The NPH4 Locus Encodes the Auxin Response Factor Al Differential Growth in Aerial Arabidopsis Tissue

Plant Cell 12, 757-770 DOI: 10.1105/tpc.12.5.757

Citation Report

#	Article	IF	CITATIONS
1	Phototropism: A "Simple―Physiological Response Modulated by Multiple Interacting Photosensory-response PathwaysA¶. Photochemistry and Photobiology, 2000, 72, 273.	1.3	48
2	Ethylene signaling: from mutants to molecules. Current Opinion in Plant Biology, 2000, 3, 353-360.	3.5	166
4	Arabidopsis Research 2000. Plant Cell, 2000, 12, 2302.	3.1	0
5	AXR2 Encodes a Member of the Aux/IAA Protein Family. Plant Physiology, 2000, 123, 563-574.	2.3	432
6	Aux/IAA Proteins Are Phosphorylated by Phytochrome in Vitro. Plant Physiology, 2000, 124, 1728-1738.	2.3	232
7	Auxin Signaling. Developmental Cell, 2001, 1, 595-604.	3.1	61
8	Roles and activities of Aux/IAA proteins in Arabidopsis. Trends in Plant Science, 2001, 6, 420-425.	4.3	401
9	The Enhancement of Phototropin-Induced Phototropic Curvature in Arabidopsis Occurs via a Photoreversible Phytochrome A-Dependent Modulation of Auxin Responsiveness. Plant Physiology, 2001, 126, 826-834.	2.3	81
10	Auxin response factor family in rice Genes and Genetic Systems, 2001, 76, 373-380.	0.2	39
11	Auxin Response Factors. Journal of Plant Growth Regulation, 2001, 20, 281-291.	2.8	150
12	Auxins and Tropisms. Journal of Plant Growth Regulation, 2001, 20, 226-243.	2.8	165
13	Keeping the Momentum in Auxin Research. Journal of Plant Growth Regulation, 2001, 20, 195-197.	2.8	0
14	Gravitropism in cut flower stalks of snapdragon. Advances in Space Research, 2001, 27, 921-932.	1.2	21
15	Signals in abscission. New Phytologist, 2001, 151, 323-340.	3.5	321
16	Auxin transport: Why plants like to think BIG. Current Biology, 2001, 11, R831-R833.	1.8	25
17	Plant morphogenesis: long-distance coordination and local patterning. Current Opinion in Plant Biology, 2001, 4, 57-62.	3.5	238
18	Auxin signalling: the beginning, the middle and the end. Current Opinion in Plant Biology, 2001, 4, 382-386.	3.5	65
19	Dissection of the Light Signal Transduction Pathways Regulating the Two <i>Early Light-Induced Protein</i> Genes in Arabidopsis. Plant Physiology, 2001, 127, 986-997.	2.3	55

TATION REPO

#	Article	IF	CITATIONS
20	The Ethylene Pathway: A Paradigm for Plant Hormone Signaling and Interaction. Science Signaling, 2001, 2001, re1-re1.	1.6	38
21	BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes and Development, 2001, 15, 1985-1997.	2.7	250
22	Genetic regulation of gravitropism in higher plants. International Review of Cytology, 2001, 206, 135-154.	6.2	35
23	The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes and Development, 2002, 16, 1610-1615.	2.7	485
24	Blue Light Receptors and Signal Transduction. Plant Cell, 2002, 14, S207-S225.	3.1	300
25	Genetics of Aux/IAA and ARF action in plant growth and development. , 2002, , 387-400.		165
26	Arabidopsis thaliana: A Model for the Study of Root and Shoot Gravitropism. The Arabidopsis Book, 2002, 1, e0043.	0.5	35
27	Expression of the AtGH3a Gene, an Arabidopsis Homologue of the Soybean GH3 Gene, is Regulated by Phytochrome B. Plant and Cell Physiology, 2002, 43, 281-289.	1.5	58
28	Auxin cross-talk: integration of signalling pathways to control plant development. , 2002, 49, 411-426.		125
29	SGR2, a Phospholipase-Like Protein, and ZIG/SGR4, a SNARE, Are Involved in the Shoot Gravitropism of Arabidopsis. Plant Cell, 2002, 14, 33-46.	3.1	220
30	MOLECULARGENETICS OFAUXINSIGNALING. Annual Review of Plant Biology, 2002, 53, 377-398.	8.6	206
31	Light and shade in the photocontrol of Arabidopsis growth. Trends in Plant Science, 2002, 7, 399-404.	4.3	138
32	ROOTGRAVITROPISM: An Experimental Tool to Investigate Basic Cellular and Molecular Processes Underlying Mechanosensing and Signal Transmission in Plants. Annual Review of Plant Biology, 2002, 53, 421-447.	8.6	145
33	Tropic and Nontropic Responses to Environmental Signals. , 2002, , 717-756.		0
34	Interactions Between Gravitropism and Phototropism in Plants. Journal of Plant Growth Regulation, 2002, 21, 89-101.	2.8	104
35	Photoreceptors in Arabidopsis thaliana : light perception, signal transduction and entrainment of the endogenous clock. Planta, 2002, 216, 1-16.	1.6	166
36	Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta, 2002, 216, 203-211.	1.6	134
37	Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant Journal, 2002, 29, 153-168.	2.8	654

#	Article	IF	CITATIONS
38	Identification of a novel marker for auxin and ethylene cross-talk from tobacco seedlings. Plant Physiology and Biochemistry, 2002, 40, 803-811.	2.8	4
39	Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant Journal, 2002, 32, 603-613.	2.8	223
40	Mutation in domain II of IAA1 confers diverse auxin-related phenotypes and represses auxin-activated expression of Aux/IAA genes in steroid regulator-inducible system. Plant Journal, 2002, 32, 669-683.	2.8	83
41	Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology, 2002, 49, 373-385.	2.0	1,018
42	Protein phosphorylation in the delivery of and response to auxin signals. Plant Molecular Biology, 2002, 49, 285-303.	2.0	58
43	Auxin cross-talk: integration of signalling pathways to control plant development. Plant Molecular Biology, 2002, 49, 409-424.	2.0	170
44	Genetics of Aux/IAA and ARF action in plant growth and development. Plant Molecular Biology, 2002, 49, 387-400.	2.0	587
45	Secondary messengers and phospholipase A2 in auxin signal transduction. Plant Molecular Biology, 2002, 49, 357-372.	2.0	59
46	OsARF1, an auxin response factor from rice, is auxin-regulated and classifies as a primary auxin responsive gene. Plant Molecular Biology, 2002, 50, 415-425.	2.0	74
47	Phototropin 1 is required for high-fluence blue-light-mediated mRNA destabilization. Plant Molecular Biology, 2003, 51, 609-618.	2.0	48
48	Interactions Between Light and Plant Hormones During De-etiolation. Journal of Plant Growth Regulation, 2003, 22, 3-14.	2.8	45
49	Simple hormones but complex signalling. Current Opinion in Plant Biology, 2003, 6, 51-56.	3.5	61
50	Light perception and signalling in higher plants. Current Opinion in Plant Biology, 2003, 6, 446-452.	3.5	188
51	Mutations in the huge Arabidopsis gene BIG affect a range of hormone and light responses. Plant Journal, 2003, 35, 57-70.	2.8	97
52	Phytochromeâ€hormonal signalling networks. New Phytologist, 2003, 157, 449-463.	3.5	108
53	SIR1, an Upstream Component in Auxin Signaling Identified by Chemical Genetics. Science, 2003, 301, 1107-1110.	6.0	158
54	Physiological characterization of auxinic herbicide-resistant biotypes of kochia (Kochia scoparia). Weed Science, 2003, 51, 839-844.	0.8	32
55	The Arabidopsis MALE MEIOCYTE DEATH1 Gene Encodes a PHD-Finger Protein That Is Required for Male Meiosis. Plant Cell, 2003, 15, 1281-1295.	3.1	168

#	Article	IF	CITATIONS
56	Ethylene and Auxin Control the Arabidopsis Response to Decreased Light Intensity. Plant Physiology, 2003, 133, 517-527.	2.3	166
57	Ethylene Regulates Arabidopsis Development via the Modulation of DELLA Protein Growth Repressor Function. Plant Cell, 2003, 15, 2816-2825.	3.1	391
58	MASSUGU2 Encodes Aux/IAA19, an Auxin-Regulated Protein That Functions Together with the Transcriptional Activator NPH4/ARF7 to Regulate Differential Growth Responses of Hypocotyl and Formation of Lateral Roots in Arabidopsis thaliana. Plant Cell, 2004, 16, 379-393.	3.1	411
59	Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development (Cambridge), 2004, 131, 1089-1100.	1.2	302
60	Isolation of cucumber CsARF cDNAs and expression of the corresponding mRNAs during gravity-regulated morphogenesis of cucumber seedlings. Journal of Experimental Botany, 2004, 55, 1315-1323.	2.4	15
61	Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant Journal, 2004, 40, 333-343.	2.8	235
62	The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1. Plant Journal, 2004, 40, 772-782.	2.8	201
63	Auxin signals — turning genes on and turning cells around. Current Opinion in Plant Biology, 2004, 7, 553-563.	3.5	82
64	Light differentially regulates the expression of two members of the auxin-induced 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.) seedlings. Planta, 2004, 218, 976-988.	1.6	11
65	A novel mutant with modified tropic responses in Pisum sativum L Planta, 2004, 220, 222-229.	1.6	2
66	ydk1-D, an auxin-responsiveGH3mutant that is involved in hypocotyl and root elongation. Plant Journal, 2004, 37, 471-483.	2.8	177
67	Ethylene-mediated enhancement of apical hook formation in etiolatedArabidopsis thalianaseedlings is gibberellin dependent. Plant Journal, 2004, 37, 505-516.	2.8	134
68	Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene*. Journal of Experimental Botany, 2004, 55, 613-622.	2.4	78
69	Interactions between Auxin Transport and the Actin Cytoskeleton in Developmental Polarity of Fucus distichus Embryos in Response to Light and Gravity. Plant Physiology, 2004, 135, 266-278.	2.3	63
70	Convergence of Signaling Pathways in the Control of Differential Cell Growth in Arabidopsis. Developmental Cell, 2004, 7, 193-204.	3.1	289
71	Shaping the shoot: a circuitry that integrates multiple signals. Trends in Plant Science, 2004, 9, 499-506.	4.3	41
72	Light Signal Transduction in Higher Plants. Annual Review of Genetics, 2004, 38, 87-117.	3.2	843
73	Roles Played by Auxin in Phototropism and Photomorphogenesis. , 2005, , 269-276.		3

#	Article	IF	CITATIONS
74	AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant Journal, 2005, 43, 29-46.	2.8	336
75	NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant Journal, 2005, 43, 118-130.	2.8	415
76	Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. Plant Journal, 2005, 44, 382-395.	2.8	236
77	Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nature Cell Biology, 2005, 7, 1057-1065.	4.6	514
78	Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO Journal, 2005, 24, 1874-1885.	3.5	349
79	Ethylene signalling and response pathway: a unique signalling cascade with a multitude of inputs and outputs. Physiologia Plantarum, 2005, 123, 195-206.	2.6	77
80	Isolation of a Mutant of Fer1 Gene, Acting Synergistically with the ARF8 Gene to Control Development of the Anther and Filament in Arabidopsis. Journal of Integrative Plant Biology, 2005, 47, 327-333.	4.1	0
81	Plant tropisms: providing the power of movement to a sessile organism. International Journal of Developmental Biology, 2005, 49, 665-674.	0.3	113
82	AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2regulate senescence and floral organ abscission in Arabidopsis thaliana. Development (Cambridge), 2005, 132, 4563-4574.	1.2	531
83	The Arabidopsis Cold-Responsive Transcriptome and Its Regulation by ICE1. Plant Cell, 2005, 17, 3155-3175.	3.1	711
84	Phototropins and Associated Signaling: Providing the Power of Movement in Higher Plants¶. Photochemistry and Photobiology, 2005, 81, 73.	1.3	37
85	Functional Genomic Analysis of the AUXIN/INDOLE-3-ACETIC ACID Gene Family Members in Arabidopsis thaliana Â[W]. Plant Cell, 2005, 17, 3282-3300.	3.1	331
86	The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. Journal of Experimental Botany, 2005, 56, 909-920.	2.4	135
87	CORKSCREW1 Defines a Novel Mechanism of Domain Specification in the Maize Shoot. Plant Physiology, 2005, 138, 1396-1408.	2.3	8
88	A Brassinosteroid-Hypersensitive Mutant of BAK1 Indicates That a Convergence of Photomorphogenic and Hormonal Signaling Modulates Phototropism. Plant Physiology, 2005, 139, 448-457.	2.3	52
89	A Possible Role for NDPK2 in the Regulation of Auxin-mediated Responses for Plant Growth and Development. Plant and Cell Physiology, 2005, 46, 1246-1254.	1.5	38
90	The Rice COLEOPTILE PHOTOTROPISM1 Gene Encoding an Ortholog of Arabidopsis NPH3 Is Required for Phototropism of Coleoptiles and Lateral Translocation of Auxin. Plant Cell, 2005, 17, 103-115.	3.1	116
91	Phototropins, Other Photoreceptors, and Associated Signaling: The Lead and Supporting Cast in the Control of Plant Movement Responses. Current Topics in Developmental Biology, 2005, 66, 215-238.	1.0	10

#	Article	IF	CITATIONS
92	Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development (Cambridge), 2005, 132, 4107-4118.	1.2	608
93	Auxin: Regulation, Action, and Interaction. Annals of Botany, 2005, 95, 707-735.	1.4	1,876
95	Surge and destroy: the role of auxin in plant embryogenesis. Development (Cambridge), 2005, 132, 3577-3585.	1.2	121
96	Auxin Response Factors Mediate Arabidopsis Organ Asymmetry via Modulation of KANADI Activity. Plant Cell, 2005, 17, 2899-2910.	3.1	460
97	Control of Root Cap Formation by MicroRNA-Targeted Auxin Response Factors in Arabidopsis. Plant Cell, 2005, 17, 2204-2216.	3.1	741
98	Functional Genomic Analysis of the AUXIN RESPONSE FACTOR Gene Family Members in Arabidopsis thaliana: Unique and Overlapping Functions of ARF7 and ARF19 Â. Plant Cell, 2005, 17, 444-463.	3.1	933
99	An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. Plant Cell, 2005, 17, 2693-2704.	3.1	260
100	AUXIN RESPONSE FACTOR7 Restores the Expression of Auxin-Responsive Genes in Mutant Arabidopsis Leaf Mesophyll Protoplasts. Plant Cell, 2005, 17, 1979-1993.	3.1	182
101	A Link between Ethylene and Auxin Uncovered by the Characterization of Two Root-Specific Ethylene-Insensitive Mutants in Arabidopsis. Plant Cell, 2005, 17, 2230-2242.	3.1	452
102	Plant Development Is Regulated by a Family of Auxin Receptor F Box Proteins. Developmental Cell, 2005, 9, 109-119.	3.1	865
103	Ethylene Biosynthesis and Signaling: An Overview. Vitamins and Hormones, 2005, 72, 399-430.	0.7	64
104	Gravitropic Bending and Plant Hormones. Vitamins and Hormones, 2005, 72, 31-78.	0.7	42
106	A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 236-241.	3.3	210
107	Brassinosteroid induction of AtACS4 encoding an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase 4 in Arabidopsis seedlings. Physiologia Plantarum, 2006, 126, 060217072449002-???.	2.6	8
108	Transfection Assays With Protoplasts Containing Integrated Reporter Genes. , 2006, 323, 237-244.		31
109	The Janus face of ethylene: growth inhibition and stimulation. Trends in Plant Science, 2006, 11, 176-183.	4.3	398
111	Signal Crosstalk in the Control of Hypocotyl Elongation in Arabidopsis. Plant Cell Monographs, 2006, , 271-293.	0.4	3
112	Growth and Function of Roots under Abiotic Stress in Soils. , 2006, , 271-319.		26

#	ARTICLE	IF	CITATIONS
113	A C2H2-type zinc finger protein, SGR5, is involved in early events of gravitropism in Arabidopsis inflorescence stems. Plant Journal, 2006, 47, 619-628.	2.8	81
114	A trial of phenome analysis using 4000Ds-insertional mutants in gene-coding regions of Arabidopsis. Plant Journal, 2006, 47, 640-651.	2.8	110
115	Plant fertility defects induced by the enhanced expression of microRNA167. Cell Research, 2006, 16, 457-465.	5.7	167
116	Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cellular and Molecular Life Sciences, 2006, 63, 2738-2754.	2.4	328
117	Phototropin and light-signaling in phototropism. Current Opinion in Plant Biology, 2006, 9, 503-508.	3.5	60
118	Phototropism: Bending towards Enlightenment. Plant Cell, 2006, 18, 1110-1119.	3.1	132
119	Ethylene Modulates Flavonoid Accumulation and Gravitropic Responses in Roots of Arabidopsis. Plant Physiology, 2006, 140, 1384-1396.	2.3	190
120	Transcriptional Regulation of Gibberellin Metabolism Genes by Auxin Signaling in Arabidopsis. Plant Physiology, 2006, 142, 553-563.	2.3	255
121	Fluorescence Cross-Correlation Analyses of the Molecular Interaction between an Aux/IAA Protein, MSG2/IAA19, and Protein–Protein Interaction Domains of Auxin Response Factors of Arabidopsis Expressed in HeLa Cells. Plant and Cell Physiology, 2006, 47, 1095-1101.	1.5	49
122	Inhibition of Brassinosteroid Biosynthesis by Either a dwarf4 Mutation or a Brassinosteroid Biosynthesis Inhibitor Rescues Defects in Tropic Responses of Hypocotyls in the Arabidopsis Mutant nonphototropic hypocotyl 4 Â. Plant Physiology, 2006, 141, 456-464.	2.3	47
123	A Role for Auxin Response Factor 19 in Auxin and Ethylene Signaling in Arabidopsis. Plant Physiology, 2006, 140, 899-908.	2.3	163
124	RCN1-Regulated Phosphatase Activity and EIN2 Modulate Hypocotyl Gravitropism by a Mechanism That Does Not Require Ethylene Signaling. Plant Physiology, 2006, 141, 1617-1629.	2.3	51
126	The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development (Cambridge), 2006, 133, 251-261.	1.2	536
127	INTERACTION OF LIGHT AND HORMONE SIGNALLING TO MEDIATE PHOTOMORPHOGENESIS. , 2006, , 439-473.		9
128	Specificity and Similarity of Functions of the Aux/IAA Genes in Auxin Signaling of Arabidopsis Revealed by Promoter-Exchange Experiments among MSG2/IAA19, AXR2/IAA7, and SLR/IAA14. Plant Physiology, 2007, 144, 187-196.	2.3	80
129	The <i>Arabidopsis</i> Transcription Factor MYB77 Modulates Auxin Signal Transduction. Plant Cell, 2007, 19, 2440-2453.	3.1	337
130	NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18825-18829.	3.3	125
131	Ethylene modulates genetic, positional, and nutritional regulation of root plagiogravitropism. Functional Plant Biology, 2007, 34, 41.	1.1	42

#	Article	IF	CITATIONS
132	Auxin Transport and the Integration of Gravitropic Growth. , 0, , 47-77.		15
134	Photoreceptor Interactions with Other Signals. , 0, , 235-264.		0
135	Phototropins and Other LOV-containing Proteins. , 0, , 49-78.		1
136	Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 2007, 394, 13-24.	1.0	371
137	From genes to patterns: Auxin distribution and auxin-dependent gene regulation in plant pattern formation. Canadian Journal of Botany, 2007, 85, 353-368.	1.2	2
140	Identification of photoperception and light signal transduction pathways in citrus. Genetics and Molecular Biology, 2007, 30, 780-793.	0.6	1
141	Light and Plant Development. , 2007, , .		82
143	Phototropins and Associated Signaling: Providing the Power of Movement in Higher Plants [¶] . Photochemistry and Photobiology, 2005, 81, 73-80.	1.3	3
144	Differential expression of the auxin primary response gene MASSUGU2/IAA19during tropic responses of Arabidopsis hypocotyls. Physiologia Plantarum, 2007, 130, 148-156.	2.6	9
145	OsEXPA4 and OsRWC3 are involved in asymmetric growth during gravitropic bending of rice leaf sheath bases. Physiologia Plantarum, 2007, 130, 560-571.	2.6	23
146	Degradation of the auxin response factor ARF1. Plant Journal, 2008, 54, 118-128.	2.8	48
147	Hormonal Regulation of Leaf Morphogenesis in Arabidopsis. Journal of Integrative Plant Biology, 2007, 49, 75-80.	4.1	38
148	Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biology, 2007, 7, 59.	1.6	218
149	Auxin response factors. Current Opinion in Plant Biology, 2007, 10, 453-460.	3.5	1,003
150	Phototropin Blue-Light Receptors. Annual Review of Plant Biology, 2007, 58, 21-45.	8.6	777
151	Phototropism: A "Simple―Physiological Response Modulated by Multiple Interacting Photosensory-response Pathways ¶. Photochemistry and Photobiology, 2007, 72, 273-282.	1.3	3
152	One for All and All for One: Cross-Talk of Multiple Signals Controlling the Plant Phenotype. Journal of Plant Growth Regulation, 2007, 26, 178-187.	2.8	30
153	Ethylene and shoot regeneration: hookless1 modulates de novo shoot organogenesis in Arabidopsis thaliana. Plant Cell Reports, 2008, 27, 655-666.	2.8	37

#	Article	IF	CITATIONS
154	In silico analysis of candidate genes involved in light sensing and signal transduction pathways in soybean. Plant Biotechnology Reports, 2008, 2, 59-73.	0.9	1
155	Overexpression of the nonâ€canonical <i>Aux/IAA</i> genes causes auxinâ€related aberrant phenotypes in Arabidopsis. Physiologia Plantarum, 2008, 133, 397-405.	2.6	94
156	<i>SPOROCYTELESS</i> modulates <i>YUCCA</i> expression to regulate the development of lateral organs in Arabidopsis. New Phytologist, 2008, 179, 751-764.	3.5	69
158	The dual-and-opposing-effect of ethylene on the negative gravitropism of Arabidopsis inflorescence stem and light-grown hypocotyls. Plant Science, 2008, 175, 71-86.	1.7	12
159	<i>NPY</i> genes and AGC kinases define two key steps in auxin-mediated organogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 21017-21022.	3.3	139
160	Disruptions in AUX1-Dependent Auxin Influx Alter Hypocotyl Phototropism in Arabidopsis. Molecular Plant, 2008, 1, 129-144.	3.9	53
161	Genome-Wide Analysis Revealed the Complex Regulatory Network of Brassinosteroid Effects in Photomorphogenesis. Molecular Plant, 2009, 2, 755-772.	3.9	57
162	Understanding phototropism: from Darwin to today. Journal of Experimental Botany, 2009, 60, 1969-1978.	2.4	79
163	Differential Downward Stream of Auxin Synthesized at the Tip Has a Key Role in Gravitropic Curvature via TIR1/AFBs-Mediated Auxin Signaling Pathways. Plant and Cell Physiology, 2009, 50, 1874-1885.	1.5	48
164	<i>LBD18/ASL20</i> Regulates Lateral Root Formation in Combination with <i>LBD16/ASL18</i> Downstream of <i>ARF7</i> and <i>ARF19</i> in Arabidopsis. Plant Physiology, 2009, 151, 1377-1389.	2.3	246
165	Auxin perception and polar auxin transport are not always a prerequisite for differential growth. Plant Signaling and Behavior, 2009, 4, 899-901.	1.2	11
166	A Combinatorial Interplay Among the 1-Aminocyclopropane-1-Carboxylate Isoforms Regulates Ethylene Biosynthesis in <i>Arabidopsis thaliana</i> . Genetics, 2009, 183, 979-1003.	1.2	263
167	Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. Journal of Experimental Botany, 2009, 60, 3935-3957.	2.4	67
168	The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2009, 136, 627-636.	1.2	133
169	Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta, 2009, 229, 577-591.	1.6	146
170	Hormonal interactions during root tropic growth: hydrotropism versus gravitropism. Plant Molecular Biology, 2009, 69, 489-502.	2.0	91
171	The <i>Solanum lycopersicum</i> auxin response factor 7 (<i>SI</i> ARF7) regulates auxin signaling during tomato fruit set and development. Plant Journal, 2009, 57, 160-170.	2.8	303
172	Changes in growth kinetics of stamen filaments cause inefficient pollination in <i>massugu2</i> , an auxin insensitive, dominant mutant of <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2009, 137, 175-187.	2.6	39

#	Article	IF	CITATIONS
173	Differential petiole growth in <i>Arabidopsis thaliana</i> : photocontrol and hormonal regulation. New Phytologist, 2009, 184, 141-152.	3.5	77
174	Mechanism of Auxin-Regulated Gene Expression in Plants. Annual Review of Genetics, 2009, 43, 265-285.	3.2	602
175	Stem cells: The root of all cells. Seminars in Cell and Developmental Biology, 2009, 20, 1089-1096.	2.3	17
176	The bent peduncle phenomenon in roses is a developmental process involving auxin. Plant Science, 2009, 176, 736-743.	1.7	7
177	The <i>TRANSPORT INHIBITOR RESPONSE2</i> Gene Is Required for Auxin Synthesis and Diverse Aspects of Plant Development. Plant Physiology, 2009, 151, 168-179.	2.3	185
178	Signaling in Phototropism. Signaling and Communication in Plants, 2009, , 239-260.	0.5	1
179	Arabidopsis Root Development. , 0, , 1-38.		3
180	Signaling in Plants. Signaling and Communication in Plants, 2009, , .	0.5	1
181	Auxin Biosynthesis and Its Role in Plant Development. Annual Review of Plant Biology, 2010, 61, 49-64.	8.6	1,085
182	Genetic analysis and gene fine mapping of a rolling leaf mutant (rl 11(t)) in rice (Oryza sativa L.). Science Bulletin, 2010, 55, 1763-1769.	1.7	1
183	The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. Plant Journal, 2010, 62, 416-428.	2.8	154
184	Light signal transduction: an infinite spectrum of possibilities. Plant Journal, 2010, 61, 982-991.	2.8	119
185	Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. Plant Journal, 2010, 62, 653-662.	2.8	66
186	Role of PIN-mediated auxin efflux in apical hook development of <i>Arabidopsis thaliana</i> . Development (Cambridge), 2010, 137, 607-617.	1.2	297
187	The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in <i>Arabidopsis thaliana</i> seedlings. Development (Cambridge), 2010, 137, 597-606.	1.2	226
188	Functional analysis of the structural domain of ARF proteins in rice (Oryza sativa L.). Journal of Experimental Botany, 2010, 61, 3971-3981.	2.4	125
189	PIN it on Auxin. Plant Signaling and Behavior, 2010, 5, 1379-1383.	1.2	8
190	Exploring the link between auxin receptors, rapid cell elongation and organ tropisms. Plant Signaling and Behavior, 2010, 5, 601-603.	1.2	10

#	Article	IF	CITATIONS
191	Root Development. , 2010, , 71-90.		1
192	The Roles of YUCCA Genes in Local Auxin Biosynthesis and Plant Development. , 2010, , 227-235.		2
193	Ethylene Signal Transduction in Fruits and Flowers. , 2010, , 377-398.		10
194	On the Relevance and Control of Leaf Angle. Critical Reviews in Plant Sciences, 2010, 29, 300-316.	2.7	89
195	Phototropism: Mechanism and Outcomes. The Arabidopsis Book, 2010, 8, e0125.	0.5	43
196	Auxin Control in the Formation of Adventitious Roots. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39, 307.	0.5	114
197	Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant Journal, 2011, 67, 622-634.	2.8	92
198	A Hormonal Regulatory Module That Provides Flexibility to Tropic Responses Â. Plant Physiology, 2011, 156, 1819-1825.	2.3	33
199	Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Molecular Genetics and Genomics, 2011, 285, 245-260.	1.0	179
200	Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics, 2011, 12, 178.	1.2	189
201	Multiple Facets of <i>Arabidopsis</i> Seedling Development Require  Indole-3-Butyric Acid–Derived Auxin. Plant Cell, 2011, 23, 984-999.	3.1	149
202	A Negative Effector of Blue Light-Induced and Gravitropic Bending in Arabidopsis Â. Plant Physiology, 2011, 156, 439-447.	2.3	29
203	AUXIN RESPONSE FACTOR8 Regulates <i>Arabidopsis</i> Petal Growth by Interacting with the bHLH Transcription Factor BIGPETALp Â. Plant Cell, 2011, 23, 973-983.	3.1	206
204	Modulation of Phototropic Responsiveness in <i>Arabidopsis</i> through Ubiquitination of Phototropin 1 by the CUL3-Ring E3 Ubiquitin Ligase CRL3NPH3 Â. Plant Cell, 2011, 23, 3627-3640.	3.1	131
205	Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1729-1734.	3.3	88
206	Seven Things We Think We Know about Auxin Transport. Molecular Plant, 2011, 4, 487-504.	3.9	196
207	NPY Genes Play an Essential Role in Root Gravitropic Responses in Arabidopsis. Molecular Plant, 2011, 4, 171-179.	3.9	41
208	Phytochrome Kinase Substrate 4 is phosphorylated by the phototropin 1 photoreceptor. EMBO Journal, 2012, 31, 3457-3467.	3.5	82

	Сіта	tion Report	
#	Article	IF	CITATIONS
209	Irrepressible, truncated Auxin Response Factors. Plant Signaling and Behavior, 2012, 7, 1027-1030.	1.2	4
210	Effects of Wavelength of Different LED on the Growth of Clivia Plantlets. , 2012, , .		1
211	Molecular Genetic Analysis of Phototropism in Arabidopsis. Plant and Cell Physiology, 2012, 53, 1517-1534.	1.5	57
212	<i>Arabidopsis</i> ribosomal proteins control developmental programs through translational regulation of auxin response factors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19537-19544.	3.3	99
213	The Interaction and Integration of Auxin Signaling Components. Plant and Cell Physiology, 2012, 53, 965-975.	1.5	158
214	Carbohydrate Stress Affecting Fruitlet Abscission and Expression of Genes Related to Auxin Signal Transduction Pathway in Litchi. International Journal of Molecular Sciences, 2012, 13, 16084-16103.	1.8	52
215	Auxin and ethylene: collaborators or competitors?. Trends in Plant Science, 2012, 17, 181-195.	4.3	372
216	Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea. BMC Genomics, 2012, 13, 15.	1.2	69
217	Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biology, 2012, 12, 190.	1.6	142
218	Effects of indole-3-acetic acid and auxin transport inhibitors on the style curvature of three Alpinia species (Zingiberaceae). Acta Physiologiae Plantarum, 2012, 34, 2019-2025.	1.0	6
219	Hypocotyl Transcriptome Reveals Auxin Regulation of Growth-Promoting Genes through GA-Dependent and -Independent Pathways. PLoS ONE, 2012, 7, e36210.	1.1	127
220	Regulation of Leaf Morphology by MicroRNA394 and its Target LEAF CURLING RESPONSIVENESS. Plant and Cell Physiology, 2012, 53, 1283-1294.	1.5	107
221	Systematic analysis of plant-specific B3 domain-containing proteins based on the genome resources of 11 sequenced species. Molecular Biology Reports, 2012, 39, 6267-6282.	1.0	38
222	Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes. Molecular Biology Reports, 2012, 39, 2401-2415.	1.0	70
223	Polar Auxin Transport. Signaling and Communication in Plants, 2013, , .	0.5	18
224	Antagonistic Regulation of Leaf Flattening by Phytochrome B and Phototropin in Arabidopsis thaliana. Plant and Cell Physiology, 2013, 54, 69-79.	1.5	44
225	Phototropism: at the crossroads of light-signaling pathways. Trends in Plant Science, 2013, 18, 393-401	. 4.3	86
226	Phototropism: Translating light into directional growth. American Journal of Botany, 2013, 100, 47-59.	0.8	76

#	Article	IF	Citations
227	Brassinosteroids Regulate the Differential Growth of Arabidopsis Hypocotyls through Auxin Signaling Components IAA19 and ARF7. Molecular Plant, 2013, 6, 887-904.	3.9	63
228	Studies on the Rice LEAF INCLINATION1 (LC1), an IAA–amido Synthetase, Reveal the Effects of Auxin in Leaf Inclination Control. Molecular Plant, 2013, 6, 174-187.	3.9	96
229	Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. American Journal of Botany, 2013, 100, 215-225.	0.8	56
230	Phototropins Function in High-Intensity Blue Light-Induced Hypocotyl Phototropism in Arabidopsis by Altering Cytosolic Calcium Á Â Â. Plant Physiology, 2013, 162, 1539-1551.	2.3	70
231	PIF4 and PIF5 Transcription Factors Link Blue Light and Auxin to Regulate the Phototropic Response in Arabidopsis. Plant Cell, 2013, 25, 2102-2114.	3.1	141
232	Differential growth at the apical hook: all roads lead to auxin. Frontiers in Plant Science, 2013, 4, 441.	1.7	98
233	D6PK AGCVIII Kinases Are Required for Auxin Transport and Phototropic Hypocotyl Bending in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 1674-1688.	3.1	118
235	Genome-wide analysis of the auxin response factor gene family in cucumber. Genetics and Molecular Research, 2013, 12, 4317-4331.	0.3	31
236	Intragenic Suppressor of Osiaa23 Revealed a Conserved Tryptophan Residue Crucial for Protein-Protein Interactions. PLoS ONE, 2014, 9, e85358.	1.1	16
237	Proper PIN1 Distribution Is Needed for Root Negative Phototropism in Arabidopsis. PLoS ONE, 2014, 9, e85720.	1.1	15
238	Investigation of Intercellular Salicylic Acid Accumulation during Compatible and Incompatible Arabidopsis-Pseudomonas syringae Interactions Using a Fast Neutron-Generated Mutant Allele of EDS5 Identified by Genetic Mapping and Whole-Genome Sequencing. PLoS ONE, 2014, 9, e88608.	1.1	28
239	Genome-Wide Characterization and Expression Profiling of the AUXIN RESPONSE FACTOR (ARF) Gene Family in Eucalyptus grandis. PLoS ONE, 2014, 9, e108906.	1.1	45
240	Phototropin 1 and dim-blue light modulate the red light de-etiolation response. Plant Signaling and Behavior, 2014, 9, e976158.	1.2	0
241	Hormonal networks involved in apical hook development in darkness and their response to light. Frontiers in Plant Science, 2014, 5, 52.	1.7	93
242	Cytokinin treatments affect the apical-basal patterning of the Arabidopsis gynoecium and resemble the effects of polar auxin transport inhibition. Frontiers in Plant Science, 2014, 5, 191.	1.7	51
243	Phototropism: Growing towards an Understanding of Plant Movement. Plant Cell, 2014, 26, 38-55.	3.1	142
244	Mutants of phospholipase <scp>A</scp> (<scp>pPLA</scp> â€ <scp>I</scp>) have a red light and auxin phenotype. Plant, Cell and Environment, 2014, 37, 1626-1640.	2.8	18
245	Distinct subclades of <scp><i>Aux/IAA</i></scp> genes are direct targets of <scp>ARF</scp> 5/ <scp>MP</scp> transcriptional regulation. New Phytologist, 2014, 204, 474-483.	3.5	62

	Сіта	CITATION REPORT	
#	Article	IF	Citations
246	Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. Plant Molecular Biology, 2014, 85, 395-409.	2.0	28
247	Auxin and Its Role in Plant Development. , 2014, , .		37
248	Auxin and Tropisms. , 2014, , 361-387.		9
249	Intercellular Transport of Auxin. , 2014, , 75-100.		10
250	AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends in Plant Science, 2014, 19, 146-15	57. 4.3	157
251	Mutation of <i><scp>A</scp>rabidopsis <scp>CATALASE2</scp></i> results in hyponastic leaves by changes of auxin levels. Plant, Cell and Environment, 2014, 37, 175-188.	2.8	77
252	Genome-wide identification and characterization of auxin response factor (ARF) family genes related to flower and fruit development in papaya (Carica papaya L.). BMC Genomics, 2015, 16, 901.	1.2	64
253	Strategies of seedlings to overcome their sessile nature: auxin in mobility control. Frontiers in Plant Science, 2015, 6, 218.	1.7	35
254	Integration of Ethylene and Auxin Signaling and the Developmental Consequences of Their Crosstalk. , 2015, , 175-204.		4
255	Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis). Frontiers in Plant Science, 2015, 6, 119.	1.7	88
256	Auxin-Mediated Transcriptional System with a Minimal Set of Components Is Critical for Morphogenesis through the Life Cycle in Marchantia polymorpha. PLoS Genetics, 2015, 11, e1005084.	1.5	157
257	Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula. Frontiers in Plant Science, 2015, 6, 73.	1.7	107
258	Genome-wide identification of auxin response factor (ARF) genes and its tissue-specific prominent expression in Gossypium raimondii. Functional and Integrative Genomics, 2015, 15, 481-493.	1.4	41
259	Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. BioMetals, 2015, 28, 123-132.	1.8	65
260	Ethylene in Plants. , 2015, , .		28
261	Auxin response factors. Plant, Cell and Environment, 2016, 39, 1014-1028.	2.8	218
262	RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 11 10424-10429.	.3, 3.3	36
263	Genome-wide characterization and expression pattern of auxin response factor (ARF) gene family in soybean and common bean. Genes and Genomics, 2016, 38, 1165-1178.	0.5	23

#	Article	IF	CITATIONS
264	The auxin response factor <scp>MONOPTEROS</scp> controls meristem function and organogenesis in both the shoot and root through the direct regulation of <i><scp>PIN</scp></i> genes. New Phytologist, 2016, 212, 42-50.	3.5	87
265	A Model of Differential Growth-Guided Apical Hook Formation in Plants. Plant Cell, 2016, 28, 2464-2477.	3.1	53
266	SIARF2a plays a negative role in mediating axillary shoot formation. Scientific Reports, 2016, 6, 33728.	1.6	6
268	A single amino acid substitution in the R3 domain of GLABRA1 leads to inhibition of trichome formation in Arabidopsis without affecting its interaction with GLABRA3. Plant, Cell and Environment, 2016, 39, 897-907.	2.8	53
269	Regulation of seedling growth by ethylene and the ethylene–auxin crosstalk. Planta, 2017, 245, 467-489.	1.6	70
270	Division of Labor during Apical Hook Formation. Plant Cell, 2017, 29, 917-918.	3.1	2
271	Ethylene Regulates Differential Growth via BIG ARF-GEF-Dependent Post-Golgi Secretory Trafficking in Arabidopsis. Plant Cell, 2017, 29, 1039-1052.	3.1	28
272	Genome-Wide Identification of Auxin Response Factor (ARF) Genes Family and its Tissue-Specific Prominent Expression in Pineapple (Ananas comosus). Tropical Plant Biology, 2017, 10, 86-96.	1.0	42
273	LAZY Genes Mediate the Effects of Gravity on Auxin Gradients and Plant Architecture. Plant Physiology, 2017, 175, 959-969.	2.3	120
274	Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea. Scientific Reports, 2017, 7, 10895.	1.6	52
275	ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties. Journal of Experimental Botany, 2017, 68, 4185-4203.	2.4	7
276	Biochemical and chemical biology study of rice OsTAR1 revealed that tryptophan aminotransferase is involved in auxin biosynthesis; identification of a potent OsTAR1 inhibitor, pyruvamine2031. Plant and Cell Physiology, 2017, 58, pcx007.	1.5	25
277	Comparative Analysis of Cotton Small RNAs and Their Target Genes in Response to Salt Stress. Genes, 2017, 8, 369.	1.0	21
278	Identification and Expression Profiling of the Auxin Response Factors in Dendrobium officinale under Abiotic Stresses. International Journal of Molecular Sciences, 2017, 18, 927.	1.8	25
279	Identification and Expression Profiling of the Auxin Response Factors in Capsicum annuum L. under Abiotic Stress and Hormone Treatments. International Journal of Molecular Sciences, 2017, 18, 2719.	1.8	23
280	MYB Transcription Factors and a Putative Flavonoid Transporter ABCC-Like are Differentially Expressed in Radiata Pine Seedlings Exposed to Inclination. Journal of Plant Growth Regulation, 2018, 37, 64-75.	2.8	5
281	Evolution of nuclear auxin signaling: lessons from genetic studies with basal land plants. Journal of Experimental Botany, 2018, 69, 291-301.	2.4	53
286	Genome-Wide Investigation of the Auxin Response Factor Gene Family in Tartary Buckwheat (Fagopyrum tataricum). International Journal of Molecular Sciences, 2018, 19, 3526.	1.8	60

#	Article	IF	CITATIONS
288	Root branching toward water involves posttranslational modification of transcription factor ARF7. Science, 2018, 362, 1407-1410.	6.0	179
289	Phototropism in land plants: Molecules and mechanism from light perception to response. Frontiers in Biology, 2018, 13, 342-357.	0.7	7
290	Root Gravitropism Is Regulated by a Crosstalk between <i>para</i> -Aminobenzoic Acid, Ethylene, and Auxin. Plant Physiology, 2018, 178, 1370-1389.	2.3	33
291	Transcriptome analysis of Pinus massoniana Lamb. microstrobili during sexual reversal. Open Life Sciences, 2018, 13, 97-106.	0.6	3
292	A Sweetpotato Auxin Response Factor Gene (IbARF5) Is Involved in Carotenoid Biosynthesis and Salt and Drought Tolerance in Transgenic Arabidopsis. Frontiers in Plant Science, 2018, 9, 1307.	1.7	89
293	Genome-wide identification and expression profiling of the auxin response factor (ARF) gene family in physic nut. PLoS ONE, 2018, 13, e0201024.	1.1	24
294	Tropisms of Underground Shoots—Stolons and Rhizomes. Biology Bulletin Reviews, 2018, 8, 181-192.	0.3	5
295	Three Auxin Response Factors Promote Hypocotyl Elongation. Plant Physiology, 2018, 178, 864-875.	2.3	79
296	Genome-wide identification of the GhARF gene family reveals that GhARF2 and GhARF18 are involved in cotton fibre cell initiation. Journal of Experimental Botany, 2018, 69, 4323-4337.	2.4	43
297	Effects of maize organ-specific drought stress response on yields from transcriptome analysis. BMC Plant Biology, 2019, 19, 335.	1.6	66
298	Auxin Induces Widespread Proteome Remodeling in Arabidopsis Seedlings. Proteomics, 2019, 19, 1900199.	1.3	10
299	Identification of Auxin Response Factor-Encoding Genes Expressed in Distinct Phases of Leaf Vein Development and with Overlapping Functions in Leaf Formation. Plants, 2019, 8, 242.	1.6	14
300	Auxin-Dependent Cell Elongation During the Shade Avoidance Response. Frontiers in Plant Science, 2019, 10, 914.	1.7	53
301	Autopolyploidization in switchgrass alters phenotype and flowering time via epigenetic and transcription regulation. Journal of Experimental Botany, 2019, 70, 5673-5686.	2.4	22
302	Mechanical Behaviors of Methane Hydrate-Bearing Sediments Using Montmorillonite Clay. Energy Procedia, 2019, 158, 5281-5286.	1.8	15
303	Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in strawberry (Fragaria vesca). Journal of Integrative Agriculture, 2019, 18, 1587-1603.	1.7	14
304	Expression and Distribution of the Auxin Response Factors in Sorghum bicolor During Development and Temperature Stress. International Journal of Molecular Sciences, 2019, 20, 4816.	1.8	13
305	<i>Trichoderma</i> Histone Deacetylase HDA-2 Modulates Multiple Responses in Arabidopsis. Plant Physiology, 2019, 179, 1343-1361.	2.3	50

#	Article	IF	CITATIONS
306	Three BnaIAA7 homologs are involved in auxin/brassinosteroid-mediated plant morphogenesis in rapeseed (Brassica napus L.). Plant Cell Reports, 2019, 38, 883-897.	2.8	25
307	In seedlings of Pinus radiata, jasmonic acid and auxin are differentially distributed on opposite sides of tilted stems affecting lignin monomer biosynthesis and composition. Plant Physiology and Biochemistry, 2019, 135, 215-223.	2.8	13
308	<i>Arabidopsis</i> ANAC092 regulates auxinâ€mediated root development by binding to the <i>ARF8</i> and <i>PIN4</i> promoters. Journal of Integrative Plant Biology, 2019, 61, 1015-1031.	4.1	21
309	TaARF4 genes are linked to root growth and plant height in wheat. Annals of Botany, 2019, 124, 903-915.	1.4	38
310	Non-steroidal Anti-inflammatory Drugs Target TWISTED DWARF1-Regulated Actin Dynamics and Auxin Transport-Mediated Plant Development. Cell Reports, 2020, 33, 108463.	2.9	11
311	Auxin Response Factor 2A Is Part of the Regulatory Network Mediating Fruit Ripening Through Auxin-Ethylene Crosstalk in Durian. Frontiers in Plant Science, 2020, 11, 543747.	1.7	22
312	Long-distance regulation of shoot gravitropism by Cyclophilin 1 in tomato (Solanum lycopersicum) plants. Planta, 2020, 252, 50.	1.6	1
313	Protein Levels of Several Arabidopsis Auxin Response Factors Are Regulated by Multiple Factors and ABA Promotes ARF6 Protein Ubiquitination. International Journal of Molecular Sciences, 2020, 21, 9437.	1.8	18
314	CpARF2 and CpEIL1 interact to mediate auxin–ethylene interaction and regulate fruit ripening in papaya. Plant Journal, 2020, 103, 1318-1337.	2.8	54
315	Root Development and Stress Tolerance in rice: The Key to Improving Stress Tolerance without Yield Penalties. International Journal of Molecular Sciences, 2020, 21, 1807.	1.8	39
316	ZEITLUPE facilitates the rhythmic movements of <i>Nicotiana attenuata</i> flowers. Plant Journal, 2020, 103, 308-322.	2.8	2
317	The auxin response factor gene family in wheat (Triticum aestivum L.): Genome-wide identification, characterization and expression analyses in response to leaf rust. South African Journal of Botany, 2021, 140, 312-325.	1.2	13
318	Interplay between Cell Wall and Auxin Mediates the Control of Differential Cell Elongation during Apical Hook Development. Current Biology, 2020, 30, 1733-1739.e3.	1.8	30
319	Genome-wide identification and functional analysis of ARF transcription factors in Brassica juncea var. tumida. PLoS ONE, 2020, 15, e0232039.	1.1	9
320	The Asymmetric Expression of SAUR Genes Mediated by ARF7/19 Promotes the Gravitropism and Phototropism of Plant Hypocotyls. Cell Reports, 2020, 31, 107529.	2.9	35
321	Genome-wide analysis of auxin response factor (ARF) genes and functional identification of <i>MdARF2</i> reveals the involvement in the regulation of anthocyanin accumulation in apple. New Zealand Journal of Crop and Horticultural Science, 2021, 49, 78-91.	0.7	15
322	A network of transcriptional repressors modulates auxin responses. Nature, 2021, 589, 116-119.	13.7	56
323	The microtubule-associated protein WDL4 modulates auxin distribution to promote apical hook	3.1	13

#	Article	IF	CITATIONS
324	Mechanochemical feedback mediates tissue bending required for seedling emergence. Current Biology, 2021, 31, 1154-1164.e3.	1.8	43
325	PIP2, An Auxin Induced Plant Peptide Hormone Regulates Root and Hypocotyl Elongation in Arabidopsis. Frontiers in Plant Science, 2021, 12, 646736.	1.7	4
326	Structural Aspects of Auxin Signaling. Cold Spring Harbor Perspectives in Biology, 2022, 14, a039883.	2.3	20
327	Aux/IAA and ARF Gene Families in Salix suchowensis: Identification, Evolution, and Dynamic Transcriptome Profiling During the Plant Growth Process. Frontiers in Plant Science, 2021, 12, 666310.	1.7	12
329	Petiole hormones act as regulators in the early phototropic leaf movements of grape (Vitis vinifera L.) revealed by comparative transcriptome profiling. Scientia Horticulturae, 2021, 283, 110049.	1.7	2
330	Knockdown of MicroRNA160a/b by STTM leads to root architecture changes via auxin signaling in Solanum tuberosum. Plant Physiology and Biochemistry, 2021, 166, 939-949.	2.8	8
331	SIGNAL TRANSDUCTION IN BLUE LIGHT-MEDIATED RESPONSES. , 2006, , 305-327.		3
332	The Effect of Light and Gravity on Hypocotyl Growth Orientation. , 2005, , 277-284.		3
333	Photomorphogenesis and Photoperiodism in Plants. , 2008, , 417-463.		3
334	Auxin, One Major Plant Hormone, in Soil. , 2016, , 175-209.		4
335	Protein phosphorylation in the delivery of and response to auxin signals. , 2002, , 285-303.		5
336	Secondary messengers and phospholipase A2 in auxin signal transduction. , 2002, , 357-372.		18
337	Auxin-responsive gene expression: genes, promoters and regulatory factors. , 2002, , 373-385.		29
342	Ectopic Expression of a Wheat WRKY Transcription Factor Gene TaWRKY71-1 Results in Hyponastic Leaves in Arabidopsis thaliana. PLoS ONE, 2013, 8, e63033.	1.1	16
343	Gibberellin Application at Pre-Bloom in Grapevines Down-Regulates the Expressions of VvIAA9 and VvARF7, Negative Regulators of Fruit Set Initiation, during Parthenocarpic Fruit Development. PLoS ONE, 2014, 9, e95634.	1.1	33
344	The Protein Kinase CK2 Mediates Cross-Talk between Auxin- and Salicylic Acid-Signaling Pathways in the Regulation of PINOID Transcription. PLoS ONE, 2016, 11, e0157168.	1.1	13
345	Phototropins and associated signaling: Providing the power of movement in higher plants. Photochemistry and Photobiology, 2004, 81, 73-80.	1.3	17
348	Relationship between <i>cpt1</i> Gene and the Negative Phototropism in Rice Roots. Acta Agronomica Sinica(China), 2009, 35, 1558-1561.	0.1	1

		CITATION REPORT		
#	ARTICLE		IF	Citations
349	Signaling crosstalk between ethylene and other molecules. Plant Biotechnology, 2005	, 22, 401-407.	0.5	3
350	Hormones and Light-Regulated Seedling Development. Plant in Challenging Environme	ents, 2021, , 91-116.	0.4	1
351	Phenotypic and genotypic parallel evolution in parapatric ecotypes of <i>Senecio</i> . E International Journal of Organic Evolution, 2021, 75, 3115-3131.	ivolution;	1.1	22
352	Photomorphogenesis and Photoperiodism in Plants. , 2002, , 299-334.			0
353	Regulation of Polar Auxin Transport by Protein Phosphorylation. Signaling and Commu Plants, 2013, , 81-101.	nication in	0.5	0
354	The Role of Auxin Transport and Distribution in Plant Gravimorphogenesis. Signaling an Communication in Plants, 2013, , 179-199.	nd	0.5	0
356	Genome-wide exploration of auxin response factors (ARFs) and their expression dynam to abiotic stresses and growth regulators in coconut (Cocos nucifera L.). Plant Gene, 2	nics in response 1021, 28, 100344.	1.4	9
357	Dissection of the light signal transduction pathways regulating the two early light-indugenes in Arabidopsis. Plant Physiology, 2001, 127, 986-97.	iced protein	2.3	31
358	Biphasic control of cell expansion by auxin coordinates etiolated seedling developmen Advances, 2022, 8, eabj1570.	t. Science	4.7	19
359	Genome-wide identification of auxin response factor (ARF) gene family and the miR16 response to salt stress in peanut (Arachis hypogaea L.). Genomics, 2022, 114, 171-184	D-ARF18-mediated 4.	1.3	30
360	Protein phosphorylation in the delivery of and response to auxin signals. Plant Molecul 2002, 49, 285-303.	ar Biology,	2.0	29
361	Secondary messengers and phospholipase A2 in auxin signal transduction. Plant Molec 2002, 49, 357-72.	cular Biology,	2.0	21
362	Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol 2002, 49, 373-85.	ecular Biology,	2.0	446
363	Genetics of Aux/IAA and ARF action in plant growth and development. Plant Molecular 49, 387-400.	Biology, 2002,	2.0	289
369	A feedback regulation between ARF7â€mediated auxin signaling and auxin homeostas affects plant gravitropism. Journal of Integrative Plant Biology, 2022, 64, 1339-1351.	is involving MES17	4.1	6
370	MdARF8: An Auxin Response Factor Involved in Jasmonate Signaling Pathway in Malus Journal of Plant Growth Regulation, 2023, 42, 1738-1749.	domestica.	2.8	2
371	Identification and characterization of auxin response factor (ARF) family members invo (<i>Ficus carica</i> L.) fruit development. PeerJ, 0, 10, e13798.	lved in fig	0.9	1
372	GmIAA27 Encodes an AUX/IAA Protein Involved in Dwarfing and Multi-Branching in Soy International Journal of Molecular Sciences, 2022, 23, 8643.	/bean.	1.8	12

#	Article	IF	CITATIONS
373	Advances in structure and function of auxin response factor in plants. Journal of Integrative Plant Biology, 2023, 65, 617-632.	4.1	22
374	Identification of Brachypodium distachyon B3 genes reveals that BdB3-54 regulates primary root growth. Frontiers in Plant Science, 0, 13, .	1.7	0
375	The action of enhancing weak light capture via phototropic growth and chloroplast movement in plants. Stress Biology, 2022, 2, .	1.5	0
376	Light Promotes Protein Stability of Auxin Response Factor 7. Phyton, 2023, 92, 1153-1160.	0.4	0
377	Genomic divergence and introgression among three Populus species. Molecular Phylogenetics and Evolution, 2023, 180, 107686.	1.2	5
378	LkARF7 and LkARF19 overexpression promote adventitious root formation in a heterologous poplar model by positively regulating LkBBM1. Communications Biology, 2023, 6, .	2.0	3
379	Differential gene expression signatures of auxin response factors and auxin/ indole 3-acetic acid genes in storage root as compared to non-tuber forming fibrous root of sweet potato (Ipomoea batatas). , 2017, 87, .		1