysis of CCHC-type zinc finger (ZCCHC) proteins in yeast, Arabidopsis, and humans. Cellular and Molecular Life Sciences, 2020, 77, 3991-4014.	2.4	23
885	Two sides of the same medal: Noncoding mutations reveal new pathological mechanisms and insights into the regulation of gene expression. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1616.	3.2	1
886	TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease. Progress in Retinal and Eye Research, 2021, 81, 100883.	7.3	40
887	Finding long tandem repeats in long noisy reads. Bioinformatics, 2021, 37, 612-621.	1.8	4
888	Overlapping mechanisms of <scp>lncRNA</scp> and expanded microsatellite <scp>RNA</scp> . Wiley Interdisciplinary Reviews RNA, 2021, 12, e1634.	3.2	8
889	Dyslexia and cognitive impairment in adult patients with myotonic dystrophy type 1: a clinical prospective analysis. Journal of Neurology, 2021, 268, 484-492.	1.8	0
890	Transcriptome alterations in myotonic dystrophy frontal cortex. Cell Reports, 2021, 34, 108634.	2.9	44
891	The Contribution of Somatic Expansion of the CAG Repeat to Symptomatic Development in Huntington's Disease: A Historical Perspective. Journal of Huntington's Disease, 2021, 10, 7-33.	0.9	43
892	Alternative DNA Structures <i>In Vivo</i> : Molecular Evidence and Remaining Questions. Microbiology and Molecular Biology Reviews, 2021, 85, .	2.9	29
893	Myotonic Muscular Dystrophy Type 2 in CT, USA: A Single-Center Experience With 50 Patients. Journal of Clinical Neuromuscular Disease, 2021, 22, 135-146.	0.3	1
894	Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders. Biochemical Society Transactions, 2021, 49, 775-792.	1.6	12
896	The alternative initiation factor elF2A plays key role in RAN translation of myotonic dystrophy type 2 CCUG•CAGG repeats. Human Molecular Genetics, 2021, 30, 1020-1029.	1.4	17
898	The Startling Role of Mismatch Repair in Trinucleotide Repeat Expansions. Cells, 2021, 10, 1019.	1.8	8
899	30 years of repeat expansion disorders: What have we learned and what are the remaining challenges?. American Journal of Human Genetics, 2021, 108, 764-785.	2.6	170
900	New developments in myotonic dystrophies from a multisystemic perspective. Current Opinion in Neurology, 2021, 34, 738-747.	1.8	3

#	Article	IF	CITATIONS
901	Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links. Genes, 2021, 12, 688.	1.0	6
902	STRs: Ancient Architectures of the Genome beyond the Sequence. Journal of Molecular Neuroscience, 2021, 71, 2441-2455.	1.1	8
903	Molecular mechanisms underlying nucleotide repeat expansion disorders. Nature Reviews Molecular Cell Biology, 2021, 22, 589-607.	16.1	151
904	A Druglike Small Molecule that Targets r(CCUG) Repeats in Myotonic Dystrophy Type 2 Facilitates Degradation by RNA Quality Control Pathways. Journal of Medicinal Chemistry, 2021, 64, 8474-8485.	2.9	14
905	Comparison of Shear Wave Elastography and Dynamometer Test in Muscle Tissue Characterization for Potential Medical and Sport Application. Pathology and Oncology Research, 2021, 27, 1609798.	0.9	2
906	A 14-Year Italian Experience in DM2 Genetic Testing: Frequency and Distribution of Normal and Premutated CNBP Alleles. Frontiers in Genetics, 2021, 12, 668094.	1.1	3
908	Zebrafish <i>mbnl</i> mutants model physical and molecular phenotypes of myotonic dystrophy. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	7
909	Regulatory Potential of Competing Endogenous RNAs in Myotonic Dystrophies. International Journal of Molecular Sciences, 2021, 22, 6089.	1.8	6
910	Guidelines for genetic testing of muscle and neuromuscular junction disorders. Muscle and Nerve, 2021, 64, 255-269.	1.0	8
911	Synthetic RNA Modulators in Drug Discovery. Journal of Medicinal Chemistry, 2021, 64, 7110-7155.	2.9	10
912	Ancestral Origin of the First Indian Families with Myotonic Dystrophy Type 2. Journal of Neuromuscular Diseases, 2021, 8, 715-722.	1.1	1
913	Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Research, 2021, 49, 7839-7855.	6.5	47
914	Cerebral involvement and related aspects in myotonic dystrophy type 2. Neuromuscular Disorders, 2021, 31, 681-694.	0.3	5
915	The Role of RNA-Binding Proteins in Vertebrate Neural Crest and Craniofacial Development. Journal of Developmental Biology, 2021, 9, 34.	0.9	8
916	Characterisation of Non-Pathogenic Premutation-Range Myotonic Dystrophy Type 2 Alleles. Journal of Clinical Medicine, 2021, 10, 3934.	1.0	4
917	Current Treatment Options for Patients with Myotonic Dystrophy Type 2. Current Treatment Options in Neurology, 2021, 23, 1.	0.7	0
918	Translational control of polyamine metabolism by CNBP is required for Drosophila locomotor function. ELife, 2021, 10, .	2.8	10
919	LISTERIN E3 Ubiquitin Ligase and Ribosome-Associated Quality Control (RQC) Mechanism. Molecular Neurobiology, 2021, 58, 6593-6609.	1.9	4

#	Article	IF	CITATIONS
920	What's new about CNBP? Divergent functions and activities for a conserved nucleic acid binding protein. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129996.	1.1	11
921	Treatment and Management of Muscular Dystrophies. , 2022, , 492-527.		0
922	Cancer frequency among the patients with myotonic dystrophy in the South Korean population using the national health insurance database. Journal of the Neurological Sciences, 2021, 420, 117212.	0.3	5
923	Microsatellite Markers from Whole Genome and Transcriptomic Sequences. , 2021, , 387-412.		4
924	Small molecule targeting r(UGGAA)n disrupts RNA foci and alleviates disease phenotype in Drosophila model. Nature Communications, 2021, 12, 236.	5.8	39
926	Myotonic Dystrophy and Developmental Regulation of RNA Processing. , 2018, 8, 509-553.		26
927	The Coupling of Alternative Splicing and Nonsense-Mediated mRNA Decay. Advances in Experimental Medicine and Biology, 2007, 623, 190-211.	0.8	202
928	Alternative Splicing in Disease. Advances in Experimental Medicine and Biology, 2007, 623, 212-223.	0.8	50
929	Degradation of Toxic RNA in Myotonic Dystrophy Using Gapmer Antisense Oligonucleotides. Methods in Molecular Biology, 2020, 2176, 99-109.	0.4	7
930	Polyglutamine Aggregation in Huntington and Related Diseases. Advances in Experimental Medicine and Biology, 2012, 769, 125-140.	0.8	12
931	Myotonic Dystrophy Type 1., 2015, , 1-13.		2
932	Spinocerebellar Ataxia Type 10: A Disease Caused by a Large ATTCT Repeat Expansion. Advances in Experimental Medicine and Biology, 2002, 516, 79-97.	0.8	8
933	RNA-Binding Protein Misregulation in Microsatellite Expansion Disorders. Advances in Experimental Medicine and Biology, 2014, 825, 353-388.	0.8	27
934	Gene Silencing In Vitro and In Vivo Using Intronic MicroRNAs. Methods in Molecular Biology, 2015, 1218, 321-340.	0.4	7
935	Trinucleotide Repeat Disorders. , 2006, , 1114-1122.		1
936	An Overview of the Other Muscular Dystrophies: Underlying Genetic and Molecular Mechanisms. , 2015, , 37-53.		1
937	Pre-Testicular, Testicular, and Post-Testicular Causes of Male Infertility. Endocrinology, 2017, , 1-47.	0.1	2
938	Pre-Testicular, Testicular, and Post-Testicular Causes of Male Infertility. Endocrinology, 2017, , 981-1027.	0.1	5

	Сіт	ation Rep	ORT	
#	Article		IF	CITATIONS
939	Misregulation of Alternative Splicing Causes Pathogenesis in Myotonic Dystrophy. Progress in Molecular and Subcellular Biology, 2006, 44, 133-159.		0.9	68
940	Toxic RNA in the Nucleus: Unstable Microsatellite Expression in Neuromuscular Disease. Progress in Molecular and Subcellular Biology, 2008, 35, 57-77.		0.9	15
941	Toxic RNA in Pathogenesis of Human Neuromuscular Disorders. , 2008, , 325-353.			2
942	Myotone Dystrophie (Dystrophia myotonica Typ I, Curschmann-Steinert-Erkrankung). , 2003, , 1494-14	497.		1
943	Syndromic Immunodeficiencies. , 2017, , 519-551.			2
944	Myotonic Dystrophy. , 2016, , 39-61.			4
945	Myotonic Dystrophy: an RNA Toxic Gain of Function Tauopathy?. Advances in Experimental Medicine and Biology, 2019, 1184, 207-216.		0.8	10
946	Neurodegenerative Diseases and RNA-Mediated Toxicity. , 2018, , 441-475.			4
947	Myotonic Dystrophies: An Overview. , 2006, , 21-36.			4
948	The RNA-Mediated Disease Process in Myotonic Dystrophy. , 2006, , 37-54.			3
949	Normal and Pathophysiological Significance of Myotonic Dystrophy Protein Kinase. , 2006, , 79-97.			2
950	Myotonic Dystrophy Type 2: Clinical and Genetic Aspects. , 2006, , 131-150.			6
951	Huntington's Disease-like 2. , 2006, , 261-273.			3
952	Molecular Genetics of Spinocerebellar Ataxia Type 8. , 2006, , 417-431.			1
953	Spinocerebellar Ataxia Type 12. , 2006, , 461-473.			5
954	Bending the Rules: Unusual Nucleic Acid Structures and Disease Pathology in the Repeat Expansion Diseases. , 2006, , 617-635.			2
955	Disorders of Skeletal Muscle. , 2012, , 2066-2110.			2
956	Survey of genetic neuro-ophthalmic disorders. Ophthalmology Clinics of North America, 2003, 16, 595-605.		1.8	5

#	Article	IF	CITATIONS
957	Molecular Characterization of the Mouse <i>In(10)17Rk</i> Inversion and Identification of a Novel Muscle-Specific Gene at the Proximal Breakpoint. Genetics, 2002, 160, 279-287.	1.2	5
961	Distinct pathological signatures in human cellular models of myotonic dystrophy subtypes. JCI Insight, 2019, 4, .	2.3	25
962	Muscle channelopathies and critical points in functional and genetic studies. Journal of Clinical Investigation, 2005, 115, 2000-2009.	3.9	76
963	Recent Progress in Polymerase II-Mediated Intronic microRNA Expression Systems. , 2009, , 275-299.		2
964	The Dystrophic and Nondystrophic Myotonias. CONTINUUM Lifelong Learning in Neurology, 2016, 22, 1889-1915.	0.4	25
965	Myotonic Muscular Dystrophies. CONTINUUM Lifelong Learning in Neurology, 2019, 25, 1682-1695.	0.4	34
966	Unstable Repeat Expansion in Neurodegenerative Dementias: Mechanisms of Disease. Dementia and Neurocognitive Disorders, 2012, 11, 1.	0.4	1
967	Repression of nuclear CELF activity can rescue CELF-regulated alternative splicing defects in skeletal muscle models of myotonic dystrophy. PLOS Currents, 2012, 4, RRN1305.	1.4	22
968	ZNF9 Activation of IRES-Mediated Translation of the Human ODC mRNA Is Decreased in Myotonic Dystrophy Type 2. PLoS ONE, 2010, 5, e9301.	1.1	27
969	Deregulated MicroRNAs in Myotonic Dystrophy Type 2. PLoS ONE, 2012, 7, e39732.	1.1	81
970	Quantifying Cancer Absolute Risk and Cancer Mortality in the Presence of Competing Events after a Myotonic Dystrophy Diagnosis. PLoS ONE, 2013, 8, e79851.	1.1	23
971	Two Enhancers Control Transcription of Drosophila muscleblind in the Embryonic Somatic Musculature and in the Central Nervous System. PLoS ONE, 2014, 9, e93125.	1.1	13
972	Sense and Antisense DMPK RNA Foci Accumulate in DM1 Tissues during Development. PLoS ONE, 2015, 10, e0137620.	1.1	43
973	New Perspective on Parkinsonism in Frontotemporal Lobar Degeneration. Journal of Movement Disorders, 2013, 6, 1-8.	0.7	31
974	Expression characteristics of triplet repeat-containing RNAs and triplet repeat-interacting proteins in human tissues Acta Biochimica Polonica, 2008, 55, 1-8.	0.3	1
975	Myotonic Dystrophy type 1 cells display impaired metabolism and mitochondrial dysfunction that are reversed by metformin. Aging, 2020, 12, 6260-6275.	1.4	28
976	Investigation of the molecular mechanisms underlying myotonic dystrophy types 1 and 2 cataracts using microRNA-target gene networks. Molecular Medicine Reports, 2017, 16, 3737-3744.	1.1	4
977	Modeling diseases of noncoding unstable repeat expansions using mutant pluripotent stem cells. World Journal of Stem Cells, 2015, 7, 823.	1.3	8

#	Article	IF	CITATIONS
978	Biochemical Genetics. , 2001, , 1473-1527.		0
979	Myotonische Erkrankungen und lonenkanalkrankheiten. , 2002, , 651-656.		0
980	Gene and Protein Expression and Regulation in the Central Nervous System. Lung Biology in Health and Disease, 2002, , .	0.1	0
981	Gene and Protein Expression and Regulation in the Central Nervous System. , 2002, , 129-199.		1
982	Myotonias. , 2003, , 1407-1411.		0
983	Spinocerebellar Ataxia 10 (SCA10). , 2003, , 103-116.		1
985	Spinocerebellar Ataxia 12 (SCA12). , 2003, , 121-132.		1
986	Spinocerebellar Ataxia 5 (SCA5). , 2003, , 75-80.		0
987	Arrhythmias in Patients with Neurologic Disorders. , 2004, , 640-650.		0
990	Animal Models for Muscular Disorders. , 2004, , 225-239.		Ο
992	Progressive Muskeldystrophien, Myotonien, periodische Paralysen, distale und kongenitale Myopathien. , 2005, , 797-817.		0
994	Myotonic dystrophy (DM). , 2005, , .		0
995	Myotonic Dystrophy Type 2. , 2005, , 473-475.		0
996	The Myotonic Dystrophies—effects Of An Rna Mutation. Neurological Disease and Therapy, 2005, , 193-208.	0.0	0
997	Autosomal Dominant Ataxias. Neurological Disease and Therapy, 2005, , 306-350.	0.0	0
998	Repolarization Abnormalities. , 2005, , 584-599.		1
999	Spinocerebellar Ataxia Type 10: A Disease Caused by an Expanded (ATTCT) n Pentanucleotide Repeat. , 2006, , 433-446.		2
1000	Involvement of Genetic Recombination in Microsatellite Instability. , 2006, , 597-615.		1

	CITATION	Report	
#	Article	IF	CITATIONS
1001	cis Effects of CTG Expansion in Myotonic Dystrophy Type 1. , 2006, , 55-78.		0
1002	Clinical and Genetic Features of Myotonic Dystrophy Type 2. , 2006, , 115-129.		1
1003	Muscular Dystrophies Affecting the Heart. , 2007, , 2567-2575.		0
1004	Neuromuscular Diseases. , 2007, , 87-96.		0
1005	Myotone Dystrophie (Dystrophia myotonica Typ 1, Curschmann-Steinert-Dystrophie). , 2007, , 1546-1549.		0
1007	Syndromic Immunodeficiencies. , 2008, , 291-314.		0
1009	Vitamin-enriched drinks and dessert for myotoniѕdystrophy patients with oropharyngeal dysfagia. Bulletin of Siberian Medicine, 0, 7, 101-105.	0.1	0
1010	Neuromuscular Diseases. , 2009, , 85-94.		0
1014	Myotonische Erkrankungen und Ionenkanalkrankheiten. , 2012, , 743-753.		0
1015	Myotonic Dystrophy Type I. , 2012, , 1487-1497.		0
1017	Die entzündlichen Myopathien – autoimmun bedingte Myositiden. , 2012, , 153-163.		0
1018	Bridging Integrator 1 (BIN1). , 2013, , 103-133.		0
1020	Myotonic Dystrophy Type 1 Diagnostics: A Changing Trend. IOSR Journal of Pharmacy and Biological Sciences, 2013, 7, 05-14.	0.1	0
1022	The Myotonic Dystrophies. , 2014, , 1259-1276.		0
1023	Myotonic Dystrophy Type 2, Proximal Myotonic Myopathy. , 2014, , 177-180.		0
1024	Las mutaciones inestables, nuevo reto para el consejo genético de enfermedades hereditarias. Revista De Biologia Tropical, 2014, 1, 491.	0.1	2
1026	GST Polymorphisms and GST Enzyme Activity in Type 1 Myotonic Dystrophy. Journal of Investigative Genomics, 2015, 2, .	0.2	0
1027	Neuromuscular Diseases. , 2016, , 127-138.		0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1028	14 Perifeer-neurologische aandoeningen. , 2016, , 573-614.			0
1029	Tools for simple sequence repeat (SSR) markers. Agriculture Update, 2016, 11, 163-172	2.	0.0	0
1030	CTG Repeat Diversity at DMPK Gene Locus In Indian Population. Journal of Investigative 3, .	Genomics, 2016,	0.2	1
1031	The onset of pain in myotonic dystrophy. Neurologie Pro Praxi, 2016, 17, 240-243.		0.0	0
1032	Ocular Manifestations of Neurologic Diseases. , 2017, , 491-516.			0
1033	Pre-Testicular, Testicular, and Post-Testicular Causes of Male Infertility. Endocrinology, 2	.017, , 1-47.	0.1	2
1034	Myopathies and Myotonic Disorders. , 2017, , 327-354.			0
1035	Neuromuscular Cardiomyopathies. , 2017, , 175-196.			0
1036	Muscle Diseases. , 2017, , 101-123.			0
1037	Investigation of Latent Periodicity Phenomenon in the Genomes of Eukaryotic Organisn Mathematical Biology and Bioinformatics, 2018, 13, t84-t103.	ıs.	0.1	1
1040	Muscular dystrophy of adult age. Neurologie Pro Praxi, 2019, 20, 183-189.		0.0	0
1041	Population genetics of spinoÑerebellar ataxias caused by polyglutamine expansions. Va Genetiki I Selektsii, 2019, 23, 473-481.	vilovskii Zhurnal	0.4	0
1042	A 52-Year-Old Man with Proximal Limb Weakness and Hand Stiffness. , 2020, , 159-166			0
1043	The myotonic dystrophies. , 2020, , 491-510.			0
1044	Investigation of hereditary muscle disorders in the genomic era. Advances in Clinical Ne Rehabilitation: ACNR, 2020, 19, 17-20.	uroscience &	0.1	0
1045	Mystery of Expansion: DNA Metabolism and Unstable Repeats. Advances in Experimenta Biology, 2020, 1241, 101-124.	al Medicine and	0.8	3
1046	Cardiac Complications Associated with Neuromuscular Diseases. , 2020, , 55-93.			0
1047	Splicing and Alternative Splicing and the Impact of Mechanics. Biological and Medical P 2020, , 509-593.	nysics Series,	0.3	0

	CITATION	KEPORT	
#	Article	IF	CITATIONS
1048	Therapeutic Implications of miRNAs for Muscle-Wasting Conditions. Cells, 2021, 10, 3035.	1.8	17
1049	Spinocerebellar Ataxia Type 12 and Huntington's Disease-Like 2: Clues to Pathogenesis. , 2006, , 253-276.		0
1050	Myotonic Dystrophies Types 1 and 2. , 2006, , 143-166.		0
1051	Spinocerebellar Ataxia Type 8. , 2006, , 167-183.		1
1052	Recent Progress in Spinocerebellar Ataxia Type 10. , 2006, , 185-195.		1
1053	Neurodegenerative Diseases. , 2008, , 531-558.		0
1058	Diagnostics and therapy of muscle channelopathiesGuidelines of the Ulm Muscle Centre. Acta Myologica, 2008, 27, 98-113.	1.5	46
1059	Genomic organization of zebrafish cone-rod homeobox gene and exclusion as a candidate gene for retinal degeneration in niezerka and mikre oko. Molecular Vision, 2005, 11, 986-95.	1.1	5
1060	ClC1 chloride channel in myotonic dystrophy type 2 and ClC1 splicing in vitro. Acta Myologica, 2012, 31, 144-53.	1.5	14
1061	Clinical aspects, molecular pathomechanisms and management of myotonic dystrophies. Acta Myologica, 2013, 32, 154-65.	1.5	52
1063	The muscular dystrophies: from genes to therapies. Physical Therapy, 2005, 85, 1372-88.	1.1	30
1064	Myotonic disorders: A review article. Iranian Journal of Neurology, 2016, 15, 46-53.	0.5	13
1065	Models and mechanisms of repeat expansion disorders: a worm's eye view. Journal of Genetics, 2018, 97, 665-677.	0.4	3
1066	Myotonic dystrophy type 2: the 2020 update. Acta Myologica, 2020, 39, 222-234.	1.5	4
1067	Epigenetics of Myotonic Dystrophies: A Minireview. International Journal of Molecular Sciences, 2021, 22, 12594.	1.8	8
1068	Speech and language abnormalities in myotonic dystrophy: An overview. Journal of Clinical Neuroscience, 2022, 96, 212-220.	0.8	2
1069	RAN proteins in neurodegenerative disease: Repeating themes and unifying therapeutic strategies. Current Opinion in Neurobiology, 2022, 72, 160-170.	2.0	10
1070	Molecular Mechanisms in Pentanucleotide Repeat Diseases. Cells, 2022, 11, 205.	1.8	14

ARTICLE IF CITATIONS Reversal of RNA toxicity in myotonic dystrophy via a decoy RNA-binding protein with high affinity for 1071 11.6 16 expanded CUG repeats. Nature Biomedical Engineering, 2022, 6, 207-220. Myotonic Dystrophies: A Genetic Overview. Genes, 2022, 13, 367. 1.0 Partners in crime: Proteins implicated in <scp>RNA</scp> repeat expansion diseases. Wiley 1073 3.28 Interdisciplinary Reviews RNA, 2022, 13, e1709. Healthcare resource utilization, total costs, and comorbidities among patients with myotonic dystrophy using U.S. insurance claims data from 2012 to 2019. Orphanet Journal of Rare Diseases, 2022, 1074 1.2 17, 79. Cellular Senescence and Aging in Myotonic Dystrophy. International Journal of Molecular Sciences, 1075 1.8 5 2022, 23, 2339. Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins?. Frontiers in Genetics, 1.1 2022, 13, 843014. The Splicing of the Mitochondrial Calcium Uniporter Genuine Activator MICU1 Is Driven by RBFOX2 Splicing Factor during Myogenic Differentiation. International Journal of Molecular Sciences, 2022, 1077 1.8 2 23, 2517. Reducing the Excess Activin Signaling Rescues Muscle Degeneration in Myotonic Dystrophy Type 2 1078 1.1 Drosophila Model. Journal of Personalized Medicine, 2022, 12, 385. Polypoidal choroidal vasculopathy in a patient with DMPK-associated myotonic dystrophy. Documenta 1079 1.0 1 Ophthalmologica, 2022, 144, 217-226. Molecular characterization of myotonic dystrophy fibroblast cell lines for use in small molecule 1.9 screening. IScience, 2022, 25, 104198. Molecular and Clinical Implications of Variant Repeats in Myotonic Dystrophy Type 1. International 1081 12 1.8 Journal of Molecular Sciences, 2022, 23, 354. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated 2.4 tandem repeat sequences. Genome Research, 2022, 32, 1-27. Intellectual disability genomics: current state, pitfalls and future challenges. BMC Genomics, 2021, 22, 1083 1.2 31 909. Disrupting the Molecular Pathway in Myotonic Dystrophy. International Journal of Molecular Sciences, 2021, 22, 13225. 1084 1.8 The molecular pathogenesis of repeat expansion diseases. Biochemical Society Transactions, 2022, 50, 1085 1.6 11 119-134. GC-rich repeat expansions: associated disorders and mechanisms. Medizinische Genetik, 2022, 33, 0.1 325-335. Computational Investigation of Bending Properties of RNA AUUCU, CCUG, CAG, and CUG Repeat 1088 Expansions Associated With Neuromuscular Disorders. Frontiers in Molecular Biosciences, 2022, 9, 1.6 2 83'0161. Cardiac Involvement and Arrhythmias Associated with Myotonic Dystrophy. Reviews in 1089 Cardiovascular Medicine, 2022, 23, 126.

#	Article	IF	CITATIONS
1109	Cutaneous findings in myotonic dystrophy. JAAD International, 2022, 7, 7-12.	1.1	1
1110	The skeletal muscle channelopathies: distinct entities and overlapping syndromes. Current Opinion in Neurology, 2003, 16, 559-68.	1.8	4
1111	å¿få®ÿ∽動発症ã,'契機ã«è¨ºæ–ã•ã,ŒãŸç‹å¼·ç>´æ€§ã,ã,¹ãƒˆãƒãƒ•ã,£ãƒ¼ã®1例(Manifestation of sudder	n–onset 0.0	ventricular f
1113	DNA Sequence Specificity Reveals a Role of the HLTF HIRAN Domain in the Recognition of Trinucleotide Repeats. Biochemistry, 2022, 61, 992-1004.	1.2	2
1114	Condensation properties of stress granules and processing bodies are compromised in myotonic dystrophy type 1. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	2
1115	Cognitive assessment in patients with myotonic dystrophy type 2. Neuromuscular Disorders, 2022, 32, 743-748.	0.3	2
1116	Identification of Gastric Cancer–Related Genes Using a cDNA Microarray Containing Novel Expressed Sequence Tags Expressed in Gastric Cancer Cells. Clinical Cancer Research, 2005, 11, 473-482.	3.2	146
1117	Les myopathies oculo-pharyngo-distales : des nouvelles maladies à expansions de répétitions CGG. Les Cahiers De Myologie, 2022, , 23-29.	0.0	0
1118	Unexpected diagnosis of myotonic dystrophy type 2 repeat expansion by genome sequencing. European Journal of Human Genetics, 2023, 31, 122-124.	1.4	7
1119	Characterization of full-length CNBP expanded alleles in myotonic dystrophy type 2 patients by Cas9-mediated enrichment and nanopore sequencing. ELife, 0, 11, .	2.8	8
1121	The genetic and molecular features of the intronic pentanucleotide repeat expansion in spinocerebellar ataxia type 10. Frontiers in Genetics, 0, 13, .	1.1	4
1122	Small Molecules Targeting Repeat Sequences Causing Neurological Disorders. , 2022, , 1-31.		0
1123	Senescence plays a role in myotonic dystrophy type 1. JCI Insight, 2022, 7, .	2.3	7
1124	Development of Therapeutic Approaches for Myotonic Dystrophies Type 1 and Type 2. International Journal of Molecular Sciences, 2022, 23, 10491.	1.8	9
1125	Child Neurology: Maternal Transmission of Congenital Myotonic Dystrophy Type 2. Neurology, 2022, 99, 1112-1114.	1.5	2
1126	Mutant huntingtin messenger RNA forms neuronal nuclear clusters in rodent and human brains. Brain Communications, 0, , .	1.5	7
1127	Sustainable recovery of MBNL activity in autoregulatory feedback loop in myotonic dystrophy. Molecular Therapy - Nucleic Acids, 2022, 30, 438-448.	2.3	1
1128	Dynamic docking of small molecules targeting RNA CUG repeats causing myotonic dystrophy type 1. Biophysical Journal, 2023, 122, 180-196.	0.2	3

#	ARTICLE	IF	Citations
1129	Profiling human pathogenic repeat expansion regions by synergistic and multi-level impacts on	1.8	0
1130	Clinical score for early diagnosis of myotonic dystrophy type 2. Neurological Sciences, 2023, 44, 1059-1067.	0.9	2
1131	Challenging Neuromuscular Disease Cases. Seminars in Neurology, 0, , .	0.5	0
1132	Clinical and Molecular Insights into Gastrointestinal Dysfunction in Myotonic Dystrophy Types 1 & 2. International Journal of Molecular Sciences, 2022, 23, 14779.	1.8	4
1133	Myotonic Dystrophy. CONTINUUM Lifelong Learning in Neurology, 2022, 28, 1715-1734.	0.4	8
1134	A Greek National Cross-Sectional Study on Myotonic Dystrophies. International Journal of Molecular Sciences, 2022, 23, 15507.	1.8	2
1135	<scp>Expandedâ€repeatâ€RNA</scp> â€mediated disease mechanisms in myotonic dystrophy. Neurology and Clinical Neuroscience, 2024, 12, 16-23.	0.2	0
1136	Insights into familial adult myoclonus epilepsy pathogenesis: How the same repeat expansion in six unrelated genes may lead to cortical excitability. Epilepsia, 2023, 64, .	2.6	6
1137	G-Quadruplexes in Repeat Expansion Disorders. International Journal of Molecular Sciences, 2023, 24, 2375.	1.8	3
1138	Genetic Muscle Disorders. , 2017, , 1178-1187.e3.		0
1140	Structures and conformational dynamics of DNA minidumbbells in pyrimidine-rich repeats associated with neurodegenerative diseases. Computational and Structural Biotechnology Journal, 2023, 21, 1584-1592.	1.9	1
1141	Muscleblindâ€like 2 knockout shifts adducin 1 isoform expression and alters dendritic spine dynamics of cortical neurons during brain development. Neuropathology and Applied Neurobiology, 2023, 49, .	1.8	1
1142	Sporadic Myotonic Dystrophy Type 2 in a Japanese Patient: A Case Report. Internal Medicine, 2023, , .	0.3	0
1143	Frequency and type of cancers in myotonic dystrophy: A retrospective crossâ€sectional study. Muscle and Nerve, 0, , .	1.0	3
1144	Cancer and Myotonic Dystrophy. Journal of Clinical Medicine, 2023, 12, 1939.	1.0	4
1145	Native functions of short tandem repeats. ELife, 0, 12, .	2.8	8
1146	Decomposing mosaic tandem repeats accurately from long reads. Bioinformatics, 2023, 39, .	1.8	3
1150	Nucleic acids as templates and catalysts in chemical reactions: target-guided dynamic combinatorial chemistry and <i>in situ</i> click chemistry and DNA/RNA induced enantioselective reactions. Chemical Society Reviews, 2023, 52, 424 <u>8-4291.</u>	18.7	2

		CITATION [Report	
#	Article		IF	CITATIONS
1153	Small Molecules Targeting Repeat Sequences Causing Neurological Disorders. , 2023,	, 2107-2137.		0
1154	Neurogenetic motor disorders. Handbook of Clinical Neurology / Edited By P J Vinken a 2023, , 183-250.	and G W Bruyn,	1.0	0
1167	Myotonic Dystrophies. , 2024, , .			0
1168	Myotonic Dystrophies. Current Clinical Neurology, 2023, , 37-61.		0.1	0