Semiconductor quantum dots and related systems: Electrolated properties of low dimensional systems

Advances in Physics 50, 1-208

DOI: 10.1080/00018730010006608

Citation Report

#	Article	IF	CITATIONS
1	Shape effects on the one- and two-electron ground state in ellipsoidal quantum dots. Physical Review B, $2001, 64, .$	1.1	58
2	Exciton-Mediated Hydrosilylation on Photoluminescent Nanocrystalline Silicon. Journal of the American Chemical Society, 2001, 123, 7821-7830.	6.6	244
3	Effect of an intense laser field on donor impurities in spherical quantum dots. Superlattices and Microstructures, 2001, 30, 45-52.	1.4	51
4	Binding energy of a hydrogenic impurity in a 2D circular quantum dot. Superlattices and Microstructures, 2001, 30, 253-259.	1.4	8
5	Electrical transport and persistent photoconductivity in quantum dot layers in InAs/GaAs structures. Journal of Experimental and Theoretical Physics, 2001, 93, 815-823.	0.2	3
6	ELECTRON-ENERGY RELAXATION IN POLAR SEMICONDUCTOR DOUBLE QUANTUM DOTS. International Journal of Modern Physics B, 2001, 15, 3503-3512.	1.0	3
7	An extended `quantum confinement' theory: surface-coordination imperfection modifies the entire band structure of a nanosolid. Journal Physics D: Applied Physics, 2001, 34, 3470-3479.	1.3	82
8	Electron and hole transport through quantum dots. Journal of Applied Physics, 2002, 92, 6662-6665.	1.1	36
9	Surface Chemistry of Silicon Nanoclusters. Physical Review Letters, 2002, 88, 097401.	2.9	347
10	Fluorescence spectroscopy and transmission electron microscopy of the same isolated semiconductor nanocrystals. Applied Physics Letters, 2002, 81, 1116-1118.	1.5	33
11	GROWTH, STRUCTURES, AND OPTICAL PROPERTIES OF III-NITRIDE QUANTUM DOTS. International Journal of High Speed Electronics and Systems, 2002, 12, 79-110.	0.3	21
12	Reversible adsorption-enhanced quantum confinement in semiconductor quantum dots. Applied Physics Letters, 2002, 81, 5045-5047.	1.5	41
13	High-field Zeeman contribution to the trion binding energy. Physical Review B, 2002, 65, .	1.1	13
14	Surface control of optical properties in silicon nanoclusters. Journal of Chemical Physics, 2002, 117, 6721-6729.	1.2	132
15	Colloidal Semiconductor Quantum Dot Conjugates in Biosensing. , 2002, , 537-569.		24
16	Are Silicon Nanoparticles an Interstellar Dust Component?. Astrophysical Journal, 2002, 564, 803-812.	1.6	59
17	Optical and transport properties of short-period InAs/GaAs superlattices near quantum dot formation. Semiconductor Science and Technology, 2002, 17, 947-951.	1.0	9
18	Atomic aspects in the epitaxial growth of metallic superlattices and nanostructures. Journal of Physics Condensed Matter, 2002, 14, R1063-R1097.	0.7	41

#	Article	IF	CITATIONS
19	Shape, orientation and surface structure of Si and Ge nano-particles grown on SiN. Nanotechnology, 2002, 13, 714-719.	1.3	7
20	Interfacial controlled growth of Agl nanoparticles. , 2002, , .		10
21	Sub-wetting layer continuum states in the self-organized quantum dot samples. Materials Research Society Symposia Proceedings, 2002, 737, 92.	0.1	0
22	Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide. Materials Research Society Symposia Proceedings, 2002, 737, 144.	0.1	0
23	Patterned Structures of Silicon Nanocrystals Prepared by Pulsed Laser Interference Crystallization of Ultra-Thin A-Si:H Single-Layer. Materials Research Society Symposia Proceedings, 2002, 737, 426.	0.1	0
24	Steady-State Photoluminescence Characteristics of Sb-Doped Agl Thin Films. Nano Letters, 2002, 2, 975-978.	4.5	18
25	Strain-Induced Confinement of Excitons in Quasi-free Agl Nanoparticles. Nano Letters, 2002, 2, 431-434.	4.5	20
26	Calculations on the size effects of Raman intensities of silicon quantum dots. Physical Review B, 2002, 65, .	1.1	97
27	Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes. Science, 2002, 295, 1506-1508.	6.0	1,296
28	Optical properties of Cd1ÂxZnxS nanocrystallites in solÂgel silica matrix. Journal Physics D: Applied Physics, 2002, 35, 2636-2642.	1.3	39
29	Fluorescence Decay Time of Single Semiconductor Nanocrystals. Physical Review Letters, 2002, 88, 137401.	2.9	416
30	Influence of Quantum Confinement on the Electronic and Magnetic Properties of (Ga,Mn)As Diluted Magnetic Semiconductor. Nano Letters, 2002, 2, 605-608.	4.5	101
31	II-VI semiconductor nanoparticles formed by Langmuir-Blodgett film technique: optical study. , 0, , .		2
32	Calculations of surface effects on phonon modes and Raman intensities of Ge quantum dots. Physical Review B, 2002, 66, .	1.1	21
34	Semiconductor Nanohelices Templated by Supramolecular Ribbons. Angewandte Chemie - International Edition, 2002, 41, 1705-1709.	7.2	256
35	Optical Absorption and Photoluminescence in PbS Quantum Dots. Physica Status Solidi (B): Basic Research, 2002, 232, 95-99.	0.7	3
36	Simulation of Semiconductor Nanostructures. Physica Status Solidi (B): Basic Research, 2002, 233, 39-48.	0.7	1
37	Two Types of Electronic States in One-Dimensional Crystals of Finite Length. Annals of Physics, 2002, 301, 22-30.	1.0	17

#	ARTICLE	IF	CITATIONS
38	Synthesis and characterization of sol-gel derived ZnS: Mn2+ nanocrystallites embedded in a silica matrix. Bulletin of Materials Science, 2002, 25, 175-180.	0.8	105
39	Resonant quenching of photoluminescence in InxGa1â^'xAs/AlyGa1â^'yAs/GaAs self assembled quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 88, 252-254.	1.7	O
40	Passivation effects of silicon nanoclusters. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 96, 80-85.	1.7	13
41	Upper limit of blue shift in the photoluminescence of CdSe and CdS nanosolids. Acta Materialia, 2002, 50, 4687-4693.	3.8	43
42	One generation at a time. Nature, 2002, 415, 487-488.	13.7	14
43	Optical anisotropy of ellipsoidal quantum dots. Physical Review B, 2002, 66, .	1.1	47
44	Microscopic theory of nanostructured semiconductor devices: beyond the envelope-function approximation. Semiconductor Science and Technology, 2003, 18, R1-R31.	1.0	110
45	Ground state transitions in vertically coupled N-layer single electron quantum dots. Solid State Communications, 2003, 128, 369-373.	0.9	2
46	Synthesis and optical characterization of sol–gel derived zinc sulphide nanoparticles confined in amorphous silica thin films. Materials Chemistry and Physics, 2003, 78, 372-379.	2.0	38
47	Multi-wavelength intermittent photoluminescence of single CdSe quantum dots. Science and Technology of Advanced Materials, 2003, 4, 519-522.	2.8	5
48	Optical spectra of quantum dot aggregates in sub-wetting layer region. Microelectronics Journal, 2003, 34, 583-585.	1.1	0
49	Tailoring of room temperature excitonic luminescence in sol–gel zinc oxide–silica nanocomposite films. Thin Solid Films, 2003, 441, 228-237.	0.8	64
50	Effects of the sol-gel solution host on the chemical and optical properties of PbS quantum dots. Journal of Molecular Structure, 2003, 651-653, 467-473.	1.8	15
51	Optical spectra of quantum dot aggregates in the sub-wetting layer region. Microelectronic Engineering, 2003, 69, 256-260.	1.1	1
52	Wentzel–Kramers–Brillouin quantization rules for two-dimensional quantum dots. Physica B: Condensed Matter, 2003, 325, 214-223.	1.3	13
53	Impurity effect on low-lying spectra in a two-electron quantum dot with parabolic confinement. Physica B: Condensed Matter, 2003, 334, 317-322.	1.3	8
54	Binding energies of an exciton bound to a charged impurity in quantum dots. Physica B: Condensed Matter, 2003, 337, 58-63.	1.3	4
55	GaN-based quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 244-252.	1.3	12

#	ARTICLE	IF	CITATIONS
56	Self-assembled quantum dots: level broadening and continuous background in the sub-wetting layer region of electron energy. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 89-90.	1.3	4
57	Transport properties through quantum dot in a vertical electric field. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 147-148.	1.3	2
58	Optical switching spectroscopy of PbS quantum dots with dual-wavelength pump–probe. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 104-106.	1.3	8
59	Single-electron charging spectra: from natural to artificial atoms. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 18, 523-529.	1.3	2
60	Effects of surface passivation and interfacial reaction on the size-dependent 2p-level shift of supported copper nanosolids. Acta Materialia, 2003, 51, 4631-4636.	3.8	22
61	Electronic spectral densities and optical spectra of quantum dot aggregates in sub-wetting layer region. Materials Science in Semiconductor Processing, 2003, 6, 143-147.	1.9	0
62	Scanning near-field optical microscopy using semiconductor nanocrystals as a local fluorescence and fluorescence resonance energy transfer source. Journal of Microscopy, 2003, 210, 274-278.	0.8	47
63	Polaronic exciton in a parabolic quantum dot. Physica Status Solidi (B): Basic Research, 2003, 236, 82-89.	0.7	12
64	Electronic and optical properties of semiconductor nanostructures. Physica Status Solidi (B): Basic Research, 2003, 237, 320-340.	0.7	9
65	Effect of charge carrier–phonon coupling on the energy of shallow donors in CdSe quantum dots. Physica Status Solidi (B): Basic Research, 2003, 240, 106-115.	0.7	8
66	Synthesis dynamics of passivated silicon nanoclusters. Physica Status Solidi (B): Basic Research, 2003, 239, 11-18.	0.7	7
67	Surface-modification effects on luminescence properties of CdS and CdMnS quantum dots prepared by a reverse-micelle method. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1233-1236.	0.8	8
68	Persistent photoconductivity in quantum dot layers in InAs/GaAs structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1297-1300.	0.8	4
69	Lateral electronic transport in short-period InAs/GaAs superlattices at the threshold of quantum dot formation. Semiconductors, 2003, 37, 70-76.	0.2	3
70	Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Nature Materials, 2003, 2, 517-520.	13.3	360
71	Oxidation electronics: bond–band–barrier correlation and its applications. Progress in Materials Science, 2003, 48, 521-685.	16.0	200
72	Biological applications of colloidal nanocrystals. Nanotechnology, 2003, 14, R15-R27.	1.3	698
7 3	Theory of single molecule line shapes of multichromophoric macromolecules. Journal of Chemical Physics, 2003, 118, 9312-9323.	1.2	43

#	Article	IF	CITATIONS
74	Computational Studies of the Optical Emission of Silicon Nanocrystals. Journal of the American Chemical Society, 2003, 125, 2786-2791.	6.6	162
75	Formation and Optical Properties of Cylindrical Gold Nanoshells on Silica and Titania Nanorods. Journal of Physical Chemistry B, 2003, 107, 13313-13318.	1.2	37
76	Fluorescence Anisotropy and Crystal Structure of Individual Semiconductor Nanocrystalsâ€. Journal of Physical Chemistry B, 2003, 107, 7463-7471.	1.2	63
77	Shape Control in Electrodeposited, Epitaxial CdSe Nanocrystals on (111) Gold. Journal of Physical Chemistry B, 2003, 107, 2174-2179.	1.2	11
78	Calculation of optical absorption spectra of hydrogenated Si clusters: Bethe-Salpeter equation versus time-dependent local-density approximation. Physical Review B, 2003, 68, .	1.1	94
79	Quantum cascade transitions in nanostructures. Advances in Physics, 2003, 52, 455-521.	35.9	48
80	Nanosecond exciton recombination dynamics in colloidal CdSe quantum dots under ambient conditions. Applied Physics Letters, 2003, 83, 1423-1425.	1.5	115
81	Excited states in the infinite quantum lens potential: conformal mapping and moment quantization methods. Journal of Physics Condensed Matter, 2003, 15, 8465-8484.	0.7	11
82	Inorganic surface passivation of PbS nanocrystals resulting in strong photoluminescent emission. Nanotechnology, 2003, 14, 991-997.	1.3	54
83	Semiconductor Nanocrystals with Multifunctional Polymer Ligands. Journal of the American Chemical Society, 2003, 125, 320-321.	6.6	141
84	Electron energy state spin-splitting in nanoscale InAs/GaAs semiconductor quantum dots and rings. , 0, , .		0
85	Optical study on II-VI semiconductor nanoparticles in langmuir~blodgett films. IEEE Nanotechnology Magazine, 2003, 2, 44-49.	1.1	13
86	Magnetic field effect on the polarizability of bound polarons in quantum nanocrystallites. Physical Review B, 2003, 68, .	1.1	31
87	Excitons in InP/InAs inhomogeneous quantum dots. Journal of Physics Condensed Matter, 2003, 15, 175-184.	0.7	7
88	Nonradiative recombination in quantum dots via Coulomb interaction with carriers in the barrier region. Applied Physics Letters, 2003, 82, 2571-2573.	1.5	12
89	Theoretical investigation of the surface vibrational modes in germanium nanocrystals. Physical Review B, 2003, 68, .	1.1	39
90	Influence of Synthesis Conditions on the Structural and Optical Properties of Passivated Silicon Nanoclusters. Physical Review Letters, 2003, 90, 167402.	2.9	53
91	Electron transport through coupled quantum dots. Journal of Applied Physics, 2003, 94, 5402.	1.1	29

#	Article	IF	CITATIONS
92	Ab InitioCalculations for Large Dielectric Matrices of Confined Systems. Physical Review Letters, 2003, 90, 127401.	2.9	66
93	Optical properties of confined polaronic excitons in spherical ionic quantum dots. Physical Review B, 2003, 68, .	1.1	140
94	Role of LO Phonons in Optical Spectra of Quantum Dot Aggregates in Sub-Wetting Layer Region of Energy. Modern Physics Letters B, 2003, 17, 813-819.	1.0	1
95	Electronic structure of vertically coupled multilayer semiconductor quantum dots in a magnetic field. , 0, , .		0
96	Patterned distribution of silicon nanocrystals prepared by pulsed laser interference crystallization of an ultrathin a-Si:H single layer. Journal of Physics Condensed Matter, 2003, 15, 609-615.	0.7	1
97	Coherent Coupling of Double Quantum Dots Embedded in a Mesoscopic Ring. Chinese Physics Letters, 2003, 20, 1574-1577.	1.3	16
98	Conduction-band anisotropy effects in spherical semiconductor nanocrystals: a theoretical study. Journal of Physics Condensed Matter, 2003, 15, 5715-5721.	0.7	4
99	Second Bound State of Biexcitons in Quantum Dots. Chinese Physics Letters, 2003, 20, 121-123.	1.3	2
100	An accurate description of quantum size effects in InP nanocrystallites over a wide range of sizes. Journal Physics D: Applied Physics, 2003, 36, 1595-1598.	1.3	21
101	Electronic states in quantum films. Europhysics Letters, 2003, 64, 783-789.	0.7	4
102	Optical Spectra of Quantum Dot Aggregates in the Sub-Wetting Layer Region. Journal of Metastable and Nanocrystalline Materials, 2003, 17, 65-0.	0.1	0
103	The formation of CdS nanocrystals in silica gels by gamma-irradiation and their optical properties. Journal of Physics Condensed Matter, 2004, 16, 3229-3238.	0.7	33
104	Giant Persistent Current in a Mesoscopic Ring with Parallel-Coupled Double Quantum Dots. Chinese Physics Letters, 2004, 21, 911-914.	1.3	15
105	Coherent control of electric currents in superlattices and molecular wires: Effect of relaxation. Physical Review B, 2004, 69, .	1.1	15
106	Ultrafast optical generation of coherent phonons inCdTe1â^'xSexquantum dots. Physical Review B, 2004, 69, .	1.1	52
107	Optical properties of passivated silicon nanoclusters:â€,The role of synthesis. Journal of Chemical Physics, 2004, 120, 10807-10814.	1.2	41
108	Quantum lens in an external electric field: Anomalous photoluminescence behavior. Journal of Applied Physics, 2004, 95, 6192-6199.	1,1	6
109	Confinement in silicon nanowires: Optical properties. Applied Physics Letters, 2004, 85, 2008-2010.	1.5	44

#	Article	IF	Citations
110	Ab initiostructural and electronic properties of hydrogenated silicon nanoclusters in the ground and excited state. Physical Review B, 2004, 69, .	1.1	117
111	Microscopic investigation of phonon modes inSiGealloy nanocrystals. Physical Review B, 2004, 69, .	1.1	51
112	Optical properties of epitaxially grown submonolayerCdSeâ^•ZnSenanostructures. Physical Review B, 2004, 70, .	1.1	3
113	Electric-field and exciton structure in CdSe nanocrystals. Physical Review B, 2004, 69, .	1.1	36
114	Solution Phase Synthesis of Semiconductor Nanowires. Materials Research Society Symposia Proceedings, 2004, 848, 394.	0.1	0
115	Quantum Dot Nanocrystals for In Vivo Molecular and Cellular Imaging¶. Photochemistry and Photobiology, 2004, 80, 377.	1.3	148
116	HgTe, CdTe, (Cd,Hg)Te, Cd(Te,Se), Cd(Te,S), ZnTe, HgSe, CdSe, Cd(Se,S), (Cd,Mn)Se, (Cd,Zn)Se quantum dots-nanocrystals., 0,, 220-283.		1
117	EVOLUTION AND ORDERING OF MULTILAYER Ge QUANTUM DOTS ON Si(001). International Journal of Nanoscience, 2004, 03, 579-587.	0.4	1
118	The use of nanocrystals in biological detection. Nature Biotechnology, 2004, 22, 47-52.	9.4	2,849
119	Quantum dots and other nanoparticles: what can they offer to drug discovery?. Drug Discovery Today, 2004, 9, 1065-1071.	3.2	142
120	One-step synthesis of shelled PbS nanoparticles in a layered double hydroxide matrix. Mendeleev Communications, 2004, 14, 174-176.	0.6	13
121	Atomistic theory of transport in organic and inorganic nanostructures. Reports on Progress in Physics, 2004, 67, 1497-1561.	8.1	279
122	Ultrafast carrier dynamics of resonantly excited InAs/GaAs self-assembled quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 20, 290-294.	1.3	3
123	A tight-binding study of LUMO states in ellipsoidal silicon nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 808-814.	1.3	3
124	Transient processes and luminescence upconversion in zero-dimensional nanostructures. Surface Science, 2004, 566-568, 321-326.	0.8	29
125	Vertical coupling effects and transition energies in multilayer InAs/GaAs quantum dots. Surface Science, 2004, 566-568, 1057-1062.	0.8	2
126	Nonlinear absorption of PbS nanocrystals in silicate glass. Physica Status Solidi (B): Basic Research, 2004, 241, 945-951.	0.7	13
127	PbS nanoparticles in Langmuir–Blodgett films: kinetics of formation and growth. Physica Status Solidi (B): Basic Research, 2004, 241, 1026-1031.	0.7	2

#	Article	IF	CITATIONS
128	Persistent current oscillations in a series-coupled double quantum dot embedded in a mesoscopic ring. Physica Status Solidi (B): Basic Research, 2004, 241, 1299-1305.	0.7	1
129	Optical properties of CdS quantum-dot superlattices self-organized with electrostatic interaction. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 783-786.	0.8	0
130	Temporal profiles of excitons in surface-modified CdS and CdMnS quantum dots prepared by a reverse-micelle method. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 835-838.	0.8	2
131	The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films. Surface Science Reports, 2004, 53, 1-197.	3.8	94
132	Properties of narrow gap quantum dots and wells in the InAs/InSb/GaSb systems. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 20, 204-210.	1.3	13
133	Effects of the dark-exciton state on photoluminescence dynamics in surface-modified CdS quantum dots prepared by a colloidal method. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 363-366.	1.3	15
134	Quantum dots in biology and medicine. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 25, 1-12.	1.3	337
135	Energy spectra of an exciton in a Gaussian potential and magnetic field. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 323, 132-137.	0.9	10
136	Properties of the ground state of parallel double quantum dots embedded in a mesoscopic ring. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 327, 500-505.	0.9	0
137	Electronic Transient Processes and Optical Spectra in Quantum Dots for Quantum Computing. IEEE Nanotechnology Magazine, 2004, 3, 17-25.	1.1	17
138	Permanent 3D microstructures in a polymeric host created using holographic optical tweezers. Journal of Modern Optics, 2004, 51, 627-632.	0.6	43
139	Lead Sulphide/Phthalocyanine Nanocomposite Spun Films. IEEE Nanotechnology Magazine, 2004, 3, 388-394.	1.1	6
140	Distinguishing the effect of surface passivation from the effect of size on the photonic and electronic behavior of porous silicon. Journal of Applied Physics, 2004, 96, 1704-1708.	1.1	9
141	Solution-Based Straight and Branched CdSe Nanowires. Chemistry of Materials, 2004, 16, 5260-5272.	3.2	214
142	Electron and hole wave functions in self-assembled quantum rings. Physical Review B, 2004, 69, .	1.1	66
143	Preparation of Nanosized ZnS-Passivated CdS Particle Films via the MOCVD Process with Co-fed Single Source Precursors. Langmuir, 2004, 20, 194-201.	1.6	38
144	Nanostructured Oxides in Chemistry:  Characterization and Properties. Chemical Reviews, 2004, 104, 4063-4104.	23.0	909
145	Quantum Confinement in Phosphorus-Doped Silicon Nanocrystals. Physical Review Letters, 2004, 92, 046802.	2.9	149

#	Article	IF	Citations
146	Electron affinities and ionization energies in Si and Ge nanocrystals. Physical Review B, 2004, 69, .	1.1	65
147	Electroluminescence from isolated CdSeâ^•ZnS quantum dots in multilayered light-emitting diodes. Journal of Applied Physics, 2004, 96, 3206-3210.	1.1	144
148	Electronic structure and optical property of semiconductor nanocrystallites. Computational Materials Science, 2004, 30, 274-277.	1.4	7
149	Optical properties of PbS quantum dot doped sol–gel films. Journal of Non-Crystalline Solids, 2004, 345-346, 639-642.	1.5	44
150	Periodic solids and electron bands. , 2004, , 73-99.		1
151	The Kohn–Sham auxiliary system. , 2004, , 135-151.		1
152	Functionals for exchange and correlation. , 2004, , 152-171.		3
153	Plane waves and grids: basics., 2004,, 236-253.		0
154	Localized orbitals: tight-binding. , 2004, , 272-297.		0
155	Localized orbitals: full calculations. , 2004, , 298-312.		0
156	Augmented functions: APW, KKR, MTO., 2004, , 313-344.		0
157	Quantum molecular dynamics (QMD)., 2004,, 371-386.		0
158	Excitation spectra and optical properties. , 2004, , 406-417.		0
164	Augmented functions: linear methods. , 2004, , 345-368.		0
167	Density functional theory: foundations. , 2004, , 119-134.		6
168	STREL: a versatile computational environment for the study and design of nanostructures. International Journal of Nanotechnology, 2005, 2, 271.	0.1	4
169	Stress distribution, strains and energetics of Si-capped Ge quantum dots: an atomistic simulation study. Journal of Physics: Conference Series, 2005, 10, 113-116.	0.3	1
170	An iterative method for single and vertically stacked semiconductor quantum dots simulation. Mathematical and Computer Modelling, 2005, 42, 711-718.	2.0	7

#	Article	IF	CITATIONS
171	Magneto-bound polaron in CdSe spherical quantum dots: strong coupling approach. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 25, 366-373.	1.3	36
172	Energy transfer by resonant dipole–dipole interaction from a conjugated polymer to a quantum-dot. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 28, 66-75.	1.3	10
173	Stationary-state electronic distribution in quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 29, 341-349.	1.3	15
174	Exciton states trapped by a parabolic quantum dot. Physica B: Condensed Matter, 2005, 358, 109-113.	1.3	25
175	Polymer Intercalation into Porous and Layered Nanostructures. Springer Series in Materials Science, 2005, , 321-376.	0.4	2
176	Temperature-Sensitive Photoluminescence of CdSe Quantum Dot Clusters. Journal of Physical Chemistry B, 2005, 109, 13899-13905.	1.2	183
177	Stimulated and Spontaneous Optical Generation of Electron Spin Coherence in Charged GaAs Quantum Dots. Physical Review Letters, 2005, 94, 227403.	2.9	249
178	Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews, 2005, 105, 1025-1102.	23.0	6,821
179	Specific Features of Photoluminescence of InAsâ^•GaAs QD Structures at Different Pumping Levels. Semiconductors, 2005, 39, 1308.	0.2	3
180	The Effects of Organisation, Embedding and Surfactants on the Properties of Cadmium Chalcogenide (CdS, CdSe and CdS/CdSe) Semiconductor Nanoparticles. European Journal of Inorganic Chemistry, 2005, 2005, 3585-3596.	1.0	33
181	Defect states in CdSe nanocrystalline layers. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1081-1087.	0.8	2
182	Capacitance, Dielectric Constant and Doping Quantum Dots. , 2005, , 239-265.		11
183	Transition Energies of Vertically Coupled Multilayer Nanoscale InAs/GaAs Semiconductor Quantum Dots of Different Shapes. Japanese Journal of Applied Physics, 2005, 44, 2642-2646.	0.8	3
184	Photoacoustic and Photoluminescence Characterization of Passivated and Unpassivated Mn-Doped ZnS Nanoparticles. Japanese Journal of Applied Physics, 2005, 44, 4354-4357.	0.8	6
185	Energy spectrum of a positronium negative ion in quantum dots. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 1201-1207.	0.6	7
186	Solâ^'Gel Processing of Semiconducting Metal Chalcogenide Xerogels:  Influence of Dimensionality on Quantum Confinement Effects in a Nanoparticle Network. Chemistry of Materials, 2005, 17, 6644-6650.	3.2	58
187	Microscopic theory of the low frequency Raman modes in germanium nanocrystals. Physical Review B, 2005, 71, .	1.1	24
188	Comparison of the optical response of hydrogen-passivated germanium and silicon clusters. Physical Review B, 2005, 71, .	1.1	38

#	Article	IF	CITATIONS
189	Controlling the electronic band structures in hydrogenated silicon nanocrystals by shallow impurity doping. Physical Review B, 2005, 72, .	1.1	11
190	Control of field-induced localization in superlattices: Coherence and relaxation. Physical Review B, 2005, 71, .	1.1	5
191	Effect of surface bond-order loss on the dc conductance of a metallic nanosolid. Journal of Applied Physics, 2005, 98, 104308.	1.1	5
192	Coexistence of deep levels with optically active InAs quantum dots. Physical Review B, 2005, 72, .	1.1	47
193	Unravelling elementary non-radiative effects in nanocrystal quantum dots., 0,,.		0
194	Strong enhancement of band-edge photoluminescence in CdS quantum dots prepared by a reverse-micelle method. Journal of Applied Physics, 2005, 98, 083514.	1.1	35
195	Photothermal Melting and Energy Migration in Conjugated Oligomer Films Doped with CdSe Quantum Dots. Journal of Physical Chemistry B, 2005, 109, 6999-7006.	1.2	6
196	Intensity-dependent bleaching relaxation in lead salt quantum dots. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1660.	0.9	21
197	Modeling the optical properties of Si-capped germanium quantum dots. Computational Materials Science, 2005, 33, 303-309.	1.4	3
198	Effective-mass theory for hierarchical self-assembly of GaAsâ • Alx Ga1â · XAsquantum dots. Physical Review B, 2005, 71, .	1.1	60
199	Magnetic, Electrical and Optical Properties of Metal-Polymer Nanocomposites. Springer Series in Materials Science, 2005, , 459-513.	0.4	1
200	Band-structure-corrected local density approximation study of semiconductor quantum dots and wires. Physical Review B, 2005, 72, .	1.1	224
201	Structure and Properties of ZnS Nanoclusters. Journal of Physical Chemistry B, 2005, 109, 2703-2709.	1.2	102
202	Interplay between Auger and Ionization Processes in Nanocrystal Quantum Dots. Journal of Physical Chemistry B, 2005, 109, 18214-18217.	1.2	48
203	Optoelectronic properties of polymer-nanocrystal composites active at near-infrared wavelengths. Journal of Applied Physics, 2005, 98, 074310.	1.1	28
204	Semiconductor Nanowires for Subwavelength Photonics Integration. Journal of Physical Chemistry B, 2005, 109, 15190-15213.	1.2	276
205	Synthesis and Characterization of ZnS Nanosized Semiconductor Particles within Mesoporous Solids. Journal of Physical Chemistry B, 2006, 110, 22339-22345.	1.2	44
206	Highly efficient blue photoluminescence from colloidal lead-iodide nanoparticles. Journal Physics D: Applied Physics, 2006, 39, 1477-1480.	1.3	19

#	Article	IF	CITATIONS
207	DNA-sensors based on functionalized conducting polymers and quantum dots., 2006,,.		2
208	Electronic structure and binding energy of a hydrogenic impurity in a hierarchically self-assembled GaAsâ·AlxGa1â°xAs quantum dot. Journal of Applied Physics, 2006, 100, 083714.	1.1	111
209	Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. Chemical Communications, 2006, , 4160.	2.2	245
210	Photochromic nanocomposites of bipyridinium dications and semiconductor quantum dots. Journal of Materials Chemistry, 2006, 16, 1118.	6.7	17
211	Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study. Physical Review B, 2006, 73, .	1.1	99
212	Quantum Dots-Based Optical Fiber Temperature Sensors Fabricated by Layer-by-Layer. IEEE Sensors Journal, 2006, 6, 1378-1379.	2.4	56
213	pH-Sensitive Quantum Dots. Journal of Physical Chemistry B, 2006, 110, 3853-3855.	1.2	162
214	Luminescence Modulation with Semiconductor Quantum Dots and Photochromic Ligands. Australian Journal of Chemistry, 2006, 59, 175.	0.5	50
215	Binding energies of an exciton in a Gaussian potential quantum dot. Chinese Physics B, 2006, 15, 203-208.	1.3	11
216	Nanoparticleâ^'Gel Hybrid Material Designed with Bile Acid Analogues. Chemistry of Materials, 2006, 18, 4224-4226.	3.2	68
217	Photo-Gated Charge Transfer of Organized Assemblies of CdSe Quantum Dots. Langmuir, 2006, 22, 787-793.	1.6	19
218	Far-Infrared Characteristics of ZnS Nanoparticles Measured by Terahertz Time-Domain Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 1989-1993.	1.2	41
219	Nonlinear optical properties and Q-switch performance of silica glasses doped with Cu_xSe nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1268.	0.9	14
220	pH-Sensitive Ligand for Luminescent Quantum Dots. Langmuir, 2006, 22, 10284-10290.	1.6	118
221	Efficient CdSe/CdS Quantum Dot Light-Emitting Diodes Using a Thermally Polymerized Hole Transport Layer. Nano Letters, 2006, 6, 463-467.	4.5	502
222	Ultrafast exciton dynamics in semiconducting single-walled carbon nanotubes $\hat{A}\P$. Molecular Physics, 2006, 104, 1179-1189.	0.8	24
223	Light Scattering Spectroscopies of Semiconductor Nanocrystals (Quantum Dots). Journal of Physics: Conference Series, 2006, 28, 1-6.	0.3	3
224	Some electronic and optical properties of self-assembled quantum dots: asymmetries in a lens domain. Physica Status Solidi (B): Basic Research, 2006, 243, 1276-1285.	0.7	6

#	ARTICLE	IF	CITATIONS
225	Excitons in nanoscale systems. Nature Materials, 2006, 5, 683-696.	13.3	1,096
226	Quasi-nanowires from fluorescent semiconductor nanocrystals on the surface of oriented DNA molecules. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2006, 100, 854-861.	0.2	8
227	Size effect on the bandgap of Il–VI semiconductor nanocrystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 131, 191-194.	1.7	53
228	Copper and copper selenide nanoparticles in the sol-gel matrices: Structural and optical. Materials Science and Engineering C, 2006, 26, 952-955.	3.8	32
229	Innovative materials based on sol–gel technology. Optical Materials, 2006, 28, 64-70.	1.7	41
230	Influence of the built-in electric field on luminescent properties in self-formed single InxGa1â^'xN/GaN quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 33, 343-348.	1.3	7
231	Computational study of the relative stabilities of ZnS clusters, for sizes between 1 and 4nm. Journal of Crystal Growth, 2006, 294, 2-8.	0.7	51
232	The effect of ultraviolet irradiation on the photothermal, photoluminescence and photoluminescence excitation spectra of Mn-doped ZnS nanoparticles. Thin Solid Films, 2006, 499, 104-109.	0.8	18
233	Luminescent nanomaterials for biological labelling. Nanotechnology, 2006, 17, R1-R13.	1.3	514
234	Energy for Two-electron Quantum Dots: The Quantization Rule Approach. Foundations of Physics, 2006, 36, 1884-1892.	0.6	9
235	LO-phonon overheating in quantum dots. European Physical Journal D, 2006, 56, 33-40.	0.4	43
236	Saturation of absorption by lead sulfide nanoparticles in the main absorption band region. Journal of Applied Spectroscopy, 2006, 73, 216-221.	0.3	3
237	Preparation of a novel composite particles and its application in the fluorescent detection of proteins. Analytical and Bioanalytical Chemistry, 2006, 385, 1457-1461.	1.9	7
238	Size effects on the band-gap of semiconductor compounds. Materials Letters, 2006, 60, 2526-2529.	1.3	125
239	Surface morphology of crystalline antimony islands on graphite at room temperature. Journal of Physics Condensed Matter, 2006, 18, 3425-3434.	0.7	7
240	Whispering gallery mode emission at telecommunications-window wavelengths using PbSe nanocrystals attached to photonic beads. Semiconductor Science and Technology, 2006, 21, L21-L24.	1.0	13
241	Self-assembly onto solid surface of some nanopowders synthesized by laser pyrolysis. Smart Materials and Structures, 2006, 15, 816-820.	1.8	2
242	Spin-Flip Process through Double Quantum Dots Coupled to Ferromagnetic Leads. Chinese Physics Letters, 2006, 23, 1888-1891.	1.3	2

#	Article	IF	CITATIONS
243	Application of Plane Wave Method to the Calculation of Electronic States of Nano-Structures. Chinese Physics Letters, 2006, 23, 1896-1899.	1.3	28
244	Polaronic Electron-Phonon Interactions on the Third-Harmonic Generation in a Square Quantum Well. Communications in Theoretical Physics, 2006, 45, 171-174.	1.1	32
245	DNA-assisted formation of quasi-nanowires from fluorescent CdSe/ZnS nanocrystals. Nanotechnology, 2006, 17, 581-587.	1.3	57
246	lodization of rf sputter induced disordered Ag thin films reveals volume plasmon-exciton "transition― Journal of Applied Physics, 2006, 100, 064314.	1.1	23
247	Biexciton binding energy in parabolicGaAsquantum dots. Physical Review B, 2006, 73, .	1.1	28
248	A mechanism to signal receptor-substrate interactions with luminescent quantum dots. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11457-11460.	3.3	141
250	IN SITU STM INVESTIGATION OF Ge NANOSTRUCTURES WITH AND WITHOUT Sb ON GRAPHITE. Surface Review and Letters, 2006, 13, 241-249.	0.5	3
251	THE EFFECT OF ANNEALING ON THE THERMAL PROPERTIES OF NANO-CdS BY PHOTOACOUSTICS. International Journal of Nanoscience, 2007, 06, 51-56.	0.4	3
252	Electroluminescence from nanoparticles/organic composites., 2007,,.		1
253	FOUR-ELECTRON SYSTEMS CONFINED IN MULTILAYER QUANTUM DOTS. Modern Physics Letters B, 2007, 21, 1399-1413.	1.0	3
254	Two-electron singlet states in semiconductor quantum dots with Gaussian confinement: a single-parameter variational calculation. Journal of Physics Condensed Matter, 2007, 19, 456217.	0.7	30
255	Spin-polarized transport in a coupled-double-quantum-dot system with ferromagnetic electrodes. Journal of Physics Condensed Matter, 2007, 19, 376215.	0.7	5
256	Nonparabolicity and dielectric effects on addition energy spectra of spherical nanocrystals. Journal of Applied Physics, 2007, 102, .	1.1	6
257	Ferromagnetism in Ge nanostructures. Applied Physics Letters, 2007, 90, 182508.	1.5	14
258	Magnetic coupling in Ge nanoparticles. Applied Physics Letters, 2007, 91, 082505.	1.5	9
259	Quantum Monte Carlo results for bipolaron stability in quantum dots. Physical Review B, 2007, 76, .	1.1	14
260	Fundamental transport processes in ensembles of silicon quantum dots. Physical Review B, 2007, 75, .	1.1	46
261	Conductance model of gold-molecule-silicon and carbon nanotube-molecule-silicon junctions. Physical Review B, 2007, 76, .	1.1	15

#	Article	IF	CITATIONS
262	Chapter 1 Metalâ€"moleculeâ€"semiconductor junctions:An ab initio analysis. Theoretical and Computational Chemistry, 2007, 17, 1-54.	0.2	1
263	Size Effect on the Bandgap of Semiconductor Nanocrystals. Solid State Phenomena, 2007, 121-123, 1069-1072.	0.3	3
264	Nanodevices for Single Molecule Studies. , 2007, , 271-301.		3
266	Size dependence of nanostructures: Impact of bond order deficiency. Progress in Solid State Chemistry, 2007, 35, 1-159.	3.9	774
267	Interfacial Bioelectrochemistry:  Fabrication, Properties and Applications of Functional Nanostructured Biointerfaces. Journal of Physical Chemistry C, 2007, 111, 2351-2367.	1.5	155
268	Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots. Applied Physics Letters, 2007, 90, 133112.	1.5	31
270	Silicon-Based Low-Dimensional Nanomaterials and Nanodevices. Chemical Reviews, 2007, 107, 1454-1532.	23.0	219
271	Effective mass and dielectric constant mismatch effects in spherical multishell quantum dots. Physical Review B, 2007, 75, .	1.1	13
272	Photoluminescence properties of a single GaN nanorod with GaNâ [•] AlGaN multilayer quantum disks. Applied Physics Letters, 2007, 90, 101901.	1.5	20
273	Optical Excitations in Cadmium Sulfide Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 10761-10770.	1.5	57
274	Monitoring the Covalent Binding of Quantum Dots to Functionalized Gold Surfaces by Surface Plasmon Resonance Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 10313-10319.	1.5	11
275	Direct Precursor Conversion Reaction for Densely Packed Ag2S Nanocrystal Thin Films. Langmuir, 2007, 23, 2800-2804.	1.6	8
276	Tunable Physical Properties of CaWO4Nanocrystals via Particle Size Control. Journal of Physical Chemistry C, 2007, 111, 6684-6689.	1.5	85
277	pH Sensitivity of Gallium Arsenide (GaAs) Electrodes Functionalized with Methylâ^'mercaptobiphenyl Monolayers. Journal of Physical Chemistry C, 2007, 111, 12414-12419.	1.5	11
278	Bipolaron formation in 1D–3D quantum dots: a lattice quantum Monte Carlo approach. Journal of Physics Condensed Matter, 2007, 19, 255210.	0.7	7
279	Luminescent chemosensors based on semiconductor quantum dots. Physical Chemistry Chemical Physics, 2007, 9, 2036.	1.3	112
280	SiGe Nanodots in Electro-Optical SOI Devices. NATO Science for Peace and Security Series B: Physics and Biophysics, 2007, , 113-128.	0.2	1
281	Strain relaxation and stress-driven interdiffusion in InAsâ·InGaAsâ·InP nanowires. Applied Physics Letters, 2007, 91, 063122.	1.5	3

#	Article	IF	CITATIONS
282	Effect of the lateral misalignment of Si-capped Ge quantum dots on the strain distribution, the valence, conduction states and the optical properties. Materials Science and Engineering C, 2007, 27, 1461-1465.	3.8	1
283	Dynamics at the nanoscale. Materials Science and Engineering C, 2007, 27, 972-980.	3.8	5
284	Nanoparticle-induced transition from positive to negative photochromism. Inorganica Chimica Acta, 2007, 360, 938-944.	1.2	43
285	Influence of the built-in electric field on luminescent properties in self-formed single-GaN/AlxGa1â^'xN quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 39, 209-213.	1.3	4
286	Raman spectroscopy under pressure in semiconductor nanoparticles. Physica Status Solidi (B): Basic Research, 2007, 244, 368-379.	0.7	8
287	Mode-locked quantum-dot lasers. Nature Photonics, 2007, 1, 395-401.	15.6	504
288	Quantum Dot Nanocrystals for <i>In Vivo</i> Molecular and Cellular Imaging [¶] . Photochemistry and Photobiology, 2004, 80, 377-385.	1.3	9
289	Mechanisms of Auger recombination in semiconducting quantum dots. Journal of Experimental and Theoretical Physics, 2007, 104, 951-965.	0.2	17
290	Formation and optical properties of CuInTe2 nanoparticles in silicate matrices. Semiconductors, 2007, 41, 939-945.	0.2	12
291	Electronic Structure of a Hydrogenic Acceptor Impurity in Semiconductor Nano-structures. Nanoscale Research Letters, 2007, 2, 554-560.	3.1	8
292	Electronic states of a hydrogenic donor impurity in semiconductor nano-structures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 120-123.	0.9	83
293	Investigations of organic light emitting diodes with CdSe(ZnS) quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 147, 307-311.	1.7	42
294	Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 888-892.	0.9	104
295	In situ TEM studies of local transport and structure in nanoscale multilayer films. Ultramicroscopy, 2008, 108, 1529-1535.	0.8	11
296	Excimer laser-induced crystallization of CdSe thin films. Applied Physics A: Materials Science and Processing, 2008, 93, 869-874.	1.1	2
297	Microscopic phonon theory of Si/Ge nanocrystals. Frontiers of Physics in China, 2008, 3, 165-172.	1.0	1
298	Dynamics of the Size Distribution of CdTe Quantum Dot Ensembles during Growth in Liquid and Crystalline Phases. ChemPhysChem, 2008, 9, 1057-1061.	1.0	3
299	Magnetic Properties of Germanium Quantum Dots. Advanced Materials, 2008, 20, 779-783.	11.1	10

#	Article	IF	Citations
300	Chemical Vapor Growth of Oneâ€dimensional Magnetite Nanostructures. Advanced Materials, 2008, 20, 1550-1554.	11.1	92
301	Correlation energy in a spherical quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 649-653.	1.3	25
302	Quantum-confined hydrogenic impurity in a spherical quantum dot under the influence of parallel electric and magnetic fields. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 3107-3114.	1.3	22
303	Dipole-allowed optical absorption in a parabolic quantum dot with two electrons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 4323-4326.	0.9	65
304	Nonlinear optical properties of a hydrogenic donor quantum dot. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5498-5500.	0.9	104
305	One-phonon-assisted resonant electron Raman scattering in GaAs (CdS) quantum dots. Physica B: Condensed Matter, 2008, 403, 1870-1875.	1.3	4
306	The higher excited electronic states and spin–orbit splitting of the valence band in three-dimensional assemblies of close-packed ZnSe and CdSe quantum dots in thin film form. Journal of Solid State Chemistry, 2008, 181, 1961-1969.	1.4	15
307	Electrostatic characteristics of nanostructures investigated using electric force microscopy. Journal of Solid State Chemistry, 2008, 181, 1670-1677.	1.4	30
308	Photoluminescence spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532-nm laser radiation and gamma-rays. Journal of Luminescence, 2008, 128, 1771-1776.	1.5	10
309	Quantum confinement and strong coulombic correlation in ZnO nanocrystals. Solid State Communications, 2008, 145, 227-230.	0.9	4
310	Linear and nonlinear optical properties of a hydrogenic donor in spherical quantum dots. Physica B: Condensed Matter, 2008, 403, 4319-4322.	1.3	71
311	Strain-driven (002) preferred orientation of ZnO nanoparticles in ion-implanted silica. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 1055-1061.	0.6	127
312	An overview of solution-based semiconductor nanowires: synthesis and optical studies. Physical Chemistry Chemical Physics, 2008, 10, 620-639.	1.3	150
313	Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. Journal of Materials Chemistry, 2008, 18, 2653.	6.7	279
314	Temperature Dependence of Photoluminescence Dynamics in Colloidal CdS Quantum Dots. Journal of Physical Chemistry C, 2008, 112, 10668-10673.	1.5	40
315	Charge Transport in Nanoparticle Assemblies. Chemical Reviews, 2008, 108, 4072-4124.	23.0	460
316	PEGylated silicon nanoparticles: synthesis and characterization. Chemical Communications, 2008, , 6126.	2.2	63
317	A Study of Photophysics, Photoelectrical Properties, and Photoconductivity Relaxation Dynamics in the Case of Nanocrystalline Tin(II) Selenide Thin Films. Journal of Physical Chemistry C, 2008, 112, 3525-3537.	1.5	51

#	ARTICLE	IF	CITATIONS
318	Role of quantum confinement and hyperfine splitting in lithium-doped ZnO nanocrystals. Physical Review B, 2008, 78, .	1.1	9
319	Size Limits on Doping Phosphorus into Silicon Nanocrystals. Nano Letters, 2008, 8, 596-600.	4.5	142
320	Influence of Acid on Luminescence Properties of Thioglycolic Acid-Capped CdTe Quantum Dots. Journal of Physical Chemistry C, 2008, 112, 8244-8250.	1.5	109
321	Growth of Microscale In ₂ O ₃ Islands on Y-Stabilized Zirconia(100) by Molecular Beam Epitaxy. Chemistry of Materials, 2008, 20, 4551-4553.	3.2	28
322	Electron and energy transfer mechanisms to switch the luminescence of semiconductor quantum dots. Journal of Materials Chemistry, 2008, 18, 5577.	6.7	42
323	Size, Dimensionality, and Constituent Stoichiometry Dependence of Bandgap Energies in Semiconductor Quantum Dots and Wires. Journal of Physical Chemistry C, 2008, 112, 2851-2856.	1.5	71
324	Linear Absorption and Molar Extinction Coefficients in Direct Semiconductor Quantum Dots. Journal of Physical Chemistry C, 2008, 112, 9261-9266.	1.5	66
325	Size-Dependent Raman Red Shifts of Semiconductor Nanocrystals. Journal of Physical Chemistry B, 2008, 112, 14193-14197.	1.2	145
326	Dielectric constant reduction in silicon nanostructures. Physical Review B, 2008, 77, .	1.1	39
327	Engineering of Quantum Dot Nanostructures for Photonic Devices. , 2008, , 505-528.		1
328	Super Low Density InGaAs Semiconductor Ring-Shaped Nanostructures. Crystal Growth and Design, 2008, 8, 1945-1951.	1.4	46
329	Arsenic dependence on the morphology of ultrathin GaAs layers on In0.53Ga0.47Asâ^•InP(001). Journal of Applied Physics, 2008, 103, 104309.	1.1	4
330	Encapsulated white-light CdSe nanocrystals as nanophosphors for solid-state lighting. Journal of Materials Chemistry, 2008, 18, 970.	6.7	100
331	Dithiolane ligands for semiconductor quantum dots. Journal of Materials Chemistry, 2008, 18, 3940.	6.7	12
332	Luminescence quenching in supramolecular assemblies of quantum dots and bipyridinium dications. Journal of Materials Chemistry, 2008, 18, 2022.	6.7	32
333	PHONONS IN SILICON NANOWIRES. , 2008, , 258-288.		4
334	METAL ENCAPSULATED CLUSTERS OF SILICON. , 2008, , 114-148.		6
335	Molecular Composites Comprising TiO ₂ and Their Optical Properties. Macromolecules, 2008, 41, 4838-4844.	2.2	77

#	Article	IF	Citations
337	Preparation and Electrical Properties of Cobaltâ 'Platinum Nanoparticle Monolayers Deposited by the Langmuirâ 'Blodgett Technique. ACS Nano, 2008, 2, 1123-1130.	7.3	130
338	IMPREGNATED SEMICONDUCTOR SCINTILLATOR. International Journal of High Speed Electronics and Systems, 2008, 18, 973-982.	0.3	7
339	Exciton Dynamics and Biexciton Formation in Single-Walled Carbon Nanotubes Studied with Femtosecond Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 4507-4516.	1.5	58
340	Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. Nanotechnology, 2008, 19, 045710.	1.3	162
341	Flux-Selected Titanyl Phthalocyanine Monolayer Architecture on Ag (111). Journal of Physical Chemistry C, 2008, 112, 18537-18542.	1.5	42
342	Spin-Polarized Transport through Parallel Double Quantum Dots Coupled to Ferromagnetic Leads. Chinese Physics Letters, 2008, 25, 2198-2201.	1.3	4
343	Quantum-Confined Stark Effects in a Single GaN Quantum Dot. Chinese Physics Letters, 2008, 25, 2628-2630.	1.3	1
344	Encapsulated Quantum Dot Nanofilms Inside Hollow Core Optical Fibers for Temperature Measurement. IEEE Sensors Journal, 2008, 8, 1368-1374.	2.4	17
345	Quantum Dots coatings inside Photonic Crystal Fibers for temperature sensing. , 2008, , .		1
346	PHONON EXCESS HEATING IN ELECTRONIC RELAXATION THEORY IN QUANTUM DOTS. International Journal of Modern Physics B, 2008, 22, 3439-3460.	1.0	8
347	Spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads. Chinese Physics B, 2008, 17, 296-302.	0.7	5
348	Theoretical studies on the bonding and thermodynamic properties of GenSim (m+n=5) clusters: The precursors of germanium/silicon nanomaterials. Journal of Chemical Physics, 2008, 128, 144305.	1.2	24
349	Characterization Techniques for Nanomaterials., 2008,, 211-281.		9
350	Dielectric control of spin in semiconductor spherical quantum dots. Journal of Applied Physics, 2008, 104, 014313.	1.1	2
351	Experimental verification of FÃ \P rster energy transfer between semiconductor quantum dots. Physical Review B, 2008, 78, .	1.1	73
352	Competition between confinement potential fluctuations and band-gap renormalization effects in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>> < 1.1 > < mml:mr </td><td>1>8.53</td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	> < 1.1 > < mml:mr 	1>8.53
353	Size-dependent oxidation in ZnO nanoparticles embedded in ion-implanted silica. Journal of Applied Physics, 2008, 104, 093505.	1.1	12
354	Multilevel system in ac-driven fields: Symmetries and dynamics in a self-assembled quantum lens. Physical Review B, 2008, 77, .	1.1	0

#	Article	IF	CITATIONS
355	Compact quantum-dot-based ultrafast lasers. Proceedings of SPIE, 2008, , .	0.8	0
356	Compact and efficient mode-locked lasers based on QD-SESAMs. , 2008, , .		2
357	Optical excitations of defects in realistic nanoscale silica clusters: Comparing the performance of density functional theory using hybrid functionals with correlated wavefunction methods. Journal of Chemical Physics, 2008, 129, 014706.	1.2	11
358	<title>Optics of nano-objects</title> . Proceedings of SPIE, 2008, , .	0.8	0
359	Synthesis and characterization of PbS nanocrystals in MDMO-PPV semiconducting polymer for photovoltaic applications. , 2009, , .		0
360	Temperature dependence of the energy transfer of exciton states in bilayer structures of CdSe/ZnS quantum dots. Physical Review B, 2009, 80, .	1.1	24
361	Quasiparticle gaps and exciton Coulomb energies in Si nanoshells: First-principles calculations. Physical Review B, 2009, 80, .	1.1	7
362	Probing excitons and biexcitons in coupled quantum dots by coherent two-dimensional optical spectroscopy. Physical Review B, 2009, 79, .	1.1	7
363	Exciton spectra and polarization fields modified by quantum-dot confinements. Physical Review B, 2009, 80, .	1.1	6
364	Microphotoluminescence studies of tunable wurtzitelnAs0.85P0.15quantum dots embedded in wurtzite InP nanowires. Physical Review B, 2009, 80, .	1.1	18
365	Tuning the emission profiles of various self-assembled InxGa1â^xAs nanostructures by rapid thermal annealing. Journal of Applied Physics, 2009, 106, 073106.	1.1	8
366	Relation between size dispersion and line shape in quantum dot ensembles. Applied Physics Letters, 2009, 95, 263107.	1.5	11
367	OPTICAL PROPERTIES OF CHEMICALLY PREPARED CdS QUANTUM DOTS IN POLYVINYL ALCOHOL. International Journal of Modern Physics B, 2009, 23, 545-555.	1.0	11
368	Linear and Nonlinear Optical Absorptions of a Hydrogenic Donor in a Quantum Dot Under a Magnetic Field. Communications in Theoretical Physics, 2009, 51, 923-926.	1.1	8
369	Bound polarons in quantum dot quantum well structures. Chinese Physics B, 2009, 18, 1935-1941.	0.7	2
370	Size and density control of In droplets at near room temperatures. Nanotechnology, 2009, 20, 285602.	1.3	19
371	Relativistic corrections for a two-dimensional hydrogen-like atom in the presence of a constant magnetic field. Physica Scripta, 2009, 79, 065010.	1.2	11
372	Binding Energy of an Off-Center D ^{â^'} in a Spherical Quantum Dot. Communications in Theoretical Physics, 2009, 51, 919-922.	1.1	9

#	Article	IF	CITATIONS
373	Linear and Nonlinear Optical Absorptions of a Donor Impurity in Spherical Quantum Dots. Communications in Theoretical Physics, 2009, 52, 155-158.	1.1	11
374	Quantum Dots for the Development of Optical Biosensors Based on Fluorescence., 0,, 199-245.		6
375	Large Stokesâ€Shift Fluorescent Silica Nanoparticles with Enhanced Emission Over Free Dye for Single Excitation Multiplexing. Macromolecular Rapid Communications, 2009, 30, 1907-1910.	2.0	40
376	Role of defects in tailoring structural, electrical and optical properties of ZnO. Progress in Materials Science, 2009, 54, 89-136.	16.0	280
377	A study of an exciton in a quantum dot with Woods–Saxon potential. Superlattices and Microstructures, 2009, 46, 693-699.	1.4	25
378	Facile Bulk Synthesis of Homogeneous and Transparent Nanocrystals Hybrids via In Situ Transformation of Ionomers into CdS Quantum-Dot-Polymer. Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19, 374-381.	1.9	16
379	Sonochemical synthesis of core/Shell structured CdS/TiO2 nanocrystals composites. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 698-701.	0.4	4
380	Binding Energy and Spin-Orbit Splitting of a Hydrogenic Donor Impurity in AlGaN/GaN Triangle-Shaped Potential Quantum Well. Nanoscale Research Letters, 2009, 4, 1315-8.	3.1	11
381	Size-dependent radiative emission of PbS quantum dots embedded in Nafion membrane. Applied Physics B: Lasers and Optics, 2009, 95, 173-177.	1.1	15
382	Effect of an electric field and nonlinear optical rectification of confined excitons in quantum dots. Physica Status Solidi (B): Basic Research, 2009, 246, 2257-2262.	0.7	39
383	Atomic-scale mapping of quantum dots formed by droplet epitaxy. Nature Nanotechnology, 2009, 4, 835-838.	15.6	44
384	Molecular neuroimaging in rodents: assessing receptor expression and function. European Journal of Neuroscience, 2009, 30, 1860-1869.	1.2	5
385	Triplet states in organic semiconductors. Materials Science and Engineering Reports, 2009, 66, 71-109.	14.8	448
386	Influence of SPP co-stabilizer on the optical properties of CdS quantum dots grown in PVA. Physics Procedia, 2009, 2, 335-338.	1.2	4
387	Morphological properties of laser irradiated Si/Ge multilayers. Physica B: Condensed Matter, 2009, 404, 4701-4704.	1.3	3
388	Investigation of the growth of In2O3 on Y-stabilized ZrO2(100) by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films, 2009, 517, 4286-4294.	0.8	45
389	Water-soluble, cyclodextrin-functionalized semiconductor nanocrystals: Preparation and pH-dependent aggregation and emission properties. Journal of Luminescence, 2009, 129, 1428-1434.	1.5	5
390	Diploe-allowed optical absorption of an exciton in a spherical parabolic quantum dot. Optics Communications, 2009, 282, 2604-2607.	1.0	57

#	Article	IF	CITATIONS
391	Narrow gap nano-dots growth by droplets heteroepitaxial mode. Infrared Physics and Technology, 2009, 52, 229-234.	1.3	4
392	The donor bound exciton states in wurtzite GaN quantum dot. Current Applied Physics, 2009, 9, 39-43.	1.1	5
393	Detection of Bacillus anthracis spores: comparison of quantum dot and organic dye labeling agents. Advanced Powder Technology, 2009, 20, 438-446.	2.0	5
394	One-dimensional hybrid nanostructures with light-controlled properties. Dalton Transactions, 2009, , 6447.	1.6	16
395	Electronic excitations in nanostructures: an empirical pseudopotential based approach. Journal of Physics Condensed Matter, 2009, 21, 023202.	0.7	79
396	Crystal Phase Evolution in Quantum Confined ZnO Domains on Particles via Atomic Layer Deposition. Crystal Growth and Design, 2009, 9, 2828-2834.	1.4	12
397	Controlled Coupling and Occupation of Silicon Atomic Quantum Dots at Room Temperature. Physical Review Letters, 2009, 102, 046805.	2.9	192
398	Studies on Surface Facets and Chemical Composition of Vapor Grown One-Dimensional Magnetite Nanostructures. Crystal Growth and Design, 2009, 9, 1077-1081.	1.4	36
399	Direct Correlation between Structural and Optical Properties of Illâ^'V Nitride Nanowire Heterostructures with Nanoscale Resolution. Nano Letters, 2009, 9, 3940-3944.	4.5	91
400	Quantum confinement effects in gallium nitride nanostructures: <i>ab initio</i> investigations. Nanotechnology, 2009, 20, 425401.	1.3	14
401	Wavelength dependence of optical tweezer trapping forces on dye-doped polystyrene microspheres. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 2189.	0.9	20
402	The effect of local environment on photoluminescence: A time-dependent density functional theory study of silanone groups on the surface of silica nanostructures. Journal of Chemical Physics, 2009, 131, 034705.	1.2	32
403	Coupled donors in quantum dots: Quantum size and dielectric mismatch effects. Physical Review B, 2009, 79, .	1.1	21
404	Quantum well effect in bulk PbI2crystals revealed by the anisotropy of photoluminescence and Raman spectra. Journal of Physics Condensed Matter, 2009, 21, 025507.	0.7	26
405	Fluorescence signals of core–shell quantum dots enhanced by single crystalline gold caps on silicon nanowires. Nanotechnology, 2009, 20, 165301.	1.3	6
406	Room temperature nano quantum engineering., 2009,,.		0
407	Atomic layer deposition of quantum-confined ZnO nanostructures. Nanotechnology, 2009, 20, 195401.	1.3	23
409	Self-assembled bioinspired quantum dots: Optical properties. Applied Physics Letters, 2009, 94, .	1.5	72

#	Article	IF	CITATIONS
410	Properties of self-assembled Ge islands grown by molecular beam epitaxy. International Journal of Nanotechnology, 2009, 6, 552.	0.1	0
411	Electronic confinement effects and optical properties of multilayer slabs of silicon: numerical model studies., 2009,,.		2
412	"Soft―Chemical Synthesis and Manipulation of Semiconductor Nanocrystals. , 2010, , 1-61.		20
414	Ratiometric Fluorescent Sensor for 2,4,6-Trinitrotoluene Designed Based on Energy Transfer between Size-different Quantum Dots. Chemistry Letters, 2010, 39, 156-158.	0.7	15
415	First-principles investigation of the structure and electronic properties of CdS/CdSe/CdS and CdS/CdTe/CdS quantum wells using a slab approximation. Nanotechnologies in Russia, 2010, 5, 191-197.	0.7	8
416	Polar optical phonon states and their electron-phonon coupling properties in a wurtzite nitride quantum dot. European Physical Journal B, 2010, 74, 397-407.	0.6	6
417	One-phonon resonant electron Raman scattering in a cylindrical semiconductor quantum dot. European Physical Journal B, 2010, 74, 451-456.	0.6	14
418	Asymptotic Theory of Resonant Tunneling in 3D Quantum Waveguides of Variable Cross-Section. SIAM Journal on Applied Mathematics, 2010, 70, 1542-1566.	0.8	8
419	Hydrophilic CdSeâ^'ZnS Coreâ^'Shell Quantum Dots with Reactive Functional Groups on Their Surface. Langmuir, 2010, 26, 11503-11511.	1.6	89
420	Shallow-donor impurity in zinc-blende InGaN/GaN asymmetric coupled quantum dots: Effect of electric field. Journal of Applied Physics, 2010, 107, 054305.	1.1	7
421	Quantum Dots and Their Multimodal Applications: A Review. Materials, 2010, 3, 2260-2345.	1.3	986
422	Optical absorptions of an exciton in a disc-like quantum dot under an electric field. Optics Communications, 2010, 283, 1381-1385.	1.0	20
423	Direct synthesis of PbS nanocrystals capped with 4-fluorothiophenol in semiconducting polymer. Materials Chemistry and Physics, 2010, 122, 459-462.	2.0	6
424	Fabrication of CdSeâ€Nanofibers with Potential for Biomedical Applications. Advanced Functional Materials, 2010, 20, 1011-1018.	7.8	30
425	Quantum Confinement in Selfâ€Assembled Bioinspired Peptide Hydrogels. Advanced Materials, 2010, 22, 2311-2315.	11.1	86
427	Luminescent Carbon Nanodots: Emergent Nanolights. Angewandte Chemie - International Edition, 2010, 49, 6726-6744.	7.2	4,109
428	Solid state synthesis of water-dispersible silicon nanoparticles from silica nanoparticles. Journal of Solid State Chemistry, 2010, 183, 1442-1447.	1.4	14
429	Electron and field dynamics in the interaction between a quantum dot and external quantized electromagnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1497-1502.	1.3	0

#	Article	IF	Citations
430	Linear and nonlinear optical absorptions of a two-electron quantum dot. Physica B: Condensed Matter, 2010, 405, 2102-2106.	1.3	28
431	Order and disorder in the heteroepitaxy of semiconductor nanostructures. Materials Science and Engineering Reports, 2010, 70, 243-264.	14.8	28
432	Laser radiation effects on optical absorptions and refractive index in a quantum dot. Optics Communications, 2010, 283, 3703-3706.	1.0	23
433	Conversion of green emission into white light in Gd2O3 nanophosphors. Thin Solid Films, 2010, 518, 6210-6213.	0.8	19
434	One phonon resonant Raman scattering in a quantized spherical film. Superlattices and Microstructures, 2010, 47, 723-731.	1.4	7
435	Electron tomography of Illâ€V quantum dots using dark field 002 imaging conditions. Journal of Microscopy, 2010, 237, 148-154.	0.8	5
436	Magnetotransport through an Aharonov–Bohm ring with parallel double quantum dots coupled to ferromagnetic leads. Chinese Physics B, 2010, 19, 047202.	0.7	3
437	Stress-strain Behavior of CdS/PMMA Nano-composite. Journal of Polymer Engineering, 2010, 30, .	0.6	1
438	Multiply-resonant nonlinear optical processes in doped polythiophenes. Applied Physics Letters, 2010, 97, 103302.	1.5	9
439	Scanning tunneling microscopy contrast in lateral Ge-Si nanostructures on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow< td=""><td>ml:mn>11</td><td>l 1 ¹3 l 1 ²/mml:mn</td></mpl:mrow<></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	ml:mn>11	l 1 ¹ 3 l 1 ² /mml:mn
440	Mechanisms of atomic diffusion on the flat, stepped, and faceted surfaces of Al(110). Physical Review B, 2010, 81, .	1.1	22
441	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math>-type doping via avoiding the stabilization of<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>D</mml:mi><mml:mi>X</mml:mi></mml:mrow></mml:math>centers</pre>	1.1	7
442	in InP quantum dots. Physical Review B, 2010, 81, . Optical Imaging of Electrical Carrier Injection into Individual InAs Quantum Dots. Physical Review Letters, 2010, 105, 257401.	2.9	6
443	Ultrafast few-fermion optoelectronics in a single self-assembled <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>In</mml:mtext><mml:mtext>Ga</mml:mtext><mml:mtext>As<td>:mtext><r< td=""><td>25 nml:mo>/</td></r<></td></mml:mtext></mml:mrow></mml:math>	:mtext> <r< td=""><td>25 nml:mo>/</td></r<>	25 nml:mo>/
444	Excitons on the surface of a sphere. Physical Review B, 2010, 81, .	1,1	4
446	Ferromagnetism in Ge/SiO2 multilayer films. Journal of Applied Physics, 2010, 107, 043901.	1.1	3
447	SIZE-DEPENDENT BAND-GAP AND DIELECTRIC CONSTANT OF SI NANOCRYSTALS. International Journal of Modern Physics B, 2010, 24, 2297-2301.	1.0	17
448	Nucleation and Growth of Silver Sulfide Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 5839-5849.	1.5	59

#	Article	IF	CITATIONS
449	Structural Implications on the Electrochemical and Spectroscopic Signature of CdSe-ZnS Coreâ^'Shell Quantum Dots. Journal of Physical Chemistry C, 2010, 114, 7007-7013.	1.5	40
450	Temperature Dependence of the Band-Gap Energy and Sub-Band-Gap Absorption Tails in Strongly Quantized ZnSe Nanocrystals Deposited as Thin Films. Journal of Physical Chemistry C, 2010, 114, 15280-15291.	1.5	58
451	Spectroscopic determination of the size of cadmium sulfide nanoparticles formed under environmentally relevant conditions. Journal of Environmental Monitoring, 2010, 12, 890.	2.1	33
452	On the anomalous Stark effect in a thin disc-shaped quantum dot. Journal of Physics Condensed Matter, 2010, 22, 375301.	0.7	24
453	Scanning Tunneling Spectroscopy of Semiconductor Quantum Dots and Nanocrystals. Nanoscience and Technology, 2010, , 183-216.	1.5	2
454	Charge trapping in hybrid electroluminescence device containing CdSe/ZnS quantum dots embedded in a conducting poly(N-vinylcarbozole) layer. Applied Physics Letters, 2010, 97, 062104.	1.5	13
455	Tailoring the nanoscale boundary cavities in rutile TiO2 hierarchical microspheres for giant dielectric performance. Journal of Materials Chemistry, 2010, 20, 8659.	6.7	36
456	The influence of shape and potential barrier on confinement energy levels in quantum dots. Journal of Applied Physics, 2010, 107, .	1.1	27
458	Lattice Monte Carlo Simulation of Semiconductor Nanocrystal Synthesis in Microemulsion Droplets. Langmuir, 2010, 26, 11355-11362.	1.6	3
459	Fabrication and Characterization of Quantum Dot-Based Optical Fiber Temperature Sensor. Molecular Crystals and Liquid Crystals, 2010, 519, 62-68.	0.4	6
460	Volumetric Display Based on Two-Photon Absorption in Quantum Dot Dispersions. Journal of Display Technology, 2010, 6, 221-228.	1.3	27
461	Nanoparticles functionalised with reversible molecular and supramolecular switches. Chemical Society Reviews, 2010, 39, 2203.	18.7	484
462	Systematic Control of Monoclinic CdWO ₄ Nanophase for Optimum Photocatalytic Activity. Journal of Physical Chemistry C, 2010, 114, 1512-1519.	1.5	88
463	DONOR AND ACCEPTOR STATES IN GaAs - (Ga, Al)As QUANTUM DOTS: EFFECTS OF HYDROSTATIC PRESSURE AND AN INTENSE LASER. International Journal of Modern Physics B, 2010, 24, 5761-5770.	1.0	3
464	Stress Relaxation by Additionâ^'Fragmentation Chain Transfer in Highly Cross-Linked Thiolâ^'Yne Networks. Macromolecules, 2010, 43, 10188-10190.	2.2	71
465	Size Dependence of Optical Properties in Semiconductor Nanocrystals. Key Engineering Materials, 2010, 444, 133-162.	0.4	2
467	Polar optical phonon modes of a wurtzite ZnO/MgZnO multi-shell spherical quantum dot. , $2011, \dots$		0
468	Potential-Dependent Recombination Kinetics of Photogenerated Electrons in n- and p-Type GaN Photoelectrodes Studied by Time-Resolved IR Absorption Spectroscopy. Journal of the American Chemical Society, 2011, 133, 11351-11357.	6.6	47

#	Article	IF	CITATIONS
469	Photoconductivity and Relaxation Dynamics in Sonochemically Synthesized Assemblies of AgBiS ₂ Quantum Dots. Journal of Physical Chemistry C, 2011, 115, 37-46.	1.5	46
470	Shape and Temperature Dependence of Hot Carrier Relaxation Dynamics in Spherical and Elongated CdSe Quantum Dots. Journal of Physical Chemistry C, 2011, 115, 11400-11406.	1.5	33
471	Optical Properties of Semiconductors. , 2011, , 125-195.		3
472	Structure of droplet-epitaxy-grown InAs/GaAs quantum dots. Applied Physics Letters, 2011, 98, 243115.	1.5	10
473	Electronic Structure of Ligated CdSe Clusters: Dependence on DFT Methodology. Journal of Physical Chemistry C, 2011, 115, 15793-15800.	1.5	80
474	Optical Excitations in CdSe/CdS Core–Shell Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 10338-10344.	1.5	7
475	Computational studies of doped nanostructures. Reports on Progress in Physics, 2011, 74, 046501.	8.1	52
476	Evolution of Self-Assembled InGaAs Tandem Nanostructures Consisting a Hole and Pyramid on Type-A High-Index GaAs Substrates by Droplet Epitaxy. IEEE Nanotechnology Magazine, 2011, 10, 395-401.	1.1	3
477	Capacitance, Dielectric Constant, and Doping Quantum Dots., 2011,, 235-265.		0
478	Nanostructured CdSe Films in Low Size-Quantization Regime: Temperature Dependence of the Band Gap Energy and Sub-Band Gap Absorption Tails. Journal of Physical Chemistry C, 2011, 115, 23241-23255.	1.5	21
479	Quantum Dots: Synthesis and Characterization. , 2011, , 219-270.		11
480	The structure of chain end-grafted nanoparticle/homopolymer nanocomposites. Soft Matter, 2011, 7, 7914.	1.2	203
481	Controlled synthesis of semiconductor nanostructures in the liquid phase. Chemical Society Reviews, 2011, 40, 5492.	18.7	199
482	Colloidal Semiconductor Nanocrystal-Enabled Organic/Inorganic Hybrid Light Emitting Devices. , 2011, , 183-214.		5
483	Toward quantitatively fluorescent carbon-based "quantum―dots. Nanoscale, 2011, 3, 2023.	2.8	264
486	Complex Nanostructures by Pulsed Droplet Epitaxy. Nanomaterials and Nanotechnology, 2011, 1, 4.	1.2	7
487	The effect of intense laser field on the Electronic Raman Scattering of shallow donor impurities in quantum dots. Superlattices and Microstructures, 2011, 50, 501-510.	1.4	15
488	Optical absorption and refractive index of a donor impurity in a three-dimensional quantum pseudodot. Superlattices and Microstructures, 2011, 50, 691-697.	1.4	23

#	Article	IF	CITATIONS
489	Optical properties of acceptor–exciton complexes in ZnO/SiO2 quantum dots. Solid State Communications, 2011, 151, 1355-1358.	0.9	5
490	A study of nonlinear optical properties of a negative donor quantum dot. Optics Communications, 2011, 284, 4756-4760.	1.0	20
491	Laser field effect on the nonlinear optical properties of donor impurities in quantum dots with Gaussian potential. Physica B: Condensed Matter, 2011, 406, 4129-4134.	1.3	47
492	Optical properties of a donor impurity in a two-dimensional quantum pseudodot. Physica B: Condensed Matter, 2011, 406, 4657-4660.	1.3	53
493	Excited-state absorptions of an exciton confined in a quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 218-221.	1.3	6
494	Binding energy of hydrogen-like donor impurity and photoionization cross-section in InAs Pöschl–Teller quantum ring under applied magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 419-424.	1.3	19
495	Effect of laser radiation on optical properties of disk shaped quantum dot in magnetic fields. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3910-3915.	0.9	54
496	Electric field effect on the Raman scattering of a hydrogenic impurity in spherical quantum dot. Current Applied Physics, 2011, 11, 1302-1306.	1.1	7
497	Nonlinear optical properties of ultra-fine nanocrystalline SnO synthesised through microwave-assisted hydrothermal route. Micro and Nano Letters, 2011, 6, 249.	0.6	6
498	Electric field effects on the intersubband optical absorptions and refractive index in double-electron quantum dots. Physica Scripta, 2011, 84, 025703.	1.2	13
499	Type-I semiconductor heterostructures with an indirect-gap conduction band. Semiconductors, 2011, 45, 96-102.	0.2	21
500	Hydrostatic pressure, impurity position and electric and magnetic field effects on the binding energy and photo-ionization cross section of a hydrogenic donor impurity in an InAs P¶schl-Teller quantum ring. European Physical Journal B, 2011, 84, 265-271.	0.6	46
501	Influences of capping molecules on optical properties of nanocrystalline ZnS:Cu. Journal of Applied Spectroscopy, 2011, 78, 680-685.	0.3	3
502	Glass transition activation energy of CdS/PMMA nano-composite and its dependence on composition of CdS nano-particles. Journal of Thermal Analysis and Calorimetry, 2011, 106, 921-925.	2.0	10
503	Calculation of the quantum efficiency for the absorption on confinement levels in quantum dots. Journal of Nanoparticle Research, 2011, 13, 1605-1612.	0.8	15
504	Photoluminescent silicon nanocrystals stabilized by ionic liquid. Journal of Nanoparticle Research, 2011, 13, 1971-1978.	0.8	13
505	Physical properties of elongated inorganic nanoparticles. Physics Reports, 2011, 501, 75-221.	10.3	138
506	Control Over the Crystallinity and Defect Chemistry of YVO ₄ Nanocrystals for Optimum Photocatalytic Property. European Journal of Inorganic Chemistry, 2011, 2011, 2211-2220.	1.0	61

#	Article	IF	CITATIONS
507	Studies on the second-harmonic generations in cubical quantum dots with applied electric field. Physica B: Condensed Matter, 2011, 406, 393-396.	1.3	31
508	Effect of size on dielectric constant for low dimension materials. Physica B: Condensed Matter, 2011, 406, 541-544.	1.3	12
509	Combined effects of hydrostatic pressure and temperature on nonlinear properties of an exciton in a spherical quantum dot under the applied electric field. Physica B: Condensed Matter, 2011, 406, 3735-3740.	1.3	69
510	Optical measurements of ZnS nanoparticles aqueous solution. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 1792-1795.	1.1	5
511	Polaron effects on linear and nonlinear optical properties of a two-electron quantum dot. Physica B: Condensed Matter, 2011, 406, 1805-1808.	1.3	9
512	The nonlinear optical rectification of a confined exciton in a quantum dot. Journal of Luminescence, 2011, 131, 943-946.	1.5	55
513	The effects of intense laser on nonlinear properties of shallow donor impurities in quantum dots with the Woods–Saxon potential. Journal of Luminescence, 2011, 131, 2538-2543.	1.5	63
514	Influence of In composition on exciton confined in self-formed InxGa1â^xN/GaN quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1076-1079.	1.3	1
515	Laser radiation effects on impurity states in a spherical quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1411-1414.	1.3	25
516	Optical absorption and refractive index of an exciton quantum dot under intense laser radiation. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1704-1707.	1.3	28
517	Lead-sulphide quantum-dot sensitization of tin oxide based hybrid solar cells. Solar Energy, 2011, 85, 1283-1290.	2.9	39
518	Impurity and exciton effects on the nonlinear optical properties of a disc-like quantum dot under a magnetic field. Superlattices and Microstructures, 2011, 50, 40-49.	1.4	22
519	Nonlinear optical properties of an off-center donor in a quantum dot under applied magnetic field. Solid State Communications, 2011, 151, 545-549.	0.9	39
520	Effect of surface passivation on dopant distribution in Si quantum dots: The case of B and P doping. Applied Physics Letters, 2011, 98, .	1.5	26
521	Multidimensional nanoscale materials from fused quantum dots. Physical Review B, 2011, 84, .	1.1	0
522	Correlating structure, strain, and morphology of self-assembled InAs quantum dots on GaAs. Applied Physics Letters, 2011, 98, .	1.5	12
523	The enhanced binding energy for biexcitons in InAs quantum dots. Applied Physics Letters, 2011, 98, .	1.5	6
524	Spin-dependent resonant quantum tunneling between magnetic nanoparticles on a macroscopic length scale. Physical Review B, 2011, 83, .	1.1	5

#	ARTICLE	IF	Citations
525	Energies and lifetimes of electrons and excitons in Si <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn><0</mml:mn></mml:msub></mml:math> modeled by many-body Green's function theory. Physical Review B, 2011, 84, .	1.1	2
526	Unveiling Molecular Events in the Brain by Noninvasive Imaging. Neuroscientist, 2011, 17, 539-559.	2.6	19
528	STRUCTURAL, ELECTRONIC, AND OPTICAL PROPERTIES OF $\frac{1}{2}$ $\frac{1}$	0.4	O
529	Envelope molecular-orbital theory of extended systems. I. Electronic states of organic quasilinear nanoheterostructures. Journal of Chemical Physics, 2011, 134, 104103.	1.2	1
530	Quantum confinement effects on the band structure and dielectric properties of nanostructured GaAs. Physica Scripta, 2011, 84, 015704.	1.2	4
531	Influence of Thermal Annealing on the Carrier Extraction in Ge/Si Quantum Dot Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NE24.	0.8	6
532	Molecular discriminators using single wall carbon nanotubes. Nanotechnology, 2012, 23, 385304.	1.3	12
533	Fabrication and photoluminescence of SiC quantum dots stemming from 3C, 6H, and 4H polytypes of bulk SiC. Applied Physics Letters, 2012, 101, .	1.5	68
534	Room temperature magnetoelectric properties of type-II InAsSbP quantum dots and nanorings. Applied Physics Letters, 2012, 100, 033104.	1.5	13
535	EVALUATING DOT-LEAD COUPLING IN A NONPARABOLIC QUANTUM DOT CONNECTED TO TWO CONDUCTING LEADS. Nano, 2012, 07, 1250019.	0.5	3
536	Mathematical modeling of semiconductor quantum dots based on the nonparabolic effective-mass approximation. The Nanoscale Systems: Mathematical Modelingory and Applications, 2012, 1, 58-79.	0.3	3
537	Transformation of a two-dimensional to one-dimensional energy profile on a spatially deformed Si0.82Ge0.18/Si0.51Ge0.49 wrinkled heterostructure. Journal of Applied Physics, 2012, 111, 104321.	1.1	1
538	Aqueous Synthesis of Glutathione-Capped CdTe/CdS/ZnS and CdTe/CdSe/ZnS Core/Shell/Shell Nanocrystal Heterostructures. Langmuir, 2012, 28, 8205-8215.	1.6	98
539	Optical absorptions of a negatively charged exciton in quantum dots. Chemical Physics, 2012, 408, 69-74.	0.9	8
540	Synthesis and nonlinear optical characterization of SnO2 quantum dots. Optik, 2012, 123, 2090-2094.	1.4	15
541	Modified optical properties of glasses nanostructured by ZnS particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 2499-2502.	1.1	3
542	Optical anisotropy of a donor in ellipsoidal quantum dots. Physica B: Condensed Matter, 2012, 407, 4588-4591.	1.3	33
543	Spectra of cylindrical quantum dots: The effect of electrical and magnetic fields together with AB flux field. Physica B: Condensed Matter, 2012, 407, 4523-4529.	1.3	29

#	Article	IF	CITATIONS
544	Colloidal nanocrystal quantum dot assemblies as artificial solids. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 030802.	0.9	111
545	Stress Relaxation via Addition–Fragmentation Chain Transfer in High <i>T</i> _g , High Conversion Methacrylate-Based Systems. Macromolecules, 2012, 45, 5640-5646.	2.2	53
546	Weak exciton–plasmon and exciton–phonon coupling in chemically synthesized Ag/CdSe metal/semiconductor hybrid nanocomposite. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 2094-2098.	1.3	4
547	Growth of self-assembled Mn, Sb and MnSb nanostructures on highly oriented pyrolytic graphite. Thin Solid Films, 2012, 520, 6909-6915.	0.8	5
548	Excitation intensity dependence of photoluminescence spectra of SiGe quantum dots grown on prepatterned Si substrates: Evidence for biexcitonic transition. Physical Review B, 2012, 86, .	1.1	17
549	Correlation between the band gap, elastic modulus, Raman shift and melting point of CdS, ZnS, and CdSe semiconductors and their size dependency. Nanoscale, 2012, 4, 1304.	2.8	41
550	Effect of hydrogen passivation on the electronic structure of ionic semiconductor nanostructures. Physical Review B, 2012, 85, .	1.1	38
551	Optical molecular sensing with semiconductor quantum dots (QDs). Chemical Society Reviews, 2012, 41, 4067.	18.7	432
552	Enhanced carrier extraction from Ge quantum dots in Si solar cells under strong photoexcitation. Applied Physics Letters, 2012, 101, .	1.5	43
553	Passivation of Cul Quantum Dots. Journal of Physical Chemistry C, 2012, 116, 21039-21045.	1.5	3
554	Growth and optical characterisation of multilayers of InGaN quantum dots. Journal of Crystal Growth, 2012, 338, 262-266.	0.7	13
555	Rectification effect in poly-p-xylylene-cadmium sulfide graded nanocomposites. Physics of the Solid State, 2012, 54, 2291-2295.	0.2	9
556	Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure. Nanoscale Research Letters, 2012, 7, 538.	3.1	31
557	Recombination Dynamics of High-Density Photocarriers in Type-II Ge/Si Quantum Dots. Journal of the Physical Society of Japan, 2012, 81, 064712.	0.7	11
558	Energetics of island formation of AlAs, GaAs, and InAs on Si(100). Journal of the Korean Physical Society, 2012, 60, 777-780.	0.3	1
559	Photoinduced Enhancement in the Luminescence of Hydrophilic Quantum Dots Coated with Photocleavable Ligands. Journal of the American Chemical Society, 2012, 134, 2276-2283.	6.6	51
560	Electron Raman scattering in a cylindrical quantum dot. Journal of Semiconductors, 2012, 33, 052001.	2.0	7
561	First-order Raman scattering in a free-standing GaN nanowire with ring geometry. Physica B: Condensed Matter, 2012, 407, 4787-4792.	1.3	5

#	Article	IF	CITATIONS
562	Electrochemical properties of CdSe and CdTe quantum dots. Chemical Society Reviews, 2012, 41, 5728.	18.7	238
563	Surface Depletion Induced Quantum Confinement in CdS Nanobelts. ACS Nano, 2012, 6, 5283-5290.	7.3	60
564	Photoluminescence Properties of Self-Assembled Monolayers of CdSe and CdSe/ZnS Quantum Dots. Journal of Physical Chemistry C, 2012, 116, 5456-5459.	1.5	11
565	Single Nanowire Microscopy and Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 12379-12396.	1.5	36
566	Towards a Controlled Growth of Self-assembled Nanostructures: Shaping, Ordering, and Localization in Ge/Si Heteroepitaxy., 2012,, 201-263.		2
567	Optical Properties of Spherical Colloidal Nanocrystals. , 0, , .		0
568	Electronicâ€structure calculations of large cadmium chalcogenide nanoparticles. Physica Status Solidi (B): Basic Research, 2012, 249, 384-391.	0.7	2
569	Bright White Light Emission from Ultrasmall Cadmium Selenide Nanocrystals. Journal of the American Chemical Society, 2012, 134, 8006-8009.	6.6	135
570	Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chemical Reviews, 2012, 112, 1555-1614.	23.0	2,107
571	Synthesis and optical properties of II–VI 1D nanostructures. Nanoscale, 2012, 4, 1422.	2.8	74
572	Growth and Device Application of CdSe Nanostructures. Advanced Functional Materials, 2012, 22, 1551-1566.	7.8	122
573	Fabrication of Mesoporous Metal Chalcogenide Nanoflake Silica Thin Films and Spongy Mesoporous CdS and CdSe. Chemistry - A European Journal, 2012, 18, 3695-3705.	1.7	10
574	The nonlinear optical rectification coefficient in a hydrogenic quantum ring. Physica Scripta, 2012, 85, 055702.	1.2	11
575	Superlattice formed by quantum-dot sheets: Density of states and infrared absorption. Physical Review B, 2012, 85, .	1.1	4
576	Polaron effects on the optical absorptions in cylindrical quantum dots with parabolic potential. Optics Communications, 2012, 285, 2734-2738.	1.0	15
577	Size effects of an exciton–acceptor complex in quantum dots. Superlattices and Microstructures, 2012, 51, 571-579.	1.4	2
578	One phonon-assisted electron Raman scattering in a wurtzite cylindrical quantum well wire. Physica B: Condensed Matter, 2012, 407, 165-170.	1.3	11
579	Hydrostatic pressure and temperature effects of an exciton–donor complex in quantum dots. Physica B: Condensed Matter, 2012, 407, 1134-1138.	1.3	15

#	Article	IF	CITATIONS
580	Optical absorptions of a biexciton quantum dot. Physica B: Condensed Matter, 2012, 407, 2329-2333.	1.3	7
581	Electron Raman scattering of a two-dimensional pseudodot system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1657-1660.	0.9	20
582	Stability and optical properties of dispersions of CdS, ZnS, and Ag2S nanoparticles synthesized in microemulsion. Russian Journal of Inorganic Chemistry, 2012, 57, 320-326.	0.3	6
583	ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	34
584	Quantum Effects in Confined Systems. Nanoscience and Technology, 2013, , 1-6.	1.5	0
585	Morphology and growth of capped Ge/Si quantum dots. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	6
586	Nanochemistry and nanomaterials for photovoltaics. Chemical Society Reviews, 2013, 42, 8304.	18.7	269
587	Magnetic field induced non-linear optical properties in a strained wurtzite GaN/AlxGa1â^xN quantum dot: Effect of internal fields. Superlattices and Microstructures, 2013, 60, 148-159.	1.4	9
588	Water soluble fluorescence quantum dot probe labeling liver cancer cells. Journal of Materials Science: Materials in Medicine, 2013, 24, 2505-2508.	1.7	11
589	Computer simulation of electron energy state spin-splitting in nanoscale InAs/GaAs semiconductor quantum rings. Mathematical and Computer Modelling, 2013, 58, 300-305.	2.0	1
590	Nanostructured Inorganic–Organic Hybrid Semiconductor Materials. , 2013, , 375-415.		2
591	Diffusion-Controlled Growth of Molecular Heterostructures: Fabrication of Two-, One-, and Zero-Dimensional C ₆₀ Nanostructures on Pentacene Substrates. ACS Applied Materials & amp; Interfaces, 2013, 5, 9740-9745.	4.0	34
592	Investigation of the open-circuit voltage in solar cells doped with quantum dots. Scientific Reports, 2013, 3, 2703.	1.6	65
593	Low-dimensional systems investigated by x-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases. Journal Physics D: Applied Physics, 2013, 46, 423001.	1.3	101
594	Atomic-force microscopy and photoluminescence of nanostructured CdTe. Semiconductors, 2013, 47, 1198-1202.	0.2	0
595	Precise control of photoluminescence enhancement and quenching of semiconductor quantum dots using localized surface plasmons in metal nanoparticles. Journal of Applied Physics, 2013, 114, .	1,1	22
596	Optical absorptions of an exciton in a quantum ring: Effect of the repulsive core. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 2647-2652.	0.9	7
597	Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities. Nano Today, 2013, 8, 598-618.	6.2	326

#	Article	IF	CITATIONS
598	Electrophoretic study of peptideâ€mediated quantum dotâ€human immunoglobulin bioconjugation. Electrophoresis, 2013, 34, 2725-2732.	1.3	22
599	Asymptotic and numerical study of resonant tunneling in two-dimensional quantum waveguides of variable cross section. Computational Mathematics and Mathematical Physics, 2013, 53, 1664-1683.	0.2	12
600	The effect of electron–phonon interaction on optical properties of a triangular quantum wire. Superlattices and Microstructures, 2013, 63, 267-276.	1.4	13
601	Local Structure of Bulk and Nanocrystalline Semiconductors Using Total Scattering Methods. , 2013, , 229-257.		6
602	Ultrafast Dynamics of Photogenerated Electrons in CdS Nanocluster Multilayers Assembled on Solid Substrates: Effects of Assembly and Electrode Potential. ChemPhysChem, 2013, 14, 2174-2182.	1.0	3
603	Linear and nonlinear optical properties of anisotropic quantum dots in a magnetic field. Physica Scripta, 2013, 87, 055704.	1.2	6
604	Photophysical properties of CdSe quantum dot self-assemblies with zinc phthalocyanines and azaphthalocyanines. Photochemical and Photobiological Sciences, 2013, 12, 743.	1.6	10
605	Temperature dependence of photoluminescence dynamics of self-assembled monolayers of CdSe quantum dots: the influence of the bound-exciton state. Physical Chemistry Chemical Physics, 2013, 15, 21051.	1.3	10
606	Engineering band structure in nanoscale quantum-dot supercrystals. Optics Letters, 2013, 38, 2259.	1.7	22
607	Binding energy of hydrogenic donor impurity in concentric double quantum rings: Effects of geometry, hydrostatic pressure, temperature, and aluminum concentration. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 48, 164-170.	1.3	19
608	Linear and nonlinear optical properties of a hydrogenic impurity confined in a two-dimensional quantum dot: Effects of hydrostatic pressure, external electric and magnetic fields. Superlattices and Microstructures, 2013, 53, 99-112.	1.4	83
609	Droplet epitaxy of nanostructures. , 2013, , 95-111.		14
610	Effect of the charges of impurity on the refractive index changes in parabolic quantum dot. Physica B: Condensed Matter, 2013, 409, 16-20.	1.3	5
611	Effects of hydrostatic pressure on the nonlinear optical properties of a donor impurity in a GaAs quantum ring. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 51, 48-54.	1.3	25
612	Stimulated emission from PbSâ€quantum dots in glass matrix. Laser and Photonics Reviews, 2013, 7, L1.	4.4	11
613	Structural and optical properties of copper enriched ZnSe thin films prepared by closed space sublimation technique. Materials Science in Semiconductor Processing, 2013, 16, 1797-1803.	1.9	13
614	Raman scattering of an exciton in a quantum dot. Physica B: Condensed Matter, 2013, 413, 96-99.	1.3	8
615	Influence of bimodal distribution and excited state emission on photoluminescence spectra of InAs self-assembled quantum dots. Journal of Luminescence, 2013, 137, 22-27.	1.5	8

#	Article	IF	CITATIONS
616	Growth of self-assembled InGaN quantum dots on Si (111) at reduced temperature by molecular beam epitaxy. Thin Solid Films, 2013, 544, 33-36.	0.8	2
617	Lateral induced dipole moment and polarizability of excitons in a ZnO single quantum disk. Journal of Applied Physics, 2013, 113, 064314.	1.1	15
619	Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical Society Reviews, 2013, 42, 2294-2320.	18.7	1,846
620	Two-Photon Absorption of ZnS Quantum Dots: Interpreting the Nonlinear Spectrum. Journal of Physical Chemistry C, 2013, 117, 8530-8535.	1.5	30
621	Chemical trend of the formation energies of the group-III and group-V dopants in Si quantum dots. Physical Review B, 2013, 87, .	1.1	5
622	Nucleic Acid/Quantum Dots (QDs) Hybrid Systems for Optical and Photoelectrochemical Sensing. ACS Applied Materials & Description (QDs) Hybrid Systems for Optical and Photoelectrochemical Sensing. ACS Applied Materials & Description (QDs) Hybrid Systems for Optical and Photoelectrochemical Sensing. ACS	4.0	196
623	Near-infrared phosphorescence: materials and applications. Chemical Society Reviews, 2013, 42, 6128.	18.7	566
624	Optical Studies of Semiconductor Quantum Dots. Nanoscience and Technology, 2013, , 101-117.	1.5	0
625	Optical properties of an exciton in a two-dimensional quantum ring with an applied magnetic field. Optics Communications, 2013, 291, 386-389.	1.0	14
626	Quantum-dot supercrystals for future nanophotonics. Scientific Reports, 2013, 3, .	1.6	47
627	Effect of ZnSe quantum dot concentration on the fluorescence enhancement of polymer P3HT film. Organic Electronics, 2013, 14, 2093-2100.	1.4	37
628	Exciton effects on dipole-allowed optical absorptions in a two-dimensional parabolic quantum dot. Journal of Luminescence, 2013, 143, 558-561.	1.5	15
629	Magnetic field and hydrostatic pressure effects on electron Raman scattering in anisotropic quantum dots. Chemical Physics, 2013, 423, 30-35.	0.9	11
630	Luminescent nanoparticles and their applications in the life sciences. Journal of Physics Condensed Matter, 2013, 25, 194101.	0.7	47
631	Linear and nonlinear optical absorption coefficients and refractive index changes of a spherical quantum dot placed at the center of a cylindrical nano-wire: Effects of hydrostatic pressure and temperature. Superlattices and Microstructures, 2013, 59, 66-76.	1.4	39
632	Growth of Epitaxial Anatase Nano Islands on SrTiO ₃ (001) by Dip Coating. Crystal Growth and Design, 2013, 13, 1438-1444.	1.4	12
633	Double occupancy and magnetic susceptibility of the Anderson impurity model out of equilibrium. Europhysics Letters, 2013, 102, 37011.	0.7	8
634	Spontaneous and stimulated emission dynamics of PbS quantum dots in a glass matrix. Physical Review B, 2013, 87, .	1.1	15

#	Article	IF	CITATIONS
635	Crystallite size-modulated exciton emission in SnO2 nanocrystalline films grown by sputtering. Journal of Applied Physics, 2013, 113, .	1.1	21
636	Field theoretic simulations of polymer nanocomposites. Journal of Chemical Physics, 2013, 139, 244911.	1.2	68
637	Origins of Spectral Diffusion in the Micro-Photoluminescence of Single InGaN Quantum Dots. Japanese Journal of Applied Physics, 2013, 52, 08JE01.	0.8	15
638	Low-Dimensional Silicon Structures for Use in Photonic Circuits. Progress in Optics, 2013, , 251-315.	0.4	2
639	Applications of Quantum Dots for Fluorescence Imaging in Biomedical Research., 2013,, 451-470.		0
640	Charge and energy transfer in polymer/nanocrystal blends. , 0, , 87-111.		1
641	Simultaneous Effects of Electric Field and Magnetic Field of a Confined Exciton in a Strained GaAs _{0.9} P _{0.1} /GaAs _{0.6} P _{0.4} Quantum Dot. E-Journal of Surface Science and Nanotechnology, 2013, 11, 29-35.	0.1	3
643	Electron–phonon interaction influence on optical properties of parallelogram quantum wires. International Journal of Modern Physics B, 2014, 28, 1450142.	1.0	3
644	Impurity-Related Nonlinear Optical Absorption in Delta-Doped Quantum Rings. Acta Physica Polonica A, 2014, 125, 245-247.	0.2	2
645	Nanodevices: fabrication, prospects for low dimensional devices and applications., 2014,, 399-423.		4
646	Electron states in semiconductor quantum dots. Journal of Chemical Physics, 2014, 141, 204702.	1.2	9
647	Experimental observation of exciton splitting and relaxation dynamics from PbS quantum dots in a glass matrix. Physical Review B, 2014, 89, .	1.1	6
648	Effect of Aluminum Doping on the Growth and Optical and Electrical Properties of ZnO Nanorods. ChemPlusChem, 2014, 79, 743-750.	1.3	17
649	Luminescence properties of Si-capped $\langle i \rangle \hat{l}^2 \langle j \rangle$ -FeSi2 nanodots epitaxially grown on Si(001) and (111) substrates. Journal of Applied Physics, 2014, 115, .	1.1	7
650	Structure defects in g-C ₃ N ₄ limit visible light driven hydrogen evolution and photovoltage. Journal of Materials Chemistry A, 2014, 2, 20338-20344.	5.2	233
651	Tunable Luminescence in CdSe Quantum Dots Doped by Mn Impurities. Journal of Physical Chemistry C, 2014, 118, 28314-28321.	1.5	27
652	Surface ligands affect photoinduced modulation of the quantum dots optical performance. Proceedings of SPIE, 2014, , .	0.8	6
653	Optical absorption of semiconductor quantum dot solids. Semiconductor Science and Technology, 2014, 29, 045007.	1.0	6

#	Article	IF	CITATIONS
655	Bandgap Expansion: Photon Emission and Absorption. Springer Series in Chemical Physics, 2014, , 345-370.	0.2	1
656	Optimization of the optical properties of nanostructures through fast numerical approaches. , 2014, , .		0
657	Transport of Reactants in Ultrathin Channels during the Etching Reaction. Advanced Materials Research, 2014, 1040, 202-207.	0.3	0
658	Observation of Lorentzian lineshapes in the room temperature optical spectra of strongly coupled Jaggregate/metal hybrid nanostructures by linear two-dimensional optical spectroscopy. Journal of Optics (United Kingdom), 2014, 16, 114021.	1.0	13
659	Time-domain ab initio modeling of excitation dynamics in quantum dots. Coordination Chemistry Reviews, 2014, 263-264, 161-181.	9.5	41
660	Donor impurity-related linear and nonlinear optical absorption coefficients in <mml:math altimg="si0099.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>GaAs</mml:mi><mml:mo>/</mml:mo><mml:msub><mml:mrow><mml:mi>Gaconcentric double quantum rings:. lournal of Luminescence, 2014, 145, 676-683.</mml:mi></mml:mrow></mml:msub></mml:math>	ıl:mï> <td>nl:mrow><rn< td=""></rn<></td>	nl:mrow> <rn< td=""></rn<>
661	Raman study of a hydrogenic impurity in a three-dimensional anisotropic quantum dot. Optics Communications, 2014, 325, 35-39.	1.0	1
662	Effect of an electric field on the nonlinear optical rectification of a quantum ring. Physica B: Condensed Matter, 2014, 443, 60-62.	1.3	11
663	Near-Infrared Quantum Dots and Their Delicate Synthesis, Challenging Characterization, and Exciting Potential Applications. Chemistry of Materials, 2014, 26, 111-122.	3.2	79
664	The second and third harmonic generations of a trion in quantum dots. Journal of Luminescence, 2014, 145, 283-287.	1.5	8
665	Thermodynamics at the nanoscale: A new approach to the investigation of unique physicochemical properties of nanomaterials. Materials Science and Engineering Reports, 2014, 79, 1-40.	14.8	133
666	Morphology–structure diversity of ZnS nanostructures and their optical properties. Rare Metals, 2014, 33, 1-15.	3.6	33
667	Electronic structure calculations of PbS quantum rods and tubes. Journal of Applied Physics, 2014, 115, 043705.	1.1	8
668	Immune to local heating. Nature Nanotechnology, 2014, 9, 97-98.	15.6	3
669	Recent Advances in Quantum Dot Surface Chemistry. ACS Applied Materials & Diterfaces, 2014, 6, 3041-3057.	4.0	307
670	Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COOâ^' induced red-shift emission. Carbon, 2014, 70, 279-286.	5.4	240
671	Electron-related optical responses in triangular quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 60, 127-132.	1.3	55
672	Toward Structurally Defined Carbon Dots as Ultracompact Fluorescent Probes. ACS Nano, 2014, 8, 4522-4529.	7.3	218

#	Article	IF	CITATIONS
673	Effect of size distribution on the optical properties of quantum wire systems. International Journal of Modern Physics B, 2014, 28, 1450119.	1.0	9
674	Photoionization and third-order susceptibility of a neutral donor in ZnS/InP/ZnSe core/shell spherical quantum dots. Physica B: Condensed Matter, 2014, 449, 57-60.	1.3	22
675	Binding energy and nonlinear optical properties of an on-center hydrogenic impurity in a spherical quantum dot placed at the center of a cylindrical nano-wire: Comparison of hydrogenic donor and acceptor impurities. Physica B: Condensed Matter, 2014, 436, 117-125.	1.3	21
676	Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chemical Society Reviews, 2014, 43, 2680-2700.	18.7	360
677	Nanoscale optical probes for cellular imaging. Chemical Society Reviews, 2014, 43, 2650.	18.7	179
678	Optical Properties of Triangular Molybdenum Disulfide Nanoflakes. Journal of Physical Chemistry Letters, 2014, 5, 3636-3640.	2.1	35
679	The control of the nonlinear optical response of semiconductor quantum dots. Optik, 2014, 125, 6926-6929.	1.4	16
680	Oxide Nanomaterials and their Applications as a Memristor. Solid State Phenomena, 0, 222, 67-97.	0.3	24
681	Synthesis and optical band gaps of alloyed Si–Ge type II clathrates. Journal of Materials Chemistry C, 2014, 2, 3231-3237.	2.7	55
682	Optical susceptibility of a confined magneto-LO-polaron in a strained GaA s 0.9 P 0.1 /GaAs 0.6 P 0.4 quantum dot. Superlattices and Microstructures, 2014, 75, 785-795.	1.4	3
683	Separate SiC Nanoparticles. Engineering Materials and Processes, 2014, , 131-193.	0.2	1
684	Charge Transfer, Luminescence, and Phonon Bottleneck in TiO ₂ Nanowires Computed by Eigenvectors of Liouville Superoperator. Journal of Chemical Theory and Computation, 2014, 10, 3996-4005.	2.3	26
686	Determination of particle size distribution of water-soluble CdTe quantum dots by optical spectroscopy. RSC Advances, 2014, 4, 36024-36030.	1.7	20
687	Physically Flexible, Rapidâ€Response Gas Sensor Based on Colloidal Quantum Dot Solids. Advanced Materials, 2014, 26, 2718-2724.	11.1	313
688	Growth and Characterization of Self-Assembled InAs Quantum Dots on Si (100) for Monolithic Integration by MBE. IEEE Nanotechnology Magazine, 2014, 13, 917-925.	1.1	5
689	Low temperature synthesis of anacardic-acid-capped cadmium chalcogenide nanoparticles. International Nano Letters, 2014, 4, 1.	2.3	13
690	Size-induced moment formation on isolated Fe atoms embedded in a nanocrystalline Ta matrix: Experiment and theory. Physical Review B, 2014, 89, .	1.1	6
691	Resonance energy transfer in nano-bio hybrid structures can be modulated by UV laser irradiation. Laser Physics Letters, 2014, 11, 115601.	0.6	9

#	Article	IF	Citations
692	Magnetic–fluorescent nanocomposites as reusable fluorescence probes for sensitive detection of hydrogen peroxide and glucose. Analytical Methods, 2014, 6, 6352-6357.	1.3	16
693	Donor impurity states and related optical responses in triangular quantum dots under applied electric field. Superlattices and Microstructures, 2014, 73, 171-184.	1.4	55
694	Induced chirality in single walled carbon nanotube based self-assembly. Journal of Materials Chemistry A, 2014, 2, 5759.	5.2	9
695	Influence of a low-temperature capping on the crystalline structure and morphology of InGaN quantum dot structures. Journal of Alloys and Compounds, 2014, 585, 572-579.	2.8	5
696	Correlation between band gap, dielectric constant, Young's modulus and melting temperature of GaN nanocrystals and their size and shape dependences. Scientific Reports, 2015, 5, 16939.	1.6	51
698	Patterning of Quantum Dots by Dip-Pen and Polymer Pen Nanolithography. Nanofabrication, 2015, 2, .	1.1	22
699	Paper Essentials. , 2015, , 105-140.		0
700	A study of optical absorption of cysteine-capped CdSe nanoclusters using first-principles calculations. Physical Chemistry Chemical Physics, 2015, 17, 9222-9230.	1.3	29
701	Delivery of SiC-based nanoparticles into live cells driven by cell-penetrating peptides SAP and SAP-E. RSC Advances, 2015, 5, 20498-20502.	1.7	5
702	Energy and binding energy of donor impurity in quantum dot with Gaussian confinement. Superlattices and Microstructures, 2015, 85, 216-225.	1.4	20
703	Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. Chemical Reviews, 2015, 115, 5929-5978.	23.0	160
704	Effects of annealing temperature on shape transformation and optical properties of germanium quantum dots. Chinese Physics B, 2015, 24, 028103.	0.7	6
705	Quantum Dots: Electrochemiluminescent and Photoelectrochemical Bioanalysis. Analytical Chemistry, 2015, 87, 9520-9531.	3.2	200
706	Thin films of size-selected Mo clusters: growth modes and structures. Physical Chemistry Chemical Physics, 2015, 17, 20873-20881.	1.3	6
707	The dynamics of unentangled polymers during capillary rise infiltration into a nanoparticle packing. Soft Matter, 2015, 11, 8285-8295.	1.2	21
708	Hybrid phthalocyanine/lead sulphide nanocomposite for bistable memory switches. Materials Research Express, 2015, 2, 096305.	0.8	5
709	Transition Metal-Doped Semiconductor Quantum Dots: Tunable Emission. ACS Symposium Series, 2015, , 117-135.	0.5	2
710	Effect of temperature on the crystallinity, size and fluorescent properties of zirconia-based nanoparticles. Materials Chemistry and Physics, 2015, 152, 135-146.	2.0	18

#	Article	IF	CITATIONS
711	CdSe nanocrystals ingrained dielectric nanocomposites: synthesis and photoluminescence properties. Materials Research Express, 2015, 2, 015014.	0.8	4
712	Photon conversion in lanthanide-doped powder phosphors: concepts and applications. RSC Advances, 2015, 5, 17283-17295.	1.7	46
713	Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Progress in Materials Science, 2015, 72, 1-60.	16.0	415
714	Influence of the shape of quantum dots on their optical absorptions. Physica B: Condensed Matter, 2015, 462, 15-17.	1.3	15
715	Electronic states of coupled quantum dot-ring structure under lateral electric field with and without a hydrogenic donor impurity. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 69, 219-223.	1.3	18
716	Tuning the field emission properties of AlN nanocones by doping. Journal of Materials Chemistry C, 2015, 3, 1113-1117.	2.7	24
717	On the quantitative absorption and Stokes shift in PbSe quantum dots embedded in glasses. Applied Physics B: Lasers and Optics, 2015, 118, 85-92.	1.1	0
718	Linear and nonlinear susceptibilities of a Dâ^' system in a semiconductor quantum ring. Superlattices and Microstructures, 2015, 82, 82-89.	1.4	4
719	Impurity-related intraband absorption in coupled quantum dot-ring structure under lateral electric field. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 421-425.	1.3	9
720	Studying of photoluminescence characteristics of CdTe/ZnS QDs manipulated by TiO2 inverse opal photonic crystals. Optical Materials, 2015, 46, 350-354. Effects of applied electric magnetic fields on the nonlinear optical properties of asymmetric	1.7	22
721	<pre><mml:math <="" altimg="si13.gif" overflow="scroll" pre="" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></mml:math></pre>	1.7	64
722	xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevie. Optical Mat Optical and Magnetic Properties of PbS Nanocrystals Doped by Manganese Impurities. Journal of Physical Chemistry C, 2015, 119, 16941-16946.	1.5	27
723	Pharmaceutical and biomedical applications of quantum dots. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1-11.	1.9	43
724	Nanoscale Effects in Water Splitting Photocatalysis. Topics in Current Chemistry, 2015, 371, 105-142.	4.0	36
725	Electronic Band Structures and Native Point Defects of Ultrafine ZnO Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10617-10622.	4.0	14
726	Optical properties of an exciton bound to an ionized impurity in ZnO/SiO2 quantum dots. Solid State Communications, 2015, 209-210, 33-37.	0.9	10
727	Nucleation and initial growth of atomic layer deposited titanium oxide determined by spectroscopic ellipsometry and the effect of pretreatment by surface barrier discharge. Applied Surface Science, 2015, 345, 216-222.	3.1	9
728	Fast and reliable approach to calculate energy levels in semiconductor nanostructures. Journal of Nanophotonics, 2015, 9, 093080.	0.4	6

#	Article	IF	CITATIONS
729	Nano bio optically tunable composite nanocrystalline cellulose films. RSC Advances, 2015, 5, 7713-7719.	1.7	12
730	DFT/TDDFT study of electronic and optical properties of Surface-passivated Silicon nanocrystals, Sin (nÂ=Â20, 24, 26 and 28). Journal of Nanostructure in Chemistry, 2015, 5, 195-203.	5.3	8
732	Time-Dependent Spectra during Radiative Decay of Singlet Excitons in Conjugated Polymers. ECS Journal of Solid State Science and Technology, 2015, 4, R60-R65.	0.9	0
733	Absorption Spectra and Refractive Index Changes of an Exciton in a Core/Shell Quantum Dot. Communications in Theoretical Physics, 2015, 63, 635-640.	1.1	9
734	Synthesis and Characterization of Iron-Doped Lead Sulfide Thin Films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4698-4704.	1.1	15
735	Nanoparticle shape anisotropy and photoluminescence properties: Europium containing ZnO as a Model Case. Nanoscale, 2015, 7, 16969-16982.	2.8	30
736	Long-lived emission in Mn doped CdS, ZnS, and ZnSe diluted magnetic semiconductor quantum dots. Chemical Physics, 2015, 461, 58-62.	0.9	19
737	Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews, 2015, 115, 12888-12935.	23.0	1,386
738	Competition effects among size, dimensionality and pressure on modulating bandgap of CdSe and ZnO nanocrystals. Physica B: Condensed Matter, 2015, 479, 54-57.	1.3	2
739	Structural and optical properties of ZnSe quantum dots in glass nanocomposites. Materials Chemistry and Physics, 2015, 163, 554-561.	2.0	8
740	Synthesis of PbS/semiconducting polymer nanocomposites via thiolate decomposition. , 2015, , .		0
741	Two-photon-induced Förster resonance energy transfer in a hybrid material engineered from quantum dots and bacteriorhodopsin. Optics Letters, 2015, 40, 1440.	1.7	20
742	Low-cost, environmentally friendly synthesis, structural and spectroscopic properties of Fe:ZnSe colloidal nanocrystals. Journal of Alloys and Compounds, 2015, 621, 396-403.	2.8	17
743	Self-Assembly in Semiconductor Epitaxy. , 2015, , 1057-1099.		7
744	Electron microscopy of quantum dots. Journal of Microscopy, 2015, 257, 171-178.	0.8	7
745	Optical rectification and third harmonic generation of spherical quantum dots: Controlling via external factors. Physica B: Condensed Matter, 2015, 457, 212-217.	1.3	22
746	Optical studies of an exciton and a biexciton in a CdTe/ZnTe quantum dot nanostructure. Optics Communications, 2015, 336, 120-126.	1.0	8
747	The Ground State Electronic Properties of Two Electron Quantum Dot in External Magnetic and Electric Fields. Applied Physics Research, 2016, 8, 83.	0.2	1

#	Article	IF	CITATIONS
748	Quadrature demodulation of a quantum dot optical response to faint light fields. Optica, 2016, 3, 1397.	4.8	4
749	Sonochemically assisted colloidal route to CdSe quantum dot assemblies: an alternative way to further fine-tune the size-dependent properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 10600-10615.	1.1	2
750	Attraction of Nanoparticles to Tilt Grain Boundaries in Block Copolymers. Macromolecular Chemistry and Physics, 2016, 217, 509-518.	1.1	9
751	Study of photoluminescence characteristics of CdSe quantum dots hybridized with Cu nanowires. Luminescence, 2016, 31, 1298-1301.	1.5	44
752	Analysis of the atomic structure of colloidal quantum dots of the CdSe family: X-ray spectral diagnostics and computer modelling. Journal of Structural Chemistry, 2016, 57, 1429-1435.	0.3	0
753	Photoluminescence of SiO2 nanocomposite films implanted with Si+ and C+ ions. AIP Conference Proceedings, 2016, , .	0.3	0
755	Electrospinning for nano- to mesoscale photonic structures. Nanophotonics, 2017, 6, 765-787.	2.9	19
756	Carrier transport in III–V quantum-dot structures for solar cells or photodetectors. Chinese Physics B, 2016, 25, 097307.	0.7	6
757	Microbial synthesis of chalcogenide semiconductor nanoparticles: a review. Microbial Biotechnology, 2016, 9, 11-21.	2.0	68
758	Studies on influence of polymer modifiers for fluorescent nanocrystals' cytotoxicity. Journal of Pharmaceutical and Biomedical Analysis, 2016, 127, 193-201.	1.4	7
759	Influence of impurity on binding energy and optical properties of lens shaped quantum dots: Finite element method and Arnoldi algorithm. Chinese Journal of Physics, 2016, 54, 20-32.	2.0	21
760	Violet blue emission and thermoluminescence glow curve analysis of Gd2SiO5:Ce3+ phosphor. Optik, 2016, 127, 6243-6252.	1.4	10
761	Effective passivant pseudopotentials for semiconductors: Beyond the spherical approximation. Superlattices and Microstructures, 2016, 100, 548-559.	1.4	6
762	Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica. Journal of the American Chemical Society, 2016, 138, 13874-13881.	6.6	308
763	Quantum confinement effects on optical transitions in nanodiamonds containing nitrogen vacancies. Physical Review B, 2016, 94, .	1.1	36
764	Laser driven impurity states in two-dimensional quantum dots and quantum rings. Physica B: Condensed Matter, 2016, 501, 1-4.	1.3	23
765	Use of Surface Photovoltage Spectroscopy to Measure Built-in Voltage, Space Charge Layer Width, and Effective Band Gap in CdSe Quantum Dot Films. Journal of Physical Chemistry Letters, 2016, 7, 3335-3340.	2.1	38
766	Linear and nonlinear magneto-optical absorption in parabolic quantum well. Optik, 2016, 127, 10519-10526.	1.4	15

#	Article	IF	CITATIONS
767	Control of Photoluminescence Intensity in Nanostructured Layers of Lipid-soluble Quantum Dots and Water-soluble Gold Nanoparticles. Chemistry Letters, 2016, 45, 520-522.	0.7	2
768	Energy spectra and the third-order nonlinear optical properties in GaAs/AlGaAs core/shell quantum dots with a hydrogenic impurity. Superlattices and Microstructures, 2016, 100, 957-967.	1.4	10
769	Transport in serial spinful multiple-dot systems: The role of electron-electron interactions and coherences. Scientific Reports, 2016, 6, 22761.	1.6	12
770	Donor impurity-related intraband optical absorption in a single quantum ring: Hydrostatic pressure and intense laser field effects. European Physical Journal Plus, 2016, 131, 1.	1.2	8
771	Delayed electron relaxation in CdTe nanorods studied by spectral analysis of the ultrafast transient absorption. Chemical Physics, 2016, 471, 39-45.	0.9	8
772	Cadmium sulfide nanoparticles trigger DNA alterations and modify the bioturbation activity of tubificidae worms exposed through the sediment. Nanotoxicology, 2016, 10, 322-331.	1.6	2
773	Controlling the spectroscopic properties of quantum dots via energy transfer and charge transfer interactions: Concepts and applications. Nano Today, 2016, 11, 98-121.	6.2	43
774	Impurity-modulated Aharonov–Bohm oscillations and intraband optical absorption in quantum dot–ring nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 81, 31-36.	1.3	16
775	Higher open-circuit voltage set by cobalt redox shuttle in SnO2 nanofibers-sensitized CdTe quantum dot solar cells. Journal of Energy Chemistry, 2016, 25, 481-488.	7.1	6
776	Extracellular Synthesis of Luminescent CdS Quantum Dots Using Plant Cell Culture. Nanoscale Research Letters, 2016, 11, 100.	3.1	13
777	Electronic structure and optical properties of triangular GaAs/AlGaAs quantum dots: Exciton and impurity states. Physica B: Condensed Matter, 2016, 484, 95-108.	1.3	11
778	Thermal annealing and UV irradiation effects on structure, morphology, photoluminescence and optical absorption spectra of EDTA-capped ZnS nanoparticles. Journal Physics D: Applied Physics, 2016, 49, 055304.	1.3	25
779	Fabrication of CdSe sensitized SnO 2 nanofiber quantum dot solar cells. Materials Science in Semiconductor Processing, 2016, 41, 370-377.	1.9	14
780	A review of materials selection for optimized efficiency in quantum dot sensitized solar cells: A simplified approach to reviewing literature data. Renewable and Sustainable Energy Reviews, 2017, 73, 408-422.	8.2	22
781	Emerging Lowâ€Dimensional Materials for Nonlinear Optics and Ultrafast Photonics. Advanced Materials, 2017, 29, 1605886.	11.1	265
782	Nanomaterials: Basic Concepts and Quantum Models. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 43-105.	0.2	1
783	Charge transport in lead sulfide quantum dots/phthalocyanines hybrid nanocomposites. Organic Electronics, 2017, 44, 132-143.	1.4	13
784	Plasmon hybridisation of self-assembled 3d multiphase nano-titanium oxide towards broadband photon absorption. Solar Energy Materials and Solar Cells, 2017, 164, 165-174.	3.0	5

#	Article	IF	CITATIONS
785	Linear and ultrafast nonlinear plasmonics of single nano-objects. Journal of Physics Condensed Matter, 2017, 29, 123002.	0.7	26
786	Unraveling electron and hole relaxation dynamics in colloidal CdTe nanorods: a two-dimensional electronic spectroscopy study. Proceedings of SPIE, 2017, , .	0.8	0
787	Quantum dot cadmium selenide as a saturable absorber for Q-switched and mode-locked double-clad ytterbium-doped fiber lasers. Optics Communications, 2017, 397, 147-152.	1.0	18
788	Two-Dimensional Electronic Spectroscopy Unravels sub-100 fs Electron and Hole Relaxation Dynamics in Cd-Chalcogenide Nanostructures. Journal of Physical Chemistry Letters, 2017, 8, 2285-2290.	2.1	17
789	Interface control of electronic and optical properties in IV–VI and II–VI core/shell colloidal quantum dots: a review. Chemical Communications, 2017, 53, 1002-1024.	2.2	89
790	Study of entanglement entropy and exchange coupling in two-electron coupled quantum dots. Optical and Quantum Electronics, 2017, 49, 1.	1.5	9
791	Encapsulation of nanocrystals with responsive gels for spatial optical identification. Supramolecular Chemistry, 2017, 29, 627-632.	1.5	4
792	In-liquid plasma: a novel tool in the fabrication of nanomaterials and in the treatment of wastewaters. RSC Advances, 2017, 7, 47196-47218.	1.7	97
793	Intersection Nodes of Basal Screw Dislocations as Luminous Quantum Dots in GaN. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700297.	1.2	8
794	Size dependent electronic properties of silicon quantum dotsâ€"An analysis with hybrid, screened hybrid and local density functional theory. Computer Physics Communications, 2017, 221, 95-101.	3.0	9
795	Optical properties of CdSe/ZnTe type II core shell nanostructures. Optik, 2017, 146, 90-97.	1.4	19
796	Self-Assembly of Block Copolymer Chains To Promote the Dispersion of Nanoparticles in Polymer Nanocomposites. Journal of Physical Chemistry B, 2017, 121, 9311-9318.	1.2	16
797	Zinc dopant inspired enhancement of electron injection for CulnS ₂ quantum dot-sensitized solar cells. RSC Advances, 2017, 7, 39443-39451.	1.7	13
798	Atomistic Modeling of Quantum Dots at Experimentally Relevant Scales Using Charge Equilibration. Journal of Physical Chemistry A, 2017, 121, 9346-9357.	1.1	1
799	Exciton-mediated Raman scattering in CdS quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 93, 271-274.	1.3	3
800	Ill–V Semiconductor Photoelectrodes. Semiconductors and Semimetals, 2017, 97, 81-138.	0.4	10
801	Pressure effects on the dipole oscillator strength, polarizability, and mean excitation energy of a hydrogen impurity under cylindrical confinement: off-center axis effect. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 135002.	0.6	3
802	Synthesis of Type-I CdTe Core and Type-II CdTe/CdS Core/Shell Quantum Dots by a Hydrothermal Method and Their Optical Properties. Bulletin of the Chemical Society of Japan, 2017, 90, 52-58.	2.0	14

#	Article	IF	CITATIONS
803	Laser driven intraband optical transitions in two-dimensional quantum dots and quantum rings. Optics Communications, 2017, 383, 571-576.	1.0	16
804	Gamma irradiation induced in situ synthesis of lead sulfide nanoparticles in poly(vinyl alcohol) hydrogel. Radiation Physics and Chemistry, 2017, 130, 282-290.	1.4	12
805	Quantum Dots for Pharmaceutical and Biomedical Analysis. , 0, , .		2
806	Density functional theory analysis of electronic structure and optical properties of La doped Cd 2 SnO 4 transparent conducting oxide. Chinese Physics B, 2018, 27, 017101.	0.7	4
807	Fast sonochemically-assisted synthesis of pure and doped zinc sulfide quantum dots and their applicability in organic dye removal from aqueous media. Journal of Photochemistry and Photobiology B: Biology, 2018, 181, 98-105.	1.7	81
808	Subtractive fabrication of ferroelectric thin films with precisely controlled thickness. Nanotechnology, 2018, 29, 155302.	1.3	7
809	One-pot synthesis of polythiol ligand for highly bright and stable hydrophilic quantum dots toward bioconjugate formation. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9, 015002.	0.7	1
810	Z-scheme g-C3N4@CsxWO3 heterostructure as smart window coating for UV isolating, Vis penetrating, NIR shielding and full spectrum photocatalytic decomposing VOCs. Applied Catalysis B: Environmental, 2018, 229, 218-226.	10.8	164
811	The Rashba and Dresselhaus spin-orbit interactions effects on the optical properties of a quantum ring. Physica B: Condensed Matter, 2018, 543, 27-31.	1.3	20
812	Low-Energy Structures and Electronic Properties of Large-Sized Si $<$ sub $>$ $<$ i $>Ni></sub> Clusters (<i>Ni>= 60, 80, 100, 120, 150, 170). Journal of Physical Chemistry C, 2018, 122, 11086-11095.$	1.5	6
813	Superhydrophobic Silicon Nanocrystal–Silica Aerogel Hybrid Materials: Synthesis, Properties, and Sensing Application. Langmuir, 2018, 34, 4888-4896.	1.6	23
814	Single Semiconductor Nanostructure Extinction Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 16443-16463.	1.5	15
815	Investigation of the optoelectronic behavior of Pb-doped CdO nanostructures. Applied Nanoscience (Switzerland), 2018, 8, 937-948.	1.6	5
816	Structure Optimization of Low-Dimensional Quantum Dots via Anisotropic Surface Energy. Journal of the Korean Physical Society, 2018, 72, 582-587.	0.3	2
817	Investigation of the nanoscale two-component ZnS-ZnO heterostructures by means of HR-TEM and X-ray based analysis. Journal of Solid State Chemistry, 2018, 262, 264-272.	1.4	4
818	PbSe quantum dots-based chemiresistors for room-temperature NO2 detection. Sensors and Actuators B: Chemical, 2018, 256, 1045-1056.	4.0	24
819	Piezotronic effect on the luminescence of quantum dots for micro/nano-newton force measurement. Nano Research, 2018, 11, 1977-1986.	5.8	12
820	Experimental verification of FÃ \P rster energy transfer and quantum resonance between semiconductor quantum dots. Current Applied Physics, 2018, 18, S14-S20.	1.1	6

#	Article	IF	Citations
821	Controlled growth of vertically aligned ultrathin In ₂ S ₃ nanosheet arrays for photoelectrochemical water splitting. Nanoscale, 2018, 10, 1153-1161.	2.8	54
822	Recent Progress on Piezotronic and Piezoâ€Phototronic Effects in IIIâ€Group Nitride Devices and Applications. Advanced Engineering Materials, 2018, 20, 1700760.	1.6	27
823	Quantum confinement induced shift in energy band edges and band gap of a spherical quantum dot. Physica B: Condensed Matter, 2018, 530, 208-214.	1.3	16
824	Electric field and impurity effect on nonlinear optical rectification of a double cone like quantum dot. Optical Materials, 2018, 75, 187-195.	1.7	23
825	Metal Oxide Nanomaterials for Environmental Applications. , 2018, , 1-12.		1
826	Spherical quantum dot in Kratzer confining potential: study of linear and nonlinear optical absorption coefficients and refractive index changes. European Physical Journal B, 2018, 91, 1.	0.6	33
827	Tuning Hydrogenated Silicon, Germanium, and SiGe Nanocluster Properties Using Theoretical Calculations and a Machine Learning Approach. Journal of Physical Chemistry A, 2018, 122, 9851-9868.	1.1	9
828	Facile synthesis of two-dimensional Ruddlesden–Popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Research Letters, 2018, 13, 247.	3.1	55
829	Influence of surface nano-patterning on the placement of InAs quantum dots. Journal of Applied Physics, 2018, 124, 115307.	1.1	3
830	Femtosecond two-photon absorption spectroscopy of copper indium sulfide quantum dots: A structure-optical properties relationship. Optical Materials, 2018, 86, 455-459.	1.7	6
831	Droplet Epitaxy of Nanostructures. , 2018, , 293-314.		12
832	Intense Terahertz Radiation Effect on Electronic and Intraband Optical Properties of Semiconductor Quantum Rings. Nanoscience and Technology, 2018, , 411-445.	1.5	2
833	Silicon Carbide Nanomaterials. , 2018, , 213-253.		6
834	Titania morphologies modified gold nanoparticles for highly catalytic photoelectrochemical water splitting. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 740-749.	2.0	24
835	The Effects of Hydrogen-Like Impurity and Temperature on State Energies and Transition Frequency of Strong-Coupling Bound Polaron in an Asymmetric Gaussian Potential Quantum Well. Journal of Low Temperature Physics, 2018, 192, 41-47.	0.6	14
836	Emergence of Functionalized Properties in Semiconductor Nanostructures. , 2018, , 1-24.		0
837	Performance of Single-Crystal Silicon Solar Cells With Mist-Deposited Nanocrystalline Quantum Dot Downshifting Films. IEEE Journal of Photovoltaics, 2019, 9, 1006-1011.	1.5	10
838	Effects of thiol ligands on the growth and stability of CdS nanoclusters. Journal of Molecular Structure, 2019, 1198, 126832.	1.8	6

#	Article	IF	CITATIONS
839	Examination of the Shape and Structure of (111)-oriented GaAs Tensile-Strained Quantum Dots using Transmission Electron Microscopy, Electron Energy Loss Spectroscopy, and Atom Probe Tomography. Microscopy and Microanalysis, 2019, 25, 2208-2209.	0.2	0
840	Fabrication of hexagonal boron nitride quantum dots via a facile bottom-up technique. Ceramics International, 2019, 45, 22765-22768.	2.3	24
841	Facile synthesis of g-C3N4/ LaMO3 (M: Co, Mn, Fe) composites for enhanced visible-light-driven photocatalytic water splitting. Materials Science in Semiconductor Processing, 2019, 103, 104643.	1.9	21
842	Progress in laser cooling semiconductor nanocrystals and nanostructures. NPG Asia Materials, 2019, 11, .	3.8	30
843	Enhanced Performance of a Visible Light Detector Made with Quasi-Free-Standing Graphene on SiC. Materials, 2019, 12, 3227.	1.3	8
844	Scanning acoustic microscopy of quantum dot aggregates. Biomedical Physics and Engineering Express, 2019, 5, 065025.	0.6	2
845	Solid state synthesis of CdS quantum dots through laser direct writing. AIP Conference Proceedings, 2019, , .	0.3	1
846	Fabrication of a Tyrosine-Responsive Liquid Quantum Dots Based Biosensor through Host–Guest Chemistry. Analytical Chemistry, 2019, 91, 13285-13289.	3.2	13
847	Effect of Heat Treatment on Structural and Optical Properties of Zn1-xCoxS Nanoparticles. Materials Today: Proceedings, 2019, 17, 380-385.	0.9	0
848	Mechanism insights into tunable photoluminescence of carbon dots by hydroxyl radicals. Journal of Materials Science, 2019, 54, 6140-6150.	1.7	28
849	Using quantum dots as pollen labels to track the fates of individual pollen grains. Methods in Ecology and Evolution, 2019, 10, 604-614.	2.2	33
850	A comparative study of the isoelectronic Cd and Hg substitution in EDTA-capped ZnS nanocrystals. Journal of Materials Science: Materials in Electronics, 2019, 30, 13191-13200.	1.1	0
851	Investigation of optical properties of CdS for various Na concentrations for nonlinear optical applications (A DFT study). Optik, 2019, 193, 162985.	1.4	8
852	ZnO composite nanolayer with mobility edge quantization for multi-value logic transistors. Nature Communications, 2019, 10, 1998.	5.8	67
853	Impacts of external fields and Rashba and Dresselhaus spin–orbit interactions on the optical rectification, second and third harmonic generations of a quantum ring. European Physical Journal B, 2019, 92, 1.	0.6	10
854	The Processes for Fabricating Nanopowders. , 2019, , 13-25.		8
855	Using Hydrogel to Diversify the Adaptability and Applicability of Functional Nanoparticles: From Nanotech-Flavored Jellies to Artificial Enzymes. Langmuir, 2019, 35, 8612-8628.	1.6	5
856	Spectroelectrochemistry of Quantum Dots. Israel Journal of Chemistry, 2019, 59, 679-694.	1.0	9

#	Article	IF	Citations
857	Effect of magnetic field on absorption coefficients, refractive index changes and group index of spherical quantum dot with hydrogenic impurity. Optical Materials, 2019, 91, 62-69.	1.7	32
858	High-performance inverted organic light-emitting diodes with extremely low efficiency roll-off using solution-processed ZnS quantum dots as the electron injection layer. RSC Advances, 2019, 9, 6042-6047.	1.7	12
859	Microstructure and Optical Bandgap of Cobalt Selenide Nanofilms. Semiconductors, 2019, 53, 1751-1758.	0.2	21
860	Investigation of indium antimonide nanoparticles, obtained by the method of liquid chemical etching. Journal of Physics: Conference Series, 2019, 1410, 012048.	0.3	0
861	Electronic Structure and Excited State Dynamics of TiO ₂ Nanowires. ACS Symposium Series, 2019, , 23-46.	0.5	0
862	Phonon-Mediated Ultrafast Hole Transfer from Photoexcited CdSe Quantum Dots to Black Dye. ACS Symposium Series, 2019, , 137-156.	0.5	4
863	Electronic Confinement Effect in Silica-Based Materials. , 2019, , 295-311.		0
864	Cytotoxicity studies of quantum dots with the electroporation method. Bioelectrochemistry, 2019, 126, 86-91.	2.4	6
865	Synthesis of 3D CQDs/urchin-like and yolk-shell TiO2 hierarchical structure with enhanced photocatalytic properties. Ceramics International, 2019, 45, 5858-5865.	2.3	23
866	Carbon dotsâ€involved chemiluminescence: Recent advances and developments. Luminescence, 2019, 34, 4-22.	1.5	49
867	High Quantum Yield Colloidal Semiconducting Nanoplatelets and High Color Purity Nanoplatelet QLED. IEEE Nanotechnology Magazine, 2019, 18, 220-225.	1.1	15
868	Study of the extrinsic properties of Copper doped Cadmium Sulfide Thin Film by Hydrothermal assisted CBD Method. Materials Research Express, 2019, 6, 045908.	0.8	8
869	Click multiwalled carbon nanotubes: A novel method for preparation of carboxyl groups functionalized carbon quantum dots. Materials Science and Engineering C, 2020, 108, 110376.	3.8	13
870	Insulin-copper quantum clusters preparation and receptor targeted bioimaging. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110785.	2.5	11
871	Critical assessment of wet-chemical oxidation synthesis of silicon quantum dots. Faraday Discussions, 2020, 222, 149-165.	1.6	17
872	Baking nanoparticles: Linking the synthesis parameters of CdS nanoparticles in a glass matrix with their size and size distribution. Journal of Non-Crystalline Solids, 2020, 529, 119781.	1.5	7
873	Glutathione capped core/shell CdSeS/ZnS quantum dots as a medical imaging tool for cancer cells. Inorganic Chemistry Communication, 2020, 112, 107723.	1.8	32
874	A polydopamine-polyethyleneimine/quantum dot sensor for instantaneous readout of cell surface charge to reflect cell states. Sensors and Actuators B: Chemical, 2020, 324, 128696.	4.0	2

#	Article	IF	Citations
875	Illuminating the incredible journey of pollen. American Journal of Botany, 2020, 107, 1323-1326.	0.8	4
876	Inorganic nanoparticles in clinical trials and translations. Nano Today, 2020, 35, 100972.	6.2	138
877	Quantum confinement in group III–V semiconductor 2D nanostructures. Nanoscale, 2020, 12, 17494-17501.	2.8	46
878	Nanopharmaceuticals: A focus on their clinical translatability. International Journal of Pharmaceutics, 2020, 578, 119098.	2.6	44
879	Relativistic Artificial Molecules Realized by Two Coupled Graphene Quantum Dots. Nano Letters, 2020, 20, 6738-6743.	4. 5	15
880	Effect of Cr/Sb doping and annealing on nonlinear absorption coefficients of SnO2 /PMMA nanocomposite films. Materials Chemistry and Physics, 2020, 255, 123596.	2.0	21
885	Periodic Solids and Electron Bands. , 2020, , 81-108.		0
886	Uniform Electron Gas and sp-Bonded Metals. , 2020, , 109-128.		0
887	Density Functional Theory: Foundations. , 2020, , 129-144.		0
888	The Kohn–Sham Auxiliary System. , 2020, , 145-170.		0
889	Functionals for Exchange and Correlation I., 2020, , 171-187.		0
890	Functionals for Exchange and Correlation II. , 2020, , 188-214.		0
891	Electronic Structure of Atoms. , 2020, , 215-229.		0
892	Pseudopotentials. , 2020, , 230-258.		0
894	Plane Waves and Grids: Basics. , 2020, , 262-282.		0
895	Plane Waves and Real-Space Methods: Full Calculations. , 2020, , 283-294.		0
896	Localized Orbitals: Tight-Binding. , 2020, , 295-319.		0
897	Localized Orbitals: Full Calculations. , 2020, , 320-331.		0

#	Article	IF	Citations
898	Augmented Functions: APW, KKR, MTO., 2020, , 332-364.		0
899	Augmented Functions: Linear Methods. , 2020, , 365-385.		0
900	Locality and Linear-Scaling O(N) Methods. , 2020, , 386-410.		0
901	Quantum Molecular Dynamics (QMD). , 2020, , 411-426.		O
902	Response Functions: Phonons and Magnons. , 2020, , 427-445.		0
903	Excitation Spectra and Optical Properties. , 2020, , 446-464.		O
904	Surfaces, Interfaces, and Lower-Dimensional Systems. , 2020, , 465-480.		0
905	Wannier Functions., 2020,, 481-498.		O
906	Polarization, Localization, and Berry Phases. , 2020, , 499-516.		0
907	Topology of the Electronic Structure of a Crystal: Introduction. , 2020, , 517-530.		O
908	Two-Band Models: Berry Phase, Winding, and Topology. , 2020, , 531-546.		0
909	Topological Insulators I: Two Dimensions. , 2020, , 547-568.		O
910	Topological Insulators II: Three Dimensions. , 2020, , 569-580.		0
929	Precession controlled synthesis and ligands assisted modulation of optical properties and Raman scattering in Ag doped ZnO nano-egg. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 123, 114177.	1.3	5
930	Selective-area growth and characterization of cubic GaN grown by metalorganic vapor phase epitaxy. Thin Solid Films, 2020, 709, 138125.	0.8	2
931	Quantum effects. , 2020, , 29-49.		0
932	Reducing the Efficiency Roll Off and Applied Potential-Induced Color Shifts in CdSe@ZnS/ZnS-Based Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 14847-14854.	1.5	4
933	Tuning the thermal stability of copper(II) hexacyanoferrate(II) nanoparticles. Journal of Thermal Analysis and Calorimetry, 2021, 145, 2353-2362.	2.0	5

#	Article	IF	CITATIONS
934	Excess Random Laser Action in Memories for Hybrid Optical/Electric Logic. ACS Applied Electronic Materials, 2020, 2, 954-961.	2.0	4
935	Effect of gravity and electromagnetic field on the spectra of cylindrical quantum dots together with AB flux field. Modern Physics Letters A, 2020, 35, 2050092.	0.5	3
936	Structure and optical properties of polycrystalline ZnSe thin films: validity of Swanepol's approach for calculating the optical parameters. Materials Research Express, 2020, 7, 016422.	0.8	41
937	Tracing multi-isotopically labelled CdSe/ZnS quantum dots in biological media. Scientific Reports, 2020, 10, 2866.	1.6	11
938	Heterogeneous Photocatalysis in Organic Synthesis. ChemPhotoChem, 2020, 4, 456-475.	1.5	147
939	Raman shift, Néel temperature, and optical band gap of NiO nanoparticles. Physical Chemistry Chemical Physics, 2020, 22, 5735-5739.	1.3	7
940	Crosslinkâ€Enhanced Emission Effect on Luminescence in Polymers: Advances and Perspectives. Angewandte Chemie - International Edition, 2020, 59, 9826-9840.	7.2	169
941	Crosslinkâ€Enhanced Emission Effect on Luminescence in Polymers: Advances and Perspectives. Angewandte Chemie, 2020, 132, 9910-9924.	1.6	36
942	Facile preparation and properties of fluorescent thermoplastic elastomer comprised of ZnS-capped CdSe metallo-supramolecular block copolymer. European Polymer Journal, 2020, 124, 109466.	2.6	2
943	Excitation Energy Dependence of Photoluminescence Quantum Yields in Semiconductor Nanomaterials with Varying Dimensionalities. Journal of Physical Chemistry Letters, 2020, 11, 3249-3256.	2.1	14
944	Carrier multiplication in semiconductor quantum dots. Physica B: Condensed Matter, 2021, 604, 412686.	1.3	0
945	CdInGaS4: An unexplored two- dimensional materials with desirable band gap for optoelectronic devices. Journal of Alloys and Compounds, 2021, 854, 157220.	2.8	19
946	Modern applications of quantum dots: Environmentally hazardous metal ion sensing and medical imaging. , 2021, , 465-503.		3
947	Fluorescence microscopy of organic dye, nanoparticles, quantum dots and spectroscopy., 2021,, 73-106.		2
948	Quantum dots-based sensors using solid electrodes. , 2021, , 81-120.		1
949	Markov chains for modeling complex luminescence, absorption, and scattering in nanophotonic systems. Optics Express, 2021, 29, 4249.	1.7	2
950	Fine structure of bright and dark excitons in asymmetric droplet epitaxy GaAs/AlGaAs quantum dots. Physical Review B, 2021, 103, .	1.1	2
951	Analysis of the energy spectrum of indium antimonide quantum dots with temperature changes. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12, 113-117.	0.2	0

#	Article	IF	CITATIONS
952	Optical Properties of Gaas/Alxga1-xas Superlattice Under E-Field for Quantum Cascade Laser Application. Gazi University Journal of Science, 2021, 34, 1179-1191.	0.6	5
953	Exploring Heterostructured Upconversion Nanoparticles: From Rational Engineering to Diverse Applications. ACS Nano, 2021, 15, 3709-3735.	7.3	82
954	On the Optical Stark Effect of Excitons in InGaAs Prolate Ellipsoidal Quantum Dots. Journal of Nanomaterials, 2021, 2021, 1-12.	1.5	2
955	Study of the K2Ti6-xZrxO13 (x = 0 - 1) solid solution for enhancing the photocatalytic hydrogen production: Oxygen vacancies playing an important role in the catalytic performance. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 409, 113134.	2.0	4
956	Electrically activated chemical bath deposition of CdS on carbon nanotube arrays. Synthetic Metals, 2021, 273, 116671.	2.1	2
957	Shape Effect on the Electrical Properties of Indium-Antimonide Quantum Dots. Semiconductors, 2021, 55, 315-318.	0.2	1
958	Nonlinear Optical Properties of CdSe and CdTe Core-Shell Quantum Dots and Their Applications. Frontiers in Physics, 2021, 9, .	1.0	24
959	Effect of Magnetic Field on the Energy Spectrum, Binding Energy and Magnetic Susceptibility of an Impurity in a 2D Gaussian Quantum Dot. ECS Journal of Solid State Science and Technology, 2021, 10, 041001.	0.9	7
960	Phase-Dependent Shell Growth and Optical Properties of ZnSe/ZnS Core/Shell Nanorods. Chemistry of Materials, 2021, 33, 3413-3427.	3.2	12
961	Advancements on Basic Working Principles of Photo-Driven Oxidative Degradation of Organic Substrates over Pristine and Noble Metal-Modified TiO2. Model Case of Phenol Photo Oxidation. Catalysts, 2021, 11, 487.	1.6	5
962	Magnetically induced optical transparency in a plasmon-exciton system. Physical Review A, 2021, 103, .	1.0	19
963	Insights into Fano-type resonance fluorescence from quantum-dot–metal-nanoparticle molecules with a squeezed vacuum. Physical Review A, 2021, 104, .	1.0	15
964	Calculation of Biexiton Binding Energy in a Cylindrical Quantum Dot with a Mors Potential. Journal of Contemporary Physics, 2021, 56, 214-220.	0.1	0
965	Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications. Materials Today Communications, 2021, 28, 102533.	0.9	52
966	Small nanoparticles bring big prospect: The synthesis, modification, photoluminescence and sensing applications of carbon dots. Chinese Chemical Letters, 2022, 33, 1659-1672.	4.8	22
967	Observation of biexciton emission in graphitic-C3N4 nanotubes. Journal of Luminescence, 2021, 238, 118310.	1.5	О
968	Recent applications of quantum dots in optical and electrochemical aptasensing detection of Lysozyme. Analytical Biochemistry, 2021, 630, 114334.	1.1	7
969	Air-stable synthesis of near-infrared AgInSe2 quantum dots for sensitized solar cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127071.	2.3	4

#	Article	IF	CITATIONS
970	Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications. Biomaterials Science, 2021, 9, 5472-5483.	2.6	24
971	Surface-Induced Deprotonation of Thiol Ligands Impacts the Optical Response of CdS Quantum Dots. Chemistry of Materials, 2021, 33, 892-901.	3.2	20
972	Vibrational frequency of the silver nanomaterial. AIP Conference Proceedings, 2021, , .	0.3	0
976	Synthesis, Properties, and Applications of Il–VI Semiconductor Core/Shell Quantum Dots. Lecture Notes in Nanoscale Science and Technology, 2020, , 1-28.	0.4	8
977	Metal Oxide Nanomaterials for Environmental Applications. , 2019, , 2357-2368.		11
978	Bulk Optical Absorption. Springer Series in Solid-state Sciences, 2013, , 43-88.	0.3	10
979	Spectral Imaging of Single CdSe/ZnS Quantum Dots Employing Spectrally- and Time-resolved Confocal Microscopy. Springer Series on Fluorescence, 2002, , 317-335.	0.8	2
981	First-principles-derived effective mass approximation for the improved description of quantum nanostructures. JPhys Materials, 2020, 3, 034012.	1.8	9
983	Effect of high bandgap AlAs quantum barrier on electronic and optical properties of In0.70Ga0.30As/Al0.60In0.40As superlattice under applied electric field for laser and detector applications. International Journal of Modern Physics B, 2021, 35, 2150027.	1.0	10
984	Fluorescence Microscopy and Spectroscopy of Individual Semiconductor Nanocrystals. , 2005, , 103-123.		1
985	Relativistic Paschen-Back Effect for the Two-Dimensional H-Like Atoms. Acta Physica Polonica A, 2010, 117, 439-444.	0.2	7
986	Silicon Quantum Dots: Promising Theranostic Probes for the Future. Current Drug Targets, 2019, 20, 1255-1263.	1.0	29
987	Near-Field Optical Properties of Quantum Dots, Applications and Perspectives. Recent Patents on Nanotechnology, 2011, 5, 188-224.	0.7	12
988	Influence of Thermal Annealing on the Carrier Extraction in Ge/Si Quantum Dot Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NE24.	0.8	2
989	Optical Properties of MagnetoBiexciton in Ellipsoidal Quantum Dot. , 2021, , .		0
990	Micro-Imaging and Single Dot Spectroscopy of Self-Assembled Quantum Dots. Nanoscience and Technology, 2002, , 149-208.	1.5	0
991	Sub-Wetting Layer Continuum States in Quantum Dot Samples. , 2003, , 19-35.		1
992	'Netting layer states. , 2003, , 178-186.		0

#	Article	IF	CITATIONS
993	Nano-optoelectronics. Series in Materials Science and Engineering, 2004, , .	0.1	0
994	Anti-parallel coupling of Quantum Dots with an Optical Near-Field Interaction. E-Journal of Surface Science and Nanotechnology, 2005, 3, 74-78.	0.1	0
995	Computer Algebra in Nanosciences: Modeling Electronic States in Quantum Dots. Lecture Notes in Computer Science, 2005, , 115-124.	1.0	0
996	Electron Energy State Spin Splitting in Nanoscale InAs/GaAs Semiconductor Quantum Rings. , 2006, , 838-845.		O
997	Microscopic Modeling of Phonon Modes in Semiconductor Nanocrystals. , 2009, , 485-536.		0
998	Bulk Optical Absorption. Springer Series in Solid-state Sciences, 2009, , 45-84.	0.3	0
999	Molecular Imaging: Basic Approaches. , 2010, , 105-119.		0
1000	Quantum Dots: Synthesis and Characterization. , 2011, , 17-60.		1
1001	Semiconductors and Their Nanostructures. , 2011, , 39-77.		0
1002	One-Dimensional Meso-Structures: The Growth and the Interfaces. , 0, , .		0
1003	Monte-Carlo Approach to Stationary Non-equilibrium of Mesoscopic Systems. NATO Science for Peace and Security Series B: Physics and Biophysics, 2013, , 187-197.	0.2	0
1004	Carbon-Based Zero-, One-, and Two-Dimensional Materials for Device Application., 2013,, 655-676.		O
1007	Semiconductors and Their Nanostructures. , 2016, , 62-101.		0
1008	Electronic Properties of Nanoparticle Materials: From Isolated Particles to Assemblies. , 2016, , 121-244.		0
1009	Charge-Trap-Non-volatile Memory and Focus on Flexible Flash Memory Devices., 2017,, 55-89.		5
1010	Oxide Semiconductors (ZnO, TiO2, Fe2O3, WO3, etc.) as Photocatalysts for Water Splitting. Electrochemical Energy Storage and Conversion, 2017, , 161-222.	0.0	1
1011	Synthesis and Properties of InP/ZnS core/shell Nanoparticles with One-pot process. Journal of Korean Powder Metallurgy Institute, 2017, 24, 11-16.	0.2	0
1012	Miniband Electrical Conductivity in Superlattices of Spherical InAs/GaAs Quantum Dots. Ukrainian Journal of Physics, 2017, 62, 335-342.	0.1	0

#	Article	IF	CITATIONS
1013	Synthesis and Characterization of CdS Nanoparticles Obtained in Star-Like Dextran-Graft-Polyacrylamide Matrices. Ukrainian Journal of Physics, 2017, 62, 908-912.	0.1	0
1014	Selection of an Appropriate Basis Set for Accurate Description of Binding Energy: A First Principles Study. Journal of Natural and Applied Sciences, 2017, 21, 847.	0.1	0
1015	"Soft―Chemical Synthesis and Manipulation of Semiconductor Nanocrystals. , 2017, , 1-62.		2
1016	A Brief Study on Characteristics, Properties, and Applications of CdSe., 2019, , 43-60.		1
1017	Embedding of iron silicide nanocrystals into monocrystalline silicon: suppression of emersion effect. , 2019, , .		0
1018	Methodology of analyzing the InSb semiconductor quantum dots parameters. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, 720-724.	0.2	1
1019	Designating Vulnerability of Atherosclerotic Plaques. , 0, , .		0
1020	Method for analyzing the electrophysical properties of semiconductor quantum dots. Journal of Physics: Conference Series, 2020, 1695, 012200.	0.3	0
1021	Semiconductor quantum dot-doped sol–gel materials. , 2020, , 209-226.		1
1022	Emergence of Functionalized Properties in Semiconductor Nanostructures. , 2020, , 661-684.		0
1023	What Did We Attain with Luminescent Quantum Dots?., 0,,.		0
1024	Nanoparticles, Nanorods, and Other Nanostructures Assembled on Inert Substrates., 2007, , 118-153.		0
1025	Recent progresses of quantum confinement in graphene quantum dots. Frontiers of Physics, 2022, 17, 1.	2.4	31
1026	Quantum dots synthetization and future prospect applications. Nanotechnology Reviews, 2021, 10, 1926-1940.	2.6	33
1027	Size-dependent structural and electronic properties of stoichiometric II–VI quantum dots and gas sensing ability of CdSe quantum dots: a DFT study. Journal of Nanoparticle Research, 2022, 24, .	0.8	2
1028	Metal oxide nanomaterials. , 2022, , 233-252.		O
1029	MOF-triggered formation of MAPbBr ₃ @PbBr(OH) with enhanced stability. Journal of Materials Chemistry C, 2022, 10, 616-625.	2.7	7
1030	Sensing and biosensing with silicon quantum dots. , 2022, , 283-304.		0

#	ARTICLE	IF	CITATIONS
1031	Extensive study on plant mediated green synthesis of metal nanoparticles and their application for degradation of cationic and anionic dyes. Environmental Nanotechnology, Monitoring and Management, 2022, 17, 100624.	1.7	20
1032	A Siâ€CdTe Composite Quantum Dots Probe with Dualâ€Wavelength Emission for Sensitively Monitoring Intracellular H ₂ O ₂ . Advanced Functional Materials, 2022, 32, .	7.8	18
1033	Bright blue emissions on UV-excitation of LaBO ₃ (B=In, Ga, Al) perovskite structured phosphors for commercial solid-state lighting applications. Chimica Techno Acta, 2022, 9, 20229107.	0.3	0
1034	InP-Bovine Serum Albumin Conjugates as Energy Transfer Probes. Journal of Physical Chemistry B, 2022, 126, 2635-2646.	1.2	4
1035	Shapeâ€Tuned Multiphotonâ€Emitting InP Nanotetrapods. Advanced Materials, 2022, 34, e2110665.	11.1	8
1036	The Study of GaInAsP/InP Heterostructures with an Array of InAs Nanoislands. Journal of Surface Investigation, 2021, 15, 1290-1295.	0.1	O
1037	Floquet engineering of excitons in semiconductor quantum dots. Physical Review B, 2022, 105, .	1.1	10
1039	Multicolor Biexciton Lasers Based on 2D Perovskite Single Crystalline Flakes. Advanced Optical Materials, 2022, 10, .	3.6	7
1040	Transmission characteristics of a Clad Removed Optical Fiber coated with LEEH Caped ZnTe Quantum Dot. Optik, 2022, , 169380. Dielectric screening and vacancy formation for large neutral and charged small math	1.4	0
1041	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <nml:msub><mml:mrow><nml:mi>Simathvariant="normal">H</nml:mi></mml:mrow><mml:mi>m</mml:mi> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mi>n</mml:mi>nnnnnnnnnmi>mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mi>n</mml:mi>mul:mi>nmul:mi>nmul:mi>nmul:mi>nmul:mi>nmul:mi>mul:mi mul:mi>mul:mi mul:mi>mul:mi mul:mi mul:mi</mml:mrow></mml:mrow></mml:math></nml:msub>	0.9	2
1042	Intense terahertz laser field induced electro-magneto-donor impurity associated photoionization	1.3	2
1043	Template-Based Controlled Synthesis and Bioapplication of AgInSe ₂ :Zn ²⁺ Near-Infrared Luminescent Quantum Dots [※] . Acta Chimica Sinica, 2022, 80, 625.	0.5	1
1044	Measuring Non-Destructively the Total Indium Content and Its Lateral Distribution in Very Thin Single Layers or Quantum Dots Deposited onto Gallium Arsenide Substrates Using Energy-Dispersive X-ray Spectroscopy in a Scanning Electron Microscope. Nanomaterials, 2022, 12, 2220.	1.9	2
1045	Cadmium Chalcogenide (CdS, CdSe, CdTe) Quantum Dots for Solarâ€toâ€Fuel Conversion. Advanced Photonics Research, 2022, 3, .	1.7	25
1046	White-Light Spectral Interferometry for Characterizing Inhomogeneity in Solutions and Nanocolloids. ACS Nanoscience Au, 0, , .	2.0	0
1047	Quantum confinement in chalcogenides 2D nanostructures from first principles. Journal of Physics Condensed Matter, 2022, 34, 405301.	0.7	1
1048	Nanobiosensors for detection of opioids: A review of latest advancements. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 179, 79-94.	2.0	14
1049	Macrosteps dynamics and the growth of crystals and epitaxial layers. Progress in Crystal Growth and Characterization of Materials, 2022, 68, 100581.	1.8	1

#	Article	IF	Citations
1050	Energy transfer in hybrid OD-CdSe quantum dot/2D-WSe ₂ near-infrared photodetectors. Journal Physics D: Applied Physics, 2022, 55, 444006.	1.3	3
1051	Highly Bright Silica-Coated InP/ZnS Quantum Dot-Embedded Silica Nanoparticles as Biocompatible Nanoprobes. International Journal of Molecular Sciences, 2022, 23, 10977.	1.8	4
1052	Tuning of nonlinear optical characteristics of Mathieu quantum dot by laser and electric field. European Physical Journal Plus, 2022, 137, .	1.2	4
1053	Role of Interdiffusion and Segregation during the Life of Indium Gallium Arsenide Quantum Dots, from Cradle to Grave. Nanomaterials, 2022, 12, 3850.	1.9	2
1054	Room-Temperature Semiconductor Gas Sensors: Challenges and Opportunities. ACS Sensors, 2022, 7, 3582-3597.	4.0	50
1055	Phase composition evolution of iron silicide nanocrystals in the course of embedding into monocrystalline silicon. , 2017, 5, 011401-011401.		0
1056	Engineering quantum states and electronic landscapes through surface molecular nanoarchitectures. Reviews of Modern Physics, 2022, 94, .	16.4	10
1057	Impact of pressure on the resonant energy and resonant frequency for two barriers Ga _{1â^'x} Al _x As/GaAs nanostructures. Physica Scripta, 2023, 98, 015809.	1.2	1
1058	A modelâ€based systems engineering framework for quantum dot solar cells development. Systems Engineering, 0, , .	1.6	1
1059	Emergence of Visibleâ€Light Water Oxidation Upon Hexaniobateâ€Ligand Entrapment of Quantumâ€Confined Copperâ€Oxide Cores. Angewandte Chemie - International Edition, 0, , .	7.2	2
1060	Inorganic Halide Perovskite Quantum Dots: A Versatile Nanomaterial Platform for Electronic Applications. Nano-Micro Letters, 2023, 15, .	14.4	36
1061	Emergence of Visibleâ€Light Water Oxidation Upon Hexaniobateâ€Ligand Entrapment of Quantumâ€Confined Copperâ€Oxide Cores. Angewandte Chemie, 0, , .	1.6	0
1062	Enabling multiple intercavity polariton coherences by adding quantum confinement to cavity molecular polaritons. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
1063	Quantum confinement effects and feasible mechanisms of multicolor emitting afterglow nanophosphors., 2023,, 99-137.		0
1064	Quantum dots: novel approach for biological imaging. , 2023, , 477-500.		0
1065	Synthesis, structural properties, and applications of cadmium sulfide quantum dots., 2023,, 235-266.		2
1066	Optical properties of donor impurity in Yukawa like potential: application to SiGe/Si and Si/SiGe. Physica Scripta, 2023, 98, 055914.	1.2	0
1067	Anomalous Stark effect and optical properties of exciton in a quantum dot with linear potential under ionized donor hydrogenic impurity. Current Applied Physics, 2023, 48, 17-28.	1.1	0

#	Article	IF	Citations
1068	Nanomaterials for Fluorescence and Multimodal Bioimaging. Chemical Record, 2023, 23, .	2.9	4
1069	Ultraâ€stable perovskite quantum dot composites encapsulated with mesoporous SiO ₂ and PbBr(OH) for white lightâ€emitting diodes. Luminescence, 2023, 38, 536-545.	1.5	2
1070	How structural and vibrational features affect optoelectronic properties of non-stoichiometric quantum dots: computational insights. Nanoscale, 2023, 15, 7176-7185.	2.8	1
1071	Quantum Dot (QD)-Induced Toxicity and Biocompatibility. , 2023, , 181-211.		0
1072	Stabilization of PbS colloidal-quantum-dot gas sensors using atomic-ligand engineering. Sensors and Actuators B: Chemical, 2023, 388, 133850.	4.0	4
1073	Nanocrystal Synthesis and Self-Assembly. , 2008, , 335-428.		0
1076	Synthesis and characterization of zinc sulfide nanomaterials for removal methylene blue dye from aqueous solution. AIP Conference Proceedings, 2023, , .	0.3	0