CITATION REPORT List of articles citing

Cooperative coevolution: an architecture for evolving coadapted subcomponents

DOI: 10.1162/106365600568086 Evolutionary Computation, 2000, 8, 1-29.

Source: https://exaly.com/paper-pdf/32214697/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper IF	Citations
935	A hierarchical coevolutionary method to support brain-lesion modelling.	2
934	Convergence analysis of a segmentation algorithm for the evolutionary training of neural networks.	1
933	Genetic estimation of competitive agents behavior. 2000,	
932	Evolutionary multiobjective design of combinational logic circuits.	21
931	Fuzzy CoCo: a cooperative-coevolutionary approach to fuzzy modeling. 2001 , 9, 727-737	88
930	Evolving coordination strategies in simulated robot soccer. 2001,	1
929	Genetic prediction of a multi-agent environment evolution. 2001,	1
928	On the cooperation of fuzzy neural networks via a coevolutionary approach.	1
927	Hierarchical genetic fuzzy systems. 2001 , 136, 29-52	30
926	Emergence of multiagent spatial coordination strategies through artificial coevolution. 2001 , 25, 1013-1023	3
925	Using a co-operative co-evolutionary genetic algorithm to solve a three-dimensional container loading problem.	9
924	Applications of Evolutionary Computing. <i>Lecture Notes in Computer Science</i> , 2001 , 0.9	2
923	Modelling thermal processes: cooling and freezing. 2001 , 312-339	4
922	On the use of pseudo-coevolutionary genetic algorithms with adaptive migration for design of power electronics regulators.	1
921	. 2001 , 3, 110-113	10
920	A symbiotic evolutionary algorithm for dynamic facility layout problem.	2
919	Sensitive, specific, and interpretable: evolving a fuzzy mammographic-interpretation assessment tool.	1

Coevolutionary design of Takagi-Sugeno fuzzy systems. 918 7 Using a co-operative co-evolutionary genetic algorithm to solve optimal control problems in a 917 hysteresis system. 916 Analyzing cooperative coevolution with evolutionary game theory. 24 A blended population approach to cooperative coevolution for decomposition of complex 915 problems. Computational Intelligence Processing in Medical Diagnosis. 2002, 914 9 Improved Taxi Prediction Algorithms for the Surface Management System. 2002, 21 913 Multi-objective Co-operative Co-evolutionary Genetic Algorithm. Lecture Notes in Computer Science, 912 0.9 39 2002, 288-297 NOW G-Net: learning classification programs on networks of workstations. 2002, 6, 463-480 911 17 The use of a neural network to forecast daily grass pollen concentration in a Mediterranean region: 910 43 the southern part of the Iberian Peninsula. 2002, 32, 1606-12 Multi-objective cooperative coevolution of artificial neural networks (multi-objective cooperative 909 107 networks). 2002, 15, 1259-78 A Cellular Genetic Algorithm with Disturbances: Optimisation Using Dynamic Spatial Interactions. 908 20 2002, 8, 321-342 907 Exploiting the Analogy between the Immune System and Sparse Distributed Memories. 2003, 4, 333-358 906 A genetic-based framework for solving (multi-criteria) weighted matching problems. 2003, 149, 77-101 12 COVNET: a cooperative coevolutionary model for evolving artificial neural networks. 2003, 14, 575-96 146 905 A distributed cooperative coevolutionary algorithm for multiobjective optimization. 904 11 Coevolutionary Computation for Synthesis of Recognition Systems. 2003, 903 Machine Learning and Data Mining in Pattern Recognition. Lecture Notes in Computer Science, 2003, 902 0.9 4 Genetic Programming. Lecture Notes in Computer Science, 2003, 901 0.9

900	Concurrent layered learning. 2003,	13
899	Developments in freezing. 2003 , 228-240	8
898	Pseudo-coevolutionary genetic algorithms for power electronic circuits optimization.	
897	A cooperative coevolutionary algorithm for multiobjective optimization.	2
896	The coevolutionary supply chain. 2003 , 15, 487-492	Ο
895	Coevolving feature extraction agents for target recognition in SAR images. 2003,	
894	Linguistic modeling with weighted double-consequent fuzzy rules based on cooperative coevolutionary learning. 2003 , 10, 343-355	15
893	Coevolution Based Adaptive Monte Carlo Localization (CEAMCL). 2004 , 1, 19	13
892	OPTIMAL CONTROL OF A HYSTERESIS SYSTEM BY MEANS OF CO-OPERATIVE CO-EVOLUTION. 2004 , 04, 321-336	2
891	Combating coevolutionary disengagement by reducing parasite virulence. <i>Evolutionary Computation</i> , 2004 , 12, 193-222	33
890	The cooperative coevolutionary (1+1) EA. <i>Evolutionary Computation</i> , 2004 , 12, 405-34 4.3	52
889	Ideal evaluation from coevolution. <i>Evolutionary Computation</i> , 2004 , 12, 159-92 4-3	96
888	Game-theoretic route planning for team of UAVs.	2
887	Real-Time Planning for Multiple Autonomous Vehicles in Dynamic Uncertain Environments. 2004 , 1, 580-604	60
886	Evolutionary approaches to fuzzy modelling for classification. 2004 , 19, 27-59	6
885	THREE-DIMENSIONAL CONTAINER LOADING USING A COOPERATIVE CO-EVOLUTIONARYGENETIC ALGORITHM. 2004 , 18, 581-601	11
884	Cooperative coevolution of generalized multi-layer perceptrons. 2004 , 56, 257-283	15
883	Evolutionary fuzzy modeling human diagnostic decisions. 2004 , 1020, 190-211	15

882	Ten years of genetic fuzzy systems: current framework and new trends. 2004 , 141, 5-31		574
881	Coevolutionary genetic fuzzy systems: a hierarchical collaborative approach. 2004 , 141, 89-106		34
880	Coevolving solutions to the shortest common superstring problem. 2004 , 76, 209-16		9
879	Automatic Rule Generation of Fuzzy Logic Controllers based on Asynchronous Coevolution of Rule-Level Subpopulations. 2004 , 10, 195-207		1
878	Towards a bounded Pareto-coevolution archive.		15
877	Genetic Programming. Lecture Notes in Computer Science, 2004,	0.9	
876	The evolution of agents cooperation communication architecture based on graph theory.		
875	. 2004 , 8, 443-455		14
874	A cooperative coevolutionary algorithm for multiobjective optimization.		11
873	A Sensitivity Analysis of a Cooperative Coevolutionary Algorithm Biased for Optimization. <i>Lecture Notes in Computer Science</i> , 2004 , 573-584	0.9	11
872	Application of ANOVA to a Cooperative-Coevolutionary Optimization of RBFNs. <i>Lecture Notes in Computer Science</i> , 2005 , 297-305	0.9	1
871	A Multiobjective Evolutionary Algorithm for Deriving Final Ranking from a Fuzzy Outranking Relation. <i>Lecture Notes in Computer Science</i> , 2005 , 235-249	0.9	13
870	Evolutionary computation and structural design: A survey of the state-of-the-art. 2005 , 83, 1943-1978		221
869	Cooperative Multi-Agent Learning: The State of the Art. 2005 , 11, 387-434		592
868	Evolving Soccer Keepaway Players Through Task Decomposition. 2005 , 59, 5-30		52
867	On identifying global optima in cooperative coevolution. 2005,		30
866	The MaxSolve algorithm for coevolution. 2005 ,		32
865	Co-evolving recurrent neurons learn deep memory POMDPs. 2005,		14

864	Tracking extrema in dynamic environments using a coevolutionary agent-based model of genotype edition. 2005 ,	3
863	Monotonic solution concepts in coevolution. 2005,	16
862	Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. 2005 , 21, 1154-63	213
861	The emulation of social institutions as a method of coevolution. 2005,	2
860	Evolving an ecology of two-tiered organizations. 2005,	1
859	The hierarchical fair competition (HFC) framework for sustainable evolutionary algorithms. Evolutionary Computation, 2005 , 13, 241-77 4-3	59
858	Understanding cooperative co-evolutionary dynamics via simple fitness landscapes. 2005,	16
857	A niche for parallel island models: outliers and local search.	
856	Co-Operative Co-Evolutionary Genetic Algorithms for Multi-Objective Topology Design. 2005 , 2, 487-496	6
855		
854	Co-evolutionary modular neural networks for automatic problem decomposition.	16
853	Distributed brain modelling by means of hierarchical collaborative coevolution.	2
852	Multiobjective Evolutionary Algorithms and Applications. 2005,	4
851	Evolving an integral ecology of mind. 2005 , 41, 709-25; discussion 731-4	5
850	Visual learning by coevolutionary feature synthesis. 2005 , 35, 409-25	66
849	. 2005 , 9, 271-302	148
848	Multiobjectivity and complexity in embodied cognition. 2005 , 9, 337-360	22
847	A coevolutionary approach to modeling oligopolistic electricity markets.	2

(2006-2005)

846	. 2005 , 9, 361-384	89
845	Coevolution particle filter for mobile robot simultaneous localization and mapping.	O
844	Swarm Intelligence in Data Mining. 2006 ,	66
843	Simultaneous Ant Colony Optimization Algorithms for Learning Linguistic Fuzzy Rules. 2006, 75-99	17
842	Robustness in cooperative coevolution. 2006,	14
841	Analyzing oligopolistic electricity market using coevolutionary computation. 2006 , 21, 143-152	51
840	Generalized Disjunction Decomposition for the Evolution of Programmable Logic Array Structures. 2006 ,	12
839	EFuNN Ensembles Construction Using CONE with Multi-objective GA. 2006,	3
838	A distributed Cooperative coevolutionary algorithm for multiobjective optimization. 2006 , 10, 527-549	160
837	Evolutionary Design of Neural Network Architectures Using a Descriptive Encoding Language. 2006 , 10, 676-688	21
836	. 2006 , 10, 629-645	44
835	Genetic Programming for Kernel-Based Learning with Co-evolving Subsets Selection. <i>Lecture Notes in Computer Science</i> , 2006 , 1008-1017	18
834	Characterizing warfare in red teaming. 2006 , 36, 268-85	33
833	Pseudocoevolutionary genetic algorithms for power electronic circuits optimization. 2006 , 36, 590-598	31
832	A Cooperative Coevolutionary Algorithm with Application to Job Shop Scheduling Problem. 2006,	
831	EFuNNs Ensembles Construction Using a Clustering Method and a Coevolutionary Genetic Algorithm.	3
830	Modelling brain emergent behaviours through coevolution of neural agents. 2006, 19, 705-20	17
829	The Speciating Island Model: An alternative parallel evolutionary algorithm. 2006 , 66, 1025-1036	32

828	A novel mixture of experts model based on cooperative coevolution. 2006 , 70, 155-163	25
827	MOGE. 2006 ,	8
826	The parallel Nash Memory for asymmetric games. 2006,	7
825	Genetic Parallel Programming: design and implementation. <i>Evolutionary Computation</i> , 2006 , 14, 129-56 $_{4.3}$	16
824	Comparing evolutionary and temporal difference methods in a reinforcement learning domain. 2006 ,	44
823	Parisian evolution with honeybees for three-dimensional reconstruction. 2006,	9
822	Ima e Enhancement sin redator- rey ptimi er Al orithm.	
821	Computational Methods. 2006,	4
820	Learning inexpensive parametric design models using an augmented genetic programming technique. 2006 , 20, 1-18	3
819	Learning Technique for TSK Fuzzy Model Based on Cooperative Coevolution. 2006,	
819 818	Learning Technique for TSK Fuzzy Model Based on Cooperative Coevolution. 2006, Multi-network evolutionary systems and automatic decomposition of complex problems. 2006, 35, 259-274	19
		19
818	Multi-network evolutionary systems and automatic decomposition of complex problems. 2006 , 35, 259-274	
818	Multi-network evolutionary systems and automatic decomposition of complex problems. 2006, 35, 259-274 Continuous and Embedded Learning for Multi-Agent Systems. 2006, Comparison of MACLAW with several attribute selection methods for classification in hyperspectral	
818 817 816	Multi-network evolutionary systems and automatic decomposition of complex problems. 2006, 35, 259-274 Continuous and Embedded Learning for Multi-Agent Systems. 2006, Comparison of MACLAW with several attribute selection methods for classification in hyperspectral images. 2006, Fuzzy Optimization Control of the Temperature for the Heating Process in Coke Oven Based on	
818 817 816 815	Multi-network evolutionary systems and automatic decomposition of complex problems. 2006, 35, 259-274 Continuous and Embedded Learning for Multi-Agent Systems. 2006, Comparison of MACLAW with several attribute selection methods for classification in hyperspectral images. 2006, Fuzzy Optimization Control of the Temperature for the Heating Process in Coke Oven Based on Co-evolution. 2006, Determination of Erroneous Velocity Vectors by Co-operative Co-evolutionary Genetic Algorithms.	
818 817 816 815	Multi-network evolutionary systems and automatic decomposition of complex problems. 2006, 35, 259-274 Continuous and Embedded Learning for Multi-Agent Systems. 2006, Comparison of MACLAW with several attribute selection methods for classification in hyperspectral images. 2006, Fuzzy Optimization Control of the Temperature for the Heating Process in Coke Oven Based on Co-evolution. 2006, Determination of Erroneous Velocity Vectors by Co-operative Co-evolutionary Genetic Algorithms. 2006, Nonlinear Discrete System Stabilisation by an Evolutionary Neural Network. Lecture Notes in	4

810	COEVOLUTION OF NEAREST NEIGHBOR CLASSIFIERS. 2007, 21, 921-946		12
809	HiCEFS IA hierarchical coevolutionary approach for the dynamic generation of fuzzy system. 2007		1
808	Co-Evolution based Feature Selection for Pedestrian Detection. 2007,		3
807	A Competitive-Cooperation Coevolutionary Paradigm for Multi-objective Optimization. 2007,		3
806	Cooperative coevolution for pareto multiobjective optimization: An empirical study using SPEA2. 2007 ,		
805	Heuristic speciation for evolving neural network ensemble. 2007,		1
804	Advanced tutorial on coevolution. 2007,		2
803	Thoughts on solution concepts. 2007,		4
802	Discovery of microRNA-mRNA modules via population-based probabilistic learning. 2007 , 23, 1141-7		139
801	Design Concept Generation: A Hierarchical Coevolutionary Approach. 2007 , 129, 1012-1022		27
800	Solving Multi-Objective Optimization Problems by a Bi-Objective Evolutionary Algorithm. 2007,		
799	. 2007,		
798	An Efficient Coevolutionary Algorithm Using Dynamic Species Control. 2007,		2
797	Analyzing the effects of module encapsulation on search space bias. 2007,		O
796	A monotonic archive for pareto-coevolution. <i>Evolutionary Computation</i> , 2007 , 15, 61-93	4.3	44
795	Agent-based model of genotype editing. Evolutionary Computation, 2007, 15, 253-89	4.3	6
794	Evolving neural networks. 2007 ,		5
793	A building-block royal road where crossover is provably essential. 2007,		34

792	. 2007 , 37, 583-593	21
791	. 2007,	
790	Learning Technique for TSK Fuzzy Model Based on Cooperative. 2007,	
789	A co-evolutionary framework for regulatory motif discovery. 2007,	8
788	Evolving Game Agents Based on Adaptive Constraint of Evolution. 2007,	
787	Emergent specialization in the extended multi-rover problem. 2007,	1
786	A cooperative coevolutionary algorithm for multiobjective particle swarm optimization. 2007,	12
785	A memetic co-evolutionary differential evolution algorithm for constrained optimization. 2007,	9
784	MODELLING ROBOTIC COGNITIVE MECHANISMS BY HIERARCHICAL COOPERATIVE COEVOLUTION. 2007 , 16, 935-966	3
783	Evolving Connectionist Systems. 2007,	10
782	A New Model Based Hybrid Particle Swarm Algorithm for Multi-objective Optimization. 2007,	1
781	Fuzzy Systems and Computational Intelligence. 383-418	
780	Guided Mutations in Cooperative Coevolutionary Algorithms for Function Optimization. 2007,	1
779	Assessing Hierarchical Cooperative CoEvolution. 2007,	4
778	A Co-evolutionary Differential Evolution Algorithm for Constrained Optimization. 2007,	4
777	. 2007 , 11, 635-650	50
776	Parallel Optimal Reactive Power Flow Based on Cooperative Co-Evolutionary Differential Evolution and Power System Decomposition. 2007 , 22, 249-257	73
775	Biasing mutations in cooperative coevolution. 2007,	

774	Cooperative Coevolutionary Ensemble Learning. 2007 , 469-478		1
773	Holonic and Multi-Agent Systems for Manufacturing. Lecture Notes in Computer Science, 2007,	0.9	6
77 ²	Solving decentralized multi-agent control problems with genetic algorithms. 2007,		3
771	Discovering Chinese Chess Strategies through Coevolutionary Approaches. 2007 ,		6
770	Refinery Scheduling Optimization using Genetic Algorithms and Cooperative Coevolution. 2007,		4
769	Evolutionary Design of Specialization. 2007 ,		О
768	Competitive coevolution versus objective fitness for an autonomous motorcycle pilot. 2007,		
767	An investigation into dynamic problem solving in a hybrid evolutionary market-based multi-agent system. 2007 ,		
766	Variations of the two-spiral task. 2007 , 19, 183-199		9
765	Artificial Ecosystem Selection for Evolutionary Optimisation. 2007 , 93-102		6
764	Evolutionary Neuro-Fuzzy Systems and Applications. 2007 , 11-45		8
763	Otimizali de alternativas para o desenvolvimento de campos de petrleo. 2007 , 14, 489-503		
762	. 2007,		252
761	Co-evolution of non-linear PLS model components. 2007 , 21, 592-603		50
760	Comparing evolutionary hybrid systems for design and optimization of multilayer perceptron structure along training parameters. 2007 , 177, 2884-2905		21
759	An extended mind evolutionary computation model for optimizations. 2007 , 185, 1038-1049		26
758	Biologically-inspired Complex Adaptive Systems approaches to Network Intrusion Detection. 2007 , 12, 209-217		21
757	Introducing probabilistic adaptive mapping developmental genetic programming with redundant mappings. 2007 , 8, 187-220		15

756	Effects of diversity control in single-objective and multi-objective genetic algorithms. 2007, 13, 1-34		33
755	A new hybrid methodology for cooperative-coevolutionary optimization of radial basis function networks. 2007 , 11, 655-668		17
754	A cooperative fast annealing coevolutionary algorithm for protein motif extraction. 2007 , 52, 318-323		
753	A cooperative constructive method for neural networks for pattern recognition. 2007 , 40, 80-98		46
75 ²	Improving multiclass pattern recognition with a co-evolutionary RBFNN. 2008 , 29, 392-406		28
751	Coevolutionary bid-based genetic programming for problem decomposition in classification. 2008 , 9, 331-365		17
75°	Cooperative co-evolution of GA-based classifiers based on input decomposition. 2008 , 21, 1360-1369		20
749	Large scale evolutionary optimization using cooperative coevolution. 2008, 178, 2985-2999		634
748	Clustering and co-evolution to construct neural network ensembles: an experimental study. 2008 , 21, 1363-79		21
747	Evolutionary product-unit neural networks classifiers. 2008 , 72, 548-561		65
746	Artificial Evolution. Lecture Notes in Computer Science, 2008,	0.9	
745	Natural Computing in Computational Finance. 2008,		11
744	Measuring Generalization Performance in Coevolutionary Learning. 2008, 12, 479-505		39
743	. 2008 , 12, 736-749		97
743 742	. 2008 , 12, 736-749 Instruction-matrix-based genetic programming. 2008 , 38, 1036-49		97
742	Instruction-matrix-based genetic programming. 2008 , 38, 1036-49		4

738	Genetic algorithm based on multipopulation competitive coevolution. 2008,		4
737	Tuning a fuzzy racing car by coevolution. 2008,		5
736	. 2008,		2
735	Approach of Fuzzy Classification Based on Hybrid Co-Evolution Algorithm. 2008,		
734	Application of a hierarchical coevolutionary fuzzy system for financial prediction and trading. 2008,		2
733	Multilevel cooperative coevolution for large scale optimization. 2008,		43
732	Computational Intelligence: Research Frontiers. Lecture Notes in Computer Science, 2008,	0.9	1
731	Hierarchical Co-evolution of Cooperating Agents Acting in the Brain-Arena. 2008, 16, 221-245		5
730	A Coevolutionary Genetic Based Scheduling Algorithm for stochastic flexible scheduling problem. 2008 ,		
729	Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). 2008 ,		
7-9	Nature hispired Cooperative Strategies for Optimization (NICSO 2007). 2006,		5
728	Evolving neural networks. 2008,		1
_			
728	Evolving neural networks. 2008,		1
728 727	Evolving neural networks. 2008, Neuro-evolution for a gathering and collective construction task. 2008,		3
728 727 726	Evolving neural networks. 2008, Neuro-evolution for a gathering and collective construction task. 2008, Handling Uncertainties in Evolutionary Multi-Objective Optimization. 2008, 262-292	4-3	1 3 11
728 727 726 725	Evolving neural networks. 2008, Neuro-evolution for a gathering and collective construction task. 2008, Handling Uncertainties in Evolutionary Multi-Objective Optimization. 2008, 262-292 Cooperative bodyBrain coevolutionary synthesis of mechatronic systems. 2008, 22, 219-234	4-3	1 3 11 9
728 727 726 725 724	Evolving neural networks. 2008, Neuro-evolution for a gathering and collective construction task. 2008, Handling Uncertainties in Evolutionary Multi-Objective Optimization. 2008, 262-292 Cooperative bodyBrain coevolutionary synthesis of mechatronic systems. 2008, 22, 219-234 Efficient evaluation functions for evolving coordination. Evolutionary Computation, 2008, 16, 257-88	4-3	1 3 11 9 48

Reorganizing Neural Network System for Two Spirals and Linear Low-Density Polyethylene Copolymer Problems. **2009**, 2009, 1-11

719	. 2009,	26
718	. 2009,	4
717	Neuro-Evolution approaches to collective behavior. 2009,	2
716	Investigating collaboration methods of random immigrant scheme in cooperative coevolution. 2009 ,	
715	On Large Scale Evolutionary Optimization Using Simplex-Based Cooperative Coevolution Genetic Algorithm. 2009 ,	O
714	Coordinated design of multiple FACTS controllers based on fuzzy immune co-evolutionary Algorithm. 2009 ,	1
713	Co-evolving fuzzy rule sets for job exchange in computational grids. 2009,	1
712	Improving the Performance of Multiobjective Evolutionary Optimization Algorithms Using Coevolutionary Learning. 2009 , 457-487	3
711	Evolutionary Multi-objective Optimization in Uncertain Environments. 2009,	3
710	Foundations of Computational Intelligence Volume 4. 2009 ,	
709	Cooperative co-evolutionary scatter search for satellite module layout design. 2009 , 26, 761-785	14
708	Problem decomposition using indirect reciprocity in evolved populations. 2009,	
707	Comparison of sorting algorithms for multi-fitness measurement of cooperative coevolution. 2009,	1
706	Evolved cooperation and emergent communication structures in learning classifier based organic computing systems. 2009 ,	О
705	Evolving neural networks. 2009,	2
704	Stability of learning dynamics in two-agent, imperfect-information games. 2009,	0
703	Cooperative micro-differential evolution for high-dimensional problems. 2009,	18

(2009-2009)

702	Agent-based brain modeling by means of hierarchical cooperative coevolution. 2009, 15, 293-336		6
701	Competitive coevolutionary learning of fuzzy systems for job exchange in computational grids. <i>Evolutionary Computation</i> , 2009 , 17, 545-60	4.3	3
700	Characterizing the genetic programming environment for fifth (GPE5) on a high performance computing cluster. 2009 ,		
699	Cooperative micro-particle swarm optimization. 2009,		3
698	Cooperative coevolution and univariate estimation of distribution algorithms. 2009,		2
697	Cheating for problem solving. 2009 ,		2
696	Pareto cooperative coevolutionary genetic algorithm using reference sharing collaboration. 2009,		3
695	HIERARCHICAL COOPERATIVE CoEVOLUTION: PRESENTATION AND ASSESSMENT STUDY. 2009 , 18, 99-120		1
694	Genetic Team Composition and Level of Selection in the Evolution of Cooperation. 2009 , 13, 648-660		72
693	Financial Market Trading System With a Hierarchical Coevolutionary Fuzzy Predictive Model. 2009 , 13, 56-70		30
692	A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization. 2009 , 13, 103-127		329
691	A neuro-coevolutionary genetic fuzzy system to design soft sensors. 2009 , 13, 481-495		17
690	A hybrid classification algorithm based on coevolutionary EBFNN and domain covering method. 2009 , 18, 293-308		10
689	Multiagent coevolutionary genetic fuzzy system to develop bidding strategies in electricity markets: computational economics to assess mechanism design. 2009 , 2, 53-71		4
688	Evolutionary computation. 2009 , 1, 52-56		11
687	Research of multi-population agent genetic algorithm for feature selection. 2009 , 36, 11570-11581		45
686	Evolving neural networks for strategic decision-making problems. 2009 , 22, 326-37		32
685	Integrated feature and parameter optimization for an evolving spiking neural network: exploring heterogeneous probabilistic models. 2009 , 22, 623-32		62

684 PEEC: Evolving efficient connections using Pareto optimality. 2009,

683	Coevolutionary Method for Gene Selection and Parameter Optimization in Microarray Data Analysis. <i>Lecture Notes in Computer Science</i> , 2009 , 483-492	0.9	2
682	A Self-adaptive Mixed Distribution Based Uni-variate Estimation of Distribution Algorithm for Large Scale Global Optimization. 2009 , 171-198		16
681	Evolutionary Multi-Agent Systems: An Adaptive and Dynamic Approach to Optimization. 2009, 131,		21
680	Ecological approaches to diversity maintenance in evolutionary algorithms. 2009,		5
679	Distributed Manufacturing as co-evolutionary system. 2009 , 47, 2031-2054		32
678	Augmenting artificial development with local fitness. 2009,		4
677	Exerting human control over decentralized robot swarms. 2009,		42
676	Coevolution of Role-Based Cooperation in Multiagent Systems. 2009 , 1, 170-186		36
675	Nature-Inspired Algorithms for Optimisation. 2009,		36
674	A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. 2010 , 202, 42-54		189
673	IFS-CoCo: Instance and feature selection based on cooperative coevolution with nearest neighbor rule. 2010 , 43, 2082-2105		63
672	Design optimization of a spatial six degree-of-freedom parallel manipulator based on artificial intelligence approaches. 2010 , 26, 180-189		73
671	Critical factors in the empirical performance of temporal difference and evolutionary methods for reinforcement learning. 2010 , 21, 1-35		18
670	Multi-population co-genetic algorithm with double chain-like agents structure for parallel global numerical optimization. 2010 , 32, 292-310		18
669	CO2RBFN: an evolutionary cooperative competitive RBFN design algorithm for classification problems. 2010 , 14, 953-971		24
668	Collective neuro-evolution for evolving specialized sensor resolutions in a multi-rover task. 2010 , 3, 13-	-29	14
667	A cooperative coevolutionary algorithm for instance selection for instance-based learning. 2010 , 78, 381-420		58

666	Interaction of Culture-Based Learning and Cooperative Co-Evolution and its Application to Automatic Behavior-Based System Design. 2010 , 14, 23-57	21
665	Genetic Representation and Evolvability of Modular Neural Controllers. 2010 , 5, 10-19	16
664	ARO: A new model-free optimization algorithm inspired from asexual reproduction. 2010 , 10, 1284-1292	41
663	Analysis of an evolutionary RBFN design algorithm, CO2RBFN, for imbalanced data sets. 2010 , 31, 2375-2388	20
662	Dual-population based coevolutionary algorithm for designing RBFNN with feature selection. 2010 , 37, 6904-6918	24
661	Two coding based adaptive parallel co-genetic algorithm with double agents structure. 2010 , 23, 526-542	10
660	Assembler Encoding versus Connectivity Matrix Encoding in the Inverted Pendulum Problem with a Hidden State. 2010 , 164, 233-238	
659	A Coevolutionary, Hyper Heuristic approach to the optimization of Three-dimensional Process Plant Layouts 🖪 comparative study. 2010 ,	2
658	Competitive cooperation for strategy adaptation in coevolutionary genetic algorithm for constrained optimization. 2010 ,	6
657	Transactions on Petri Nets and Other Models of Concurrency IV. <i>Lecture Notes in Computer Science</i> , 0.9	1
656	A preliminary study on mutation operators in cooperative competitive algorithms for RBFN design. 2010 ,	
655	Gene Expression Classification with a Novel Coevolutionary Based Learning Classifier System on Public Clouds. 2010 ,	3
654	On the probabilistic optimization of spiking neural networks. 2010 , 20, 481-500	40
653	Constructing competitive and cooperative agent behavior using coevolution. 2010,	24
652	A multiple population XCS: Evolving condition-action rules based on feature space partitions. 2010,	5
651	Large-Scale Global Optimization Using Cooperative Coevolution with Variable Interaction Learning. 2010 , 300-309	86
650	Power system short-term load forecasting based on cooperative co-evolutionary immune network model. 2010 ,	3
649	Evolution of division of labor in genetically homogenous groups. 2010 ,	3

648	Evolving neural networks. 2010 ,		2
647	A hierarchical cooperative evolutionary algorithm. 2010,		10
646	Symbiosis, complexification and simplicity under GP. 2010 ,		32
645	Emergence of competitive and cooperative behavior using coevolution. 2010,		4
644	Theoretical convergence guarantees for cooperative coevolutionary algorithms. <i>Evolutionary Computation</i> , 2010 , 18, 581-615	4.3	34
643	Tackling the biclustering problem with cooperative coevolutionary algorithms. 2010,		
642	Cooperative coevolutionary genetic algorithms to find optimal elimination orderings for Bayesian networks. 2010 ,		1
641	An empirical study of collaboration methods for coevolving technical trading rules. 2010,		
640	Application of Negotiable Evolutionary Algorithm in flexible manufacturing planning and scheduling. 2010 ,		1
639	Cooperative Co-evolution with Weighted Random Grouping for Large-Scale Crossing Waypoints Locating in Air Route Network. 2011 ,		3
638	Group leaders optimization algorithm. 2011 , 109, 761-772		28
637	Learning and coordination: An overview. 2011 ,		3
636	A novel calibration method of parallel kinematic manipulators based on multi-population coevolutionary neural network. 2011 ,		1
635	Forming Neural Networks by Means of Assembler Encoding P reliminary Report. 2011 , 17, 319-331		1
634	Cooperative Bayesian Optimization Algorithm: A Novel Approach to Simultaneous Multiple Resources Scheduling Problem. 2011 ,		3
633	A memetic framework for cooperative coevolution of recurrent neural networks. 2011,		3
632	Cartesian Genetic Programming. 2011 ,		148
631	Resource Allocation and Scheduling of Multiple Composite Web Services in Cloud Computing Using Cooperative Coevolution Genetic Algorithm. <i>Lecture Notes in Computer Science</i> , 2011 , 258-267	0.9	13

630 CGP, Creativity and Art. **2011**, 293-307

629	Decision system for a team of autonomous underwater vehicles P reliminary report. 2011 , 74, 3323-3334	16
628	Search Strategies in Evolutionary Multi-Agent Systems: The Effect of Cooperation and Reward on Solution Quality. 2011 , 133,	3
627	Encoding subcomponents in cooperative co-evolutionary recurrent neural networks. 2011 , 74, 3223-3234	28
626	Autonomous Virulence Adaptation Improves Coevolutionary Optimization. 2011 , 15, 215-229	7
625	Evolutionary computation for training set selection. 2011 , 1, 512-523	10
624	The use of coevolution and the artificial immune system for ensemble learning. 2011 , 15, 1735-1747	12
623	Shuffle or update parallel differential evolution for large-scale optimization. 2011 , 15, 2089-2107	73
622	Connecting Community-Grids by supporting job negotiation with coevolutionary Fuzzy-Systems. 2011 , 15, 2375-2387	3
621	Multi-agent role allocation: issues, approaches, and multiple perspectives. 2011 , 22, 317-355	40
620	A study on the medium-term forecasting using exogenous variable selection of the extra-virgin olive oil with soft computing methods. 2011 , 34, 331-346	2
619	Decision support system based on hierarchical co-evolutionary fuzzy approach: A case study in detecting gamma ray signals. 2011 , 38, 10719-10729	9
618	On generating interpretable and precise fuzzy systems based on Pareto multi-objective cooperative co-evolutionary algorithm. 2011 , 11, 1284-1294	22
617	Learning classifier systems to evolve classification rules for systems of memory constrained components. 2011 , 4, 127-143	2
616	Neural networks applied in chemistry. I. Determination of the optimal topology of multilayer perceptron neural networks. 2011 , 25, 527-549	64
615	Leveraging saving-based algorithms by masterBlave genetic algorithms. 2011 , 24, 555-566	9
614	ARO: A new model free optimization algorithm for real time applications inspired by the asexual reproduction. 2011 , 38, 4866-4874	15
613	Feature selection for a cooperative coevolutionary classifier in liver fibrosis diagnosis. 2011 , 41, 238-46	30

612	Decoupled optimal design for power electronic circuits with adaptive migration in coevolutionary environment. 2011 , 11, 23-31	3
611	A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems. 2011 , 52, 894-913	227
610	Investigating a new paradigm for designing evolutionary optimisation algorithms using social behaviour evolution. 2011 ,	
609	A social behaviour evolution approach for evolutionary optimisation. 2011 ,	
608	Rethinking multilevel selection in genetic programming. 2011 ,	24
607	Evolving neural networks. 2011 ,	
606	A cooperative coevolution-based pittsburgh learning classifier system embedded with memetic feature selection. 2011 ,	9
605	Modularity adaptation in cooperative coevolution of feedforward neural networks. 2011,	7
604	Estimating the reproductive potential of offspring in evolutionary heuristics for combinatorial optimization problems. 2011 ,	
603	A Cooperative Co-Evolutionary Controller for AC Induction Motor. 2011 , 128-129, 771-774	
602	Flow Shop Production Scheduling under Uncertainty within Infinite Intermediate Storage. 2011 , 204-210, 777-783	1
601	Tuning the Structure and Parameters of a Neural Network by Using Cooperative Quantum Particle Swarm Algorithm. 2011 , 48-49, 1328-1332	1
600	Feature subset selection based on co-evolution for pedestrian detection. 2011 , 33, 867-879	3
599	The Influence of Fitness Function on Quality of Neuro-Controllers Produced with Assembler Encoding. 2011 , 180, 89-100	
598	Development of an Optimization Design Method for Turbomachinery by Incorporating the Cooperative Coevolution Genetic Algorithm and Adaptive Approximate Model. 2011 ,	5
597	Searching for Electricity Market Equilibrium Using Coevolutionary Computation Approach. 2011,	
596	A surrogate-assisted memetic co-evolutionary algorithm for expensive constrained optimization problems. 2011 ,	24
595	Advances in Artificial Life. Darwin Meets von Neumann. Lecture Notes in Computer Science, 2011,	0.9

594	Controlling the tradeoff between time and quality by considering the reproductive potential of offspring. 2011 ,	
593	Pitch Angle Control Based Improved Cooperative Co-Evolution in Power Generation System. 2012 , 190-191, 1162-1165	
592	Fuzzy Co-Evolutionary Genetic Algorithm and its Application in Clinical Nutrition Decision. 2012 , 220-223, 2352-2355	
591	A Historical Review of Mamdani-Type Genetic Fuzzy Systems. 2012 , 73-90	2
590	Evolving neural networks. 2012 ,	1
589	Co-adapting mobile sensor networks to maximize coverage in dynamic environments. 2012,	1
588	Novel efficient asynchronous cooperative co-evolutionary multi-objective algorithms. 2012,	5
5 ⁸ 7	Evolving very-compact fuzzy models for gene expression data analysis. 2012,	
586	Using neural-evolutionary-fuzzy algorithm for anti-collision system of Unmanned Surface Vehicle. 2012 ,	1
585	Parallel Architectures and Bioinspired Algorithms. 2012,	5
584	Evolutionary Approach to Balance Problem of On-Line Action Role-Playing Game. 2012,	1
583	Archive-shared cooperative coevolutionary algorithm using Nash equilibria preservation. 2012,	
582	The Evolution of Cooperative Behaviours in Physically Heterogeneous Multi-Robot Systems. 2012 , 9, 253	2
581	An Integrated Neuroevolutionary Approach to Reactive Control and High-Level Strategy. 2012 , 16, 472-488	8
580	Optimal Tradeoff Between Performance and Security in Networked Control Systems Based on Coevolutionary Algorithms. 2012 , 59, 3016-3025	51
579	Cooperative Coevolution of Automatically Defined Functions with Gene Expression Programming. 2012 ,	1
578	Co-evolutionary analysis: a policy exploration method for system dynamics models. 2012 , 28, 361-369	9
577	Evolving team behaviors with specialization. 2012 , 13, 493-536	14

576	Evolutionary Optimization: Pitfalls and Booby Traps. 2012 , 27, 907-936		84
575	Parallel cooperative micro-particle swarm optimization: A masterBlave model. 2012 , 12, 3552-3579		36
574	Behavioral heterogeneity, cooperation, and collective construction. 2012,		1
573	Generalized Evolutionary Algorithms. 2012 , 625-635		O
572	CoBRA: A cooperative coevolutionary algorithm for bi-level optimization. 2012,		36
571	Dependency Identification technique for large scale optimization problems. 2012,		18
570	Distributed agent based cooperative differential evolution: A master-slave model. 2012,		5
569	Crossover-based local search in cooperative co-evolutionary feedforward neural networks. 2012 , 12, 2924-2932		22
568	Exploring pricing rules in combinatorial sealed-bid auctions. 2012 , 82, 462-478		2
567	Co-evolution and ecosystem based problem solving. 2012 , 9, 47-58		5
566	Coevolutionary Principles. 2012 , 987-1033		50
565	CGA based performance-security trade-off optimization in a networked DC motor system. 2012 ,		1
564	Evolving behavioral specialization in robot teams to solve a collective construction task. 2012 , 2, 25-38		26
563	A hybrid co-evolutionary cultural algorithm based on particle swarm optimization for solving global optimization problems. 2012 , 98, 76-89		56
562	Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms. 2012 , 42, 1383-97		45
561	Simulated Evolution and Learning. Lecture Notes in Computer Science, 2012,	0.9	
560	A Co-evolutionary Framework for Nearest Neighbor Enhancement: Combining Instance and Feature Weighting with Instance Selection. <i>Lecture Notes in Computer Science</i> , 2012 , 176-187	0.9	1
559	Robotic swarm cooperation by co-adaptation. 2012 ,		

(2013-2012)

558	Radial Basis Neural Network design using a competitive cooperative coevolutionary multiobjective algorithm. 2012 ,	Ο
557	Hybrid Artificial Intelligent Systems. <i>Lecture Notes in Computer Science</i> , 2012 , 0.9	1
556	A probabilistic coevolutionary biclustering algorithm for discovering coherent patterns in gene expression dataset. 2012 , 13 Suppl 17, S12	5
555	Scaling up data mining algorithms: review and taxonomy. 2012 , 1, 71-87	25
554	A cooperative coevolutionary approach dealing with the skullface overlay uncertainty in forensic identification by craniofacial superimposition. 2012 , 16, 797-808	23
553	Coevolution of lags and RBFNs for time series forecasting: L-Co-R algorithm. 2012 , 16, 919-942	10
552	Adapting modularity during learning in cooperative co-evolutionary recurrent neural networks. 2012 , 16, 1009-1020	12
551	A cooperative particle swarm optimizer with statistical variable interdependence learning. 2012 , 186, 20-39	47
550	Multi-robot path planning using co-evolutionary genetic programming. 2012 , 39, 3817-3831	76
549	Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. 2012 , 86, 116-123	154
548	On the issue of separability for problem decomposition in cooperative neuro-evolution. 2012 , 87, 33-40	38
547	Coevolutionary learning of neural network ensemble for complex classification tasks. 2012 , 45, 1373-1385	27
546	Evolution of heterogeneous ensembles through dynamic particle swarm optimization for video-based face recognition. 2012 , 45, 2460-2477	23
545	. 2012 , 59, 3221-3231	38
544	Symbiotic coevolutionary genetic programming: a benchmarking study under large attribute spaces. 2012 , 13, 71-101	26
543	Securing high resolution grayscale facial captures using a blockwise coevolutionary GA. 2013 , 40, 6693-6706	4
542		
J 1	. 2013 , 9, 394-402	26

540	A knowledge-based cooperative differential evolution for neural fuzzy inference systems. 2013 , 17, 883-895	7
539	A hybrid distributed-centralized conflict resolution approach for multi-aircraft based on cooperative co-evolutionary. 2013 , 56, 1-16	6
538	Phased searching with NEAT in a time-scaled framework: experiments on a computer-aided detection system for lung nodules. 2013 , 59, 157-67	23
537	An improved artificial bee colony (ABC) algorithm for large scale optimization. 2013,	4
536	Intelligent Data Engineering and Automated Learning IDEAL 2013. Lecture Notes in Computer Science, 2013,	2
535	Adaptive artificial datasets through learning classifier systems for classification tasks. 2013 , 6, 93-107	2
534	Impact of problem decomposition on Cooperative Coevolution. 2013,	13
533	Co-evolving semi-competitive interactions of sheepdog herding behaviors utilizing a simple rule-based multi agent framework. 2013 ,	5
532	Approaches to dynamic team sizes. 2013,	1
531	A first analysis of the effect of local and global optimization weights methods in the cooperative-competitive design of RBFN for imbalanced environments. 2013 ,	
531		13
	cooperative-competitive design of RBFN for imbalanced environments. 2013 ,	13
530	cooperative-competitive design of RBFN for imbalanced environments. 2013, Dynamic multi-objective evolution of classifier ensembles for video face recognition. 2013, 13, 3149-3166 Evaluating groundBir network vulnerabilities in an integrated terminal maneuvering area using	
530 529	cooperative-competitive design of RBFN for imbalanced environments. 2013, Dynamic multi-objective evolution of classifier ensembles for video face recognition. 2013, 13, 3149-3166 Evaluating groundlir network vulnerabilities in an integrated terminal maneuvering area using co-evolutionary computational red teaming. 2013, 29, 32-54	11
530 529 528	cooperative-competitive design of RBFN for imbalanced environments. 2013, Dynamic multi-objective evolution of classifier ensembles for video face recognition. 2013, 13, 3149-3166 Evaluating ground ir network vulnerabilities in an integrated terminal maneuvering area using co-evolutionary computational red teaming. 2013, 29, 32-54 A survey on optimization metaheuristics. 2013, 237, 82-117 Modeling medical decision making by support vector machines, explaining by rules of evolutionary	862
530 529 528	Cooperative-competitive design of RBFN for imbalanced environments. 2013, Dynamic multi-objective evolution of classifier ensembles for video face recognition. 2013, 13, 3149-3166 Evaluating groundBir network vulnerabilities in an integrated terminal maneuvering area using co-evolutionary computational red teaming. 2013, 29, 32-54 A survey on optimization metaheuristics. 2013, 237, 82-117 Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with feature selection. 2013, 40, 2677-2686 Reverse Engineering of Biochemical Reaction Networks Using Co-evolution with Eng-Genes. 2013,	11 862 66
530 529 528 527 526	Cooperative-competitive design of RBFN for imbalanced environments. 2013, Dynamic multi-objective evolution of classifier ensembles for video face recognition. 2013, 13, 3149-3166 Evaluating groundBir network vulnerabilities in an integrated terminal maneuvering area using co-evolutionary computational red teaming. 2013, 29, 32-54 A survey on optimization metaheuristics. 2013, 237, 82-117 Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with feature selection. 2013, 40, 2677-2686 Reverse Engineering of Biochemical Reaction Networks Using Co-evolution with Eng-Genes. 2013, 5, 106-118 Characterization of Concentrating Photovoltaic modules by cooperative competitive Radial Basis	11 862 66 3

522	Emergency transportation planning in disaster relief supply chain management: a cooperative fuzzy optimization approach. 2013 , 17, 1301-1314	86
521	Select Topics in the Analysis of Evolutionary Algorithms. 2013 , 157-236	
520	Sustainable cooperative coevolution with a multi-armed bandit. 2013,	4
519	Generating single and multiple cooperative heuristics for the one dimensional bin packing problem using a single node genetic programming island model. 2013 ,	6
518	Neuroannealing. 2013,	3
517	Genetic programming enabled evolution of control policies for dynamic stochastic optimal power flow. 2013 ,	1
516	A true finite-state baseline for tartarus. 2013 ,	1
515	Cooperative Micro Artificial Bee Colony Algorithm for Large Scale Global Optimization Problems. Lecture Notes in Computer Science, 2013 , 469-480	1
514	Metaheuristics for Bi-level Optimization. 2013,	42
513	Conflict Resolution Based on Cooperative Coevolutionary with Dynamic Grouping Strategy for Multi-Aircraft. 2013 , 333-335, 1251-1255	
512	Redundant Neural Vision SystemsCompeting for Collision Recognition Roles. 2013, 5, 173-186	33
511	A novel quantum cooperative co-evolutionary algorithm for large-scale minimum attribute reduction optimization. 2013 ,	
510	Cooperatively coevolving differential evolution for compensatory neural fuzzy networks. 2013,	5
509	Evolving Team Compositions by Agent Swapping. 2013 , 17, 282-298	6
508	Evolutionary spatial auto-correlation for assessing earthquake liquefaction potential using Parallel Linear Genetic Programming. 2013 ,	О
507	A neuro-evolutionary approach to control surface segmentation for micro aerial vehicles. 2013 , 42, 793-805	3
506	A multi-objective extension of the net flow rule for exploiting a valued outranking relation. 2013, 3, 36	5
505	A novel particle swarm algorithm for multi-objective optimisation problem. 2013 , 18, 380	2

504 Evolving neural networks. **2013**,

503	Interactions between the FTO and GNB3 genes contribute to varied clinical phenotypes in hypertension. 2013 , 8, e63934	12
502	Hierarchical artificial bee colony algorithm for RFID network planning optimization. 2014, 2014, 941532	19
501	Improved multi-objective artificial bee colony algorithm for optimal power flow problem. 2014 , 21, 4220-4227	9
500	. 2014,	1
499	Tri-objective co-evolutionary algorithm and application of suspension parameter design based on lizard behavior bionics. 2014 , 28, 4857-4867	4
498	A new collaborator selection method of cooperative co-evolutionary genetic algorithm and its application. 2014 ,	1
497	Evolving neural networks. 2014 ,	2
496	Solving the pole balancing problem by means of assembler encoding. 2014 , 26, 857-868	3
495	Discrete and Continuous Optimization Based on Hierarchical Artificial Bee Colony Optimizer. 2014 , 2014, 1-20	7
494	Multi-core based parallelized cooperative PSO with immunity for large scale optimization problem. 2014 ,	1
493	Towards compositional coevolution in evolutionary circuit design. 2014,	1
492	Dynamic difficulty adjustment in games by using an interactive self-organizing architecture. 2014,	3
491	A decomposition-based algorithm for dynamic economic dispatch problems. 2014 ,	
490	Model representation and cooperative coevolution for finite-state machine evolution. 2014,	10
489	Extending Minimum Population Search towards large scale global optimization. 2014,	2
488	Cooperative coevolutionary algorithms for dynamic optimization: an experimental study. 2014 , 7, 201-218	9
487	Many hands make light work: further studies in group evolution. 2014 , 20, 163-81	

486	Hierarchical Artificial Bee Colony Optimizer with Divide-and-Conquer and Crossover for Multilevel Threshold Image Segmentation. 2014 , 2014, 1-22	2
485	Cascaded evolutionary multiobjective identification based on correlation function statistical tests for improving velocity analyzes in swimming. 2014 ,	
484	Cooperative artificial bee colony algorithm for multi-objective RFID network planning. 2014, 42, 143-162	78
483	The cooperative estimation of distribution algorithm: a novel approach for semiconductor final test scheduling problems. 2014 , 25, 867-879	26
482	Compensatory neural fuzzy networks with rule-based cooperative differential evolution for nonlinear system control. 2014 , 75, 355-366	2
481	A novel cooperative coevolutionary dynamic multi-objective optimization algorithm using a new predictive model. 2014 , 18, 1913-1929	28
480	Using augmenting modular neural networks to evolve neuro-controllers for a team of underwater vehicles. 2014 , 18, 2445-2460	6
479	The impact of topology on energy consumption for collection tree protocols: An experimental assessment through evolutionary computation. 2014 , 16, 210-222	12
478	Integration of semi-fuzzy SVDD and CC-Rule method for supplier selection. 2014, 41, 2083-2097	12
477	Self-adaptive obtaining water-supply reservoir operation rules: Co-evolution artificial immune system. 2014 , 41, 1262-1270	10
476	A distributed coevolutionary algorithm for multiobjective hybrid flowshop scheduling problems. 2014 , 70, 477-494	11
475	Automatic Design of Scheduling Policies for Dynamic Multi-objective Job Shop Scheduling via Cooperative Coevolution Genetic Programming. 2014 , 18, 193-208	153
474	Solving the balance problem of massively multiplayer online role-playing games using coevolutionary programming. 2014 , 18, 1-11	6
473	MOCCA-II: A multi-objective co-operative co-evolutionary algorithm. 2014 , 23, 407-416	23
472	Transforming Evolutionary Search into Higher-Level Evolutionary Search by Capturing Problem Structure. 2014 , 18, 628-642	12
471	Cooperative coevolution of feed forward neural networks for financial time series problem. 2014,	10
470	Multi-objective cooperative coevolution of neural networks for time series prediction. 2014,	10
469	Coordination in Navigation of Multiple Mobile Robots. 2014 , 45, 1-24	19

468	Neuroscience-inspired inspired dynamic architectures. 2014,	11
467	Training algorithms for Radial Basis Function Networks to tackle learning processes with imbalanced data-sets. 2014 , 25, 26-39	22
466	Post-evolution of variable-length class prototypes to unlock decision making within support vector machines. 2014 , 25, 159-173	7
465	Memetic cooperative coevolution of Elman recurrent neural networks. 2014 , 18, 1549-1559	5
464	Introduction to Evolutionary Algorithms. 2014 , 27-47	0
463	An improved QPSO algorithm and its application in the high-dimensional complex problems. 2014 , 132, 82-90	23
462	Short, medium and long term forecasting of time series using the L-Co-R algorithm. 2014 , 128, 433-446	18
461	Dynamic partition search algorithm for global numerical optimization. 2014 , 41, 1108-1126	3
460	A multi-population cooperative coevolutionary algorithm for multi-objective capacitated arc routing problem. 2014 , 277, 609-642	56
459	Fast and Accurate Optimization of a GPU-accelerated CA Urban Model through Cooperative Coevolutionary Particle Swarms. 2014 , 29, 1631-1643	14
458	Co-evolutionary Approach to Improve Robustness of Routing Algorithms against Disruptive Events on the Airport Surface. 2014 ,	
457	Vibration-Based Damage Detection in Beams by Cooperative Coevolutionary Genetic Algorithm. 2014 , 6, 624949	18
456	Enhancing the firefly algorithm through a cooperative coevolutionary approach: an empirical study on benchmark optimisation problems. 2014 , 6, 108	11
455	Investigation of Alternative Evolutionary Prototype Generation in Medical Classification. 2014,	2
454	A fast genetic algorithm for solving architectural design optimization problems. 2015, 29, 457-469	11
453	Distributed evolutionary algorithms and their models: A survey of the state-of-the-art. 2015 , 34, 286-300	235
452	Novel electromagnetism-like mechanism method for multiobjective optimization problems. 2015 , 26, 182-189	
451	Multi-population differential evolution with balanced ensemble of mutation strategies for large-scale global optimization. 2015 , 33, 304-327	99

450	Deriving minimal sensory configurations for evolved cooperative robot teams. 2015,	1
449	Improved Constructive Cooperative Coevolutionary Differential Evolution for Large-Scale Optimisation. 2015 ,	5
448	Cooperative Co-evolution with Formula Based Grouping and CMA for Large Scale Optimization. 2015 ,	2
447	A Cooperative Coevolutionary Differential Evolution Algorithm with Adaptive Subcomponents. 2015 , 51, 834-844	9
446	Competitive two-island cooperative co-evolution for training feedforward neural networks for pattern classification problems. 2015 ,	1
445	Application of cooperative neuro-evolution of Elman recurrent networks for a two-dimensional cyclone track prediction for the south pacific region. 2015 ,	5
444	OpenMP-Based Multi-core Parallel Cooperative PSO with ICS Using Machine Learning for Global Optimization Problem. 2015 ,	1
443	Cooperative neuro-evolution of Elman recurrent networks for tropical cyclone wind-intensity prediction in the South Pacific region. 2015 ,	3
442	Multisensor placement in 3D environments via visibility estimation and derivative-free optimization. 2015 ,	2
441	Evolving Neural Networks. 2015,	
441	Evolving Neural Networks. 2015, An effective cooperative coevolution framework integrating global and local search for large scale optimization problems. 2015,	6
	An effective cooperative coevolution framework integrating global and local search for large scale	6
440	An effective cooperative coevolution framework integrating global and local search for large scale optimization problems. 2015 ,	6
440	An effective cooperative coevolution framework integrating global and local search for large scale optimization problems. 2015 , On the Use of Participatory Genetic Fuzzy System Approach to Develop Fuzzy Models. 2015 , 67-86	
440 439 438	An effective cooperative coevolution framework integrating global and local search for large scale optimization problems. 2015, On the Use of Participatory Genetic Fuzzy System Approach to Develop Fuzzy Models. 2015, 67-86 Adaptation and Hybridization in Computational Intelligence. 2015, Cooperative differential evolution with fast variable interdependence learning and cross-cluster	4
44° 439 438 437	An effective cooperative coevolution framework integrating global and local search for large scale optimization problems. 2015, On the Use of Participatory Genetic Fuzzy System Approach to Develop Fuzzy Models. 2015, 67-86 Adaptation and Hybridization in Computational Intelligence. 2015, Cooperative differential evolution with fast variable interdependence learning and cross-cluster mutation. 2015, 36, 300-314	4
440 439 438 437 436	An effective cooperative coevolution framework integrating global and local search for large scale optimization problems. 2015, On the Use of Participatory Genetic Fuzzy System Approach to Develop Fuzzy Models. 2015, 67-86 Adaptation and Hybridization in Computational Intelligence. 2015, Cooperative differential evolution with fast variable interdependence learning and cross-cluster mutation. 2015, 36, 300-314 Using evolutionary neural networks to predict spatial orientation of a ship. 2015, 166, 229-243 A Hybrid Neuro-Fuzzy Network Based on Differential Biogeography-Based Optimization for Online	4 15 8

432	A Switched Parameter Differential Evolution for Large Scale Global Optimization Simpler May Be Better. 2015 , 103-125		12
431	Evolutionary multi-agent systems. 2015 , 30, 171-186		53
430	A cooperative coevolutionary biogeography-based optimizer. 2015 , 43, 95-111		24
429	Artificial neuron-glia networks learning approach based on cooperative coevolution. 2015 , 25, 1550012		23
428	Genetic Programming. Lecture Notes in Computer Science, 2015,	0.9	1
427	Competitive two-island cooperative coevolution for real parameter global optimisation. 2015,		6
426	Multi-objective cooperative neuro-evolution of recurrent neural networks for time series prediction. 2015 ,		2
425	Solving Complex Problems with Coevolutionary Algorithms. 2015,		
424	A Cooperative Coevolution Framework for Parallel Learning to Rank. 2015, 27, 3152-3165		10
423	Competition and Collaboration in Cooperative Coevolution of Elman Recurrent Neural Networks for Time-Series Prediction. 2015 , 26, 3123-36		97
422	Hyb-CCEA. 2015 ,		
421	Tuning maturity model of ecogeography-based optimization on CEC 2015 single-objective optimization test problems. 2015 ,		6
420	An evolutionary approach to solve a system of multiple interrelated agent problems. 2015 , 37, 40-47		6
419	A Preliminary Cooperative Genetic Fuzzy Proposal for Epilepsy Identification Using Wearable Devices. 2015 , 49-63		1
418	Co-Evolutionary Algorithms: A Useful Computational Abstraction?. <i>Lecture Notes in Computer Science</i> , 2015 , 3-11	0.9	
417	Enhancing Competitive Island Cooperative Neuro-Evolution Through Backpropagation for Pattern Classification. <i>Lecture Notes in Computer Science</i> , 2015 , 293-301	0.9	0
416	Coevolutionary makespan optimisation through different ranking methods for the fuzzy flexible job shop. 2015 , 278, 81-97		22
415	Frontiers of Higher Order Fuzzy Sets. 2015 ,		2

414	Metaheuristics in large-scale global continues optimization: A survey. 2015 , 295, 407-428	250
413	Interactions between the genes of vasodilatation pathways influence blood pressure and nitric oxide level in hypertension. 2015 , 28, 239-47	15
412	Neural anti-collision system for Autonomous Surface Vehicle. 2015 , 149, 559-572	35
411	Cooperative collvolutionary neural networks. 2016 , 30, 2843-2858	4
410	Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation. 2016 , 2016, 1476838	2
409	Agent Based Modelling for Water Resource Allocation in the Transboundary Nile River. 2016 , 8, 139	20
408	A dynamic optimization approach to the design of cooperative co-evolutionary algorithms. 2016 , 109, 174-186	35
407	Finding informative collaborators for cooperative co-evolutionary algorithms using a dynamic multi-population framework. 2016 ,	1
406	Intrinsically motivated reinforcement learning: A promising framework for procedural content generation. 2016 ,	3
405	Formation reconfiguration based on distributed cooperative coevolutionary for multi-UAV. 2016,	2
404	On Synergies between Diversity and Task Decomposition in Constructing Complex Systems with GP. 2016 ,	1
403	A Two Phase Approach Based on Dynamic Variable Grouping and Self-Adaptive Group Search for Large Scale Optimization. 2016 ,	1
402	Cooperative coevolution with dependency identification grouping for large scale global optimization. 2016 ,	5
401	Some Other Metaheuristics. 2016, 229-262	
400	Adaptive hybrid differential evolution with circular sliding window for large scale optimization. 2016 ,	
399	Contribution based multi-island competitive cooperative coevolution. 2016,	
398	Empirical study of effect of grouping strategies for large scale optimization. 2016,	6
397	Indicator-based cooperative coevolution for multi-objective optimization. 2016,	11

396	Multi-step-ahead chaotic time series prediction using coevolutionary recurrent neural networks. 2016 ,		4
395	Genetic Programming. Lecture Notes in Computer Science, 2016,	0.9	2
394	Metaheuristics for Continuous Optimization of High-Dimensional Problems: State of the Art and Perspectives. 2016 , 437-460		2
393	Genetic Programming Based Hyper-heuristics for Dynamic Job Shop Scheduling: Cooperative Coevolutionary Approaches. <i>Lecture Notes in Computer Science</i> , 2016 , 115-132	0.9	9
392	A Hyper-Heuristic Ensemble Method for Static Job-Shop Scheduling. <i>Evolutionary Computation</i> , 2016 , 24, 609-635	4.3	50
391	Parallel extremal optimization in processor load balancing for distributed applications. 2016 , 46, 187-20	03	4
390	Decomposition-Based Approach for Solving Large Scale Multi-objective Problems. <i>Lecture Notes in Computer Science</i> , 2016 , 525-534	0.9	6
389	Cooperative Coevolution of Control for a Real Multirobot System. <i>Lecture Notes in Computer Science</i> , 2016 , 591-601	0.9	8
388	Evaluation of co-evolutionary neural network architectures for time series prediction with mobile application in finance. 2016 , 49, 462-473		27
387	Genetic Algorithms. 2016 , 37-69		14
386	Robust Scheduling for Resource Constraint Scheduling Problem by Two-Stage GA and MMEDA. 2016 ,		1
385	A new algorithm for adapting the configuration of subcomponents in large-scale optimization with cooperative coevolution. 2016 , 372, 773-795		24
384	Evolving Neural Networks. 2016 ,		3
383	Solving Complex Problems with Coevolutionary Algorithms. 2016 ,		2
382	Topics in Evolutinary Algorithms. 2016 , 121-152		
381	Unveiling the interactions among BMPR-2, ALK-1 and 5-HTT genes in the pathophysiology of HAPE. 2016 , 588, 163-72		3
380	Advances in Swarm Intelligence. Lecture Notes in Computer Science, 2016,	0.9	1
379	Enhancing Cooperative Coevolution with Surrogate-Assisted Local Search. 2016 , 63-90		1

378	A hybrid approach to artificial bee colony algorithm. 2016 , 27, 387-409	23
377	Co-evolution-based immune clonal algorithm for clustering. 2016 , 20, 1503-1519	8
376	A Space Division Multiobjective Evolutionary Algorithm Based on Adaptive Multiple Fitness Functions. 2016 , 30, 1659005	4
375	Learning Subspace-Based RBFNN Using Coevolutionary Algorithm for Complex Classification Tasks. 2016 , 27, 47-61	29
374	A hierarchical-coevolutionary-MapReduce-based knowledge reduction algorithm with robust ensemble Pareto equilibrium. 2016 , 342, 153-175	6
373	Global versus local search: the impact of population sizes on evolutionary algorithm performance. 2016 , 66, 511-534	15
372	Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project. 2016 , 251, 662-675	26
371	Unsupervised Band Selection Based on Evolutionary Multiobjective Optimization for Hyperspectral Images. 2016 , 54, 544-557	95
370	Improved Memetic Algorithm Based on Route Distance Grouping for Multiobjective Large Scale Capacitated Arc Routing Problems. 2016 , 46, 1000-13	39
369	Topology and sizing optimization of discrete structures using a cooperative coevolutionary genetic algorithm with independent ground structures. 2016 , 48, 911-932	7
368	Novelty-Driven Cooperative Coevolution. <i>Evolutionary Computation</i> , 2017 , 25, 275-307 4.3	15
367	Co-Operative Coevolutionary Neural Networks for Mining Functional Association Rules. 2017 , 28, 1331-1344	16
366	The ANGELINA Videogame Design System B art I. 2017 , 9, 192-203	16
365	Multiobjective optimization for interwoven systems. 2017 , 24, 71-81	13
364	An evolutionary algorithm for spatial discretization optimization. 2017 , 97, 220-230	
363	A Distributed Parallel Cooperative Coevolutionary Multiobjective Evolutionary Algorithm for Large-Scale Optimization. 2017 , 13, 2030-2038	53
362	Co-evolutionary multi-task learning with predictive recurrence for multi-step chaotic time series prediction. 2017 , 243, 21-34	51
361	Reference sharing: a new collaboration model for cooperative coevolution. 2017 , 23, 1-30	15

360	Genetic programming for production scheduling: a survey with a unified framework. 2017, 3, 41-66	110
359	Dynamic service selection with QoS constraints and inter-service correlations using cooperative coevolution. 2017 , 76, 119-135	15
358	Large Scale Problems in Practice: The Effect of Dimensionality on the Interaction Among Variables. Lecture Notes in Computer Science, 2017, 636-652	11
357	Cooperation coevolution with fast interdependency identification for large scale optimization. 2017 , 381, 142-160	56
356	Decision and intuition during organizational change. 2017 , 30, 236-254	O
355	Enabling high-dimensional surrogate-assisted optimization by using sliding windows. 2017,	2
354	Evolution of neural networks. 2017 ,	8
353	Constructive cooperative coevolution for large-scale global optimisation. 2017 , 23, 449-469	4
352	Solving complex problems with coevolutionary algorithms. 2017,	2
351	Coevolution of mapping functions for linear SVM. 2017,	Ο
350	Evolutionary multilabel hyper-heuristic design. 2017,	2
349	A novel quantum-behaved particle swarm optimization with random selection for large scale optimization. 2017 ,	5
348	Toward evolving dispatching rules for dynamic job shop scheduling under uncertainty. 2017,	7
347	A cooperative co-evolutionary algorithm for solving large-scale constrained problems with interaction detection. 2017 ,	4
346	Factored Evolutionary Algorithms. 2017 , 21, 281-293	27
345	Ensemble of heterogeneous flexible neural trees using multiobjective genetic programming. 2017 , 52, 909-924	20
344	Heterogeneous Cooperative Co-Evolution Memetic Differential Evolution Algorithm for Big Data Optimization Problems. 2017 , 21, 315-327	75
343	Game Theory Based Evolutionary Algorithms: A Review with Nash Applications in Structural Engineering Optimization Problems. 2017 , 24, 703-750	30

342	Primal-improv: Towards co-evolutionary musical improvisation. 2017 ,	1
341	Instance-based classification with Ant Colony Optimization. 2017 , 21, 913-944	8
340	Comparison of Fuzzy System with Neural Aggregation FSNA with Classical TSK Fuzzy System in Anti-Collision Problem of USV. 2017 , 24, 3-14	3
339	A preliminary study on designing a benchmark problem for analysis of sparsely-synchronized heterogeneous coevolution. 2017 ,	
338	An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio Optimization. 2017, 9, 168	20
337	A Survey on Metaheuristics for Solving Large Scale Optimization Problems. 2017 , 170, 1-7	3
336	Instances selection algorithm by ensemble margin. 2018 , 30, 457-478	10
335	Dynamic Team Heterogeneity in Cooperative Coevolutionary Algorithms. 2018 , 22, 934-948	10
334	A global-best guided phase based optimization algorithm for scalable optimization problems and its application. 2018 , 25, 38-49	5
333	MC2ESVM: Multiclass Classification Based on Cooperative Evolution of Support Vector Machines. 2018 , 13, 18-29	13
332	A two phase hybrid algorithm with a new decomposition method for large scale optimization. 2018 , 25, 349-367	18
331	Reinforcement Learning-Based Differential Evolution With Cooperative Coevolution for a Compensatory Neuro-Fuzzy Controller. 2018 , 29, 4719-4729	9
330	Genetic Programming Hyper-Heuristic with Cooperative Coevolution for Dynamic Flexible Job Shop Scheduling. <i>Lecture Notes in Computer Science</i> , 2018 , 306-321	20
329	Optimization of DP-M-QAM Transmitter Using Cooperative Coevolutionary Genetic Algorithm. 2018 , 36, 2450-2462	20
328	Discovering Agent Behaviors Through Code Reuse: Examples From Half-Field Offense and Ms. Pac-Man. 2018 , 10, 195-208	4
327	Turning High-Dimensional Optimization Into Computationally Expensive Optimization. 2018, 22, 143-156	55
326	A Framework for Large-Scale Multiobjective Optimization Based on Problem Transformation. 2018 , 22, 260-275	86
325	Environment Sensitivity-Based Cooperative Co-Evolutionary Algorithms for Dynamic Multi-Objective Optimization. 2018 , 15, 1877-1890	37

324	Cooperative Co-Evolution-Based Design Optimization: A Concurrent Engineering Perspective. 2018 , 22, 173-188	7
323	Competitive co-evolution of multi-layer perceptron classifiers. 2018 , 22, 3417-3432	2
322	Coevolutionary Multiobjective Evolutionary Algorithms: Survey of the State-of-the-Art. 2018 , 22, 851-865	87
321	Automatic feature engineering for regression models with machine learning: An evolutionary computation and statistics hybrid. 2018 , 430-431, 287-313	12
320	An investigation of ensemble combination schemes for genetic programming based hyper-heuristic approaches to dynamic job shop scheduling. 2018 , 63, 72-86	48
319	Information Collection Strategies In Memetic Cooperative Neuroevolution For Time Series Prediction. 2018 ,	1
318	Comparing Approaches for Evolving High-Level Robot Control Based on Behaviour Repertoires. 2018 ,	2
317	Dynamic Difficulty Adjustment (DDA) in Computer Games: A Review. 2018 , 2018, 1-12	34
316	Evolution of a functionally diverse swarm via a novel decentralised quality-diversity algorithm. 2018	8
315	Coevolutionary multi-task learning for feature-based modular pattern classification. 2018 , 319, 164-175	7
314	A global information based adaptive threshold for grouping large scale optimization problems. 2018 ,	1
313	Particle Swarm Methods. 2018 , 639-685	2
312	Evolutionary Algorithms. 2018 , 409-430	3
311	Cooperative multi-objective evolutionary support vector machines for multiclass problems. 2018,	O
310	On Tuning Group Sizes in the Random Adaptive Grouping Algorithm for Large-scale Global Optimization Problems. 2018 ,	2
309	Improved Differential Evolution for Large-Scale Black-Box Optimization. 2018 , 6, 29516-29531	10
308	Hybrid metaheuristics and multi-agent systems for solving optimization problems: A review of frameworks and a comparative analysis. 2018 , 71, 433-459	29
307	Evolution of neural networks. 2018 ,	

306	Solving complex problems with coevolutionary algorithms. 2018,		2
305	Co-evolutionary multi-task learning for dynamic time series prediction. 2018 , 70, 576-589		30
304	Adaptive Variable-Size Random Grouping for Evolutionary Large-Scale Global Optimization. <i>Lecture Notes in Computer Science</i> , 2018 , 583-592	0.9	О
303	Adaptive Fitness Predictors in Coevolutionary Cartesian Genetic Programming. <i>Evolutionary Computation</i> , 2019 , 27, 497-523	4.3	2
302	Deep Neuro-Cognitive Co-Evolution for Fuzzy Attribute Reduction by Quantum Leaping PSO With Nearest-Neighbor Memeplexes. 2019 , 49, 2744-2757		47
301	Evolutionary Multitasking via Explicit Autoencoding. 2019 , 49, 3457-3470		98
300	Multi-objective cooperative co-evolution of micro for RTS games. 2019,		2
299	Adaptive Multi-optimiser Cooperative Co-evolution for Large-Scale Optimisation. 2019,		О
298	A problem decomposition approach for large-scale global optimization problems. 2019 , 537, 052031		
297	Total Optimization of Energy Networks in Smart City by Cooperative Coevolution using Global-best Brain Storm Optimization. 2019 ,		1
296	Solution and Fitness Evolution (SAFE): A Study of Multiobjective Problems. 2019,		1
295	When Cooperative Co-Evolution Meets Coordinate Descent: Theoretically Deeper Understandings and Practically Better Implementations. 2019 ,		O
294	Solving complex problems with coevolutionary algorithms. 2019 ,		2
293	A Cooperative Co-Evolutionary Approach to Large-Scale Multisource Water Distribution Network Optimization. 2019 , 23, 842-857		28
292	Solution and Fitness Evolution (SAFE): Coevolving Solutions and Their Objective Functions. <i>Lecture Notes in Computer Science</i> , 2019 , 146-161	0.9	4
291	Langevin-gradient parallel tempering for Bayesian neural learning. 2019 , 359, 315-326		21
290	Evolutionary Search with Multiple Utopian Reference Points in Decomposition-Based Multiobjective Optimization. 2019 , 2019, 1-22		5
289	Cooperative differential evolution framework with utility-based adaptive grouping for large-scale optimization. 2019 , 11, 168781401983416		О

288	Bio-inspired computation: Where we stand and whatß next. 2019 , 48, 220-250	264
287	Why Is Auto-Encoding Difficult for Genetic Programming?. <i>Lecture Notes in Computer Science</i> , 2019 , 131-045	5
286	Shared Nearest-Neighbor Quantum Game-Based Attribute Reduction With Hierarchical Coevolutionary Spark and Its Application in Consistent Segmentation of Neonatal Cerebral Cortical Surfaces. 2019 , 30, 2013-2027	22
285	The MODES Toolbox: Measurements of Open-Ended Dynamics in Evolving Systems. 2019 , 25, 50-73	3
284	Genetic Programming. Lecture Notes in Computer Science, 2019 , 0.9	2
283	A Cooperative Coevolution Algorithm for the Seru Production With Minimizing Makespan. 2019 , 7, 5662-5670	13
282	. 2019 ,	
281	Evolving Complexity in Cooperative and Competitive Noisy Prediction Games. 2019, 25, 366-382	
280	Simulation and Analysis of Centralized Bidding Market Clearing Method Based on Intelligent Algorithm. 2019 ,	2
279	Hierarchical Decomposition based Cooperative Coevolution for Large-Scale Black-Box Optimization. 2019 ,	
278	Robust Optimization in Formation Reconfiguration Problem for Multi-UAV. 2019,	
277	Experimental Analysis of Equilibrium of Long-term Market Clearing Mechanism in China. 2019,	
276	Boosting Cooperative Coevolution for Large Scale Optimization With a Fine-Grained Computation Resource Allocation Strategy. 2019 , 49, 4180-4193	14
275	A Survey on Cooperative Co-Evolutionary Algorithms. 2019 , 23, 421-441	84
274	Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems. 2019 , 76, 265-281	11
273	Surrogate model assisted cooperative coevolution for large scale optimization. 2019 , 49, 513-531	10
272	A reactive model based on neighborhood consensus for continuous optimization. 2019 , 121, 115-141	3
271	A Surrogate-Assisted Cooperative Co-evolutionary Algorithm for Solving High Dimensional, Expensive and Black Box Optimization Problems. 2019 , 41-52	2

(2020-2019)

270	DECAL: Decomposition-Based Coevolutionary Algorithm for Many-Objective Optimization. 2019 , 49, 27-41	19
269	Distributed Cooperative Co-Evolution With Adaptive Computing Resource Allocation for Large Scale Optimization. 2019 , 23, 188-202	40
268	Challenges in cooperative coevolution of physically heterogeneous robot teams. 2019 , 18, 29-46	4
267	A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms. 2020 , 32, 567-588	10
266	Intelligent Computing Paradigm: Recent Trends. 2020,	
265	A Predictive-Reactive Approach with Genetic Programming and Cooperative Coevolution for the Uncertain Capacitated Arc Routing Problem. <i>Evolutionary Computation</i> , 2020 , 28, 289-316	13
264	Automatic design of scheduling policies for dynamic flexible job shop scheduling via surrogate-assisted cooperative co-evolution genetic programming. 2020 , 58, 2561-2580	19
263	Robot Mission Planning using Co-evolutionary Optimization. 2020 , 38, 512-530	2
262	Neural collision avoidance system for biomimetic autonomous underwater vehicle. 2020 , 24, 1315-1333	6
261	Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach. 2020 , 24, 1-15	22
2 60	Multiple Relevant Feature Ensemble Selection Based on Multilayer Co-Evolutionary Consensus MapReduce. 2020 , 50, 425-439	21
259	A Cooperative Coevolution Hyper-Heuristic Framework for Workflow Scheduling Problem. 2020 , 1-1	4
258	Recent Metaheuristics Algorithms for Parameter Identification. 2020,	2
257	Reducing the total tardiness by Seru production: model, exact and cooperative coevolution solutions. 2020 , 58, 6441-6452	13
256	Compounding Meta-Atoms into Metamolecules with Hybrid Artificial Intelligence Techniques. 2020 , 32, e1904790	55
255	Applying graph-based differential grouping for multiobjective large-scale optimization. 2020 , 53, 100626	78
254	Nonlinear black-box system identification through coevolutionary algorithms and radial basis function artificial neural networks. 2020 , 87, 105990	11
253	A comparative review between Genetic Algorithm use in composite optimisation and the state-of-the-art in evolutionary computation. 2020 , 233, 111739	36

252	A Cooperative Coevolution Genetic Programming Hyper-Heuristic Approach for On-line Resource Allocation in Container-based Clouds. 2020 , 1-1	11
251	Bi-space Interactive Cooperative Coevolutionary algorithm for large scale black-box optimization. 2020 , 97, 106798	5
250	A multi-objective model for minimising makespan and total travel time in put wall-based picking systems. 2020 , 36, 138	1
249	Improved Collision Perception Neuronal System Model With Adaptive Inhibition Mechanism and Evolutionary Learning. 2020 , 8, 108896-108912	5
248	Improving DE-based cooperative coevolution for constrained large-scale global optimization problems using an increasing grouping strategy. 2020 , 734, 012099	2
247	Cooperative co-evolutionary comprehensive learning particle swarm optimizer for formulation design of explosive simulant. 2020 , 12, 331-341	2
246	Learning Asynchronous Boolean Networks From Single-Cell Data Using Multiobjective Cooperative Genetic Programming. 2020 , PP,	1
245	A New Method for Analyzing the Performance of the Harmony Search Algorithm. 2020 , 8, 1421	3
244	Overall Optimization of Smart City by Multi-population Global-best Brain Storm Optimization using Cooperative Coevolution. 2020 ,	O
243	. 2020, 8, 150113-150129	10
243	. 2020 , 8, 150113-150129 Coevolutionary Operations for Large Scale Multi-objective Optimization. 2020 ,	3
		3
242	Coevolutionary Operations for Large Scale Multi-objective Optimization. 2020,	3
242	Coevolutionary Operations for Large Scale Multi-objective Optimization. 2020 , Contribution Based Co-Evolutionary Algorithm for Large-Scale Optimization Problems. 2020 , 8, 203369-2033	3
242 241 240	Coevolutionary Operations for Large Scale Multi-objective Optimization. 2020, Contribution Based Co-Evolutionary Algorithm for Large-Scale Optimization Problems. 2020, 8, 203369-2033 Genetic Programming Theory and Practice XVII. 2020, Improved random adaptive grouping approach for solving unconstrained LSGO problems. 2020,	3 8814 2
242 241 240 239	Coevolutionary Operations for Large Scale Multi-objective Optimization. 2020, Contribution Based Co-Evolutionary Algorithm for Large-Scale Optimization Problems. 2020, 8, 203369-2033 Genetic Programming Theory and Practice XVII. 2020, Improved random adaptive grouping approach for solving unconstrained LSGO problems. 2020, 1515, 032076	3 3814 2
242 241 240 239 238	Coevolutionary Operations for Large Scale Multi-objective Optimization. 2020, Contribution Based Co-Evolutionary Algorithm for Large-Scale Optimization Problems. 2020, 8, 203369-2033 Genetic Programming Theory and Practice XVII. 2020, Improved random adaptive grouping approach for solving unconstrained LSGO problems. 2020, 1515, 032076 Investigation of the iCC Framework Performance for Solving Constrained LSGO Problems. 2020, 13, 108	3 3814 2 0

(2021-2020)

234	Using Neuro E volutionary Techniques to Tune Odometric Navigational System of Small Biomimetic Autonomous Underwater Vehicle Preliminary Report. 2020 , 100, 363-376	2
233	An instance and variable selection approach in pixel-based classification for automatic white blood cells segmentation. 2020 , 23, 1709-1726	1
232	Nature-Inspired Computation in Navigation and Routing Problems. 2020,	2
231	A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop. 2020 , 194, 105536	39
230	Artificial Intelligence in Music, Sound, Art and Design. <i>Lecture Notes in Computer Science</i> , 2020 , 0.9	2
229	A Hybrid Deep Grouping Algorithm for Large Scale Global Optimization. 2020 , 24, 1112-1124	23
228	Achieving Highly Scalable Evolutionary Real-Valued Optimization by Exploiting Partial Evaluations. <i>Evolutionary Computation</i> , 2021 , 29, 129-155	1
227	Quantum-inspired neuro coevolution model applied to coordination problems. 2021 , 167, 114133	3
226	An Effective Cooperative Co-Evolutionary Algorithm for Distributed Flowshop Group Scheduling Problems. 2021 , PP,	10
225	Designing Interpretable Fuzzy Systems. 2021 , 119-168	6
225	Designing Interpretable Fuzzy Systems. 2021 , 119-168 Using the iCC framework for solving unconstrained LSGO problems. 2021 , 1047, 012085	6
		5
224	Using the iCC framework for solving unconstrained LSGO problems. 2021 , 1047, 012085 Two-Population Coevolutionary Algorithm with Dynamic Learning Strategy for Many-Objective	
224	Using the iCC framework for solving unconstrained LSGO problems. 2021 , 1047, 012085 Two-Population Coevolutionary Algorithm with Dynamic Learning Strategy for Many-Objective Optimization. 2021 , 9, 420 MLFS-CCDE: multi-objective large-scale feature selection by cooperative coevolutionary	5
224	Using the iCC framework for solving unconstrained LSGO problems. 2021, 1047, 012085 Two-Population Coevolutionary Algorithm with Dynamic Learning Strategy for Many-Objective Optimization. 2021, 9, 420 MLFS-CCDE: multi-objective large-scale feature selection by cooperative coevolutionary differential evolution. 2021, 13, 1-18 A Systematic Literature Review of the Successors of "NeuroEvolution of Augmenting Topologies".	5 35
224 223 222 221	Using the iCC framework for solving unconstrained LSGO problems. 2021, 1047, 012085 Two-Population Coevolutionary Algorithm with Dynamic Learning Strategy for Many-Objective Optimization. 2021, 9, 420 MLFS-CCDE: multi-objective large-scale feature selection by cooperative coevolutionary differential evolution. 2021, 13, 1-18 A Systematic Literature Review of the Successors of "NeuroEvolution of Augmenting Topologies". Evolutionary Computation, 2021, 29, 1-73	5 35 8
224 223 222 221 220	Using the iCC framework for solving unconstrained LSGO problems. 2021, 1047, 012085 Two-Population Coevolutionary Algorithm with Dynamic Learning Strategy for Many-Objective Optimization. 2021, 9, 420 MLFS-CCDE: multi-objective large-scale feature selection by cooperative coevolutionary differential evolution. 2021, 13, 1-18 A Systematic Literature Review of the Successors of "NeuroEvolution of Augmenting Topologies". Evolutionary Computation, 2021, 29, 1-73 A cooperative coevolution framework for evolutionary learning and instance selection. 2021, 62, 100840 Joint Mechanical Design and Flight Control Optimization of a Nature-Inspired Unmanned Aerial	5 35 8

216	. 2021 , 22, 3841-3849	19
215	A cooperative coevolution algorithm for complex hybrid seru-system scheduling optimization. 2021 , 7, 2559	3
214	A Glint of Lights in the Fog: Invisible Cities and the Riddles of Planning Practice. 0739456X2110276	
213	Inference of time series components by online co-evolution. 1	
212	Achieving task allocation in swarm intelligence with bi-objective embodied evolution. 2021, 15, 287-310	2
211	Evolution of neural networks. 2021 ,	O
2 10	A genetic fuzzy system for interpretable and parsimonious reinforcement learning policies. 2021,	O
209	Emergent Tangled Program Graphs in Partially Observable Recursive Forecasting and ViZDoom Navigation Tasks. 2021 , 1, 1-41	1
208	Green building technologies adoption process in China: How environmental policies are reshaping the decision-making among alliance-based construction enterprises?. 2021 , 73, 103122	8
207	Cooperatively coevolving simulated annealing for optimization design of the concentrated-force diffusion component. 2021 , 167, 108206	1
206	Hill Climb Modular Assembler Encoding: Evolving Modular Neural Networks of fixed modular architecture. 2021 , 232, 107493	1
205	A lexicographic cooperative co-evolutionary approach for feature selection. 2021 , 463, 59-76	O
204	A competitive Predator Prey approach to enhance surveillance by UAV swarms. 2021, 111, 107701	0
203	A Unified Framework for Flexible Playback Latency Control in Live Video Streaming. 2021 , 32, 3024-3037	O
202	A Nash bargaining solution for a multi period competitive portfolio optimization problem: Co-evolutionary approach. 2021 , 184, 115509	1
201	An Adaptive Mechanism With Cooperative Coevolution and Covariance for Differential Evolution. 2021 , 9, 99890-99904	
200	A biological perspective on evolutionary computation. 2021 , 3, 9-15	6
199	LѾy Walk in Swarm Models Based on Bayesian and Inverse Bayesian Inference. 2021 , 19, 247-260	4

198	Acceptance-Aware Mobile Crowdsourcing Worker Recruitment in Social Networks. 2021, 1-1		1
197	Maintaining Diversity in Agent-Based Evolutionary Computation. <i>Lecture Notes in Computer Science</i> , 2006 , 908-911	0.9	3
196	Nonlinear System Stabilisation by an Evolutionary Neural Network. <i>Lecture Notes in Computer Science</i> , 2006 , 998-1006	0.9	1
195	Incremental Evolution of Robot Controllers for a Highly Integrated Task. <i>Lecture Notes in Computer Science</i> , 2006 , 473-484	0.9	9
194	Studies on Motion Control of a Modular Robot Using Cellular Automata. <i>Lecture Notes in Computer Science</i> , 2006 , 689-698	0.9	3
193	Cooperative Evolution on the Intertwined Spirals Problem. Lecture Notes in Computer Science, 2003, 434	4.42	3
192	Cooperative Co-evolution of Multilayer Perceptrons. Lecture Notes in Computer Science, 2003, 358-365	0.9	2
191	A Model of Co-evolution in Multi-agent System. 2003 , 314-323		25
190	Representation Development from Pareto-Coevolution. Lecture Notes in Computer Science, 2003, 262-27	73 .9	6
189	Exploring the Explorative Advantage of the Cooperative Coevolutionary (1+1) EA. <i>Lecture Notes in Computer Science</i> , 2003 , 310-321	0.9	10
188	Coevolution and Linear Genetic Programming for Visual Learning. <i>Lecture Notes in Computer Science</i> , 2003 , 332-343	0.9	8
187	Evolving Keepaway Soccer Players through Task Decomposition. <i>Lecture Notes in Computer Science</i> , 2003 , 356-368	0.9	8
186	Clustering Moving Data with a Modified Immune Algorithm. <i>Lecture Notes in Computer Science</i> , 2001 , 394-403	0.9	2
185	Parameter Control within a Co-operative Co-evolutionary Genetic Algorithm. <i>Lecture Notes in Computer Science</i> , 2002 , 247-256	0.9	11
184	Introducing Multi-objective Optimization in Cooperative Coevolution of Neural Networks. <i>Lecture Notes in Computer Science</i> , 2001 , 645-652	0.9	5
183	Cooperative Coevolution for Learning Fuzzy Rule-Based Systems. <i>Lecture Notes in Computer Science</i> , 2002 , 311-322	0.9	6
182	Coevolving Fitness Models for Accelerating Evolution and Reducing Evaluations. 2007, 113-130		9
181	Evolving Coevolutionary Classifiers Under Large Attribute Spaces. 2010 , 37-54		2

180	Encyclopedia of Machine Learning and Data Mining. 2017 , 899-904		2
179	A Co-evolutionary Perspective on Distributed Manufacturing. 2010 , 29-50		4
178	Many-Objective Cooperative Co-evolutionary Feature Selection: A Lexicographic Approach. <i>Lecture Notes in Computer Science</i> , 2019 , 463-474	0.9	1
177	Particle Swarm Methods. 2015 , 1-47		4
176	Evolutionary Algorithms. 2018 , 1-22		2
175	Adaptation in Cooperative Coevolutionary Optimization. 2015 , 91-109		12
174	Evolving Ensembles of Dispatching Rules Using Genetic Programming for Job Shop Scheduling. <i>Lecture Notes in Computer Science</i> , 2015 , 92-104	0.9	21
173	Fair Resource Allocation Using Multi-population Evolutionary Algorithm. <i>Lecture Notes in Computer Science</i> , 2015 , 214-224	0.9	2
172	Large-Scale Global Optimization Using a Binary Genetic Algorithm with EDA-Based Decomposition. Lecture Notes in Computer Science, 2016 , 619-626	0.9	1
171	The Incremental Pareto-Coevolution Archive. <i>Lecture Notes in Computer Science</i> , 2004 , 525-536	0.9	27
170	A Cooperative Coevolutionary Multiobjective Algorithm Using Non-dominated Sorting. <i>Lecture Notes in Computer Science</i> , 2004 , 537-548	0.9	43
169	Multi-objective Optimisation by Co-operative Co-evolution. <i>Lecture Notes in Computer Science</i> , 2004 , 772-781	0.9	19
168	Evolutionary Multi-agent Systems. Lecture Notes in Computer Science, 2004, 872-881	0.9	4
167	Credit Assignment Among Neurons in Co-evolving Populations. <i>Lecture Notes in Computer Science</i> , 2004 , 882-891	0.9	10
166	A Visual Demonstration of Convergence Properties of Cooperative Coevolution. <i>Lecture Notes in Computer Science</i> , 2004 , 892-901	0.9	9
165	An Immune-based Approach to Document Classification. 2003 , 33-46		7
164	Accuracy Improvements to Find the Balance Interpretability-Accuracy in Linguistic Fuzzy Modeling: An Overview. 2003 , 3-24		19
163	Fuzzy CoCo: Balancing Accuracy and Interpretability of Fuzzy Models by Means of Coevolution. 2003 , 119-146		11

(2010-2004)

162	Coevolutionary feature construction for transformation of representation of machine learners. 2004 , 139-150		1
161	Agent-Based Co-Operative Co-Evolutionary Algorithm for Multi-Objective Optimization. <i>Lecture Notes in Computer Science</i> , 2008 , 388-397	0.9	9
160	Objective Set Compression. 2008 , 357-376		4
159	CoEvRBFN: An Approach to Solving the Classification Problem with a Hybrid Cooperative-Coevolutive Algorithm. <i>Lecture Notes in Computer Science</i> , 2007 , 324-332	0.9	1
158	Implementing Multi-VRC Cores to Evolve Combinational Logic Circuits in Parallel. <i>Lecture Notes in Computer Science</i> , 2007 , 23-34	0.9	6
157	Neuro-evolution Methods for Designing Emergent Specialization. 2007 , 1120-1130		2
156	Co-Evolutionary Multi-Agent System for Portfolio Optimization. 2008 , 271-299		17
155	Evolving Efficient Connection for the Design of Artificial Neural Networks. <i>Lecture Notes in Computer Science</i> , 2008 , 909-918	0.9	1
154	Classical and Agent-Based Evolutionary Algorithms for Investment Strategies Generation. 2009 , 181-20)5	6
153	Evolution of Cooperating Classification Rules with an Archiving Strategy to Underpin Collaboration. 2009 , 47-65		11
152	A First Study on the Use of Coevolutionary Algorithms for Instance and Feature Selection. <i>Lecture Notes in Computer Science</i> , 2009 , 557-564	0.9	46
151	Parallel Particle Swarm Optimization with Adaptive Asynchronous Migration Strategy. <i>Lecture Notes in Computer Science</i> , 2009 , 490-501	0.9	5
150	Multi-UCAV Cooperative Path Planning Using Improved Coevolutionary Multi-Ant-Colony Algorithm. <i>Lecture Notes in Computer Science</i> , 2009 , 834-845	0.9	3
149	A-Teams and Their Applications. <i>Lecture Notes in Computer Science</i> , 2009 , 36-50	0.9	11
148	CoXCS: A Coevolutionary Learning Classifier Based on Feature Space Partitioning. <i>Lecture Notes in Computer Science</i> , 2009 , 360-369	0.9	9
147	Differential Evolution with Scale Factor Local Search for Large Scale Problems. 2010 , 297-323		6
	Evalutionary Approaches to the Three dimensional Multipine Doubing Droblem, A Comparative		
146	Evolutionary Approaches to the Three-dimensional Multi-pipe Routing Problem: A Comparative Study Using Direct Encodings. <i>Lecture Notes in Computer Science</i> , 2010 , 71-82	0.9	7

144	An Encoding Scheme for Cooperative Coevolutionary Feedforward Neural Networks. <i>Lecture Notes in Computer Science</i> , 2010 , 253-262	0.9	12
143	A Multi-Agent Organizational Framework for Coevolutionary Optimization. <i>Lecture Notes in Computer Science</i> , 2010 , 199-224	0.9	1
142	The Evolution of Division of Labor. Lecture Notes in Computer Science, 2011, 10-18	0.9	2
141	Evolutionary Computation for Reinforcement Learning. 2012 , 325-355		20
140	Cooperative Coevolution for Agrifood Process Modeling. 2013, 247-287		1
139	4D-Trajectory Conflict Resolution Using Cooperative Coevolution. 2013, 387-395		3
138	Using Hybrid Dependency Identification with a Memetic Algorithm for Large Scale Optimization Problems. <i>Lecture Notes in Computer Science</i> , 2012 , 168-177	0.9	10
137	CoBRA: A Coevolutionary Metaheuristic for Bi-level Optimization. 2013 , 95-114		3
136	Scaling Up Covariance Matrix Adaptation Evolution Strategy Using Cooperative Coevolution. <i>Lecture Notes in Computer Science</i> , 2013 , 350-357	0.9	32
135	Fitness Landscapes That Depend on Time. 2014 , 265-299		5
134	An Overview of Artificial Immune Systems. 2004 , 51-91		50
133	The Flowering of Fuzzy CoCo: Evolving Fuzzy Iris Classifiers. 2001 , 304-307		4
132	Contribution-Based Cooperative Co-Evolution for Nonseparable Large-Scale Problems With Overlapping Subcomponents. 2020 , PP,		6
131	Cooperative co-evolution for feature selection in Big Data with random feature grouping. 2020 , 7,		4
130	Cooperative Bayesian Optimization Algorithm: a Novel Approach to Multiple Resources Scheduling Problem. 2012 , 132, 2007-2018		3
129	Knowledge management overview of feature selection problem in high-dimensional financial data: cooperative co-evolution and MapReduce perspectives. 2019 , 17, 340-359		6
128	Evolving Co-Adapted Subcomponents in Assembler Encoding. 2007, 17, 549-563		3
127	Image segmentation algorithm based on coevolution with texture and gray scale. 2009 , 29, 54-56		1

126	Recursive Learning of Genetic Algorithms with Task Decomposition and Varied Rule Set. 2011, 2, 1-24		4
125	Solving the Balance Problem of On-Line Role-Playing Games Using Evolutionary Algorithms. 2012 , 05, 574-582		3
124	A Cooperative Co-evolution PSO for Flow Shop Scheduling Problem with Uncertainty. 2011, 6,		5
123	Distributed Bayesian optimisation framework for deep neuroevolution. 2021,		1
122	Niche-based cooperative co-evolutionary ensemble neural network for classification. 2021 , 113, 107951	I	1
121	Cooperative coevolutionary instance selection for multilabel problems. 2021 , 234, 107569		1
120	Mathematical model and enhanced cooperative co-evolutionary algorithm for scheduling energy-efficient manufacturing cell. 2021 , 326, 129248		О
119	Techniques for Designing and RefiningLinguistic Fuzzy Models to Improve Their Accuracy. 2002,		
118	An Evolutionary Algorithm for Project Selection Problems Based on Stochastic Multiobjective Linearly Constrained Optimization. 2003 , 163-189		
117	Genetic Models for the Rational Exploitation of Resources. 2003, 351-360		
117	Genetic Models for the Rational Exploitation of Resources. 2003, 351-360 Cooperative Coevolution Fusion for Moving Object Detection. Lecture Notes in Computer Science, 2004, 587-589	0.9	
	Cooperative Coevolution Fusion for Moving Object Detection. <i>Lecture Notes in Computer Science</i> ,	0.9	
116	Cooperative Coevolution Fusion for Moving Object Detection. <i>Lecture Notes in Computer Science</i> , 2004 , 587-589 Comparing Hybrid Systems to Design and Optimize Artificial Neural Networks. <i>Lecture Notes in</i>		1
116	Cooperative Coevolution Fusion for Moving Object Detection. Lecture Notes in Computer Science, 2004, 587-589 Comparing Hybrid Systems to Design and Optimize Artificial Neural Networks. Lecture Notes in Computer Science, 2004, 240-249 Cooperative Problem Solving Using an Agent-Based Market. Lecture Notes in Computer Science,	0.9	1 2
116 115 114	Cooperative Coevolution Fusion for Moving Object Detection. Lecture Notes in Computer Science, 2004, 587-589 Comparing Hybrid Systems to Design and Optimize Artificial Neural Networks. Lecture Notes in Computer Science, 2004, 240-249 Cooperative Problem Solving Using an Agent-Based Market. Lecture Notes in Computer Science, 2004, 60-71 Species Merging and Splitting for Efficient Search in Coevolutionary Algorithm. Lecture Notes in	0.9	
116 115 114 113	Cooperative Coevolution Fusion for Moving Object Detection. Lecture Notes in Computer Science, 2004, 587-589 Comparing Hybrid Systems to Design and Optimize Artificial Neural Networks. Lecture Notes in Computer Science, 2004, 240-249 Cooperative Problem Solving Using an Agent-Based Market. Lecture Notes in Computer Science, 2004, 60-71 Species Merging and Splitting for Efficient Search in Coevolutionary Algorithm. Lecture Notes in Computer Science, 2004, 332-341 A Co-evolutionary Multi-agent System for Multi-modal Function Optimization. Lecture Notes in	0.9	2
116 115 114 113	Cooperative Coevolution Fusion for Moving Object Detection. Lecture Notes in Computer Science, 2004, 587-589 Comparing Hybrid Systems to Design and Optimize Artificial Neural Networks. Lecture Notes in Computer Science, 2004, 240-249 Cooperative Problem Solving Using an Agent-Based Market. Lecture Notes in Computer Science, 2004, 60-71 Species Merging and Splitting for Efficient Search in Coevolutionary Algorithm. Lecture Notes in Computer Science, 2004, 332-341 A Co-evolutionary Multi-agent System for Multi-modal Function Optimization. Lecture Notes in Computer Science, 2004, 654-661 A Coevolutionary Algorithm with Spieces as Varying Contexts. Lecture Notes in Computer Science,	0.9	2

108	Modelling Robotic Cognitive Mechanisms by Hierarchical Cooperative CoEvolution. <i>Lecture Notes in Computer Science</i> , 2006 , 224-234	0.9	1
107	Cooperative Co-evolutionary Approach Applied in Reactive Power Optimization of Power System. <i>Lecture Notes in Computer Science</i> , 2006 , 620-628	0.9	О
106	Hierarchical Cooperative CoEvolution Facilitates the Redesign of Agent-Based Systems. <i>Lecture Notes in Computer Science</i> , 2006 , 582-593	0.9	2
105	A Framework of Oligopolistic Market Simulation with Coevolutionary Computation. <i>Lecture Notes in Computer Science</i> , 2006 , 860-869	0.9	1
104	Generating Robust Investment Strategies with Agent-Based Co-evolutionary System. <i>Lecture Notes in Computer Science</i> , 2008 , 664-673	0.9	
103	Evolutionary System for Generating Investment Strategies. <i>Lecture Notes in Computer Science</i> , 2008 , 83-92	0.9	7
102	Cooperative Co-evolution Inspired Operators for Classical GP Schemes. 2008, 169-178		1
101	Learning and Coordination. 2009 , 125-139		
100	Cheating for Problem Solving: A Genetic Algorithm with Social Interactions.		
99	Inducing Relational Fuzzy Classification Rules by Means of Cooperative Coevolution. 2009, 127-147		
98	Decision Support Methods. 2009 , 23-96		
97	Co-Evolutionary Learning Of Contextual Asymmetric Actors. 2009,		
96	Generating Fuzzy Regions from Conflicting Spatial Information. 2010 , 211-239		
95	IFS-CoCo in the Landscape Contest: Description and Results. <i>Lecture Notes in Computer Science</i> , 2010 , 56-65	0.9	1
94	A Cooperative Coevolutionary Approach to Partitional Clustering. 2010 , 374-383		2
93	Automatic Synthesis of Associative Memories through Genetic Programming: A First Co-evolutionary Approach. <i>Lecture Notes in Computer Science</i> , 2010 , 344-351	0.9	2
92	Computation in Complex Environments;. 2010 , 299-324		
91	Evolutionary Associative Memories through Genetic Programming. 2012 , 171-188		

90	Natural vs. Unnatural Decomposition in Cooperative Coevolution. <i>Lecture Notes in Computer Science</i> , 2012 , 138-147	0.9	2
89	A Competitive Markov Approach to the Optimal Combat Strategies of On-Line Action Role-Playing Game Using Evolutionary Algorithms. 2012 , 04, 176-187		1
88	Local Search in Parallel Linear Genetic Programming for Multiclass Classification. <i>Lecture Notes in Computer Science</i> , 2012 , 373-384	0.9	1
87	Dual-system Cooperative Coevolutionary Differential Evolution Algorithm for Solving Nonseparable Function Optimization. 2013 , 12, 1796-1803		1
86	Encyclopedia of Machine Learning and Data Mining. 2014 , 1-7		
85	Individual-Based Cooperative Coevolution Local Search for Large Scale Optimization. 2015 , 535-547		
84	Neuron-Synapse Level Problem Decomposition Method for Cooperative Neuro-Evolution of Feedforward Networks for Time Series Prediction. <i>Lecture Notes in Computer Science</i> , 2015 , 90-100	0.9	2
83	Coevolutionary Recurrent Neural Networks for Prediction of Rapid Intensification in Wind Intensity of Tropical Cyclones in the South Pacific Region. <i>Lecture Notes in Computer Science</i> , 2015 , 43-52	0.9	2
82	Efficient Cooperative Particle Swarm Optimization for TSK-Type Neural Fuzzy Systems and Its Classification Applications. 2015 , 2, 30-37		
81	Memetic Cooperative Neuro-Evolution for Chaotic Time Series Prediction. <i>Lecture Notes in Computer Science</i> , 2016 , 299-308	0.9	1
80	References. 2016 , 338-352		
79	Bibliography. 127-148		
78	Dynamic Cyclone Wind-Intensity Prediction Using Co-Evolutionary Multi-task Learning. <i>Lecture Notes in Computer Science</i> , 2017 , 618-627	0.9	2
77	Co-evolutionary Multi-task Learning for Modular Pattern Classification. <i>Lecture Notes in Computer Science</i> , 2017 , 692-701	0.9	2
76	Convergence of Factored Evolutionary Algorithms. 2017,		О
75	Cooperation Coevolution Differential Evolution with Gradient Descent Strategy for Large Scale. <i>Lecture Notes in Computer Science</i> , 2017 , 429-439	0.9	
74	A Dynamic Global Differential Grouping for Large-Scale Black-Box Optimization. <i>Lecture Notes in Computer Science</i> , 2018 , 593-603	0.9	1
73	Co-evolution of Novel Tree-Like ANNs and Activation Functions: An Observational Study. <i>Lecture Notes in Computer Science</i> , 2018 , 616-629	0.9	

72	Evolutionary- and Quantum-Inspired Computation. Applications for SNN Optimisation. 2019, 245-287	
71	PGRDP: Reliability, Delay, and Power-Aware Area Minimization of Large-Scale VLSI Power Grid Network Using Cooperative Coevolution. 2020 , 69-84	1
70	Neighborhood Based Optimization Algorithm. 2020 , 183-243	
69	A Cooperative Coevolutionary Algorithm For KNN Training Set Optimization. 2019,	
68	New Pathways in Coevolutionary Computation. 2020 , 295-305	
67	Mobile Robot Path Planning Using a Flower Pollination Algorithm-Based Approach. 2020 , 127-147	1
66	Coevolving Artistic Images Using OMNIREP. Lecture Notes in Computer Science, 2020, 165-178	0.9
65	POWER SYSTEM PLANNING AND OPERATION. 2020 , 39-225	
64	Solving complex problems with coevolutionary algorithms. 2020 ,	
63	Evolution of neural networks. 2020 ,	
62	Recursive Learning of Genetic Algorithms with Task Decomposition and Varied Rule Set. 226-247	
61	Established and Recently Proposed Variants of Particle Swarm Optimization. 88-132	7
60	Cooperative Coevolutionary Methods. 2006 , 181-206	
59	Co-evolving Multilayer Perceptrons Along Training Sets. 2005 , 503-513	
58	Evolutionary Computation and Parallel Processing Applied to the Design of Multilayer Perceptrons. 2005 , 181-203	
58 57		1
	2005 , 181-203	1

54	Coevolutionary Computation Based Iterative Multi-Attribute Auctions. 2008, 461-469		1
53	A Cooperative Coevolution Algorithm of RBFNN for Classification. 2007 , 809-816		1
52	Inference of Genetic Networks Using an Evolutionary Algorithm. 2008, 31-51		
51	Co-operative Co-evolutionary System for Solving Dynamic VRPTW Problems with Crisis Situations. <i>Lecture Notes in Computer Science</i> , 2007 , 81-92	0.9	
50	The Cooperative Royal Road: Avoiding Hitchhiking. 2008 , 184-195		1
49	Enhanced Cooperative Co-evolution Genetic Algorithm for Rule-Based Pattern Classification. <i>Lecture Notes in Computer Science</i> , 2008 , 113-123	0.9	1
48	Enhancing PSO for Dealing with Large Data Dimensionality by Cooperative Coevolutionary with Dynamic Species-Structure Strategy. 2021 , 539-549		
47	A Covariance Matrix Adaptation Evolution Strategy Based on Cooperative Co-Evolutionary Framework Using Delta Grouping for Large-Scale Dynamic Economic Dispatch. 2020 ,		
46	A Local 3D Voronoi-Based Optimization Method for Sensor Network Deployment in Complex Indoor Environments. 2021 , 21,		
45	A Dither-Free Bias Voltage Optimization Method for Optical IQ Transmitter Based on Genetic Algorithm Using DC and Magnitude Variance. 2020 ,		Ο
44	Merged Differential Grouping for Large-scale Global Optimization. 2022, 1-1		3
43	High Dimensional Bayesian Optimization for Analog Integrated Circuit Sizing Based on Dropout and gm/ID Methodology. 2022 , 1-1		
42	Anomaly Detection in Cybersecurity Datasets via Cooperative Co-evolution-based Feature Selection. 2022 , 13, 1-39		5
41	A Novel Approach to Utilization V2G Technology in Microgrid Environment.		
40	A self-adaptive level-based learning artificial bee colony algorithm for feature selection on high-dimensional classification. 1		
39	Cooperative co-evolutionary differential evolution algorithm applied for parameters identification of lithium-ion batteries. 2022 , 200, 117192		1
38	A Study in Overlapping Factor Decomposition for Cooperative Co-Evolution. 2021,		1
37	Parallel Population-Based Simulated Annealing for High-Dimensional Black-Box Optimization. 2021 ,		

36	Distributed Machine Learning in Energy Management and Control in Smart Grid. 2022, 219-251		
35	Cooperative Co-evolution and 'Adaptive Team Composition for 'a 'Multi-rover Resource Allocation Problem. <i>Lecture Notes in Computer Science</i> , 2022 , 179-193	0.9	
34	An Adaptive Cooperative Coevolutionary Algorithm for Parallel Feature Selection in High-Dimensional Datasets. 2022 ,		О
33	An improved multi-population whale optimization algorithm. <i>International Journal of Machine Learning and Cybernetics</i> , 1	3.8	O
32	Cooperative Coevolution of Neural Networks and Ensembles of Neural Networks. 2006, 465-490		
31	Longitudinal Trajectory Optimization for Connected and Automated Vehicles by Evolving Cubic Splines with Coevolution. 2022 ,		
30	Training Quantized Deep Neural Networks via Cooperative Coevolution. <i>Lecture Notes in Computer Science</i> , 2022 , 81-93	0.9	
29	Hill-Climb-Assembler Encoding: Evolution of Small/Mid-Scale Artificial Neural Networks for Classification and Control Problems. <i>Electronics (Switzerland)</i> , 2022 , 11, 2104	2.6	1
28	Environment driven dynamic decomposition for cooperative coevolution of multi-agent systems. 2022 ,		
27	On the interaction between lexicase selection, modularity and data subsets. 2022,		
27	On the interaction between lexicase selection, modularity and data subsets. 2022 , Evolution of neural networks. 2022 ,		
26	Evolution of neural networks. 2022, Runtime analysis of competitive co-evolutionary algorithms for maximin optimisation of a bilinear		1
26	Evolution of neural networks. 2022, Runtime analysis of competitive co-evolutionary algorithms for maximin optimisation of a bilinear function. 2022, A collection of deep learning-based feature-free approaches for characterizing single-objective		1
26 25 24	Evolution of neural networks. 2022, Runtime analysis of competitive co-evolutionary algorithms for maximin optimisation of a bilinear function. 2022, A collection of deep learning-based feature-free approaches for characterizing single-objective continuous fitness landscapes. 2022,		1
26 25 24 23	Evolution of neural networks. 2022, Runtime analysis of competitive co-evolutionary algorithms for maximin optimisation of a bilinear function. 2022, A collection of deep learning-based feature-free approaches for characterizing single-objective continuous fitness landscapes. 2022, Design of a Novel Wireless NoC Architecture for Chip Multiprocessor. 2022, 2331, 012012 Using Hill Climb Modular Assembler Encoding and Differential Evolution to evolve modular neuro-controllers of an autonomous underwater vehicle acting as a Magnetic Anomaly Detector.	28	1 O
26 25 24 23 22	Evolution of neural networks. 2022, Runtime analysis of competitive co-evolutionary algorithms for maximin optimisation of a bilinear function. 2022, A collection of deep learning-based feature-free approaches for characterizing single-objective continuous fitness landscapes. 2022, Design of a Novel Wireless NoC Architecture for Chip Multiprocessor. 2022, 2331, 012012 Using Hill Climb Modular Assembler Encoding and Differential Evolution to evolve modular neuro-controllers of an autonomous underwater vehicle acting as a Magnetic Anomaly Detector. 2022, 127, 109347	28	

18	Multi-Objective Factored Evolutionary Optimization and the Multi-Objective Knapsack Problem. 2022 ,	0
17	Bicriterion Coevolution for the Multi-objective Travelling Salesperson Problem. 2022,	O
16	Fully Distributed Cartesian Genetic Programming. 2022 , 36-49	O
15	A Quality-Driven Iterative Evolution Approach for Software Architecture.	O
14	Benchmarking ensemble genetic programming with a linked list external memory on scalable partially observable tasks.	0
13	Multi-criteria fuzzy portfolio selection based on three-way decisions and cumulative prospect theory. 2023 , 134, 110033	O
12	Uncovering Hazards Using a Multi-Objective Optimization to Explore the Faulty State-Space. 2023,	О
11	Coevolutionary strategies at the collective level for improved generalism. 2023, 4,	О
10	Explicit Evolutionary Multi-Task Optimization Algorithm. 2023 , 75-94	0
9	A Boosting Approach to Constructing an Ensemble Stack. 2023 , 133-148	0
8	On the Effects of Collaborators Selection and Aggregation in Cooperative Coevolution: An Experimental Analysis. 2023 , 292-307	0
7	Evolving malice scoring models for ransomware detection: An automated approach by utilising genetic programming and cooperative coevolution. 2023 , 129, 103215	O
6	Addressing Sustainability in Precision Agriculture via Multi-Objective Factored Evolutionary Algorithms. 2023 , 391-405	0
5	Neuroevolution. 2023 , 1-8	O
4	Adversarial agent-learning for cybersecurity: a comparison of algorithms. 2023, 38,	0
3	Emerging Modularity During the Evolution of Neural Networks. 2023 , 13, 107-126	O
2	Enhancing Local Decisions in Agent-Based Cartesian Genetic Programming by CMA-ES. 2023, 11, 177	О
1	Adaptive cooperative coevolutionary differential evolution for parallel feature selection in high-dimensional datasets.	O