Using Cytochromec3To Make Selenium Nanowires

Chemistry of Materials 12, 1510-1512 DOI: 10.1021/cm990763p

Citation Report

#	Article	IF	CITATIONS
1	A Solution-Phase Approach to the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10â^'30 nm. Journal of the American Chemical Society, 2000, 122, 12582-12583.	6.6	338
2	Structural transformation, amorphization, and fracture in nanowires: A multimillion-atom molecular dynamics study. Applied Physics Letters, 2001, 78, 3328-3330.	1.5	38
3	Surface Atomic Defect Structures and Growth of Gold Nanorods. Nano Letters, 2002, 2, 771-774.	4.5	219
4	Study of the dissolution behavior of selenium and tellurium in different solvents—a novel route to Se, Te tubular bulk single crystals. Journal of Materials Chemistry, 2002, 12, 2755-2761.	6.7	165
5	Effects of magnetic field on the morphology of nickel nanocrystals prepared by gamma-irradiation in aqueous solutions. Materials Letters, 2002, 55, 27-29.	1.3	19
6	Growth of single crystal selenium with different morphologies via a solvothermal method. Journal of Crystal Growth, 2002, 241, 489-497.	0.7	26
7	Room temperature rapid growth of monocrystalline selenium nanowires in a polymer buffer system. Solid State Sciences, 2003, 5, 525-527.	1.5	15
8	Large-Scale Synthesis of High Quality Trigonal Selenium Nanowires. European Journal of Inorganic Chemistry, 2003, 2003, 3250-3255.	1.0	61
9	Large-scale synthesis of ultra-long wire-like single-crystal selenium arrays. Journal of Crystal Growth, 2003, 259, 144-148.	0.7	20
10	High purity trigonal selenium nanorods growth via laser ablation under controlled temperature. Chemical Physics Letters, 2003, 368, 425-429.	1.2	72
11	Sonochemical Synthesis of Trigonal Selenium Nanowires. Chemistry of Materials, 2003, 15, 3852-3858.	3.2	156
12	Inorganic nanowires. Progress in Solid State Chemistry, 2003, 31, 5-147.	3.9	690
13	New strategies for the synthesis of t-selenium nanorods and nanowires. Journal of Materials Chemistry, 2003, 13, 2845.	6.7	74
14	Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. , 0, , .		0
15	Solution–solid growth of α-monoclinic selenium nanowires at room temperature. Journal of Materials Chemistry, 2003, 13, 6-8.	6.7	66
16	Rapid, high yield, solution-mediated transformation of polycrystalline selenium powder into single-crystal nanowiresElectronic supplementary information (ESI) available: histogram of diameter distribution of as-prepared single-crystalline trigonal selenium nanowires. See http://www.rsc.org/suppdata/cc/b3/b303755i/. Chemical Communications. 2003 2024.	2.2	58
17	Synthesis of Novel Selenium Tubular Structure. Chemistry Letters, 2003, 32, 448-449.	0.7	14
18	Reduction of Metals and Nonessential Elements by Anaerobes. , 2003, , 220-234.		9

#	Article	IF	CITATIONS
19	Simultaneously inducing synthesis of semiconductor sele-nium multi-armed nanorods and nanobars through bio-membrane bi-templates. Science in China Series B: Chemistry, 2004, 47, 507.	0.8	4
20	Reduction of selenious acid induced by ultrasonic irradiation––formation of Se nanorods. Ultrasonics Sonochemistry, 2004, 11, 307-310.	3.8	11
21	Biomolecule-Assisted Reduction in the Synthesis of Single-Crystalline Tellurium Nanowires. Advanced Materials, 2004, 16, 1629-1632.	11.1	128
22	Hexagonal Selenium Nanowires Synthesized via Vapor-Phase Growth. Journal of Physical Chemistry B, 2004, 108, 4627-4630.	1.2	94
23	Living bio-membrane bi-template route for simultaneous synthesis of lead selenide nanorods and nanotubes. Nanotechnology, 2004, 15, 1877-1881.	1.3	31
24	Indium sulfide nanorods from single-source precursor. Chemical Communications, 2004, , 334.	2.2	64
25	Synthesis of selenium nanoparticles in the presence of polysaccharides. Materials Letters, 2004, 58, 2590-2594.	1.3	184
26	A novel route to controlled synthesis of selenium nanowires. Materials Letters, 2004, 58, 2761-2763.	1.3	12
27	Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria. Applied and Environmental Microbiology, 2004, 70, 52-60.	1.4	421
28	Scanning tunneling microscopy and spectroscopy of Se and Te nanorods. Solid State Communications, 2005, 136, 169-172.	0.9	2
29	Peptide-Based Nanotubes and Their Applications in Bionanotechnology. Advanced Materials, 2005, 17, 2037-2050.	11.1	459
30	Deterministic Growth of Nanostructures and Microcrystals of Trigonal Selenium via Vapor Phase Deposition Routes. Crystal Growth and Design, 2005, 5, 1295-1301.	1.4	10
31	Single Crystalline Trigonal Selenium Nanotubes and Nanowires Synthesized by Sonochemical Process. Crystal Growth and Design, 2005, 5, 911-916.	1.4	115
32	Selenium/Zeolite Y Nanocomposites. Accounts of Chemical Research, 2005, 38, 705-712.	7.6	28
34	High-yield synthesis of selenium nanowires in water at room temperature. Chemical Communications, 2006, , 1006.	2.2	74
35	Cellulose-Directed Growth of Selenium Nanobelts in Solution. Chemistry of Materials, 2006, 18, 159-163.	3.2	77
36	Soft Synthesis of Inorganic Nanorods, Nanowires, and Nanotubes. , 2006, , 101-158.		1
37	Hydrothermal preparation of selenium nanorods. Materials Chemistry and Physics, 2006, 98, 191-194.	2.0	33

CITATION REPORT

#	Article	IF	CITATIONS
38	Biomolecule-assisted synthesis of single-crystalline selenium nanowires and nanoribbons via a novel flake-cracking mechanism. Nanotechnology, 2006, 17, 385-390.	1.3	79
39	A general route for the rapid synthesis of one-dimensional nanostructured single-crystal Te, Se and Se–Te alloys directly from Te or/and Se powders. Nanotechnology, 2006, 17, 1763-1769.	1.3	15
40	Enzymatic and genomic studies on the reduction of mercury and selected metallic oxyanions by sulphate-reducing bacteria. , 2007, , 435-458.		10
41	Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41. Chemosphere, 2007, 68, 1898-1905.	4.2	85
42	Cellulose Acetate-Directed Growth of Bamboo-Raft-like Single-Crystalline Selenium Superstructures:Â High-Yield Synthesis, Characterization, and Formation Mechanism. Langmuir, 2007, 23, 7321-7327.	1.6	28
43	One dimensional nanostructured materials. Progress in Materials Science, 2007, 52, 699-913.	16.0	567
44	Diameter-selected synthesis of single crystalline trigonal selenium nanowires. Materials Chemistry and Physics, 2007, 101, 357-361.	2.0	13
45	Influence of several factors on the growth of selenium nanowires induced by silver nanoparticles. Journal of Nanoparticle Research, 2008, 10, 475-486.	0.8	2
46	Synthesis of nanorods and nanowires using biomolecules under conventional- and microwave-hydrothermal conditions. Journal of Materials Science, 2008, 43, 2377-2386.	1.7	34
47	Preparation of monodisperse Se colloid spheres and Se nanowires using Na2SeSO3 as precursor. Nano Research, 2008, 1, 403-411.	5.8	50
48	Synthesis of Se nanoparticles by using TSA ion and its photocatalytic application for decolorization of cango red under UV irradiation. Materials Research Bulletin, 2008, 43, 572-582.	2.7	62
49	Facile Biomolecule-Assisted Hydrothermal Synthesis of Trigonal Selenium Microrods. Crystal Growth and Design, 2008, 8, 1580-1584.	1.4	32
50	A Novel and Efficient Route to Se Nano/Microstructures with Controllable Phase and Shape. Crystal Growth and Design, 2008, 8, 3834-3839.	1.4	14
51	Controllable growth of Se nanotubes and nanowires from different solvent during the sonochemical process. Materials Letters, 2009, 63, 1-4.	1.3	7
52	In vitro study on the individual and synergistic cytotoxicity of adriamycin and selenium nanoparticles against Bel7402 cells with a quartz crystal microbalance. Biosensors and Bioelectronics, 2009, 24, 2268-2272.	5.3	81
53	Evidence on the presence of two distinct enzymes responsible for the reduction of selenate and tellurite in Bacillus sp. STG-83. Enzyme and Microbial Technology, 2009, 45, 1-6.	1.6	27
54	Agarose and gellan as morphology-directing agents for the preparation of selenium nanowires in water. Carbohydrate Research, 2009, 344, 260-262.	1.1	13
55	Synthesis of selenium nanowires morphologically directed by Shinorhizobial oligosaccharides. Carbohydrate Research, 2009, 344, 1230-1234.	1.1	11

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
56	Chapter 2 Biochemistry, Physiology and Biotechnology of Sulfateâ€Reducing Bacteria. Advances in Applied Microbiology, 2009, 68, 41-98.	1.3	302
57	<scp>l</scp> -Cysteine-Assisted Controlled Synthesis of Selenium Nanospheres and Nanorods. Crystal Growth and Design, 2009, 9, 1327-1333.	1.4	76
58	Growth Mechanism of Amorphous Selenium Nanoparticles Synthesized by <i>Shewanella</i> sp. HN-41. Bioscience, Biotechnology and Biochemistry, 2010, 74, 696-700.	0.6	88
59	Shewanella-mediated synthesis of selenium nanowires and nanoribbons. Journal of Materials Chemistry, 2010, 20, 5899.	6.7	30
60	Chapter 3. Inorganic Nanowires. RSC Nanoscience and Nanotechnology, 2011, , 343-530.	0.2	1
61	Role of proteins in controlling selenium nanoparticle size. Nanotechnology, 2011, 22, 195605.	1.3	144
62	Room-temperature synthesis of single-crystalline Se nanorods with remarkable photocatalytic properties. Applied Catalysis B: Environmental, 2011, 105, 211-219.	10.8	108
63	A bacterial process for selenium nanosphere assembly. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13480-13485.	3.3	165
64	Isolation and identification of selenite reducing archaea from Tuz (salt) Lake In Turkey. Journal of Basic Microbiology, 2013, 53, 397-401.	1.8	11
65	Synthesis of selenium nanorods with assistance of biomolecule. Bulletin of Materials Science, 2014, 37, 1631-1635.	0.8	42
66	Nanoparticles Formed by Microbial Metabolism of Metals and Minerals. , 2014, , 145-176.		2
67	Metabolism of Metals and Metalloids by the Sulfate-Reducing Bacteria. , 2015, , 57-83.		13
68	Visible-light-responsive t-Se nanorod photocatalysts: synthesis, properties, and mechanism. RSC Advances, 2015, 5, 45165-45171.	1.7	20
69	Selenium nanomaterials: An overview of recent developments in synthesis, properties and potential applications. Progress in Materials Science, 2016, 83, 270-329.	16.0	169
70	Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus. Journal of Hazardous Materials, 2016, 309, 202-209.	6.5	39
71	Green-Synthesis of Selenium Nanoparticles Using Garlic Cloves (Allium sativum): Biophysical Characterization and Cytotoxicity on Vero Cells. Journal of Cluster Science, 2017, 28, 551-563.	1.7	104
72	Nanotechnology and its role in agro-ecosystem: a strategic perspective. International Journal of Environmental Science and Technology, 2017, 14, 2277-2300.	1.8	30
73	Reprint of "Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus― Journal of Hazardous Materials, 2017, 324, 31-38.	6.5	18

#	Article	IF	CITATIONS
74	Biological Synthesis of Selenium Nanoparticles and Evaluation of their Bioavailability. Brazilian Archives of Biology and Technology, 2017, 60, .	0.5	26
75	Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications. Environmental Science and Pollution Research, 2018, 25, 4105-4133.	2.7	19
76	Direct Synthesis of Selenium Nanowire Mesh on a Solid Substrate and Insights into Ultrafast Photocarrier Dynamics. Journal of Physical Chemistry C, 2018, 122, 25134-25141.	1.5	32
77	Towards selenium recovery: Biocathode induced selenate reduction to extracellular elemental selenium nanoparticles. Chemical Engineering Journal, 2018, 351, 1095-1103.	6.6	28
78	Microbial Approach to Low-Cost Production of Photovoltaic Nanomaterials. ACS Sustainable Chemistry and Engineering, 2019, 7, 18297-18302.	3.2	1
79	Crustin-capped selenium nanowires against microbial pathogens and Japanese encephalitis mosquito vectors – Insights on their toxicity and internalization. Journal of Trace Elements in Medicine and Biology, 2019, 51, 191-203.	1.5	20
80	Laser-induced crystallization of monoclinic nanowires in glassy selenium films. European Physical Journal: Special Topics, 2020, 229, 197-204.	1.2	5
81	Sustainable approach to almond skin mediated synthesis of tunable selenium microstructures for coating cotton fabric to impart specific antibacterial activity. Journal of Colloid and Interface Science, 2020, 569, 346-357.	5.0	21
82	Biogenic synthesis of selenium nanoparticles by Shewanella sp. HN-41 using a modified bioelectrochemical system. Electronic Journal of Biotechnology, 2021, 54, 1-7.	1.2	7
83	Materials interacting with inorganic selenium from the perspective of electrochemical sensing. Analyst, The, 2021, 146, 6394-6415.	1.7	6
84	Nanosized Selenium particles – perspective therapeutic agent with a wide spectrum of action for veterinary needs (review). Bulletin Veterinary Biotechnology, 2020, 36, 155-165.	0.1	2
85	Engineered Nanoenzymes with Multifunctional Properties for Nextâ€Generation Biological and Environmental Applications. Advanced Functional Materials, 2022, 32, 2108650.	7.8	43
86	Current state of researches on the formation of selenium nanoparticles and their use in medicine. Himia, Fizika Ta Tehnologia Poverhni, 2020, 11, 347-367.	0.2	1
87	Elemental Nanowires. RSC Nanoscience and Nanotechnology, 2021, , 374-420.	0.2	0
88	Selenium (Se) recovery for technological applications from environmental matrices based on biotic and abiotic mechanisms. Journal of Hazardous Materials, 2022, 427, 128122.	6.5	7
89	Facets of nanoparticle-microbe interactions and their roles in nanobioremediation of environmental pollutants: Biochemical, molecular, and technological perspectives. , 2022, , 111-145.		0
91	Evidence and Mechanisms of Selenate Reduction to Extracellular Elemental Selenium Nanoparticles on the Biocathode. Environmental Science & Technology, 2022, 56, 16259-16270.	4.6	3
92	Selenium Nanoparticles: Treatments in Tissue Engineering for Alcoholic Cardiomyopathy. Materials Horizons, 2022, , 235-253.	0.3	2

		CITATION REPORT		
#	Article	IF	Citations	
#	ARTICLE	Ir	CITATIONS	
93	Tailoring the Optical Properties of Selenium Nanoneedles by Pulsed Laser Ablation in Liquids: Implications for Solar Cells and Photocells. ACS Applied Nano Materials, 2023, 6, 2258-2265.	2.4	2	