A Versatile Approach to the Synthesis of (+)-Mannostati

Journal of Organic Chemistry 65, 1574-1577

DOI: 10.1021/jo991539m

Citation Report

#	Article	IF	CITATIONS
1	The Photohydration of N -Glycosylpyridinium Salts and of Related Pyridinium N , O -Acetals. Tetrahedron, 2000, 56, 4311-4316.	1.0	22
2	A concise synthesis of the (â^')-allosamizoline aminocyclopentitol based on pyridinium salt photochemistry. Tetrahedron Letters, 2001, 42, 4755-4757.	0.7	33
3	The Photohydration of N-Alkylpyridinium Salts: Theory and Experiment. Chemistry - A European Journal, 2001, 7, 1734-1742.	1.7	16
4	A Novel Approach to the Synthesis of Amino-Sugars. Routes To Selectively Protected 3-Amino-3-deoxy-aldopentoses Based on Pyridinium Salt Photochemistry. Journal of Organic Chemistry, 2002, 67, 3525-3528.	1.7	22
5	Synthesis and reactions of cyclopentadiene monoaziridine: a concise approach to the core of agelastatin A. Tetrahedron Letters, 2002, 43, 723-726.	0.7	43
6	Transition metals in organic synthesis: highlights for the year 2000. Coordination Chemistry Reviews, 2003, 241, 147-247.	9.5	40
7	Asymmetric synthesis of potent glycosidase and very potent α-mannosidase inhibitors: 4-amino-4-deoxy-l-erythrose and 4-amino-4,5-dideoxy-l-ribose. Tetrahedron, 2003, 59, 543-553.	1.0	33
8	[General Articles] Recent Developments in the Synthesis and Discovery of Oligosaccharides and Glycoconjugates for the Treatment of Disease. Current Medicinal Chemistry, 2003, 10, 2733-2773.	1.2	38
9	A New Look at Pyridinium Salt Photochemistry. ChemInform, 2004, 35, no.	0.1	1
10	HYDRAZINE DERIVATIVES OF CARBA SUGARS AND RELATED COMPOUNDS. Advances in Carbohydrate Chemistry and Biochemistry, 2004, 59, 135-173.	0.4	7
11	Stereoselective Synthesis of Polyhydroxylated Indolizidines Based on Pyridinium Salt Photochemistry and Ring Rearrangement Metathesis. Journal of Organic Chemistry, 2004, 69, 7284-7293.	1.7	64
12	Chemical Modification of the \hat{I}_{\pm} -Mannosidase Inhibitor Mannostain A: Synthesis of a Potent Inhibitor 1L -(1,2,3,5/4)-5-Amino-4-O -methyl-1,2,3,4-cyclopentanetetrol. European Journal of Organic Chemistry, 2005, 2005, 4065-4072.	1.2	5
13	Pyridinium Salt Photochemistry in a Concise Route for Synthesis of the Trehazolin Aminocyclitol, Trehazolamine. Journal of Organic Chemistry, 2005, 70, 5618-5623.	1.7	41
14	Photocyclization Reactions of Cyclohexa- and Cyclopenta-Fused Pyridinium Salts. Factors Governing Regioselectivity. Journal of Organic Chemistry, 2005, 70, 8508-8512.	1.7	19
15	Glycosidase Inhibitors: Structure, Activity, Synthesis, and Medical Relevance., 2007, , 815-884.		16
16	Photochemical transformations of pyridinium salts: mechanistic studies and applications in synthesis. Organic and Biomolecular Chemistry, 2007, 5, 2735.	1.5	59
17	Photo-rearrangement of N-substituted pyridinium and meta-alkoxypyridinium ions. Computational and Theoretical Chemistry, 2007, 807, 25-32.	1.5	3
18	The synthetic potential of pyridinium salt photochemistry. Photochemical and Photobiological Sciences, 2008, 7, 393-404.	1.6	30

#	Article	IF	CITATIONS
19	Design and Synthesis of Aminocyclopentanol Glycosidase Inhibitors: Modification of Mannostatin A and Trehazolamine. Current Bioactive Compounds, 2010, 6, 31-45.	0.2	0
21	Medicinal Chemistry of Aminocyclitols. Current Medicinal Chemistry, 2010, 17, 2393-2418.	1.2	32
23	A stereo-divergent route to aminocyclopentitol derivatives. Tetrahedron Letters, 2011, 52, 3942-3944.	0.7	5
24	Pyridinium salts: from synthesis to reactivity and applications. Organic Chemistry Frontiers, 2018, 5, 453-493.	2.3	230
25	Palladium-catalyzed allylic substitution between C-based nucleophiles and 6-azabicyclo[3.1.0]-hex-3-en-2-oxy derivatives: A new selectivity paradigm. Tetrahedron, 2020, 76, 131182.	1.0	6
26	(1R,4S,5S)-5-((3-Hydroxypropyl)amino)-4-((1-methyl-1H-tetrazol-5-yl)thio)cyclopent-2-en-1-ol. MolBank, 2021, 2021, M1199.	0.2	1
27	On the photochemical reaction of pyridinium salts with nucleophiles. Photochemical and Photobiological Sciences, 2021, 20, 923-926.	1.6	1
28	Observations Made in Exploring a Pyridinium Salt Photochemical Approach to the Synthesis of (+)-Lactacystin. Bulletin of the Korean Chemical Society, 2008, 29, 89-93.	1.0	10
29	Organic Synthesis Based on Ruthenium Carbene Catalyzed Metathesis Reactions and Pyridinium Salt Photochemistry. Journal of the Korean Chemical Society, 2010, 54, 261-268.	0.2	3
30	A Novel Class of Molecular Response Systems Based on Hexaphenylethane-Type Electron Donors Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2002, 60, 40-51.	0.0	7
31	A New Look at Pyridinium Salt Photochemistry. , 2003, , .		0
32	The Photoreaction of Pyrylium Cation with Water: A DFT Study. Letters in Organic Chemistry, 2022, 19, 739-742.	0.2	0
33	Photoisomerization of heterocyclic compounds. , 2023, , 91-160.		0
34	Photochemistry Driven by Excitedâ€State Aromaticity Gain or Antiaromaticity Relief. Chemistry - A European Journal, 2023, 29, .	1.7	10
35	Nucleophilic Chalcogen-containing Reagents. , 2023, , 300-333.		1