GABAA receptors: immunocytochemical distribution of

Neuroscience 101, 815-850 DOI: 10.1016/s0306-4522(00)00442-5

Citation Report

#	Article	IF	CITATIONS
1	Unraveling the function of GABAA receptor subtypes. Trends in Pharmacological Sciences, 2000, 21, 411-413.	4.0	80
2	Immunocytochemical localization of GABAB receptors in mesencephalic trigeminal nucleus neurons in the rat. Neuroscience Letters, 2001, 315, 93-97.	1.0	12
3	Modulation of native and recombinant GABAA receptors by endogenous and synthetic neuroactive steroids. Brain Research Reviews, 2001, 37, 68-80.	9.1	145
4	Kinetic and Pharmacological Properties of GABA _A Receptors in Single Thalamic Neurons and GABA _A Subunit Expression. Journal of Neurophysiology, 2001, 86, 2312-2322.	0.9	93
5	Alternate Use of Distinct Intersubunit Contacts Controls GABA _A Receptor Assembly and Stoichiometry. Journal of Neuroscience, 2001, 21, 9124-9133.	1.7	68
6	Neurosteroid modulation of recombinant and synaptic GABAA receptors. International Review of Neurobiology, 2001, 46, 177-205.	0.9	39
7	The GABAA Receptor: Subunit-Dependent Functions and Absence Seizures. Epilepsy Currents, 2001, 1, 1-5.	0.4	15
8	GABA influences the development of the ventromedial nucleus of the hypothalamus. Journal of Neurobiology, 2001, 49, 264-276.	3.7	46
9	Distribution of the major ?-aminobutyric acidA receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. Journal of Comparative Neurology, 2001, 433, 526-549.	0.9	155
10	Allopregnanolone and Pentobarbital Infused Into the Nucleus Accumbens Substitute for the Discriminative Stimulus Effects of Ethanol. Alcoholism: Clinical and Experimental Research, 2001, 25, 1441-1447.	1.4	35
11	Chronic Ethanol Consumption Differentially Alters GABAA Receptor alpha1 and alpha4 Subunit Peptide Expression and GABAA Receptor-Mediated 36Cl- Uptake in Mesocorticolimbic Regions of Rat Brain. Alcoholism: Clinical and Experimental Research, 2001, 25, 1270-1275.	1.4	65
12	GABA A receptor É›â€subunit may confer benzodiazepine insensitivity to the caudal aspect of the nucleus tractus solitarii of the rat. Journal of Physiology, 2001, 536, 785-796.	1.3	35
13	GABAA receptor β2/β3 subunit and GAD67 immunoreactivity in the trigeminal motor nucleus during early postnatal development. Developmental Brain Research, 2001, 130, 155-158.	2.1	3
14	Effect of embryonic knock-down of GABAA receptors on the levels of monoamines and their metabolites in the CNS of the mouse. Brain Research, 2001, 904, 290-297.	1.1	4
15	Acetylcholine attenuates synaptic GABA release to supraoptic neurons through presynaptic nicotinic receptors. Brain Research, 2001, 920, 151-158.	1.1	21
16	Functional analysis of GABAA receptors in nucleus tractus solitarius neurons from neonatal rats. Brain Research, 2001, 921, 183-194.	1.1	7
17	α4β3δGABAAReceptors Characterized by Fluorescence Resonance Energy Transfer-derived Measurements of Membrane Potential. Journal of Biological Chemistry, 2001, 276, 38934-38939.	1.6	178
18	Localization of Î ³ -Aminobutyric Acid A Receptor Subunits in the Rat Spiral Ganglion and Organ of Corti. Acta Oto-Laryngologica, 2002, 122, 709-714.	0.3	15

#	Article	IF	CITATIONS
19	Localization of Î ³ -Aminobutyric Acid A Receptor Subunits in the Rat Spiral Ganglion and Organ of Corti. Acta Oto-Laryngologica, 2002, 122, 709-714.	0.3	12
20	Chapter 13 Synaptic and extrasynaptic GABAA receptor and gephyrin clusters. Progress in Brain Research, 2002, 136, 157-180.	0.9	42
21	Prolongation of Hippocampal Miniature Inhibitory Postsynaptic Currents in Mice Lacking the GABAA Receptor α1 Subunit. Journal of Neurophysiology, 2002, 88, 3208-3217.	0.9	81
22	GABA–BENZODIAZEPINE RECEPTOR COMPLEX IN BRAIN OXIDATIVE METABOLISM REGULATION. Pharmacological Research, 2002, 46, 149-154.	3.1	7
23	Refinement and Evaluation of a Pharmacophore Model for Flavone Derivatives Binding to the Benzodiazepine Site of the GABAAReceptor. Journal of Medicinal Chemistry, 2002, 45, 4188-4201.	2.9	116
24	Furosemide reveals heterogeneous GABAA receptor expression at adult rat Golgi cell to granule cell synapses. Neuropharmacology, 2002, 43, 737-749.	2.0	33
25	Ectopic expression of the GABAA receptor $\hat{l}\pm 6$ subunit in hippocampal pyramidal neurons produces extrasynaptic receptors and an increased tonic inhibition. Neuropharmacology, 2002, 43, 530-549.	2.0	63
26	Homologous sites of GABAA receptor $\hat{I}\pm1,\hat{I}^23$ and \hat{I}^32 subunits are important for assembly. Neuropharmacology, 2002, 43, 482-491.	2.0	30
27	α1 and α6 subunits specify distinct desensitization, deactivation and neurosteroid modulation of GABAA receptors containing the l´subunit. Neuropharmacology, 2002, 43, 492-502.	2.0	89
28	The influence of subunit composition on the interaction of neurosteroids with GABAA receptors. Neuropharmacology, 2002, 43, 651-661.	2.0	297
29	Tonic and Spillover Inhibition of Granule Cells Control Information Flow through Cerebellar Cortex. Neuron, 2002, 33, 625-633.	3.8	333
30	Localisation of GABAA receptor ϵ-subunit in cholinergic and aminergic neurones and evidence for co-distribution with the Î,-subunit in rat brain. Neuroscience, 2002, 111, 657-669.	1.1	66
31	Non-specific olfactory aversion induced by intrabulbar infusion of the GABAA receptor antagonist bicuculline in young rats. Neuroscience, 2002, 112, 901-906.	1.1	21
32	Anxiogenic-like activity of L-655,708, a selective ligand for the benzodiazepine site of GABAA receptors which contain the alpha-5 subunit, in the elevated plus-maze test. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2002, 26, 1389-1392.	2.5	48
33	Drug interactions at GABAA receptors. Progress in Neurobiology, 2002, 67, 113-159.	2.8	445
34	A New Benzodiazepine Pharmacology. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 2-8.	1.3	684
35	Cell Type- and Input-Specific Differences in the Number and Subtypes of Synaptic GABA _A Receptors in the Hippocampus. Journal of Neuroscience, 2002, 22, 2513-2521.	1.7	209
36	Bergmann Glia GABA _A Receptors Concentrate on the Glial Processes That Wrap Inhibitory Synapses. Journal of Neuroscience, 2002, 22, 10720-10730.	1.7	68

#	Article	IF	CITATIONS
37	Functional Characterization of GABA _A Receptors in Neonatal Hypothalamic Brain Slice. Journal of Neurophysiology, 2002, 88, 1655-1663.	0.9	13
38	Disturbances in the Amino Acid Transmitter Systems in Cognitive Disorders Classified and Diagnosed According to DSM-IV. , 0, , 247-260.		Ο
39	Cerebellar Cortex: Computation by Extrasynaptic Inhibition?. Current Biology, 2002, 12, R363-R365.	1.8	20
40	Neural progenitor cells of the neonatal rat anterior subventricular zone express functional GABAA receptors. Journal of Neurobiology, 2002, 50, 305-322.	3.7	98
41	GABAA receptor changes in ? subunit-deficient mice: Altered expression of ?4 and ?2 subunits in the forebrain. Journal of Comparative Neurology, 2002, 446, 179-197.	0.9	226
42	Association of protein kinase C with GABAA receptors containing $\hat{I}\pm 1$ and $\hat{I}\pm 4$ subunits in the cerebral cortex: selective effects of chronic ethanol consumption. Journal of Neurochemistry, 2002, 82, 110-117.	2.1	74
43	Synaptic localization of GABAAreceptor subunits in the substantia nigra of the rat: effects of quinolinic acid lesions of the striatum. European Journal of Neuroscience, 2002, 15, 1961-1975.	1.2	26
44	Quantitative reverse transcription-polymerase chain reaction of CABAA α1, β1 and γ2S subunits in epileptic rats following photothrombotic infarction of neocortex. Epilepsy Research, 2002, 52, 85-95.	0.8	21
45	Imaging the GABA-Benzodiazepine Receptor Subtype Containing the α5-Subunit In Vivo with [11C]Ro15 4513 Positron Emission Tomography. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 878-889.	2.4	113
46	Neonatal development of the rat visual cortex: synaptic function of GABA a receptor α subunits. Journal of Physiology, 2002, 545, 169-181.	1.3	117
47	Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nature Genetics, 2002, 31, 184-189.	9.4	584
48	Pharmacological characterization of a novel cell line expressing humanα4β3δGABAAreceptors. British Journal of Pharmacology, 2002, 136, 965-974.	2.7	549
49	Pharmacological characterization of a novel cell line expressing human α 4 β 3 δ GABAA receptors: commentary on Brown et al. British Journal of Pharmacology, 2002, 136, 957-959.	2.7	4
50	Characterization of GABAAreceptor ligands in the rat cortical wedge preparation: evidence for action at extrasynaptic receptors?. British Journal of Pharmacology, 2002, 137, 1-8.	2.7	27
51	Mechanisms of GABA _A Receptor Assembly and Trafficking: Implications for the Modulation of Inhibitory Neurotransmission. Molecular Neurobiology, 2002, 26, 251-268.	1.9	78
52	Methodological approaches for the study of GABA A receptor pharmacology and functional responses. Analytical and Bioanalytical Chemistry, 2003, 377, 843-851.	1.9	32
53	CABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery?. Drug Discovery Today, 2003, 8, 445-450.	3.2	290
54	Modulation of [3H] TBOB binding to the rodent GABAA receptor by simple disaccharides. Biochemical Pharmacology, 2003, 65, 619-623.	2.0	4

#	Article	IF	CITATIONS
55	Compartmentation of alpha 1 and alpha 2 GABAA receptor subunits within rat extended amygdala: implications for benzodiazepine action. Brain Research, 2003, 964, 91-99.	1.1	47
56	GABAA α1 and α2 receptor subunit expression in rostral ventrolateral medulla in nonpregnant and pregnant rats. Brain Research, 2003, 975, 196-206.	1.1	17
57	Differential development of cation-chloride cotransporters and Clâ^² homeostasis contributes to differential GABAergic actions between developing rat visual cortex and dorsal lateral geniculate nucleus. Brain Research, 2003, 984, 149-159.	1.1	50
58	The Vogel conflict test: procedural aspects, Î ³ -aminobutyric acid, glutamate and monoamines. European Journal of Pharmacology, 2003, 463, 67-96.	1.7	128
59	Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. , 2003, 98, 299-323.		292
60	Localization of GABAA receptor subunits α1, α3, β1, β2/3, γ1, and γ2 in the salamander retina. Journal of Comparative Neurology, 2003, 459, 440-453.	0.9	16
61	Downregulation of the ?5 subunit of the GABAA receptor in the pilocarpine model of temporal lobe epilepsy. Hippocampus, 2003, 13, 633-645.	0.9	115
62	GABA, ?-hydroxybutyric acid, and neurological disease. Annals of Neurology, 2003, 54, S3-S12.	2.8	419
63	Chemical Coding of GABAB Receptor-Immunoreactive Neurones in Hypothalamic Regions Regulating Body Weight. Journal of Neuroendocrinology, 2003, 15, 1-14.	1.2	78
64	Role of protein kinase A in GABA _A receptor dysfunction in CA1 pyramidal cells following chronic benzodiazepine treatment. Journal of Neurochemistry, 2003, 85, 988-998.	2.1	17
65	Time-dependent changes in gene expression profiles of midbrain dopamine neurons following haloperidol administration. Journal of Neurochemistry, 2003, 87, 205-219.	2.1	30
66	Subunit composition and quantitative importance of GABA _A receptor subtypes in the cerebellum of mouse and rat. Journal of Neurochemistry, 2003, 87, 1444-1455.	2.1	94
67	Sex differences in anxiety, sensorimotor gating and expression of the α4 subunit of the GABAAreceptor in the amygdala after progesterone withdrawal. European Journal of Neuroscience, 2003, 17, 641-648.	1.2	98
68	Diazepam-induced changes on sleep and the EEG spectrum in mice: role of the α3-GABAAreceptor subtype. European Journal of Neuroscience, 2003, 17, 2226-2230.	1.2	65
69	Plasma membrane and vesicular glutamate transporter mRNAs/proteins in hypothalamic neurons that regulate body weight. European Journal of Neuroscience, 2003, 18, 1265-1278.	1.2	116
70	Visualization of ?5 subunit of GABAA/benzodiazepine receptor by [11C]Ro15-4513 using positron emission tomography. Synapse, 2003, 47, 200-208.	0.6	33
71	Involvement of glutamate and Î ³ -amino-butyric acid receptor systems on gastric acid secretion induced by activation of l ^a -opioid receptors in the central nervous system in rats. British Journal of Pharmacology, 2003, 138, 1049-1058.	2.7	6
72	Reducing GABA Receptors. Life Sciences, 2003, 73, 1741-1758.	2.0	22

#	Article	IF	CITATIONS
73	Competitive GABAA receptor antagonists increase the proportion of functional high-affinity α6 subunit-containing receptors in granule cells of adult rat cerebellum. Neuropharmacology, 2003, 44, 56-69.	2.0	8
74	GABAA α1 subunit knock-out mice do not show a hyperlocomotor response following amphetamine or cocaine treatment. Neuropharmacology, 2003, 44, 190-198.	2.0	27
75	The in vitro and in vivo enantioselectivity of etomidate implicates the GABAA receptor in general anaesthesia. Neuropharmacology, 2003, 45, 57-71.	2.0	66
76	The modulatory effects of the anxiolytic etifoxine on GABAA receptors are mediated by the β subunit. Neuropharmacology, 2003, 45, 293-303.	2.0	63
77	Phosphorylation influences neurosteroid modulation of synaptic GABAA receptors in rat CA1 and dentate gyrus neurones. Neuropharmacology, 2003, 45, 873-883.	2.0	78
78	The neurobiology and control of anxious states. Progress in Neurobiology, 2003, 70, 83-244.	2.8	815
79	Rat behavior in two models of anxiety and brain [3H]muscimol binding: pharmacological, correlation, and multifactor analysis. Behavioural Brain Research, 2003, 145, 17-22.	1.2	19
80	Anxiety-related behavior and densities of glutamate, GABAA, acetylcholine and serotonin receptors in the amygdala of seven inbred mouse strains. Behavioural Brain Research, 2003, 145, 145-159.	1.2	86
81	A-kinase anchoring protein 79/150 facilitates the phosphorylation of GABAA receptors by cAMP-dependent protein kinase via selective interaction with receptor β subunits. Molecular and Cellular Neurosciences, 2003, 22, 87-97.	1.0	100
82	THEBIOLOGY OFEPILEPSYGENES. Annual Review of Neuroscience, 2003, 26, 599-625.	5.0	273
82 83	THEBIOLOGY OFEPILEPSYGENES. Annual Review of Neuroscience, 2003, 26, 599-625. Synthesis, in Vitro Affinity, and Efficacy of a Bis 8-Ethynyl-4H-imidazo[1,5a]- [1,4]benzodiazepine Analogue, the First Bivalent α5 Subtype Selective BzR/GABAA Antagonist. Journal of Medicinal Chemistry, 2003, 46, 5567-5570.	5.0 2.9	273 41
82 83 84	THEBIOLOGY OFEPILEPSYGENES. Annual Review of Neuroscience, 2003, 26, 599-625. Synthesis, in Vitro Affinity, and Efficacy of a Bis 8-Ethynyl-4H-imidazo[1,5a]- [1,4]benzodiazepine Analogue, the First Bivalent α5 Subtype Selective BzR/GABAA Antagonist. Journal of Medicinal Chemistry, 2003, 46, 5567-5570. Actions and Interactions of Extracellular Potassium and Kainate on Expression of 13 γ-Aminobutyric Acid Type A Receptor Subunits in Cultured Mouse Cerebellar Granule Neurons. Journal of Biological Chemistry, 2003, 278, 16543-16550.	5.0 2.9 1.6	273 41 14
82 83 84 85	THEBIOLOGY OFEPILEPSYGENES. Annual Review of Neuroscience, 2003, 26, 599-625. Synthesis, in Vitro Affinity, and Efficacy of a Bis 8-Ethynyl-4H-imidazo[1,5a]- [1,4]benzodiazepine Analogue, the First Bivalent α5 Subtype Selective BzR/GABAA Antagonist. Journal of Medicinal Chemistry, 2003, 46, 5567-5570. Actions and Interactions of Extracellular Potassium and Kainate on Expression of 13 γ-Aminobutyric Acid Type A Receptor Subunits in Cultured Mouse Cerebellar Granule Neurons. Journal of Biological Chemistry, 2003, 278, 16543-16550. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by subunit-containing GABAA receptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14439-14444.	5.0 2.9 1.6 3.3	273 41 14 714
82 83 84 85 86	THEBIOLOGY OFEPILEPSYGENES. Annual Review of Neuroscience, 2003, 26, 599-625.Synthesis, in Vitro Affinity, and Efficacy of a Bis 8-Ethynyl-4H-imidazo[1,5a]- [1,4]benzodiazepine Analogue, the First Bivalent α5 Subtype Selective BzR/GABAA Antagonist. Journal of Medicinal Chemistry, 2003, 46, 5567-5570.Actions and Interactions of Extracellular Potassium and Kainate on Expression of 13 Î3-Aminobutyric Acid Type A Receptor Subunits in Cultured Mouse Cerebellar Granule Neurons. Journal of Biological Chemistry, 2003, 278, 16543-16550.Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by subunit-containing GABAA receptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14439-14444.Nitrous Oxide Attenuates Pressor but Augments Norepinephrine Response to Laryngoscopy and Endotracheal Intubation. Anesthesia and Analgesia, 2003, 96, 1516-1521.	5.0 2.9 1.6 3.3 1.1	273 41 14 714 5
82 83 84 85 86 87	THEBIOLOGY OFEPILEPSYGENES. Annual Review of Neuroscience, 2003, 26, 599-625.Synthesis, in Vitro Affinity, and Efficacy of a Bis 8-Ethynyl-4H-imidazo[1,5a]- [1,4]benzodiazepine Analogue, the First Bivalent 1±5 Subtype Selective BzR/GABAA Antagonist. Journal of Medicinal Chemistry, 2003, 46, 5567-5570.Actions and Interactions of Extracellular Potassium and Kainate on Expression of 13 13-Aminobutyric Acid Type A Receptor Subunits in Cultured Mouse Cerebellar Granule Neurons. Journal of Biological Chemistry, 2003, 278, 16543-16550.Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by subunit-containing GABAA receptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14439-14444.Nitrous Oxide Attenuates Pressor but Augments Norepinephrine Response to Laryngoscopy and Endotracheal Intubation. Anesthesia and Analgesia, 2003, 96, 1516-1521.Increased Expression of GABA _A Receptor 1²-Subunits in the Hippocampus of Patients with Temporal Lobe Epilepsy. Journal of Neuropathology and Experimental Neurology, 2003, 62, 820-834.	5.0 2.9 1.6 3.3 1.1 0.9	 273 41 14 714 5 75
82 83 84 85 86 86 87 88	THEBIOLOCY OFEPILEPSYCENES. Annual Review of Neuroscience, 2003, 26, 599-625. Synthesis, in Vitro Affinity, and Efficacy of a Bis 8-Ethynyl-4H-imidazo[1,5a]- [1,4]benzodiazepine Analogue, the First Bivalent 1±5 Subtype Selective BzR/GABAA Antagonist. Journal of Medicinal Chemistry, 2003, 46, 5567-5570. Actions and Interactions of Extracellular Potassium and Kainate on Expression of 13 1³-Aminobutyric Acid Type A Receptor Subunits in Cultured Mouse Cerebellar Granule Neurons. Journal of Biological Chemistry, 2003, 278, 16543-16550. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by subunit-containing GABAA receptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14439-14444. Nitrous Oxide Attenuates Pressor but Augments Norepinephrine Response to Laryngoscopy and Endotracheal Intubation. Anesthesia and Analgesia, 2003, 96, 1516-1521. Increased Expression of GABA _A AReceptor 1²-Subunits in the Hippocampus of Patients with Temporal Lobe Epilepsy. Journal of Neuropathology and Experimental Neurology, 2003, 62, 820-834. Effects of unilateral labyrinthectomy on CAD, CAT1 and CABA receptor gene expression in the rat vestibular nucleus. NeuroReport, 2003, 14, 2359-2363.	5.0 2.9 1.6 3.3 1.1 0.9	 273 41 14 714 5 75 22
82 83 84 85 86 86 87 88 88	THEBIOLOGY OFEPILEPSYCENES. Annual Review of Neuroscience, 2003, 26, 599-625. Synthesis, in Vitro Affinity, and Efficacy of a Bis 8-Ethynyl-4H-imidazo[1,5a]- [1,4]benzodiazepine Analogue, the First Bivalent 1±5 Subtype Selective BzR/GABAA Antagonist. Journal of Medicinal Chemistry, 2003, 46, 5567-5570. Actions and Interactions of Extracellular Potassium and Kainate on Expression of 13 Î3-Aminobutyric Acid Type A Receptor Subunits in Cultured Mouse Cerebellar Granule Neurons. Journal of Biological Chemistry, 2003, 278, 16543-16550. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by subunit-containing GABAA receptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14439-14444. Nitrous Oxide Attenuates Pressor but Augments Norepinephrine Response to Laryngoscopy and Endotracheal Intubation. Anesthesia and Analgesia, 2003, 96, 1516-1521. Increased Expression of GABA Effects of unilateral labyrinthectomy on GAD, GAT1 and GABA receptor gene expression in the rat vestibular nucleus. NeuroReport, 2003, 14, 2359-2363. GABA Transporter-1 (GAT1)-Deficient Mice: Differential Tonic Activation of GABAA Versus GABAB Receptors in the Hippocampus. Journal of Neurophysiology, 2003, 90, 2690-2701.	 5.0 2.9 1.6 3.3 1.1 0.9 0.6 0.9 	 273 41 14 714 5 75 22 218

#	Article	IF	CITATIONS
91	Changes in GABA _A Receptor Gene Expression Associated with Selective Alterations in Receptor Function and Pharmacology after Ethanol Withdrawal. Journal of Neuroscience, 2003, 23, 11711-11724.	1.7	119
92	Dorsal and Ventral Distribution of Excitable and Synaptic Properties of Neurons of the Bed Nucleus of the Stria Terminalis. Journal of Neurophysiology, 2003, 90, 405-414.	0.9	62
93	Intact Synaptic GABAergic Inhibition and Altered Neurosteroid Modulation of Thalamic Relay Neurons in Mice Lacking δSubunit. Journal of Neurophysiology, 2003, 89, 1378-1386.	0.9	94
94	Dynamic GABA _A Receptor Subtype-Specific Modulation of the Synchrony and Duration of Thalamic Oscillations. Journal of Neuroscience, 2003, 23, 3649-3657.	1.7	86
95	Major Differences in Inhibitory Synaptic Transmission onto Two Neocortical Interneuron Subclasses. Journal of Neuroscience, 2003, 23, 9664-9674.	1.7	153
96	Perisynaptic Localization of δ Subunit-Containing GABA _A Receptors and Their Activation by GABA Spillover in the Mouse Dentate Gyrus. Journal of Neuroscience, 2003, 23, 10650-10661.	1.7	364
97	Visual System. , 2004, , 1083-1165.		23
98	Functional Organization of Dorsal Horn Interneurons. , 2004, , 271-560.		4
99	Brain-Derived Neurotrophic Factor Modulates Fast Synaptic Inhibition by Regulating GABAA Receptor Phosphorylation, Activity, and Cell-Surface Stability. Journal of Neuroscience, 2004, 24, 522-530.	1.7	249
100	Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating Â-aminobutyric acid type A receptor membrane trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12736-12741.	3.3	204
101	Transcriptional Regulation of the Mouse Gene Encoding the α-4 Subunit of the GABAA Receptor. Journal of Biological Chemistry, 2004, 279, 40451-40461.	1.6	33
102	Low Ethanol Concentrations Selectively Augment the Tonic Inhibition Mediated by Â Subunit-Containing GABAA Receptors in Hippocampal Neurons. Journal of Neuroscience, 2004, 24, 8379-8382.	1.7	236
103	Deletion of the fyn-Kinase Gene Alters Sensitivity to GABAergic Drugs: Dependence on β2/β3 GABAA Receptor Subunits. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 1154-1159.	1.3	27
104	Modulation of rhythmic brain activity by diazepam: GABAAreceptor subtype and state specificity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3674-3679.	3.3	118
105	GABAA Receptor Phospho-Dependent Modulation Is Regulated by Phospholipase C-Related Inactive Protein Type 1, a Novel Protein Phosphatase 1 Anchoring Protein. Journal of Neuroscience, 2004, 24, 7074-7084.	1.7	98
106	Compounds Exhibiting Selective Efficacy for Different β Subunits of Human Recombinant γ-Aminobutyric AcidA Receptors. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 601-609.	1.3	39
107	GENETIC APPROACHES TO THE STUDY OF ANXIETY. Annual Review of Neuroscience, 2004, 27, 193-222.	5.0	124
108	Local GABA Receptor Blockade Reveals Hindlimb Responses in the SI Forelimb-Stump Representation of Neonatally Amputated Rats. Journal of Neurophysiology, 2004, 92, 372-379.	0.9	7

#	Article	IF	CITATIONS
109	Differential distribution of the KCl cotransporter KCC2 in thalamic relay and reticular nuclei. European Journal of Neuroscience, 2004, 20, 965-975.	1.2	44
110	Chronic stress attenuates GABAergic inhibition and alters gene expression of parvocellular neurons in rat hypothalamus. European Journal of Neuroscience, 2004, 20, 1665-1673.	1.2	151
111	Functional mapping of GABAA receptor subtypes in the amygdala. European Journal of Neuroscience, 2004, 20, 1281-1289.	1.2	95
112	Cellular Localization of GABAA Receptor alpha Subunit Immunoreactivity in the Rat Hypothalamus: Relationship With Neurones Containing Orexigenic or Anorexigenic Peptides. Journal of Neuroendocrinology, 2004, 16, 589-604.	1.2	78
113	Looking for GABA in all the Wrong Places: The Relevance of Extrasynaptic GABAA Receptors to Epilepsy. Epilepsy Currents, 2004, 4, 239-242.	0.4	45
114	GABAAreceptor subunits identified inParameciumby immunofluorescence confocal microscopy. FEMS Microbiology Letters, 2004, 238, 449-453.	0.7	13
115	A gain-of-function mutation in the GABAA receptor produces synaptic and behavioral abnormalities in the mouse. Genes, Brain and Behavior, 2004, 4, 10-19.	1.1	28
116	Salicylidene salicylhydrazide, a selective inhibitor of \hat{I}^2 1-containing GABAA receptors. British Journal of Pharmacology, 2004, 142, 97-106.	2.7	41
117	Selective GABA-receptor actions of amobarbital on thalamic neurons. British Journal of Pharmacology, 2004, 143, 485-494.	2.7	10
118	On the Integration of Alcohol-Related Quantitative Trait Loci and Gene Expression Analyses. Alcoholism: Clinical and Experimental Research, 2004, 28, 1437-1448.	1.4	55
119	Identification of GABAA receptor subunit variants in midbrain dopaminergic neurons. Journal of Neurochemistry, 2004, 89, 7-14.	2.1	68
120	Bidirectional effects of benzodiazepine binding site ligands in the elevated plus-maze: differential antagonism by flumazenil and β-CCt. Pharmacology Biochemistry and Behavior, 2004, 79, 279-290.	1.3	43
121	Ethanol regulation of γ-aminobutyric acidA receptors: genomic and nongenomic mechanisms. , 2004, 101, 211-226.		150
122	Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. , 2004, 102, 195-221.		245
123	Pathogenesis of peroxisomal deficiency disorders (Zellweger syndrome) may be mediated by misregulation of the GABAergic system viathe diazepam binding inhibitor. BMC Pediatrics, 2004, 4, 5.	0.7	12
124	Multiple structural features of steroids mediate subtype-selective effects on human α4β3δ GABAA receptors. Biochemical Pharmacology, 2004, 68, 819-831.	2.0	15
125	GABAA agonists and partial agonists: THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochemical Pharmacology, 2004, 68, 1573-1580.	2.0	107
126	Î ³ -Aminobutyric acid A receptor subunit mutant mice: new perspectives on alcohol actions. Biochemical Pharmacology, 2004, 68, 1581-1602.	2.0	150

	CITATION	Report	
#	Article	IF	CITATIONS
127	Fishing for allosteric sites on GABAA receptors. Biochemical Pharmacology, 2004, 68, 1675-1684.	2.0	78
128	Sensitivity of thalamic GABAergic currents to clonazepam does not differ between control and genetic absence epilepsy rats. Brain Research, 2004, 1026, 261-266.	1.1	4
129	Distribution of α1, α4, γ2, and δÂsubunits of GABAA receptors in hippocampal granule cells. Brain Research, 2004, 1029, 207-216.	1.1	112
130	Brain Regional Heterogeneity of pH Effects on GABAAReceptor-Associated [35S]TBPS Binding. Neurochemical Research, 2004, 29, 771-780.	1.6	2
131	Immunocytochemical study by two photon fluorescence microscopy of the distribution of GABAA receptor subunits in rat cerebellar granule cells in culture. Amino Acids, 2004, 26, 77-84.	1.2	10
132	Behavioral profile of L-655,708, a selective ligand for the benzodiazepine site of GABA-A receptors which contain the α5 subunit, in social encounters between male mice. Aggressive Behavior, 2004, 30, 319-325.	1.5	12
133	Effects of drugs that potentiate GABA on extinction of positively-reinforced operant behaviour. Neuroscience and Biobehavioral Reviews, 2004, 28, 229-238.	2.9	28
134	Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by Â5 subunit-containing Â-aminobutyric acid type A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3662-3667.	3.3	510
135	Electrophysiological and behavioral effects of zolpidem in rat globus pallidus. Experimental Neurology, 2004, 186, 212-220.	2.0	36
136	Involvement of GABAergic modulation of the nucleus submedius (Sm) morphine-induced antinociception. Pain, 2004, 108, 28-35.	2.0	32
137	Subtype-selective GABAergic drugs facilitate extinction of mouse operant behaviour. Neuropharmacology, 2004, 46, 171-178.	2.0	30
138	Abolition of zolpidem sensitivity in mice with a point mutation in the GABAA receptor γ2 subunit. Neuropharmacology, 2004, 47, 17-34.	2.0	70
139	Chloride transport inhibitors influence recovery from oxygen–glucose deprivation-induced cellular injury in adult hippocampus. Neuropharmacology, 2004, 47, 253-262.	2.0	45
140	Gabaa receptor maturation in relation to eye opening in the rat visual cortex. Neuroscience, 2004, 124, 161-171.	1.1	73
141	Subregional analysis of GABAA receptor subunit mRNAs in the hippocampus of older persons with and without cognitive impairment. Journal of Chemical Neuroanatomy, 2004, 28, 17-25.	1.0	26
142	The benzodiazepine site of the GABA receptor: an old target with new potential?. Sleep Medicine, 2004, 5, S9-S15.	0.8	71
143	Differential actions of diazepam and zolpidem in basolateral and central amygdala nuclei. Neuropharmacology, 2004, 46, 1-9.	2.0	35
144	The GABA-A β3 subunit mediates anaesthesia induced by etomidate. NeuroReport, 2004, 15, 1653-1656.	0.6	20

#	Article	IF	CITATIONS
145	Î ³ -Aminobutyric Acid Type A Receptor β2 Subunit Mediates the Hypothermic Effect of Etomidate in Mice. Anesthesiology, 2004, 100, 1438-1445.	1.3	34
146	Effects of 3α-Amino-5α-pregnan-20-one on GABAA Receptor: Synthesis, Activity and Cytotoxicity. Collection of Czechoslovak Chemical Communications, 2004, 69, 1506-1516.	1.0	15
147	An Extrasynaptic GABAA Receptor Mediates Tonic Inhibition in Thalamic VB Neurons. Journal of Neurophysiology, 2005, 94, 4491-4501.	0.9	220
148	Impaired Clâ^ Extrusion in Layer V Pyramidal Neurons of Chronically Injured Epileptogenic Neocortex. Journal of Neurophysiology, 2005, 93, 2117-2126.	0.9	130
149	Development of Subtype Selective GABA _A Modulators. CNS Spectrums, 2005, 10, 21-27.	0.7	46
150	GABRB3 Gene Deficient Mice: A Potential Model of Autism Spectrum Disorder. International Review of Neurobiology, 2005, 71, 359-382.	0.9	35
151	Rett Syndrome: A Rosetta Stone for Understanding the Molecular Pathogenesis of Autism. International Review of Neurobiology, 2005, 71, 131-165.	0.9	19
152	Distinct patterns of expression and regulation of GABAA receptors containing the δ subunit in cerebellar granule and hippocampal neurons. Journal of Neurochemistry, 2005, 94, 659-671.	2.1	30
153	Update on the Neurobiology of Alcohol Withdrawal Seizures. Epilepsy Currents, 2005, 5, 225-230.	0.4	67
154	GABAA Receptors as Broadcasters of Sexually Differentiating Signals in the Brain. Epilepsia, 2005, 46, 107-112.	2.6	43
155	Inhibition of the central extended amygdala by loud noise and restraint stress. European Journal of Neuroscience, 2005, 21, 441-454.	1.2	70
156	Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nature Reviews Neuroscience, 2005, 6, 215-229.	4.9	1,840
157	Anxiogenic properties of an inverse agonist selective for α 3 subunit-containing GABAA receptors. British Journal of Pharmacology, 2005, 144, 357-366.	2.7	120
158	Selective labelling of diazepam-insensitive GABAA receptors in vivo using [3 H]Ro 15-4513. British Journal of Pharmacology, 2005, 146, 817-825.	2.7	17
159	Alcohol-induced motor impairment caused by increased extrasynaptic GABAA receptor activity. Nature Neuroscience, 2005, 8, 339-345.	7.1	279
160	Ovarian cycle–linked changes in GABAA receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nature Neuroscience, 2005, 8, 797-804.	7.1	563
161	Loss of zolpidem efficacy in the hippocampus of mice with the GABAAreceptor Î ³ 2 F77I point mutation. European Journal of Neuroscience, 2005, 21, 3002-3016.	1.2	35
162	Role of GABAA α5-containing receptors in ethanol reward: The effects of targeted gene deletion, and a selective inverse agonist. European Journal of Pharmacology, 2005, 526, 240-250.	1.7	37

#	Article	IF	CITATIONS
163	GABAergic modulation mediates antinociception produced by serotonin applied into thalamic nucleus submedius of the rat. Brain Research, 2005, 1057, 161-167.	1.1	8
164	Abecarnil and palatability: Taste reactivity in normal ingestion in male rats. Pharmacology Biochemistry and Behavior, 2005, 81, 517-523.	1.3	8
165	Heterogeneity of Î ³ -aminobutyric acid type A receptors in mitral and tufted cells of the rat main olfactory bulb. Journal of Comparative Neurology, 2005, 484, 121-131.	0.9	35
166	Withdrawal from progesterone increases expression of ?4, ?1, and ? GABAA receptor subunits in neurons in the periaqueductal gray matter in female Wistar rats. Journal of Comparative Neurology, 2005, 486, 89-97.	0.9	73
167	Differential expression of Î ³ -aminobutyric acid-A receptor subunits in rat dorsal and ventral hippocampus. Journal of Neuroscience Research, 2005, 82, 690-700.	1.3	50
168	Bidirectional effects of benzodiazepine binding site ligands on active avoidance acquisition and retention: differential antagonism by flumazenil and I²-CCt. Psychopharmacology, 2005, 180, 455-465.	1.5	18
169	GABAA receptor subunit expression in the guinea pig vestibular nucleus complex during the development of vestibular compensation. Experimental Brain Research, 2005, 166, 71-77.	0.7	10
170	Population Pharmacokinetic Analysis for Simultaneous Determination of B max and K D In Vivo by Positron Emission Tomography. Molecular Imaging and Biology, 2005, 7, 411-421.	1.3	28
171	Expression of GABAA and GABAB receptors in rat growth plate chondrocytes: Activation of the GABA receptors promotes proliferation of mouse chondrogenic ATDC5 cells. Molecular and Cellular Biochemistry, 2005, 273, 117-126.	1.4	36
172	Plasticity of GABAA Receptors in Brains of Rats Treated with Chronic Intermittent Ethanol. Neurochemical Research, 2005, 30, 1579-1588.	1.6	38
173	Consequences of the Evolution of the GABAA Receptor Gene Family. Cellular and Molecular Neurobiology, 2005, 25, 607-624.	1.7	56
174	Memory Effects of Benzodiazepines: Memory Stages and Types Versus Binding-Site Subtypes. Neural Plasticity, 2005, 12, 289-298.	1.0	52
175	Mice Lacking the Major Adult GABAA Receptor Subtype Have Normal Number of Synapses, But Retain Juvenile IPSC Kinetics Until Adulthood. Journal of Neurophysiology, 2005, 94, 338-346.	0.9	67
176	GABAA Receptor-Mediated Tonic Inhibition in Thalamic Neurons. Journal of Neuroscience, 2005, 25, 11553-11563.	1.7	275
177	A schizophrenia-related sensorimotor deficit links Â3-containing GABAA receptors to a dopamine hyperfunction. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17154-17159.	3.3	176
178	Effects of post-training hippocampal injections of midazolam on fear conditioning. Learning and Memory, 2005, 12, 573-578.	0.5	20
179	Pathophysiology and Pharmacology of GABAA Receptors. , 2005, , 225-247.		31
180	Pharmacological and Anatomical Evidence for an Interaction Between mGluR5- and GABAA α1-Containing Receptors in the Discriminative Stimulus Effects of Ethanol. Neuropsychopharmacology, 2005, 30, 747-757.	2.8	57

CITATION REPORT ARTICLE IF CITATIONS Evidence for a Significant Role of Â3-Containing GABAA Receptors in Mediating the Anxiolytic Effects of 1.7 221 Benzodiazepines. Journal of Neuroscience, 2005, 25, 10682-10688. Extrasynaptic GABAA Receptors of Thalamocortical Neurons: A Molecular Target for Hypnotics. 1.7 238 Journal of Neuroscience, 2005, 25, 11513-11520. Making sense of GABAA receptor subtypes: is a new nomenclature needed?. Journal of 2.0 17 Psychopharmacology, 2005, 19, 219-220. Comparative effects of acute or chronic administration of levodopa to 6-hydroxydopamine-lesioned rats on the expression of glutamic acid decarboxylase in the neostriatum and GABAA receptors subunits in the substantia nigra, pars reticulata. Neuroscience, 2005, 132, 833-842. Alternative splicing and promoter use in the human GABRA2 gene. Molecular Brain Research, 2005, 137, 2.5 32 174-183. Differential expression of GABAA receptor subunits in the distinct nuclei of the rat amygdala. Molecular Brain Research, 2005, 138, 17-23. 2.5 \hat{I}^2 3-containing GABAA receptors mediate the immobilizing and, in part, the hypnotic actions of etomidate 0.2 0 and propofol. International Congress Series, 2005, 1283, 143-148. Bidirectional effects of benzodiazepine binding site ligands in the passive avoidance task: differential 1.2 antagonism by flumazenil and ?-CCt. Behavioural Brain Research, 2005, 158, 293-300. GABAA receptor subtypes: any clues to the mechanism of benzodiazepine dependence?. Current Opinion 1.7 115 in Pharmacology, 2005, 5, 47-52. GABAergic systems in the vestibular nucleus and their contribution to vestibular compensation. 2.8 Progress in Neurobiology, 2005, 75, 53-81. Agonistic effects of the l²-carboline DMCM revealed in GABAA receptor l³2 subunit F77I point-mutated 2.0 24 mice. Neuropharmacology, 2005, 48, 469-478. The GABAA receptor agonist THIP alters the EEG in waking and sleep of mice. Neuropharmacology, 2005, 48, 617-626. In vivo labelling of $\hat{1}\pm 5$ subunit-containing GABA receptors using the selective radioligand [H]L-655,708. 2.0 28 Neuropharmacology, 2005, 49, 220-229. Alterations in GABAA receptor occupancy occur during the postnatal development of rat Purkinje cell but not granule cell synapses. Neuropharmacology, 2005, 49, 596-609. Changes in GABAA receptor subunit expression in the midbrain during the oestrous cycle in Wistar 1.1 111 rats. Neuroscience, 2005, 131, 397-405. Synaptic and extrasynaptic GABA-A and GABA-B receptors in the globus pallidus: An electron 34

197Altered expression of GABAa and GABAb receptor subunit mRNAs in the hippocampus after kindling and
electrically induced status epilepticus. Neuroscience, 2005, 134, 691-704.1.187198Thalamic nucleus submedius receives GABAergic projection from thalamic reticular nucleus in the
rat. Neuroscience, 2005, 134, 515-523.1.113

microscopic immunogold analysis in monkeys. Neuroscience, 2005, 131, 917-933.

#

181

183

184

185

187

188

189

191

193

194

#	Article	IF	CITATIONS
199	Sex-specific effects of chronic anabolic androgenic steroid treatment on GABAA receptor expression and function in adolescent mice. Neuroscience, 2005, 135, 533-543.	1.1	24
200	Palatability-dependent appetite and benzodiazepines: new directions from the pharmacology of GABAA receptor subtypes. Appetite, 2005, 44, 133-150.	1.8	67
201	Neonatal lesions of the ventral hippocampal formation alter GABA-A receptor subunit mRNA expression in adult rat frontal pole. Biological Psychiatry, 2005, 57, 49-55.	0.7	13
203	The benzodiazepine binding site of GABAAreceptors as a target for the development of novel anxiolytics. Expert Opinion on Investigational Drugs, 2005, 14, 601-618.	1.9	163
204	Striatal Information Signaling and Integration in Globus Pallidus: Timing Matters. NeuroSignals, 2005, 14, 281-289.	0.5	28
205	Propofol Suppresses Synaptic Responsiveness of Somatosensory Relay Neurons to Excitatory Input by Potentiating GABAA Receptor Chloride Channels. Molecular Pain, 2005, 1, 1744-8069-1-2.	1.0	40
206	Distribution of GABA Receptors in the Thalamus and Their Involvement in Nociception. Advances in Pharmacology, 2006, 54, 29-51.	1.2	21
208	GABAAReceptors in Central Nervous System Disease: Anxiety, Epilepsy, and Insomnia. Journal of Receptor and Signal Transduction Research, 2006, 26, 731-740.	1.3	156
209	The Mechanism of Carbamazepine Aggravation of Absence Seizures. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 790-798.	1.3	79
210	Differential Analysis of Membrane Proteins in Mouse Fore- and Hindbrain Using a Label-Free Approach. Journal of Proteome Research, 2006, 5, 2701-2710.	1.8	56
211	Structure, Pharmacology, and Function of GABAA Receptor Subtypes. Advances in Pharmacology, 2006, 54, 231-263.	1.2	270
212	GABAA receptor modulators as anxioselective anxiolytics. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 475-481.	0.5	7
213	Benzodiazepine receptor agonists and insomnia: Is subtype selectivity lost in translation?. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 547-554.	0.5	5
214	GABA-based therapeutic approaches: GABAA receptor subtype functions. Current Opinion in Pharmacology, 2006, 6, 18-23.	1.7	443
215	Gaboxadol — a new awakening in sleep. Current Opinion in Pharmacology, 2006, 6, 30-36.	1.7	122
216	Clustered and non-clustered GABAA receptors in cultured hippocampal neurons. Molecular and Cellular Neurosciences, 2006, 31, 1-14.	1.0	42
217	The effects of microinjection of morphine into thalamic nucleus submedius on formalin-evoked nociceptive responses of neurons in the rat spinal dorsal horn. Neuroscience Letters, 2006, 401, 103-107.	1.0	10
218	Zinc modulates GABAergic neurotransmission in rat globus pallidus. Neuroscience Letters, 2006, 409, 163-167.	1.0	10

#	Article	IF	CITATIONS
219	L-655,708 enhances cognition in rats but is not proconvulsant at a dose selective for α5-containing GABAA receptors. Neuropharmacology, 2006, 51, 1023-1029.	2.0	162
220	The muscle relaxant thiocolchicoside is an antagonist of GABAA receptor function in the central nervous system. Neuropharmacology, 2006, 51, 805-815.	2.0	30
221	The roles of different subtypes of opioid receptors in mediating the nucleus submedius opioid-evoked antiallodynia in a neuropathic pain model of rats. Neuroscience, 2006, 138, 1319-1327.	1.1	12
222	Neurosteroid modulation of allopregnanolone and GABA effect on the GABA-A receptor. Neuroscience, 2006, 143, 73-81.	1.1	42
223	Inhibitory Synaptic Transmission Differs in Mouse Type A and B Medial Vestibular Nucleus Neurons In Vitro. Journal of Neurophysiology, 2006, 95, 3208-3218.	0.9	46
224	Hippocampal Network Hyperactivity After Selective Reduction of Tonic Inhibition in GABAA Receptor α5 Subunit–Deficient Mice. Journal of Neurophysiology, 2006, 95, 2796-2807.	0.9	190
225	Specific Subtypes of GABAA Receptors Mediate Phasic and Tonic Forms of Inhibition in Hippocampal Pyramidal Neurons. Journal of Neurophysiology, 2006, 96, 846-857.	0.9	149
226	CABA _A Receptors: Subtypes, Regional Distribution, and Function. Journal of Clinical Sleep Medicine, 2006, 02, .	1.4	100
227	Sleep Circuitry and the Hypnotic Mechanism of GABA _A Drugs. Journal of Clinical Sleep Medicine, 2006, 02, .	1.4	51
228	Extrasynaptic GABA _A Receptors Are Critical Targets for Sedative-Hypnotic Drugs. Journal of Clinical Sleep Medicine, 2006, 02, .	1.4	56
229	Supraspinal Anesthesia. Anesthesiology, 2006, 105, 764-778.	1.3	33
230	Neurosteroids Involved in Regulating Inhibition in the Inferior Colliculus. Journal of Neurophysiology, 2006, 96, 3064-3073.	0.9	19
231	A local GABAergic system within rat trigeminal ganglion cells. European Journal of Neuroscience, 2006, 23, 745-757.	1.2	73
232	Both α2 and α3 GABAAreceptor subtypes mediate the anxiolytic properties of benzodiazepine site ligands in the conditioned emotional response paradigm. European Journal of Neuroscience, 2006, 23, 2495-2504.	1.2	99
233	Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAAreceptor α3 subunit-null mice. European Journal of Neuroscience, 2006, 24, 1307-1315.	1.2	68
234	CaMK-II modulation of GABAA receptors expressed in HEK293, NG108-15 and rat cerebellar granule neurons. European Journal of Neuroscience, 2006, 24, 2504-2514.	1.2	46
235	Induction of synchronous oscillatory activity in the rat lateral amygdalain vitrois dependent on gap junction activity. European Journal of Neuroscience, 2006, 24, 3091-3095.	1.2	26
236	Investigation of the abundance and subunit composition of GABAA receptor subtypes in the cerebellum of alpha1-subunit-deficient mice. Journal of Neurochemistry, 2006, 96, 136-147.	2.1	39

ARTICLE IF CITATIONS # Changes in expression of the ? subunit of the GABAAreceptor and in receptor function induced by 237 2.1 25 progesterone exposure and withdrawal. Journal of Neurochemistry, 2006, 99, 321-332. Drugs for sleep disorders: mechanisms and therapeutic prospects. British Journal of Clinical 1.1 Pharmacology, 2006, 61, 761-766. Plasticity of GABAAreceptor subunit expression during the oestrous cycle of the rat: implications for 239 0.9 56 premenstrual syndrome in women. Experimental Physiology, 2006, 91, 655-660. Mechanisms of anabolic androgenic steroid inhibition of mammalian É-subunit-containing 240 GABAAreceptors. Journal of Physiology, 2006, 573, 571-593. Fast IPSCs in rat thalamic reticular nucleus require the GABAAreceptor Î²1subunit. Journal of 241 1.3 33 Physiology, 2006, 572, 459-475. Extrasynaptic $\hat{I} \pm \hat{I}^2$ subunit GABAA receptors on rat hippocampal pyramidal neurons. Journal of Physiology, 1.3 153 <u>2006, 577, 841-856.</u> Molecular and synaptic organization of GABAA receptors in the cerebellum: Effects of targeted 243 1.4 36 subunit gene deletions. Cerebellum, 2006, 5, 275-285. GABAA receptor diversity and pharmacology. Cell and Tissue Research, 2006, 326, 505-516. 244 1.5 309 Neurosteroids and cholinergic systems: implications for sleep and cognitive processes and potential 245 1.5 44 role of age-related changes. Psychopharmacology, 2006, 186, 402-413. $\hat{\Gamma}$ -Subunit containing GABAA receptor knockout mice are less sensitive to the actions of 246 1.7 44 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol. European Journal of Pharmacology, 2006, 541, 158-162. The proconvulsant effects of the GABAA α5 subtype-selective compound RY-080 may not be α5-mediated. 247 1.7 10 European Journal of Pharmacology, 2006, 548, 77-82. Neurosteroid modulation of recombinant rat $\hat{1}\pm 5\hat{1}^22\hat{1}^32L$ and $\hat{1}\pm 1\hat{1}^22\hat{1}^32L$ GABAA receptors in Xenopus oocyte. 248 1.7 28 European Journal of Pharmacology, 2006, 547, 37-44. Involvement of GABAergic modulation of antinociception induced by morphine microinjected into the 249 1.1 30 ventrolateral orbital cortex. Brain Research, 2006, 1073-1074, 281-289. GABAergic miniature postsynaptic currents in septal neurons show differential allosteric sensitivity 1.1 after binge-like ethanol exposure. Brain Research, 2006, 1089, 101-115. Modulation of anxiety by 1¹/4-opioid receptors of the lateral septal region in mice. Pharmacology 251 1.3 35 Biochemistry and Behavior, 2006, 83, 465-479. GABAA receptor subtypes as targets for neuropsychiatric drug development., 2006, 109, 12-32. 253 Low dose acute alcohol effects on GABAA receptor subtypes., 2006, 112, 513-528. 97 Compensatory alteration of inhibitory synaptic circuits in cerebellum and thalamus of Î³-aminobutyric 254 acid type A receptor I±1 subunit knockout mice. Journal of Comparative Neurology, 2006, 495, 408-421.

#	Article	IF	CITATIONS
255	Synaptic and nonsynaptic localization of GABAA receptors containing the α5 subunit in the rat brain. Journal of Comparative Neurology, 2006, 499, 458-470.	0.9	143
256	Altered expression of Â3-containing GABAA receptors in the neocortex of patients with focal epilepsy. Brain, 2006, 129, 3277-3289.	3.7	56
257	Characterization of a Novel Tonic Î ³ -Aminobutyric AcidA Receptor-Mediated Inhibition in Magnocellular Neurosecretory Neurons and Its Modulation by Clia. Endocrinology, 2006, 147, 3746-3760.	1.4	74
258	Chronic Intermittent Ethanol-Induced Switch of Ethanol Actions from Extrasynaptic to Synaptic Hippocampal GABAA Receptors. Journal of Neuroscience, 2006, 26, 1749-1758.	1.7	145
259	GABAA receptor Â4 subunits mediate extrasynaptic inhibition in thalamus and dentate gyrus and the action of gaboxadol. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15230-15235.	3.3	277
260	GABAA Agonists and Partial Agonists: THIP (Gaboxadol) as a Nonâ€Opioid Analgesic and a Novel Type of Hypnotic1. Advances in Pharmacology, 2006, 54, 53-71.	1.2	6
261	Sleep and Sleep Disorders. , 2006, , .		2
262	Molecular Organization and Assembly of the Central Inhibitory Postsynapse. , 2006, 43, 25-47.		11
263	The Pheromone Androstenol (5α-Androst-16-en-3α-ol) Is a Neurosteroid Positive Modulator of GABAA Receptors. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 694-703.	1.3	31
264	From Gene to Behavior and Back Again: New Perspectives on GABAA Receptor Subunit Selectivity of Alcohol Actions1. Advances in Pharmacology, 2006, 54, 171-203.	1.2	30
265	Intrinsic and Synaptic Dynamics Interact to Generate Emergent Patterns of Rhythmic Bursting in Thalamocortical Neurons. Journal of Neuroscience, 2006, 26, 4247-4255.	1.7	47
266	The δ Subunit of γ-Aminobutyric Acid Type A Receptors Does Not Confer Sensitivity to Low Concentrations of Ethanol. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 1360-1368.	1.3	158
267	Pharmacological Properties of GABAA Receptors Containing \hat{I}^31 Subunits. Molecular Pharmacology, 2006, 69, 640-649.	1.0	83
268	Alcohol Regulates Gene Expression in Neurons via Activation of Heat Shock Factor 1. Journal of Neuroscience, 2007, 27, 12957-12966.	1.7	74
269	Activation of Presynaptic GABA _A Receptors Induces Glutamate Release from Parallel Fiber Synapses. Journal of Neuroscience, 2007, 27, 9022-9031.	1.7	65
270	GABA _A Receptor γ2 Subunit Mutations Linked to Human Epileptic Syndromes Differentially Affect Phasic and Tonic Inhibition. Journal of Neuroscience, 2007, 27, 14108-14116.	1.7	76
271	Mechanisms of Reversible GABA _A Receptor Plasticity after Ethanol Intoxication. Journal of Neuroscience, 2007, 27, 12367-12377.	1.7	139
272	Reticular nucleus-specific changes in Â3 subunit protein at GABA synapses in genetically epilepsy-prone rats. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12512-12517.	3.3	64

#	Article	IF	CITATIONS
273	Enhancement of GABA Release through Endogenous Activation of Axonal GABA _A Receptors in Juvenile Cerebellum. Journal of Neuroscience, 2007, 27, 12452-12463.	1.7	42
275	Corticosterone time-dependently modulates Â-adrenergic effects on long-term potentiation in the hippocampal dentate gyrus. Learning and Memory, 2007, 14, 359-367.	0.5	67
276	Synaptic Release Generates a Tonic GABAA Receptor-Mediated Conductance That Modulates Burst Precision in Thalamic Relay Neurons. Journal of Neuroscience, 2007, 27, 2560-2569.	1.7	104
277	Immunoreactivity for the GABAA Receptor Â1 Subunit, Somatostatin and Connexin36 Distinguishes Axoaxonic, Basket, and Bistratified Interneurons of the Rat Hippocampus. Cerebral Cortex, 2007, 17, 2094-2107.	1.6	123
278	The components required for amino acid neurotransmitter signaling are present in adipose tissues. Journal of Lipid Research, 2007, 48, 2123-2132.	2.0	16
279	The Odyssey of MeCP2 and Parental Imprinting. Epigenetics, 2007, 2, 5-10.	1.3	49
280	Dopamine and Benzodiazepine-Dependent Mechanisms Regulate the EtOH-Enhanced Locomotor Stimulation in the GABAA α1 Subunit Null Mutant Mice. Neuropsychopharmacology, 2007, 32, 137-152.	2.8	27
281	GABAA receptors: structure and function in the basal ganglia. Progress in Brain Research, 2007, 160, 21-41.	0.9	102
282	Localization of GABA receptors in the basal ganglia. Progress in Brain Research, 2007, 160, 229-243.	0.9	43
283	An Updated Unified Pharmacophore Model of the Benzodiazepine Binding Site on γ-Aminobutyric Acida Receptors: Correlation with Comparative Models. Current Medicinal Chemistry, 2007, 14, 2755-2775.	1.2	68
284	GABA Affinity Shapes IPSCs in Thalamic Nuclei. Journal of Neuroscience, 2007, 27, 7954-7962.	1.7	48
285	Comparative effects of nonselective and subtype-selective gamma-aminobutyric acidA receptor positive modulators in the rat-conditioned emotional response test. Behavioural Pharmacology, 2007, 18, 191-203.	0.8	19
287	Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends in Neurosciences, 2007, 30, 350-356.	4.2	353
288	Auto-modulation of neuroactive steroids on GABAA receptors: A novel pharmacological effect. Neuropharmacology, 2007, 52, 672-683.	2.0	18
289	Gaboxadol, a selective extrasynaptic GABAA agonist, does not generalise to other sleep-enhancing drugs: A rat drug discrimination study. Neuropharmacology, 2007, 52, 844-853.	2.0	6
290	Barbiturate activation and modulation of GABAA receptors in neocortex. Neuropharmacology, 2007, 52, 1160-1168.	2.0	37
291	Steroid modulation of GABAA receptor-mediated transmission in the hypothalamus: Effects on reproductive function. Neuropharmacology, 2007, 52, 1439-1453.	2.0	63
292	Mesopontine tegmental anesthesia area projects independently to the rostromedial medulla and to the spinal cord. Neuroscience, 2007, 146, 1355-1370.	1.1	18

#	Article	IF	CITATIONS
293	Aberrant cerebellar granule cell-specific GABAA receptor expression in the epileptic and ataxic mouse mutant, Tottering. Neuroscience, 2007, 148, 115-125.	1.1	18
294	Forebrain and midbrain distribution of major benzodiazepine-sensitive GABAA receptor subunits in the adult C57 mouse as assessed with in situ hybridization. Neuroscience, 2007, 150, 370-385.	1.1	40
295	Regionally selective effects of GABA on hypothalamic GABAA receptor mRNA in vitro. Biochemical and Biophysical Research Communications, 2007, 353, 726-732.	1.0	11
296	15q11-13 CABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Human Molecular Genetics, 2007, 16, 691-703.	1.4	218
297	Postnatal alterations of the inhibitory synaptic responses recorded from cortical pyramidal neurons in the Lis1/sLis1 mutant mouse. Molecular and Cellular Neurosciences, 2007, 35, 220-229.	1.0	16
298	Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: A TMS study. Clinical Neurophysiology, 2007, 118, 2207-2214.	0.7	200
299	Two pools of Triton X-100-insoluble GABAAreceptors are present in the brain, one associated to lipid rafts and another one to the post-synaptic GABAergic complex. Journal of Neurochemistry, 2007, 102, 1329-1345.	2.1	51
300	GABAAReceptors: Properties and Trafficking. Critical Reviews in Biochemistry and Molecular Biology, 2007, 42, 3-14.	2.3	102
301	The cellular, molecular and ionic basis of GABAA receptor signalling. Progress in Brain Research, 2007, 160, 59-87.	0.9	318
302	The GABA Receptors. , 2007, , .		26
302 303	The GABA Receptors. , 2007, , . Functional regulation of the dentate gyrus by GABA-mediated inhibition. Progress in Brain Research, 2007, 163, 235-812.	0.9	26 125
302 303 304	The GABA Receptors., 2007, ,. Functional regulation of the dentate gyrus by GABA-mediated inhibition. Progress in Brain Research, 2007, 163, 235-812. Differential contribution of GABAA receptor subtypes to the anticonvulsant efficacy of benzodiazepine site ligands. Journal of Psychopharmacology, 2007, 21, 384-391.	0.9 2.0	26 125 49
302 303 304 305	The GABA Receptors., 2007, ,. Functional regulation of the dentate gyrus by GABA-mediated inhibition. Progress in Brain Research, 2007, 163, 235-812. Differential contribution of GABAA receptor subtypes to the anticonvulsant efficacy of benzodiazepine site ligands. Journal of Psychopharmacology, 2007, 21, 384-391. Molecular Basis for the GABAA Receptor-Mediated Tonic Inhibition in Rat Somatosensory Cortex. Cerebral Cortex, 2007, 17, 1782-1787.	0.9 2.0 1.6	26 125 49 81
302 303 304 305 306	The CABA Receptors., 2007, , . Functional regulation of the dentate gyrus by GABA-mediated inhibition. Progress in Brain Research, 2007, 163, 235-812. Differential contribution of GABAA receptor subtypes to the anticonvulsant efficacy of benzodiazepine site ligands. Journal of Psychopharmacology, 2007, 21, 384-391. Molecular Basis for the GABAA Receptor-Mediated Tonic Inhibition in Rat Somatosensory Cortex. Cerebral Cortex, 2007, 17, 1782-1787. GABAergic control of substantia nigra dopaminergic neurons. Progress in Brain Research, 2007, 160, 189-208.	0.9 2.0 1.6 0.9	26 125 49 81 191
 302 303 304 305 306 307 	The GABA Receptors., 2007, , . Functional regulation of the dentate gyrus by GABA-mediated inhibition. Progress in Brain Research, 2007, 163, 235-812. Differential contribution of GABAA receptor subtypes to the anticonvulsant efficacy of benzodiazepine site ligands. Journal of Psychopharmacology, 2007, 21, 384-391. Molecular Basis for the GABAA Receptor-Mediated Tonic Inhibition in Rat Somatosensory Cortex. Cerebral Cortex, 2007, 17, 1782-1787. GABAergic control of substantia nigra dopaminergic neurons. Progress in Brain Research, 2007, 160, 189-208. The Selective Extrasynaptic GABAA Agonist, Gaboxadol, Improves Traditional Hypnotic Efficacy Measures and Enhances Slow Wave Activity in a Model of Transient Insomnia. Sleep, 2007, 30, 593-602.	0.9 2.0 1.6 0.9 0.6	26 125 49 81 191
302 303 304 305 306 307	The CABA Receptors., 2007, , . Functional regulation of the dentate gyrus by CABA-mediated inhibition. Progress in Brain Research, 2007, 163, 235-812. Differential contribution of CABAA receptor subtypes to the anticonvulsant efficacy of benzodiazepine site ligands. Journal of Psychopharmacology, 2007, 21, 384-391. Molecular Basis for the CABAA Receptor-Mediated Tonic Inhibition in Rat Somatosensory Cortex. Cerebral Cortex, 2007, 17, 1782-1787. GABAergic control of substantia nigra dopaminergic neurons. Progress in Brain Research, 2007, 160, 189-208. The Selective Extrasynaptic CABAA Agonist, Gaboxadol, Improves Traditional Hypnotic Efficacy Measures and Enhances Slow Wave Activity in a Model of Transient Insomnia. Sleep, 2007, 30, 593-602. [±5CABA _A Aeceptors Regulate the Intrinsic Excitability of Mouse Hippocampal Pyramidal Neurons. Journal of Neurophysiology, 2007, 98, 2244-2254.	0.9 2.0 1.6 0.9 0.6	26 125 49 81 191 93
 302 303 304 305 306 307 308 309 	The GABA Receptors., 2007, ,. Functional regulation of the dentate gyrus by GABA-mediated inhibition. Progress in Brain Research, 2007, 163, 235-812. Differential contribution of GABAA receptor subtypes to the anticonvulsant efficacy of benzodiazepine site ligands. Journal of Psychopharmacology, 2007, 21, 384-391. Molecular Basis for the GABAA Receptor-Mediated Tonic Inhibition in Rat Somatosensory Cortex. Cerebral Cortex, 2007, 17, 1782-1787. GABAergic control of substantia nigra dopaminergic neurons. Progress in Brain Research, 2007, 160, 189-208. The Selective Extrasynaptic GABAA Agonist, Gaboxadol, Improves Traditional Hypnotic Efficacy Measures and Enhances Slow Wave Activity in a Model of Transient Insomnia. Sleep, 2007, 30, 593-602. [s5GABA _A Receptors Regulate the Intrinsic Excitability of Mouse Hippocampal Pyramidal Neurons. Journal of Neurophysiology, 2007, 98, 2244-2254. Alterations in GABA _A Receptor Mediated Inhibition in Adjacent Dorsal Midline Thalamic Nuclei in a Rat Model of Chronic Limbic Epilepsy. Journal of Neurophysiology, 2007, 98, 2501-2508.	0.9 2.0 1.6 0.9 0.6 0.9	26 125 49 81 191 93 109

#	Article	IF	CITATIONS
312	GABAergic phenotype of periglomerular cells in the rodent olfactory bulb. Journal of Comparative Neurology, 2007, 502, 990-1002.	0.9	91
313	Organization of the torus longitudinalis in the rainbow trout (Oncorhynchus mykiss): An immunohistochemical study of the GABAergic system and a Dil tract-tracing study. Journal of Comparative Neurology, 2007, 503, 348-370.	0.9	32
314	Studies of ethanol actions on recombinant l´-containing l³-aminobutyric acid type A receptors yield contradictory results. Alcohol, 2007, 41, 155-162.	0.8	62
315	A new meaning for "Gin & Tonicâ€ŧ tonic inhibition as the target for ethanol action in the brain. Alcohol, 2007, 41, 145-153.	0.8	59
316	GABAA receptors in the thalamus: \hat{l} ±4 subunit expression and alcohol sensitivity. Alcohol, 2007, 41, 177-185.	0.8	41
317	Exploring ligand recognition and ion flow in comparative models of the human GABA type A receptor. Journal of Molecular Graphics and Modelling, 2007, 26, 760-774.	1.3	30
318	Enhanced macroscopic desensitization shapes the response of α4 subtype-containing GABAAreceptors to synaptic and extrasynaptic GABA. Journal of Physiology, 2007, 578, 655-676.	1.3	78
319	Presynaptic GABAAreceptors facilitate GABAergic transmission to dopaminergic neurons in the ventral tegmental area of young rats. Journal of Physiology, 2007, 580, 731-743.	1.3	36
320	In the developing rat hippocampus a tonic GABAA-mediated conductance selectively enhances the glutamatergic drive of principal cells. Journal of Physiology, 2007, 581, 515-528.	1.3	44
321	The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus. Journal of Physiology, 2007, 582, 1163-1178.	1.3	231
322	A new naturally occurring GABAA receptor subunit partnership with high sensitivity to ethanol. Nature Neuroscience, 2007, 10, 40-48.	7.1	232
323	Neural pathways associated with loss of consciousness caused by intracerebral microinjection of GABAA-active anesthetics. European Journal of Neuroscience, 2007, 25, 1417-1436.	1.2	69
324	The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABAAδ-subunit-containing receptors. European Journal of Neuroscience, 2007, 25, 1893-1899.	1.2	75
325	Desensitization and binding properties determine distinct α1β2γ2 and α3β2γ2 GABAA receptor-channel kinetic behavior. European Journal of Neuroscience, 2007, 25, 2726-2740.	1.2	50
326	Reorganization of GABAergic circuits maintains GABAA receptor-mediated transmission onto CA1 interneurons in $\hat{1}\pm 1$ -subunit-null mice. European Journal of Neuroscience, 2007, 25, 3287-3304.	1.2	39
327	GABAergic currents in RT and VB thalamic nuclei follow kinetic pattern of î±3―and î±1â€subunitâ€containing GABA _A receptors. European Journal of Neuroscience, 2007, 26, 657-665.	1.2	16
328	Cellular Distribution of the GABAAReceptor-Modulating 3?-Hydroxy, 5?-Reduced Pregnane Steroids in the Adult Rat Brain. Journal of Neuroendocrinology, 2007, 19, 272-284.	1.2	60
329	Pharmacology of the βâ€Carboline FGâ€7142, a Partial Inverse Agonist at the Benzodiazepine Allosteric Site of the GABA _A Receptor: Neurochemical, Neurophysiological, and Behavioral Effects. CNS Neuroscience & Therapeutics, 2007, 13, 475-501.	4.0	87

#	Article	IF	CITATIONS
330	Normal Acute Behavioral Responses to Moderate/High Dose Ethanol in GABA _A Receptor α4 Subunit Knockout Mice. Alcoholism: Clinical and Experimental Research, 2008, 32, 10-18.	1.4	38
331	Functional Consequences of GABA _A Receptor α4 Subunit Deletion on Synaptic and Extrasynaptic Currents in Mouse Dentate Granule Cells. Alcoholism: Clinical and Experimental Research, 2008, 32, 19-26.	1.4	54
332	Molecular regulation of cognitive functions and developmental plasticity: impact of GABAAreceptors. Journal of Neurochemistry, 2007, 102, 1-12.	2.1	136
333	Flumazenil selectively prevents the increase in α4-subunit gene expression and an associated change in GABAA receptor function induced by ethanol withdrawal. Journal of Neurochemistry, 2007, 102, 657-666.	2.1	16
334	GABA _A receptors in aging and Alzheimer's disease. Journal of Neurochemistry, 2007, 103, 1285-1292.	2.1	160
335	New insight into the role of the $\hat{1}^2$ 3 subunit of the GABAA-R in development, behavior, body weight regulation, and anesthesia revealed by conditional gene knockout. BMC Neuroscience, 2007, 8, 85.	0.8	58
336	Neurosteroid regulation of central nervous system development. , 2007, 116, 107-124.		185
337	Gender and age differences in expression of GABAA receptor subunits in rat somatosensory thalamus and cortex in an absence epilepsy model. Neurobiology of Disease, 2007, 25, 623-630.	2.1	30
338	Arousal and the pupil: why diazepam-induced sedation is not accompanied by miosis. Psychopharmacology, 2007, 195, 41-59.	1.5	21
339	Dopamine Reduction of GABA Currents in Striatal Medium-sized Spiny Neurons is Mediated Principally by the D1 Receptor Subtype. Neurochemical Research, 2007, 32, 229-240.	1.6	15
340	Colocalization of synaptic GABAC-receptors with GABAA-receptors and glycine-receptors in the rodent central nervous system. Cell and Tissue Research, 2007, 330, 1-15.	1.5	34
341	Immunohistochemical Localization of GABA, GAD65, and the Receptor Subunits GABAAα1 and GABAB1 in the Zebrafish Cerebellum. Cerebellum, 2008, 7, 444-450.	1.4	54
342	Differential localization of GABA _A receptor subunits within the substantia nigra of the human brain: An immunohistochemical study. Journal of Comparative Neurology, 2008, 506, 912-929.	0.9	31
343	GABA neurotransmitter signaling in the developing mouse lens: Dynamic regulation of components and functionality. Developmental Dynamics, 2008, 237, 3830-3841.	0.8	15
344	Pharmacological analysis of excitatory and inhibitory synaptic transmission in horizontal brainstem slices preserving three subnuclei of spinal trigeminal nucleus. Journal of Neuroscience Methods, 2008, 167, 221-228.	1.3	29
345	Hyperglycosylation and Reduced GABA Currents of Mutated GABRB3 Polypeptide in Remitting Childhood Absence Epilepsy. American Journal of Human Genetics, 2008, 82, 1249-1261.	2.6	167
346	Physiology and pharmacology of alcohol: the imidazobenzodiazepine alcohol antagonist site on subtypes of GABA _A receptors as an opportunity for drug development?. British Journal of Pharmacology, 2008, 154, 288-298.	2.7	65
347	The expression of GABA _A β subunit isoforms in synaptic and extrasynaptic receptor populations of mouse dentate gyrus granule cells. Journal of Physiology, 2008, 586, 989-1004.	1.3	103

#	Article	IF	CITATIONS
348	α ₁ β ₂ δ, a silent GABA _A receptor: recruitment by tracazolate and neurosteroids. British Journal of Pharmacology, 2008, 153, 1062-1071.	2.7	53
349	GABAAReceptor Subtype-Selective Efficacy: TPA023, an α2/α3 Selective Non-sedating Anxiolytic and α5IA, an α5 Selective Cognition Enhancer. CNS Neuroscience & Therapeutics, 2008, 14, 25-35.	4.0	21
350	Residual effect of a 7â€amino metabolite of clonazepam on GABA _A receptor function in the nucleus reticularis thalami of the rat. Epilepsia, 2008, 49, 1803-1808.	2.6	4
351	Ethanol Selectively Attenuates NMDARâ€Mediated Synaptic Transmission in the Prefrontal Cortex. Alcoholism: Clinical and Experimental Research, 2008, 32, 690-698.	1.4	70
352	Genomic imprinting in the development and evolution of psychotic spectrum conditions. Biological Reviews, 2008, 83, 441-493.	4.7	74
353	Enhanced behavioral sensitivity to the competitive GABA agonist, gaboxadol, in transgenic mice over-expressing hippocampal extrasynaptic α6β GABAAreceptors. Journal of Neurochemistry, 2008, 105, 338-350.	2.1	31
354	Neuroactive steroids and GABA _A receptor plasticity in the brain of the WAG/Rij rat, a model of absence epilepsy. Journal of Neurochemistry, 2008, 106, 2502-2514.	2.1	20
355	Ultraâ€slow oscillatory neuronal activity in the rat olivary pretectal nucleus: comparison with oscillations within the intergeniculate leaflet. European Journal of Neuroscience, 2008, 27, 2657-2664.	1.2	19
356	Axonal GABA _A receptors. European Journal of Neuroscience, 2008, 28, 841-848.	1.2	71
357	Functional characterization of GABAergic pallidopallidal and striatopallidal synapses in the rat globus pallidus <i>in vitro</i> . European Journal of Neuroscience, 2008, 28, 2401-2408.	1.2	53
358	PWZ-029, a compound with moderate inverse agonist functional selectivity at GABAA receptors containing α5 subunits, improves passive, but not active, avoidance learning in rats. Brain Research, 2008, 1208, 150-159.	1.1	54
359	Expression of GABAA receptor α1 subunit mRNA and protein in rat neocortex following photothrombotic infarction. Brain Research, 2008, 1210, 29-38.	1.1	24
360	Translational aspects of pharmacological research into anxiety disorders: The stress-induced hyperthermia (SIH) paradigm. European Journal of Pharmacology, 2008, 585, 407-425.	1.7	90
361	Persistence of tolerance to the anaesthetic effect of allopregnanolone in male rats. European Journal of Pharmacology, 2008, 592, 73-80.	1.7	7
362	Abuse and dependence liability of benzodiazepine-type drugs: GABAA receptor modulation and beyond. Pharmacology Biochemistry and Behavior, 2008, 90, 74-89.	1.3	167
363	Targeted deletion of the GABRA2 gene encoding α2-subunits of GABAA receptors facilitates performance of a conditioned emotional response, and abolishes anxiolytic effects of benzodiazepines and barbiturates. Pharmacology Biochemistry and Behavior, 2008, 90, 1-8.	1.3	61
364	Gaboxadol $\hat{a} \in$ " a different hypnotic profile with no tolerance to sleep EEG and sedative effects after repeated daily dosing. Pharmacology Biochemistry and Behavior, 2008, 90, 113-122.	1.3	20
365	Alpha2-containing GABAA receptors are involved in mediating stimulant effects of cocaine. Pharmacology Biochemistry and Behavior, 2008, 90, 9-18.	1.3	37

#	Article	IF	CITATIONS
366	Regulation of cognition and symptoms of psychosis: Focus on GABAA receptors and glycine transporter 1`. Pharmacology Biochemistry and Behavior, 2008, 90, 58-64.	1.3	40
367	The value of genetic and pharmacological approaches to understanding the complexities of GABAA receptor subtype functions: The anxiolytic effects of benzodiazepines. Pharmacology Biochemistry and Behavior, 2008, 90, 37-42.	1.3	34
368	Additive inhibition of lordosis by simultaneous treatments with GABAA and GABAB receptor agonists, muscimol and baclofen, in female rats. Pharmacology Biochemistry and Behavior, 2008, 90, 590-593.	1.3	7
369	Structural And Functional Organization Of The Synapse. , 2008, , .		8
370	Trigeminal Mechanisms of Nociception: Peripheral and Brainstem Organization. , 2008, , 435-460.		14
371	GABAergic mediation of stress-induced secretion of corticosterone and oxytocin, but not prolactin, by the hypothalamic paraventricular nucleus. Life Sciences, 2008, 83, 686-692.	2.0	24
372	Extrasynaptic GABAA receptors in the crosshairs of hormones and ethanol. Neurochemistry International, 2008, 52, 60-64.	1.9	40
373	Differential pharmacological properties of GABAA/benzodiazepine receptor complex in dorsal compared to ventral rat hippocampus. Neurochemistry International, 2008, 52, 1019-1029.	1.9	18
374	Perinatal alcohol exposure leads to prolonged upregulation of hypothalamic GABAA receptors and increases behavioral sensitivity to gaboxadol. Neuroscience Letters, 2008, 439, 182-186.	1.0	13
375	GABAA receptor-mediated tonic currents in substantia gelatinosa neurons of rat spinal trigeminal nucleus pars caudalis. Neuroscience Letters, 2008, 441, 296-301.	1.0	14
376	GABAA receptors expression pattern in rat brain following low pressure distension of the stomach. Neuroscience, 2008, 152, 449-458.	1.1	4
377	Effect of microdialysis perfusion of 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol in the perifornical hypothalamus on sleep–wakefulness: Role of Î-subunit containing extrasynaptic GABAA receptors. Neuroscience, 2008, 153, 551-555.	1.1	13
378	Normal sleep homeostasis and lack of epilepsy phenotype in GABAA receptor α3 subunit-knockout mice. Neuroscience, 2008, 154, 595-605.	1.1	34
379	Blockade of GABA, type A, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system. Neuroscience, 2008, 156, 1-10.	1.1	35
380	Efficacy of the selective extrasynaptic GABAA agonist, gaboxadol, in a model of transient insomnia: A randomized, controlled clinical trial. Sleep Medicine, 2008, 9, 393-402.	0.8	25
381	GABAergic modulation is involved in the ventrolateral orbital cortex 5-HT1A receptor activation-induced antinociception in the rat. Pain, 2008, 139, 398-405.	2.0	36
382	Opposite effects of oxytocin and vasopressin on the emotional expression of the fear response. Progress in Brain Research, 2008, 170, 207-218.	0.9	78
383	Pathoetiological Model of Delirium: a Comprehensive Understanding of the Neurobiology of Delirium and an Evidence-Based Approach to Prevention and Treatment. Critical Care Clinics, 2008, 24, 789-856.	1.0	273

#	Article	IF	CITATIONS
384	Gel-Based Mass Spectrometric Analysis of Recombinant GABAA Receptor Subunits Representing Strongly Hydrophobic Transmembrane Proteins. Journal of Proteome Research, 2008, 7, 3498-3506.	1.8	31
385	Aqueous Polymer Two-Phase Systems for the Proteomic Analysis of Plasma Membranes from Minute Brain Samples. Journal of Proteome Research, 2008, 7, 432-442.	1.8	35
386	FarmacologÃa y aspectos conductuales del receptor α5/GABA-A. Psiquiatria Biologica, 2008, 15, 11-15.	0.0	0
387	Developmental Modulation of GABAA Receptor Function by RNA Editing. Journal of Neuroscience, 2008, 28, 6196-6201.	1.7	94
388	Differential Tonic GABA Conductances in Striatal Medium Spiny Neurons. Journal of Neuroscience, 2008, 28, 1185-1197.	1.7	143
389	The Clustering of GABA _A Receptor Subtypes at Inhibitory Synapses is Facilitated via the Direct Binding of Receptor α2 Subunits to Gephyrin. Journal of Neuroscience, 2008, 28, 1356-1365.	1.7	219
390	Assembly of GABA _A receptors (Review). Molecular Membrane Biology, 2008, 25, 302-310.	2.0	42
391	Distinct Mechanisms of Ethanol Potentiation of Local and Paracapsular GABAergic Synapses in the Rat Basolateral Amygdala. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 251-260.	1.3	58
392	Late-Onset Epileptogenesis and Seizure Genesis: Lessons From Models of Cerebral Ischemia. Neuroscientist, 2008, 14, 78-90.	2.6	18
393	Distinct Regulation of β2 and β3 Subunit-Containing Cerebellar Synaptic GABA _A Receptors by Calcium/Calmodulin-Dependent Protein Kinase II. Journal of Neuroscience, 2008, 28, 7574-7584.	1.7	49
394	Tonic GABAergic Inhibition of Sympathetic Preganglionic Neurons: A Novel Substrate for Sympathetic Control. Journal of Neuroscience, 2008, 28, 12445-12452.	1.7	37
395	Contrasting the Functional Properties of GABAergic Axon Terminals with Single and Multiple Synapses in the Thalamus. Journal of Neuroscience, 2008, 28, 11848-11861.	1.7	43
396	Which GABA _A Receptor Subunits Are Necessary for Tonic Inhibition in the Hippocampus?. Journal of Neuroscience, 2008, 28, 1421-1426.	1.7	325
397	Identification, Coassembly, and Activity of γ-Aminobutyric Acid Receptor Subunits in Renal Proximal Tubular Cells. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 376-382.	1.3	9
398	Ethanol Modulates Synaptic and Extrasynaptic GABA _A Receptors in the Thalamus. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 475-482.	1.3	75
399	Taurine Is a Potent Activator of Extrasynaptic GABA _A Receptors in the Thalamus. Journal of Neuroscience, 2008, 28, 106-115.	1.7	143
400	Comparison of the sedative, cognitive, and analgesic effects of nitrous oxide, sevoflurane, and ethanol. British Journal of Anaesthesia, 2008, 100, 203-210.	1.5	28
401	Protein Kinase Cδ Regulates Ethanol Intoxication and Enhancement of GABA-Stimulated Tonic Current. Journal of Neuroscience, 2008, 28, 11890-11899.	1.7	77

#	Article	IF	CITATIONS
402	Markers in the 5′-Region of GABRG1 Associate to Alcohol Dependence and are in Linkage Disequilibrium with Markers in the Adjacent GABRA2 Gene. Neuropsychopharmacology, 2008, 33, 837-848.	2.8	84
403	International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric Acid _A Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update. Pharmacological Reviews, 2008, 60, 243-260.	7.1	938
404	Microarray analysis reveals distinctive signaling between the bed nucleus of the stria terminalis, nucleus accumbens, and dorsal striatum. Physiological Genomics, 2008, 32, 283-298.	1.0	20
405	Tonically Active Inhibition Selectively Controls Feedforward Circuits in Mouse Barrel Cortex. Journal of Neurophysiology, 2008, 100, 932-944.	0.9	34
406	GABAA Receptors, Anesthetics and Anticonvulsants in Brain Development. CNS and Neurological Disorders - Drug Targets, 2008, 7, 211-224.	0.8	55
407	Affective and cognitive effects of global deletion of α3-containing gamma-aminobutyric acid-A receptors. Behavioural Pharmacology, 2008, 19, 582-596.	0.8	26
408	Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans. Current Neuropharmacology, 2008, 6, 254-285.	1.4	369
409	Coexpression of GABA _B R1 and GABA _B R2 Receptor Subunits in the Rat Vestibular Nucleus. Neuroembryology and Aging, 2008, 5, 127-133.	0.1	0
410	Differential Expression of GABA Receptor Subunit Messenger Ribonucleic Acids and Immunoreactivity in the Rat Neostriatum during Postnatal Development. Neuroembryology and Aging, 2008, 5, 100-115.	0.1	1
411	Zolpidem-Induced Sleepwalking, Sleep Related Eating Disorder, and Sleep-Driving: Fluorine-18-Flourodeoxyglucose Positron Emission Tomography Analysis, and a Literature Review of Other Unexpected Clinical Effects of Zolpidem. Journal of Clinical Sleep Medicine, 2009, 05, 471-476.	1.4	102
412	TEMPORAL LOBE EPILEPSY Altered GABAA Receptor Subunit Composition in Temporal Lobe Epilepsy. , 2009, , 1351-1356.		0
413	GABA _A Receptor α5 Subunits Contribute to GABA _{A,slow} Synaptic Inhibition in Mouse Hippocampus. Journal of Neurophysiology, 2009, 101, 1179-1191.	0.9	91
414	Studying cerebellar circuits by remote control of selected neuronal types with GABA-A receptors. Frontiers in Molecular Neuroscience, 2009, 2, 29.	1.4	22
415	α4-Containing GABA _A Receptors in the Nucleus Accumbens Mediate Moderate Intake of Alcohol. Journal of Neuroscience, 2009, 29, 543-549.	1.7	62
416	The Modulation of Synaptic GABA _A Receptors in the Thalamus by Eszopiclone and Zolpidem. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 1000-1006.	1.3	47
417	Early Synapse Formation in Developing Interneurons of the Adult Olfactory Bulb. Journal of Neuroscience, 2009, 29, 15039-15052.	1.7	73
418	Dopamine Modulation of GABA Tonic Conductance in Striatal Output Neurons. Journal of Neuroscience, 2009, 29, 5116-5126.	1.7	68
419	Extrasynaptic GABA _A Receptors: Form, Pharmacology, and Function. Journal of Neuroscience, 2009, 29, 12757-12763.	1.7	417

#	Article	IF	CITATIONS
420	Chapter 6 GABAA Receptor Function and Gene Expression During Pregnancy and Postpartum. International Review of Neurobiology, 2009, 85, 73-94.	0.9	16
421	GABAA Receptors Containing Gamma1 Subunits Contribute to Inhibitory Transmission in the Central Amygdala. Journal of Neurophysiology, 2009, 101, 341-349.	0.9	32
422	Synaptic Connections between GABAergic Elements and Serotonergic Terminals or Projecting Neurons in the Ventrolateral Orbital Cortex. Cerebral Cortex, 2009, 19, 1263-1272.	1.6	33
423	Regulation of light's action in the mammalian circadian clock: role of the extrasynaptic GABA _A receptor. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1606-R1612.	0.9	28
424	The physiological properties and therapeutic potential of $\hat{I}\pm 5$ -GABAA receptors. Biochemical Society Transactions, 2009, 37, 1334-1337.	1.6	32
425	GABRG1 and GABRA2 as Independent Predictors for Alcoholism in Two Populations. Neuropsychopharmacology, 2009, 34, 1245-1254.	2.8	82
426	A comparison of the effects of a subtype selective and non-selective benzodiazepine receptor agonist in two CO2 models of experimental human anxiety. Journal of Psychopharmacology, 2009, 23, 117-122.	2.0	42
427	Subtype-Selective GABAA Receptor Modulation Yields a Novel Pharmacological Profile: The Design and Development of TPA023. Advances in Pharmacology, 2009, 57, 137-185.	1.2	39
428	Changes in Expression and Function of Extrasynaptic GABA _A Receptors in the Rat Hippocampus during Pregnancy and after Delivery. Journal of Neuroscience, 2009, 29, 1755-1765.	1.7	83
429	A gain in GABA _A receptor synaptic strength in thalamus reduces oscillatory activity and absence seizures. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7630-7635.	3.3	61
430	Altered pharmacology and GABA-A receptor subunit expression in dorsal midline thalamic neurons in limbic epilepsy. Neurobiology of Disease, 2009, 33, 119-132.	2.1	14
431	Different functional basal ganglia subcircuits associated with anti-akinetic and dyskinesiogenic effects of antiparkinsonian therapies. Neurobiology of Disease, 2009, 36, 116-125.	2.1	20
432	Differential effects of dopamine D2 and GABAA receptor antagonists on dopamine neurons between the anterior and posterior ventral tegmental area of female Wistar rats. Pharmacology Biochemistry and Behavior, 2009, 92, 404-412.	1.3	18
433	Regulation of GABAA receptor membrane trafficking and synaptic localization. , 2009, 123, 17-31.		53
434	The regulation of neuronal gene expression by alcohol. , 2009, 124, 324-335.		42
435	Obovatol isolated from Magnolia obovata enhances pentobarbital-induced sleeping time: Possible involvement of GABAA receptors/chloride channel activation. Phytomedicine, 2009, 16, 308-313.	2.3	20
436	Plasticity and function of extrasynaptic GABAA receptors during pregnancy and after delivery. Psychoneuroendocrinology, 2009, 34, S74-S83.	1.3	29
437	Steroid hormone fluctuations and GABAAR plasticity. Psychoneuroendocrinology, 2009, 34, S84-S90.	1.3	115

#	Article	IF	CITATIONS
438	Function and modulation of δ-containing GABAA receptors. Psychoneuroendocrinology, 2009, 34, S67-S73.	1.3	47
439	The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug Discovery Today, 2009, 14, 866-875.	3.2	165
440	Neuronal network pharmacodynamics of GABAergic modulation in the human cortex determined using pharmacoâ€magnetoencephalography. Human Brain Mapping, 2010, 31, 581-594.	1.9	132
441	Distinct properties of murine α5 γâ€aminobutyric acid type a receptors revealed by biochemical fractionation and mass spectroscopy. Journal of Neuroscience Research, 2009, 87, 1737-1747.	1.3	22
442	RO4938581, a novel cognitive enhancer acting at GABAA α5 subunit-containing receptors. Psychopharmacology, 2009, 202, 207-223.	1.5	142
443	A therapeutic dose of zolpidem reduces thalamic GABA in healthy volunteers: a proton MRS study at 4ÂT. Psychopharmacology, 2009, 203, 819-829.	1.5	33
444	Dissociating anxiolytic and sedative effects of GABAAergic drugs using temperature and locomotor responses to acute stress. Psychopharmacology, 2009, 204, 299-311.	1.5	38
445	The role of GABAA receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology, 2009, 205, 529-564.	1.5	370
446	Magnolol enhances pentobarbitalâ€induced sleeping behaviors: possible involvement of GABAergic systems. Phytotherapy Research, 2009, 23, 1340-1344.	2.8	23
447	Activin tunes GABAergic neurotransmission and modulates anxiety-like behavior. Molecular Psychiatry, 2009, 14, 332-346.	4.1	57
448	CaMKII phosphorylation of the GABA _A receptor: receptor subtype―and synapseâ€specific modulation. Journal of Physiology, 2009, 587, 2115-2125.	1.3	59
449	Inhibition of thalamic excitability by 4,5,6,7â€ŧetrahydroisoxazolo[4,5]pyridineâ€3â€ol: a selective role for δâ€GABA _A receptors. European Journal of Neuroscience, 2009, 29, 1177-1187.	1.2	58
450	Role of GABA _A receptors in the physiology and pharmacology of sleep. European Journal of Neuroscience, 2009, 29, 1779-1794.	1.2	114
451	GABA _a Receptor Heterogeneity Modulates Dendrodendritic Inhibition. Annals of the New York Academy of Sciences, 2009, 1170, 259-263.	1.8	4
452	Oxcarbazepine, not its active metabolite, potentiates GABA _A activation and aggravates absence seizures. Epilepsia, 2009, 50, 83-87.	2.6	34
453	Associations Among GABRG1, Level of Response to Alcohol, and Drinking Behaviors. Alcoholism: Clinical and Experimental Research, 2009, 33, 1382-1390.	1.4	31
454	Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics. Journal of Neuroscience Methods, 2009, 177, 294-302.	1.3	19
455	The optimization of TaqMan real-time RT-PCR assay for transcriptional profiling of GABA-A receptor subunit plasticity. Journal of Neuroscience Methods, 2009, 181, 58-66.	1.3	34

#	Article	IF	CITATIONS
456	Neurosteroids $\hat{a} \in $ From Basic Research to Clinical Perspectives. , 2009, , 2709-2747.		11
457	The Pharmacology of Anxiety. Current Topics in Behavioral Neurosciences, 2009, 2, 303-330.	0.8	50
458	Synthesis, in Vivo Evaluation, and Molecular Modeling Studies of New Pyrazolo[5,1-c][1,2,4]benzotriazine 5-Oxide Derivatives. Identification of a Bifunctional Hydrogen Bond Area Related to the Inverse Agonism. Journal of Medicinal Chemistry, 2009, 52, 4668-4682.	2.9	21
459	D2-like but not D1-like dopamine receptors are involved in the ventrolateral orbital cortex-induced antinociception: A GABAergic modulation mechanism. Experimental Neurology, 2009, 215, 128-134.	2.0	43
460	Neurons that Fire Together Also Conspire Together: Is Normal Sleep Circuitry Hijacked to Generate Epilepsy?. Neuron, 2009, 62, 612-632.	3.8	327
461	GABAA receptors: Subtypes provide diversity of function and pharmacology. Neuropharmacology, 2009, 56, 141-148.	2.0	836
462	Isoflurane modulates excitability in the mouse thalamus via GABA-dependent and GABA-independent mechanisms. Neuropharmacology, 2009, 56, 438-447.	2.0	29
463	Effects of acute and repeated zolpidem treatment on pentylenetetrazole-induced seizure threshold and on locomotor activity: Comparison with diazepam. Neuropharmacology, 2009, 56, 1124-1130.	2.0	28
464	Ethanol enhances both action potential-dependent and action potential-independent GABAergic transmission onto cerebellar Purkinje cells. Neuropharmacology, 2009, 57, 109-120.	2.0	30
465	Memory consolidation and reconsolidation in an invertebrate model: The role of the GABAergic system. Neuroscience, 2009, 158, 387-401.	1.1	42
466	GABAA receptors in the mediodorsal thalamus play a crucial role in rat shell-specific acetylcholine-mediated, but not dopamine-mediated, turning behaviour. Neuroscience, 2009, 159, 1200-1207.	1.1	7
467	Expression of GABAA receptor α3-, Î,-, and ε-subunit mRNAs during rat CNS development and immunolocalization of the ε subunit in developing postnatal spinal cord. Neuroscience, 2009, 160, 85-96.	1.1	14
468	GABAA receptors of cerebellar granule cells in culture: explanation of overall insensitivity to ethanol. Neuroscience, 2009, 162, 1187-1191.	1.1	10
469	Differential role of gonadal hormones on kainic acid–induced neurodegeneration in medial amygdaloid nucleus of female and male rats. Neuroscience, 2009, 163, 952-963.	1.1	11
470	The thalamic nucleus submedius and ventrolateral orbital cortex are involved in nociceptive modulation: A novel pain modulation pathway. Progress in Neurobiology, 2009, 89, 383-389.	2.8	102
471	Brain regional distribution of GABAA receptors exhibiting atypical GABA agonism: Roles of receptor subunits. Neurochemistry International, 2009, 55, 389-396.	1.9	18
472	Cerebral heme oxygenase 1 and 2 spatial distribution is modulated following injury from hypoxia–ischemia and middle cerebral artery occlusion in rats. Neuroscience Research, 2009, 65, 326-334.	1.0	30
473	The Localization of Inhibitory Neurotransmitter Receptors on Dopaminergic Neurons of the Human Substantia Nigra. , 2009, , 59-70.		3

#	Article	IF	CITATIONS
474	Total Synthesis of Valerenic Acid, a Potent GABA _A Receptor Modulator. Organic Letters, 2009, 11, 1151-1153.	2.4	35
475	The effects of acute and chronic ethanol exposure on presynaptic andÂpostsynaptic gamma-aminobutyric acid (GABA) neurotransmission in cultured cortical andÂhippocampal neurons. Alcohol, 2009, 43, 603-618.	0.8	29
476	Allopregnanolone microinjected into the lateral septum or dorsal hippocampus reduces immobility in the forced swim test: participation of the GABAA receptor. Behavioural Pharmacology, 2009, 20, 614-622.	0.8	41
477	The differential role of α1- and α5-containing GABAA receptors in mediating diazepam effects on spontaneous locomotor activity and water-maze learning and memory in rats. International Journal of Neuropsychopharmacology, 2009, 12, 1179.	1.0	48
478	Quantitative analyses of [11C]Ro15-4513 binding to subunits of GABAA/benzodiazepine receptor in the living human brain. Nuclear Medicine Communications, 2009, 30, 872-880.	0.5	6
479	Cocaine reverses the changes in GABAA subunits and in glutamic acid decarboxylase isoenzymes mRNA expression induced by neonatal 6-hydroxydopamine. Behavioural Pharmacology, 2010, 21, 343-352.	0.8	7
480	Tonic GABA _A Receptor-Mediated Inhibition in the Rat Dorsal Motor Nucleus of the Vagus. Journal of Neurophysiology, 2010, 103, 904-914.	0.9	46
481	Indorenate modifies a1-adrenergic and benzodiazepine receptor binding in the rat brain: an autoradiography study. Journal of Pharmacy and Pharmacology, 2010, 58, 1243-1248.	1.2	3
482	Receptors with low affinity for neurosteroids and GABA contribute to tonic inhibition of granule cells in epileptic animals. Neurobiology of Disease, 2010, 40, 490-501.	2.1	56
483	Preclinical and clinical pharmacology of the GABAA receptor α5 subtype-selective inverse agonist α5IA. , 2010, 125, 11-26.		101
484	Oxymatrine–carbenoxolone sodium inclusion compound induces antinociception and increases the expression of GABAAα1 receptors in mice. European Journal of Pharmacology, 2010, 626, 244-249.	1.7	7
485	Cood night and good luck: Norepinephrine in sleep pharmacology. Biochemical Pharmacology, 2010, 79, 801-809.	2.0	139
486	Influence of 17β-estradiol and progesterone on GABAergic gene expression in the arcuate nucleus, amygdala and hippocampus of the rhesus macaque. Brain Research, 2010, 1307, 28-42.	1.1	32
487	Prevention of apnea-induced apoptosis in NREM- and REM-generating nuclei of adult guinea pigs. Brain Research, 2010, 1347, 161-169.	1.1	3
488	Differential localization of γâ€aminobutyric acid type a and glycine receptor subunits and gephyrin in the human pons, medulla oblongata and uppermost cervical segment of the spinal cord: An immunohistochemical study. Journal of Comparative Neurology, 2010, 518, 305-328.	0.9	48
489	Design, synthesis, and subtype selectivity of 3,6-disubstituted β-carbolines at Bz/GABA(A)ergic receptors. SAR and studies directed toward agents for treatment of alcohol abuse. Bioorganic and Medicinal Chemistry, 2010, 18, 7548-7564.	1.4	30
490	Remarkable selectivity of the in vivo binding of [3H]Ro15-4513 to α5 subtype of benzodiazepine receptor in the living mouse brain. Synapse, 2010, 64, 928-936.	0.6	8
491	A Polymorphism in <i>GABRA2</i> Is Associated With the Medial Frontal Response to Alcohol Cues in an fMRI Study. Alcoholism: Clinical and Experimental Research, 2010, 34, 2169-2178.	1.4	60

#	Article	IF	CITATIONS
492	New insights into the molecular mechanisms of general anaesthetics. British Journal of Pharmacology, 2010, 161, 288-307.	2.7	84
493	GABA _A receptor subunit alterationâ€dependent diazepam insensitivity in the cerebellum of phospholipase Câ€related inactive protein knockout mice. Journal of Neurochemistry, 2010, 114, 302-310.	2.1	10
494	Quantitative localisation of synaptic and extrasynaptic GABA _A receptor subunits on hippocampal pyramidal cells by freezeâ€fracture replica immunolabelling. European Journal of Neuroscience, 2010, 32, 1868-1888.	1.2	131
495	Inhibitory effects of amiloride on the current mediated by native GABA _A receptors in cultured neurons of rat inferior colliculus. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 435-440.	0.9	3
496	GABAA Receptor Channels. , 2010, , 257-282.		1
497	Relevance of sleep neurobiology for cognitive neuroscience and anesthesiology. , 2010, , 1-23.		4
498	Benzodiazepine Receptor Agonists Cause Drug-Specific and State-Specific Alterations in EEG Power and Acetylcholine Release in Rat Pontine Reticular Formation. Sleep, 2010, 33, 909-918.	0.6	29
499	Amygdala-Specific Reduction of Â1-GABAA Receptors Disrupts the Anticonvulsant, Locomotor, and Sedative, But Not Anxiolytic, Effects of Benzodiazepines in Mice. Journal of Neuroscience, 2010, 30, 7139-7151.	1.7	34
500	Stoichiometry of Expressed α4β2δγ-Aminobutyric Acid Type A Receptors Depends on the Ratio of Subunit cDNA Transfected. Journal of Biological Chemistry, 2010, 285, 14187-14194.	1.6	30
501	Limiting Activity at β ₁ -Subunit-Containing GABA _A Receptor Subtypes Reduces Ataxia. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 1040-1053.	1.3	38
502	α5GABA _A Receptor Activity Sets the Threshold for Long-Term Potentiation and Constrains Hippocampus-Dependent Memory. Journal of Neuroscience, 2010, 30, 5269-5282.	1.7	156
503	Protein Kinase C Phosphorylation Regulates Membrane Insertion of GABAA Receptor Subtypes That Mediate Tonic Inhibition. Journal of Biological Chemistry, 2010, 285, 41795-41805.	1.6	87
504	Allosteric Modulation of $\hat{I} \pm \hat{I}^2 \hat{I}^2$ GABAA Receptors. Pharmaceuticals, 2010, 3, 3461-3477.	1.7	8
505	Regulation of GABA _A Receptor Subunit Expression by Pharmacological Agents. Pharmacological Reviews, 2010, 62, 97-135.	7.1	182
506	Cocaine effects on mouse incentive-learning and human addiction are linked to α2 subunit-containing GABA _A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2289-2294.	3.3	91
507	Enhancement of GABA _A -current run-down in the hippocampus occurs at the first spontaneous seizure in a model of temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3180-3185.	3.3	49
508	Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8410-8415.	3.3	134
509	GABAA Receptor α1 Subunit Mutation A322D Associated with Autosomal Dominant Juvenile Myoclonic Epilepsy Reduces the Expression and Alters the Composition of Wild Type GABAA Receptors. Journal of Biological Chemistry, 2010, 285, 26390-26405.	1.6	39

#	Article	IF	CITATIONS
510	GABAergic Dysfunction in Essential Tremor: An ¹¹ C-Flumazenil PET Study. Journal of Nuclear Medicine, 2010, 51, 1030-1035.	2.8	122
511	Homeostatic Regulation of Synaptic Excitability: Tonic GABA _A Receptor Currents Replace <i>I</i> _h in Cortical Pyramidal Neurons of HCN1 Knock-Out Mice. Journal of Neuroscience, 2010, 30, 2611-2622.	1.7	59
512	Prototypic GABAA Receptor Agonist Muscimol Acts Preferentially Through Forebrain High-Affinity Binding Sites. Neuropsychopharmacology, 2010, 35, 999-1007.	2.8	63
513	Insights into the structure and pharmacology of GABA _A receptors. Future Medicinal Chemistry, 2010, 2, 859-875.	1.1	22
514	Neuropharmacology of Sleep and Wakefulness. Sleep Medicine Clinics, 2010, 5, 513-528.	1.2	87
515	Behavioral and Neural Analysis of GABA in the Acquisition, Consolidation, Reconsolidation, and Extinction of Fear Memory. Neuropsychopharmacology, 2010, 35, 1625-1652.	2.8	178
516	The ventral hippocampus and the lateral septum work in tandem to regulate rats' open-arm exploration in the elevated plus-maze. Physiology and Behavior, 2010, 101, 141-152.	1.0	56
517	Novel positive allosteric modulators of GABAA receptors: Do subtle differences in activity at α1 plus α5 versus α2 plus α3 subunits account for dissimilarities in behavioral effects in rats?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 376-386.	2.5	43
518	Elevated BDNF after Cocaine Withdrawal Facilitates LTP in Medial Prefrontal Cortex by Suppressing GABA Inhibition. Neuron, 2010, 67, 821-833.	3.8	118
519	Oxytocin enhances the inhibitory effects of diazepam in the rat central medial amygdala. Neuropharmacology, 2010, 58, 62-68.	2.0	37
520	Zolpidem modulation of phasic and tonic GABA currents in the rat dorsal motor nucleus of the vagus. Neuropharmacology, 2010, 58, 1220-1227.	2.0	29
521	Developmental regulation and neuroprotective effects of striatal tonic GABAA currents. Neuroscience, 2010, 167, 644-655.	1.1	76
522	The role of dopamine receptors in ventrolateral orbital cortex-evoked anti-nociception in a rat model of neuropathic pain. Neuroscience, 2010, 169, 1872-1880.	1.1	32
523	Neurosteroid withdrawal regulates GABA-A receptor α4-subunit expression and seizure susceptibility by activation of progesterone receptor-independent early growth response factor-3 pathway. Neuroscience, 2010, 170, 865-880.	1.1	74
524	GABAergic actions on cholinergic laterodorsal tegmental neurons: implications for control of behavioral state. Neuroscience, 2010, 171, 812-829.	1.1	17
525	Trace and contextual fear conditioning is enhanced in mice lacking the α4 subunit of the GABAA receptor. Neurobiology of Learning and Memory, 2010, 93, 383-387.	1.0	62
526	The neurosteroid dehydroepiandrosterone (DHEA) and its metabolites alter 5-HT neuronal activity via modulation of GABAA receptors. Journal of Psychopharmacology, 2010, 24, 1717-1724.	2.0	33
527	Dihydropyrimidinone Positive Modulation of δ-Subunit-Containing γ-Aminobutyric Acid Type A Receptors, Including an Epilepsy-Linked Mutant Variant. Biochemistry, 2010, 49, 4841-4851.	1.2	64

			0
#	ARTICLE	IF	CITATIONS
529	Searching for perfect sleep: the continuing evolution of GABA _A receptor modulators as hypnotics. Journal of Psychopharmacology, 2010, 24, 1601-1612.	2.0	134
530	Neurosteroidogenesis Is Required for the Physiological Response to Stress: Role of Neurosteroid-Sensitive GABA _A Receptors. Journal of Neuroscience, 2011, 31, 18198-18210.	1.7	223
531	Properties of Slow Oscillation during Slow-Wave Sleep and Anesthesia in Cats. Journal of Neuroscience, 2011, 31, 14998-15008.	1.7	201
532	Preclinical and clinical pharmacology of TPA023B, a GABA _A receptor α2/α3 subtype-selective partial agonist. Journal of Psychopharmacology, 2011, 25, 329-344.	2.0	47
533	Microinjection of valproic acid into the ventrolateral orbital cortex exerts an antidepressant-like effect in the rat forced swim test. Brain Research Bulletin, 2011, 85, 153-157.	1.4	23
534	The sedative but not the memory-blocking properties of ethanol are modulated by α5-subunit-containing γ-aminobutyric acid type A receptors. Behavioural Brain Research, 2011, 217, 379-385.	1.2	10
535	Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nature Reviews Drug Discovery, 2011, 10, 685-697.	21.5	579
536	α5GABAA receptors regulate hippocampal sharp wave–ripple activity in vitro. Neuropharmacology, 2011, 60, 662-673.	2.0	27
537	The wake-promoting transmitter histamine preferentially enhances alpha-4 subunit-containing GABAA receptors. Neuropharmacology, 2011, 61, 747-752.	2.0	16
538	Enhanced GABAergic tone in the ventral pallidum: memory of unpleasant experiences?. Neuroscience, 2011, 196, 131-146.	1.1	23
539	Differential effects of etifoxine on anxiety-like behaviour and convulsions in BALB/cByJ and C57BL/6J mice: Any relation to overexpression of central GABAA receptor beta2 subunits?. European Neuropsychopharmacology, 2011, 21, 457-470.	0.3	20
540	EEG Power Spectra Response to a 4-h Phase Advance and Gaboxadol Treatment in 822 Men and Women. Journal of Clinical Sleep Medicine, 2011, 07, 493-501.	1.4	13
541	GABAergic modulation of REM sleep. , 2011, , 206-213.		2
542	Neurosteroids and GABA-A Receptor Function. Frontiers in Endocrinology, 2011, 2, 44.	1.5	111
543	Binge Drinking: In Search of its Molecular Target via the GABAA Receptor. Frontiers in Neuroscience, 2011, 5, 123.	1.4	16
544	Extrasynaptic GABAA Receptors and Tonic Inhibition in Rat Auditory Thalamus. PLoS ONE, 2011, 6, e16508.	1.1	48
545	GABAA Receptor Subtype-Selective Modulators. II. α5-Selective Inverse Agonists for Cognition Enhancement. Current Topics in Medicinal Chemistry, 2011, 11, 1203-1214.	1.0	74
546	Differential localization of GABAA receptor subunits in relation to rat striatopallidal and pallidopallidal synapses. European Journal of Neuroscience, 2011, 33, 868-878.	1.2	25

#	Article	IF	CITATIONS
547	Non-neuronal, slow GABA signalling in the ventrobasal thalamus targets δ-subunit-containing GABAA receptors. European Journal of Neuroscience, 2011, 33, 1471-1482.	1.2	54
548	Localization of GABAâ€A receptor alpha subunits on neurochemically distinct cell types in the rat locus coeruleus. European Journal of Neuroscience, 2011, 34, 250-262.	1.2	29
549	Implications for treatment: GABAA receptors in aging, Down syndrome and Alzheimer's disease. Journal of Neurochemistry, 2011, 117, no-no.	2.1	137
550	Retrochalcone derivatives are positive allosteric modulators at synaptic and extrasynaptic GABA _A receptors <i>in vitro</i> . British Journal of Pharmacology, 2011, 162, 1326-1339.	2.7	11
551	Alteration of Ethanol Drinking in Mice via Modulation of the GABAA Receptor with Ganaxolone, Finasteride, and Gaboxadol. Alcoholism: Clinical and Experimental Research, 2011, 35, 1994-2007.	1.4	33
552	Ageâ€dependent remodelling of inhibitory synapses onto hippocampal CA1 oriensâ€lacunosum moleculare interneurons. Journal of Physiology, 2011, 589, 4885-4901.	1.3	30
553	The role of dopamine receptors in ventrolateral orbital cortex-evoked antinociception in a rat formalin test model. European Journal of Pharmacology, 2011, 657, 97-103.	1.7	27
554	Kainic acid-induced early genes activation and neuronal death in the medial extended amygdala of rats. Experimental and Toxicologic Pathology, 2011, 63, 291-299.	2.1	11
555	SLC6 Neurotransmitter Transporters: Structure, Function, and Regulation. Pharmacological Reviews, 2011, 63, 585-640.	7.1	702
556	Extrasynaptic GABAA receptor activation reverses recognition memory deficits in an animal model of schizophrenia. Psychopharmacology, 2011, 214, 403-413.	1.5	40
557	Identification and characterization of anesthetic targets by mouse molecular genetics approaches. Canadian Journal of Anaesthesia, 2011, 58, 178-190.	0.7	18
558	Detection of conspecific pheromones elicits fos expression in GABA and calcium-binding cells of the rat vomeronasal system–medial extended amygdala. Journal of Physiology and Biochemistry, 2011, 67, 71-85.	1.3	16
559	Neurexins and neuroligins: new partners for GABAA receptors at synapses. Frontiers in Biology, 2011, 6, 251.	0.7	0
560	Use of multicomponent reactions in developing small-molecule tools to study GABAAreceptor mechanism and function. Future Medicinal Chemistry, 2011, 3, 243-250.	1.1	4
561	Genetic Association of Recovery from Eating Disorders: The Role of GABA Receptor SNPs. Neuropsychopharmacology, 2011, 36, 2222-2232.	2.8	36
562	GABAA Receptor Subtype-Selective Modulators. I. α2/α3-Selective Agonists as Non-Sedating Anxiolytics. Current Topics in Medicinal Chemistry, 2011, 11, 1176-1202.	1.0	116
563	Enhancement of GABAergic Activity: Neuropharmacological Effects of Benzodiazepines and Therapeutic Use in Anesthesiology. Pharmacological Reviews, 2011, 63, 243-267.	7.1	107
564	Allosteric Modulation of Related Ligand-Gated Ion Channels Synergistically Induces Long-Term Potentiation in the Hippocampus and Enhances Cognition. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 908-915.	1.3	16

#	Article	IF	CITATIONS
565	Lamina-Specific Alterations in Cortical GABAA Receptor Subunit Expression in Schizophrenia. Cerebral Cortex, 2011, 21, 999-1011.	1.6	115
566	Molecular basis for the high THIP/gaboxadol sensitivity of extrasynaptic GABA _A receptors. Journal of Neurophysiology, 2011, 106, 2057-2064.	0.9	146
567	Profound Desensitization by Ambient GABA Limits Activation of δ-Containing GABA _A Receptors during Spillover. Journal of Neuroscience, 2011, 31, 753-763.	1.7	87
568	Regulation of GABAA Receptor Dynamics by Interaction with Purinergic P2X2 Receptors. Journal of Biological Chemistry, 2011, 286, 14455-14468.	1.6	31
569	Endogenous GABA Levels in the Pontine Reticular Formation Are Greater during Wakefulness than during Rapid Eye Movement Sleep. Journal of Neuroscience, 2011, 31, 2649-2656.	1.7	50
570	Extrasynaptic Î'-containing GABA _A receptors in the nucleus accumbens dorsomedial shell contribute to alcohol intake. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4459-4464.	3.3	80
571	Loss of Ethanol Conditioned Taste Aversion and Motor Stimulation in Knockin Mice with Ethanol-Insensitive α2-Containing GABAA Receptors. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 145-154.	1.3	62
572	Binge alcohol drinking is associated with GABA _A α2-regulated Toll-like receptor 4 (TLR4) expression in the central amygdala. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4465-4470.	3.3	146
573	Chronic Treatment with a Promnesiant GABA-A -Selective Inverse Agonist Increases Immediate Early Genes Expression during Memory Processing in Mice and Rectifies Their Expression Levels in a Down Syndrome Mouse Model. Advances in Pharmacological Sciences, 2011, 2011, 1-11.	3.7	51
574	Specific targeting of the GABA-A receptor α5 subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice. Journal of Psychopharmacology, 2011, 25, 1030-1042.	2.0	153
575	Probing GABA Receptor Function in Schizophrenia with Iomazenil. Neuropsychopharmacology, 2011, 36, 677-683.	2.8	34
576	Augmentation of Tonic GABA _A Inhibition in Absence Epilepsy: Therapeutic Value of Inverse Agonists at Extrasynaptic GABA _A Receptors. Advances in Pharmacological Sciences, 2011, 2011, 1-12.	3.7	32
577	Neurosteroid modulation of benzodiazepine-sensitive GABAA tonic inhibition in supraoptic magnocellular neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R1578-R1587.	0.9	14
578	Changes in ventral respiratory column GABA _a R ε- and Î^-subunits during hibernation mediate resistance to depression by EtOH and pentobarbital. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R272-R283.	0.9	8
579	GABA _A receptors increase excitability and conduction velocity of cerebellar parallel fiber axons. Journal of Neurophysiology, 2012, 107, 2958-2970.	0.9	26
580	Differential Roles of GABAA Receptor Subtypes in Benzodiazepine-Induced Enhancement of Brain-Stimulation Reward. Neuropsychopharmacology, 2012, 37, 2531-2540.	2.8	45
581	A [¹¹ C]Ro15 4513 PET study suggests that alcohol dependence in man is associated with reduced α5 benzodiazepine receptors in limbic regions. Journal of Psychopharmacology, 2012, 26, 273-281.	2.0	47
582	Oxysophoridine through Intrathecal Injection Induces Antinociception and Increases the Expression of the GABAAα1 Receptor in the Spinal Cord of Mice. Planta Medica, 2012, 78, 874-880. ———————————————————————————————————	0.7	14

#	Article	IF	CITATIONS
583	Tonic GABA _A receptor conductance in medial subnucleus of the tractus solitarius neurons is inhibited by activation of μ-opioid receptors. Journal of Neurophysiology, 2012, 107, 1022-1031.	0.9	18
584	α4βδ GABA _A receptors are high-affinity targets for γ-hydroxybutyric acid (GHB). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13404-13409.	3.3	87
585	Tonic Inhibition Enhances Fidelity of Sensory Information Transmission in the Cerebellar Cortex. Journal of Neuroscience, 2012, 32, 11132-11143.	1.7	135
586	Tonic Inhibition in Principal Cells of the Amygdala: A Central Role for Â3 Subunit-Containing GABAA Receptors. Journal of Neuroscience, 2012, 32, 8611-8619.	1.7	80
587	Setting the Time Course of Inhibitory Synaptic Currents by Mixing Multiple GABAA Receptor Subunit Isoforms. Journal of Neuroscience, 2012, 32, 5853-5867.	1.7	83
588	GABA Potency at GABAA Receptors Found in Synaptic and Extrasynaptic Zones. Frontiers in Cellular Neuroscience, 2011, 6, 1.	1.8	134
589	Estrous cycle variations in GABAA receptor phosphorylation enable rapid modulation by anabolic androgenic steroids in the medial preoptic area. Neuroscience, 2012, 226, 397-410.	1.1	8
590	Memory Deficits Induced by Inflammation Are Regulated by α5-Subunit-Containing GABAA Receptors. Cell Reports, 2012, 2, 488-496.	2.9	147
591	Synergistic antidepressant-like action of gaboxadol and escitalopram. European Neuropsychopharmacology, 2012, 22, 751-760.	0.3	11
592	Modulation of GABAergic Synaptic Currents and Current Responses by α-Thujone and Dihydroumbellulone. Journal of Natural Products, 2012, 75, 622-629.	1.5	19
593	Neuropharmacology of Sleep and Wakefulness. Sleep Medicine Clinics, 2012, 7, 469-486.	1.2	30
594	Extrasynaptic GABAA Receptors: Their Function in the CNS and Implications for Disease. Neuron, 2012, 73, 23-34.	3.8	568
595	Anxiety and depression: Mouse genetics and pharmacological approaches to the role of GABAA receptor subtypes. Neuropharmacology, 2012, 62, 54-62.	2.0	93
596	Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice. Neuropharmacology, 2012, 63, 250-258.	2.0	77
597	Stressor exposure of male and female juvenile mice influences later responses to stressors: Modulation of GABAA receptor subunit mRNA expression. Neuroscience, 2012, 215, 114-126.	1.1	16
598	A novel GABA _A receptor pharmacology: drugs interacting with the α ⁺ β ^{â€} interface. British Journal of Pharmacology, 2012, 166, 476-485.	2.7	75
599	Gabra5-gene haplotype block associated with behavioral properties of the full agonist benzodiazepine chlordiazepoxide. Behavioural Brain Research, 2012, 233, 474-482.	1.2	4
600	Development of new carbon-11 labelled radiotracers for imaging GABAA- and GABAB-benzodiazepine receptors. Bioorganic and Medicinal Chemistry, 2012, 20, 4482-4488.	1.4	25

#	Article	IF	CITATIONS
601	An anxiogenic drug, FG 7142, induced an increase in mRNA of Btg2 and Adamts1 in the hippocampus of adult mice. Behavioral and Brain Functions, 2012, 8, 43.	1.4	5
602	GABA _A receptor modulation by neurosteroids in models of temporal lobe epilepsies. Epilepsia, 2012, 53, 89-101.	2.6	49
603	Differential effect of transient global ischaemia on the levels of γâ€aminobutyric acid type A (GABA _A) receptor subunit mRNAs in young and older rats. Neuropathology and Applied Neurobiology, 2012, 38, 710-722.	1.8	6
604	Falcarindiol Allosterically Modulates GABAergic Currents in Cultured Rat Hippocampal Neurons. Journal of Natural Products, 2012, 75, 610-616.	1.5	19
605	Targeting inhibitory neurotransmission in tinnitus. Brain Research, 2012, 1485, 77-87.	1.1	76
606	Dysfunctional hippocampal activity affects emotion and cognition in mood disorders. Brain Research, 2012, 1476, 58-70.	1.1	112
607	Positive allosteric modulation of GABA-A receptors reduces capsaicin-induced primary and secondary hypersensitivity in rats. Neuropharmacology, 2012, 63, 1360-1367.	2.0	13
608	EEG spectral power density profiles during NREM sleep for gaboxadol and zolpidem in patients with primary insomnia. Journal of Psychopharmacology, 2012, 26, 1081-1087.	2.0	34
609	Down-Regulation of GABAA Receptor via Promiscuity with the Vasoactive Peptide Urotensin II Receptor. Potential Involvement in Astrocyte Plasticity. PLoS ONE, 2012, 7, e36319.	1.1	11
610	The Biochemical Anatomy of Cortical Inhibitory Synapses. PLoS ONE, 2012, 7, e39572.	1.1	50
611	Organization of GABAergic Synaptic Circuits in the Rat Ventral Tegmental Area. PLoS ONE, 2012, 7, e46250.	1.1	25
612	Deletion of the gabra2 Gene Results in Hypersensitivity to the Acute Effects of Ethanol but Does Not Alter Ethanol Self Administration. PLoS ONE, 2012, 7, e47135.	1.1	21
613	The reciprocal regulation of stress hormones and GABAA receptors. Frontiers in Cellular Neuroscience, 2011, 6, 4.	1.8	88
614	Functional expression of the GABAA receptor α2 and α3 subunits at synapses between intercalated medial paracapsular neurons of mouse amygdala. Frontiers in Neural Circuits, 2012, 6, 32.	1.4	16
615	GABA-A receptor genes do not play a role in genetics of Lesch's typology in Caucasian subjects. Archives of Medical Science, 2012, 2, 357-361.	0.4	5
616	GABA Site Agonist Gaboxadol Induces Addiction-Predicting Persistent Changes in Ventral Tegmental Area Dopamine Neurons But Is Not Rewarding in Mice or Baboons. Journal of Neuroscience, 2012, 32, 5310-5320.	1.7	36
617	Longâ€lasting enhancement of GABA _A receptor expression in newborn dentate granule cells after earlyâ€life febrile seizures. Developmental Neurobiology, 2012, 72, 1516-1527.	1.5	14
618	Expression of GABAï•receptors in the neostriatum: localization in aspiny, medium spiny neurons and GFAPâ€positive cells. Journal of Neurochemistry, 2012, 122, 900-910.	2.1	22

#	Article	IF	Citations
619	Chronic blockade of cannabinoid CB ₂ receptors induces anxiolyticâ€like actions associated with alterations in GABA _A receptors. British Journal of Pharmacology, 2012, 165, 951-964.	2.7	116
620	Anabolic Androgenic Steroid Abuse: Multiple Mechanisms of Regulation of GABAergic Synapses in Neuroendocrine Control Regions of the Rodent Forebrain. Journal of Neuroendocrinology, 2012, 24, 202-214.	1.2	26
621	Influences on blockade by <i>t</i> â€butylbicycloâ€phosphoroâ€ŧhionate of GABA _A receptor spontaneous gating, agonist activation and desensitization. Journal of Physiology, 2012, 590, 163-178.	1.3	16
622	Knockout of the γ-aminobutyric acid receptor subunit α4 reduces functional δ-containing extrasynaptic receptors in hippocampal pyramidal cells at the onset of puberty. Brain Research, 2012, 1450, 11-23.	1.1	28
623	Temporal change in NMDA receptor signaling and GABAA receptor exypression in rat caudal vestibular nucleus during motion sickness habituation. Brain Research, 2012, 1461, 30-40.	1.1	15
624	Regulation of the surface expression of α4β2δ GABAA receptors by high efficacy states. Brain Research, 2012, 1463, 1-20.	1.1	27
626	The GABRG2 nonsense mutation, Q40X, associated with Dravet syndrome activated NMD and generated a truncated subunit that was partially rescued by aminoglycoside-induced stop codon read-through. Neurobiology of Disease, 2012, 48, 115-123.	2.1	43
627	Lack of an endogenous GABA _A receptorâ€mediated tonic current in hypoglossal motoneurons. Journal of Physiology, 2012, 590, 2965-2976.	1.3	15
628	Dorsal hippocampal cannabinoid CB1 receptors mediate the interactive effects of nicotine and ethanol on passive avoidance learning in mice. Addiction Biology, 2013, 18, 241-251.	1.4	26
629	Weaker control of the electrical properties of cerebellar granule cells by tonically active GABAA receptors in the Ts65Dn mouse model of Down's syndrome. Molecular Brain, 2013, 6, 33.	1.3	12
630	Effects of zolpidem on sedation, anxiety, and memory in the plus-maze discriminative avoidance task. Psychopharmacology, 2013, 226, 459-474.	1.5	15
631	Determination of GABAAα1 and GABAB1 receptor subunits expression in tissues of gilts during the late gestation. Molecular Biology Reports, 2013, 40, 1377-1384.	1.0	3
632	α2 GABAA receptor sub-units in the ventral hippocampus and α5 GABAA receptor sub-units in the dorsal hippocampus mediate anxiety and fear memory. Neuroscience, 2013, 252, 169-177.	1.1	24
633	Tonic <scp>GABA</scp> inhibition in hippocampal dentate granule cells: its regulation and function in temporal lobe epilepsies. Acta Physiologica, 2013, 209, 199-211.	1.8	14
634	Potency of GABA at human recombinant GABAA receptors expressed in Xenopus oocytes: a mini review. Amino Acids, 2013, 44, 1139-1149.	1.2	58
635	GABAA receptor membrane insertion rates are specified by their subunit composition. Molecular and Cellular Neurosciences, 2013, 56, 201-211.	1.0	7
636	Effects of time of estrogen deprivation on anxiety-like behavior and GABAA receptor plasticity in ovariectomized rats. Behavioural Brain Research, 2013, 246, 86-93.	1.2	22
637	The parvalbumin-positive interneurons in the mouse dentate gyrus express GABAA receptor subunits alpha1, beta2, and delta along their extrasynaptic cell membrane. Neuroscience, 2013, 254, 80-96.	1.1	51

#	Article	IF	CITATIONS
638	2-Guanidine-4-methylquinazoline acts as a novel competitive antagonist of A type γ-aminobutyric acid receptors. Neuropharmacology, 2013, 75, 126-137.	2.0	14
639	Monocyte Chemoattractant Protein-1 upregulates GABA-induced current: Evidence of modified GABAA subunit composition in cortical neurons from the G93A mouse model of Amyotrophic Lateral Sclerosis. Neuropharmacology, 2013, 73, 247-260.	2.0	10
640	The neurobiology of alcohol consumption and alcoholism: An integrative history. Pharmacology Biochemistry and Behavior, 2013, 113, 20-37.	1.3	117
641	Mutations in the Gabrb1 gene promote alcohol consumption through increased tonic inhibition. Nature Communications, 2013, 4, 2816.	5.8	44
642	GABAA receptors implicated in REM sleep control express a benzodiazepine binding site. Brain Research, 2013, 1527, 131-140.	1.1	5
643	Modulation of haloperidol-induced catalepsy in rats by GABAergic neural substrate in the inferior colliculus. Neuroscience, 2013, 255, 212-218.	1.1	20
644	Benzodiazepines Counteract Rostral Anterior Cingulate Cortex Activation Induced by Cholecystokinin-Tetrapeptide in Humans. Biological Psychiatry, 2013, 73, 337-344.	0.7	18
645	Linking GABAA receptor subunits to alcohol-induced conditioned taste aversion and recovery from acute alcohol intoxication. Neuropharmacology, 2013, 67, 46-56.	2.0	34
646	Neurosteroid interactions with synaptic and extrasynaptic GABAA receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology, 2013, 230, 151-188.	1.5	199
647	Imaging the Role of GABA in Movement Disorders. Current Neurology and Neuroscience Reports, 2013, 13, 385.	2.0	20
648	Subtype selectivity of α+βâ^' site ligands of <scp>GABA_A</scp> receptors: identification of the first highly specific positive modulators at α6β2/3γ2 receptors. British Journal of Pharmacology, 2013, 169, 384-399.	2.7	48
649	GABA _B Receptors Regulate Extrasynaptic GABA _A Receptors. Journal of Neuroscience, 2013, 33, 3780-3785.	1.7	90
650	Stress, seizures, and hypothalamic–pituitary–adrenal axis targets for the treatment of epilepsy. Epilepsy and Behavior, 2013, 26, 352-362.	0.9	131
651	Reduced GABA _A Receptor-Mediated Tonic Inhibition in Aged Rat Auditory Thalamus. Journal of Neuroscience, 2013, 33, 1218-1227.	1.7	72
652	Altered GABAergic and glutamatergic activity within the rat hippocampus and amygdala in rats subjected to repeated corticosterone administration but not restraint stress. Neuroscience, 2013, 231, 38-48.	1.1	44
653	The influence of stress at puberty on mood and learning: Role of the α4βδ GABAA receptor. Neuroscience, 2013, 249, 192-213.	1.1	34
654	A stress steroid triggers anxiety via increased expression of α4βδ GABAA receptors in methamphetamine dependence. Neuroscience, 2013, 254, 452-475.	1.1	19
655	Benzodiazepine-induced spatial learning deficits in rats are regulated by the degree of modulation of α1 GABAA receptors. European Neuropsychopharmacology, 2013, 23, 390-399.	0.3	10

#	Article	IF	CITATIONS
656	The role of α2 adrenoceptor in mediating noradrenaline action in the ventrolateral orbital cortex on allodynia following spared nerve injury. Experimental Neurology, 2013, 248, 381-386.	2.0	20
657	Midazolam impairs acquisition and retrieval, but not consolidation of reference memory in the Morris water maze. Behavioural Brain Research, 2013, 241, 198-205.	1.2	20
658	Allopregnanolone Elevations Following Pregnenolone Administration Are Associated with Enhanced Activation of Emotion Regulation Neurocircuits. Biological Psychiatry, 2013, 73, 1045-1053.	0.7	84
659	Age-related GABAA receptor changes in rat auditory cortex. Neurobiology of Aging, 2013, 34, 1486-1496.	1.5	68
660	PWZ-029, an inverse agonist selective for α5 GABAA receptors, improves object recognition, but not water-maze memory in normal and scopolamine-treated rats. Behavioural Brain Research, 2013, 241, 206-213.	1.2	40
661	Patterns of mRNA and protein expression for 12 GABAA receptor subunits in the mouse brain. Neuroscience, 2013, 236, 345-372.	1.1	201
662	Novel Subunit-Specific Tonic GABA Currents and Differential Effects of Ethanol in the Central Amygdala of CRF Receptor-1 Reporter Mice. Journal of Neuroscience, 2013, 33, 3284-3298.	1.7	88
663	Endogenous Positive Allosteric Modulation of GABAA Receptors by Diazepam binding inhibitor. Neuron, 2013, 78, 1063-1074.	3.8	79
664	A study of subunit selectivity, mechanism and site of action of the delta selective compound 2 (<scp>DS2</scp>) at human recombinant and rodent native <scp>GABA_A</scp> receptors. British Journal of Pharmacology, 2013, 168, 1118-1132.	2.7	71
665	Alpha-asarone from Acorus gramineus alleviates epilepsy by modulating A-Type GABA receptors. Neuropharmacology, 2013, 65, 1-11.	2.0	62
666	TNF-α Downregulates Inhibitory Neurotransmission through Protein Phosphatase 1-Dependent Trafficking of GABA _A Receptors. Journal of Neuroscience, 2013, 33, 15879-15893.	1.7	177
667	Dopamine D2 Receptors Regulate Collateral Inhibition between Striatal Medium Spiny Neurons. Journal of Neuroscience, 2013, 33, 14075-14086.	1.7	40
668	Estrous Cycle Regulation of Extrasynaptic <i>l̂´</i> -Containing GABA _A Receptor-Mediated Tonic Inhibition and Limbic Epileptogenesis. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 146-160.	1.3	84
669	Inhibitory collaterals in genetically identified medium spiny neurons in mouse primary corticostriatal cultures. Physiological Reports, 2013, 1, e00164.	0.7	7
670	Bicuculline―and neurosteroidâ€sensitive tonic chloride current in rat hypoglossal motoneurons and atypical dual effect of <scp>SR</scp> 95531. European Journal of Neuroscience, 2013, 37, 366-379.	1.2	5
671	Protein kinase <scp>C</scp> regulates tonic <scp>GABA_A</scp> receptorâ€mediated inhibition in the hippocampus and thalamus. European Journal of Neuroscience, 2013, 38, 3408-3423.	1.2	34
672	The orthosteric <scp>GABA_A</scp> receptor ligand <scp>T</scp> hioâ€4â€ <scp>PIOL</scp> displays distinctly different functional properties at synaptic and extrasynaptic receptors. British Journal of Pharmacology, 2013, 170, 919-932.	2.7	14
673	<scp>GABA</scp> _A , <scp>NMDA</scp> and m <scp>G</scp> lu2 receptors tonically regulate inhibition and excitation in the thalamic reticular nucleus. European Journal of Neuroscience, 2013, 37, 850-859.	1.2	28

ARTICLE IF CITATIONS # Tyrosine Phosphorylation of GABAA Receptor Â2-Subunit Regulates Tonic and Phasic Inhibition in the 674 1.7 15 Thalamus. Journal of Neuroscience, 2013, 33, 12718-12727. Oxysophocarpine induces anti-nociception and increases the expression of GABAAα1 receptors in mice. 1.1 Molecular Medicine Reports, 2013, 7, 1819-1825. Acutely increasing IGABAA receptor activity impairs memory and inhibits synaptic plasticity in the 676 1.4 43 hippocampus. Frontiers in Neural Circuits, 2013, 7, 146. The Effects of Eszopiclone on Sleep Spindles and Memory Consolidation in Schizophrenia: A 101 Randomized Placebo-Controlled Trial. Sleep, 2013, 36, 1369-1376. A Reinforcing Circuit Action of Extrasynaptic GABAA Receptor Modulators on Cerebellar Granule Cell 678 1.1 10 Inhibition. PLoS ONE, 2013, 8, e72976. \hat{I}^3 -Hydroxybutyric Acid (GHB) Is Not an Agonist of Extrasynaptic GABAA Receptors. PLoS ONE, 2013, 8, 679 1.1 e79062. Alterations in Brain-Derived Neurotrophic Factor in the Mouse Hippocampus Following Acute but Not 680 1.1 35 Repeated Benzodiazepine Treatment. PLoS ONE, 2013, 8, e84806. α4βδ GABAA receptors and tonic inhibitory current during adolescence: effects on mood and synaptic 1.4 29 plasticity. Frontiers in Neural Circuits, 2013, 7, 135. Hyperactivation of the habenula as a link between depression and sleep disturbance. Frontiers in 682 1.0 60 Human Neuroscience, 2013, 7, 826. Synaptic and cellular profile of neurons in the lateral habenula. Frontiers in Human Neuroscience, 1.0 2013, 7, 860. Therapeutic effects of progesterone and its metabolites in traumatic brain injury may involve 684 1.4 36 non-classical signaling mechanisms. Frontiers in Neuroscience, 2013, 7, 108. Extrasynaptic GABAA Receptors in Rat Pontine Reticular Formation Increase Wakefulness. Sleep, 2013, 36, 337-343. Aberrant Location of Inhibitory Synaptic Marker Proteins in the Hippocampus of Dystrophin-Deficient 686 Mice: Implications for Cognitive Impairment in Duchenne Muscular Dystrophy. PLoS ONE, 2014, 9, 1.1 24 e108364. Zolpidem Reduces Hippocampal Neuronal Activity in Freely Behaving Mice: A Large Scale Calcium Imaging Study with Miniaturized Fluorescence Microscope. PLoS ONE, 2014, 9, e112068. 1.1 29 Revisiting enigmatic cortical calretinin-expressing interneurons. Frontiers in Neuroanatomy, 2014, 8, 688 0.9 70 52. Regulation and functional roles of rebound potentiation at cerebellar stellate cellâ€"Purkinje cell 1.8 synapses. Frontiers in Cellular Neuroscience, 2014, 8, 42. The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain 690 1.4 180 region and cell type. Frontiers in Neural Circuits, 2014, 8, 3. Phasic and Tonic Inhibition are Maintained Respectively by CaMKII and PKA in the Rat Visual Cortex. 691

CITATION REPORT

Korean Journal of Physiology and Pharmacology, 2014, 18, 517.

#	Article	IF	CITATIONS
692	The Role of GABA in Memory Processes. , 2014, , 47-62.		8
693	Monoamine modulation of tonic GABAA inhibition. Reviews in the Neurosciences, 2014, 25, 195-206.	1.4	13
694	Phasic, Nonsynaptic GABA-A Receptor-Mediated Inhibition Entrains Thalamocortical Oscillations. Journal of Neuroscience, 2014, 34, 7137-7147.	1.7	46
695	Synaptic GABAA Receptor Clustering without the Â2 Subunit. Journal of Neuroscience, 2014, 34, 10219-10233.	1.7	15
696	Deleterious Effects of a Low Amount of Ethanol on LTP-Like Plasticity in Human Cortex. Neuropsychopharmacology, 2014, 39, 1508-1518.	2.8	30
697	Antidepressant effects of an inverse agonist selective for α5 GABA-A receptors in the rat forced swim test. Acta Veterinaria, 2014, 64, 52-60.	0.2	7
698	GABAA receptor drugs and neuronal plasticity in reward and aversion: focus on the ventral tegmental area. Frontiers in Pharmacology, 2014, 5, 256.	1.6	23
699	Is GABA neurotransmission enhanced in auditory thalamus relative to inferior colliculus?. Journal of Neurophysiology, 2014, 111, 229-238.	0.9	15
700	Targeted disruption of layer 4 during development increases GABA _A receptor neurotransmission in the neocortex. Journal of Neurophysiology, 2014, 111, 323-335.	0.9	8
701	Effect of genetic and pharmacological blockade of <scp>GABA</scp> receptors on the 5â€ <scp>HT</scp> _{2C} receptor function during stress. Journal of Neurochemistry, 2014, 131, 566-572.	2.1	8
702	Probing α ₄ l²l̃ GABA _A Receptor Heterogeneity: Differential Regional Effects of a Functionally Selective α ₄ l² ₁ l̂/l̂± ₄ l² ₃ l̂ Receptor Agonist on Tonic and Phasic Inhibition in Rat Brain. Journal of Neuroscience, 2014, 34, 16256-16272.	1.7	24
703	Tonic current through <scp>GABA</scp> _A receptors and hyperpolarizationâ€activated cyclic nucleotideâ€gated channels modulate resonance properties of rat subicular pyramidal neurons. European Journal of Neuroscience, 2014, 40, 2241-2254.	1.2	2
704	GABAâ€A receptorâ€dependent mechanisms prevent excessive spine elimination during postnatal maturation of the mouse cortex <i>in vivo</i> . FEBS Letters, 2014, 588, 4551-4560.	1.3	4
705	Little Evidence of a Role for the <i>α</i> 1 <scp>GABA_A</scp> Subunitâ€Containing Receptor in a Rhesus Monkey Model of Alcohol Drinking. Alcoholism: Clinical and Experimental Research, 2014, 38, 1108-1117.	1.4	10
706	Thalamic δ-Subunit Containing GABA _A Receptors Promote Electrocortical Signatures of Deep Non-REM Sleep But Do Not Mediate the Effects of Etomidate at the Thalamus <i>In Vivo</i> . Journal of Neuroscience, 2014, 34, 12253-12266.	1.7	24
707	Neural Basis of Benzodiazepine Reward: Requirement for α2 Containing GABAA Receptors in the Nucleus Accumbens. Neuropsychopharmacology, 2014, 39, 1805-1815.	2.8	35
708	Extrasynaptic GABAA Receptors and Alcohol. , 2014, , 251-265.		0
709	Peptide regulation of specific ligand-receptor interactions of GABA with the plasma membranes of nerve cells. Neurochemical Journal, 2014, 8, 259-264.	0.2	8

#	Article	IF	CITATIONS
710	Enhancement of α5-Containing γ-Aminobutyric Acid Type A Receptors by the Nonimmobilizer 1,2-Dichlorohexafluorocyclobutane (F6) Is Abolished by the β3(N265M) Mutation. Anesthesia and Analgesia, 2014, 119, 1277-1284.	1.1	4
711	Differential GABAergic and Glycinergic Inputs of Inhibitory Interneurons and Purkinje Cells to Principal Cells of the Cerebellar Nuclei. Journal of Neuroscience, 2014, 34, 9418-9431.	1.7	51
712	GABAA Receptor Î \pm and Î ³ Subunits Shape Synaptic Currents via Different Mechanisms. Journal of Biological Chemistry, 2014, 289, 5399-5411.	1.6	79
713	Monogenic models of absence epilepsy. Progress in Brain Research, 2014, 213, 223-252.	0.9	58
714	Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABAA receptor l´subunit in cerebellar granule neurons and delays motor development in rats. Neuropharmacology, 2014, 79, 262-274.	2.0	28
715	GABAA receptors are located in cholinergic terminals in the nucleus pontis oralis of the rat: Implications for REM sleep control. Brain Research, 2014, 1543, 58-64.	1.1	9
716	The role of ovarian hormone-derived neurosteroids on the regulation of GABAA receptors in affective disorders. Psychopharmacology, 2014, 231, 3333-3342.	1.5	69
717	Altered Localization of the δ Subunit of the GABAA Receptor in the Thalamus of α4 Subunit Knockout Mice. Neurochemical Research, 2014, 39, 1104-1117.	1.6	15
718	Increased Voluntary Ethanol Consumption and Changes in Hippocampal Synaptic Plasticity in Isolated C57BL/6J Mice. Neurochemical Research, 2014, 39, 997-1004.	1.6	17
719	The effects of repeated zolpidem treatment on tolerance, withdrawal-like symptoms, and GABAA receptor mRNAs profile expression in mice: Comparison with diazepam. Psychopharmacology, 2014, 231, 2967-2979.	1.5	32
720	Deletion of the GABAA α2-subunit does not alter self administration of cocaine or reinstatement of cocaine seeking. Psychopharmacology, 2014, 231, 2695-2703.	1.5	10
721	Altered thalamic <scp>GABA_A</scp> â€receptor subunit expression in the stargazer mouse model of absence epilepsy. Epilepsia, 2014, 55, 224-232.	2.6	22
722	The role of allopregnanolone in depression and anxiety. Progress in Neurobiology, 2014, 113, 79-87.	2.8	227
723	Gene Expression. , 2014, , 307-325.		4
724	Regional Fos-expression induced by γ-hydroxybutyrate (GHB): Comparison with γ-butyrolactone (GBL) and effects of co-administration of the GABAB antagonist SCH 50911 and putative GHB antagonist NCS-382. Neuroscience, 2014, 277, 700-715.	1.1	7
725	Plasticity of GABA _A receptor-mediated neurotransmission in the nucleus accumbens of alcohol-dependent rats. Journal of Neurophysiology, 2014, 112, 39-50.	0.9	22
726	Strychnine-sensitive glycine receptors on pyramidal neurons in layers II/III of the mouse prefrontal cortex are tonically activated. Journal of Neurophysiology, 2014, 112, 1169-1178.	0.9	42
727	Molecular and Functional Diversity of GABA-A Receptors in the Enteric Nervous System of the Mouse Colon. Journal of Neuroscience, 2014, 34, 10361-10378.	1.7	58

#	Article	IF	CITATIONS
728	Perimenstrual-Like Hormonal Regulation of Extrasynaptic Î'-Containing GABA _A Receptors Mediating Tonic Inhibition and Neurosteroid Sensitivity. Journal of Neuroscience, 2014, 34, 14181-14197.	1.7	55
729	Identification and Characterization of GABAA Receptor Autoantibodies in Autoimmune Encephalitis. Journal of Neuroscience, 2014, 34, 8151-8163.	1.7	108
730	Deficient tonic GABAergic conductance and synaptic balance in the fragile X syndrome amygdala. Journal of Neurophysiology, 2014, 112, 890-902.	0.9	66
731	Tonic Inhibition of Accumbal Spiny Neurons by Extrasynaptic α4βδ GABA _A Receptors Modulates the Actions of Psychostimulants. Journal of Neuroscience, 2014, 34, 823-838.	1.7	57
732	Distribution and quantitative detection of GABAA receptor in Carassius auratus gibelio. Fish Physiology and Biochemistry, 2014, 40, 1301-11.	0.9	3
733	Downregulation of GABAA Receptor Protein Subunits α6, β2, Î′, ε, γ2, Î, and ϲ in Superior Frontal Cortex of Subjects with Autism. Journal of Autism and Developmental Disorders, 2014, 44, 1833-1845.	1.7	81
734	Ethanol-Induced Plasticity of GABAA Receptors in the Basolateral Amygdala. Neurochemical Research, 2014, 39, 1162-1170.	1.6	40
735	Neurosteroids promote phosphorylation and membrane insertion of extrasynaptic GABA _A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7132-7137.	3.3	95
736	GABAA receptor subunit composition and competition at synapses are tuned by GABAB receptor activity. Molecular and Cellular Neurosciences, 2014, 60, 97-107.	1.0	24
737	Curcumol from Rhizoma Curcumae suppresses epileptic seizure by facilitation of GABA(A) receptors. Neuropharmacology, 2014, 81, 244-255.	2.0	31
738	Progesterone and its metabolites as therapeutic targets in psychiatric disorders. Expert Opinion on Therapeutic Targets, 2014, 18, 679-690.	1.5	25
739	Evaluation of neurotransmitter receptor gene expression identifies GABA receptor changes: A follow-up study in antipsychotic-naĀ ve patients with first-episode psychosis. Journal of Psychiatric Research, 2014, 56, 130-136.	1.5	13
740	The α5CABA _A receptor modulates the induction of longâ€ŧerm potentiation at ventral but not dorsal CA1 hippocampal synapses. Synapse, 2014, 68, 394-401.	0.6	14
741	The neurosteroid allopregnanolone impairs object memory and contextual fear memory in male C57BL/6J mice. Hormones and Behavior, 2014, 66, 238-246.	1.0	30
743	Ionotropic GABA receptor antagonism-induced adverse outcome pathways for potential neurotoxicity biomarkers. Biomarkers in Medicine, 2015, 9, 1225-1239.	0.6	17
744	Factoring the brain signatures of anesthesia concentration and level of arousal across individuals. NeuroImage: Clinical, 2015, 9, 385-391.	1.4	32
745	Exposure to 50ÂHz magnetic field modulates <scp>GABA_A</scp> currents in cerebellar granule neurons through an <scp>EP</scp> receptorâ€mediated <scp>PKC</scp> pathway. Journal of Cellular and Molecular Medicine, 2015, 19, 2413-2422.	1.6	5
746	Plic-1, a new target in repressing epileptic seizure by regulation of GABAAR function in patients and a rat model of epilepsy. Clinical Science, 2015, 129, 1207-1223.	1.8	18

#	Article	IF	CITATIONS
747	GABA acting on GABAB receptors located in a medullary pain facilitatory area enhances nociceptive behaviors evoked by intraplantar formalin injection. Pain, 2015, 156, 1555-1565.	2.0	12
748	Influence of agonist induced internalization on [³ H]Ro15â€4513 binding—an application to imaging fluctuations in endogenous GABA with positron emission tomography. Synapse, 2015, 69, 60-65.	0.6	10
749	Multimodal Hallucination (Audio-visual, Kinaesthetic and Scenic) Associated with the Use of Zolpidem. Clinical Psychopharmacology and Neuroscience, 2015, 13, 215-217.	0.9	6
750	Motivational Effects of Methylphenidate are Associated with GABRA2 Variants Conferring Addiction Risk. Frontiers in Behavioral Neuroscience, 2015, 9, 304.	1.0	6
751	Reduction in focal ictal activity following transplantation of MGE interneurons requires expression of the GABAA receptor AŽA±4 subunit. Frontiers in Cellular Neuroscience, 2015, 9, 127.	1.8	12
752	Neuronal gamma-aminobutyric acid (GABA) type A receptors undergo cognate ligand chaperoning in the endoplasmic reticulum by endogenous GABA. Frontiers in Cellular Neuroscience, 2015, 9, 188.	1.8	16
753	Chronic Intermittent Ethanol Regulates Hippocampal GABA(A) Receptor Delta Subunit Gene Expression. Frontiers in Cellular Neuroscience, 2015, 9, 445.	1.8	13
754	Psychostimulants and Movement Disorders. Frontiers in Neurology, 2015, 6, 75.	1.1	47
755	Identification of amino acids involved in histamine potentiation of GABAA receptors. Frontiers in Pharmacology, 2015, 06, 106.	1.6	7
756	Plasticity of GABAA Receptors during Pregnancy and Postpartum Period: From Gene to Function. Neural Plasticity, 2015, 2015, 1-11.	1.0	22
757	Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases. Molecular Pharmacology, 2015, 88, 203-217.	1.0	177
759	Low Doses of Ethanol Enhance LTD-like Plasticity in Human Motor Cortex. Neuropsychopharmacology, 2015, 40, 2969-2980.	2.8	14
760	Localisation and stress-induced plasticity of GABAA receptor subunits within the cellular networks of the mouse dorsal raphe nucleus. Brain Structure and Function, 2015, 220, 2739-2763.	1.2	15
761	Neurosteroids increase tonic GABAergic inhibition in the lateral section of the central amygdala in mice. Journal of Neurophysiology, 2015, 113, 3421-3431.	0.9	10
762	Antibodies to GABA _A receptor $\hat{I}\pm 1$ and $\hat{I}^3 2$ subunits. Neurology, 2015, 84, 1233-1241.	1.5	159
763	Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons. Neuroscience Letters, 2015, 608, 51-56.	1.0	15
764	Disinhibition of olfactory bulb granule cells accelerates odour discrimination in mice. Nature Communications, 2015, 6, 8950.	5.8	55
765	PGE2 Modulates GABAA Receptors via an EP1 Receptor-Mediated Signaling Pathway. Cellular Physiology and Biochemistry, 2015, 36, 1699-1711.	1.1	10

#	ARTICLE	IF	CITATIONS
766	The Diversity of GABAA Receptor Subunit Distribution in the Normal and Huntington's Disease Human Brain1. Advances in Pharmacology, 2015, 73, 223-264.	1.2	27
767	Closing the Gap Between the Molecular and Systemic Actions of Anesthetic Agents. Advances in Pharmacology, 2015, 72, 229-262.	1.2	7
768	Regulation of GABAARs by Phosphorylation. Advances in Pharmacology, 2015, 72, 97-146.	1.2	79
769	Snake neurotoxin α-bungarotoxin is an antagonist at native GABAA receptors. Neuropharmacology, 2015, 93, 28-40.	2.0	33
770	High-throughput synthesis of stable isotope-labeled transmembrane proteins for targeted transmembrane proteomics using a wheat germ cell-free protein synthesis system. Molecular BioSystems, 2015, 11, 361-365.	2.9	22
771	Endozepines. Advances in Pharmacology, 2015, 72, 147-164.	1.2	30
772	GABA receptor subunit distribution and FMRP–mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism. Schizophrenia Research, 2015, 167, 42-56.	1.1	69
773	Expression of GABA receptor subunits in the hippocampus and thalamus after experimental traumatic brain injury. Neuropharmacology, 2015, 88, 122-133.	2.0	70
774	Probing the Mode of Neurotransmitter Binding to GABA Receptors Using Selectively Fluorinated GABA Analogues. Australian Journal of Chemistry, 2015, 68, 23.	0.5	10
775	Dopamine Directly Modulates GABA _A Receptors. Journal of Neuroscience, 2015, 35, 3525-3536.	1.7	46
776	Evaluation for roles of neurosteroids in modulating forebrain mechanisms controlling vasopressin secretion and related phenomena in conscious rats. Neuroscience Research, 2015, 95, 38-50.	1.0	1
777	Age- and Sex-Related Characteristics of Tonic Gaba Currents in the Rat Substantia Nigra Pars Reticulata. Neurochemical Research, 2015, 40, 747-757.	1.6	7
778	Diabetes induces GABA receptor plasticity in murine vagal motor neurons. Journal of Neurophysiology, 2015, 114, 698-706.	0.9	24
779	A novel GABAA alpha 5 receptor inhibitor with therapeutic potential. European Journal of Pharmacology, 2015, 764, 497-507.	1.7	23
780	Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells. Nature Communications, 2015, 6, 7364.	5.8	42
781	Enhanced GABAA-Mediated Tonic Inhibition in Auditory Thalamus of Rats with Behavioral Evidence of Tinnitus. Journal of Neuroscience, 2015, 35, 9369-9380.	1.7	59
782	Effects of oral temazepam on sleep spindles during non-rapid eye movement sleep: A high-density EEG investigation. European Neuropsychopharmacology, 2015, 25, 1600-1610.	0.3	27
783	Direct evidence for GABAergic activity of Withania somnifera on mammalian ionotropic GABAA and GABAÄ. GABAÄ	2.0	50

#	Article	IF	CITATIONS
784	CRF-Amplified Neuronal TLR4/MCP-1 Signaling Regulates Alcohol Self-Administration. Neuropsychopharmacology, 2015, 40, 1549-1559.	2.8	90
785	Negative modulation of α5 GABAA receptors in rats may partially prevent memory impairment induced by MK-801, but not amphetamine- or MK-801-elicited hyperlocomotion. Journal of Psychopharmacology, 2015, 29, 1013-1024.	2.0	10
786	The developmental evolution of the seizure phenotype and cortical inhibition in mouse models of juvenile myoclonic epilepsy. Neurobiology of Disease, 2015, 82, 164-175.	2.1	38
787	Synaptic changes in GABAA receptor expression in the thalamus of the stargazer mouse model of absence epilepsy. Neuroscience, 2015, 306, 28-38.	1.1	23
788	Regulating anxiety with extrasynaptic inhibition. Nature Neuroscience, 2015, 18, 1493-1500.	7.1	158
789	GABAA receptor α2 subtype activation suppresses retinal spreading depression. Neuroscience, 2015, 298, 137-144.	1.1	12
790	CABAA Receptor Partial Agonists and Antagonists: Structure, Binding Mode, and Pharmacology. Advances in Pharmacology, 2015, 72, 201-227.	1.2	38
791	GABAA receptor-mediated input change on orexin neurons following sleep deprivation in mice. Neuroscience, 2015, 284, 217-224.	1.1	26
792	Presynaptic cell type-dependent regulation of GABAergic synaptic transmission by nitric oxide in rat insular cortex. Neuroscience, 2015, 284, 65-77.	1.1	28
793	Altered expression of I´GABAA receptors in health and disease. Neuropharmacology, 2015, 88, 24-35.	2.0	63
794	Cellâ€ŧypeâ€specific tonic <scp>GABA</scp> signaling in the rat central amygdala is selectively altered by acute and chronic ethanol. Addiction Biology, 2016, 21, 72-86.	1.4	50
795	From linkage to complex associations: the role of GABRA2 as a risk factor for alcohol use. , 0, , 151-167.		0
796	Expression of genes involved in brain GABAergic neurotransmission in three-spined stickleback exposed to near-future CO2. , 2016, 4, cow068.		11
797	Benzodiazepines and Anxiety Disorders: From Laboratory to Clinic. , 2016, , .		2
798	Flunitrazepam–Membrane Binding. , 2016, , 445-452.		3
799	Enrichment of GABAA Receptor α-Subunits on the Axonal Initial Segment Shows Regional Differences. Frontiers in Cellular Neuroscience, 2016, 10, 39.	1.8	24
800	Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected?. Frontiers in Cellular Neuroscience, 2016, 10, 114.	1.8	43
801	New insights in the systemic and molecular underpinnings of general anesthetic actions mediated by γ-aminobutyric acid A receptors. Current Opinion in Anaesthesiology, 2016, 29, 447-453.	0.9	26

#	Article	IF	CITATIONS
802	Reconstitution of synaptic Ion channels from rodent and human brain in <i>Xenopus</i> oocytes: a biochemical and electrophysiological characterization. Journal of Neurochemistry, 2016, 138, 384-396.	2.1	15
803	Genes in the GABA Pathway Increase in the Lateral Thalamus of Sprague-Dawley Rats During the Proestrus/Estrus Phase. Journal of Cellular Physiology, 2016, 231, 1057-1064.	2.0	12
804	Reduced tonic inhibition in the dentate gyrus contributes to chronic stressâ€induced impairments in learning and memory. Hippocampus, 2016, 26, 1276-1290.	0.9	36
805	Model of anaesthetic induction by unilateral intracerebral microinjection of <scp>GABA</scp> ergic agonists. European Journal of Neuroscience, 2016, 43, 846-858.	1.2	17
806	A novel GABA-mediated corticotropin-releasing hormone secretory mechanism in the median eminence. Science Advances, 2016, 2, e1501723.	4.7	50
807	During postnatal development endogenous neurosteroids influence GABA-ergic neurotransmission of mouse cortical neurons. Neuropharmacology, 2016, 103, 163-173.	2.0	14
808	Low-frequency electrical stimulation enhances the effectiveness of phenobarbital on GABAergic currents in hippocampal slices of kindled rats. Neuroscience, 2016, 330, 26-38.	1.1	14
809	CXCL12 impairs the acquisition and extinction of auditory fear conditioning in rats via crosstalk with GABAergic system. Pharmacology Biochemistry and Behavior, 2016, 148, 21-27.	1.3	3
810	Sodium and water intake are not affected by GABAC receptor activation in the lateral parabrachial nucleus of sodium-depleted rats. Journal of Chemical Neuroanatomy, 2016, 74, 47-54.	1.0	3
811	Muscimol microinjected in the arcuate nucleus affects metabolism, body temperature & ventilation. Respiratory Physiology and Neurobiology, 2016, 227, 34-40.	0.7	3
812	Early life stress is a risk factor for excessive alcohol drinking and impulsivity in adults and is mediated via a CRF/GABA _A mechanism. Stress, 2016, 19, 235-247.	0.8	74
813	Surface expression of GABAA receptors in the rat nucleus accumbens is increased in early but not late withdrawal from extended-access cocaine self-administration. Brain Research, 2016, 1642, 336-343.	1.1	9
814	Analysis of Â-Subunit-dependent GABAA Receptor Modulation and Behavioral Effects of Valerenic Acid Derivatives. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 580-590.	1.3	13
815	Intensified vmPFC surveillance over PTSS under perturbed microRNA-608/AChE interaction. Translational Psychiatry, 2016, 6, e801-e801.	2.4	21
816	New and mild method for the synthesis of alprazolam and diazepam and computational study of their binding mode to GABAA receptor. Medicinal Chemistry Research, 2016, 25, 1538-1550.	1.1	20
817	Additive effect of BLA GABAA receptor mechanism and (+)-MK-801 on memory retention deficit, an isobologram analysis. Pharmacology Biochemistry and Behavior, 2016, 143, 57-64.	1.3	8
818	Characterization of GABA A receptor ligands with automated patch-clamp using human neurons derived from pluripotent stem cells. Journal of Pharmacological and Toxicological Methods, 2016, 82, 109-114.	0.3	12
819	To what extent is it possible to dissociate the anxiolytic and sedative/hypnotic properties of GABAA receptors modulators?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 71, 189-202	2.5	10

#	Article	IF	CITATIONS
820	The external globus pallidus: progress and perspectives. European Journal of Neuroscience, 2016, 43, 1239-1265.	1.2	117
821	δGABAA Receptors Are Necessary for Synaptic Plasticity in the Hippocampus: Implications for Memory Behavior. Anesthesia and Analgesia, 2016, 123, 1247-1252.	1.1	15
822	Rescue of deficient amygdala tonic γâ€aminobutyric acidergic currents in the <i>Fmr</i> ^{–/y} mouse model of fragile X syndrome by a novel γâ€aminobutyric acid type A receptorâ€positive allosteric modulator. Journal of Neuroscience Research, 2016, 94, 568-578.	1.3	9
823	GABAergic mRNA expression is differentially expressed across the prelimbic and orbitofrontal cortices of rats sensitized to methamphetamine: Relevance to psychosis. Neuropharmacology, 2016, 111, 107-118.	2.0	17
824	Effects of Etomidate on GABAergic and Glutamatergic Transmission in Rat Thalamocortical Slices. Neurochemical Research, 2016, 41, 3181-3191.	1.6	15
825	Mesopontine Switch for the Induction of General Anesthesia by Dedicated Neural Pathways. Anesthesia and Analgesia, 2016, 123, 1274-1285.	1.1	19
826	Tapping the Brakes: Cellular and Synaptic Mechanisms that Regulate Thalamic Oscillations. Neuron, 2016, 92, 687-704.	3.8	127
827	Hispidulin alleviated methamphetamine-induced hyperlocomotion by acting at α6 subunit-containing GABAA receptors in the cerebellum. Psychopharmacology, 2016, 233, 3187-3199.	1.5	19
828	Depression-like behavior in rat: Involvement of galanin receptor subtype 1 in the ventral periaqueductal gray. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4726-35.	3.3	35
829	Effects of gaboxadol on the expression of cocaine sensitization in rats Experimental and Clinical Psychopharmacology, 2016, 24, 131-141.	1.3	3
830	Effects of common anesthetic agents on [18F]flumazenil binding to the GABAA receptor. EJNMMI Research, 2016, 6, 80.	1.1	9
831	Classifying neuronal subclasses of the cerebellum through constellation pharmacology. Journal of Neurophysiology, 2016, 115, 1031-1042.	0.9	8
832	Altered GABAA α5 subunit expression in the hypothalamic paraventricular nucleus of hypertensive and pregnant rats. Neuroscience Letters, 2016, 620, 148-153.	1.0	5
833	Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization. Brain Research Bulletin, 2016, 120, 131-143.	1.4	12
834	The α1, α2, α3, and γ2 subunits of GABA _A receptors show characteristic spatial and temporal expression patterns in rhombencephalic structures during normal human brain development. Journal of Comparative Neurology, 2016, 524, 1805-1824.	0.9	20
835	Elevated Neurosteroids in the Lateral Thalamus Relieve Neuropathic Pain in Rats with Spared Nerve Injury. Neuroscience Bulletin, 2016, 32, 311-322.	1.5	25
836	Sex Differences in GABA _A Signaling in the Periaqueductal Gray Induced by Persistent Inflammation. Journal of Neuroscience, 2016, 36, 1669-1681.	1.7	48
837	CNQX facilitates inhibitory synaptic transmission in rat hypoglossal nucleus. Brain Research, 2016, 1637, 71-80.	1.1	3

#	Article	IF	CITATIONS
838	GABA withdrawal syndrome: GABAA receptor, synapse, neurobiological implications and analogies with other abstinences. Neuroscience, 2016, 313, 57-72.	1.1	11
839	GABAergic mRNA expression is upregulated in the prefrontal cortex of rats sensitized to methamphetamine. Behavioural Brain Research, 2016, 297, 224-230.	1.2	23
840	Association of Microtubule Dynamics with Chronic Epilepsy. Molecular Neurobiology, 2016, 53, 5013-5024.	1.9	25
841	Brainstem node for loss of consciousness due to GABAA receptor-active anesthetics. Experimental Neurology, 2016, 275, 38-45.	2.0	33
842	Formation of GABAA receptor complexes containing α1 and α5 subunits is paralleling a multiple T-maze learning task in mice. Brain Structure and Function, 2017, 222, 549-561.	1.2	12
843	Loss of Î′â€GABA _A receptorâ€mediated tonic currents in the adult prelimbic cortex following adolescent alcohol exposure. Addiction Biology, 2017, 22, 616-628.	1.4	40
844	Synaptic targets: Chronic alcohol actions. Neuropharmacology, 2017, 122, 85-99.	2.0	128
845	Involvement of lateral habenula α1 subunit-containing GABAA receptor-mediated inhibitory transmission in the regulation of depression-related behaviors in experimental Parkinson's disease. Neuropharmacology, 2017, 116, 399-411.	2.0	31
846	Impaired GABAergic inhibition in the hippocampus of Fmr1 knockout mice. Neuropharmacology, 2017, 116, 71-81.	2.0	58
847	Anxiolytic effects of hippocampal neurosteroids in normal and neuropathic rats with spared nerve injury. Journal of Neurochemistry, 2017, 141, 137-150.	2.1	28
848	Reduced GABAergic transmission in the ventrobasal thalamus contributes to thermal hyperalgesia in chronic inflammatory pain. Scientific Reports, 2017, 7, 41439.	1.6	35
849	Reduced local input to fastâ€spiking interneurons in the somatosensory cortex in the <scp>GABA_A</scp> γ2 R43Q mouse model of absence epilepsy. Epilepsia, 2017, 58, 597-607.	2.6	6
850	Transition dynamics of generalized multiple epileptic seizures associated with thalamic reticular nucleus excitability: A computational study. Communications in Nonlinear Science and Numerical Simulation, 2017, 52, 203-213.	1.7	18
851	The immunohistochemical distribution of the GABA A receptor α 1 , α 2 , α 3 , β 2/3 and γ 2 subunits in the human thalamus. Journal of Chemical Neuroanatomy, 2017, 82, 39-55.	1.0	10
852	Emerging strategies in the management of essential tremor. Therapeutic Advances in Neurological Disorders, 2017, 10, 137-148.	1.5	25
853	Curcumol allosterically modulates GABA(A) receptors in a manner distinct from benzodiazepines. Scientific Reports, 2017, 7, 46654.	1.6	17
854	Ovarian Hormones Organize the Maturation of Inhibitory Neurotransmission in the Frontal Cortex at Puberty Onset in Female Mice. Current Biology, 2017, 27, 1735-1745.e3.	1.8	120
855	Effects of <scp>GABA</scp> a receptor antagonists on motor behavior in pharmacological Parkinson's disease model in mice. Physiological Reports, 2017, 5, e13081.	0.7	9

#	Article	IF	CITATIONS
856	Test-retest reproducibility of quantitative binding measures of [11 C]Ro15-4513, a PET ligand for GABA A receptors containing alpha5 subunits. NeuroImage, 2017, 152, 270-282.	2.1	17
857	General anesthetic actions on GABAA receptors in vivo are reduced in phospholipase C-related catalytically inactive protein knockout mice. Journal of Anesthesia, 2017, 31, 531-538.	0.7	6
858	Development of a Robust Mammalian Cellâ€based Assay for Studying Recombinant α ₄ β _{1/3} δGABA _A Receptor Subtypes. Basic and Clinical Pharmacology and Toxicology, 2017, 121, 119-129.	1.2	17
859	GABAAergic dysfunction in the olivary-cerebellar-brainstem network may cause eye oscillations and body tremor. Clinical Neurophysiology, 2017, 128, 408-410.	0.7	14
860	Mapping in mice the brain regions involved in the anxiolytic-like properties of α-casozepine, a tryptic peptide derived from bovine α s1 -casein. Journal of Functional Foods, 2017, 38, 464-473.	1.6	11
861	Gammaâ€aminobutyric acid _A receptor agonist, muscimol, increases Ki <scp>SS</scp> â€1 gene expression in hypothalamic cell models. Reproductive Medicine and Biology, 2017, 16, 386-391.	1.0	8
862	GABA Receptors and the Pharmacology of Sleep. Handbook of Experimental Pharmacology, 2017, 253, 279-304.	0.9	48
863	Decreased surface expression of the \hat{I}' subunit of the GABA A receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome. Experimental Neurology, 2017, 297, 168-178.	2.0	39
864	The Search for a Subtype-Selective PET Imaging Agent for the GABA _A Receptor Complex: Evaluation of the Radiotracer [¹¹ C]ADO in Nonhuman Primates. Molecular Imaging, 2017, 16, 153601211773125.	0.7	8
865	Inhibitory synapse deficits caused by familial α1 GABAA receptor mutations in epilepsy. Neurobiology of Disease, 2017, 108, 213-224.	2.1	15
866	Novel Molecule Exhibiting Selective Affinity for GABAA Receptor Subtypes. Scientific Reports, 2017, 7, 6230.	1.6	8
867	Selective inhibition of extra-synaptic α5-GABA A receptors by S44819, a new therapeutic agent. Neuropharmacology, 2017, 125, 353-364.	2.0	40
868	Behavioural pharmacology of the α5-GABA A receptor antagonist S44819: Enhancement and remediation of cognitive performance in preclinical models. Neuropharmacology, 2017, 125, 30-38.	2.0	17
869	Altered postnatal maturation of striatal GABAergic interneurons in a phenotypic animal model of dystonia. Experimental Neurology, 2017, 287, 44-53.	2.0	29
870	Neonatal estradiol exposure to female rats changes GABAA receptor expression and function, and spatial learning during adulthood. Hormones and Behavior, 2017, 87, 35-46.	1.0	16
871	α5GABA _A Receptors Mediate Tonic Inhibition in the Spinal Cord Dorsal Horn and Contribute to the Resolution Of Hyperalgesia. Journal of Neuroscience Research, 2017, 95, 1307-1318.	1.3	27
872	<scp>GABA_A</scp> receptor subtype involvement in addictive behaviour. Genes, Brain and Behavior, 2017, 16, 149-184.	1.1	76
873	Detergents: Friends not foes for highâ€performance membrane proteomics toward precision medicine. Proteomics, 2017, 17, 1600209.	1.3	7

#	Article	IF	CITATIONS
874	GABAA receptor subunit deregulation in the hippocampus of human foetuses with Down syndrome. Brain Structure and Function, 2017, 223, 1501-1518.	1.2	8
875	Distribution of GAD67-expressing neurons and morphological changes in hippocampal structures during pubertal period after acute perinatal hypoxia in rats. Journal of Evolutionary Biochemistry and Physiology, 2017, 53, 505-510.	0.2	2
876	Rare GABRA3 variants are associated with epileptic seizures, encephalopathy and dysmorphic features. Brain, 2017, 140, 2879-2894.	3.7	33
877	Cocaine Enhances Gamma-Aminobutyric Acid Release From Reticular Thalamic Nucleus. , 2017, , 511-518.		0
878	Fast and Slow Inhibition in the Visual Thalamus Is Influenced by Allocating GABAA Receptors with Different Î ³ Subunits. Frontiers in Cellular Neuroscience, 2017, 11, 95.	1.8	5
879	A GABAergic Dysfunction in the Olivary–Cerebellar–Brainstem Network May Cause Eye Oscillations and Body Tremor. II. Model Simulations of Saccadic Eye Oscillations. Frontiers in Neurology, 2017, 8, 372.	1.1	16
880	γ1-Containing GABA-A Receptors Cluster at Synapses Where they Mediate Slower Synaptic Currents than γ2-Containing GABA-A Receptors. Frontiers in Molecular Neuroscience, 2017, 10, 178.	1.4	10
881	Gene Network Construction from Microarray Data Identifies a Key Network Module and Several Candidate Hub Genes in Age-Associated Spatial Learning Impairment. Frontiers in Systems Neuroscience, 2017, 11, 75.	1.2	13
882	Effects of Traumatic Stress Induced in the Juvenile Period on the Expression of Gamma-Aminobutyric Acid Receptor Type A Subunits in Adult Rat Brain. Neural Plasticity, 2017, 2017, 1-10.	1.0	22
883	Temporal Lobe Epilepsy: Altered GABAA Receptor Subunit Composition inÂTemporal Lobe Epilepsyâ~†. , 2017, ,		0
884	Baicalin reverses the impairment of synaptogenesis induced by dopamine burden via the stimulation of GABAAR–TrkB interaction in minimal hepatic encephalopathy. Psychopharmacology, 2018, 235, 1163-1178.	1.5	17
885	Arginine vasopressin differentially modulates <scp>GABA</scp> ergic synaptic transmission onto temperatureâ€sensitive and temperatureâ€insensitive neurons in the rat preoptic area. European Journal of Neuroscience, 2018, 47, 866-886.	1.2	5
886	Maternal careâ€related differences in males and females rats' sensitivity to ethanol and the associations between the GABAergic system and steroids in males. Developmental Psychobiology, 2018, 60, 380-394.	0.9	3
887	Design and Synthesis of Novel Deuterated Ligands Functionally Selective for the γ-Aminobutyric Acid Type A Receptor (GABA _A R) α6 Subtype with Improved Metabolic Stability and Enhanced Bioavailability. Journal of Medicinal Chemistry, 2018, 61, 2422-2446.	2.9	40
888	Cerebellar α ₆ â€subunitâ€containing GABA _A receptors: a novel therapeutic target for disrupted prepulse inhibition in neuropsychiatric disorders. British Journal of Pharmacology, 2018, 175, 2414-2427.	2.7	25
889	<scp>GABA_A</scp> receptor subunit expression changes in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus. Journal of Neurochemistry, 2018, 145, 374-392.	2.1	70
890	Inhibition in the amygdala anxiety circuitry. Experimental and Molecular Medicine, 2018, 50, 1-16.	3.2	189
891	The center of the emotional universe: Alcohol, stress, and CRF1 amygdala circuitry. Alcohol, 2018, 72, 61-73.	0.8	42

#	Article	IF	CITATIONS
892	Î ³ -Aminobutyric Acid Type A Receptor Potentiation Inhibits Learning in a Computational Network Model. Anesthesiology, 2018, 129, 106-117.	1.3	3
893	Muscarinic M2 receptor promotes vasopressin synthesis in mice supraoptic nuclei. Journal of Endocrinology, 2018, 237, 207-216.	1.2	2
894	Structure–Function Evaluation of Imidazopyridine Derivatives Selective for δ-Subunit-Containing γ-Aminobutyric Acid Type A (GABAA) Receptors. Journal of Medicinal Chemistry, 2018, 61, 1951-1968.	2.9	21
895	GABA A receptors and inhibitory neurotransmission in the amygdalar complex. Current Opinion in Physiology, 2018, 2, 58-64.	0.9	2
896	Developmental Changes in Serotonergic Modulation of GABAergic Synaptic Transmission and Postsynaptic GABAA Receptor Composition in the Cerebellar Nuclei. Cerebellum, 2018, 17, 346-358.	1.4	9
897	Ion Channels in Genetic Epilepsy: From Genes and Mechanisms to Disease-Targeted Therapies. Pharmacological Reviews, 2018, 70, 142-173.	7.1	215
898	Identification and expression of a unique neonatal variant of the GABAA receptor $\hat{l}\pm 3$ subunit. Brain Structure and Function, 2018, 223, 1025-1033.	1.2	1
899	Comparison of $\hat{l} \pm \hat{l}^2 \hat{l}'$ and $\hat{l} \pm \hat{l}^2 \hat{l}^3$ GABAA receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics. Pharmacological Research, 2018, 133, 289-300.	3.1	20
900	Allopregnanolone Effects on Transmission in the Brain Stem Solitary Tract Nucleus (NTS). Neuroscience, 2018, 379, 219-227.	1.1	5
901	Presynaptic Regulation of Tonic Inhibition by Neuromodulatory Transmitters in the Basal Amygdala. Molecular Neurobiology, 2018, 55, 8509-8521.	1.9	13
902	GABA receptors and T-type Ca2+ channels crosstalk in thalamic networks. Neuropharmacology, 2018, 136, 37-45.	2.0	9
903	Allopregnanolone involvement in feeding regulation, overeating and obesity. Frontiers in Neuroendocrinology, 2018, 48, 70-77.	2.5	21
904	Effects of <scp>GABA</scp> active steroids in the female brain with a focus on the premenstrual dysphoric disorder. Journal of Neuroendocrinology, 2018, 30, e12553.	1.2	64
905	GABA _A receptor subunits in the human amygdala and hippocampus: Immunohistochemical distribution of 7 subunits. Journal of Comparative Neurology, 2018, 526, 324-348.	0.9	35
906	CNTNAP4 Impacts Epilepsy Through GABAA Receptors Regulation: Evidence From Temporal Lobe Epilepsy Patients and Mouse Models. Cerebral Cortex, 2018, 28, 3491-3504.	1.6	20
907	GABAA receptor subtype selectivity of the proconvulsant rodenticide TETS. Archives of Toxicology, 2018, 92, 833-844.	1.9	12
908	Huntington's disease leads to decrease of GABA-A tonic subunits in the D2 neostriatal pathway and their relocalization into the synaptic cleft. Neurobiology of Disease, 2018, 110, 142-153.	2.1	15
909	Genetic and Molecular Regulation of Extrasynaptic GABA-A Receptors in the Brain: Therapeutic Insights for Epilepsy. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 180-197.	1.3	102

#	Article	IF	CITATIONS
910	Contribution of genes in the GABAergic pathway to bipolar disorder and its executive function deficit in the Chinese Han population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 50-67.	1.1	4
913	International Union of Basic and Clinical Pharmacology. CVI: GABA _A Receptor Subtype- and Function-selective Ligands: Key Issues in Translation to Humans. Pharmacological Reviews, 2018, 70, 836-878.	7.1	144
914	The role of loops B and C in determining the potentiation of GABA A receptors by midazolam. Pharmacology Research and Perspectives, 2018, 6, e00433.	1.1	6
915	Sex and β-Endorphin Influence the Effects of Ethanol on Limbic Gabra2 Expression in a Mouse Binge Drinking Model. Frontiers in Genetics, 2018, 9, 567.	1.1	10
916	GABAergic modulation of olfactomotor transmission in lampreys. PLoS Biology, 2018, 16, e2005512.	2.6	16
917	Dendrite-targeting interneurons control synaptic NMDA-receptor activation via nonlinear α5-GABAA receptors. Nature Communications, 2018, 9, 3576.	5.8	92
918	Selective modulation of tonically active GABA _A receptor functional subgroups by G-proteins and protein kinase C. Experimental Biology and Medicine, 2018, 243, 1046-1055.	1.1	2
919	GAT-3 Dysfunction Generates Tonic Inhibition in External Globus Pallidus Neurons in Parkinsonian Rodents. Cell Reports, 2018, 23, 1678-1690.	2.9	39
920	A randomised, placebo-controlled clinical trial with the α2/3/5 subunit selective GABAA positive allosteric modulator PF-06372865 in patients with chronic low back pain. Pain, 2018, 159, 1742-1751.	2.0	24
921	Electrophysiological evidence for long-axis intrinsic diversification of the hippocampus. Frontiers in Bioscience - Landmark, 2018, 23, 109-145.	3.0	31
922	GABA beyond the synapse: defining the subtypeâ€specific pharmacodynamics of nonâ€synaptic GABA _A receptors. Journal of Physiology, 2018, 596, 4475-4495.	1.3	17
923	Spatiotemporal Distribution of GABAA Receptor Subunits Within Layer II of Mouse Medial Entorhinal Cortex: Implications for Grid Cell Excitability. Frontiers in Neuroanatomy, 2018, 12, 46.	0.9	9
924	Chloride Homeostasis in Neurons With Special Emphasis on the Olivocerebellar System: Differential Roles for Transporters and Channels. Frontiers in Cellular Neuroscience, 2018, 12, 101.	1.8	36
925	Diversity matters: combinatorial information coding by GABAA receptor subunits during spatial learning and its allosteric modulation. Cellular Signalling, 2018, 50, 142-159.	1.7	5
926	The α6 subunit-containing GABAA receptor: A novel drug target for inhibition of trigeminal activation. Neuropharmacology, 2018, 140, 1-13.	2.0	19
927	The Cerebellar GABAAR System as a Potential Target for Treating Alcohol Use Disorder. Handbook of Experimental Pharmacology, 2018, 248, 113-156.	0.9	11
928	Dopamine and opioids inhibit synaptic outputs of the main island of the intercalated neurons of the amygdala. European Journal of Neuroscience, 2019, 50, 2065-2074.	1.2	20
929	Increased IL-6 expression in astrocytes is associated with emotionality, alterations in central amygdala GABAergic transmission, and excitability during alcohol withdrawal. Brain, Behavior, and Immunity, 2019, 82, 188-202.	2.0	38

#	Article	IF	CITATIONS
930	Phospholipase C-related inactive protein type-1 deficiency affects anesthetic electroencephalogram activity induced by propofol and etomidate in mice. Journal of Anesthesia, 2019, 33, 531-542.	0.7	0
931	Inhibitory regulation of the prefrontal cortex following behavioral sensitization to amphetamine and/or methamphetamine psychostimulants: A review of GABAergic mechanisms. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 95, 109681.	2.5	21
932	Alterations in GABAA Receptor Subunit Expression in the Amygdala and Entorhinal Cortex in Human Temporal Lobe Epilepsy. Journal of Neuropathology and Experimental Neurology, 2019, 78, 1022-1048.	0.9	8
933	Trigeminal neuropathic pain development and maintenance in rats are suppressed by a positive modulator of α6 GABA _A receptors. European Journal of Pain, 2019, 23, 973-984.	1.4	24
935	Allopregnanolone-based treatments for postpartum depression: Why/how do they work?. Neurobiology of Stress, 2019, 11, 100198.	1.9	62
937	Chemical neuroanatomy of the substantia nigra in the ovine brain. Journal of Chemical Neuroanatomy, 2019, 97, 43-56.	1.0	9
938	Conditioned Aversion and Neuroplasticity Induced by a Superagonist of Extrasynaptic GABAA Receptors: Correlation With Activation of the Oval BNST Neurons and CRF Mechanisms. Frontiers in Molecular Neuroscience, 2019, 12, 130.	1.4	2
939	Natural product incarvillateine aggravates epileptic seizures by inhibiting GABAA currents. European Journal of Pharmacology, 2019, 858, 172496.	1.7	3
940	<i>In Vivo</i> Study on Mechanism Underlying Increased Pharmacological Effects of Phenobarbital in Rats with Glycerol-Induced Acute Renal Failure. Biological and Pharmaceutical Bulletin, 2019, 42, 501-506.	0.6	3
941	Female-specific decreases in alcohol binge-like drinking resulting from GABAA receptor delta-subunit knockdown in the VTA. Scientific Reports, 2019, 9, 8102.	1.6	14
942	Defined concatenated α6α1β3γ2 GABAA receptor constructs reveal dual action of pyrazoloquinolinone allosteric modulators. Bioorganic and Medicinal Chemistry, 2019, 27, 3167-3178.	1.4	13
943	Differential role of interleukinâ€1β in neuroinflammationâ€induced impairment of spatial and nonspatial memory in hyperammonemic rats. FASEB Journal, 2019, 33, 9913-9928.	0.2	17
944	GABAergic and glutamatergic cells in the inferior colliculus dynamically express the GABAAR γ1 subunit during aging. Neurobiology of Aging, 2019, 80, 99-110.	1.5	7
945	Variable colocalisation of GABAA receptor subunits and glycine receptors on neurons in the human hypoglossal nucleus. Journal of Chemical Neuroanatomy, 2019, 97, 99-111.	1.0	4
946	Neuroactive Steroids and GABAergic Involvement in the Neuroendocrine Dysfunction Associated With Major Depressive Disorder and Postpartum Depression. Frontiers in Cellular Neuroscience, 2019, 13, 83.	1.8	66
947	Positive allosteric modulation of native and recombinant GABAA receptors by hops prenylflavonoids. European Journal of Pharmacology, 2019, 852, 34-41.	1.7	20
948	Cell typeâ€specific distribution of GABA _A receptor subtypes in the mouse dorsal striatum. Journal of Comparative Neurology, 2019, 527, 2030-2046.	0.9	13
949	Spectrum of GABAA receptor variants in epilepsy. Current Opinion in Neurology, 2019, 32, 183-190.	1.8	59

#	Article	IF	CITATIONS
950	Extrasynaptic Î′â€ <scp>GABA_A</scp> receptors are highâ€affinity muscimol receptors. Journal of Neurochemistry, 2019, 149, 41-53.	2.1	15
951	The α5-Containing GABAA Receptors—a Brief Summary. Journal of Molecular Neuroscience, 2019, 67, 343-351.	1.1	23
952	CSF reactivity in GABAA receptor antibody encephalitis – Immunocytochemical distribution in the murine brain. Brain Research, 2019, 1704, 249-256.	1.1	5
953	Input-Specific Synaptic Location and Function of the α5 GABA _A Receptor Subunit in the Mouse CA1 Hippocampal Neurons. Journal of Neuroscience, 2019, 39, 788-801.	1.7	54
954	Neurosteroid regulation of GABAA receptors: A role in catamenial epilepsy. Brain Research, 2019, 1703, 31-40.	1.1	38
955	GABAA Receptors in the Mongolian Gerbil: a PET Study Using [18F]Flumazenil to Determine Receptor Binding in Young and Old Animals. Molecular Imaging and Biology, 2020, 22, 335-347.	1.3	11
956	Contribution of GABAA receptor subunits to attention and social behavior. Behavioural Brain Research, 2020, 378, 112261.	1.2	11
957	Neurochemical organization of the ventral striatum's olfactory tubercle. Journal of Neurochemistry, 2020, 152, 425-448.	2.1	17
958	Presence of anti-neuronal antibodies in children with neurological disorders beyond encephalitis. European Journal of Paediatric Neurology, 2020, 28, 159-166.	0.7	4
959	Synthetic, Mechanistic, and Biological Interrogation of <i>Ginkgo biloba</i> Chemical Space En Route to (â^')-Bilobalide. Journal of the American Chemical Society, 2020, 142, 18599-18618.	6.6	40
960	Induced pluripotent stem cell reprogrammingâ€associated methylation at the GABRA2 promoter and chr4p12 GABA A subunit gene expression in the context of alcohol use disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 464-474.	1.1	2
961	Humulone Modulation of GABAA Receptors and Its Role in Hops Sleep-Promoting Activity. Frontiers in Neuroscience, 2020, 14, 594708.	1.4	11
962	The Z-Drugs Zolpidem, Zaleplon, and Eszopiclone Have Varying Actions on Human GABAA Receptors Containing γ1, γ2, and γ3 Subunits. Frontiers in Neuroscience, 2020, 14, 599812.	1.4	19
963	Effects of GABAA Receptor α3 Subunit Epilepsy Mutations on Inhibitory Synaptic Signaling. Frontiers in Molecular Neuroscience, 2020, 13, 602559.	1.4	6
964	PD-1 Regulates GABAergic Neurotransmission and GABA-Mediated Analgesia and Anesthesia. IScience, 2020, 23, 101570.	1.9	23
965	Apremilast regulates acute effects of ethanol and other GABAergic drugs via protein kinase A-dependent signaling. Neuropharmacology, 2020, 178, 108220.	2.0	5
966	GABAa receptor density alterations revealed in a mouse model of early moderate prenatal ethanol exposure using [18F]AH114726. Nuclear Medicine and Biology, 2020, 88-89, 44-51.	0.3	2
967	Mechanisms associated with the antidepressant-like effects of L-655,708. Neuropsychopharmacology, 2020, 45, 2289-2298.	2.8	9

#	Article	IF	CITATIONS
968	Two Distinct Populations of α1α6-Containing GABAA-Receptors in Rat Cerebellum. Frontiers in Synaptic Neuroscience, 2020, 12, 591129.	1.3	11
969	Inhibitory role of taurine in the caudal neurosecretory Dahlgren cells of the olive flounder, Paralichthys olivaceus. General and Comparative Endocrinology, 2020, 299, 113613.	0.8	1
970	Three phases of Gene × Environment interaction research: Theoretical assumptions underlying gene selection. Development and Psychopathology, 2022, 34, 295-306.	1.4	21
971	Effects of Electrical Stimulation of NAc Afferents on VP Neurons' Tonic Firing. Frontiers in Cellular Neuroscience, 2020, 14, 599920.	1.8	1
972	Isoflurane Potentiation of GABAA Receptors Is Reduced but Not Eliminated by the β3(N265M) Mutation. International Journal of Molecular Sciences, 2020, 21, 9534.	1.8	4
973	Cerebellum-Specific Deletion of the GABAA Receptor l̃´Subunit Leads to Sex-Specific Disruption of Behavior. Cell Reports, 2020, 33, 108338.	2.9	32
974	Acute administration of diazepam or midazolam minimally alters long-term neuropathological effects in the rat brain following acute intoxication with diisopropylfluorophosphate. European Journal of Pharmacology, 2020, 886, 173538.	1.7	21
975	The effects of Topiramate on isolation-induced aggression: a behavioral and immunohistochemical study in mice. Psychopharmacology, 2020, 237, 2451-2467.	1.5	5
976	Expression of GABAA Receptor Subunit Alpha 1 in Rat Neocortex after Perinatal Hypoxia. Journal of Evolutionary Biochemistry and Physiology, 2020, 56, 170-173.	0.2	0
977	Ion Channels Controlling Circadian Rhythms in Suprachiasmatic Nucleus Excitability. Physiological Reviews, 2020, 100, 1415-1454.	13.1	65
978	Immunohistochemical distribution of 10 <scp>GABA_A</scp> receptor subunits in the forebrain of the rhesus monkey <scp><i>Macaca mulatta</i></scp> . Journal of Comparative Neurology, 2020, 528, 2551-2568.	0.9	20
979	Menstrual Cycle Changes in Vagally-Mediated Heart Rate Variability Are Associated with Progesterone: Evidence from Two Within-Person Studies. Journal of Clinical Medicine, 2020, 9, 617.	1.0	26
980	Local miRNA-Dependent Translational Control of GABAAR Synthesis during Inhibitory Long-Term Potentiation. Cell Reports, 2020, 31, 107785.	2.9	25
981	Dopamine depletion induces neuronâ€specific alterations of GABAergic transmission in the mouse striatum. European Journal of Neuroscience, 2020, 52, 3353-3374.	1.2	6
982	Regulation of GABAA Receptor Subunit Expression in Substance Use Disorders. International Journal of Molecular Sciences, 2020, 21, 4445.	1.8	29
983	Discovery of a new class of orthosteric antagonists with nanomolar potency at extrasynaptic GABAA receptors. Scientific Reports, 2020, 10, 10078.	1.6	10
984	Alcohol and IL-6 Alter Expression of Synaptic Proteins in Cerebellum of Transgenic Mice with Increased Astrocyte Expression of IL-6. Neuroscience, 2020, 442, 124-137.	1.1	5
985	Hops compounds modulatory effects and 6-prenylnaringenin dual mode of action on GABAA receptors. European Journal of Pharmacology, 2020, 873, 172962.	1.7	12

#	Article	IF	CITATIONS
986	Lack of Neurosteroid Selectivity at δvs. γ2-Containing GABAA Receptors in Dentate Granule Neurons. Frontiers in Molecular Neuroscience, 2020, 13, 6.	1.4	12
987	Genetic and molecular basis of epilepsy-related cognitive dysfunction. Epilepsy and Behavior, 2020, 104, 106848.	0.9	11
988	Ketamine: Leading us into the future for development of antidepressants. Behavioural Brain Research, 2020, 383, 112532.	1.2	12
989	Comparison of the toxicokinetics of the convulsants picrotoxinin and tetramethylenedisulfotetramine (TETS) in mice. Archives of Toxicology, 2020, 94, 1995-2007.	1.9	10
990	Neurosteroids as Selective Inhibitors of Glycine Receptor Activity: Structure-Activity Relationship Study on Endogenous Androstanes and Androstenes. Frontiers in Molecular Neuroscience, 2020, 13, 44.	1.4	8
991	Astrocytic Ephrin-B1 Controls Synapse Formation in the Hippocampus During Learning and Memory. Frontiers in Synaptic Neuroscience, 2020, 12, 10.	1.3	23
992	Mechanisms of GABAergic and cholinergic neurotransmission in auditory thalamus: Impact of aging. Hearing Research, 2021, 402, 108003.	0.9	17
993	Progesterone modulates neuronal excitability bidirectionally. Neuroscience Letters, 2021, 744, 135619.	1.0	24
994	Structure-Guided Computational Methods Predict Multiple Distinct Binding Modes for Pyrazoloquinolinones in GABAA Receptors. Frontiers in Neuroscience, 2020, 14, 611953.	1.4	5
995	The α6 GABAA Receptor Positive Allosteric Modulator DK-I-56-1 Reduces Tic-Related Behaviors in Mouse Models of Tourette Syndrome. Biomolecules, 2021, 11, 175.	1.8	17
997	Looking for Novelty in an "Old―Receptor: Recent Advances Toward Our Understanding of GABAARs and Their Implications in Receptor Pharmacology. Frontiers in Neuroscience, 2020, 14, 616298.	1.4	34
998	Journey from responsible alcohol drinking to alcoholism. , 2021, , 1-74.		0
999	Î ⁴ lpha 5 subunit-containing GABAA receptors in temporal lobe epilepsy with normal MRI. Brain Communications, 2021, 3, fcaa190.	1.5	5
1000	Tonic CABAergic inhibition, via GABA _A receptors containing αβƕsubunits, regulates excitability of ventral tegmental area dopamine neurons. European Journal of Neuroscience, 2021, 53, 1722-1737.	1.2	9
1001	Recruitment of Plasma Membrane GABA-A Receptors by Submembranous Gephyrin/Collybistin Clusters. Cellular and Molecular Neurobiology, 2022, 42, 1585-1604.	1.7	1
1002	Organization and emergence of a mixed GABA-glycine retinal circuit that provides inhibition to mouse ON-sustained alpha retinal ganglion cells. Cell Reports, 2021, 34, 108858.	2.9	9
1003	Axonal Modulation of Striatal Dopamine Release by Local γ-Aminobutyric Acid (GABA) Signalling. Cells, 2021, 10, 709.	1.8	17
1004	Basmisanil, a highly selective GABAA-α5 negative allosteric modulator: preclinical pharmacology and demonstration of functional target engagement in man. Scientific Reports, 2021, 11, 7700.	1.6	10

#	Article	IF	CITATIONS
1005	GABA _A receptor β ₁ â€subunit knockâ€out mice show increased delta power in NREM sleep and decreased theta power in REM sleep. European Journal of Neuroscience, 2021, 54, 4445-4455.	1.2	4
1006	Reduced Expression of GABAA Receptor Alpha2 Subunit Is Associated With Disinhibition of DYT-THAP1 Dystonia Patient-Derived Striatal Medium Spiny Neurons. Frontiers in Cell and Developmental Biology, 2021, 9, 650586.	1.8	7
1007	Reductions in midbrain GABAergic and dopamine neuron markers are linked in schizophrenia. Molecular Brain, 2021, 14, 96.	1.3	16
1008	Allopregnanolone in mood disorders: Mechanism and therapeutic development. Pharmacological Research, 2021, 169, 105682.	3.1	26
1009	Dendritic osmosensors modulate activity-induced calcium influx in oxytocinergic magnocellular neurons of the mouse PVN. ELife, 2021, 10, .	2.8	3
1010	A multi-dosing regimen to enhance the spatial memory of normal rats with α5-containing GABAA receptor negative allosteric modulator L-655,708. Psychopharmacology, 2021, 238, 3375-3389.	1.5	1
1011	Transient expression of a GABA receptor subunit during early development is critical for inhibitory synapse maturation and function. Current Biology, 2021, 31, 4314-4326.e5.	1.8	5
1012	α2-containing Î ³ -aminobutyric acid type A receptors promote stress resiliency in male mice. Neuropsychopharmacology, 2021, 46, 2197-2206.	2.8	6
1014	Delta-containing GABAA receptors in pain management: Promising targets for novel analgesics. Neuropharmacology, 2021, 195, 108675.	2.0	10
1015	Structural determinants and regulation of spontaneous activity in GABAA receptors. Nature Communications, 2021, 12, 5457.	5.8	8
1016	Stereological estimations and neurochemical characterization of neurons expressing GABAA and GABAB receptors in the rat pedunculopontine and laterodorsal tegmental nuclei. Brain Structure and Function, 2022, 227, 89-110.	1.2	0
1017	GABA _A receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
1018	High ethanol preference and dissociated memory are co-occurring phenotypes associated with hippocampal GABAAR-Í receptor levels. Neurobiology of Learning and Memory, 2021, 183, 107459.	1.0	2
1019	Possible influence of neurosteroids in the anxiolytic effects of alpha-casozepine. Medical Hypotheses, 2021, 155, 110655.	0.8	0
1020	Hippocampal β2-GABA _A receptors mediate LTP suppression by etomidate and contribute to long-lasting feedback but not feedforward inhibition of pyramidal neurons. Journal of Neurophysiology, 2021, 126, 1090-1100.	0.9	6
1021	Regulation of Parvalbumin Interactome in the Perilesional Cortex after Experimental Traumatic Brain Injury. Neuroscience, 2021, 475, 52-72.	1.1	2
1022	Tranquilizers/Anxiolytics: Pharmacology and Biochemistry of Anxiolytic Drugs Acting Via GABAergic Mechanisms. , 2021, , 1-18.		0
1024	GABAA Receptor Subtype Mechanisms and the Abuse-Related Effects of Ethanol: Genetic and Pharmacological Evidence. Handbook of Experimental Pharmacology, 2017, 248, 3-27.	0.9	10

#	Article	IF	CITATIONS
1025	The Neurobiology of Anxiety: Potential for Co-Morbidity of Anxiety and Substance Use Disorders. , 2008, , 19-33.		9
1026	Epigenetic Dysregulation of 15q11-13 GABAA Receptor Genes in Autism. , 2010, , 113-127.		1
1028	The Pharmacology of Extrasynaptic GABAA Receptors. Receptors, 2014, , 51-74.	0.2	2
1020	CDCD Modulation of Extragunanitic CARAA Decentors 2014 125 152		9
1029	OPER Modulation of Exclassinaplic GABAA Receptors., 2014, , 125-135.		2
1030	Functional Relevance of GABAA-Receptor Subtypes 2007 23-39.		8
1000			0
1031	Subunit Composition and Structure of GABAA-Receptor Subtypes. , 2007, , 69-86.		8
1032	Mechanisms of GABAA and GABAB Receptor Gene Regulation and Cell Surface Expression. , 2007, , 169-238.		2
1033	Physiology and Pharmacology of the GABA System: Focus on GABA Receptors. , 2010, , 3-23.		6
1034	Distribution of GABAA Receptor Subunits in the Human Brain. , 2010, , 73-93.		7
1035	Anxiolytika und Hypnotika. , 2012, , 695-712.		8
	Gain-of-function <i>GABRB3</i> variants identified in vigabatrin-hypersensitive epileptic		
1036	encephalopathies. Brain Communications, 2020, 2, fcaa162.	1.5	21
1005	Fast-spiking Cell to Pyramidal Cell Connections Are the Most Sensitive to Propofol-induced	1.0	20
1037	Facilitation of GABAergic Currents in Rat Insular Cortex. Anesthesiology, 2014, 121, 68-78.	1.3	20
1038	Ĵ³-Aminobutyric Acid–mediated Neurotransmission in the Pontine Reticular Formation Modulates	1 9	76
1038	Hypnosis, Immobility, and Breathing during Isoflurane Anesthesia. Anesthesiology, 2008, 109, 978-988.	1.0	70
1039	Enhancement of GABAergic Tonic Currents by Midazolam and Noradrenaline in Rat Substantia	1.3	14
2007	Gelatinosa Neurons <i>In Vitro</i> A. Anesthesiology, 2010, 113, 429-437.	210	
1042	GABA _A Receptor Subtype-Selective Efficacy: TPA023, an $\hat{1}\pm 2/\hat{1}\pm 3$ Selective Non-sedating Anxiolytic	1.9	36
	and 1±51A, an 1±5 Selective Cognition Enhancer. Cits Neuroscience and merapeutics, 2008, 14, 25-55.		
1043	Models for discovery of targeted therapy in genetic epileptic encephalopathies. Journal of Neurochemistry, 2017, 143, 30-48.	2.1	38
1044	Different Reactions of Control and Epileptic Rats to Administration of APV or Muscimol on Thalamic or CA3-Induced CA1 Responses. Journal of Neurophysiology, 2003, 90, 2875-2883.	0.9	4
	Europtional and malagular placticity of 13 and 1.1 CAPA (gub) A clouby recentor suburity in the densel		
1045	motor nucleus of the vagus after experimentally induced diabetes. Journal of Neurophysiology, 2017, 118, 2833-2841.	0.9	9

ARTICLE IF CITATIONS Anabolic Androgenic Steroids and the Brain. Frontiers in Neuroscience, 2003, , . 0.0 2 1046 Time- and Behavioral State-Dependent Changes in Posterior Hypothalamic GABAA Receptors Contribute 1047 1.1 to the Regulation of Sleep. PLoS ONE, 2014, 9, e86545. Functional Characterization of the 1,5-Benzodiazepine Clobazam and Its Major Active Metabolite 1048 N-Desmethylclobazam at Human GABAA Receptors Expressed in Xenopus laevis Oocytes. PLoS ONE, 2015, 1.1 22 10, e0120239. Deleterious Rare Variants Reveal Risk for Loss of GABAA Receptor Function in Patients with Genetic 1049 1.1 Epilepsy and in the General Population. PLoS ONE, 2016, 11, e0162883. Distinct kinetics of inhibitory currents in thalamocortical neurons that arise from dendritic or 1050 1.1 7 axonal origin. PLoS ONE, 2017, 12, e0189690. Cyfip1 Haploinsufficiency Does Not Alter GABAA Receptor δ-Subunit Expression and Tonic Inhibition in Dentate Gyrus PV+ Interneurons and Granule Cells. ENeuro, 2019, 6, ENEURO.0364-18.2019. Corticotropin-Releasing Factor Receptor-1 Neurons in the Lateral Amygdala Display Selective 1052 0.9 9 Sensitivity to Acute and Chronic Ethanol Exposure. ENeuro, 2020, 7, ENEURO.0420-19.2020. Ion Channels as Drug Targets in Central Nervous System Disorders. Current Medicinal Chemistry, 1053 1.2 94 2013, 20, 1241-1285. The Role of α5 GABA<sub>A</sub> Receptor Agonists in the Treatment of Cognitive 1054 0.9 52 Deficits in Schizophrenia. Current Pharmaceutical Design, 2014, 20, 5069-5076. Elucidating GABAB and GABAB Receptor Functions in Anxiety Using the Stress-Induced Hyperthermia 0.4 Paradigm: A Review. The Open Pharmacology Journal, 2010, 4, 1-14 Propoxazepam conformation and its orientation in the GABAA-receptor binding site. Ukrainian 1057 2 0.1 Biopharmaceutical Journal, 2018, . Sleep and geriatric psychopharmacology., 2008, , 183-193. 1058 Pathophysiological aspects of diversity in neuronal inhibition: a new benzodiazepine pharmacology. 1059 1.8 13 Dialogués in Clinical Neuroscience, 2002, 4, 261-269. The $\hat{l}\pm 1$ subunit of the GABA(A) receptor modulates fear learning and plasticity in the lateral amygdala. 1060 1.0 38 Frontiers in Behavioral Neuroscience, 2009, 3, 37. Honokiol Potentiates Pentobarbital-Induced Sleeping Behaviors through GABA_AReceptor 1061 1.1 11 Cl⁻Channel Activation. Biomolecules and Therapeutics, 2008, 16, 328-335. High-dose zolpidem dependence - Psychostimulant effects? A case report and literature review. 1062 Industrial Psychiatry, 2016, 25, 222. High- and Low-Rearing Rats Differ in the Brain Excitability Controlled by the Allosteric Benzodiazepine 1063 Site in the GABA<sub>A</sub> Receptor. Journal of Behavioral and Brain Science, 2012, 02, 0.2 10 315-325. Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of 1064 2.8 24 hippocampal pyramidal cells. ELife, 2016, 5, .

# ARTICLE	IF	CITATIONS
1065 Treatment of essential tremor with long-chain alcohols: still experimental or ready for prime time?. Tremor and Other Hyperkinetic Movements, 2014, 4, .	1.1	7
Protein Kinase C-Dependent Effects of Neurosteroids on Synaptic GABAA Receptor Inhibition Require the δ-Subunit. Frontiers in Physiology, 2021, 12, 742838.	1.3	4
1067 Tonic GABA _A Receptor-Mediated Currents of Human Cortical GABAergic Interneurons Vary Amongst Cell Types. Journal of Neuroscience, 2021, 41, 9702-9719.	1.7	9
1068 Increased expression of GABAA receptor subunits associated with tonic inhibition in patients with temporal lobe epilepsy. Brain Communications, 2021, 3, fcab239.	1.5	7
Chronic Ethanol Consumption Differentially Alters GABAA Receptor ??1 and ??4 Subunit Peptide Expression and GABAA Receptor-Mediated 36Cl??? Uptake in Mesocorticolimbic Regions of Rat Brain. Alcoholism: Clinical and Experimental Research, 2001, 25, 1270-1275.	1.4	1
1070 GABAA Receptor Subtypes: Memory Function and Neurological Disorders. , 2003, , 215-228.		1
1071 Neurosteroid Modulation of d Subunit-Containing GABAA Receptor Channels. Frontiers in Neuroscience, 2003, , .	0.0	0
		0
1072 In Vivo Function of GABAA Receptor Subtypes Unraveled With Mutant Mice. , 2004, , 95-111.		U
 In Vivo Function of GABAA Receptor Subtypes Unraveled With Mutant Mice., 2004, 95-111. Functional Characterization of GABAA Receptor Ligands In Vitro., 2004, 85-94. 		0
 In Vivo Function of GABAA Receptor Subtypes Unraveled With Mutant Mice., 2004, 95-111. Functional Characterization of GABAA Receptor Ligands In Vitro., 2004, 85-94. Neuropharmakologie., 2006, 177-219. 		0
 In Vivo Function of GABAA Receptor Subtypes Unraveled With Mutant Mice., 2004, 95-111. Functional Characterization of GABAA Receptor Ligands In Vitro., 2004, 85-94. Neuropharmakologie., 2006, 177-219. GABAA Receptor Subtypes in Sedation and Hypnosis., 2006, 3-9. 		0 0 0
 In Vivo Function of GABAA Receptor Subtypes Unraveled With Mutant Mice., 2004, 95-111. Functional Characterization of GABAA Receptor Ligands In Vitro., 2004, 85-94. Neuropharmakologie., 2006, 177-219. GABAA Receptor Subtypes in Sedation and Hypnosis., 2006, 3-9. Insomnia: An Overview. Indian Journal of Sleep Medicine, 2006, 1, 125-130. 	0.2	0 0 0 0
 In Vivo Function of GABAA Receptor Subtypes Unraveled With Mutant Mice., 2004, 95-111. Functional Characterization of GABAA Receptor Ligands In Vitro., 2004, 85-94. Neuropharmakologie., 2006, 177-219. GABAA Receptor Subtypes in Sedation and Hypnosis., 2006, 3-9. Insomnia: An Overview. Indian Journal of Sleep Medicine, 2006, 1, 125-130. The Cellular Localisation of GABAA and Glycine Receptors in the Human Basal Ganglia. Advances in Behavioral Biology, 2009, 225-237. 	0.2	0 0 0 0 0
 In Vivo Function of GABAA Receptor Subtypes Unraveled With Mutant Mice., 2004, 95-111. Functional Characterization of GABAA Receptor Ligands In Vitro., 2004, 85-94. Neuropharmakologie., 2006, 177-219. GABAA Receptor Subtypes in Sedation and Hypnosis., 2006, 3-9. Insomnia: An Overview. Indian Journal of Sleep Medicine, 2006, 1, 125-130. The Cellular Localisation of GABAA and Glycine Receptors in the Human Basal Ganglia. Advances in Behavioral Biology, 2009, 225-237. Ceneral Anesthesia Based on Recent Mechanism Hypothesis. The Journal of Japan Society for Clinical Anesthesia, 2009, 29, 78-84. 	0.2	0 0 0 0 0
 In Vivo Function of GABAA Receptor Subtypes Unraveled With Mutant Mice., 2004, ,95-111. Functional Characterization of GABAA Receptor Ligands In Vitro., 2004, ,85-94. Neuropharmakologie., 2006, ,177-219. GABAA Receptor Subtypes in Sedation and Hypnosis., 2006, , 3-9. Insomnia: An Overview. Indian Journal of Sleep Medicine, 2006, 1, 125-130. The Cellular Localisation of GABAA and Clycine Receptors in the Human Basal Ganglia. Advances in Behavioral Biology, 2009, ,225-237. General Anesthesia Based on Recent Mechanism Hypothesis. The Journal of Japan Society for Clinical Anesthesia, 2009, 29, 78-84. GABA Involvement in the Circadian Regulation of Sleep., 2010, ,303-321. 	0.2 0.2 0.0	0 0 0 0 0 0 1
 In Vivo Function of GABAA Receptor Subtypes Unraveled With Mutant Mice., 2004, , 95-111. Functional Characterization of GABAA Receptor Ligands In Vitro., 2004, , 85-94. Neuropharmakologie., 2006,, 177-219. GABAA Receptor Subtypes in Sedation and Hypnosis., 2006, , 3-9. Insomnia: An Overview. Indian Journal of Sleep Medicine, 2006, 1, 125-130. The Cellular Localisation of GABAA and Glycine Receptors in the Human Basal Ganglia. Advances in Behavioral Biology, 2009, , 225-237. General Anesthesia Based on Recent Mechanism Hypothesis. The Journal of Japan Society for Clinical Anesthesia, 2009, 29, 78-84. GABA Involvement in the Circadian Regulation of Sleep., 2010, , 303-321. Benzodiazepine Receptor Agonists and Sleep., 2013, , 611-616. 	0.2 0.2 0.0	0 0 0 0 0 0 0 1 1
 In Vivo Function of GABAA Receptor Subtypes Unraveled With Mutant Mice., 2004, 95-111. Functional Characterization of GABAA Receptor Ligands In Vitro., 2004, 85-94. Neuropharmakologie., 2006, 177-219. GABAA Receptor Subtypes in Sedation and Hypnosis., 2006, 3-9. Insomnia: An Overview. Indian Journal of Sleep Medicine, 2006, 1, 125-130. The Cellular Localisation of GABAA and Glycine Receptors in the Human Basal Ganglia. Advances in Behavioral Biology, 2009, 225-237. General Anesthesia Based on Recent Mechanism Hypothesis. The Journal of Japan Society for Clinical Anesthesia, 2009, 29, 78-84. GABA Involvement in the Circadian Regulation of Sleep., 2010, 303-321. Benzodiazepine Receptor Agonists and Sleep., 2013, 611-616. GABAergic Control of the Hypothalamicâ€"Pituitaryâ€"Adrenal (HPA) Axis: Role of Extrasynaptic GABAA 	0.2 0.2 0.0	0 0 0 0 0 0 0 1 1 0

#	Article	IF	CITATIONS
1083	Extrasynaptic GABAA Receptors: Subunit Composition, Distribution, and Regulation. Receptors, 2014, , 15-32.	0.2	1
1084	Tonic GABAA-Receptor-Mediated Inhibition in Fragile-X Syndrome: A Cause of Dysfunction or a Pathway for a Cure?. Receptors, 2014, , 271-284.	0.2	1
1086	GABA _A receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
1089	The distinctive assembly pattern of ε subunit in ternary α1β3ε and binary β3ε GABAA receptors. Journal of Cellular Neuroscience and Oxidative Stress, 2020, 11, 874-884.	0.1	0
1090	Glia: A major player in glutamate–GABA dysregulationâ€mediated neurodegeneration. Journal of Neuroscience Research, 2021, 99, 3148-3189.	1.3	29
1091	Molecular Organization of the Postsynaptic Membrane at Inhibitory Synapses. , 2008, , 621-660.		Ο
1092	Differential Activation of GABAA-Receptor Subtypes. , 2007, , 87-110.		0
1093	Anxiolytika und Hypnotika. , 2008, , 627-641.		Ο
1094	Nonlinearities between inhibition and T-type calcium channel activity bidirectionally regulate thalamic oscillations. ELife, 2020, 9, .	2.8	7
1096	Zolpidem-induced sleepwalking, sleep related eating disorder, and sleep-driving: fluorine-18-flourodeoxyglucose positron emission tomography analysis, and a literature review of other unexpected clinical effects of zolpidem. Journal of Clinical Sleep Medicine, 2009, 5, 471-6.	1.4	38
1100	Focus on: neurotransmitter systems. Alcohol Research, 2011, 34, 106-20.	1.0	16
1102	An epileptic encephalopathy associated <i>GABRG2</i> missense mutation leads to pre- and postsynaptic defects in zebrafish. Human Molecular Genetics, 2022, 31, 3216-3230.	1.4	5
1103	The Hair Cell α9α10 Nicotinic Acetylcholine Receptor: Odd Cousin in an Old Family. Frontiers in Cellular Neuroscience, 2021, 15, 785265.	1.8	9
1104	Effects of neonatal dopaminergic lesion on oral cocaine self-administration in rats: Higher female vulnerability to cocaine consumption. Pharmacology Biochemistry and Behavior, 2022, 212, 173315.	1.3	2
1105	Tricyclic antipsychotics and antidepressants can inhibit α5 ontaining GABA _A receptors by two distinct mechanisms. British Journal of Pharmacology, 2022, 179, 3675-3692.	2.7	7
1106	GABAA/Benzodiazepine Receptor Complex in the Dorsal Hippocampus Mediates the Effects of Chrysin on Anxiety-Like Behaviour in Female Rats. Frontiers in Behavioral Neuroscience, 2021, 15, 789557.	1.0	2
1107	<i>li>l±</i> 6-Containing GABA _A Receptors: Functional Roles and Therapeutic Potentials. Pharmacological Reviews, 2022, 74, 238-270.	7.1	14
1108	Relevance of Cortical and Hippocampal Interneuron Functional Diversity to General Anesthetic Mechanisms: A Narrative Review. Frontiers in Synaptic Neuroscience, 2021, 13, 812905.	1.3	1

#	Article	IF	CITATIONS
1109	The Case for Clinical Trials with Novel GABAergic Drugs in Diabetes Mellitus and Obesity. Life, 2022, 12, 322.	1.1	1
1110	Lipid mediator nâ€3 docosapentaenoic acidâ€derived protectin D1 enhances synaptic inhibition of hippocampal principal neurons by interaction with a Gâ€proteinâ€coupled receptor. FASEB Journal, 2022, 36, e22203.	0.2	6
1111	Distinct Functional Alterations and Therapeutic Options of Two Pathological De Novo Variants of the T292 Residue of GABRA1 Identified in Children with Epileptic Encephalopathy and Neurodevelopmental Disorders. International Journal of Molecular Sciences, 2022, 23, 2723.	1.8	6
1112	Stiripentol inhibits spikeâ€andâ€wave discharges in animal models of absence seizures: A new mechanism of action involving Tâ€ŧype calcium channels. Epilepsia, 2022, 63, 1200-1210.	2.6	9
1113	Hyperammonemia Enhances GABAergic Neurotransmission in Hippocampus: Underlying Mechanisms and Modulation by Extracellular cGMP. Molecular Neurobiology, 2022, 59, 3431-3448.	1.9	3
1114	Anti-Nociceptive and Anti-Aversive Drugs Differentially Modulate Distinct Inputs to the Rat Lateral Parabrachial Nucleus. Journal of Pain, 2022, 23, 1410-1426.	0.7	6
1116	Correlation of receptor density and mRNA expression patterns in the human cerebral cortex. NeuroImage, 2022, 256, 119214.	2.1	7
1126	Intracellular and extracelluar cyclic GMP in the brain and the hippocampus. Vitamins and Hormones, 2022, 118, 247-288.	0.7	1
1127	Human ARHGEF9 intellectual disability syndrome is phenocopied by a mutation that disrupts collybistin binding to the GABAA receptor α2 subunit. Molecular Psychiatry, 2022, 27, 1729-1741.	4.1	6
1128	Knockdown of GABAA alpha3 subunits on thalamic reticular neurons enhances deep sleep in mice. Nature Communications, 2022, 13, 2246.	5.8	14
1129	Can GABAkines quiet the noise? The GABAA receptor neurobiology and pharmacology of tinnitus. Biochemical Pharmacology, 2022, 201, 115067.	2.0	3
1130	Targeting α6CABAA receptors as a novel therapy for schizophrenia: A proof-of-concept preclinical study using various animal models. Biomedicine and Pharmacotherapy, 2022, 150, 113022.	2.5	5
1131	Combined analysis of cytoarchitectonic, molecular and transcriptomic patterns reveal differences in brain organization across human functional brain systems. NeuroImage, 2022, 257, 119286.	2.1	12
1133	Electrophysiological study of the effects of side products of RuBi-GABA uncaging on GABA _A receptors in cerebellar granule cells. Biomolecular Concepts, 2022, 13, 289-297.	1.0	0
1134	Virally-Induced Expression of GABA _A Receptor δ Subunits Following Their Pathological Loss Reveals Their Role in Regulating GABA _A Receptor Assembly. SSRN Electronic Journal, 0, , .	0.4	0
1135	The de novo <i>CABRA4</i> p.Thr300lle variant found in a patient with earlyâ€onset intractable epilepsy and neurodevelopmental abnormalities displays gainâ€ofâ€function traits. Epilepsia, 2022, 63, 2439-2441.	2.6	6
1136	Neurogliaform cells dynamically decouple neuronal synchrony between brain areas. Science, 2022, 377, 324-328.	6.0	19
1137	Virally-induced expression of GABAA receptor δ subunits following their pathological loss reveals their role in regulating GABAA receptor assembly. Progress in Neurobiology, 2022, 218, 102337.	2.8	3

#	Article	IF	CITATIONS
1139	Post-encoding modulation of spatial memory consolidation by propofol. Cortex, 2022, 156, 1-12.	1.1	2
1140	lon channels and febrile seizures: Itâ $€$ [™] s not just SCN1A. , 2023, , 65-91.		0
1141	Targeting prefrontal cortex GABAergic microcircuits for the treatment of alcohol use disorder. Frontiers in Synaptic Neuroscience, 0, 14, .	1.3	12
1142	Analyzing the mechanisms that facilitate the subtype-specific assembly of γ-aminobutyric acid type A receptors. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	2
1143	Abnormal Expression of Synaptic and Extrasynaptic GABAA Receptor Subunits in the Dystrophin-Deficient mdx Mouse. International Journal of Molecular Sciences, 2022, 23, 12617.	1.8	0
1144	The Regional and Cellular Distribution of GABAA Receptor Subunits in the Human Amygdala. Journal of Chemical Neuroanatomy, 2022, , 102185.	1.0	1
1145	Tranquilizers/Anxiolytics: Pharmacology and Biochemistry of Anxiolytic Drugs Acting via GABAergic Mechanisms. , 2022, , 2053-2070.		0
1146	A role of GABAA receptor α1 subunit in the hippocampus for rapid-acting antidepressant-like effects of ketamine. Neuropharmacology, 2023, 225, 109383.	2.0	5
1147	Germinated brown rice protects against glutamate toxicity in HT22 hippocampal neurons through the jnk-mediated apoptotic pathway via the GABAA receptor. IBRO Neuroscience Reports, 2023, 14, 38-49.	0.7	0
1148	Heterozygous <scp>GABA_A </scp> receptor β3 subunit <scp>N110D</scp> knockâ€in mice have epileptic spasms. Epilepsia, 2023, 64, 1061-1073.	2.6	3
1149	Clptm1, a new target in suppressing epileptic seizure by regulating <scp>GABA_AR</scp> â€mediated inhibitory synaptic transmission in a <scp>PTZ</scp> â€induced epilepsy model. Kaohsiung Journal of Medical Sciences, 2023, 39, 61-69.	0.8	2
1150	Altered GABAA Receptor Expression in the Primary Somatosensory Cortex of a Mouse Model of Genetic Absence Epilepsy. International Journal of Molecular Sciences, 2022, 23, 15685.	1.8	1
1151	GABAA receptor subtypes and benzodiazepine use, misuse, and abuse. Frontiers in Psychiatry, 0, 13, .	1.3	15
1152	Pharmacological administration of 3α,5αâ€THP into the nucleus accumbens core increases 3α,5αâ€THP expression and reduces alcohol selfâ€administration. Alcoholism: Clinical and Experimental Research, 2023, 47, 459-469.	1.4	3
1153	Splice-Site Variants in the Gene Encoding GABA-A Receptor Delta Subunit Are Associated with Amphetamine Use in Patients under Methadone Maintenance Treatment. International Journal of Molecular Sciences, 2023, 24, 721.	1.8	1
1154	Benzodiazepine receptor agonists and sleep. , 2013, , 325-331.		Ο
1155	GABA-A Alpha 2/3 but Not Alpha 1 Receptor Subunit Ligand Inhibits Harmaline and Pimozide-Induced Tremor in Rats. Biomolecules, 2023, 13, 197.	1.8	2
1156	Ventral tegmental area astrocytes modulate cocaine reward by tonically releasing GABA. Neuron, 2023, 111, 1104-1117.e6.	3.8	11

#	Article	IF	CITATIONS
1157	Neuroimmune interactions with binge alcohol drinking in the cerebellum of IL-6 transgenic mice. Neuropharmacology, 2023, 228, 109455.	2.0	3
1158	Allopregnanolone Effects on Inhibition in Hippocampal Parvalbumin Interneurons. ENeuro, 2023, 10, ENEURO.0392-22.2023.	0.9	1
1159	GABAA Receptor and Serotonin Transporter Expression Changes Dissociate Following Mild Traumatic Brain Injury: Influence of Sex and Estrus Cycle Phase in Rats. Neuroscience, 2023, 514, 38-55.	1.1	3
1161	Astrocytes regulate inhibitory neurotransmission through GABA uptake, metabolism, and recycling. Essays in Biochemistry, 2023, 67, 77-91.	2.1	10
1162	In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open, 2023, 8, .	1.3	3
1163	Genetic mechanisms in generalized epilepsies. Acta Epileptologica, 2023, 5, .	0.4	1
1164	The difference in mean arterial pressure induced by remimazolam compared to etomidate in the presence of fentanyl at tracheal intubation: A randomized controlled trial. Frontiers in Pharmacology, 0, 14, .	1.6	1
1165	Control of contextual memory through interneuronal $\hat{1}\pm 5$ -GABAA receptors. , 2023, 2, .		4
1166	Early central cardiovagal dysfunction after high fat diet in a murine model. Scientific Reports, 2023, 13, .	1.6	2
1167	Blue Native PACE–Antibody Shift in Conjunction with Mass Spectrometry to Reveal Protein Subcomplexes: Detection of a Cerebellar α1/α6-Subunits Containing γ-Aminobutyric Acid Type A Receptor Subtype. International Journal of Molecular Sciences, 2023, 24, 7632.	1.8	2
1172	Neurosteroids: mechanistic considerations and clinical prospects. Neuropsychopharmacology, 2024, 49, 73-82.	2.8	3
1173	Neurochemistry of the mammillary body. Brain Structure and Function, 2023, 228, 1379-1398.	1.2	2
1174	Modulators of GABAA receptor-mediated inhibition in the treatment of neuropsychiatric disorders: past, present, and future. Neuropsychopharmacology, 2024, 49, 83-95.	2.8	1