CITATION REPORT List of articles citing

DOI: 10.1103/physrevb.64.115418 Physical Review B, 2001, 64, .

Source: https://exaly.com/paper-pdf/32327752/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
28	Variations of the local electronic surface properties of TiO2(110) induced by intrinsic and extrinsic defects. <i>Physical Review B</i> , 2002 , 66,	3.3	69
27	The adsorption of chlorine on TiO2(110) studied with scanning tunneling microscopy and photoemission spectroscopy. <i>Surface Science</i> , 2002 , 505, 336-348	1.8	37
26	Band gap narrowing of titanium dioxide by sulfur doping. <i>Applied Physics Letters</i> , 2002 , 81, 454-456	3.4	1269
25	Resonant photoemission from Si(001). Surface Science, 2003, 524, 137-140	1.8	
24	Study of the interactions between the overlayer and the substrate in the early stages of palladium growth on TiO2(110). <i>Surface Science</i> , 2003 , 540, 117-128	1.8	22
23	The surface science of titanium dioxide. Surface Science Reports, 2003, 48, 53-229	12.9	6317
22	S Adsorption at Regular and Defect Sites of the MgO (001) Surface: Cluster Model Study at DFT Level. <i>Surface Review and Letters</i> , 2003 , 10, 691-695	1.1	17
21	Sulphur on rutile(110): A theoretical study. Surface Science, 2006, 600, 1884-1890	1.8	3
20	The electronic structure of ultrathin aluminum oxide film grown on FeAl(110): A photoemission spectroscopy. <i>Journal of Applied Physics</i> , 2007 , 101, 063706	2.5	4
19	Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization. <i>Environmental Science & Environmental Scie</i>	10.3	238
18	A Highly Efficient Visible-Light-Activated Photocatalyst Based on Bismuth- and Sulfur-Codoped TiO2. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 6620-6626	3.8	153
17	A surface X-ray diffraction study of TiO2(110)(31) B. Surface Science, 2009, 603, 2015-2020	1.8	2
16	Photodegradation of Rhodamine B on Sulfur Doped ZnO/TiO2 Nanocomposite Photocatalyst under Visible-light Irradiation. <i>Chinese Journal of Chemistry</i> , 2010 , 28, 2144-2150	4.9	23
15	Direct Observation of Surface-Mediated Electron Hole Pair Recombination in TiO2(110). <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3098-3101	3.8	95
14	Effect of Adsorbed Donor and Acceptor Molecules on Electron Stimulated Desorption: O2/TiO2(110). <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 2185-2188	6.4	69
13	4-tert-Butyl Pyridine Bond Site and Band Bending on TiO2(110). <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2315-2320	3.8	39
12	A two-dimensional phase of TiOlwith a reduced bandgap. <i>Nature Chemistry</i> , 2011 , 3, 296-300	17.6	339

CITATION REPORT

11	Oxide/polymer interfaces for hybrid and organic solar cells: Anatase vs. Rutile TiO2. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 1362-1374	6.4	53
10	A surface science perspective on TiO2 photocatalysis. <i>Surface Science Reports</i> , 2011 , 66, 185-297	12.9	1592
9	Solution Combustion Synthesis of TiO2 and Its Use for Fabrication of Photoelectrode for Dye-sensitized Solar Cell. <i>Journal of Materials Science and Technology</i> , 2012 , 28, 713-722	9.1	30
8	Synthesis and enhanced visible-light responsive of C,N,S-tridoped TiO2 hollow spheres. <i>Journal of Environmental Sciences</i> , 2013 , 25, 2150-6	6.4	27
7	Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces. <i>Chemical Reviews</i> , 2013 , 113, 3887-948	68.1	257
6	A kinetic study for the degradation of 1,2-dichloroethane by S-doped TiO2 under visible light. <i>Journal of Nanoparticle Research</i> , 2014 , 16, 1	2.3	20
5	Electronic signatures of a model pollutant-particle system: chemisorbed phenol on TiO(110). <i>Langmuir</i> , 2015 , 31, 3869-75	4	13
4	Improved visible-light photocatalytic activity of NaTaO3 with perovskite-like structure via sulfur anion doping. <i>Applied Catalysis B: Environmental</i> , 2015 , 166-167, 104-111	21.8	86
3	Kinetic Control of Oxygen Interstitial Interaction with TiO(110) via the Surface Fermi Energy. <i>Langmuir</i> , 2020 , 36, 12632-12648	4	4
2	Adsorptive desulfurization of jet fuels over TiO2-CeO2 mixed oxides: Role of surface Ti and Ce cations. <i>Catalysis Today</i> , 2021 , 371, 265-275	5.3	8
1	Fabrication of S-doped Ti3C2Tx materials with enhanced electromagnetic wave absorbing properties. <i>Journal of Alloys and Compounds</i> , 2022 , 891, 161942	5.7	2