Preparation, Structure, and Properties of Three-Dimens $\hat{I}\pm\text{-}Fe2O3Nanoparticulate}$ Film

Chemistry of Materials 12, 790-794 DOI: 10.1021/cm990690+

Citation Report

#	Article	IF	CITATIONS
1	Gas sensitivity of composite Langmuir–Blodgett films of Fe2O3 nanoparticle-copper phthalocyanine. Sensors and Actuators B: Chemical, 2000, 71, 77-81.	4.0	31
3	Self-Assembly of Uniform Spherical Aggregates of Magnetic Nanoparticles through ï€-ï€ Interactions. Angewandte Chemie - International Edition, 2001, 40, 2135-2138.	7.2	165
4	Aggregation of Silver Particles Trapped at an Airâ^'Water Interface for Preparing New SERS Active Substrates. Journal of Physical Chemistry B, 2002, 106, 6500-6506.	1.2	76
5	An organic–inorganic hybrid ultrathin film: preparation and characterization of copper phthalocyanine derivative–ferric oxide nanoparticles. Journal of Materials Chemistry, 2002, 12, 392-395.	6.7	3
6	Surface structure of α-Fe2O3 nanocrystal observed by O K-edge X-ray absorption spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2003, 199, 291-294.	0.6	18
7	Synthesis of large arrays of aligned α-Fe2O3 nanowires. Chemical Physics Letters, 2003, 379, 373-379.	1.2	242
8	Microwave absorption by nanostructural ferric oxide encapsulated within MCM-41. Chemical Communications, 2003, , 1432.	2.2	21
9	Synthesis and Microstructures of α-Fe2O3 Bicrystalline Nanowires. Materials Research Society Symposia Proceedings, 2004, 839, 137.	0.1	0
10	Low-temperature synthesis of α-Fe2O3 nanoparticles with a closed cage structure. Chemical Physics Letters, 2004, 384, 391-393.	1.2	58
11	Theoretical Consideration on Preparing Silver Particle Films by Adsorbing Nanoparticles from Bulk Colloids to an Airâ~'Water Interface. Langmuir, 2004, 20, 8831-8838.	1.6	56
12	<title>Sol-gel processed iron-containing silica films on Si</title> . , 2005, , .		0
13	Magnetic ordering of ferric oxide within SiO2-based mesoporous materials. Materials Research Bulletin, 2005, 40, 1713-1725.	2.7	10
14	?-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Advanced Materials, 2005, 17, 582-586.	11.1	1,564
15	Novel Nanopyramid Arrays of Magnetite. Advanced Materials, 2005, 17, 1893-1897.	11.1	78
16	Sol–gel route to pseudocubic shaped α-Fe2O3 alcohol sensor: preparation and characterization. Sensors and Actuators B: Chemical, 2005, 107, 915-920.	4.0	78
17	Uses of α-Fe2O3 and fly ash as solid adsorbents. Bulletin of Materials Science, 2005, 28, 713-718.	0.8	12
18	Synthesis of α-Fe ₂ O ₃ Nanowires and its Magnetic Properties. Journal of Metastable and Nanocrystalline Materials, 2005, 23, 243-246.	0.1	5
19	Efficient field emission from α-Fe2O3 nanoflakes on an atomic force microscope tip. Applied Physics Letters, 2005, 87, 023103.	1.5	82

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
20	Bicrystalline Hematite Nanowires. Journal of Physical Chemistry B, 2005, 109, 12245-12249.	1.2	123
21	Langmuir Monolayers of Co Nanoparticles and Their Patterning by Microcontact Printing. Journal of Physical Chemistry B, 2005, 109, 13119-13123.	1.2	39
22	Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes. Nanotechnology, 2006, 17, 799-804.	1.3	118
23	Growth and Magnetic Properties of Oriented α-Fe2O3Nanorods. Journal of Physical Chemistry B, 2006, 110, 18108-18111.	1.2	117
24	An Electrochemical Deposition Route for Obtaining α-Fe[sub 2]O[sub 3] Thin Films. Electrochemical and Solid-State Letters, 2006, 9, C110.	2.2	77
25	Synthesis of Nanostructured Hydroxides and Oxides of Iron: Control Over Morphology and Physical Properties. Journal of the American Ceramic Society, 2006, 89, 2602-2605.	1.9	25
26	Preparation and characterization of iron oxide thin films by spray pyrolysis using methanolic and ethanolic solutions. Applied Surface Science, 2006, 252, 2251-2258.	3.1	23
27	Defects and growing mechanisms of α-Fe2O3 nanowires. Chemical Physics Letters, 2006, 431, 100-103.	1.2	29
28	Fabrication, characterization, and formation mechanism of hollow spindle-like hematite via a solvothermal process. Journal of Colloid and Interface Science, 2006, 303, 437-443.	5.0	47
29	Self-aligned magnetic dipole moments of Fe2O3 formed within sol–gel matrix. Materials Chemistry and Physics, 2006, 98, 207-211.	2.0	12
30	Synthesis of Nearly Monodisperse Iron Oxide and Oxyhydroxide Nanocrystals. Advanced Functional Materials, 2006, 16, 1805-1813.	7.8	325
31	Facile Fabrication of Water-Soluble Magnetic Nanoparticles and Their Spherical Aggregates. Chemistry of Materials, 2007, 19, 4087-4091.	3.2	69
32	Growth and characterization of α-Fe2O3 nanowires. Journal of Applied Physics, 2007, 102, 054303.	1.1	54
33	Synthesis and assembly of ordered nanostructures of ZnS, Zn _{<i>x</i>} Cd _{1â^²<i>x</i>} S and CdS nanoparticles at the air/water interface. Nanotechnology, 2007, 18, 435603.	1.3	17
34	A FeCO3Precursor-Based Route to Microsized Peanutlike Fe3O4. Crystal Growth and Design, 2007, 7, 430-434.	1.4	69
35	Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process. Journal of Solid State Chemistry, 2007, 180, 489-495.	1.4	39
36	Thick film of LaCr1â^'xTixO3 (xâ‰ 0 .4) perovskites prepared by combustion technique for alcohol sensing application. Sensors and Actuators B: Chemical, 2007, 122, 321-327.	5 4.0	15
37	High-yield synthesis and magnetic property of hematite nanorhombohedras through a facile solution route. Materials Letters, 2007, 61, 4756-4758.	1.3	21

#	Article	IF	CITATIONS
38	Preparation of α-Fe2O3 nanoparticles by high-energy ball milling. Physica B: Condensed Matter, 2007, 390, 23-27.	1.3	34
39	Sol–gel derived polycrystalline Cr1.8Ti0.2O3 thick films for alcohols sensing application. Sensors and Actuators B: Chemical, 2007, 120, 560-567.	4.0	22
40	Particle size dependence of optical and defect parameters in mechanically milled Fe2O3. Journal of Materials Science, 2008, 43, 4175-4181.	1.7	17
41	Continuous Aspectâ€Ratio Tuning and Fine Shape Control of Monodisperse <i>α</i> â€Fe ₂ O ₃ Nanocrystals by a Programmed Microwave–Hydrothermal Method. Advanced Functional Materials, 2008, 18, 880-887.	7.8	246
42	Preparation of ellipsoidal hematite/polymer hybrid materials and the corresponding hollow polymer ellipsoids. Polymer, 2008, 49, 4776-4783.	1.8	28
43	Rings and belts composed of ZnS nanoparticles formed at the air–water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 328, 123-129.	2.3	3
44	Microwave assisted hydrothermal synthesis and magnetic property of hematite nanorods. Materials Letters, 2008, 62, 988-990.	1.3	42
45	Bandgap engineering by tuning particle size and crystallinity of SnO2–Fe2O3 nanocrystalline composite thin films. Applied Physics Letters, 2008, 93, .	1.5	70
46	Thin films of uniform hematite nanoparticles: control of surface hydrophobicity and self-assembly. Journal of Materials Chemistry, 2008, 18, 5770.	6.7	18
47	Reversible Nanopatterning on Self-Assembled Monolayers on Gold. Journal of Physical Chemistry C, 2008, 112, 6597-6604.	1.5	13
48	Three-Dimensional Hierarchically Organized Magnetic Nanoparticle Polymer Composites:  Achievement of Monodispersity and Enhanced Tensile Strength. Journal of Physical Chemistry C, 2008, 112, 5397-5404.	1.5	27
49	Synthesis of Ellipsoidal Hematite/Silica/Polymer Hybrid Materials and the Corresponding Hollow Polymer Ellipsoids. Langmuir, 2008, 24, 5485-5491.	1.6	43
50	Shape-controlled synthesis and cathodoluminescence properties of elongated α-Fe2O3 nanostructures. Journal of Applied Physics, 2008, 104, 124311.	1.1	12
51	STRUCTURAL AND MAGNETIC PROPERTIES OF HEMATITE NANOCRYSTALLINE OBTAINED BY BALL MILLING. International Journal of Nanoscience, 2009, 08, 267-272.	0.4	2
52	Chemical Precipitation Synthesis and Magnetic Properties of Hematite Nanorods. Defect and Diffusion Forum, 2009, 293, 77-82.	0.4	3
53	Synthesis and formation mechanism of hematite hollow microspheres by a one-pot templateless surfactant-free hydrothermal process. Materials Chemistry and Physics, 2009, 118, 496-500.	2.0	13
54	Templating synthesis of waxberried hematite hollow spheres. Materials Letters, 2009, 63, 209-211.	1.3	6
55	Fabrication and structure characterization of MnCO3/α-Fe2O3 nanocrystal heterostructures. Materials Letters, 2009, 63, 2499-2502.	1.3	10

#	Article	IF	CITATIONS
56	Microstructural characterisation of nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR. Superlattices and Microstructures, 2009, 45, 576-582.	1.4	118
57	Thermal decomposition synthesis of 3D urchin-like α-Fe2O3 superstructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 156, 68-72.	1.7	14
58	Synthesis and characterization of single-crystalline α-Fe2O3 nanoleaves. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 806-811.	1.3	83
59	Preparation of iron oxides using ammonium iron citrate precursor: Thin films and nanoparticles. Journal of Solid State Chemistry, 2009, 182, 2456-2460.	1.4	17
60	Synthesis of pillared clays with Al–Fe and Al–Fe–Ce starting from concentrated suspensions of clay using microwaves or ultrasound, and their catalytic activity in the phenol oxidation reaction. Applied Catalysis B: Environmental, 2009, 93, 56-65.	10.8	27
61	Preparation, Characterization, and Catalytic Activity of Core/Shell Fe ₃ O ₄ @Polyaniline@Au Nanocomposites. Langmuir, 2009, 25, 11835-11843.	1.6	351
62	Ultrathin Polycrystalline Hematite and Goethiteâ^'Hematite Coreâ^'Shell Nanorods. Langmuir, 2009, 25, 2551-2553.	1.6	15
63	Hydrophobic coating- and surface active solvent-mediated self-assembly of charged gold and silver nanoparticles at water–air and water–oil interfaces. Physical Chemistry Chemical Physics, 2009, 11, 6490.	1.3	65
64	Tuning the Grain Size and Particle Size of Superparamagnetic Fe ₃ O ₄ Microparticles. Chemistry of Materials, 2009, 21, 5079-5087.	3.2	387
65	Synthesis of α-Fe ₂ O ₃ dendrites by a hydrothermal approach and their application in lithium-ion batteries. Journal Physics D: Applied Physics, 2009, 42, 015417.	1.3	51
66	Nanocomposites of Ironâ^'Cobalt Alloy and Magnetite: Controllable Solvothermal Synthesis and Their Magnetic Properties. Journal of Physical Chemistry C, 2009, 113, 19875-19882.	1.5	23
67	Magnetic transitions in \hat{l} ±-Fe2O3 nanowires. Journal of Applied Physics, 2009, 106, .	1.1	21
68	Shape Control of Cobalt Carbonate Particles by a Hydrothermal Process in a Mixed Solvent: An Efficient Precursor to Nanoporous Cobalt Oxide Architectures and Their Sensing Property. Crystal Growth and Design, 2009, 9, 210-217.	1.4	149
69	Facile Synthesis of α-Fe ₂ O ₃ Nanostructured Films with Controlled Morphology. Materials Transactions, 2009, 50, 1351-1354.	0.4	13
70	Inorganic Nanoparticles and Nanostructures Formed at the Air/ Water Interface. , 2010, , 79-140.		0
71	Facile synthesis of size-controllable monodispersed ferrite nanospheres. Journal of Materials Chemistry, 2010, 20, 5086.	6.7	197
72	A new strategy for fabrication Fe2O3/SiO2 composite coatings on the Ti substrate. Journal of Solid State Electrochemistry, 2010, 14, 271-277.	1.2	31
73	Template-free hydrothermal synthesis of hollow hematite microspheres. Journal of Materials Science, 2010, 45, 5685-5691.	1.7	27

#	Article	IF	CITATIONS
74	Template-free synthesis and characterization of snowflake-like α-Fe2O3 microstructures. Materials Letters, 2010, 64, 2410-2412.	1.3	12
75	Solvothermal Synthesis and Magnetic Property of Magnetic Chains Selfâ€assembled by Fe ₃ O ₄ Microoctahedrons. Chinese Journal of Chemistry, 2010, 28, 1607-1612.	2.6	8
76	Investigation on magnetic properties of $\hat{l}\pm$ -Fe2O3 nanoparticles synthesized under surfactant-free condition by hydrothermal process. Journal of Alloys and Compounds, 2010, 500, 206-210.	2.8	46
77	Constructive Nanolithography by Chemically Modified Tips: Nanoelectrochemical Patterning on SAMs/Au. Journal of Physical Chemistry C, 2010, 114, 19220-19226.	1.5	7
78	Hollow core–shell ÎFe2O3 microspheres with excellent lithium-storage and gas-sensing properties. Chemical Communications, 2010, 46, 3869.	2.2	92
79	Fabrication of α-Fe ₂ O ₃ Nanowires by Thermal Oxidation Method. Materials Science Forum, 2011, 694, 79-84.	0.3	1
80	Synthesis of Biocompatible, Mesoporous Fe ₃ O ₄ Nano/Microspheres with Large Surface Area for Magnetic Resonance Imaging and Therapeutic Applications. ACS Applied Materials & Interfaces, 2011, 3, 237-244.	4.0	197
81	Glucose-Assisted One-Pot Synthesis of FeOOH Nanorods and Their Transformation to Fe ₃ O ₄ @Carbon Nanorods for Application in Lithium Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 9814-9820.	1.5	295
82	Characterization of γ- and α-Fe ₂ O ₃ nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of α-Fe ₂ O ₃ . International Journal of Engineering, Science and Technology, 2011, 2, .	0.3	27
83	Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chemistry of Materials, 2011, 23, 3255-3272.	3.2	445
84	Ultrafine α-Fe2O3 nanoparticles grown in confinement of in situ self-formed "cage―and their superior adsorption performance on arsenic(III). Journal of Nanoparticle Research, 2011, 13, 2641-2651.	0.8	32
85	Multicomponent periodic nanoparticle superlattices. Journal of Nanoparticle Research, 2011, 13, 15-32.	0.8	29
86	In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technology, 2011, 207, 42-46.	2.1	50
87	Optical and Raman Studies of the CTAB-Templated Fe ₂ O ₃ -SiO ₂ Nano-Composite Films. Integrated Ferroelectrics, 2011, 129, 80-84.	0.3	0
88	Ultrathin α-Fe ₂ O ₃ Nanoribbons and Their Moiré Patterns. Journal of Physical Chemistry C, 2012, 116, 6879-6883.	1.5	13
89	Probing the morphology-device relation of Fe ₂ O ₃ nanostructures towards photovoltaic and sensing applications. Nanoscale, 2012, 4, 194-205.	2.8	100
90	Nanocystals of Hematite with Unconventional Shape-Truncated Hexagonal Bipyramid and Its Optical and Magnetic Properties. Crystal Growth and Design, 2012, 12, 862-868.	1.4	67
91	One-step solvothermal syntheses and microwave electromagnetic properties of organic magnetic resin/Fe3O4 hybrid nanospheres. Applied Surface Science, 2012, 258, 6705-6711.	3.1	11

#	Article	IF	CITATIONS
92	Hematite nanoparticle monolayers on mica electrokinetic characteristics. Journal of Colloid and Interface Science, 2012, 386, 121-128.	5.0	19
93	Hematite nanoparticle monolayers on mica preparation by controlled self-assembly. Journal of Colloid and Interface Science, 2012, 386, 51-59.	5.0	28
94	Preparation, microstructure, and color tone of microtubule material composed of hematite/amorphous-silicate nanocomposite from iron oxide of bacterial origin. Dyes and Pigments, 2012, 95, 639-643.	2.0	40
95	Preparation and rheological studies of uncoated and PVA-coated magnetite nanofluid. Journal of Magnetism and Magnetic Materials, 2012, 324, 4143-4146.	1.0	32
96	Structural and optical characterization of sol–gel derived boron doped Fe2O3 nanostructured films. Journal of Sol-Gel Science and Technology, 2012, 62, 397-403.	1.1	21
97	Hematite homogeneous core/shell hierarchical spheres: Surfactant-free solvothermal preparation and their improved catalytic property of selective oxidation. Journal of Solid State Chemistry, 2012, 185, 117-123.	1.4	9
98	Phase control of nanostructured iron oxide for application to biosensor. Journal of Materials Chemistry B, 2013, 1, 464-474.	2.9	36
99	One-pot synthesis of α-Fe2O3 nanospheres by solvothermal method. Nanoscale Research Letters, 2013, 8, 213.	3.1	10
100	Control of hematite nanoparticle size and shape by the chemical precipitation method. Powder Technology, 2013, 249, 353-359.	2.1	76
101	Structural, EPR, optical and magnetic properties of α-Fe2O3 nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 104, 512-518.	2.0	43
102	Desorption of Ambient Gas Molecules and Phase Transformation of α-Fe ₂ O ₃ Nanostructures during Ultrahigh Vacuum Annealing. Journal of Physical Chemistry C, 2013, 117, 1509-1517.	1.5	11
103	Synthesis and Properties of Ovalâ€Shaped Iron Oxide/Ethylene Glycol Mesostructured Nanosheets. Chemistry - A European Journal, 2013, 19, 5442-5449.	1.7	7
104	Investigation on Preparation of Micro-Sized Hematite Powder from Hydrous Ferrous Sulfate Using Microwave and Conventional Heating. High Temperature Materials and Processes, 2013, 32, 303-308.	0.6	6
105	Mechanism of the Oxidation of Iron. Advanced Materials Research, 0, 709, 106-109.	0.3	2
106	Process Optimization and Preparation of Ferric Oxide Nanoparticles by Homogeneous Precipitation Method. Applied Mechanics and Materials, 0, 401-403, 683-687.	0.2	0
107	Preparation of Yellowish-Red Al-Substituted α-Fe2O3 Powders and Their Thermostability in Color. ACS Applied Materials & Interfaces, 2014, 6, 20282-20289.	4.0	23
108	Electroactive Prussian Blue Encapsulated Iron Oxide Nanostructures for Mediatorâ€Free Cholesterol Estimation. Electroanalysis, 2014, 26, 1551-1559.	1.5	7
109	Synthesis and characterization of photo-functional magnetic nanoparticles (Fe3O4@HP) for applications in photodynamic cancer therapy. Journal of the Korean Physical Society, 2014, 65, 1658-1662.	0.3	9

#	Article	IF	CITATIONS
110	Silicaâ€Coating of Hematite Nanoparticles Using Reactive Waterâ€Soluble Polyalkoxysiloxanes. Particle and Particle Systems Characterization, 2014, 31, 365-373.	1.2	13
111	Synthesis of Synthetic Hematite with Substituted Aluminum by Sol-Gel Method. Materials Science Forum, 2014, 793, 119-125.	0.3	0
112	Transformation of Goethite to Hematite Nanocrystallines by High Energy Ball Milling. Advances in Materials Science and Engineering, 2014, 2014, 1-5.	1.0	6
113	Hydrothermal synthesis, characterization and optical properties of ellipsoid shape α-Fe2O3 nanocrystals. Ceramics International, 2014, 40, 1351-1358.	2.3	86
114	Enhanced Photocatalytic Activity of Bi-doped α-Fe2O3. Journal of Advanced Oxidation Technologies, 2014, 17, .	0.5	1
115	Greener synthetic route for superparamagnetic and luminescent α-Fe ₂ O ₃ nanoparticles in binary mixtures of ionic liquid and ethylene glycol. RSC Advances, 2015, 5, 51158-51168.	1.7	29
116	Synthesis and electro-magnetic properties of flower-like Fe2O3-Ag nanocomposite using direct subsidence loading method. Functional Materials Letters, 2015, 08, 1550013.	0.7	2
117	Ammonia Sensing Properties of α-Fe2O3 thin Films During Post-Annealing Process. , 2015, 11, 469-473.		23
118	α-Fe ₂ O ₃ hexagonal cones synthesized from the leaf extract of Azadirachta indica and its thermal catalytic activity. New Journal of Chemistry, 2015, 39, 7105-7111.	1.4	37
119	Phase transitions of carbon-encapsulated iron oxide nanoparticles during the carbonization of cellulose at various pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 2015, 115, 1-6.	2.6	21
120	Bifunctional superparamagnetic–luminescent core–shell–satellite structured microspheres: preparation, characterization, and magnetodisplay application. Journal of Materials Chemistry C, 2015, 3, 4603-4615.	2.7	22
121	Enhanced field emission properties from oxygen-deficient α-Fe2O3 nanorod arrays. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	8
122	Well-Dispersed α-Fe ₂ O ₃ Particles for Lead-Free Red Overglaze Enamels through Hydrothermal Treatment. ACS Omega, 2016, 1, 9-13.	1.6	13
123	Langmuir-Blodgett Film Formation and Characterization. , 0, , 3572-3596.		0
124	Controlling the Color of Lead-Free Red Overglaze Enamels and a Process for Preparing High-Quality Red Paints. ACS Applied Materials & Interfaces, 2016, 8, 10918-10928.	4.0	11
125	Copper NPs supported on hematite as magnetically recoverable nanocatalysts for a one-pot synthesis of aminoindolizines and pyrrolo[1,2-a]quinolines. RSC Advances, 2016, 6, 2935-2943.	1.7	37
126	Preparation of microsized hematite powder from ferrous sulfate via microwave calcination. Journal of Central South University, 2017, 24, 1720-1726.	1.2	2
127	The synthesis of clusters of iron oxides in mesopores of monodisperse spherical silica particles. Physics of the Solid State, 2017, 59, 1623-1628.	0.2	10

#	Article	IF	CITATIONS
128	Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results in Physics, 2017, 7, 3007-3015.	2.0	403
129	Electrical Investigation of Nanostructured Fe2O3/p-Si Heterojunction Diode Fabricated Using the Sol–Gel Technique. Journal of Electronic Materials, 2017, 46, 6502-6507.	1.0	5
130	Initial water adsorption on hematite (<i>α</i> -Fe2O3) (0001): A DFT + <i>U</i> study. Journal of Chemical Physics, 2018, 148, .	1.2	32
131	Improvement of supercooling and thermal conductivity of the sodium acetate trihydrate for thermal energy storage with α-Fe2O3 as addictive. Journal of Thermal Analysis and Calorimetry, 2018, 133, 859-867.	2.0	40
132	Co3O4 nanosheet-built hollow spheres containing ultrafine neck-connected grains templated by PS@Co-LDH and their ppb-level gas-sensing performance. Sensors and Actuators B: Chemical, 2018, 261, 553-565.	4.0	36
133	Tailored βâ€Ketoiminato Complexes of Iron: Synthesis, Characterization, and Evaluation towards Solutionâ€Based Deposition of Iron Oxide Thin Films. European Journal of Inorganic Chemistry, 2018, 2018, 1824-1833.	1.0	7
134	Synthesis, thermal and magnetic behavior of iron oxide-polymer nanocomposites. Science and Engineering of Composite Materials, 2018, 25, 189-195.	0.6	10
135	Novel molybdenum disulfide Langmuir Blodgett thin film as a saturable absorber for a passively Q-switched Nd:GdVO ₄ laser. Optical Materials Express, 2018, 8, 3176.	1.6	5
136	Facile Synthesis of Ag–γ-Fe2O3 Superior Nanocomposite for Catalytic Reduction of Nitroaromatic Compounds and Catalytic Degradation of Methyl Orange. Catalysis Letters, 2018, 148, 3701-3714.	1.4	42
137	Surface terminations of hematite (<i>α</i> -Fe ₂ O ₃) exposed to oxygen, hydrogen, or water: dependence on the density functional theory methodology. Journal of Physics Condensed Matter, 2018, 30, 275002.	0.7	16
138	Hybrid Functional Study of the Electro-oxidation of Water on Pristine and Defective Hematite (0001). Journal of Physical Chemistry C, 2019, 123, 2820-2827.	1.5	12
139	Self-Assembled Monolayer of Metal Oxide Nanosheet and Structure and Gas-Sensing Property Relationship. ACS Sensors, 2019, 4, 1279-1290.	4.0	53
140	Optical and Dielectric Properties of PMMA/α-Fe2O3–ZnO Nanocomposite Films. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1514-1522.	1.9	14
141	Three-body aggregation of Fe2O3 nanoparticles: A molecular dynamics simulation. Chemical Physics Letters, 2020, 760, 137901.	1.2	5
142	Effect of hydrogenated iron oxide nanoparticles with regular spherical shape by underwater plasma discharge treatment for high-efficiency water purification. Ceramics International, 2020, 46, 23582-23591.	2.3	5
143	Nanometer-Thick Films of Aligned ZnO Nanowires Sensitized with Au Nanoparticles for Few-ppb-Level Acetylene Detection. ACS Applied Nano Materials, 2020, 3, 9174-9184.	2.4	9
144	Electrical and Electrochemical studies of Polyurethane diol/Polycaprolactone-Iron Oxide nanocomposites. IOP Conference Series: Materials Science and Engineering, 2020, 983, 012009.	0.3	1
145	Macroscopic two-dimensional monolayer films of gold nanoparticles: fabrication strategies, surface engineering and functional applications. Nanoscale, 2020, 12, 7433-7460.	2.8	47

			,
# 146	ARTICLE Recovery of iron oxide and calcium chloride from an iron-rich chloride waste using calcium carbonate. Journal of Material Cycles and Waste Management, 2021, 23, 222-230.	IF 1.6	Citations 2
147	Synergistic Effects of Fe2O3 Nanotube/Polyaniline Composites for an Electrochemical Supercapacitor with Enhanced Capacitance. Nanomaterials, 2021, 11, 1557.	1.9	14
148	Growth of α-Fe2O3 thin films by plasma deposition: Studies of structural, morphological, electrochemical, and thermal-optical properties. Thin Solid Films, 2021, 736, 138919.	0.8	2
149	Morphological and structural analysis of the Fe(OH)3 and CuS transitions to Fe2O3 and CuO. Optik, 2021, 243, 167377.	1.4	12
150	Synthesis of iron red hybrid pigments from oil shale semi-coke waste. Advanced Powder Technology, 2020, 31, 2276-2284.	2.0	23
151	Synthesis, structural, morphological, optical and magnetic characterization of iron oxide (α-Fe 2 O 3) nanoparticles by precipitation method: Effect of varying the nature of precursor. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 328-334.	1.3	63
152	Microscopic behavior and metallic iron morphology from reduction of iron oxide by CO/H ₂ in a fluidized bed. Journal of Applied Crystallography, 2018, 51, 1641-1651.	1.9	17
153	Soliton and bound-state soliton mode-locked fiber laser based on a MoS ₂ /fluorine mica Langmuir–Blodgett film saturable absorber. Photonics Research, 2019, 7, 431.	3.4	37
154	Synthesis of hematite α-Fe2O3 nano powders by the controlled precipitation method / SÃntesis de nano polvos de hematita α-Fe2O3 por el método de precipitación. Ciencia En Desarrollo, 2017, 8, 99-107.	0.1	54
155	xmins:mmi="http://www.w3.org/1998/Wath/Wath/Wath/Wath/Wath/Wath/Wath/Wath	0.2	6
156	Formation Fe ₂ O ₃ Nanowalls through Solvent-Assisted Hydrothermal Process and Their Application for Titan Yellow GR Dye Degradation. Journal of the Korean Chemical Society, 2014, 58, 205-209.	0.2	2
157	nvestigation of Mechanical Properties of Jute Fiber Epoxy Reinforced by Synthesized Hematite (Fe2O3) Nanoparticles. Journal of Composites and Biodegradable Polymers, 2019, 7, 1-7.	0.3	0
159	57Fe Mössbauer spectroscopic study on the magnetic structure of niobium-doped hematite. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	4
160	Designing highly active Unique Hollow@ (Au@Pt) core–shell nanostructure as electro-catalyst for ethanol oxidation reactions. Journal of the Iranian Chemical Society, 2022, 19, 4261-4274.	1.2	2
161	Environmental gas sensors based on electroactive hybrid organic–inorganic nanocomposites using nanostructured materials. Physical Chemistry Chemical Physics, 2022, 24, 28680-28699.	1.3	5
162	Metal oxide nanomaterials for supercapacitor applications. , 2023, , 343-364.		0