The Oxo-Gate Hypothesis and DMSO Reductase:Â Impl Interaction Involved in Enzymatic Electron Transfer

Inorganic Chemistry 39, 4386-4387 DOI: 10.1021/ic000474z

Citation Report

#	Article	IF	CITATIONS
1	Reactions of Dimethylsulfoxide Reductase in the Presence of Dimethyl Sulfide and the Structure of the Dimethyl Sulfide-Modified Enzymeâ€,‡. Biochemistry, 2001, 40, 9810-9820.	1.2	39
2	Electronic Spectral Studies of Molybdenyl Complexes. 2. MCD Spectroscopy of [MoOS4]- Centers. Inorganic Chemistry, 2001, 40, 687-702.	1.9	35
3	Thermally Driven Intramolecular Charge Transfer in an Oxo-Molybdenum Dithiolate Complex. Journal of the American Chemical Society, 2001, 123, 10389-10390.	6.6	39
4	New Oxovanadium Bis(1,2-dithiolate) Compounds That Mimic the Hydrogen-Bonding Interactions at the Active Sites of Mononuclear Molybdenum Enzymes. Inorganic Chemistry, 2002, 41, 7086-7093.	1.9	19
5	Probing the Electronic Structure of [MoOS4]-Centers Using Anionic Photoelectron Spectroscopy. Journal of the American Chemical Society, 2002, 124, 10182-10191.	6.6	20
6	Atom transfer chemistry and electrochemical behavior of Mo(VI) and Mo(V) trispyrazolylborate complexes: new mononuclear and dinuclear species. Inorganica Chimica Acta, 2002, 337, 393-406.	1.2	33
7	Synthesis and EPR Characterization of New Models for the One-Electron Reduced Molybdenum Site of Sulfite Oxidase. Inorganic Chemistry, 2003, 42, 6194-6203.	1.9	39
8	Molybdenum. , 2003, , 415-527.		20
9	A Family of Dioxoâ^'Molybdenum(VI) Complexes of N2X Heteroscorpionate Ligands of Relevance to Molybdoenzymes. Inorganic Chemistry, 2004, 43, 7800-7806.	1.9	54
10	lsomerization and Oxygen Atom Transfer Reactivity in Oxoâ^'Mo Complexes of Relevance to Molybdoenzymes. Inorganic Chemistry, 2004, 43, 7573-7575.	1.9	39
11	Modulation of Molybdenum-Centered Redox Potentials and Electron-Transfer Rates by Sulfur versus Oxygen Ligation. Inorganic Chemistry, 2004, 43, 7389-7395.	1.9	14
12	Nature of the Oxomolybdenumâ^'Thiolate Ï€-Bond: Implications for Moâ^'S Bonding in Sulfite Oxidase and Xanthine Oxidase. Inorganic Chemistry, 2004, 43, 1625-1637.	1.9	25
13	Photoelectron Spectroscopy of the Doubly-Charged Anions [MIVO(mnt)2]2-(M = Mo, W; mnt =) Tj ETQq0 0 0 rg American Chemical Society, 2004, 126, 5119-5129.	3T /Overlo 6.6	ck 10 Tf 50 2 23
14	Synthetic Analogues and Reaction Systems Relevant to the Molybdenum and Tungsten Oxotransferases. Chemical Reviews, 2004, 104, 1175-1200.	23.0	460
15	Oxomolybdenum Tetrathiolates with Sterically Encumbering Ligands:Â Modeling the Effect of a Protein Matrix on Electronic Structure and Reduction Potentials. Inorganic Chemistry, 2005, 44, 8216-8222.	1.9	17
16	Determination of theg-Tensors and Their Orientations forcis,trans-(L-N2S2)MoVOX (X = Cl, SCH2Ph) by Single-Crystal EPR Spectroscopy and Molecular Orbital Calculations. Inorganic Chemistry, 2005, 44, 1290-1301.	1.9	37
17	Vibrational Markers for the Open-Shell Character of Transition Metal Bis-dithiolenes:Â An Infrared, Resonance Raman, and Quantum Chemical Study. Journal of the American Chemical Society, 2006, 128, 4422-4436.	6.6	101
18	Understanding the Origin of Metalâ^'Sulfur Vibrations in an Oxo-Molybdenum Dithiolene Complex:Â Relevance to Sulfite Oxidase. Inorganic Chemistry, 2006, 45, 967-976.	1.9	43

#	Article	IF	CITATIONS
19	The dithioleneligand—â€~innocent' or â€~non-innocent'? A theoretical and experimental study of some cobalt–dithiolene complexes. Faraday Discussions, 2007, 135, 469-488.	1.6	39
20	Synthesis, characterization, and spectroscopy of model molybdopterin complexes. Journal of Inorganic Biochemistry, 2007, 101, 1601-1616.	1.5	35
21	Spectroscopic and Electronic Structure Studies of Symmetrized Models for Reduced Members of the Dimethylsulfoxide Reductase Enzyme Family. Journal of the American Chemical Society, 2008, 130, 4628-4636.	6.6	30
22	Which functional groups of the molybdopterin ligand should be considered when modeling the active sites of the molybdenum and tungsten cofactors? A density functional theory study. Journal of Biological Inorganic Chemistry, 2009, 14, 1053-1064.	1.1	23
23	Synthesis, characterization and structure of a low coordinate desoxomolybdenum cluster stabilized by a dithione ligand. Dalton Transactions, 2009, , 5023.	1.6	14
24	Assessment of density functional methods for the study of vanadium and rhenium complexes with thiolato ligands. Computational and Theoretical Chemistry, 2010, 941, 1-9.	1.5	32
25	Density Functional Theory Study of the Magnetic Circular Dichroism Spectra of Molybdenyl Complexes. Inorganic Chemistry, 2010, 49, 6066-6076.	1.9	9
26	Generation of bis(dithiolene)dioxomolybdenum(vi) complexes from bis(dithiolene)monooxomolybdenum(iv) complexes by proton-coupled electron transfer in aqueous media. Dalton Transactions, 2011, 40, 2358.	1.6	12
27	Comparative molecular chemistry of molybdenum and tungsten and its relation to hydroxylase and oxotransferase enzymes. Coordination Chemistry Reviews, 2011, 255, 993-1015.	9.5	139
28	Pterin chemistry and its relationship to the molybdenum cofactor. Coordination Chemistry Reviews, 2011, 255, 1016-1038.	9.5	114
29	Molybdenum and tungsten oxygen transferases – structural and functional diversity within a common active site motif. Metallomics, 2014, 6, 15-24.	1.0	47
30	Bioinspired functional analogs of the active site of molybdenum enzymes: Intermediates and mechanisms. Coordination Chemistry Reviews, 2015, 300, 121-141.	9.5	51
31	Efficient uptake of dimethyl sulfoxide by the desoxomolybdenum(<scp>iv</scp>) dithiolate complex containing bulky hydrophobic groups. Dalton Transactions, 2015, 44, 6260-6267.	1.6	6
32	A Family of Homo―and Heteroscorpionate Ligands: Applications to Bioinorganic Chemistry. European Journal of Inorganic Chemistry, 2016, 2016, 2377-2390.	1.0	21
33	Oxygen Atom Transfer Catalysis with Homogenous and Polymerâ€5upported N,N―and N,N,Oâ€Heteroscorpionate Dioxidomolybdenum(VI) Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 2595-2602.	1.0	15
34	Chemical systems modeling the d1 Mo(V) states of molybdenum enzymes. Journal of Inorganic Biochemistry, 2016, 162, 238-252.	1.5	8
35	Mononuclear Molybdenum-Containing Enzymes. , 2018, , .		1
37	Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2018, 57, 17033-17037.	7.2	40

CITATION REPORT

#	Article	IF	CITATIONS
38	Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO 2 Photoreduction. Angewandte Chemie, 2018, 130, 17279-17283.	1.6	7
39	Synthesis, structure and solid-state electrical conductivity of bis(1,2-diphenylethylene-1,2-dithiolate)nickel(II). Journal of Chemical Sciences, 2019, 131, 1.	0.7	6
41	The Role of the Pyranopterin Dithiolene Component of Moco in Molybdoenzyme Catalysis. Structure and Bonding, 2019, , 101-151.	1.0	5
42	Metal–Dithiolene Bonding Contributions to Pyranopterin Molybdenum Enzyme Reactivity. Inorganics, 2020, 8, 19.	1.2	13
43	Protonation and Non-Innocent Ligand Behavior in Pyranopterin Dithiolene Molybdenum Complexes. Inorganic Chemistry, 2022, 61, 13728-13742.	1.9	5