Deriving Quantitative Constraints on T Cell Selection fr Repertoire

Journal of Immunology 164, 121-128 DOI: 10.4049/jimmunol.164.1.121

Citation Report

#	Article	IF	CITATIONS
1	A Quantitative Theory of Affinity-driven T Cell Repertoire Selection. Journal of Theoretical Biology, 1999, 200, 389-403.	0.8	42
2	Modeling costimulation. Nature Immunology, 2000, 1, 194-195.	7.0	10
3	The paradox of alloreactivity and self MHC restriction: Quantitative analysis and statistics. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8479-8483.	3.3	22
4	Simplicity belies a complex system: a response to the minimal model of immunity of Langman and Cohn. Cellular Immunology, 2002, 216, 23-30.	1.4	24
5	Test of a Statistical Model for Molecular Recognition in Biological Repertoires. Journal of Theoretical Biology, 2002, 216, 327-336.	0.8	35
6	Maximum likelihood estimator and likelihood ratio test in complex models: an application to BÂlymphocyte development. Bulletin of Mathematical Biology, 2003, 65, 1131-1139.	0.9	6
7	Quantitative constraints on the scope of negative selection. Trends in Immunology, 2003, 24, 132-135.	2.9	28
8	Activation–threshold tuning in an affinity model for the T–cell repertoire. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 609-616.	1.2	42
9	The Impact of Thymic Antigen Diversity on the Size of the Selected T Cell Repertoire. Journal of Immunology, 2004, 172, 2247-2255.	0.4	15
10	Modeling and analysis of the meta-population dynamics of lymphocyte repertoires. Journal of Computational and Applied Mathematics, 2005, 184, 223-241.	1.1	3
11	Feedback Loops, Reversals and Nonlinearities in Lymphocyte Development. Bulletin of Mathematical Biology, 2006, 68, 1073-1094.	0.9	4
12	The Effects of Age, Thymectomy, and HIV Infection on \hat{I}_{\pm} and \hat{I}^2 TCR Excision Circles in Naive T Cells. Journal of Immunology, 2006, 177, 4391-4401.	0.4	25
13	Thymic Selection of T Cells as Diffusion withÂIntermittent Traps. Journal of Statistical Physics, 2011, 142, 1277-1286.	0.5	1
14	Positive and negative selection, self-nonself discrimination and the roles of costimulation and anergy. Scientific Reports, 2012, 2, 769.	1.6	3
15	Mechanisms Underlying CD4+ Treg Immune Regulation in the Adult: From Experiments to Models. Frontiers in Immunology, 2013, 4, 378.	2.2	63
16	Models of Self-Peptide Sampling by Developing T Cells Identify Candidate Mechanisms of Thymic Selection. PLoS Computational Biology, 2013, 9, e1003102.	1.5	18
17	Theories and Quantification of Thymic Selection. Frontiers in Immunology, 2014, 5, 13.	2.2	80
18	Revisiting Thymic Positive Selection and the Mature T Cell Repertoire for Antigen. Immunity, 2014, 41, 181-190.	6.6	76

#	Article	IF	CITATIONS
19	Indoctrinating T cells to attack pathogens through homeschooling. Trends in Immunology, 2015, 36, 337-343.	2.9	5
20	Effects of thymic selection on T cell recognition of foreign and tumor antigenic peptides. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7875-E7881.	3.3	32
21	The dual role of autoimmune regulator in maintaining normal expression level of tissue-restricted autoantigen in the thymus: A modeling investigation. Mathematical Biosciences, 2017, 287, 12-23.	0.9	4
22	Immunological Recognition by Artificial Neural Networks. Journal of the Korean Physical Society, 2018, 73, 1908-1917.	0.3	0
23	Broad cross-reactivity of the T-cell repertoire achieves specific and sufficiently rapid target searching. Journal of Theoretical Biology, 2019, 466, 119-127.	0.8	2
24	Is T Cell Negative Selection a Learning Algorithm?. Cells, 2020, 9, 690.	1.8	11
25	Quantitative immunology for physicists. Physics Reports, 2020, 849, 1-83.	10.3	39
28	What's self got to do with it: Sources of heterogeneity among naive T cells. Seminars in Immunology, 2023, 65, 101702.	2.7	11

CITATION REPORT