Electronic Structure Studies of Oxomolybdenum Tetrat Reduction Potential Differences and Relationship to Cy Sulfite Oxidase

Inorganic Chemistry 39, 5697-5706 DOI: 10.1021/ic0003729

Citation Report

#	Article	IF	CITATIONS
1	Electronic Spectral Studies of Molybdenyl Complexes. 2. MCD Spectroscopy of [MoOS4]- Centers. Inorganic Chemistry, 2001, 40, 687-702.	1.9	35
2	A mononuclear molybdenum(V) mono-oxo biphenyl-2,2′-dithiolate complex in which the metal resides within a cleft formed by the ligands and that exhibits N-HS hydrogen bonding in the solid state. Journal of Biological Inorganic Chemistry, 2001, 6, 359-366.	1.1	19
3	Synthesis, Characterization, Electrochemistry, Electronic Structure, and Isomerization of Mononuclear Oxoâ^Molybdenum(V) Complexes: The Serine Gate Hypothesis in the Function of DMSO Reductases. Inorganic Chemistry, 2002, 41, 1281-1291.	1.9	34
4	Probing the Electronic Structure of [MoOS4]-Centers Using Anionic Photoelectron Spectroscopy. Journal of the American Chemical Society, 2002, 124, 10182-10191.	6.6	20
5	Spectroscopic and Electronic Structure Studies of Protocatechuate 3,4-Dioxygenase:  Nature of Tyrosinateâ^'Fe(III) Bonds and Their Contribution to Reactivity. Journal of the American Chemical Society, 2002, 124, 602-614.	6.6	88
6	A Density Functional Study of Oxygen Atom Transfer Reactions between Biological Oxygen Atom Donors and Molybdenum(IV) Bis(dithiolene) Complexes. Inorganic Chemistry, 2002, 41, 6695-6702.	1.9	67
7	Magnetic Circular Dichroism Spectroscopy of Pyranopterin Molybdenum Enzymes. ACS Symposium Series, 2003, , 340-357.	0.5	7
8	Molybdenum. , 2003, , 415-527.		20
9	Ground and excited state spectral comparisons of models for sulfite oxidase. Polyhedron, 2004, 23, 499-506.	1.0	14
10	Modulation of Molybdenum-Centered Redox Potentials and Electron-Transfer Rates by Sulfur versus Oxygen Ligation. Inorganic Chemistry, 2004, 43, 7389-7395.	1.9	14
11	Nature of the Oxomolybdenumâ^'Thiolate Ï€-Bond: Implications for Moâ^'S Bonding in Sulfite Oxidase and Xanthine Oxidase. Inorganic Chemistry, 2004, 43, 1625-1637.	1.9	25
12	Photoelectron Spectroscopy of the Doubly-Charged Anions [MIVO(mnt)2]2-(M = Mo, W; mnt =) Tj ETQq1 1 0.784 American Chemical Society, 2004, 126, 5119-5129.	1314 rgBT 6.6	/Overlock 23
13	Oxomolybdenum Tetrathiolates with Sterically Encumbering Ligands:Â Modeling the Effect of a Protein Matrix on Electronic Structure and Reduction Potentials. Inorganic Chemistry, 2005, 44, 8216-8222.	1.9	17
14	Vibrational Markers for the Open-Shell Character of Transition Metal Bis-dithiolenes:Â An Infrared, Resonance Raman, and Quantum Chemical Study. Journal of the American Chemical Society, 2006, 128, 4422-4436.	6.6	101
16	Platinum Complexes of Dibenzo[1,2]Dithiin, Dibenzo[1,2]Dithiin Oxides and Related Polyaromatic Hydrocarbon Ligands. Chemistry - A European Journal, 2006, 12, 895-902.	1.7	49
17	Quantitative Structure–Property Relationship Prediction of the Half-Wave Potential for Substituted Nitrobenzenes in Five Nonaqueous Solvents. Bulletin of the Chemical Society of Japan, 2007, 80, 303-306.	2.0	11
18	Synthesis, Structural Characterization, and Multifrequency Electron Paramagnetic Resonance Studies of Mononuclear Thiomolybdenyl Complexes. Inorganic Chemistry, 2007, 46, 2373-2387.	1.9	31
19	Computational Studies of EPR Parameters for Paramagnetic Molybdenum Complexes. II. Larger MoVSystems Relevant to Molybdenum Enzymes. Inorganic Chemistry, 2007, 46, 8146-8161.	1.9	27

#	Article	IF	CITATIONS
20	Rational Tuning of the Thiolate Donor in Model Complexes of Superoxide Reductase: Direct Evidence for a <i>trans</i> Influence in Fe ^{III} â^'OOR Complexes. Journal of the American Chemical Society, 2008, 130, 14189-14200.	6.6	60
21	Spectroscopic and Electronic Structure Studies of Symmetrized Models for Reduced Members of the Dimethylsulfoxide Reductase Enzyme Family. Journal of the American Chemical Society, 2008, 130, 4628-4636.	6.6	30
22	QSPR models for prediction of half wave potentials of some chlorinated organic compounds using SR-PLS and GA-PLS methods. Molecular Physics, 2009, 107, 1739-1744.	0.8	20
23	A Theoretical Study of the Magnetic Circular Dichroism Spectrum for Sulfite Oxidase Based on Time-Dependent Density Functional Theory. Inorganic Chemistry, 2009, 48, 2880-2886.	1.9	7
24	Spectroscopic Characterization of YedY: The Role of Sulfur Coordination in a Mo(V) Sulfite Oxidase Family Enzyme Form. Journal of the American Chemical Society, 2009, 131, 15612-15614.	6.6	26
25	Quantitative structure–electrochemistry relationship for variously-substituted 9, 10-anthraquinones using both an heuristic method and a radial basis function neural network. Dyes and Pigments, 2010, 84, 148-152.	2.0	12
26	Spectroscopic and Electronic Structure Studies Probing Covalency Contributions to C–H Bond Activation and Transition-State Stabilization in Xanthine Oxidase. Inorganic Chemistry, 2011, 50, 10919-10928.	1.9	28
28	How Do the Thiolate Ligand and Its Relative Position Control the Oxygen Activation in the Cysteine Dioxygenase Model?. Journal of Physical Chemistry A, 2012, 116, 5510-5517.	1.1	5
29	Review of quantitative structureâ€activity/property relationship studies of dyes: recent advances and perspectives. Coloration Technology, 2013, 129, 173-186.	0.7	18
30	Predicting hydration energies for multivalent ions. Journal of Computational Chemistry, 2014, 35, 2070-2075.	1.5	23
32	Pulsed Electron Paramagnetic Resonance Spectroscopy of ³³ S-Labeled Molybdenum Cofactor in Catalytically Active Bioengineered Sulfite Oxidase. Inorganic Chemistry, 2014, 53, 961-971.	1.9	11
33	Characterization of a Novel Dioxomolybdenum Complex by Cyclic Voltammetry. Analytical Letters, 2015, 48, 2369-2379.	1.0	4
34	Structural diversity of bimetallic rhodium and iridium half sandwich dithiolato complexes. Dalton Transactions, 2015, 44, 16758-16766.	1.6	16
35	The preparation and characterisation of rhodium(III) and Iridium(III) half sandwich complexes with napthalene-1,8-dithiolate, acenaphthene-5,6-dithiolate and biphenyl-2,2′-dithiolate. Journal of Organometallic Chemistry, 2015, 776, 7-16.	0.8	15
36	Chemical systems modeling the d1 Mo(V) states of molybdenum enzymes. Journal of Inorganic Biochemistry, 2016, 162, 238-252.	1.5	8
37	A computational investigation into the catalytic activity of a diselenolene sulfite oxidase biomimetic complex. Canadian Journal of Chemistry, 2016, 94, 1127-1132.	0.6	5
38	Varying the flexibility of the aromatic backbone in half sandwich rhodium(III) dithiolato complexes: A synthetic, spectroscopic and structural investigation. Cogent Chemistry, 2016, 2, 1245900.	2.5	1
39	Large Ligand Folding Distortion in an Oxomolybdenum Donor–Acceptor Complex. Inorganic Chemistry, 2016, 55, 785-793.	1.9	18

		CITATION REPORT		
# 41	ARTICLE QSER study for half wave potential of some PAHs. Energy Procedia, 2019, 157, 522-53	32.	IF 1.8	Citations 2
42	The Role of the Pyranopterin Dithiolene Component of Moco in Molybdoenzyme Catal and Bonding, 2019, , 101-151.	lysis. Structure	1.0	5
43	9. Molybdenum and Tungsten Cofactors and the Reactions They Catalyze. , 2020, 20,	313-342.		5
44	Addressing Ligand-Based Redox in Molybdenum-Dependent Methionine Sulfoxide Red the American Chemical Society, 2020, 142, 2721-2725.	uctase. Journal of	6.6	10
45	Chemistry and Relevant Biomimetic Applications of Group 6 Metals Systems Supporte Current Bioactive Compounds, 2009, 5, 321-352.	d by Scorpionates.	0.2	14
46	Resonance Raman spectroscopy of pyranopterin molybdenum enzymes. Journal of Ino Biochemistry, 2022, 235, 111907.	rganic	1.5	2
47	Protonation and Non-Innocent Ligand Behavior in Pyranopterin Dithiolene Molybdenu Inorganic Chemistry, 2022, 61, 13728-13742.	m Complexes.	1.9	5