A Role for Flavin Monooxygenase-Like Enzymes in Aux

Science

291, 306-309

DOI: 10.1126/science.291.5502.306

Citation Report

#	Article	IF	CITATIONS
1	Auxin Signaling. Developmental Cell, 2001, 1, 595-604.	3.1	61
2	Multidrug Resistance-Like Genes of Arabidopsis Required for Auxin Transport and Auxin-Mediated Development. Plant Cell, 2001, 13, 2441.	3.1	1
3	Inputs to the Active Indole-3-Acetic Acid Pool: De Novo Synthesis, Conjugate Hydrolysis, and Indole-3-Butyric Acid b-Oxidation. Journal of Plant Growth Regulation, 2001, 20, 198-216.	2.8	174
4	Keeping the Momentum in Auxin Research. Journal of Plant Growth Regulation, 2001, 20, 195-197.	2.8	O
5	Auxin transport: Why plants like to think BIG. Current Biology, 2001, 11, R831-R833.	1.8	25
6	YUCCA: a flavin monooxygenase in auxin biosynthesis. Trends in Biochemical Sciences, 2001, 26, 218.	3.7	7
7	Cytochrome P450s as genes for crop improvement. Current Opinion in Plant Biology, 2001, 4, 162-167.	3.5	53
8	Metabolism of tyrosine and tryptophan â€" new genes for old pathways. Current Opinion in Plant Biology, 2001, 4, 234-240.	3.5	50
9	<i>Multidrug Resistance</i> à€"like Genes of Arabidopsis Required for Auxin Transport and Auxin-Mediated Development. Plant Cell, 2001, 13, 2441-2454.	3.1	462
10	RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13437-13442.	3.3	192
12	BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes and Development, 2001, 15, 1985-1997.	2.7	250
13	The New Biology: Genomics Fosters a "Systems Approach" and Collaborations between Academic, Government, and Industry Scientists. Plant Cell, 2001, 13, 725.	3.1	O
14	Genes Encoding Calmodulin-binding Proteins in the Arabidopsis Genome. Journal of Biological Chemistry, 2002, 277, 9840-9852.	1.6	199
15	Chapter Thirteen The role of cytochromes P450 in biosynthesis and evolution of glucosinolates. Recent Advances in Phytochemistry, 2002, , 223-248.	0.5	10
16	Interindividual Differences of Human Flavin-Containing Monooxygenase 3: Genetic Polymorphisms and Functional Variation. Drug Metabolism and Disposition, 2002, 30, 1043-1052.	1.7	101
17	Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloids in the alkaloid-defended arctiid moth Tyria jacobaeae. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6085-6090.	3.3	113
18	Activation Tagging Using the En-I Maize Transposon System in Arabidopsis. Plant Physiology, 2002, 129, 1544-1556.	2.3	138
19	Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. , 2002, , 249-272.		13

#	Article	IF	CITATIONS
20	Chapter Seven Biopanning by activation tagging. Recent Advances in Phytochemistry, 2002, 36, 111-123.	0.5	0
21	T-DNA Tagging in a Genomics Era. Critical Reviews in Plant Sciences, 2002, 21, 143-165.	2.7	15
22	The Arabidopsis dualâ€affinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots. Journal of Experimental Botany, 2002, 53, 835-844.	2.4	115
23	Expression of the AtGH3a Gene, an Arabidopsis Homologue of the Soybean GH3 Gene, is Regulated by Phytochrome B. Plant and Cell Physiology, 2002, 43, 281-289.	1.5	58
24	T-DNA Insertional Mutagenesis for Activation Tagging in Rice. Plant Physiology, 2002, 130, 1636-1644.	2.3	439
25	FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Genes and Development, 2002, 16, 753-763.	2.7	166
27	Early Embryo Development in Fucus distichusIs Auxin Sensitive. Plant Physiology, 2002, 130, 292-302.	2.3	77
28	Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes and Development, 2002, 16, 3100-3112.	2.7	598
29	HUMAN AND PLANT FLAVIN-CONTAINING MONOOXYGENASEN-OXYGENATION OF AMINES: DETOXICATION VS. BIOACTIVATION. Drug Metabolism Reviews, 2002, 34, 513-521.	1.5	15
30	Molecular cloning and characterization of a full-length flavin-dependent monooxygenase from yeast. Archives of Biochemistry and Biophysics, 2002, 403, 277-283.	1.4	13
31	Identification of a Baeyer-Villiger monooxygenase sequence motif. FEBS Letters, 2002, 518, 43-47.	1.3	193
32	Light and shade in the photocontrol of Arabidopsis growth. Trends in Plant Science, 2002, 7, 399-404.	4.3	138
33	Environmental cues affecting development. Current Opinion in Plant Biology, 2002, 5, 37-42.	3.5	39
34	Regulation of the biosynthesis of plant hormones by cytochrome P450s. Journal of Plant Research, 2002, 115, 169-177.	1.2	24
35	Identification and quantification of three active auxins in different tissues of Tropaeolum majus. Physiologia Plantarum, 2002, 115, 320-329.	2.6	64
36	The HAT2 gene, a member of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in Arabidopsis. Plant Journal, 2002, 32, 1011-1022.	2.8	165
37	Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology, 2002, 49, 373-385.	2.0	1,018
38	Title is missing!. Plant Molecular Biology, 2002, 49, 249-272.	2.0	145

#	Article	IF	CITATIONS
39	Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology, 2002, 50, 309-332.	2.0	191
40	Engineering pathogen resistance in crop plants. Transgenic Research, 2002, 11, 599-613.	1.3	67
41	Novel plant activation-tagging vectors designed to minimize 35S enhancer-mediated gene silencing. Plant Molecular Biology Reporter, 2003, 21, 349-358.	1.0	10
42	Points of regulation for auxin action. Plant Cell Reports, 2003, 21, 625-634.	2.8	50
43	Increased Endogenous Auxin Production in Arabidopsis thaliana Causes Both Earlier Described and Novel Auxin-Related Phenotypes. Journal of Plant Growth Regulation, 2003, 22, 240-252.	2.8	15
44	Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta, 2003, 216, 841-853.	1.6	329
45	An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant Journal, 2003, 33, 543-555.	2.8	402
46	Activation tagging, a novel tool to dissect the functions of a gene family. Plant Journal, 2003, 34, 741-750.	2.8	149
47	Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening. Development (Cambridge), 2003, 130, 4587-4596.	1.2	109
48	SIR1, an Upstream Component in Auxin Signaling Identified by Chemical Genetics. Science, 2003, 301, 1107-1110.	6.0	158
49	A novel flavin-containing monooxygenase from Methylophaga sp. strain SK1 and its indigo synthesis in Escherichia coli. Biochemical and Biophysical Research Communications, 2003, 306, 930-936.	1.0	100
50	Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends in Plant Science, 2003, 8, 197-199.	4.3	92
51	T-DNA Activation Tagging. , 2003, 236, 345-362.		8
52	Morphogenesis and Pattern Formation in Biological Systems. , 2003, , .		11
54	A Genome-Wide Analysis of Blue-Light Regulation of Arabidopsis Transcription Factor Gene Expression during Seedling Development Â. Plant Physiology, 2003, 133, 1480-1493.	2.3	108
55	The Nitrilase ZmNIT2 Converts Indole-3-Acetonitrile to Indole-3-Acetic Acid. Plant Physiology, 2003, 133, 794-802.	2.3	88
56	Chemical Genetic Approaches to Plant Biology. Plant Physiology, 2003, 133, 448-455.	2.3	132
57	CYP83A1 and CYP83B1, Two Nonredundant Cytochrome P450 Enzymes Metabolizing Oximes in the Biosynthesis of Glucosinolates in Arabidopsis. Plant Physiology, 2003, 133, 63-72.	2.3	215

#	Article	IF	CITATIONS
58	Disruption Mutations of ADA2b and GCN5 Transcriptional Adaptor Genes Dramatically Affect Arabidopsis Growth, Development, and Gene Expression[W]. Plant Cell, 2003, 15, 626-638.	3.1	288
59	IBR5, a Dual-Specificity Phosphatase-Like Protein Modulating Auxin and Abscisic Acid Responsiveness in Arabidopsis. Plant Cell, 2003, 15, 2979-2991.	3.1	150
60	Glucosinolates: Biosynthesis and Metabolism. , 2003, , 145-162.		9
61	931 The influence of temporal filtering procedures on myocardial velocity curves generated by echocardiographic tissue Doppler measurements. European Journal of Echocardiography, 2003, 4, S123.	2.3	O
62	Auxin., 2003,, 186-197.		1
64	Interdependency of Brassinosteroid and Auxin Signaling in Arabidopsis. PLoS Biology, 2004, 2, e258.	2.6	499
65	Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant Journal, 2004, 37, 770-777.	2.8	327
66	Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant Journal, 2004, 40, 333-343.	2.8	235
67	The auxin transport inhibitor response 3 (tir3) allele of BIG and auxin transport inhibitors affect the gibberellin status of Arabidopsis. Plant Journal, 2004, 41, 231-242.	2.8	36
68	Pattern formation in the vascular system of monocot and dicot plant species. New Phytologist, 2004, 164, 209-242.	3.5	136
69	Characterization of the Arabidopsis TU8 Glucosinolate Mutation, an Allele of TERMINAL FLOWER2. Plant Molecular Biology, 2004, 54, 671-682.	2.0	51
70	The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome P450 required for normal auxin homeostasis. Planta, 2004, 219, 195-200.	1.6	58
71	Activation tagging in plants: a tool for gene discovery. Functional and Integrative Genomics, 2004, 4, 258-66.	1.4	59
72	Arabidopsis ALF4 encodes a nuclearâ€localized protein required for lateral root formation. Plant Journal, 2004, 37, 340-353.	2.8	129
73	Catalytic activity and expression of two flavin-containing monooxygenases from Drosophila melanogaster. Archives of Insect Biochemistry and Physiology, 2004, 57, 28-39.	0.6	14
74	Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8245-8250.	3.3	291
75	Integrating transcriptional controls for plant cell expansion. Genome Biology, 2004, 5, 245.	13.9	20
76	Convergence of Signaling Pathways in the Control of Differential Cell Growth in Arabidopsis. Developmental Cell, 2004, 7, 193-204.	3.1	289

#	Article	IF	CITATIONS
77	TELOMERASE ACTIVATOR1 Induces Telomerase Activity and Potentiates Responses to Auxin in Arabidopsis. Plant Cell, 2004, 16, 2910-2922.	3.1	43
79	Hormones and Signals: Identification and Description of Signalling Molecules. , 2005, , 6-41.		0
81	AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant Journal, 2005, 43, 29-46.	2.8	336
82	Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant Journal, 2005, 44, 569-580.	2.8	126
83	Auxin inhibits endocytosis and promotes its own efflux from cells. Nature, 2005, 435, 1251-1256.	13.7	712
84	New insight into the biosynthesis and regulation of indole compounds in Arabidopsis thaliana. Planta, 2005, 221, 603-606.	1.6	37
86	Genetic control of floral size and proportions. International Journal of Developmental Biology, 2005, 49, 513-525.	0.3	57
88	Cell-to-Cell Signalling: Short and Long Distance. , 2005, , 42-75.		0
89	Population Diversity of Cell Types and Target Identification in Higher Plants., 2005,, 76-97.		0
90	Flexibility of Cell Types and the Target Cell Status. , 2005, , 98-116.		0
91	Terminally Committed Cell Types and the Target Status. , 2005, , 117-145.		0
92	The Mechanisms of Target Cell Perception and Response to Specific Signals. , 2005, , 146-178.		0
93	Hormone Action and the Relief of Repression. , 2005, , 179-197.		0
94	The Phenomenon of Hormonal Cross-Talk. , 2005, , 198-204.		0
96	Maintenance of Embryonic Auxin Distribution for Apical-Basal Patterning by PIN-FORMED–Dependent Auxin Transport in Arabidopsis. Plant Cell, 2005, 17, 2517-2526.	3.1	135
97	Two Homologous ATP-Binding Cassette Transporter Proteins, AtMDR1 and AtPGP1, Regulate Arabidopsis Photomorphogenesis and Root Development by Mediating Polar Auxin Transport. Plant Physiology, 2005, 138, 949-964.	2.3	152
98	The Arabidopsis ATR1 Myb Transcription Factor Controls Indolic Glucosinolate Homeostasis. Plant Physiology, 2005, 137, 253-262.	2.3	290
99	Interaction of Auxin and ERECTA in Elaborating Arabidopsis Inflorescence Architecture Revealed by the Activation Tagging of a New Member of the YUCCA Family Putative Flavin Monooxygenases. Plant Physiology, 2005, 139, 192-203.	2.3	112

#	Article	IF	Citations
100	Auxin: Regulation, Action, and Interaction. Annals of Botany, 2005, 95, 707-735.	1.4	1,876
101	Cell Cycle Progression in the Pericycle Is Not Sufficient for SOLITARY ROOT/IAA14-Mediated Lateral Root Initiation in Arabidopsis thaliana Â. Plant Cell, 2005, 17, 3035-3050.	3.1	309
102	Auxins. Vitamins and Hormones, 2005, 72, 203-233.	0.7	22
103	An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. Plant Cell, 2005, 17, 2693-2704.	3.1	260
104	Characterization of Terfestatin A, a New Specific Inhibitor for Auxin Signaling. Plant Physiology, 2005, 139, 779-789.	2.3	60
105	A Link between Ethylene and Auxin Uncovered by the Characterization of Two Root-Specific Ethylene-Insensitive Mutants in Arabidopsis. Plant Cell, 2005, 17, 2230-2242.	3.1	452
106	Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. Biochemical and Biophysical Research Communications, 2005, 338, 590-598.	1.0	136
107	The fmo genes of Caenorhabditis elegans and C. briggsae: characterisation, gene expression and comparative genomic analysis. Gene, 2005, 346, 83-96.	1.0	21
108	Fishy taint in chicken eggs is associated with a substitution within a conserved motif of the gene. Genomics, 2005, 86, 225-232.	1.3	60
109	stem fasciated, a Recessive Mutation in Sunflower (Helianthus annuus), Alters Plant Morphology and Auxin Level. Annals of Botany, 2006, 98, 715-730.	1.4	30
110	Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. Journal of Biotechnology, 2006, 124, 670-689.	1.9	611
111	BIOLOGY AND BIOCHEMISTRY OF GLUCOSINOLATES. Annual Review of Plant Biology, 2006, 57, 303-333.	8.6	1,917
112	A putative flavin-containing mono-oxygenase as a marker for certain defense and cell death pathways. Plant Science, 2006, 170, 614-623.	1.7	24
113	Glucosinolate metabolism and its control. Trends in Plant Science, 2006, 11, 89-100.	4.3	644
114	Analysis of the SHP2 enhancer for the use of tissue specific activation tagging in Arabidopsis thaliana. Genetics and Molecular Biology, 2006, 29, 401-407.	0.6	2
116	Auxin Biology and Biosynthesis. Recent Advances in Phytochemistry, 2006, , 287-305.	0.5	0
117	A family of auxin conjugate hydrolases from Brassica rapa: characterization and expression during clubroot disease. New Phytologist, 2006, 171, 145-158.	3.5	51
118	Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant Journal, 2006, 45, 123-132.	2.8	321

#	Article	IF	CITATIONS
119	STY1regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant Journal, 2006, 47, 112-123.	2.8	172
120	A role for a flavinâ€containing monoâ€oxygenase in resistance against microbial pathogens in Arabidopsis. Plant Journal, 2006, 47, 629-639.	2.8	85
121	Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nature Reviews Genetics, 2006, 7, 524-536.	7.7	230
122	Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization. Physiologia Plantarum, 2006, 129, 320-333.	2.6	65
123	Many Roads Lead to "Auxin": of Nitrilases, Synthases, and Amidases. Plant Biology, 2006, 8, 326-333.	1.8	52
124	Cytochromes P450 in the biosynthesis of glucosinolates and indole alkaloids. Phytochemistry Reviews, 2006, 5, 331-346.	3.1	40
125	Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cellular and Molecular Life Sciences, 2006, 63, 2738-2754.	2.4	328
126	The Arabidopsis Flavin-Dependent Monooxygenase FMO1 Is an Essential Component of Biologically Induced Systemic Acquired Resistance Â. Plant Physiology, 2006, 141, 1666-1675.	2.3	229
128	Transcriptional Regulation of Gibberellin Metabolism Genes by Auxin Signaling in Arabidopsis. Plant Physiology, 2006, 142, 553-563.	2.3	255
129	Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes and Development, 2006, 20, 1790-1799.	2.7	997
130	Inhibition of Brassinosteroid Biosynthesis by Either a dwarf4 Mutation or a Brassinosteroid Biosynthesis Inhibitor Rescues Defects in Tropic Responses of Hypocotyls in the Arabidopsis Mutant nonphototropic hypocotyl 4 Â. Plant Physiology, 2006, 141, 456-464.	2.3	47
131	A Role for Auxin Response Factor 19 in Auxin and Ethylene Signaling in Arabidopsis. Plant Physiology, 2006, 140, 899-908.	2.3	163
132	Salicylic Acid–Independent ENHANCED DISEASE SUSCEPTIBILITY1 Signaling in Arabidopsis Immunity and Cell Death Is Regulated by the Monooxygenase FMO1 and the Nudix Hydrolase NUDT7. Plant Cell, 2006, 18, 1038-1051.	3.1	455
133	Recent Advances in Auxin Biosynthesis and Conjugation. Recent Advances in Phytochemistry, 2006, 40, 271-285.	0.5	2
134	RACK1 mediates multiple hormone responsiveness and developmental processes in Arabidopsis. Journal of Experimental Botany, 2006, 57, 2697-2708.	2.4	128
135	Microbial Production of Plant Hormones. , 2007, , 113-143.		35
136	barren inflorescence2 Encodes a Co-Ortholog of the PINOID Serine/Threonine Kinase and Is Required for Organogenesis during Inflorescence and Vegetative Development in Maize. Plant Physiology, 2007, 144, 1000-1011.	2.3	170
137	Arabidopsis BRANCHED1 Acts as an Integrator of Branching Signals within Axillary Buds. Plant Cell, 2007, 19, 458-472.	3.1	725

#	ARTICLE	IF	CITATIONS
138	Maize nitrilases have a dual role in auxin homeostasis and -cyanoalanine hydrolysis. Journal of Experimental Botany, 2007, 58, 4225-4233.	2.4	50
139	<i>yucca6</i> , a Dominant Mutation in Arabidopsis, Affects Auxin Accumulation and Auxin-Related Phenotypes. Plant Physiology, 2007, 145, 722-735.	2.3	138
140	Mutations in Arabidopsis Multidrug Resistance-Like ABC Transporters Separate the Roles of Acropetal and Basipetal Auxin Transport in Lateral Root Development. Plant Cell, 2007, 19, 1826-1837.	3.1	164
141	Arabidopsis Inositol Polyphosphate 6-/3-Kinase (Atlpk $2\hat{l}^2$) Is Involved in Axillary Shoot Branching via Auxin Signaling. Plant Physiology, 2007, 144, 942-951.	2.3	47
142	Arabidopsis TEOSINTE BRANCHED1-LIKE 1 Regulates Axillary Bud Outgrowth and is Homologous to Monocot TEOSINTE BRANCHED1. Plant and Cell Physiology, 2007, 48, 667-677.	1.5	202
143	Isolation of 151 Mutants that Have Developmental Defects from T-DNA Tagging. Plant and Cell Physiology, 2007, 48, 169-178.	1.5	19
144	Auxin Biosynthesis by the YUCCA Genes in Rice. Plant Physiology, 2007, 143, 1362-1371.	2.3	337
145	CRM1/BIG-Mediated Auxin Action Regulates Arabidopsis Inflorescence Development. Plant and Cell Physiology, 2007, 48, 1275-1290.	1.5	51
146	Flavin-containing monooxygenases in plants: looking beyond detox. Trends in Plant Science, 2007, 12, 412-418.	4.3	124
147	The Human Fungal Pathogen Cryptococcus Can Complete Its Sexual Cycle during a Pathogenic Association with Plants. Cell Host and Microbe, 2007, 1, 263-273.	5.1	175
148	Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Molecular Biology, 2007, 65, 125-136.	2.0	162
149	Regulation of Telomerase in Arabidopsis by BT2, an Apparent Target of TELOMERASE ACTIVATOR1. Plant Cell, 2007, 19, 23-31.	3.1	69
150	Activation Tagging Systems in Rice. , 2007, , 333-353.		3
152	Mechanisms and Genes Involved in GerminationSensu Stricto. , 0, , 264-304.		46
154	Isolation and characterization of SIIAA3, an Aux/IAA gene from tomato. DNA Sequence, 2007, 18, 407-414.	0.7	7
155	Auxin Synthesized by the YUCCA Flavin Monooxygenases Is Essential for Embryogenesis and Leaf Formation in <i>Arabidopsis </i>	3.1	601
156	Activation tagging in plantsâ€"generation of novel, gain-of-function mutations. Australian Journal of Agricultural Research, 2007, 58, 490.	1.5	15
157	In silico analysis of phytohormone metabolism and communication pathways in citrus transcriptome. Genetics and Molecular Biology, 2007, 30, 713-733.	0.6	6

#	ARTICLE	IF	Citations
159	Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant Journal, 2007, 50, 902-910.	2.8	219
160	Leaf expansion in Phaseolus: transient auxin-induced growth increase. Physiologia Plantarum, 2007, 130, 580-589.	2.6	13
161	Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 2007, 31, 425-448.	3.9	1,412
162	Hormonal Regulation of Leaf Morphogenesis in Arabidopsis. Journal of Integrative Plant Biology, 2007, 49, 75-80.	4.1	38
163	A Role for Auxin in Flower Development. Journal of Integrative Plant Biology, 2007, 49, 99-104.	4.1	112
164	Genetic Analysis and Molecular Mapping of a Rolling Leaf Mutation Gene in Rice. Journal of Integrative Plant Biology, 2007, 49, 1746-1753.	4.1	3
165	Genomeâ€wide Expression Profiling in Seedlings of the <i>Arabidopsis</i> Mutant <i>uro</i> that is Defective in the Secondary Cell Wall Formation. Journal of Integrative Plant Biology, 2007, 49, 1754-1762.	4.1	8
166	Salicylic Acid Inhibits Pathogen Growth in Plants through Repression of the Auxin Signaling Pathway. Current Biology, 2007, 17, 1784-1790.	1.8	653
167	Genetic polymorphisms of human flavin-containing monooxygenase 3: implications for drug metabolism and clinical perspectives. Pharmacogenomics, 2007, 8, 635-643.	0.6	34
168	Cloning and Biochemical Characterization of ToFZY, a Tomato Gene Encoding a Flavin Monooxygenase Involved in a Tryptophan-dependent Auxin Biosynthesis Pathway. Journal of Plant Growth Regulation, 2007, 26, 329-340.	2.8	67
169	Metabolomics for metabolically manipulated plants: effects of tryptophan overproduction. Metabolomics, 2007, 3, 319-334.	1.4	31
170	A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Molecular Biology, 2007, 63, 351-364.	2.0	197
171	Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Molecular Biology, 2007, 63, 847-860.	2.0	109
172	A barley activation tagging system. Plant Molecular Biology, 2007, 64, 329-347.	2.0	72
173	Plant native tryptophan synthase beta 1 gene is a non-antibiotic selection marker for plant transformation. Planta, 2007, 225, 897-906.	1.6	32
174	A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. Plant Molecular Biology, 2008, 66, 315-327.	2.0	49
175	The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Reports, 2008, 27, 575-584.	2.8	43
176	Auxin dynamics: the dazzling complexity of a small molecule's message. Planta, 2008, 227, 929-941.	1.6	79

#	Article	IF	CITATIONS
177	NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Molecular Genetics and Genomics, 2008, 279, 499-507.	1.0	207
178	<i>Arabidopsis</i> Indole Synthase, a Homolog of Tryptophan Synthase Alpha, is an Enzyme Involved in the Trpâ€independent Indoleâ€containing Metabolite Biosynthesis. Journal of Integrative Plant Biology, 2008, 50, 1070-1077.	4.1	70
179	A new path to auxin. Nature Chemical Biology, 2008, 4, 337-339.	3.9	51
180	HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in <i>Arabidopsis thaliana</i> . New Phytologist, 2008, 177, 627-642.	3.5	283
181	<i>SPOROCYTELESS</i> modulates <i>YUCCA</i> expression to regulate the development of lateral organs in Arabidopsis. New Phytologist, 2008, 179, 751-764.	3.5	69
182	Indole Glucosinolates and Camalexin do not Influence the Development of the Clubroot Disease in <i>Arabidopsis thaliana</i>	0.5	22
183	Indoleâ€3â€acetic acid (IAA) biosynthesis in the smut fungus <i>Ustilago maydis</i> and its relevance for increased IAA levels in infected tissue and host tumour formation. Molecular Plant Pathology, 2008, 9, 339-355.	2.0	162
184	Plant Pathogen Effectors: Getting Mixed Messages. Current Biology, 2008, 18, R128-R130.	1.8	15
185	The role of local biosynthesis of auxin and cytokinin in plant development. Current Opinion in Plant Biology, 2008, 11, 16-22.	3.5	151
186	Auxin: The Looping Star in Plant Development. Annual Review of Plant Biology, 2008, 59, 443-465.	8.6	503
188	Advances in selectable marker genes for plant transformation. Journal of Plant Physiology, 2008, 165, 1698-1716.	1.6	73
189	Hormonal control of grass inflorescence development. Trends in Plant Science, 2008, 13, 656-662.	4.3	74
190	LECs go crazy in embryo development. Trends in Plant Science, 2008, 13, 624-630.	4.3	284
191	Ustilago maydis secondary metabolismâ€"From genomics to biochemistry. Fungal Genetics and Biology, 2008, 45, S88-S93.	0.9	85
192	TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development. Cell, 2008, 133, 177-191.	13.5	1,065
193	Rapid Synthesis of Auxin via a New Tryptophan-Dependent Pathway Is Required for Shade Avoidance in Plants. Cell, 2008, 133, 164-176.	13.5	928
194	Patterning and Polarity in Seed Plant Shoots. Annual Review of Plant Biology, 2008, 59, 67-88.	8.6	109
195	<i>sparse inflorescence1</i> encodes a monocot-specific <i>YUCCA</i> -like gene required for vegetative and reproductive development in maize. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15196-15201.	3.3	242

#	Article	IF	CITATIONS
196	Inactive Methyl Indole-3-Acetic Acid Ester Can Be Hydrolyzed and Activated by Several Esterases Belonging to the <i>At</i> MES Esterase Family of Arabidopsis Â. Plant Physiology, 2008, 147, 1034-1045.	2.3	152
197	Comprehensive Transcriptome Analysis of Phytohormone Biosynthesis and Signaling Genes in Microspore/Pollen and Tapetum of Rice. Plant and Cell Physiology, 2008, 49, 1429-1450.	1.5	187
198	<i>NPY</i> genes and AGC kinases define two key steps in auxin-mediated organogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 21017-21022.	3.3	139
199	Small-molecule agonists and antagonists of F-box protein–substrate interactions in auxin perception and signaling. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5632-5637.	3.3	188
200	The Transcript and Metabolite Networks Affected by the Two Clades of Arabidopsis Glucosinolate Biosynthesis Regulators. Plant Physiology, 2008, 148, 2021-2049.	2.3	188
201	<i>Arabidopsis</i> LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3151-3156.	3.3	282
202	Mutation of a Rice Gene Encoding a Phenylalanine Biosynthetic Enzyme Results in Accumulation of Phenylalanine and Tryptophan. Plant Cell, 2008, 20, 1316-1329.	3.1	89
203	New auxin analogs with growth-promoting effects in intact plants reveal a chemical strategy to improve hormone delivery. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15190-15195.	3.3	100
204	Activated Expression of an <i> Arabidopsis < /i > HD-START Protein Confers Drought Tolerance with Improved Root System and Reduced Stomatal Density Â. Plant Cell, 2008, 20, 1134-1151.</i>	3.1	329
205	Ethylene: Inhibitor and Stimulator of Plant Growth. Plant Cell Monographs, 2008, , 199-221.	0.4	1
206	Functional Characterization of PaLAX1, a Putative Auxin Permease, in Heterologous Plant Systems \hat{A} \hat{A} . Plant Physiology, 2008, 146, 1128-1141.	2.3	29
207	Novel root culture system using a recessive mutant with a rooty phenotype. Plant Biotechnology, 2008, 25, 197-200.	0.5	5
208	Root Development., 2009,,.		5
209	The MossPhyscomitrella patens., 2009,,.		1
210	<i>Developmental disaster1</i> : A novel mutation causing defects during vegetative and inflorescence development in maize (<i>Zea mays</i> , Poaceae). American Journal of Botany, 2009, 96, 420-430.	0.8	10
211	Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13673-13678.	3.3	100
212	Hormonal Regulation of Development by Auxin and Cytokinin in Moss., 0,, 246-281.		7
213	REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16883-16888.	3.3	226

#	Article	IF	CITATIONS
214	Characterization of TCTP, the Translationally Controlled Tumor Protein, from < i>Arabidopsis thaliana < /i> Â. Plant Cell, 2009, 20, 3430-3447.	3.1	155
215	The role of microbial signals in plant growth and development. Plant Signaling and Behavior, 2009, 4, 701-712.	1.2	472
216	Constitutive Repression and Activation of Auxin Signaling in Arabidopsis Â. Plant Physiology, 2009, 149, 1277-1288.	2.3	46
217	Arabidopsis <i>IAR4</i> Modulates Auxin Response by Regulating Auxin Homeostasis. Plant Physiology, 2009, 150, 748-758.	2.3	59
218	BT2, a BTB Protein, Mediates Multiple Responses to Nutrients, Stresses, and Hormones in Arabidopsis Â. Plant Physiology, 2009, 150, 1930-1939.	2.3	117
219	Auxin Biosynthesis in Pea: Characterization of the Tryptamine Pathway Â. Plant Physiology, 2009, 151, 1130-1138.	2.3	82
220	Embryogenesis: Pattern Formation from a Single Cell. The Arabidopsis Book, 2009, 7, e0126.	0.5	85
221	Powerful Partners: Arabidopsis and Chemical Genomics. The Arabidopsis Book, 2009, 7, e0109.	0.5	44
222	Temporal Expression Patterns of Hormone Metabolism Genes during Imbibition of Arabidopsis thaliana Seeds: A Comparative Study on Dormant and Non-Dormant Accessions. Plant and Cell Physiology, 2009, 50, 1786-1800.	1.5	148
223	Recognition of AvrBs3-Like Proteins Is Mediated by Specific Binding to Promoters of Matching Pepper <i>Bs3</i> Alleles Â. Plant Physiology, 2009, 150, 1697-1712.	2.3	96
224	Regulation of Carotenoid Composition and Shoot Branching in <i>Arabidopsis</i> by a Chromatin Modifying Histone Methyltransferase, SDG8. Plant Cell, 2009, 21, 39-53.	3.1	207
225	Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of <i>Arabidopsis</i> shoot vascular bundles. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13630-13635.	3.3	150
226	The <i>NGATHA</i> Genes Direct Style Development in the <i>Arabidopsis</i> Gynoecium Â. Plant Cell, 2009, 21, 1394-1409.	3.1	135
227	The <i>NtAMI1</i> gene functions in cell division of tobacco BYâ€2 cells in the presence of indoleâ€3â€acetamide. FEBS Letters, 2009, 583, 487-492.	1.3	43
228	Local auxin production: a small contribution to a big field. BioEssays, 2009, 31, 60-70.	1.2	81
229	Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2. Planta, 2009, 229, 1209-1217.	1.6	13
230	The short-rooted vitamin B6-deficient mutant pdx1 has impaired local auxin biosynthesis. Planta, 2009, 229, 1303-1310.	1.6	22
231	Glucosinolates and the clubroot disease: defense compounds or auxin precursors?. Phytochemistry Reviews, 2009, 8, 135-148.	3.1	45

#	Article	IF	CITATIONS
232	Indolic glucosinolates at the crossroads of tryptophan metabolism. Phytochemistry Reviews, 2009, 8, 25-37.	3.1	34
233	Molecular Cloning, Expression, and Polyclonal Antibody Production of a Novel Flavin-Containing Monooxygenase from Thellungiella halophila. Plant Molecular Biology Reporter, 2009, 27, 94-101.	1.0	0
234	Identification of the flavin-dependent monooxygenase-encoding YUCCA gene family in Populus trichocarpa and their expression in vegetative tissues and in response to hormone and environmental stresses. Plant Cell, Tissue and Organ Culture, 2009, 97, 271-283.	1,2	26
235	Molecular characterization of Japanese indigenous grape cultivar †Koshu†(Vitis vinifera) leaf and berry skin during grape development. Plant Biotechnology Reports, 2009, 3, 225-241.	0.9	14
236	Genetic analysis and gene mapping of a new rolled-leaf mutant in rice (Oryza sativa L.). Science in China Series C: Life Sciences, 2009, 52, 885-890.	1.3	21
237	Metabolism and Plant Hormone Action During Clubroot Disease. Journal of Plant Growth Regulation, 2009, 28, 229-244.	2.8	138
238	A rice <i>tryptophan deficient dwarf</i> mutant, <i>tdd1,</i> contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos. Plant Journal, 2009, 60, 227-241.	2.8	88
239	Hormonal regulation of temperatureâ€induced growth in Arabidopsis. Plant Journal, 2009, 60, 589-601.	2.8	271
240	Tryptophan deficiency affects organ growth by retarding cell expansion in Arabidopsis. Plant Journal, 2009, 57, 511-521.	2.8	63
241	Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature, 2009, 459, 1136-1140.	13.7	462
242	Tryptophan-dependent indole-3-acetic acid biosynthesis by †IAA-synthase†proceeds via indole-3-acetamide. Phytochemistry, 2009, 70, 523-531.	1.4	55
243	Modification of plant hormone levels and signaling as a tool in plant biotechnology. Biotechnology Journal, 2009, 4, 1293-1304.	1.8	21
244	Integration of Light and Auxin Signaling. Cold Spring Harbor Perspectives in Biology, 2009, 1, a001586-a001586.	2.3	149
245	Auxin: A Trigger for Change in Plant Development. Cell, 2009, 136, 1005-1016.	13.5	1,102
246	Cytokinin–auxin crosstalk. Trends in Plant Science, 2009, 14, 557-562.	4.3	295
247	Towards a functional understanding of cell growth dynamics in shoot meristem stem-cell niche. Seminars in Cell and Developmental Biology, 2009, 20, 1126-1133.	2.3	22
248	The <i>TRANSPORT INHIBITOR RESPONSE2 </i> i>Gene Is Required for Auxin Synthesis and Diverse Aspects of Plant Development. Plant Physiology, 2009, 151, 168-179.	2.3	185
249	Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5430-5435.	3.3	304

#	Article	IF	Citations
250	Root Hairs. Plant Cell Monographs, 2009, , .	0.4	2
251	Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4284-4289.	3.3	340
252	Auxin-Dependent Patterning and Gamete Specification in the <i>Arabidopsis</i> Female Gametophyte. Science, 2009, 324, 1684-1689.	6.0	252
253	Adventitious Root Formation: New Insights and Perspectives. , 0, , 127-156.		54
254	Fertilisation and Fruit Initiation. , 0, , 107-171.		11
255	The <i>RON1/FRY1/SAL1 </i> Gene Is Required for Leaf Morphogenesis and Venation Patterning in Arabidopsis. Plant Physiology, 2010, 152, 1357-1372.	2.3	91
256	Reassessing the Role of $\langle i \rangle N \langle i \rangle$ -Hydroxytryptamine in Auxin Biosynthesis. Plant Physiology, 2010, 154, 1957-1965.	2.3	59
257	Auxin Biosynthesis and Its Role in Plant Development. Annual Review of Plant Biology, 2010, 61, 49-64.	8.6	1,085
258	Approaching Cellular and Molecular Resolution of Auxin Biosynthesis and Metabolism. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001594-a001594.	2.3	189
259	Interplay between the NADP-Linked Thioredoxin and Glutathione Systems in <i>Arabidopsis</i> Auxin Signaling Â. Plant Cell, 2010, 22, 376-391.	3.1	272
260	An Inhibitor of Tryptophan-Dependent Biosynthesis of Indole-3-Acetic Acid Alters Seedling Development in Arabidopsis. Journal of Plant Growth Regulation, 2010, 29, 242-248.	2.8	7
261	The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta, 2010, 232, 1455-1470.	1.6	110
262	Genetic analysis and gene fine mapping of a rolling leaf mutant (rl 11(t)) in rice (Oryza sativa L.). Science Bulletin, 2010, 55, 1763-1769.	1.7	1
263	Ectopic expression of MNX gene from Arabidopsis thaliana involved in auxin biosynthesis confers male sterility in transgenic cotton (Gossypium hirsutum L.) plants. Molecular Breeding, 2010, 26, 77-89.	1.0	5
264	Indole-3-acetamide-dependent auxin biosynthesis: A widely distributed way of indole-3-acetic acid production?. European Journal of Cell Biology, 2010, 89, 895-905.	1.6	74
265	A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome $\hat{s} \in f$ and phytochrome $\hat{s} \in f$ Plant Journal, 2010, 62, 179-191.	2.8	77
266	The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis. Plant Journal, 2010, 64, 524-535.	2.8	62
267	The BUD2 mutation affects plant architecture through altering cytokinin and auxin responses in Arabidopsis. Cell Research, 2010, 20, 576-586.	5.7	57

#	Article	IF	CITATIONS
268	Comprehensive Spectroscopic, Steady State, and Transient Kinetic Studies of a Representative Siderophore-associated Flavin Monooxygenase. Journal of Biological Chemistry, 2010, 285, 30375-30388.	1.6	44
269	Auxin and Monocot Development. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001479-a001479.	2.3	131
270	Auxin at the Shoot Apical Meristem. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001487-a001487.	2.3	131
271	A Role for AUXIN RESISTANT3 in the Coordination of Leaf Growth. Plant and Cell Physiology, 2010, 51, 1661-1673.	1.5	48
272	Homologues of the <i>Arabidopsis thaliana SHI/STY/LRP1</i> genes control auxin biosynthesis and affect growth and development in the moss <i>Physcomitrella patens</i> Development (Cambridge), 2010, 137, 1275-1284.	1,2	97
273	The <i> Arabidopsis thaliana </i> STYLISH1 Protein Acts as a Transcriptional Activator Regulating Auxin Biosynthesis Â. Plant Cell, 2010, 22, 349-363.	3.1	158
274	The AMI1 gene family: indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. Journal of Experimental Botany, 2010, 61, 25-32.	2.4	50
275	Role of PIN-mediated auxin efflux in apical hook development of <i> Arabidopsis thaliana </i> Development (Cambridge), 2010, 137, 607-617.	1.2	297
276	Sugar–Hormone Cross-Talk in Seed Development: Two Redundant Pathways of IAA Biosynthesis Are Regulated Differentially in the Invertase-Deficient miniature1 (mn1) Seed Mutant in Maize. Molecular Plant, 2010, 3, 1026-1036.	3.9	60
277	Overexpression of the Arabidopsis Gene <i>UPRIGHT ROSETTE</i> Reveals a Homeostatic Control for Indole-3-Acetic Acid Â. Plant Physiology, 2010, 153, 1311-1320.	2.3	22
278	Auxin Biosynthesis Inhibitors, Identified by a Genomics-Based Approach, Provide Insights into Auxin Biosynthesis. Plant and Cell Physiology, 2010, 51, 524-536.	1.5	140
279	Sugar Levels Regulate Tryptophan-Dependent Auxin Biosynthesis in Developing Maize Kernels Â. Plant Physiology, 2010, 153, 306-318.	2.3	163
280	The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in <i>Arabidopsis thaliana</i> seedlings. Development (Cambridge), 2010, 137, 597-606.	1.2	226
281	Activation-Tagged Suppressors of a Weak Brassinosteroid Receptor Mutant. Molecular Plant, 2010, 3, 260-268.	3.9	18
282	Auxin Control of Root Development. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001537-a001537.	2.3	612
283	<i>SEUSS</i> and <i>SEUSS-LIKE</i> Transcriptional Adaptors Regulate Floral and Embryonic Development in Arabidopsis. Plant Physiology, 2010, 152, 821-836.	2.3	73
284	Tissue-specific auxin signaling in response to temperature fluctuation. Plant Signaling and Behavior, 2010, 5, 1510-1512.	1.2	13
285	A systems biology approach to dissect the contribution of brassinosteroid and Auxin hormones to vascular patterning in the shoot of <i>Arabidopsis thaliana </i> 903-906.	1.2	12

#	Article	IF	CITATIONS
286	Involvement of Auxin and Brassinosteroid in the Regulation of Petiole Elongation under the Shade \hat{A} . Plant Physiology, 2010, 153, 1608-1618.	2.3	172
287	Plant Hormones. , 2010, , 9-125.		6
288	Regulatory Mechanisms for Specification and Patterning of Plant Vascular Tissues. Annual Review of Cell and Developmental Biology, 2010, 26, 605-637.	4.0	109
289	Development of Flowering Plant Gametophytes. Current Topics in Developmental Biology, 2010, 91, 379-412.	1.0	73
290	Green Beginnings – Pattern Formation in the Early Plant Embryo. Current Topics in Developmental Biology, 2010, 91, 1-27.	1.0	46
291	Pattern formation in miniature: the female gametophyte of flowering plants. Development (Cambridge), 2010, 137, 179-189.	1.2	88
292	Auxin modulates the transition from the mitotic cycle to the endocycle in <i>Arabidopsis</i> Development (Cambridge), 2010, 137, 63-71.	1.2	131
293	The Roles of YUCCA Genes in Local Auxin Biosynthesis and Plant Development. , 2010, , 227-235.		2
294	Activation Tagging for Gain-of-Function Mutants. , 2010, , 345-370.		2
295	High-Throughput Characterization of Plant Gene Functions by Using Gain-of-Function Technology. Annual Review of Plant Biology, 2010, 61, 373-393.	8.6	40
296	Auxin Biosynthesis and Metabolism. , 2010, , 36-62.		59
297	Recent progress in auxin biology. Comptes Rendus - Biologies, 2010, 333, 297-306.	0.1	86
298	Cell Surface- and Rho GTPase-Based Auxin Signaling Controls Cellular Interdigitation in Arabidopsis. Cell, 2010, 143, 99-110.	13.5	454
299	Changes in auxin distribution patterns during lateral root development in rice. Plant Science, 2010, 178, 531-538.	1.7	15
300	Polar auxin transport together with AINTEGUMENTA and REVOLUTA coordinate early Arabidopsis gynoecium development. Developmental Biology, 2010, 346, 181-195.	0.9	50
301	Plant Secondary Metabolism Engineering. Methods in Molecular Biology, 2010, , .	0.4	8
302	Evolution of growth-promoting plant hormones. Functional Plant Biology, 2010, 37, 795.	1.1	61
303	<i>Arabidopsis</i> Seedlings Over-Accumulated Indole-3-acetic Acid in Response to Aminooxyacetic Acid. Bioscience, Biotechnology and Biochemistry, 2010, 74, 2345-2347.	0.6	9

#	Article	IF	CITATIONS
304	Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF <i>ARABIDOPSIS</i> and YUCCAs in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18518-18523.	3.3	580
305	Regulated O2Activation in Flavin-Dependent Monooxygenases. Journal of the American Chemical Society, 2011, 133, 12338-12341.	6.6	22
306	Auxin modulation of salt stress signaling in Arabidopsis seed germination. Plant Signaling and Behavior, 2011, 6, 1198-1200.	1.2	71
307	A Transposon-Based Activation Tagging System for Gene Function Discovery in Arabidopsis. Methods in Molecular Biology, 2011, 754, 67-83.	0.4	6
308	Plant Transcription Factors. Methods in Molecular Biology, 2011, , .	0.4	5
309	The main auxin biosynthesis pathway in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18512-18517.	3.3	827
310	Structural and functional analysis of bacterial flavin-containing monooxygenase reveals its ping-pong-type reaction mechanism. Journal of Structural Biology, 2011, 175, 39-48.	1.3	32
311	MAP3KÎ'4, an Arabidopsis Raf-like MAP3K, regulates plant growth and shoot branching. Plant Biotechnology, 2011, 28, 463-470.	0.5	10
312	The bZIP Transcription Factor PERIANTHIA: A Multifunctional Hub for Meristem Control. Frontiers in Plant Science, 2011, 2, 79.	1.7	41
313	Auxin Control in the Formation of Adventitious Roots. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39, 307.	0.5	114
314	DELLA-Induced Early Transcriptional Changes during Etiolated Development in Arabidopsis thaliana. PLoS ONE, 2011, 6, e23918.	1.1	63
315	Insights into Auxin Signaling in Plant?Pathogen Interactions. Frontiers in Plant Science, 2011, 2, 74.	1.7	194
316	<i>TFL2/LHP1</i> is involved in auxin biosynthesis through positive regulation of <i>YUCCA</i> genes. Plant Journal, 2011, 65, 897-906.	2.8	39
317	Functional characterization of the <i>CKRC1/TAA1</i> gene and dissection of hormonal actions in the Arabidopsis root. Plant Journal, 2011, 66, 516-527.	2.8	66
318	The microRNA miR393 reâ€directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant Journal, 2011, 67, 218-231.	2.8	196
319	Cryptochrome $\hat{a} \in f1$ and phytochrome $\hat{a} \in fB$ control shade $\hat{a} \in fB$ control shade responses in Arabidopsis via partially independent hormonal cascades. Plant Journal, 2011, 67, 195-207.	2.8	223
320	Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant Journal, 2011, 67, 622-634.	2.8	92
321	Allelic Analyses of the <i>Arabidopsis YUC1</i> Locus Reveal Residues and Domains Essential for the Functions of YUC Family of Flavin Monooxygenases. Journal of Integrative Plant Biology, 2011, 53, 54-62.	4.1	26

#	Article	IF	CITATIONS
322	A Gainâ€ofâ€Function Mutation in IAA7/AXR2 Confers Late Flowering under Shortâ€day Light in ⟨i>Arabidopsis⟨ i>⟨sup>F⟨ sup>. Journal of Integrative Plant Biology, 2011, 53, 480-492.	4.1	53
323	Sending mixed messages: auxin-cytokinin crosstalk in roots. Current Opinion in Plant Biology, 2011, 14, 10-16.	3.5	103
324	Identification of rhizome-specific genes by genome-wide differential expression Analysis in Oryza longistaminata. BMC Plant Biology, 2011, 11, 18.	1.6	65
326	Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis Â. Plant Physiology, 2011, 156, 537-549.	2.3	162
327	Effects of a Coumarin Derivative, 4-Methylumbelliferone, on Seed Germination and Seedling Establishment in Arabidopsis. Journal of Chemical Ecology, 2011, 37, 880-890.	0.9	27
328	Auxin is involved in the regulation of leaf and root development by LAF1 under short day conditions. Biologia Plantarum, 2011, 55, .	1.9	6
329	Cross talk between the sporophyte and the megagametophyte during ovule development. Sexual Plant Reproduction, 2011, 24, 113-121.	2.2	85
330	Cytoplasmic male sterility-regulated novel microRNAs from maize. Functional and Integrative Genomics, 2011, 11, 179-191.	1.4	46
331	Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice. Theoretical and Applied Genetics, 2011, 123, 815-826.	1.8	89
332	Redirection of tryptophan metabolism in tobacco by ectopic expression of an Arabidopsis indolic glucosinolate biosynthetic gene. Phytochemistry, 2011, 72, 37-48.	1.4	27
333	Probing the role of tryptophan-derived secondary metabolism in defense responses against Bipolaris oryzae infection in rice leaves by a suicide substrate of tryptophan decarboxylase. Phytochemistry, 2011, 72, 7-13.	1.4	46
334	Gene structure and spatiotemporal expression profile of tomato genes encoding YUCCA-like flavin monooxygenases: The ToFZY gene family. Plant Physiology and Biochemistry, 2011, 49, 782-791.	2.8	52
335	Reassessing the role of YUCCAs in auxin biosynthesis. Plant Signaling and Behavior, 2011, 6, 437-439.	1.2	7
336	Genomic Analysis of Circadian Clock-, Light-, and Growth-Correlated Genes Reveals PHYTOCHROME-INTERACTING FACTOR5 as a Modulator of Auxin Signaling in Arabidopsis Â. Plant Physiology, 2011, 156, 357-372.	2.3	136
337	Regulation of imprinted gene expression in <i>Arabidopsis</i> endosperm. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1755-1762.	3.3	317
338	<i>STENOFOLIA</i> Regulates Blade Outgrowth and Leaf Vascular Patterning in <i>Medicago truncatula</i> and <i>Nicotiana sylvestris</i> A Â Â. Plant Cell, 2011, 23, 2125-2142.	3.1	133
339	The <i>Arabidopsis</i> YUCCA1 Flavin Monooxygenase Functions in the Indole-3-Pyruvic Acid Branch of Auxin Biosynthesis. Plant Cell, 2011, 23, 3961-3973.	3.1	320
340	Auxin, cytokinin and the control of shoot branching. Annals of Botany, 2011, 107, 1203-1212.	1.4	404

#	ARTICLE	IF	Citations
341	Expression of Arabidopsis <i>SHORT INTERNODES</i> / <i>STYLISH</i> Family Genes in Auxin Biosynthesis Zones of Aerial Organs Is Dependent on a GCC Box-Like Regulatory Element Â. Plant Physiology, 2011, 157, 2069-2080.	2.3	44
342	MM31/EIR1promotes lateral root formation inArabidopsis. Plant Signaling and Behavior, 2011, 6, 968-973.	1.2	4
343	Immunohistochemical observation of indole-3-acetic acid at the IAA synthetic maize coleoptile tips. Plant Signaling and Behavior, 2011, 6, 2013-2022.	1.2	25
344	Tryptophan auxotroph mutants suppress the <i>superroot2</i> phenotypes, modulating IAA biosynthesis in <i>Arabidopsis. </i> Plant Signaling and Behavior, 2011, 6, 1351-1355.	1.2	9
345	YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. Journal of Experimental Botany, 2011, 62, 3981-3992.	2.4	195
346	$\langle i \rangle$ SIZ1 $\langle i \rangle$ Regulation of Phosphate Starvation-Induced Root Architecture Remodeling Involves the Control of Auxin Accumulation Â. Plant Physiology, 2011, 155, 1000-1012.	2.3	175
347	Unraveling the Evolution of Auxin Signaling Â. Plant Physiology, 2011, 155, 209-221.	2.3	140
348	<i>YUCCA</i> Genes Are Expressed in Response to Leaf Adaxial-Abaxial Juxtaposition and Are Required for Leaf Margin Development Â. Plant Physiology, 2011, 157, 1805-1819.	2.3	105
349	PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20231-20235.	3.3	562
350	Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17791-17796.	3.3	132
351	<i>vanishing tassel2</i> Encodes a Grass-Specific Tryptophan Aminotransferase Required for Vegetative and Reproductive Development in Maize À Â. Plant Cell, 2011, 23, 550-566.	3.1	246
352	The Basic Helix-Loop-Helix Transcription Factor MYC2 Directly Represses <i>PLETHORA</i> Expression during Jasmonate-Mediated Modulation of the Root Stem Cell Niche in <i>Arabidopsis</i> À Â. Plant Cell, 2011, 23, 3335-3352.	3.1	374
353	Auxin-Responsive OsMGH3, a Common Downstream Target of OsMADS1 and OsMADS6, Controls Rice Floret Fertility. Plant and Cell Physiology, 2011, 52, 2123-2135.	1.5	61
354	NPY Genes Play an Essential Role in Root Gravitropic Responses in Arabidopsis. Molecular Plant, 2011, 4, 171-179.	3.9	41
355	PIF4–Mediated Activation of YUCCA8 Expression Integrates Temperature into the Auxin Pathway in Regulating Arabidopsis Hypocotyl Growth. PLoS Genetics, 2012, 8, e1002594.	1.5	443
356	A Regulatory Network for Coordinated Flower Maturation. PLoS Genetics, 2012, 8, e1002506.	1.5	204
357	The 2012 Genetics Society of America Medal. Genetics, 2012, 191, 297-298.	1.2	0
358	Biosynthesis of the Halogenated Auxin, 4-Chloroindole-3-Acetic Acid Â. Plant Physiology, 2012, 159, 1055-1063.	2.3	69

#	Article	IF	CITATIONS
359	Multifunctionality of the LEC1 transcription factor during plant development. Plant Signaling and Behavior, 2012, 7, 1718-1720.	1.2	20
360	SCI1, the first member of the tissue-specific inhibitors of CDK (TIC) class, is probably connected to the auxin signaling pathway. Plant Signaling and Behavior, 2012, 7, 53-58.	1.2	5
361	A mutation affecting the synthesis of 4-chloroindole-3-acetic acid. Plant Signaling and Behavior, 2012, 7, 1533-1536.	1.2	1
362	Impaired Auxin Biosynthesis in the <i>defective endosperm18</i> Mutant Is Due to Mutational Loss of Expression in the <i>ZmYuc1</i> Gene Encoding Endosperm-Specific YUCCA1 Protein in Maize Â. Plant Physiology, 2012, 160, 1318-1328.	2.3	128
363	The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Journal of Experimental Botany, 2012, 63, 4539-4547.	2.4	121
364	Persistent polar depletion of stratospheric ozone and emergent mechanisms of ultraviolet radiation-mediated health dysregulation. Reviews on Environmental Health, 2012, 27, 103-16.	1.1	15
365	An Endogenous Carbon-Sensing Pathway Triggers Increased Auxin Flux and Hypocotyl Elongation Â. Plant Physiology, 2012, 160, 2261-2270.	2.3	157
366	Photomorphogenesis. The Arabidopsis Book, 2012, 10, e0147.	0.5	114
367	Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea Â. Plant Physiology, 2012, 158, 1976-1987.	2.3	286
368	Cellular Auxin Homeostasis: Gatekeeping Is Housekeeping. Molecular Plant, 2012, 5, 772-786.	3.9	148
369	Tissueâ€specific profiling of the <i>Arabidopsis thaliana</i> auxin metabolome. Plant Journal, 2012, 72, 523-536.	2.8	277
370	Shade Avoidance. The Arabidopsis Book, 2012, 10, e0157.	0.5	321
371	Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid in Plants. Molecular Plant, 2012, 5, 334-338.	3.9	405
372	AUXOLOGY: When auxin meets plant evo-devo. Developmental Biology, 2012, 369, 19-31.	0.9	104
373	COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in <i>Arabidopsis</i> . Development (Cambridge), 2012, 139, 3402-3412.	1.2	167
374	Linking photoreceptor excitation to changes in plant architecture. Genes and Development, 2012, 26, 785-790.	2.7	460
375	Auxin and ethylene: collaborators or competitors?. Trends in Plant Science, 2012, 17, 181-195.	4.3	372
376	Auxin Controls <i>Arabidopsis</i> Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis. Plant Cell, 2012, 24, 2515-2527.	3.1	427

#	ARTICLE	IF	CITATIONS
379	Overexpressions of dihydroxyacetone synthase and dihydroxyacetone kinase in chloroplasts install a novel photosynthetic HCHO-assimilation pathway in transgenic tobacco using modified Gateway entry vectors. Acta Physiologiae Plantarum, 2012, 34, 1975-1985.	1.0	11
380	Leaf adaxial-abaxial polarity specification and lamina outgrowth: evolution and development. Plant and Cell Physiology, 2012, 53, 1180-1194.	1.5	106
381	Transgenic Plants as a Tool for Plant Functional Genomics. , 2012, , .		6
382	Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Research, 2012, 22, 915-927.	5.7	195
383	The pathway of auxin biosynthesis in plants. Journal of Experimental Botany, 2012, 63, 2853-2872.	2.4	463
384	The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering. Plant Molecular Biology, 2012, 78, 545-559.	2.0	36
385	Isolation and characterization of two YUCCA flavin monooxygenase genes from cultivated strawberry (FragariaÂ×Âananassa Duch.). Plant Cell Reports, 2012, 31, 1425-1435.	2.8	32
386	Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta, 2012, 235, 923-938.	1.6	117
387	Candidate genes within a 143 kb region of the flower sex locus in Vitis. Molecular Genetics and Genomics, 2012, 287, 247-259.	1.0	98
388	Alternative splicing of the auxin biosynthesis gene <i>YUCCA4</i> determines its subcellular compartmentation. Plant Journal, 2012, 70, 292-302.	2.8	139
389	Elongationâ€related functions of LEAFY COTYLEDON1 during the development of <i>Arabidopsis thaliana</i> . Plant Journal, 2012, 71, 427-442.	2.8	133
390	Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant Journal, 2012, 71, 699-711.	2.8	498
391	A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase <i>OsTAR1</i> and a grainâ€specific <i>YUCCA</i> . Physiologia Plantarum, 2012, 146, 487-499.	2.6	99
392	Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Molecular Biology, 2013, 82, 547-561.	2.0	308
393	Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Molecular Biology, 2013, 83, 475-488.	2.0	128
394	Root responses to flooding. Current Opinion in Plant Biology, 2013, 16, 282-286.	3.5	236
395	LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta, 2013, 238, 425-440.	1.6	149
396	An EST dataset for Metasequoia glyptostroboides buds: the first EST resource for molecular genomics studies in Metasequoia. Planta, 2013, 237, 755-770.	1.6	10

#	Article	IF	CITATIONS
397	The CaMV 35S enhancer has a function to change the histone modification state at insertion loci in Arabidopsis thaliana. Journal of Plant Research, 2013, 126, 841-846.	1.2	3
398	Two WUSCHEL-related homeobox Genes, narrow leaf2 and narrow leaf3, Control Leaf Width in Rice. Plant and Cell Physiology, 2013, 54, 779-792.	1.5	85
399	A Role for a Dioxygenase in Auxin Metabolism and Reproductive Development in Rice. Developmental Cell, 2013, 27, 113-122.	3.1	185
400	Polar Auxin Transport. Signaling and Communication in Plants, 2013, , .	0.5	18
401	Regulation of Stamen Development by Coordinated Actions of Jasmonate, Auxin, and Gibberellin in Arabidopsis. Molecular Plant, 2013, 6, 1065-1073.	3.9	119
402	The role of auxin in shaping shoot architecture. Journal of Experimental Botany, 2013, 64, 2593-2608.	2.4	154
403	Cloning, characterization and expression of $emph{OsFMO}_{{mathbf{(}emph{t}mathbf{)}}}$ in rice encoding a flavin monooxygenase. Journal of Genetics, 2013, 92, 471-480.	0.4	10
404	Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. BMC Plant Biology, 2013, 13, 222.	1.6	93
405	Auxin-Binding Protein 1 is a negative regulator of the SCFTIR1/AFB pathway. Nature Communications, 2013, 4, 2496.	5.8	66
406	Auxins: Biosynthesis, metabolism, and transport. Biology Bulletin Reviews, 2013, 3, 286-295.	0.3	5
407	Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1107-1112.	3.3	146
408	Studies on the Rice LEAF INCLINATION1 (LC1), an IAA–amido Synthetase, Reveal the Effects of Auxin in Leaf Inclination Control. Molecular Plant, 2013, 6, 174-187.	3.9	96
409	Auxin metabolism and homeostasis during plant development. Development (Cambridge), 2013, 140, 943-950.	1.2	474
410	The Biochemical Mechanism of Auxin Biosynthesis by an Arabidopsis YUCCA Flavin-containing Monooxygenase. Journal of Biological Chemistry, 2013, 288, 1448-1457.	1.6	175
411	<pre><scp><i>SHORT INTERNODES/STYLISH</i></scp> genes, regulators of auxin biosynthesis, are involved in leaf vein development in <i><scp>A</scp>rabidopsis thaliana</i>New Phytologist, 2013, 197, 737-750.</pre>	3.5	51
412	The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of <i><scp>YUCCA</scp>8</i> and <i><scp>YUCCA</scp>9</i> gene expression. Plant Journal, 2013, 74, 626-637.	2.8	178
413	Long-distance communication and signal amplification in systemic acquired resistance. Frontiers in Plant Science, 2013, 4, 30.	1.7	268
414	Auxin promotes susceptibility to <i><scp>P</scp>seudomonas syringae</i> via a mechanism independent of suppression of salicylic acidâ€mediated defenses. Plant Journal, 2013, 74, 746-754.	2.8	97

#	Article	IF	CITATIONS
415	New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant, Cell and Environment, 2013, 36, 2085-2103.	2.8	296
416	<i>Citrus</i> Genus Plants Contain N-Methylated Tryptamine Derivatives and Their 5-Hydroxylated Forms. Journal of Agricultural and Food Chemistry, 2013, 61, 5156-5162.	2.4	35
418	Auxin Genes and Auxin Responsive Factors in Signaling During Leaf Senescence. , 2013, , 91-103.		0
419	Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. Journal of Plant Physiology, 2013, 170, 965-975.	1.6	165
420	The Actin-Related Protein2/3 Complex Regulates Mitochondrial-Associated Calcium Signaling during Salt Stress in <i>Arabidopsis</i> A. Plant Cell, 2013, 25, 4544-4559.	3.1	66
421	Auxin biosynthesis and storage forms. Journal of Experimental Botany, 2013, 64, 2541-2555.	2.4	431
422	Overexpression of Arabidopsis YUCCA6 in Potato Results in High-Auxin Developmental Phenotypes and Enhanced Resistance to Water Deficit. Molecular Plant, 2013, 6, 337-349.	3.9	174
423	Roles of YUCCAs in auxin biosynthesis and drought stress responses in plants. Plant Signaling and Behavior, 2013, 8, e24495.	1.2	33
424	KAI2- and MAX2-Mediated Responses to Karrikins and Strigolactones Are Largely Independent of HY5 in Arabidopsis Seedlings. Molecular Plant, 2013, 6, 63-75.	3.9	99
425	High temperature injury and auxin biosynthesis in microsporogenesis. Frontiers in Plant Science, 2013, 4, 47.	1.7	37
426	Differential growth at the apical hook: all roads lead to auxin. Frontiers in Plant Science, 2013, 4, 441.	1.7	98
427	The Arabidopsis IDD14, IDD15, and IDD16 Cooperatively Regulate Lateral Organ Morphogenesis and Gravitropism by Promoting Auxin Biosynthesis and Transport. PLoS Genetics, 2013, 9, e1003759.	1.5	131
428	Disturbed Local Auxin Homeostasis Enhances Cellular Anisotropy and Reveals Alternative Wiring of Auxin-ethylene Crosstalk in Brachypodium distachyon Seminal Roots. PLoS Genetics, 2013, 9, e1003564.	1.5	59
429	YUCCA8andYUCCA9overexpression reveals a link between auxin signaling and lignification through the induction of ethylene biosynthesis. Plant Signaling and Behavior, 2013, 8, e26363.	1.2	33
430	Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Frontiers in Plant Science, 2013, 4, 397.	1.7	389
431	Regulation of Auxin Homeostasis and Gradients in <i>Arabidopsis</i> Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid. Plant Cell, 2013, 25, 3858-3870.	3.1	131
432	Coordination between Apoplastic and Symplastic Detoxification Confers Plant Aluminum Resistance. Plant Physiology, 2013, 162, 1947-1955.	2.3	95
433	Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated <i>ABI3</i> activation in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15485-15490.	3.3	442

#	Article	IF	CITATIONS
434	Lateral Root Development., 2013,, 112-125.		1
435	Epigenetic Suppression of T-DNA Insertion Mutants in Arabidopsis. Molecular Plant, 2013, 6, 539-545.	3.9	31
436	Comparison of indole derivatives as potential intermediates of auxin biosynthesis in Arabidopsis. Plant Biotechnology, 2013, 30, 185-190.	0.5	13
437	Genome and Transcriptome Analyses Provide Insight into the Euryhaline Adaptation Mechanism of Crassostrea gigas. PLoS ONE, 2013, 8, e58563.	1.1	145
438	The Leaf Adaxial-Abaxial Boundary and Lamina Growth. Plants, 2013, 2, 174-202.	1.6	52
439	The Dormancy Marker < i > DRM1/ARP < /i > Associated with Dormancy but a Broader Role < i > In Planta < /i > . Developmental Biology Journal, 2013, 2013, 1-12.	0.3	34
440	Auxin biology in roots. Plant Root, 2013, 7, 49-64.	0.3	18
441	LEAFY and Polar Auxin Transport Coordinately Regulate Arabidopsis Flower Development. Plants, 2014, 3, 251-265.	1.6	27
442	Characterization of a Tryptophan 2-Monooxygenase Gene from <i>Puccinia graminis</i> f. sp. <i>tritici</i> Involved in Auxin Biosynthesis and Rust Pathogenicity. Molecular Plant-Microbe Interactions, 2014, 27, 227-235.	1.4	61
443	Leaf development: a cellular perspective. Frontiers in Plant Science, 2014, 5, 362.	1.7	210
444	ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis. PLoS Genetics, 2014, 10, e1003954.	1.5	47
445	Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. Frontiers in Plant Science, 2014, 5, 412.	1.7	143
446	Hormonal networks involved in apical hook development in darkness and their response to light. Frontiers in Plant Science, 2014, 5, 52.	1.7	93
447	The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium. Frontiers in Plant Science, 2014, 5, 210.	1.7	38
448	Auxin Biosynthesis. The Arabidopsis Book, 2014, 12, e0173.	0.5	197
449	Auxin Input Pathway Disruptions Are Mitigated by Changes in Auxin Biosynthetic Gene Expression in Arabidopsis Â. Plant Physiology, 2014, 165, 1092-1104.	2.3	47
450	ArabidopsisÂERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nature Communications, 2014, 5, 5833.	5.8	237
451	Auxin Biosynthesis by the <i>YUCCA6</i> Flavin Monooxygenase Gene in Woodland Strawberry. Journal of Integrative Plant Biology, 2014, 56, 350-363.	4.1	54

#	Article	IF	CITATIONS
452	Subcellular localization of endogenous IAA during poplar leaf rhizogenesis revealed by in situ immunocytochemistry. Plant Biotechnology Reports, 2014, 8, 377-386.	0.9	2
453	<scp>PIF</scp> s get <scp>BR</scp> right: <scp>PHYTOCHROME INTERACTING FACTOR</scp> s as integrators of light and hormonal signals. New Phytologist, 2014, 202, 1126-1141.	3.5	132
454	Isolation and characterization of three TaYUC10genes from wheat. Gene, 2014, 546, 187-194.	1.0	19
455	Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation. Journal of Experimental Botany, 2014, 65, 1605-1618.	2.4	38
456	Consequences of a Deficit in Vitamin B6 Biosynthesis de Novo for Hormone Homeostasis and Root Development in Arabidopsis Â. Plant Physiology, 2014, 167, 102-117.	2.3	34
457	Inducible knock-down of GNOM during root formation reveals tissue-specific response to auxin transport and its modulation of local auxin biosynthesis. Journal of Experimental Botany, 2014, 65, 1165-1179.	2.4	10
458	Auxinâ€mediated plant architectural changes in response to shade and high temperature. Physiologia Plantarum, 2014, 151, 13-24.	2.6	77
459	Genetic aspects of auxin biosynthesis and its regulation. Physiologia Plantarum, 2014, 151, 3-12.	2.6	88
460	The Arabidopsis chloroplast protein S-RBP11 is involved in oxidative and salt stress responses. Plant Cell Reports, 2014, 33, 837-847.	2.8	7
461	Phylogenetic Analysis of Putative Genes Involved in the Tryptophan-Dependent Pathway of Auxin Biosynthesis in Rice. Applied Biochemistry and Biotechnology, 2014, 172, 2480-2495.	1.4	17
462	Auxin Overproduction in Shoots Cannot Rescue Auxin Deficiencies in Arabidopsis Roots. Plant and Cell Physiology, 2014, 55, 1072-1079.	1.5	202
463	The Hormonal Control of Regeneration in Plants. Current Topics in Developmental Biology, 2014, 108, 35-69.	1.0	70
464	The rooting of poplar cuttings: a review. New Forests, 2014, 45, 21-34.	0.7	31
465	Auxin and Its Role in Plant Senescence. Journal of Plant Growth Regulation, 2014, 33, 21-33.	2.8	48
466	Low-Oxygen Stress in Plants. Plant Cell Monographs, 2014, , .	0.4	13
467	Auxin-Callose-Mediated Plasmodesmal Gating Is Essential for Tropic Auxin Gradient Formation and Signaling. Developmental Cell, 2014, 28, 132-146.	3.1	155
468	Perturbation of Auxin Homeostasis Caused by Mitochondrial FtSH4 Gene-Mediated Peroxidase Accumulation Regulates Arabidopsis Architecture. Molecular Plant, 2014, 7, 856-873.	3.9	65
469	The shifting paradigms of auxin biosynthesis. Trends in Plant Science, 2014, 19, 44-51.	4.3	148

#	Article	IF	Citations
470	Yucasin is a potent inhibitor of <scp>YUCCA</scp> , a key enzyme in auxin biosynthesis. Plant Journal, 2014, 77, 352-366.	2.8	167
471	The molecular path to in vitro shoot regeneration. Biotechnology Advances, 2014, 32, 107-121.	6.0	100
472	Interâ€regulation of the unfolded protein response and auxin signaling. Plant Journal, 2014, 77, 97-107.	2.8	40
473	The rice <scp><i>FISH BONE</i></scp> gene encodes a tryptophan aminotransferase, which affects pleiotropic auxinâ€related processes. Plant Journal, 2014, 78, 927-936.	2.8	100
474	The regulatory network of clusterâ€root function and development in phosphateâ€deficient white lupin (<i>Lupinus albus</i>) identified by transcriptome sequencing. Physiologia Plantarum, 2014, 151, 323-338.	2.6	76
475	SCI1 is a component of the auxin-dependent control of cell proliferation in Arabidopsis upper pistil. Plant Science, 2014, 229, 122-130.	1.7	7
476	TAA1-Regulated Local Auxin Biosynthesis in the Root-Apex Transition Zone Mediates the Aluminum-Induced Inhibition of Root Growth in <i>Arabidopsis</i>	3.1	173
477	Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiology and Biochemistry, 2014, 82, 209-217.	2.8	231
478	The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling. Carbohydrate Polymers, 2014, 113, 446-454.	5.1	71
480	Hormone level analysis on adventitious root formation in Eucalyptus globulus. New Forests, 2014, 45, 577-587.	0.7	46
481	Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene <i>STOMAGEN</i> in mesophyll. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3015-23.	3.3	108
482	Auxin and Its Role in Plant Development. , 2014, , .		37
483	The Role of Auxin for Reproductive Organ Patterning and Development. , 2014, , 213-243.		3
485	Identification and Profiling of Auxin and Auxin Metabolites. , 2014, , 39-60.		6
486	Auxin Biosynthesis and Catabolism. , 2014, , 21-38.		12
487	Auxin is a central player in the hormone crossâ€ŧalks that control adventitious rooting. Physiologia Plantarum, 2014, 151, 83-96.	2.6	246
488	Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. ELife, 2014, 3, .	2.8	205
489	Arabidopsis <i>gulliver1/superroot2â€₹</i> identifies a metabolic basis for auxin and brassinosteroid synergy. Plant Journal, 2014, 80, 797-808.	2.8	35

#	Article	IF	CITATIONS
490	Gene expression profiling during adventitious root formation in carnation stem cuttings. BMC Genomics, 2015, 16, 789.	1,2	67
491	Forward genetic screen for auxin-deficient mutants by cytokinin. Scientific Reports, 2015, 5, 11923.	1.6	13
492	Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels. New Phytologist, 2015, 208, 198-209.	3.5	100
493	Os <scp>ARID</scp> 3, an <scp>AT</scp> â€rich Interaction Domainâ€containing protein, is required for shoot meristem development in rice. Plant Journal, 2015, 83, 806-817.	2.8	15
494	micro <scp>RNA</scp> 160 dictates stageâ€specific auxin and cytokinin sensitivities and directs soybean nodule development. Plant Journal, 2015, 84, 140-153.	2.8	113
495	TCP15 modulates cytokinin and auxin responses during gynoecium development in Arabidopsis. Plant Journal, 2015, 84, 267-282.	2.8	116
496	Application of data analysis in cold stress: a case study of Nicotiana benthamiana. Turkish Journal of Botany, 2015, 39, 1021-1032.	0.5	7
497	The Plant Growth-Promoting Bacteria i>Azospirillum amazonense /i>: Genomic Versatility and Phytohormone Pathway. BioMed Research International, 2015, 2015, 1-7.	0.9	16
498	Strategies of seedlings to overcome their sessile nature: auxin in mobility control. Frontiers in Plant Science, 2015, 6, 218.	1.7	35
499	Integration of Ethylene and Auxin Signaling and the Developmental Consequences of Their Crosstalk. , 2015, , 175-204.		4
500	Plant development regulation: Overview and perspectives. Journal of Plant Physiology, 2015, 182, 62-78.	1.6	34
501	Correlation between a loss of auxin signaling and a loss of proliferation in maize antipodal cells. Frontiers in Plant Science, 2015, 6, 187.	1.7	31
502	The importance of localized auxin production for morphogenesis of reproductive organs and embryos in $\langle i \rangle$ Arabidopsis $\langle i \rangle$. Journal of Experimental Botany, 2015, 66, 5029-5042.	2.4	75
503	A strigolactone signal is required for adventitious root formation in rice. Annals of Botany, 2015, 115, 1155-1162.	1.4	65
504	Genome-Wide Analysis and Expression Patterns of the YUCCA Genes in Maize. Journal of Genetics and Genomics, 2015, 42, 707-710.	1.7	22
505	<i>ADP1</i> affects abundance and endocytosis of PIN-FORMED proteins in <i>Arabidopsis</i> Plant Signaling and Behavior, 2015, 10, e973811.	1.2	4
506	GA3 enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis. Plant Cell Reports, 2015, 34, 483-494.	2.8	33
507	Hormonal interactions during cluster-root development in phosphate-deficient white lupin (Lupinus) Tj ETQq1 1	0.784314 r	rgBT /Overlo

#	Article	IF	CITATIONS
508	Auxin binding protein 1 (ABP1) is not required for either auxin signaling or <i>Arabidopsis</i> development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2275-2280.	3.3	314
509	<i><scp>LOOSE FLOWER</scp></i> , a <i><scp>WUSCHEL</scp></i> â€like Homeobox gene, is required for lateral fusion of floral organs in <i>Medicago truncatula</i> . Plant Journal, 2015, 81, 480-492.	2.8	34
510	Arabidopsis Qc-SNARE gene AtSFT12 is involved in salt and osmotic stress responses and Na+accumulation in vacuoles. Plant Cell Reports, 2015, 34, 1127-1138.	2.8	26
511	Transcriptome analysis reveals the role of BpGH3.5 in root elongation of Betula platyphyllaÂ×ÂB. pendula. Plant Cell, Tissue and Organ Culture, 2015, 121, 605-617.	1.2	5
512	The Arabidopsis E3 ubiquitin ligase HOS1 contributes to auxin biosynthesis in the control of hypocotyl elongation. Plant Growth Regulation, 2015, 76, 157-165.	1.8	8
513	SAUR Proteins as Effectors of Hormonal and Environmental Signals in Plant Growth. Molecular Plant, 2015, 8, 1153-1164.	3.9	386
514	Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2015, 137, 9363-9374.	6.6	70
515	Strigolactone Inhibition of Branching Independent of Polar Auxin Transport. Plant Physiology, 2015, 168, 1820-1829.	2.3	95
516	Deep Sequencing of the <i>Medicago truncatula</i> Root Transcriptome Reveals a Massive and Early Interaction between Nodulation Factor and Ethylene Signals. Plant Physiology, 2015, 169, 233-265.	2.3	164
517	Genome-wide identification of the auxin response factor (ARF) gene family and expression analysis of its role associated with pistil development in Japanese apricot (Prunus mume Sieb. et Zucc). Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	22
518	A subgroup of <i>MATE </i> transporter genes regulates hypocotyl cell elongation in <i>Arabidopsis </i> Journal of Experimental Botany, 2015, 66, 6327-6343.	2.4	45
519	A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort Marchantia polymorpha. PLoS Genetics, 2015, 11, e1005207.	1.5	200
521	Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4821-4826.	3.3	169
522	Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis. Plant Cell Reports, 2015, 34, 1343-1352.	2.8	61
523	Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress. Plant Physiology and Biochemistry, 2015, 94, 19-27.	2.8	110
524	The role of auxin signaling in early embryo pattern formation. Current Opinion in Plant Biology, 2015, 28, 99-105.	3.5	71
525	Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants. Plant and Cell Physiology, 2015, 56, 1641-1654.	1.5	142
526	A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. Nature Communications, 2015, 6, 8041.	5.8	82

#	ARTICLE	IF	CITATIONS
527	OsCBL1 Modulates Lateral Root Elongation in Rice via Affecting Endogenous Indole-3-Acetic Acid Biosynthesis. Journal of Genetics and Genomics, 2015, 42, 331-334.	1.7	7
528	Rapid Phytotransformation of Benzotriazole Generates Synthetic Tryptophan and Auxin Analogs in <i>Arabidopsis</i> . Environmental Science & Environment	4.6	86
529	ROP GTPaseâ€mediated auxin signaling regulates pavement cell interdigitation in <i>Arabidopsis thaliana</i> . Journal of Integrative Plant Biology, 2015, 57, 31-39.	4.1	35
530	Understanding the shoot apical meristem regulation: A study of the phytohormones, auxin and cytokinin, in rice. Mechanisms of Development, 2015, 135, 1-15.	1.7	64
531	Ethylene in Plants., 2015,,.		28
532	Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environmental Science and Pollution Research, 2015, 22, 4907-4921.	2.7	459
533	Auxin Signaling System in Plant Innate Immunity. Signaling and Communication in Plants, 2015, , 311-357.	0.5	4
534	Plant Hormone Signaling Systems in Plant Innate Immunity. Signaling and Communication in Plants, 2015, , .	0.5	36
535	Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis. PLoS Genetics, 2016, 12, e1006360.	1.5	98
536	Carbon Monoxide Interacts with Auxin and Nitric Oxide to Cope with Iron Deficiency in Arabidopsis. Frontiers in Plant Science, 2016, 7, 112.	1.7	23
537	Gene Mapping of a Mutant Mungbean (Vigna radiata L.) Using New Molecular Markers Suggests a Gene Encoding a YUC4-like Protein Regulates the Chasmogamous Flower Trait. Frontiers in Plant Science, 2016, 7, 830.	1.7	21
538	Melatonin Regulates Root Meristem by Repressing Auxin Synthesis and Polar Auxin Transport in Arabidopsis. Frontiers in Plant Science, 2016, 07, 1882.	1.7	121
539	Apoplastic H ₂ O ₂ plays a critical role in axillary bud outgrowth by altering auxin and cytokinin homeostasis in tomato plants. New Phytologist, 2016, 211, 1266-1278.	3.5	49
540	<i>YUCCA</i> -mediated auxin biogenesis is required for cell fate transition occurring during <i>de novo</i> root organogenesis in Arabidopsis. Journal of Experimental Botany, 2016, 67, 4273-4284.	2.4	156
541	Phyllotaxis: from patterns of organogenesis at the meristem to shoot architecture. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 460-473.	5.9	25
542	Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Scientific Reports, 2016, 6, 38493.	1.6	50
543	The histone deubiquitinase OTLD1 targets euchromatin to regulate plant growth. Science Signaling, 2016, 9, ra125.	1.6	17
544	The PLETHORA Gene Regulatory Network Guides Growth and Cell Differentiation in Arabidopsis Roots. Plant Cell, 2016, 28, 2937-2951.	3.1	127

#	Article	IF	CITATIONS
545	Localization and interactions between Arabidopsis auxin biosynthetic enzymes in the TAA/YUC-dependent pathway. Journal of Experimental Botany, 2016, 67, 4195-4207.	2.4	48
546	Auxin response under osmotic stress. Plant Molecular Biology, 2016, 91, 661-672.	2.0	88
547	Role of Plant Growth Regulators in Abiotic Stress Tolerance. , 2016, , 19-46.		32
548	Expression analysis of key auxin synthesis, transport, and metabolism genes in different young dwarfing apple trees. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	31
549	Transcriptomic Signature of the <i>SHATTERPROOF2</i> Expression Domain Reveals the Meristematic Nature of Arabidopsis Gynoecial Medial Domain. Plant Physiology, 2016, 171, 42-61.	2.3	32
550	Analysis the role of arabidopsis CKRC6/ASA1 in auxin and cytokinin biosynthesis. Journal of Plant Biology, 2016, 59, 162-171.	0.9	8
551	The J-protein AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling. Journal of Experimental Botany, 2016, 67, 3481-3496.	2.4	13
552	Overexpression of the bacterial tryptophan oxidase RebO affects auxin biosynthesis and Arabidopsis development. Science Bulletin, 2016, 61, 859-867.	4.3	23
553	Activation of <i>YUCCA5</i> by the Transcription Factor TCP4 Integrates Developmental and Environmental Signals to Promote Hypocotyl Elongation in Arabidopsis. Plant Cell, 2016, 28, 2117-2130.	3.1	90
554	The C3H-type zinc finger protein GDS1/C3H42 is a nuclear-speckle-localized protein that is essential for normal growth and development in Arabidopsis. Plant Science, 2016, 250, 141-153.	1.7	18
555	SUPPRESSOR OF PHYTOCHROME B4-#3 Represses Genes Associated with Auxin Signaling to Modulate Hypocotyl Growth. Plant Physiology, 2016, 171, 2701-2716.	2.3	30
556	Local Auxin Biosynthesis Mediated by a YUCCA Flavin Monooxygenase Regulates Haustorium Development in the Parasitic Plant <i>Phtheirospermum japonicum </i>). Plant Cell, 2016, 28, 1795-1814.	3.1	102
557	Hormones in tomato leaf development. Developmental Biology, 2016, 419, 132-142.	0.9	65
558	Identification and functional characterization of two HOOKLESS genes in Tomato (Solanum) Tj ETQq $1\ 1\ 0.7843$	14 _{fg} BT /C	Overlock 10 Tf
559	A Model of Differential Growth-Guided Apical Hook Formation in Plants. Plant Cell, 2016, 28, 2464-2477.	3.1	53
560	Functional roles of Arabidopsis CKRC2/YUCCA8 gene and the involvement of PIF4 in the regulation of auxin biosynthesis by cytokinin. Scientific Reports, 2016, 6, 36866.	1.6	44
561	Different cucumber CsYUC genes regulate response to abiotic stresses and flower development. Scientific Reports, 2016, 6, 20760.	1.6	46
562	An Evolutionary Framework for Carpel Developmental Control Genes. Molecular Biology and Evolution, 2016, 34, msw229.	3.5	18

#	Article	IF	CITATIONS
563	Accumulation of Indoleâ€3â€Acetic Acid in Rice <i>sl</i> Mutant Leaves Infected with <i>Bipolaris oryzae</i> . Journal of Phytopathology, 2016, 164, 509-519.	0.5	4
564	Transcriptomic analysis of developing embryos of apricot (Prunus armeniaca L.). Horticulture Environment and Biotechnology, 2016, 57, 197-206.	0.7	1
565	Transcription Factors in the Regulation of Somatic Embryogenesis. , 2016, , 53-79.		29
566	Drought and salinity alter endogenous hormonal profiles at the seed germination phase. Seed Science Research, 2016, 26, 1-13.	0.8	44
567	YUCCA type auxin biosynthesis genes encoding flavin monooxygenases in melon: Genome-wide identification and developmental expression analysis. South African Journal of Botany, 2016, 102, 142-152.	1.2	10
568	The Nitrification Inhibitor Methyl 3-(4-Hydroxyphenyl)Propionate Modulates Root Development by Interfering with Auxin Signaling via the NO/ROS Pathway. Plant Physiology, 2016, 171, 1686-1703.	2.3	61
569	The Auxin-Deficient Defective Kernel 18 (dek 18) Mutation Alters the Expression of Seed-Specific Biosynthetic Genes in Maize. Journal of Plant Growth Regulation, 2016, 35, 770-777.	2.8	18
570	Mutations in exocyst complex subunit SEC6 gene impaired polar auxin transport and PIN protein recycling in Arabidopsis primary root. Plant Science, 2016, 250, 97-104.	1.7	16
571	Ca ²⁺ â€regulated and diurnal rhythmâ€regulated Na ⁺ /Ca ²⁺ exchanger AtNCL affects flowering time and auxin signalling in <i>Arabidopsis</i> . Plant, Cell and Environment, 2016, 39, 377-392.	2.8	35
572	Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology, 2016, 29, 104-114.	3.5	87
573	Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation. Genes and Development, 2016, 30, 471-483.	2.7	82
574	Auxin and Cellular Elongation. Plant Physiology, 2016, 170, 1206-1215.	2.3	87
575	Mechanisms and regulation of senescence and maturity performance in cotton. Field Crops Research, 2016, 189, 1-9.	2.3	43
576	Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. Journal of Plant Physiology, 2016, 193, 57-63.	1.6	81
577	Strigolactones spatially influence lateral root development through the cytokinin signaling network. Journal of Experimental Botany, 2016, 67, 379-389.	2.4	58
578	Current aspects of auxin biosynthesis in plants. Bioscience, Biotechnology and Biochemistry, 2016, 80, 34-42.	0.6	180
579	Clathrin-Mediated Auxin Efflux and Maxima Regulate Hypocotyl Hook Formation and Light-Stimulated Hook Opening in Arabidopsis. Molecular Plant, 2016, 9, 101-112.	3.9	28
580	The biosynthesis of auxin: how many paths truly lead to IAA?. Plant Growth Regulation, 2016, 78, 275-285.	1.8	89

#	Article	IF	CITATIONS
581	Calcium alleviates cadmium-induced inhibition on root growth by maintaining auxin homeostasis in Arabidopsis seedlings. Protoplasma, 2016, 253, 185-200.	1.0	73
582	Molecular mechanisms and ecological function of farâ€red light signalling. Plant, Cell and Environment, 2017, 40, 2509-2529.	2.8	64
583	Narrow albino leaf 1 is allelic to CHR729, regulates leaf morphogenesis and development by affecting auxin metabolism in rice. Plant Growth Regulation, 2017, 82, 175-186.	1.8	8
584	Graphene oxide-SiO 2 nanocomposite as the adsorbent for extraction and preconcentration of plant hormones for HPLC analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1046, 58-64.	1.2	59
585	Differential TOR activation and cell proliferation in <i>Arabidopsis</i> root and shoot apexes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2765-2770.	3.3	233
586	<pre><scp>GTP</scp> ase <scp>ROP</scp> 2 binds and promotes activation of target of rapamycin, <scp>TOR</scp> , in response to auxin. EMBO Journal, 2017, 36, 886-903.</pre>	3.5	157
587	Regulation of seedling growth by ethylene and the ethylene–auxin crosstalk. Planta, 2017, 245, 467-489.	1.6	70
588	Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nature Genetics, 2017, 49, 765-772.	9.4	316
589	Auxin signaling through SCFTIR1/AFBs mediates feedback regulation of IAA biosynthesis. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1320-1326.	0.6	36
590	Sequencing and functional validation of the <scp>JGl </scp> <i>Brachypodium distachyon</i> Tâ€ <scp>DNA</scp> collection. Plant Journal, 2017, 91, 361-370.	2.8	46
591	The Role of MiRNAs in Auxin Signaling and Regulation During Plant Development. RNA Technologies, 2017, , 23-48.	0.2	4
592	Transcription factors NF-YA2 and NF-YA10 regulate leaf growth via auxin signaling in Arabidopsis. Scientific Reports, 2017, 7, 1395.	1.6	43
593	Toxicity of silver nanoparticles to <i>Arabidopsis</i> : Inhibition of root gravitropism by interfering with auxin pathway. Environmental Toxicology and Chemistry, 2017, 36, 2773-2780.	2.2	38
594	Type-B ARABIDOPSIS RESPONSE REGULATORs Specify the Shoot Stem Cell Niche by Dual Regulation of <i>WUSCHEL</i> . Plant Cell, 2017, 29, 1357-1372.	3.1	201
595	Auxin steers root cell expansion via apoplastic pH regulation in <i>Arabidopsis thaliana</i> Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4884-E4893.	3.3	250
597	Symplastic communication spatially directs local auxin biosynthesis to maintain root stem cell niche in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4005-4010.	3.3	55
598	Jasmonic Acid Enhances Al-Induced Root Growth Inhibition. Plant Physiology, 2017, 173, 1420-1433.	2.3	79
599	Brassinosteroid signaling converges with SUPPRESSOR OF PHYTOCHROME B4â€#3 to influence the expression of <i>SMALL AUXIN UP RNA</i> genes and hypocotyl growth. Plant Journal, 2017, 89, 1133-1145.	2.8	40

#	Article	IF	CITATIONS
600	Hairy Leaf 6, an AP2/ERF Transcription Factor, Interacts with OsWOX3B and Regulates Trichome Formation in Rice. Molecular Plant, 2017, 10, 1417-1433.	3.9	71
601	Probing the structural basis of oxygen binding in a cofactor-independent dioxygenase. Acta Crystallographica Section D: Structural Biology, 2017, 73, 573-580.	1.1	3
602	Axillary meristem initiation and bud growth in rice. Journal of Plant Biology, 2017, 60, 440-451.	0.9	19
603	YUCCA9-Mediated Auxin Biosynthesis and Polar Auxin Transport Synergistically Regulate Regeneration of Root Systems Following Root Cutting. Plant and Cell Physiology, 2017, 58, 1710-1723.	1.5	39
604	Linking Auxin with Photosynthetic Rate via Leaf Venation. Plant Physiology, 2017, 175, 351-360.	2.3	52
605	Discovery of pollen tube-dependent ovule enlargement morphology phenomenon, a new step in plant reproduction. Communicative and Integrative Biology, 2017, 10, e1338989.	0.6	5
606	The Auxin Biosynthetic <i>TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A</i> Increases Grain Yield of Wheat. Plant Physiology, 2017, 174, 2274-2288.	2.3	81
607	Emerging Roles and New Paradigms in Signaling Mechanisms of Plant Cryptochromes. Critical Reviews in Plant Sciences, 2017, 36, 89-115.	2.7	48
608	â€~Bending' models of halotropism: incorporating protein phosphatase 2A, ABCB transporters, and auxin metabolism. Journal of Experimental Botany, 2017, 68, 3071-3089.	2.4	25
609	Arabidopsis RSS1 Mediates Cross-Talk Between Glucose and Light Signaling During Hypocotyl Elongation Growth. Scientific Reports, 2017, 7, 16101.	1.6	16
610	Auxin homeostasis: the DAO of catabolism. Journal of Experimental Botany, 2017, 68, 3145-3154.	2.4	78
611	Differential proteome analysis during early somatic embryogenesis in Musa spp. AAA cv. Grand Naine. Plant Cell Reports, 2017, 36, 163-178.	2.8	52
612	Genome-wide identification and expression analysis of the YUCCA gene family in soybean (Glycine max) Tj ETQq0) 0 _{.0} rgBT	/Overlock 10
613	<scp>FUSCA</scp> 3 interacting with <scp>LEAFY COTYLEDON</scp> 2 controls lateral root formation through regulating <i><scp>YUCCA</scp>4</i> gene expression in <i>Arabidopsis thaliana</i> Phytologist, 2017, 213, 1740-1754.	3.5	63
614	Cadmium stress inhibits the growth of primary roots by interfering auxin homeostasis in Sorghum bicolor seedlings. Journal of Plant Biology, 2017, 60, 593-603.	0.9	24
615	The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots. Journal of Experimental Botany, 2017, 68, 4627-4634.	2.4	42
616	Narrow Leaf Mutants in the Grass Family. , O, , .		1
617	Comparative Transcriptome Analysis between Gynoecious and Monoecious Plants Identifies Regulatory Networks Controlling Sex Determination in Jatropha curcas. Frontiers in Plant Science, 2016, 7, 1953.	1.7	35

#	Article	IF	CITATIONS
618	Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development through Modulation of Auxin Biosynthesis in Seedlings. Frontiers in Plant Science, 2017, 8, 36.	1.7	64
619	Transcriptomic Analysis in Strawberry Fruits Reveals Active Auxin Biosynthesis and Signaling in the Ripe Receptacle. Frontiers in Plant Science, 2017, 8, 889.	1.7	55
620	Alteration in Auxin Homeostasis and Signaling by Overexpression Of PINOID Kinase Causes Leaf Growth Defects in Arabidopsis thaliana. Frontiers in Plant Science, 2017, 8, 1009.	1.7	27
621	Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation. Frontiers in Plant Science, 2017, 8, 1121.	1.7	75
622	Perturbation of Auxin Homeostasis and Signaling by PINOID Overexpression Induces Stress Responses in Arabidopsis. Frontiers in Plant Science, 2017, 8, 1308.	1.7	14
623	Lanthanum Inhibits Primary Root Growth by Repressing Auxin Carrier Abundances in Arabidopsis. Frontiers in Plant Science, 2017, 8, 1661.	1.7	14
624	ERECTA Regulates Cell Elongation by Activating Auxin Biosynthesis in Arabidopsis thaliana. Frontiers in Plant Science, 2017, 8, 1688.	1.7	45
625	Transcriptomic and Hormonal Analyses Reveal that YUC-Mediated Auxin Biogenesis Is Involved in Shoot Regeneration from Rhizome in Cymbidium. Frontiers in Plant Science, 2017, 8, 1866.	1.7	18
626	A Growing Stem Inhibits Bud Outgrowth – The Overlooked Theory of Apical Dominance. Frontiers in Plant Science, 2017, 8, 1874.	1.7	100
627	Possible Interactions between the Biosynthetic Pathways of Indole Glucosinolate and Auxin. Frontiers in Plant Science, 2017, 8, 2131.	1.7	81
628	Bioinformatics Analysis of Phylogeny and Transcription of TAA/YUC Auxin Biosynthetic Genes. International Journal of Molecular Sciences, 2017, 18, 1791.	1.8	36
629	Nodule-Enriched GRETCHEN HAGEN 3 Enzymes Have Distinct Substrate Specificities and Are Important for Proper Soybean Nodule Development. International Journal of Molecular Sciences, 2017, 18, 2547.	1.8	9
630	Control of Endogenous Auxin Levels in Plant Root Development. International Journal of Molecular Sciences, 2017, 18, 2587.	1.8	127
631	The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development. PLoS Genetics, 2017, 13, e1006955.	1.5	62
632	Arabidopsis 14-3-3 epsilon members contribute to polarity of PIN auxin carrier and auxin transport-related development. ELife, 2017, 6, .	2.8	40
633	Essential Roles of Local Auxin Biosynthesis in Plant Development and in Adaptation to Environmental Changes. Annual Review of Plant Biology, 2018, 69, 417-435.	8.6	218
634	Multifunctional activities of ERF109 as affected by salt stress in Arabidopsis. Scientific Reports, 2018, 8, 6403.	1.6	24
635	Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research, 2018, 209, 21-32.	2.5	399

#	Article	IF	Citations
636	Auxin polar transport flanking incipient primordium initiates leaf adaxialâ€abaxial polarity patterning. Journal of Integrative Plant Biology, 2018, 60, 455-464.	4.1	22
637	Genome sequence and comparative analysis of Jiangella alba YIM 61503T isolated from a medicinal plant Maytenus austroyunnanensis. Antonie Van Leeuwenhoek, 2018, 111, 667-678.	0.7	1
638	TCP Transcription Factors Regulate Shade Avoidance via Directly Mediating the Expression of Both <i>PHYTOCHROME INTERACTING FACTOR</i> s and Auxin Biosynthetic Genes. Plant Physiology, 2018, 176, 1850-1861.	2.3	65
639	Transcriptomes of Fruit Cavity Revealed by De Novo Sequence Analysis in Nai Plum (Prunus salicina). Journal of Plant Growth Regulation, 2018, 37, 730-744.	2.8	3
640	Multiple links between shade avoidance and auxin networks. Journal of Experimental Botany, 2018, 69, 213-228.	2.4	55
641	Root Hair Growth and Development in Response to Nutrients and Phytohormones. Soil Biology, 2018, , 65-84.	0.6	9
642	Auxin modulates root-hair growth through its signaling pathway in citrus. Scientia Horticulturae, 2018, 236, 73-78.	1.7	18
643	SILAX1 is Required for Normal Leaf Development Mediated by Balanced Adaxial and Abaxial Pavement Cell Growth in Tomato. Plant and Cell Physiology, 2018, 59, 1170-1186.	1.5	18
644	Effects of Salinity on Plant Hormones Genes in Grape. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 401-410.	0.7	1
645	Recent advances in auxin research in rice and their implications for crop improvement. Journal of Experimental Botany, 2018, 69, 255-263.	2.4	65
646	ER Microsome Preparation in Arabidopsis thaliana. Methods in Molecular Biology, 2018, 1691, 117-123.	0.4	3
647	miR393 inhibits in vitro shoot regeneration in Arabidopsis thaliana via repressing TIR1. Plant Science, 2018, 266, 1-8.	1.7	13
648	The Plant Endoplasmic Reticulum. Methods in Molecular Biology, 2018, , .	0.4	5
654	Auxin Controlled by Ethylene Steers Root Development. International Journal of Molecular Sciences, 2018, 19, 3656.	1.8	74
655	Multiple Pathways in the Control of the Shade Avoidance Response. Plants, 2018, 7, 102.	1.6	34
656	Cold Tolerance in Plants. , 2018, , .		5
657	Hormonal Regulation of Cold Stress Response. , 2018, , 65-88.		6
658	Root Gravitropism Is Regulated by a Crosstalk between <i>para</i> -Aminobenzoic Acid, Ethylene, and Auxin. Plant Physiology, 2018, 178, 1370-1389.	2.3	33

#	ARTICLE	IF	CITATIONS
659	Local Auxin Biosynthesis Is a Key Regulator of Plant Development. Developmental Cell, 2018, 47, 306-318.e5.	3.1	243
660	Effect of heat root stress and high salinity on glucosinolates metabolism in wild rocket. Journal of Plant Physiology, 2018, 231, 261-270.	1.6	31
661	Auxins and Cytokininsâ€"The Role of Subcellular Organization on Homeostasis. International Journal of Molecular Sciences, 2018, 19, 3115.	1.8	49
662	Advanced Proteomic Approaches to Elucidate Somatic Embryogenesis. Frontiers in Plant Science, 2018, 9, 1658.	1.7	31
663	WUS and PIN1-related genes undergo dynamic expressional change during organ regeneration in response to wounding in Zoysia japonica. Molecular Biology Reports, 2018, 45, 1733-1744.	1.0	2
664	<i>Arabidopsis</i> downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICALâ€NDUCED CELL DEATH1. New Phytologist, 2018, 220, 232-248.	3.5	51
666	Effects of overproduced ethylene on the contents of other phytohormones and expression of their key biosynthetic genes. Plant Physiology and Biochemistry, 2018, 128, 170-177.	2.8	19
667	Auxin production in diploid microsporocytes is necessary and sufficient for early stages of pollen development. PLoS Genetics, 2018, 14, e1007397.	1.5	63
668	<i>OsMADS25</i> regulates root system development via auxin signalling in rice. Plant Journal, 2018, 95, 1004-1022.	2.8	47
669	Auxin and Gibberellins Are Required for the Receptor-Like Kinase ERECTA Regulated Hypocotyl Elongation in Shade Avoidance in Arabidopsis. Frontiers in Plant Science, 2018, 9, 124.	1.7	21
670	The YUCCA-Auxin-WOX11 Module Controls Crown Root Development in Rice. Frontiers in Plant Science, 2018, 9, 523.	1.7	95
671	UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis. Frontiers in Plant Science, 2018, 9, 618.	1.7	34
672	Genetic Analysis of Flooding Tolerance in an Andean Diversity Panel of Dry Bean (Phaseolus vulgaris) Tj ETQq0 0 C) rgBT /Ov 1.7	erlock 10 Tf 5
673	Insertion of a transposonâ€like sequence in the 5′â€flanking region of the <i><scp>YUCCA</scp></i> gene causes the stony hard phenotype. Plant Journal, 2018, 96, 815-827.	2.8	41
674	Insights into the decarboxylative hydroxylation of salicylate catalyzed by the Flavin-dependent monooxygenase salicylate hydroxylase. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	10
675	Evidence for the Involvement of Auxin, Ethylene and ROS Signaling During Primary Root Inhibition of Arabidopsis by the Allelochemical Benzoic Acid. Plant and Cell Physiology, 2018, 59, 1889-1904.	1.5	43
676	Interplay of the two ancient metabolites auxin and MEcPP regulates adaptive growth. Nature Communications, 2018, 9, 2262.	5.8	27
677	Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000. PLoS Pathogens, 2018, 14, e1006811.	2.1	135

#	Article	IF	Citations
678	Expression of AtLEC2 and AtIPTs promotes embryogenic callus formation and shoot regeneration in tobacco. BMC Plant Biology, 2019, 19, 314.	1.6	14
679	Beyond Light: Insights Into the Role of Constitutively Photomorphogenic1 in Plant Hormonal Signaling. Frontiers in Plant Science, 2019, 10, 557.	1.7	42
680	Indole 3-Butyric Acid Metabolism and Transport in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 851.	1.7	55
681	Effect of High-Temperature Stress on the Metabolism of Plant Growth Regulators. , 2019, , 485-591.		4
682	Orthogonal regulation of phytochrome B abundance by stress-specific plastidial retrograde signaling metabolite. Nature Communications, 2019, 10, 2904.	5.8	22
683	CRABS CLAW and SUPERMAN Coordinate Hormone-, Stress-, and Metabolic-Related Gene Expression During Arabidopsis Stamen Development. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	5
684	Transcriptome analysis of two inflorescence branching mutants reveals cytokinin is an important regulator in controlling inflorescence architecture in the woody plant Jatropha curcas. BMC Plant Biology, 2019, 19, 468.	1.6	11
685	Mechanisms underlying the enhanced biomass and abiotic stress tolerance phenotype of an Arabidopsis MIOX overâ€expresser. Plant Direct, 2019, 3, e00165.	0.8	18
686	Reinvigoration of diploid strawberry (Fragaria vesca) during adventitious shoot regeneration. Scientific Reports, 2019, 9, 13007.	1.6	3
687	Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21285-21290.	3.3	83
688	Ginseng-derived patatin-related phospholipase PgpPLAIIIÎ ² alters plant growth and lignification of xylem in hybrid poplars. Plant Science, 2019, 288, 110224.	1.7	10
689	Unleashing the Synthetic Power of Plant Oxygenases: From Mechanism to Application. Plant Physiology, 2019, 179, 813-829.	2.3	28
690	Phenotypic, Hormonal, and Genomic Variation Among Vitis vinifera Clones With Different Cluster Compactness and Reproductive Performance. Frontiers in Plant Science, 2018, 9, 1917.	1.7	18
691	Auxin Metabolism Controls Developmental Decisions in Land Plants. Trends in Plant Science, 2019, 24, 741-754.	4.3	102
692	Dark, Light, and Temperature: Key Players in Plant Morphogenesis. Plant Physiology, 2019, 180, 1793-1802.	2.3	23
693	Mutations in the Rice OsCHR4 Gene, Encoding a CHD3 Family Chromatin Remodeler, Induce Narrow and Rolled Leaves with Increased Cuticular Wax. International Journal of Molecular Sciences, 2019, 20, 2567.	1.8	35
694	Recent Advances in Hormonal Regulation and Cross-Talk during Non-Climacteric Fruit Development and Ripening. Horticulturae, 2019, 5, 45.	1.2	69
695	Auxin biosynthesis: spatial regulation and adaptation to stress. Journal of Experimental Botany, 2019, 70, 5041-5049.	2.4	66

#	ARTICLE	IF	Citations
696	Cell Death Triggered by the YUCCA-like Bs3 Protein Coincides with Accumulation of Salicylic Acid and Pipecolic Acid But Not of Indole-3-Acetic Acid. Plant Physiology, 2019, 180, 1647-1659.	2.3	8
697	Effects of Brassinosteroid Associated with Auxin and Gibberellin on Apple Tree Growth and Gene Expression Patterns. Horticultural Plant Journal, 2019, 5, 93-108.	2.3	23
698	TCP Transcription Factors Associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to Regulate Thermomorphogenesis in Arabidopsis thaliana. IScience, 2019, 15, 600-610.	1.9	81
699	Overexpression of Arabidopsis YUCCA6 enhances environment stress tolerance and inhibits storage root formation in sweetpotato. Plant Biotechnology Reports, 2019, 13, 345-352.	0.9	6
700	Transcriptome Analysis of a Multiple-Branches Mutant Terminal Buds in Betula platyphylla $\tilde{A}-B$. pendula. Forests, 2019, 10, 374.	0.9	3
701	Role of the INDETERMINATE DOMAIN Genes in Plants. International Journal of Molecular Sciences, 2019, 20, 2286.	1.8	24
702	A Mobile Auxin Signal Connects Temperature Sensing in Cotyledons with Growth Responses in Hypocotyls. Plant Physiology, 2019, 180, 757-766.	2.3	94
703	Auxin and Cell Wall Crosstalk as Revealed by the Arabidopsis thaliana Cellulose Synthase Mutant Radially Swollen 1. Plant and Cell Physiology, 2019, 60, 1487-1503.	1.5	13
704	Salicylic Acid Affects Root Meristem Patterning via Auxin Distribution in a Concentration-Dependent Manner. Plant Physiology, 2019, 180, 1725-1739.	2.3	114
705	Mitochondrial Pyruvate Dehydrogenase Contributes to Auxin-Regulated Organ Development. Plant Physiology, 2019, 180, 896-909.	2.3	41
706	Soft-X-irradiated pollens induce parthenocarpy in watermelon via rapid changes of hormone-signalings and hormonal regulation. Scientia Horticulturae, 2019, 250, 317-328.	1.7	10
707	Plant microbiome: A reservoir of novel genes and metabolites. Plant Gene, 2019, 18, 100177.	1.4	51
708	Regulatory Diversification of INDEHISCENT in the Capsella Genus Directs Variation in Fruit Morphology. Current Biology, 2019, 29, 1038-1046.e4.	1.8	12
709	Connections between abscission, dehiscence, pathogen defense, drought tolerance, and senescence. Plant Science, 2019, 284, 25-29.	1.7	35
710	Control of de novo root regeneration efficiency by developmental status of Arabidopsis leaf explants. Journal of Genetics and Genomics, 2019, 46, 133-140.	1.7	24
711	GmYUC2a mediates auxin biosynthesis during root development and nodulation in soybean. Journal of Experimental Botany, 2019, 70, 3165-3176.	2.4	49
712	TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature, 2019, 568, 240-243.	13.7	156
713	Plant Growth Promotion Driven by a Novel <i>Caulobacter</i> Strain. Molecular Plant-Microbe Interactions, 2019, 32, 1162-1174.	1.4	31

#	Article	IF	Citations
714	Auxin EvoDevo: Conservation and Diversification of Genes Regulating Auxin Biosynthesis, Transport, and Signaling. Molecular Plant, 2019, 12, 298-320.	3.9	103
715	Integrated transcriptome and miRNA analysis uncovers molecular regulators of aerial stem-to-rhizome transition in the medical herb Gynostemma pentaphyllum. BMC Genomics, 2019, 20, 865.	1.2	9
716	A phenotype-directed chemical screen identifies ponalrestat as an inhibitor of the plant flavin monooxygenase YUCCA in auxin biosynthesis. Journal of Biological Chemistry, 2019, 294, 19923-19933.	1.6	15
717	The Roles of Auxin Biosynthesis YUCCA Gene Family in Plants. International Journal of Molecular Sciences, 2019, 20, 6343.	1.8	110
718	Auxin and cytokinin coordinate the dormancy and outgrowth of axillary bud in strawberry runner. BMC Plant Biology, 2019, 19, 528.	1.6	44
719	HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in <i>Arabidopsis thaliana</i> by mediating H2A.Z depletion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25343-25354.	3. 3	91
720	Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Physiologia Plantarum, 2019, 165, 90-100.	2.6	151
721	Expression profiles of organogenesis-related genes over the time course of one-step de novo shoot organogenesis from intact seedlings of kohlrabi. Journal of Plant Physiology, 2019, 232, 257-269.	1.6	11
722	The Role of Abscisic Acid Signaling in Maintaining the Metabolic Balance Required for Arabidopsis Growth under Nonstress Conditions. Plant Cell, 2019, 31, 84-105.	3.1	84
723	ESCRTâ€dependent vacuolar sorting and degradation of the auxin biosynthetic enzyme YUC1 flavin monooxygenase. Journal of Integrative Plant Biology, 2019, 61, 968-973.	4.1	9
724	Initial Bud Outgrowth Occurs Independent of Auxin Flow from Out of Buds. Plant Physiology, 2019, 179, 55-65.	2.3	56
725	<i>Arabidopsis</i> ANAC092 regulates auxinâ€mediated root development by binding to the <i>ARF8</i> and <i>PIN4</i> promoters. Journal of Integrative Plant Biology, 2019, 61, 1015-1031.	4.1	21
726	Emerging functions of chromatin modifications in auxin biosynthesis in response to environmental alterations. Plant Growth Regulation, 2019, 87, 165-174.	1.8	7
727	The Role of Auxin in the Pattern Formation of the Asteraceae Flower Head (Capitulum). Plant Physiology, 2019, 179, 391-401.	2.3	34
728	Reporter gene expression reveals precise auxin synthesis sites during fruit and root development in wild strawberry. Journal of Experimental Botany, 2019, 70, 563-574.	2.4	56
729	Mitochondrial function modulates touch signalling in <i>Arabidopsis thaliana</i> . Plant Journal, 2019, 97, 623-645.	2.8	32
730	Transcriptome profiles of soybean leaves and roots in response to zinc deficiency. Physiologia Plantarum, 2019, 167, 330-351.	2.6	27
731	Regulation of Leaf Senescence by Macromolecule Degradation and Hormones., 2019,, 61-97.		1

#	Article	IF	CITATIONS
732	<i>Tillering and small grain 1 dominates the tryptophan aminotransferase family required for local auxin biosynthesis in rice. Journal of Integrative Plant Biology, 2020, 62, 581-600.</i>	4.1	37
733	Overexpression of ginseng patatin-related phospholipase pPLAIIIβ alters the polarity of cell growth and decreases lignin content in Arabidopsis. Journal of Ginseng Research, 2020, 44, 321-331.	3.0	16
734	Transcriptome analysis of axillary bud differentiation in a new dual-axillary bud genotype of sugarcane. Genetic Resources and Crop Evolution, 2020, 67, 685-701.	0.8	3
735	Positional effects on efficiency of CRISPR/Cas9-based transcriptional activation in rice plants. ABIOTECH, 2020, 1, 1-5.	1.8	13
736	Ethylene Biosynthesis, Signaling, and Crosstalk with Other Hormones in Rice. Small Methods, 2020, 4, 1900278.	4.6	16
737	Overview of Sustainable Plant Growth and Differentiation and the Role of Hormones in Controlling Growth and Development of Plants Under Various Stresses. Recent Patents on Food, Nutrition & Agriculture, 2020, 11, 105-114.	0.5	13
738	Unveiling Two Consecutive Hydroxylations: Mechanisms of Aromatic Hydroxylations Catalyzed by Flavinâ€Dependent Monooxygenases for the Biosynthesis of Actinorhodin and Related Antibiotics. ChemBioChem, 2020, 21, 623-627.	1.3	12
739	Development of a relative quantification method for infrared matrixâ€assisted laser desorption electrospray ionization mass spectrometry imaging of Arabidopsis seedlings. Rapid Communications in Mass Spectrometry, 2020, 34, e8616.	0.7	12
740	Practical optimization of liquid chromatography/mass spectrometry conditions and pretreatment methods toward the sensitive quantification of auxin in plants. Rapid Communications in Mass Spectrometry, 2020, 34, e8625.	0.7	4
741	Genome-Wide Association Study (GWAS) for Mesocotyl Elongation in Rice (Oryza sativa L.) under Multiple Culture Conditions. Genes, 2020, 11 , 49.	1.0	36
742	RNA-Seq analysis of compatible and incompatible styles of Pyrus species at the beginning of pollination. Plant Molecular Biology, 2020, 102, 287-306.	2.0	6
743	Development of a large population of activationâ€ŧagged mutants in an elite <i>indica</i> rice variety. Plant Breeding, 2020, 139, 328-343.	1.0	6
744	C2H2-like zinc finger protein 1 causes pollen and pistil malformation through the auxin pathway. Plant Growth Regulation, 2020, 90, 505-518.	1.8	3
745	Genome-based identification and analysis of the genes involved in auxin biosynthesis and signal transduction during tea plant leaf development. Scientia Horticulturae, 2020, 261, 109030.	1.7	5
746	No Home without Hormones: How Plant Hormones Control Legume Nodule Organogenesis. Plant Communications, 2020, 1, 100104.	3.6	58
747	Plant homeodomain proteins provide a mechanism for how leaves grow wide. Development (Cambridge), 2020, 147, .	1.2	11
748	Local auxin competition explains fragmented differentiation patterns. Nature Communications, 2020, 11, 2965.	5.8	19
749	YUCCA-Mediated Biosynthesis of the Auxin IAA Is Required during the Somatic Embryogenic Induction Process in Coffea canephora. International Journal of Molecular Sciences, 2020, 21, 4751.	1.8	14

#	Article	IF	CITATIONS
750	Endogenous Auxin Content Contributes to Larger Size of Apple Fruit. Frontiers in Plant Science, 2020, 11, 592540.	1.7	23
751	Shoot branching regulation and signaling. Plant Growth Regulation, 2020, 92, 131-140.	1.8	11
752	The Flavoproteome of the Model Plant Arabidopsis thaliana. International Journal of Molecular Sciences, 2020, 21, 5371.	1.8	15
753	An Evolutionarily Primitive and Distinct Auxin Metabolism in the Lycophyte Selaginella moellendorffii. Plant and Cell Physiology, 2020, 61, 1724-1732.	1.5	12
754	Dynamic transcriptome and metabolome analyses of two types of rice during the seed germination and young seedling growth stages. BMC Genomics, 2020, 21, 603.	1.2	20
755	The volatile organic compounds of Floccularia luteovirens modulate plant growth and metabolism in Arabidopsis thaliana. Plant and Soil, 2020, 456, 207-221.	1.8	16
756	The Phylogeny of Class B Flavoprotein Monooxygenases and the Origin of the YUCCA Protein Family. Plants, 2020, 9, 1092.	1.6	5
757	A flavin-dependent monooxygenase catalyzes the initial step in cyanogenic glycoside synthesis in ferns. Communications Biology, 2020, 3, 507.	2.0	20
758	Ericoid mycorrhizal fungus enhances microcutting rooting of Rhododendron fortunei and subsequent growth. Horticulture Research, 2020, 7, 140.	2.9	14
759	The curvature of cucumber fruits is associated with spatial variation in auxin accumulation and expression of a YUCCA biosynthesis gene. Horticulture Research, 2020, 7, 135.	2.9	10
760	Arp2/3 Complex Is Required for Auxin-Driven Cell Expansion Through Regulation of Auxin Transporter Homeostasis. Frontiers in Plant Science, 2020, 11, 486.	1.7	16
761	Transcriptomic and physiological analyses of rice seedlings under different nitrogen supplies provide insight into the regulation involved in axillary bud outgrowth. BMC Plant Biology, 2020, 20, 197.	1.6	25
762	Response of hormone in rice seedlings to irrigation contaminated with cyanobacterial extract containing microcystins. Chemosphere, 2020, 256, 127157.	4.2	13
763	Auxin Signaling-Mediated Apoplastic pH Modification Functions in Petal Conical Cell Shaping. Cell Reports, 2020, 30, 3904-3916.e3.	2.9	21
764	Gibberellins modulate shade-induced soybean hypocotyl elongation downstream of the mutual promotion of auxin and brassinosteroids. Plant Physiology and Biochemistry, 2020, 150, 209-221.	2.8	37
765	Sugar rush: Glucosylation of IPyA attenuates auxin levels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7558-7560.	3.3	2
766	Abscisic acid suppresses thermomorphogenesis in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2020, 15, 1746510.	1.2	7
767	Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L Biotechnology for Biofuels, 2020, 13, 42.	6.2	25

#	Article	IF	CITATIONS
768	Auxin Profiling and <i>GmPIN</i> Expression in <i>Phytophthora sojae</i> â^'Soybean Root Interactions. Phytopathology, 2020, 110, 1988-2002.	1.1	8
769	The "Green―FMOs: Diversity, Functionality and Application of Plant Flavoproteins. Catalysts, 2020, 10, 329.	1.6	26
770	Droughtâ€induced protein (Di19â€3) plays a role in auxin signaling by interacting with IAA14 in Arabidopsis. Plant Direct, 2020, 4, e00234.	0.8	19
771	Fluctuating auxin response gradients determine pavement cell-shape acquisition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16027-16034.	3.3	15
772	Vernalization shapes shoot architecture and ensures the maintenance of dormant buds in the perennial <i>Arabis alpina</i> . New Phytologist, 2020, 227, 99-115.	3.5	24
773	Molecular imprints of plant beneficial Streptomyces sp. AC30 and AC40 reveal differential capabilities and strategies to counter environmental stresses. Microbiological Research, 2020, 235, 126449.	2.5	14
774	Quantitative Trait Loci (QTLs) Associated with Microspore Culture in Raphanus sativus L. (Radish). Genes, 2020, 11, 337.	1.0	4
775	The new insight of auxin functions: transition from seed dormancy to germination and floral opening in plants. Plant Growth Regulation, 2020, 91, 169-174.	1.8	25
776	Two homologous INDOLE-3-ACETAMIDE (IAM) HYDROLASE genes are required for the auxin effects of IAM in Arabidopsis. Journal of Genetics and Genomics, 2020, 47, 157-165.	1.7	22
777	Old Town Roads: routes of auxin biosynthesis across kingdoms. Current Opinion in Plant Biology, 2020, 55, 21-27.	3.5	54
778	<i>Arabidopsis thaliana SURFEIT1</i> à€like genes link mitochondrial function to early plant development and hormonal growth responses. Plant Journal, 2020, 103, 690-704.	2.8	13
779	Phytohormonal signaling under abiotic stress. , 2020, , 397-466.		5
780	OsFPFL4 is Involved in the Root and Flower Development by Affecting Auxin Levels and ROS Accumulation in Rice (Oryza sativa). Rice, 2020, 13, 2.	1.7	22
781	Genome-Wide Identification and Analysis on YUCCA Gene Family in Isatis indigotica Fort. and IiYUCCA6-1 Functional Exploration. International Journal of Molecular Sciences, 2020, 21, 2188.	1.8	7
782	Patatin-Related Phospholipase AtpPLAIIIα Affects Lignification of Xylem in Arabidopsis and Hybrid Poplars. Plants, 2020, 9, 451.	1.6	12
783	<i>TAC4</i> controls tiller angle by regulating the endogenous auxin content and distribution in rice. Plant Biotechnology Journal, 2021, 19, 64-73.	4.1	38
784	Molecular pathways regulating elongation of aerial plant organs: a focus on light, the circadian clock, and temperature. Plant Journal, 2021, 105, 392-420.	2.8	12
785	Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in Arabidopsis. Journal of Experimental Botany, 2021, 72, 459-475.	2.4	28

#	Article	IF	CITATIONS
786	Identification of QTL and candidate genes involved in early seedling growth in rice via high-density genetic mapping and RNA-seq. Crop Journal, 2021, 9, 360-371.	2.3	14
787	The Molecular Basis of Age-Modulated Plant De Novo Root Regeneration Decline in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2021, 62, 3-7.	1.5	5
788	Mechanisms of the Morphological Plasticity Induced by Phytohormones and the Environment in Plants. International Journal of Molecular Sciences, 2021, 22, 765.	1.8	21
789	HYPONASTIC LEAVES 1 is required for proper establishment of auxin gradient in apical hooks. Plant Physiology, 2021, 187, 2356-2360.	2.3	2
790	Role of AM Fungi and PGPR in Alleviating Stress Responses and Inducing Defense Mechanism. , 2021, , 355-371.		0
791	Role of Plant Growth Hormones During Soil Water Deficit: A Review. , 2021, , 489-583.		2
792	Heterologous expression of Arabidopsis thaliana rty gene in strawberry (Fragaria \tilde{A} — ananassa Duch.) improves drought tolerance. BMC Plant Biology, 2021, 21, 57.	1.6	13
793	Identification of a Flavin Monooxygenase-Like Flavonoid 8-Hydroxylase with Gossypetin Synthase Activity from <i>Lotus japonicus </i> I = 1	1.5	4
794	Signals Auxin., 2021,, 2-17.		0
796	IAA3-mediated repression of PIF proteins coordinates light and auxin signaling in Arabidopsis. PLoS Genetics, 2021, 17, e1009384.	1.5	16
797	On the Evolutionary Origins of Land Plant Auxin Biology. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040048.	2.3	8
798	Volatile compounds from beneficial rhizobacteria <i>Bacillus</i> spp. promote periodic lateral root development in <i>Arabidopsis</i> Plant, Cell and Environment, 2021, 44, 1663-1678.	2.8	32
799	Crosstalk between auxin and gibberellin during stalk elongation in flowering Chinese cabbage. Scientific Reports, 2021, 11, 3976.	1.6	33
800	<i>In vitro</i> adventitious roots: a non-disruptive technology for the production of phytoconstituents on the industrial scale. Critical Reviews in Biotechnology, 2021, 41, 564-579.	5.1	14
801	Genome-wide identification and expression analysis of the TaYUCCA gene family in wheat. Molecular Biology Reports, 2021, 48, 1269-1279.	1.0	11
802	Mitochondrial heat-shock cognate protein 70 contributes to auxin-mediated embryo development. Plant Physiology, 2021, 186, 1101-1121.	2.3	4
803	Bulked segregant analysis reveals candidate genes responsible for dwarf formation in woody oilseed crop castor bean. Scientific Reports, 2021, 11, 6277.	1.6	11
804	Mechanochemical feedback mediates tissue bending required for seedling emergence. Current Biology, 2021, 31, 1154-1164.e3.	1.8	43

#	Article	IF	CITATIONS
805	Cytokinin-Controlled Gradient Distribution of Auxin in Arabidopsis Root Tip. International Journal of Molecular Sciences, 2021, 22, 3874.	1.8	6
806	Bootstrapping and Pinning down the Root Meristem; the Auxin–PLT–ARR Network Unites Robustness and Sensitivity in Meristem Growth Control. International Journal of Molecular Sciences, 2021, 22, 4731.	1.8	3
807	Systematical characterization of YUCCA gene family in five cotton species, and potential functions of YUCCA22 gene in drought resistance of cotton. Industrial Crops and Products, 2021, 162, 113290.	2.5	8
808	Casting the Netâ€"Connecting Auxin Signaling to the Plant Genome. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040006.	2.3	2
809	Transcriptome sequencing analysis of maize roots reveals the effects of substrate and root hair formation in a spatial context. Plant and Soil, 2022, 478, 211-228.	1.8	9
810	Cell identity specification in plants: lessons from flower development. Journal of Experimental Botany, 2021, 72, 4202-4217.	2.4	16
812	Auxin and cytokinin mediated regulation involved in vitro organogenesis of papaya. Journal of Plant Physiology, 2021, 260, 153405.	1.6	5
814	Synthesis and regulation of auxin and abscisic acid in maize. Plant Signaling and Behavior, 2021, 16, 1891756.	1.2	10
815	Phytochrome B interacts with SWC6 and ARP6 to regulate H2A.Z deposition and photomorphogensis in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 1133-1146.	4.1	20
816	<i>slim shady</i> is a novel allele of <i>PHYTOCHROME B</i> present in the Tâ€DNA line SALK_015201. Plant Direct, 2021, 5, e00326.	0.8	6
817	High ammonium inhibits root growth in Arabidopsis thaliana by promoting auxin conjugation rather than inhibiting auxin biosynthesis. Journal of Plant Physiology, 2021, 261, 153415.	1.6	23
818	Modulation of Organogenesis and Somatic Embryogenesis by Ethylene: An Overview. Plants, 2021, 10, 1208.	1.6	9
820	Beyond the Usual Suspects: Physiological Roles of the Arabidopsis Amidase Signature (AS) Superfamily Members in Plant Growth Processes and Stress Responses. Biomolecules, 2021, 11, 1207.	1.8	5
821	Comparative Transcriptomics and Metabolomics Reveal an Intricate Priming Mechanism Involved in PGPR-Mediated Salt Tolerance in Tomato. Frontiers in Plant Science, 2021, 12, 713984.	1.7	46
822	Manipulation of auxin signalling by plant viruses. Molecular Plant Pathology, 2021, 22, 1449-1458.	2.0	16
823	The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana. Phytochemistry, 2021, 189, 112822.	1.4	18
825	Spatiotemporal regulation of <i>JAZ4</i> expression and splicing contribute to ethylene―and auxinâ€mediated responses in Arabidopsis roots. Plant Journal, 2021, 108, 1266-1282.	2.8	4
826	PIF4 and PIF4-Interacting Proteins: At the Nexus of Plant Light, Temperature and Hormone Signal Integrations. International Journal of Molecular Sciences, 2021, 22, 10304.	1.8	15

#	Article	IF	CITATIONS
827	A BTB-TAZ protein is required for gene activation by Cauliflower mosaic virus 35S multimerized enhancers. Plant Physiology, $2021, \ldots$	2.3	4
828	Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnology Advances, 2021, 51, 107712.	6.0	78
829	The storage temperature affects flesh firmness and gene expression patterns of cell wall-modifying enzymes in stony hard peaches. Postharvest Biology and Technology, 2021, 181, 111658.	2.9	6
830	Effect of an auxin biosynthesis inhibitor, $\langle i \rangle p \langle i \rangle$ -phenoxyphenyl boronic acid, on auxin biosynthesis and development in rice. Bioscience, Biotechnology and Biochemistry, 2021, 85, 510-519.	0.6	4
831	The ectopic expression of Arabidopsis glucosyltransferase UGT74D1 affects leaf positioning through modulating indole-3-acetic acid homeostasis. Scientific Reports, 2021, 11, 1154.	1.6	7
832	Engineering Pathogen Resistance in Crop Plants. , O, , .		1
833	Auxin in Plant Growth and Stress Responses. , 2014, , 1-35.		19
834	Auxin and Root Hair Morphogenesis. Plant Cell Monographs, 2009, , 45-64.	0.4	13
835	Auxin and Temperature Stress: Molecular and Cellular Perspectives. Signaling and Communication in Plants, 2013, , 295-310.	0.5	3
836	Biogenesis of Adventitious Roots and Their Involvement in the Adaptation to Oxygen Limitations. Plant Cell Monographs, 2014, , 299-312.	0.4	5
837	Pattern Formation during Dicotyledonous Plant Embryogenesis., 2003,, 139-152.		1
838	Auxin-responsive gene expression: genes, promoters and regulatory factors., 2002,, 373-385.		29
839	Role of ArabidopsisÂINDOLE-3-ACETIC ACID CARBOXYL METHYLTRANSFERASE 1Âin auxin metabolism. Biochemical and Biophysical Research Communications, 2020, 527, 1033-1038.	1.0	12
841	A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. Nature Communications, 2020, 11, 679.	5.8	53
842	Quantitative Trait Loci Controlling Light and Hormone Response in Two Accessions of <i>Arabidopsis thaliana</i> . Genetics, 2002, 160, 683-696.	1.2	127
843	Three Redundant Brassinosteroid Early Response Genes Encode Putative bHLH Transcription Factors Required for Normal Growth. Genetics, 2002, 162, 1445-1456.	1.2	259
844	Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology (United Kingdom), 2017, 163, 980-991.	0.7	88
846	Structure–Function Analysis of Interallelic Complementation in ⟨i⟩ROOTY⟨/i⟩ Transheterozygotes. Plant Physiology, 2020, 183, 1110-1125.	2.3	3

#	Article	IF	Citations
847	- Breast Cancer Biomarkers. , 2013, , 298-321.		1
848	Fertilization in the sea. Journal of Experimental Biology, 2002, 205, 1439-1450.	0.8	90
849	Arabidopsis thaliana AUCSIA-1 Regulates Auxin Biology and Physically Interacts with a Kinesin-Related Protein. PLoS ONE, 2012, 7, e41327.	1.1	20
850	Overexpression of the AtSHI Gene in Poinsettia, Euphorbia pulcherrima, Results in Compact Plants. PLoS ONE, 2013, 8, e53377.	1.1	21
851	Ectopic Expression of a Wheat WRKY Transcription Factor Gene TaWRKY71-1 Results in Hyponastic Leaves in Arabidopsis thaliana. PLoS ONE, 2013, 8, e63033.	1.1	16
852	Characterization of a Null Allelic Mutant of the Rice NAL1 Gene Reveals Its Role in Regulating Cell Division. PLoS ONE, 2015, 10, e0118169.	1.1	68
853	Auxin Import and Local Auxin Biosynthesis Are Required for Mitotic Divisions, Cell Expansion and Cell Specification during Female Gametophyte Development in Arabidopsis thaliana. PLoS ONE, 2015, 10, e0126164.	1.1	80
854	Overexpression of OsSAP16 Regulates Photosynthesis and the Expression of a Broad Range of Stress Response Genes in Rice (Oryza sativa L.). PLoS ONE, 2016, 11, e0157244.	1.1	14
855	Reprogramming of Strawberry (Fragaria vesca) Root Transcriptome in Response to Phytophthora cactorum. PLoS ONE, 2016, 11, e0161078.	1.1	58
856	YUCCA4 overexpression modulates auxin biosynthesis and transport and influences plant growth and development via crosstalk with abscisic acid in Arabidopsis thaliana. Genetics and Molecular Biology, 2020, 43, e20190221.	0.6	18
857	Growth Promotion of Rice (Oryza sativa L.) Seedlings by Application of L- \hat{l}^2 -phenyllactic Acid. Asian Journal of Plant Sciences, 2013, 12, 87-91.	0.2	3
858	Signaling crosstalk between ethylene and other molecules. Plant Biotechnology, 2005, 22, 401-407.	0.5	3
859	Genetic and epigenetic control of plant growth and development. Molecular-genetic control of transmission and realization of auxin signals. Biopolymers and Cell, 2005, 21, 187-219.	0.1	3
860	<i>YUCCA</i> auxin biosynthetic genes are required for Arabidopsis shade avoidance. PeerJ, 2016, 4, e2574.	0.9	68
861	Tryptophan: A Precursor of Signaling Molecules in Higher Plants. Plant in Challenging Environments, 2021, , 273-289.	0.4	4
862	Recent Insights into Auxin-Mediated Molecular Cross Talk Events Associated with Regulation of Root Growth and Architecture During Abiotic Stress in Plants. Plant in Challenging Environments, 2021, , 167-189.	0.4	0
863	Application of NPAÂRestrained Leaf Expansion by Reduced Cell Division in Soybean Under Shade Stress. Journal of Plant Growth Regulation, 2022, 41, 3345-3358.	2.8	2
864	Sugar metabolism during pre- and post-fertilization events in plants under highÂtemperature stress. Plant Cell Reports, 2022, 41, 655-673.	2.8	14

#	Article	IF	CITATIONS
866	Metabolism of Aromatic Compounds and Nucleic Acid Bases. , 2001, , 1421-1471.		0
869	Producing a Recombinant Flavin-Containing Monooxygenase from Coffea arabica in Escherichia coli for Screening of Potential Natural Substrates. Methods in Molecular Biology, 2010, 643, 121-132.	0.4	О
870	Growth regulation of cow1 rice mutant seedlings by blue light. Journal of Plant Biotechnology, 2010, 37, 465-471.	0.1	0
871	Indole-3-Acetic Acid Biosynthesis and Gravitropic Response in Maize Coleoptiles. Uchu Seibutsu Kagaku, 2011, 25, 37-43.	1.0	O
873	Varietal difference of root development and starch accumulation on stem of tomato occurred by fruit thinning. Root Research, 2012, 21, 39-43.	0.1	4
874	Detection of metabolites in Flor de Mayo common beans (Phaseolus vulgaris L.) and their response to inoculation with Trichoderma harzianum. African Journal of Biotechnology, $2012,11,.$	0.3	1
875	Auxin Biosynthesis and Polar Auxin Transport During Tropisms in Maize Coleoptiles. Signaling and Communication in Plants, 2013, , 221-238.	0.5	0
876	Screening of Rhizobacteria for Plant Growth Promotion and Their Tolerance to Drought Stress. Microbiology Indonesia, 2013, 7, 94-104.	0.2	3
877	Function of ABCBs in Light Signaling. Signaling and Communication in Plants, 2014, , 301-311.	0.5	0
879	Body Self-Image, Eating Attitudes and Quality of Life among Regular, Moderate and Non-Exercisers. IOSR Journal of Humanities and Social Science, 2016, 21, 44-57.	0.0	О
880	Boron removal from metallurgical grade silicon and Si-Sn alloy through slag refining with gas blowing. Functional Materials, 2018, 25, 625-631.	0.4	1
884	Role of Plant Growth-Promoting Rhizobacteria (PGPR) for Crop Stress Management. , 2020, , 367-389.		13
888	Modern concepts of auxin's action. 2. Mechanisms of auxin signal transduction and physiological action. Vìsnik Harkìvsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu Serìâ Bìologiâ, 2021, 2021,	9 8:1 37.	0
889	Auxin and Root Hair Morphogenesis. Plant Cell Monographs, 2009, , 45.	0.4	O
890	Modern concepts of auxin's action. 1. History of discovery, metabolism, transport. Vìsnik Harkìvsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu Serìâ Bìologiâ, 2020, 2020, 98-123.	0.1	1
894	Novel allele of the gene affects plant organ size via cell expansion in. MicroPublication Biology, 2021, 2021, .	0.1	1
895	Role of Auxin and Nitrate Signaling in the Development of Root System Architecture. Frontiers in Plant Science, 2021, 12, 690363.	1.7	19
896	Mixed Transcriptome Analysis Revealed the Possible Interaction Mechanisms between Zizania latifolia and Ustilago esculenta Inducing Jiaobai Stem-Gall Formation. International Journal of Molecular Sciences, 2021, 22, 12258.	1.8	7

#	Article	IF	CITATIONS
898	Biphasic control of cell expansion by auxin coordinates etiolated seedling development. Science Advances, 2022, 8, eabj1570.	4.7	19
899	The Genetic Control of the Compound Leaf Patterning in Medicago truncatula. Frontiers in Plant Science, 2021, 12, 749989.	1.7	5
900	Local conjugation of auxin by the GH3 amido synthetases is required for normal development of roots and flowers in Arabidopsis. Biochemical and Biophysical Research Communications, 2022, 589, 16-22.	1.0	13
901	Auxin-mediated molecular mechanisms of heavy metal and metalloid stress regulation in plants. Environmental and Experimental Botany, 2022, 196, 104796.	2.0	34
902	Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin. New Phytologist, 2022, 234, 783-803.	3.5	19
903	Manual thinning increases fruit size and sugar content of Citrus reticulata Blanco and affects hormone synthesis and sugar transporter activity. Journal of Integrative Agriculture, 2022, 21, 725-735.	1.7	1
904	Integration of genomics, transcriptomics and metabolomics identifies candidate loci underlying fruit weight in loquat. Horticulture Research, 2022, , .	2.9	12
905	Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology, 2002, 49, 249-72.	2.0	70
906	Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology, 2002, 49, 373-85.	2.0	446
908	Crossroads in the evolution of plant specialized metabolism. Seminars in Cell and Developmental Biology, 2023, 134, 37-58.	2.3	39
909	Regulation of Phytohormones on the Growth and Development of Plant Root Hair. Frontiers in Plant Science, 2022, 13, 865302.	1.7	18
910	The Photoperiod Stress Response in Arabidopsis thaliana Depends on Auxin Acting as an Antagonist to the Protectant Cytokinin. International Journal of Molecular Sciences, 2022, 23, 2936.	1.8	1
911	TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1. Plant Communications, 2022, 3, 100269.	3.6	30
912	Effect of short-term temperature stress on fruit set and the expression of an auxin reporter gene and auxin synthesis genes in tomato. Scientia Horticulturae, 2022, 300, 111039.	1.7	6
913	Identification, analysis, and modeling of the <scp>YUCCA</scp> protein family genomeâ€wide in <i>Coffea canephora</i> . Proteins: Structure, Function and Bioinformatics, 2022, 90, 1005-1024.	1.5	3
914	Plasticity of bud outgrowth varies at cauline and rosette nodes in <i>Arabidopsis thaliana</i> Physiology, 2022, 188, 1586-1603.	2.3	7
915	NARROW AND DWARF LEAF 1, the Ortholog of <i>Arabidopsis</i> ENHANCER OF SHOOT REGENERATION1/DORNR×SCHEN, Mediates Leaf Development and Maintenance of the Shoot Apical Meristem in <i>Oryza sativa</i> L. Plant and Cell Physiology, 2022, 63, 265-278.	1.5	4
916	TaKLU Plays as a Time Regulator of Leaf Growth via Auxin Signaling. International Journal of Molecular Sciences, 2022, 23, 4219.	1.8	3

#	Article	IF	Citations
953	IAA Biosynthesis in Bacteria and Its Role in Plant-Microbe Interaction for Drought Stress Management. , 2022, , 235-258.		3
954	Phytochrome-interacting factors orchestrate hypocotyl adventitious root initiation in <i>Arabidopsis</i> . Development (Cambridge), 2022, 149, .	1.2	8
955	New Insights Into the Local Auxin Biosynthesis and Its Effects on the Rapid Growth of Moso Bamboo (Phyllostachys edulis). Frontiers in Plant Science, 2022, 13, 858686.	1.7	9
956	Complexity of the auxin biosynthetic network in Arabidopsis hypocotyls is revealed by multiple stable-labeled precursors. Phytochemistry, 2022, 200, 113219.	1.4	5
957	Impairment of root auxin–cytokinins homeostasis induces collapse of incompatible melon grafts during fruit ripening. Horticulture Research, 2022, 9, .	2.9	2
958	Pppif8, a Della2-Interacting Protein, Regulates Peach Shoot Elongation Possibly Through Auxin Signaling. SSRN Electronic Journal, 0, , .	0.4	0
959	CkREV Enhances the Drought Resistance of Caragana korshinskii through Regulating the Expression of Auxin Synthetase Gene CkYUC5. International Journal of Molecular Sciences, 2022, 23, 5902.	1.8	5
962	Ovule initiation: the essential step controlling offspring number in <i>Arabidopsis</i> Integrative Plant Biology, 2022, 64, 1469-1486.	4.1	5
963	<scp>H3K4me3</scp> plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. Plant Journal, 2022, 111, 1015-1031.	2.8	13
964	BIG Modulates Stem Cell Niche and Meristem Development via SCR/SHR Pathway in Arabidopsis Roots. International Journal of Molecular Sciences, 2022, 23, 6784.	1.8	5
965	On the trail of auxin: Reporters and sensors. Plant Cell, 2022, 34, 3200-3213.	3.1	2
966	Low Nitrogen Stress Stimulated Nitrate Uptake Rate Modulated by Auxin in Brassica napus L Journal of Soil Science and Plant Nutrition, 2022, 22, 3500-3506.	1.7	5
967	Over-expression of a YUCCA-Like Gene Results in Altered Shoot and Stolon Branching and Reduced Potato Tuber Size. Potato Research, 0, , .	1.2	2
968	Red and Blue Light Affect the Formation of Adventitious Roots of Tea Cuttings (Camellia sinensis) by Regulating Hormone Synthesis and Signal Transduction Pathways of Mature Leaves. Frontiers in Plant Science, 0, 13, .	1.7	5
969	Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environmental Research, 2022, 214, 113821.	3.7	81
970	Physiological and environmental control of adventitious root formation in cuttings: An overview. , 2023, , 1-24.		0
971	Strigolactones: A new player in regulating adventitious root formation., 2023,, 343-366.		0
972	Genome-wide identification and expression profiling of the YUCCA gene family in Brassica napus. Oil Crop Science, 2022, 7, 103-111.	0.9	2

#	Article	IF	CITATIONS
973	Characterization and fine mapping of a semi-rolled leaf mutant srl3 in rice. Journal of Integrative Agriculture, 2022, 21, 3103-3113.	1.7	3
974	Panicle Apical Abortion 7 Regulates Panicle Development in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2022, 23, 9487.	1.8	0
975	Integrated genetic mapping and transcriptome analysis reveal the BnaA03.IAA7 protein regulates plant architecture and gibberellin signaling in Brassica napus L Theoretical and Applied Genetics, 2022, 135, 3497-3510.	1.8	5
976	The roles of epigenetic modifications in the regulation of auxin biosynthesis. Frontiers in Plant Science, $0,13,.$	1.7	2
977	Different regulation of auxin homeostasis would be a possible mechanism conferring quinclorac resistance in <i>Echinochloa crusgalli</i> var. <i>zelayensis</i> Weed Research, 2022, 62, 318-327.	0.8	1
978	The MdAux/IAA2 Transcription Repressor Regulates Cell and Fruit Size in Apple Fruit. International Journal of Molecular Sciences, 2022, 23, 9454.	1.8	7
979	Integrated multiâ€omics analysis uncovers roles of mdmâ€miR164bâ€ <i>MdORE1</i> in strigolactoneâ€mediated inhibition of adventitious root formation in apple. Plant, Cell and Environment, 2022, 45, 3582-3603.	.8 2.8	7
980	Overexpression of a SHORT-ROOT transcriptional factor enhances the auxin mediated formation of adventitious roots and lateral roots in poplar trees. Plant Science, 2022, 323, 111408.	1.7	3
981	PpPIF8, a DELLA2-interacting protein, regulates peach shoot elongation possibly through auxin signaling. Plant Science, 2022, 323, 111409.	1.7	5
982	Perfluorooctanoic acid and perfluorooctane sulfonic acid inhibit plant growth through the modulation of phytohormone signalling pathways: Evidence from molecular and genetic analysis in Arabidopsis. Science of the Total Environment, 2022, 851, 158287.	3.9	3
983	Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
984	The thiol-reductase activity of YUCCA6 enhances nickel heavy metal stress tolerance in Arabidopsis. Frontiers in Plant Science, $0,13,.$	1.7	2
985	Is auxin enough? Cytokinins and margin patterning in simple leaves. Trends in Plant Science, 2023, 28, 54-73.	4.3	5
986	Metabolomics and Hormone Level Analysis of Seashore paspalum Dwarf Mutant T51. Agronomy, 2022, 12, 2254.	1.3	0
987	Root twisting drives halotropism via stress-induced microtubule reorientation. Developmental Cell, 2022, 57, 2412-2425.e6.	3.1	22
988	AtELP4 a subunit of the Elongator complex in Arabidopsis, mediates cell proliferation and dorsoventral polarity during leaf morphogenesis. Frontiers in Plant Science, 0, 13, .	1.7	О
989	Transcriptomics and metabolomics revealÂeffect of arbuscular mycorrhizal fungiÂon growth and developmentÂof apple plants. Frontiers in Plant Science, 0, 13, .	1.7	2
990	Genome-Wide Identification and Characterization of YUCCA Gene Family in Mikania micrantha. International Journal of Molecular Sciences, 2022, 23, 13037.	1.8	4

#	Article	IF	CITATIONS
991	Proteomic analysis of T. qataranse exposed to lead (Pb) stress reveal new proteins with potential roles in Pb tolerance and detoxification mechanism. Frontiers in Plant Science, 0, 13, .	1.7	0
992	Three rhizobacteria differentially change endogenous hormones and yield in four rice cultivars. Rhizosphere, 2022, 24, 100614.	1.4	1
993	Effect of Light Intensity on Gene Expression in Hypocotyl during the Elongation in a Leaf-Yellowing Mutant of Pepper (Capsicum annuum L.). Agronomy, 2022, 12, 2762.	1.3	2
994	Endogenous auxin maintains embryonic cell identity and promotes somatic embryo development in Arabidopsis. Plant Journal, 2023, 113 , 7-22.	2.8	11
995	Molecular and genetic analyses revealed the phytotoxicity of perfluorobutane sulfonate. Environment International, 2022, 170, 107646.	4.8	3
998	DELAY OF GERMINATION 1, the Master Regulator of Seed Dormancy, Integrates the Regulatory Network of Phytohormones at the Transcriptional Level to Control Seed Dormancy. Current Issues in Molecular Biology, 2022, 44, 6205-6217.	1.0	1
999	Auxin Biosynthesis Genes in Allotetraploid Oilseed Rape Are Essential for Plant Development and Response to Drought Stress. International Journal of Molecular Sciences, 2022, 23, 15600.	1.8	4
1000	Auxin contributes to jasmonate-mediated regulation of abscisic acid signaling during seed germination in Arabidopsis. Plant Cell, 2023, 35, 1110-1133.	3.1	26
1001	To curve for survival: Apical hook development. Journal of Integrative Plant Biology, 2023, 65, 324-342.	4.1	5
1002	Significance of NatB-mediated N-terminal acetylation of auxin biosynthetic enzymes in maintaining auxin homeostasis in Arabidopsis thaliana. Communications Biology, 2022, 5, .	2.0	2
1003	Molecular mechanism of leaf adaxial upward curling caused by BpPIN3 suppression in Betula pendula. Frontiers in Plant Science, 0, 13, .	1.7	1
1004	Occurrence, Function, and Biosynthesis of the Natural Auxin Phenylacetic Acid (PAA) in Plants. Plants, 2023, 12, 266.	1.6	5
1005	Genome-Wide Identification, Expression Analysis, and Potential Roles under Abiotic Stress of the YUCCA Gene Family in Mungbean (Vigna radiata L.). International Journal of Molecular Sciences, 2023, 24, 1603.	1.8	1
1006	Biosynthesis―and transport―mediated dynamic auxin distribution during seed development controls seed size in Arabidopsis. Plant Journal, 2023, 113, 1259-1277.	2.8	9
1007	Role of reactive oxygen species in the modulation of auxin flux and root development in <i>Arabidopsis thaliana</i> . Plant Journal, 2023, 114, 83-95.	2.8	9
1009	Do Opposites Attract? Auxin-Abscisic Acid Crosstalk: New Perspectives. International Journal of Molecular Sciences, 2023, 24, 3090.	1.8	5
1010	GOLVEN peptides regulate lateral root spacing as part of a negative feedback loop on the establishment of auxin maxima. Journal of Experimental Botany, 0, , .	2.4	0
1011	Revealing the molecular mechanisms of zinc accumulation and zinc deficiency responses in quinoa, analyzed by high-throughput gene expression profiling under zinc depletion and resupply. Environmental and Experimental Botany, 2023, 210, 105330.	2.0	1

#	Article	IF	CITATIONS
1013	Genomic Survey of Flavin Monooxygenases in Wild and Cultivated Rice Provides Insight into Evolution and Functional Diversities. International Journal of Molecular Sciences, 2023, 24, 4190.	1.8	1
1014	Phytohormone signaling in osmotic stress response. , 2023, , 89-108.		1
1015	Auxin regulation on crop: from mechanisms to opportunities in soybean breeding. Molecular Breeding, 2023, 43, .	1.0	2
1016	Morphogenesis of leaves: from initiation to the production of diverse shapes. Biochemical Society Transactions, 0, , .	1.6	0
1017	Identification of new potential downstream transcriptional targets of the strigolactone pathway including glucosinolate biosynthesis. Plant Direct, 2023, 7, .	0.8	6
1018	Hydrogen sulfide alleviates osmotic stressâ€induced root growth inhibition by promoting auxin homeostasis. Plant Journal, 2023, 114, 1369-1384.	2.8	5
1019	Nitrogen application improves salt tolerance of grape seedlings via regulating hormone metabolism. Physiologia Plantarum, 2023, 175, .	2.6	1
1020	Identification of candidate genes responsible for chasmogamy in wheat. BMC Genomics, 2023, 24, .	1.2	1
1021	Auxin inhibits chlorophyll accumulation through ARF7-IAA14-mediated repression of chlorophyll biosynthesis genes in Arabidopsis. Frontiers in Plant Science, 0, 14, .	1.7	7
1026	Auxins biosynthesis for hormone crosstalk and plant development. , 2023, , 47-59.		0
1027	Role of miRNAs in the cross-talk of phytohormone signaling pathways. , 2023, , 373-422.		0
1039	Recent advances in auxin biosynthesis and homeostasis. 3 Biotech, 2023, 13, .	1.1	4
1061	Genes Involved in the Transition and Floral Sexual Differentiation of Jatropha curcas L. Plant Molecular Biology Reporter, 0, , .	1.0	0
1074	Preparation of ER Microsomes from Arabidopsis thaliana. Methods in Molecular Biology, 2024, , 129-135.	0.4	0